
Global Journal of Computer Science and Technology Vol. 10 Issue 2 (Ver 1.0), April 2010 P a g e | 55

GJCST Computing Classification
D.2.6, D.2.2 & K.6.1

Risk Identification and Preemptive Scheduling In

Software Development Life Cycle

Basit Shahzad, Abdullah S.
 Al-Mudimigh, Zahid Ullah

College of Computer & Information Science

King Saud University, Riyadh, Saudi Arabia

Basit.shahzad@gmail.com , mudimigh@ksu.edu.sa, zahid@ksu.edu.sa

Abstract- Software development has emerged as a disciplined

discipline and the use of process models to develop the software

has increased over time. Although the software industry is

blessed with quite a few tool driven approaches, and the usage

of technology is increasing yet the amount of risks faced by the

software development life cycle have also increased to an

extent. This paper focuses on the avoidance and mitigation

strategies for the already identified and prioritized risk factors.

Keywords- Preemptive risk identification, software risk

handling, risk mitigation

I INTRODUCTION

oftware risk management has been a very hot area of

research since last three decades. Recently, the research

community looks seriously interested to identify not only
the risk factors but also the causes of the appearance of the

risk factors in software development life cycle and how

these risks can either be handled or avoided. A recent survey

of 600 firms indicated that almost 35% of them had at least

one ‗runaway‘ software project [1]. In another study,

conducted on almost 13,000 projects, it was investigated

that almost 25% of the projects were either delayed or faced

a failure. It has been observed that most problems in the

software industry are faced just because of the poor software

risk handling mechanisms or due to the absence of any such

mechanism at all. In this regard it is important to note that

currently strong emphasis is being given on this domain to

identify more and more risk factors. Pressman [3] has made

an effort to identify the software risks, and has provided the
ten broader risk factors. Bohme, in his work has also

provided a list of top ten risk categories[4]. Basit Shahzad,

[5] has also worked in this domain to identify a relatively

more detailed list of software risk factors and also

identifying the relative impact of each risk factors. In a

recent paper on risk management, the risk factors have been

prioritized according to their frequency of occurrence and

the impact that they possess [6], and thus a list of eighteen

risk factors with respect to their total impact has been

prepared. The list is presented in the table 1 and table 2.

Table 1 presents the list of all 18 risk factors, while table 2

presents the ordered list of software risk factors w.r.t. the
overall impact of each risk factor.

Table 1: The risk factors w.r.t their identifier

The risk factor identified in this list is expected to cover a

border range of the risks that may come into the software

development process. Still the author feel himself restricted,

not to claim that this list covers all possible risk factors. It is

strongly believed that the risk identification, particularly, is

an ongoing process, and apparently there is no full stop as

the risk factors keep on increasing with the arrival of new

technologies, people, environment, management and the

circumstances. So a claim about the identification of all risk

factors available in the entire software process, may not be

realistic. Table 2, presents the ordered list of available risk

factors, by calculating the overall impact and frequency of

each available risk factor [6].

S

mailto:Basit.shahzad@gmail.com
mailto:binmathkour@yahoo.com
mailto:zahid@ksu.edu.sa

P a g e | 56 Vol. 10 Issue 2 (Ver 1.0), April 2010 Global Journal of Computer Science and Technology

In table 2, the term ―Impact‖ means the impact of that

specific risk factor, e.g. the risk factor number 2 has the

impact of 519.5 and risk factor number 7 has the impact of

6.6. The term ―Probability‖ means the possible occurrence

of the risk factor. The term ―Overall Impact‖ describes the

impact of a risk factor with respect to the probability of each

factor. The risk factors have been ordered with respect to the

overall impact they possess, in ascending order, showing the

maximum overall impact of 259.75 for risk factor number 2

and minimum overall impact of 1.08 for risk factor number

3.

Table 2: List of prioritized risk factors

II STATE OF THE ART

Software risk identification and mitigation has been a prime

area of research since last two decades, and this area of

research has received a highly overwhelming response and

contribution from the researcher both: in industry and

academia, world-wide. In order to identify the recent trend

and practices in the domain of software risk identification a
comprehensive literature survey was conducted that has

helped in the more effective management of risk factors.

Danny Lieberman [31] has worked to reduce operational

risks by improving the software quality. Dannay focuses on

the classification and quantitative evaluation of removing

the software risks by effective software management, thus

contributing to the classified risk mitigation. In a study that

was conducted in 2005 [32], a sample of 167 customer‘s

data breaches were analyzed to view the distribution of risks

and threats and it were identified that 3% of the total risks

are caused by accidental disclosure bye-mails, 7.8% of risks
are oriented due to the human weaknesses, 40.1% risks are

caused by unprotected computer/backup media and 49.1%

of risks are caused due to the malicious exploitation of

software risks. Thus, suggesting way mitigates the risk

factors more appropriately.

The SEI reports that 90% of all software risks are due to

already known defects [33], while all of the SANA top 20

internet security problems are result of poor coding, testing

and sloppy software engineering.[34]

Jhon Stiuby (2009) and his team have worked on the

management of risks in distributed software projects, which
proposes a framework for handling the software projects

that are not developed at geographically same location, and

have advised a framework to e followed in this regard [35].

B.J. Alge, C. Wiethoff, and H.J (2003) . Kelin have

emphasized on the effective handling of risks and problems

in the software development lifecycle and in team structure

by the usage of knowledge building process and effective

communication[36]. E. Bradner, G. Mark, and T.D. Hertal

(2005) have worked to identify the correct team sizes for the

different project sizes and have focused the problems that

are experienced by over, low and poor staffing [37].

R. N. Burn (2001) and his team have discussed the risks that
are oriented due to the in-appropriate application selection

methodology, specially in the database projects [38]. R. N.

Charatte (1989), has proposed the analysis and management

of the risk factors in software development process [39].

The surveyed literature has been identified greatly in the

favors of categorical identification of the risk factors as the

existence of risk factors can be extremely harmful, if not

attended at the proper time by giving due consideration.

III HANDLING AND AVOIDANCE MECHANISM

Table 2, summarizes the Impact, Probability and Overall

Impact of each risk factor. The aim to establish the

prioritized list is to help the interested community to better

handle the software risks, thus, the risk factor with the

highest overall impact is proposed to be addressed first and

with the highest attention, perhaps even leaving all other

activities at hold. While the risk factors like factors number

7 or 3 require least attention, and can be given importance

only when the ample staff is free to invest time on the

management of these risks factors. After having established

the prioritized list of risk factors based upon the overall
impact it is necessary that the risks are either to be handled

or avoided, it is necessary that a strategy is proposed for

each risk factor. Sub-sections 2.1-2.14, discuss the handling

and avoidance strategies against each risk factors, presented

in Table 1 and Table 2.

Global Journal of Computer Science and Technology Vol. 10 Issue 2 (Ver 1.0), April 2010 P a g e | 57

A. Requirements Are Not Properly Stated

i. Multiple requirement acquisition approaches must

be used; this includes the questionnaires, interviews

and direct communication. The team deployed on

the requirement acquisition should be capable
enough to extract the accurate/valuable information

from the information lot coming from different

sources. The capabilities of the analysts in terms of

requirements acquisition can be determined by

their performance in the previous projects. An

analyst having a very good track record of

determining the requirements may be more

trustable for deployment in the requirement

acquisition process.

ii. Facilitated Application Specification Techniques

(FAST) [7] should be used to ensure the elaborated
understanding of the requirements at both ends, i.e.

the customer and developer. This informal way of

requirement collection helps the development team

to understand the requirements in the actual

context. [12]

iii. The customer must allow the development team to

have a flexible schedule if the requirements are

expected to change dynamically. Only minor

changes, which don‘t have the impact on the

architecture of the software, can be changed

dynamically. The major changes, requiring the

change in architecture, cant be completed in the
same time and cost. Therefore, if the customer

requires or expects the dynamic changes in the

requirement definition, it must expect a relatively

higher cost and time to complete the project. [13]

iv. The development team must be familiar with the

Enhanced Information Deployment [7] technique,

to take care of the default requirements that are not

explicitly mentioned by the customer.

B. Low Estimation And Time And Cost

i. The development team while bidding for the

project must have a clear idea of the requirements

that are explicitly stated and also of those that are

expected by default. It is appropriate that the

management acquires multiple estimates from

different sources, and suggest a flexible schedule in

terms of time and cost. Only the acquisition of

estimates from multiple sources is not sufficient but

a mechanism should be in place to identify the best

possible estimates out of available. It is

recommended that this process be governed by the
team of experienced analysts, developers and

managers, in order to make this exercise more

effective and result oriented [14].

ii. It has been observed that if the funding and time

are not flexible, the incremental model [4] of

development may be a solution. As it grows in

increments, if the funding or time collapse, at least

there is something presentable to the customer,

rather than having nothing at all. Although the

product may be incomplete yet the time and cost

incurred can be presented to customer to grab the

future funding for development purposes.

iii. The development team must try to find the
maximum amount of reusable code, the availability

of reusable code will have three dimensional

positive effects. First it will decrease the time

required for the software development by making

available the code that was to be developed if the

reusable code were not available. Secondly, it will

decrease the cost of development as less

development is required in the presence of reusable

code, the higher the usage of re-usable code the

lower the cost of software development comes.

Thirdly, the re-usable code is already tested
component and hence does not require re-testing,

therefore, saving time of testing the component.

iv. The team of experienced developers and

management may decide, in consultation with the

customer, that if there are any scrubable

requirements that may not harm the overall

working of the software. Such requirements may be

eliminated to save time and cost[15].

v. Clean room engineering may not be implemented

in the projects that have tight time and cost

schedule.

C. More Stress Of Users Than Expected

The developer must always expect and consider that the

customer is not capable of describing all the requirements.

The developer, if possible, must design and implement the

system in a way that it can tolerate with the extra burden as

well.

The developers must also do the extensive stress testing to

ensure that the software is capable of handling the load and

stress of the users. The development teams can stress test the

software at component level, environment level, architecture
level and end-to-end level. In component level we assume

that although unit testing has its existence yet it has a

disadvantage that in the domain of web services, it can‘t

work to check the concurrency and deadlock of the

simultaneous requests, adequately. Therefore it is necessary

that each component residing on the web server is tested

through the stress testing, in order to check that no deadlock

occurs during the simultaneous access, and the consistent

position of data is maintained and also no deadlock occurs

while the records are being accessed and updated. In

environment level and after the completion of the

requirement engineering phase, the development team
decides the hardware and software infrastructure that they

plan to provide for the development life cycle. The

infrastructure may include a database application, a front

end application, a hardware platform and a load balancer.

This infrastructure helps in determining the scalability,

reliability and cost of application. Hence, all available

P a g e | 58 Vol. 10 Issue 2 (Ver 1.0), April 2010 Global Journal of Computer Science and Technology

infrastructural option are to be reviewed categorically in

order to identify and estimate the performance and the cost

of performance. Architectural level stress testing is also

called benchmarking. The basic purpose of the stress test on

the application‘s architecture is to measure the cohesiveness

of the component residing at the different levels. A well

responsive application would ensure that all components at
all tires are well associated and working properly. During

the development process, the sample components may be

taken from each tire of the cohesive modules to detect any

flaws during analysis and design of the application. End-to-

End stress test has a flavor of real test that may be prolonged

to several hours and in some cases even to some days. These

End-to-End test (if accurately designed) test the application

as whole and at length [8].

D. Less Reuse Than Expected

i. While estimating for the projects cost and resource

requirement, the developers must know that what

amount of software is available for re-use, this

should be an rational decision as, if the reusable

code is not available the effort to develop such

code will be duplicated. As not only code is to be

developed, but also the component is to be tested

before integration with other components. The

person investigating for the availability of re-usable

code must have adequate knowledge of existing

libraries of components and must also know about

the active libraries being updated. The active
knowledge of web is also essential in this regard.

ii. If the component is to be developed, it is necessary

that a clean room engineering approach is applied

is the development so that the time required for

testing the component is minimized if not

completely eliminated [16].

iii. The best developer, among the available lot, should

be deployed to develop the components so that the

expected time on development and testing is

minimized.

E. Delivery Deadline Tightened Or Manager

Change Circumstances

i. The managers somehow try changing the

circumstances because of the deadline pressure or

because of the orientation of new requirements.

The absolute definition of requirements at the

beginning ensures that circumstances remain

constant and deadlines are not tightened.

ii. The development team and management of the

development firm must have the foreseeing

capability, and should try adhering to the dynamic
circumstances without disturbing the firm itself.

For this purpose the firm must try and maintain the

experienced staff who can use their intuition at the

required time and contribute for the betterment of

the firm.

iii. The FAST approach may be used to speed up the

requirement acquisition, thus decreasing the

negative impact of tightened deadlines. Although

FAST session has the build-in capability to speed

up the requirement acquisition process yet it is

necessary that the FAST session is conducted with

the sincerity, spirit and motivation. A FAST
session that can‘t deliver positively causes the

wastage of extra time that is very hard to manage in

the coming time if the project is already behind the

already agreed schedule.

F. Funding Will Be Lost

i. Inorder to ensure that funding issues remain in

order, the development team must first ensure that

the software is developed within time, developing

within time will not only help to improve the
revenues and profits but would also ensure that the

funding remains available throughout the software

development lifecycle. This is the win-win

situation in which neither the development firm

seeks extra time nor the customer is to pay

anything extra for any requirement change.

ii. Its important that friendly relationship is

maintained with the funding agency. A state of

trust should be establiehed between both parties

and they should be able to communicate with each

other which utmost ease and without involving any

other third party channel. The informal meetings of
both parties at social events may be of great help in

improving the warmness of the relation.

iii. Along with the cordial relationship with the

funding agency, it is also important that the funding

agency is kept updated regarding the progress of

the software development process, and also any

problem that is faced during the process. Being

informed about the problems and achievements, the

funding agency will be in a better place to help the

development firm with the continuation of the

funding.

G. Technology Does Not Meet Expectations

i. The decision about the choice of technology should

be taken only after a very through consideration of

the available tools and technologies and only by the

experienced practitioners. The customer in some

cases may allow the change in technology, but this

change must not have any negative effect on the

quality of the software, it is also important that any

change in the already agreed tools and technologies

is done only after the mutual consultation of the
development team and the customers. It is the

moral responsibility of the development firm to

advise the most suitable solution to the customer if

he does not have the adequate knowledge of the

possible tools and technologies that are available to

choose from the available lot [17].

Global Journal of Computer Science and Technology Vol. 10 Issue 2 (Ver 1.0), April 2010 P a g e | 59

ii. If the change of tool, is agreed between the

customer and the development team the

development team must try to choose the best

available tool in consultation with the customer.

The development team should choose the tool in

which they have very good expertise so that the

expertise in tool may be translated into the
company‘s revenues and profits.

iii. The tool chosen should not only be acceptable to

the customer but the customer should have

necessary training on the tool. It is also important

for the customer to argue with the development

firm about the future acceptability of the product

being developed by using that specific tool. The

choice of tool must not only meet the current needs

of the customer but should also be able to meet the

future expectations of the customer.

H. Lack Of Training On Tool Or Staff

Inexperience

i. The rapid advancement in the current tools and

technologies force the developer to remain up-to-

date. The development firm can keep its employees

updated by offering them training on the emerging

tools and technologies. Along with the training on

the emerging tool, it is also important that the

employees be also provided the advanced

knowledge of the current tools in which the firm is

doing the development currently. It is also
important that someone in the organization have

the vision and wisdom to use his intuition about the

arrival of future technologies, so that the training

can be arranged and provided to the employees in

advance and market benefits can be obtained by

having this advanced availability of the usage of

technology [18].

ii. The firm may hire the new graduates from the

leading universities, having some knowledge of the

current tools. The firm can train them and provide

them small assignments to do, in order to complete
their training and making them a useful member of

the firm, but all this requires a long planning and a

visionary leadership at the firm, who can have the

knowledge and wisdom about the emerging trends

in technologies. In order to hire the graduates from

the reputed universities, the firms may plan to

schedule the seminar in the universities for the final

term students and may opt to arrange on the spot

job interviews to identify potential candidates for

the possible hiring to meet the future needs of the

development firm. This approach has been

observed to be extremely helpful in not only
fulfilling the industry-academia gap but in also

producing the quality products for the industry by

using the knowledge imparted by the academia

[18].

iii. It is important that the teams are made for each

project. Developing the team structure will help in

not only promoting the efficiency of the work but

will also help in providing experience to new

members. This will also help the new members to

learn about the smooth flow and effective handling

of the tedious work. Such exercise will help them

to learn the art of working in a team in also

producing the outcome by doing smart work.

I. Staff Turnover

i. Staff, and particularly the experienced staff is an

asset to any firm, and firms generally do their best

to retain such individuals. But this is very obvious

that learned individuals still want to change the

jobs, although this trend may not be eliminated yet

it can be reduced. The employer should keep the

honest estimations of the salaries available in the

market for experienced people. By giving less
salary, the employer should not assume that the

employee will work sincerely and with the best of

his effort, rather the employee may keep on

wasting his and firm‘s time by searching for other

employment opportunities during the office hours

[19].

ii. Proven experience show that employee enjoys

working with an employer who has more care for

the families of the employee. The employer may

offer the services like, free family medical; children

school fee, car allowance, house rent, etc in order

to keep the employee attracted.
iii. The employer should provide other social gathering

and meeting opportunities to the employees,

inorder to help establish a family culture at the

organization. This get-together is a good chance for

the juniors to meet with the firm‘s top management

and listen to their views and vision about the future

of the firm‘s business strategy. The individual‘s

must be encouraged to provide their view and their

views must be considered valuable, so that each

individual can feel his/her importance in the

decision making of the firm[10].
iv. The employer must try to keep the employees

updated and should provide the employees with

chances to refresh their knowledge about the

emerging tools and technologies [19]. This can be

done by arranging the courses at their own site, or

by sending the employees to the specialized

institutes for training.

v. The employer may introduce a loan scheme to help

the needy individuals and the return may be in easy

installments, without or at a minimal interest rate

[20].

vi. It is necessary that the employer try maintaining
the respect and honor of the employees, and it is

never compromised in any situation. It is obvious

that the respect just does not come by paying the

employee more, but it comes by having the friendly

and trust oriented relationship. The employees must

not be in a position of continuous tease; horror and

P a g e | 60 Vol. 10 Issue 2 (Ver 1.0), April 2010 Global Journal of Computer Science and Technology

torture, a work done under such circumstances can

hardly be productive and badly affects the mental

and sociological health of the employee. The

governing force for the employees to work should

not be the threat and anger but the affiliation and

desire. Therefore, the polite handling of the staff

must be the top priority of the management. A
specialized human resource (HR) department may

be established in the organization to keep track of

all the employee related affairs: including the

salary increments, hiring and firing, leave and

holidays, productivity, expenses vs. productivity

ratio (EPR) etc. The employees having the high

EPR must be given the salary rise according to

their contribution in the firm‘s profits. The

employees having the normal EPR may or may not

be give some benefits, while the employees having

low EPR should be warned properly in advance,
according to the condition of the contract, before

their contracts are terminated [21].

vii. The employer may introduce a bonus scheme to

make the employees a part of the profit that the

firm gains. This would give a sense of ownership to

the employee and the employee will try to deliver

according to the best of his capabilities [21].

J. Backup Not Taken & Actual Document/Data

Loss

i. Backup must be taken at multiple sites, so that in

case of any physical or technical damage the

backup itself remains intact, the smaller software

development firms may opt not to take backups as

they may consider this effort as wastage of time

and resources. Actually, they oversee the risk by

just being over optimistic about the fact that data

neither can be lost nor be stolen.

ii. The management must try to introduce the

paperless environment in the firm; this would help

in maintaining the efficient, secure, and traceable
working environment.

iii. The backup sites may be frequently updated and

the updates should be inspected regularly to reduce

the chances of any data not being updated on the

server. The firm may hire the services of reputed

individuals to provide help in this regard, as this is

considered the one of the most critical risk factor to

be managed.

iv. The team strictures should be implemented in the

development environment, this not only improves

the working environment but also helps in

decreasing the dependency on the individuals as the
team members remain active and keep knowledge

of the trends and patterns that someone uses in its

development. This will not only help in introducing

the harmony in the team members but would also

increase the efficiency in the working environment

[22].

K. Fire, Flood And Building Loss

i. The firm must ensure that the working environment

across the organization is not only conducive but

also safe for the employees. Proper smoke

detectors and fire alarms must be installed in the
building to detect the fire and the emergency exit

should be provided in case of any emergency.

ii. The organization must also ensure that the building

codes have been followed and the structure is

according to the prescribed standards. With the

orientation of more earthquakes recently in the

world, it is also important that the building

structure is developed in a way that it can absolve

the earthquake shocks of an adequate level.

L. Too Many Development Error

i. Although testing techniques can help in identifying

errors yet it is more appropriate to try enforcing the

clean room engineering approach [23]. The cost to

identify the errors in a relatively large amount of

code can be both expensive and difficult at the

same time. The cost of rectification of these errors

is also very high as the schedule of the

development is disturbed and many changes are to

be made in iteration in order to bring the software

on right track. Clean room engineering, although

requires the development of error free code yet it
can only be adopted when ample time is available

for software development.

ii. For this purpose not only the development team

must try working accurately but also the continuous

inspections of the work being done by the

developer must be reviewed by some senior

colleague, so that the guideline may be provided

early and correction are made without serious harm

[9].

iii. Along with the availability of the inspections, the

developer must unit test the piece of software that
he is developing and must ensure that the code is

free of errors and that it is according to the

prescribed requirements [24].

iv. The small software houses, consider testing as a

sole responsibility of the developers, and do not

have a specific testing department. Although

individual components may work fine but the

integrated application may still not work, because

of the run-time and integration errors. These types

of errors are generally beyond the scope of the

developer and are to be addressed by the specific

testing team in the organization. Absence of
dedicated testing team may cause serious problems

for the organization in delivering the correct

software in-time.

v. The organization must adopt the team structure in

the software development. Along with the unit

testing, that generally, the developer will do on his

Global Journal of Computer Science and Technology Vol. 10 Issue 2 (Ver 1.0), April 2010 P a g e | 61

own, the team can help each other to test the code

and to ensure that the test cases are correctly

designed and are efficiently handled in order to

save time and improve the productivity of the

resting process [25].

vi. A sudden jump to the new tools and technology

adds the risk of too many errors. It is suggested that
the jump to a new technology should not be made

without adequate thinking and must be supported

by the discussion and should be a result of a

decision governed by the logical thinking. It should

also be noted that adequate training on the tools

must be available and provided before the actual

shift in the technology is made.

vii. Sometimes there are so many errors identified in a

piece of code that correction may not only cause

the wastage of time but also the resources. In such

circumstance, the re-development of that
component may be easier than correcting the

existing one. The decision of re-development is a

very critical decision and should be supported by

the logical discussion among the management

governing the project. Before any such decision, a

mathematical calculation should be done to

logically represent that the re-development is in the

benefit of the organization. A re-development must

logically be completed in much higher speed as

compared to the initial development [26].

viii. It is also important that the testing process works

fine, i.e. identification of too many errors can still
be less harmful as compared to the ignoring errors

or un-identified errors [27], because the identified

errors can somehow be tackled and addressed for

correction, but an un-identified error may cause

harm after all the bugs have been fixed. The errors

become more harmful when they exist even after

the release of the software. An error identified in

external environment costs the firm much more to

rectify that error. A released software is like a

thrown arrow, once becomes public can‘t be

brought back [28].

M. Developer Run Away With Code

i. At the time of appointment, the Human Resource

(HR) department must ensure that the person they

are hiring, is adequately trustable and owes a good

employment history. His credibility can be checked

from the previous employer. The contact details

provided by the employer must be verified before

the employee is hired permanently.

ii. The organization may also opt to take the

employees from the accredited universities and
resource providers so that only, already verified,

individuals can find a place in the organization.

iii. The organization may also decide to hire the

employees based upon the references or

recommendation of their existing employees or

someone may provide the guarantee for the

employee for the purpose of reliability and trust

[29].

iv. Backup must be taken at multiple sites, so that in

case of any physical or technical damage the

backup itself remains intact. The backup sites may

be frequently updated and the updates should be

inspected.

N. Lack Of Intuition

i. It has been observed that the experienced

individuals can help in estimating the cost, budget

and manpower of any project by just using their

intuition [11]. The guess provided by them is

generally accurate, and thus causes a huge benefit

for the organization. The organization must do

adequate effort to retain such people and should

continue befitting from their experience.
ii. Talented individual must be attached to work with

the experienced individuals so that they can learn

that how the estimations can be made by using the

previous knowledge and intuition [30].

IV CONCLUSION

Software development process is complex and requires

efficient handling of the available resources. Poor planning

invites risk factors that are very difficult to deal with. The

paper unleashes the possible strategies to avoid or overcome

risk, once they have been identified in a software process.
Although a complete list of software risk factors is

impossible to produce, as the risk factors keep on growing

with the new tools and technologies, yet a comprehensive

list has been considered for providing knowledge about the

handling and avoidance mechanism. In the last three

decades ample stress has been given on the identification,

management, avoidance and handling of risk factors. This

paper after having identified the risk factors, proposes the

avoidance and mitigation strategies for each risk factor

based on the frequency of their occurrence. The software

houses that are developing the small and medium software
can especially benefit by following the avoidance strategy.

V ACKNOWLEDGMENTS

We are thankful to the Research Center (RC) at College of

Computer & Information Science of King Saud University,

for providing partial support for completion of this work.

VI REFERENCES

1) Rothfeder, ―It‘s Late, Costly, and incomplete-But

Try Firing a Computer System, ― Business Week,
November 7, 1988, pp. 164-65

2) Coper Jones, ―patterns of software success and

failure‖, 1996

3) Roger S. Pressman, ―Software engineering: a

practitioner‘s approach‖, 5th ed, McGraw-hill, pp

151-159

P a g e | 62 Vol. 10 Issue 2 (Ver 1.0), April 2010 Global Journal of Computer Science and Technology

4) Barry W. Boehm, ―software risk management:

principles and practices‖, pp 13

5) Basit Shahzad, Tanvir Afzal, ―Enhanced risk

analysis and relative impact factorization‖, 1st

international conference on information and

communication technology, IBA Karachi, August

27-28, 2005 ,pp 290-295.
6) Basit Shahzad, Javed Iqbal, ―‖Software Risk

Management – Prioritization of frequently

occurring Risk in Software Development Phases.

Using Relative Impact Risk Model‖, 2nd

International Conference on Information and

Communication Technology (ICICT2007),

December 16-17, 2007, IBA Karchi.

7) Roger S. Pressman, ―Software engineering: a

practitioner‘s approach‖, 5th ed, McGraw-hill, pp

151-159

8) Borland, the open alm company, A Load Testing
Strategy, white paper, April 2006,pp6

9) Jiantao Pan, Software Testing, Carnegie Mellon

University, Dependable Embedded Systems, spring

1999, pp 1-14.

10) Duport, ―how to control and manage the staff

turnover

‖http://www.duport.co.uk/guides/staff%20issues/C

ontrolling%20and%20managing%20staff%20turno

ver.htm, May 2006.

11) Magic intuition, ―definition of intuition

‖http://www.magicintuition.com/intuition.html‖,

2009
12) T.E. Bell, T. A. Thayer, Software Requirements-

Are they really a problem?, International

Conference on Software Engineering Proceedings

of the 2nd international conference on Software

engineering San Francisco, California, United

States, Pages: 61 – 68, 1976.

13) Gursimran Singh Walia , Jeffrey C. Carver, A

systematic literature review to identify and classify

software requirement errors, Information and

Software Technology, v.51 n.7, p.1087-1109, July,

2009
14) Longstreet Consulting Inc., Software development

estimation,

http://www.softwaremetrics.com/Articles/

estimating.htm

15) Baskeles, B.; Turhan, B.; Bener, A. Software effort

estimation using machine learning method, 22nd

international symposium on, Computer and

information sciences, Volume , Issue , 7-9 Nov.

2007 Page(s):1 - 6

Digital Object Identifier

10.1109/ISCIS.2007.4456863

16) Matsumura, K. Yamashiro, A. Tanaka, T.
Takahashi, I,Modeling of software reusable

component approach and its case study,

Proceedings of 4th International Conference on

Computer Software and Applications,

(COMPSAC1990), 10/31/1990 - 11/02/1990,

Chicago, IL, USA, pp 307-313

17) Jhon McManus, Risk Management in Software

Projects, Computer Weekly professional series by

Elsevier, pp 4-18.

18) Kim Man Lui1 and Keith C.C. Chan, Test Driven

Development and Software Process Improvement

in China, Lecture Notes in Computer Science,

Springer Berlin / Heidelberg, 219-222, Friday, May
14, 2004

19) Sarah Wilson, CCRP, How to reduce turnover and

manage employees,

http://www.ehow.com/how_4495943_reduce-

turnover-motivate-employees.html

20) How to motivate employees,

http://www.ehow.com/how_2094622_motivate-

employees.html

21) Dovinea, How to Hire, Manage and Motivate

employees effectively,

http://www.ehow.com/how_2377369_hire-
manage-motivate-employees-effectively.html

22) Moore, R.W.; JaJa, J.F.; Chadduck, R. Mitigating

risk of data loss in preservation environments,

Proceedings. 22nd IEEE / 13th NASA Goddard

Conference on Mass Storage Systems and

Technologies , 11-14 April 2005 Page(s): 39 – 48,

Digital Object Identifier 10.1109/MSST.2005.20

23) S. wayne Shere, Ara Kouchakdjian, Paul G.

Arnold, Experience Using Cleanroom Software

Engineering, IEEE Software, Volume 13 , Issue 3

 (May 1996), Pages: 69 – 76,Year of

Publication: 1996, ISSN:0740-7459.
24) IEEE Standards Board, "IEEE Standard for

Software Unit Testing: An American National

Standard, ANSI/IEEE Std 1008-1987" in IEEE

Standards: Software Engineering, Volume Two:

Process Standards; 1999 Edition; published by The

Institute of Electrical and Electronics Engineers,

Inc. Software Engineering Technical Committee of

the IEEE Computer Society.

25) Carnegie Mellon-Software Engineering Institute,

Overview of team software process and personal

software process, http://www.sei.cmu.edu/tsp/
26) Sachidanandam Sakthivel, A decision model to

choose between software maintenance and software

redevelopment, Dept. of Accounting & MIS,

Bowling Green State University, Bowling Green,

OH 43403, USA

27) Bill Curtis, Top five reasons for poor software

quality,

http://itmanagement.earthweb.com/entdev/article.p

hp/3827841/Top-Five-Causes-of-Poor-Software-

Quality.htm, July 1 2009.

28) Leo King, Businesses fear lost revenues after poor

software testing,
http://www.infoworld.com/d/developer-

world/businesses-fear-lost-revenues-after-poor-

software-testing-134, April 08, 2008.

29) Dr. Dobb‘s, Investigating software and source-

code theft,

http://www.duport.co.uk/guides/staff%20issues/Controlling%20and%20managing%20staff%20turnover.htm
http://www.duport.co.uk/guides/staff%20issues/Controlling%20and%20managing%20staff%20turnover.htm
http://www.duport.co.uk/guides/staff%20issues/Controlling%20and%20managing%20staff%20turnover.htm
http://www.duport.co.uk/guides/staff%20issues/Controlling%20and%20managing%20staff%20turnover.htm
http://www.magicintuition.com/intuition.html
http://portal.acm.org/citation.cfm?id=1539605&dl=GUIDE&coll=GUIDE&CFID=46345258&CFTOKEN=24702761
http://portal.acm.org/citation.cfm?id=1539605&dl=GUIDE&coll=GUIDE&CFID=46345258&CFTOKEN=24702761
http://portal.acm.org/citation.cfm?id=1539605&dl=GUIDE&coll=GUIDE&CFID=46345258&CFTOKEN=24702761
http://portal.acm.org/citation.cfm?id=1539605&dl=GUIDE&coll=GUIDE&CFID=46345258&CFTOKEN=24702761
http://portal.acm.org/citation.cfm?id=1539605&dl=GUIDE&coll=GUIDE&CFID=46345258&CFTOKEN=24702761
http://www.softwaremetrics.com/Articles/%20estimating.htm
http://www.softwaremetrics.com/Articles/%20estimating.htm
http://www.springerlink.com/content/105633/?p=e86d9db1f3ef4230adf72f34b01f73a8&pi=0
http://www.ehow.com/how_4495943_reduce-turnover-motivate-employees.html
http://www.ehow.com/how_4495943_reduce-turnover-motivate-employees.html
http://www.ehow.com/how_2094622_motivate-employees.html
http://www.ehow.com/how_2094622_motivate-employees.html
http://www.ehow.com/how_2377369_hire-manage-motivate-employees-effectively.html
http://www.ehow.com/how_2377369_hire-manage-motivate-employees-effectively.html
http://portal.acm.org/author_page.cfm?id=81100232011&coll=GUIDE&dl=GUIDE&trk=0&CFID=47002185&CFTOKEN=85398611
http://portal.acm.org/author_page.cfm?id=81100021432&coll=GUIDE&dl=GUIDE&trk=0&CFID=47002185&CFTOKEN=85398611
http://portal.acm.org/author_page.cfm?id=81100021432&coll=GUIDE&dl=GUIDE&trk=0&CFID=47002185&CFTOKEN=85398611
http://portal.acm.org/author_page.cfm?id=81100021432&coll=GUIDE&dl=GUIDE&trk=0&CFID=47002185&CFTOKEN=85398611
http://iteso.mx/~pgutierrez/calidad/Estandares/IEEE%201008.pdf
http://iteso.mx/~pgutierrez/calidad/Estandares/IEEE%201008.pdf
http://iteso.mx/~pgutierrez/calidad/Estandares/IEEE%201008.pdf
http://iteso.mx/~pgutierrez/calidad/Estandares/IEEE%201008.pdf
http://www.sei.cmu.edu/tsp/
http://itmanagement.earthweb.com/entdev/article.php/3827841/Top-Five-Causes-of-Poor-Software-Quality.htm
http://itmanagement.earthweb.com/entdev/article.php/3827841/Top-Five-Causes-of-Poor-Software-Quality.htm
http://itmanagement.earthweb.com/entdev/article.php/3827841/Top-Five-Causes-of-Poor-Software-Quality.htm
http://www.infoworld.com/d/developer-world/businesses-fear-lost-revenues-after-poor-software-testing-134
http://www.infoworld.com/d/developer-world/businesses-fear-lost-revenues-after-poor-software-testing-134
http://www.infoworld.com/d/developer-world/businesses-fear-lost-revenues-after-poor-software-testing-134

Global Journal of Computer Science and Technology Vol. 10 Issue 2 (Ver 1.0), April 2010 P a g e | 63

http://www.ddj.com/windows/184406134, July 19,

2005.

30) Naur, Intution in software development,

Proceedings of the International Joint Conference

on Theory and Practice of Software Development

(TAPSOFT) on Formal Methods and Software,

Vol.2: Colloquium on Software Engineering (CSE)
, Berlin, Germany Pages: 60 – 79, Year of

Publication: 1985 , ISBN:3-540-15199-0

31) Danny

Lieberman,http://74.125.153.132/search?q=cache:4

VSx1A9wqVUJ:www.software.co.il/downloads/

EnterpriseSoftware_RiskReduction.pdf+reducing+

operational+risk+by+improving+production+softw

are+quality&cd=1&hl=en&ct=clnk&gl=pk&client

=firefox-a.

32) 2005 Breach Analysis, April 2006

http://www.software.co.il/downloads/breachAnalys
is2005.xls

33) Privacy Rights Clearinghouse,

http://www.privacyrights.org

34) Developing Secure Software, Noopur Davis,

http://www.softwaretechnews.com/stn8-

2/noopur.htm

35) J.H. Persson, L.Mathiassen, T.S. Madsen, and F.

Steinson, ―Managing risks in distributed software

projects: An integrative franework‖, IEEE

Transactions on engineering management, Vol. 56,

No. 3, August 2009.

36) B.J. Alge, C.Witheoff, and H.J. Klein, ―When does
the medium matters? Knowledge building

experiences and opportunities in decision making

teams‖, Organ.Behav, Hum, Dects, Process, vol.

91, no. 1, pp 26-37, 2003.

37) BRADNER Erin ,MARK Gloria,HERTEL Tammie

D.‖ Team size and technology fit: Participation,

awareness, and rapport in distributed teams‖, EEE

transactions on professional communication

 ISSN 0361-1434, 2005, vol. 48, no 1 (104

p.) , pp. 68-77

38) R. N. Burns, A. R. Dennis, ―Selecting the
appropriate application development methodology

―,SIGMIS Database, Vol. 17, No. 1. (1985), pp. 19-

23.

39) Robert N. Charette, Software engineering risk

analysis and management, McGraw-Hill, Inc.

New York, NY, USA,Pages: 325,1989,ISBN:0-07-

010719-X.

40) Ronald P. Higuera, Yacov Y. Haimes, ―Software

Risk Management‖, Technical Report CMU/SEI-

96-TR-012 ESC-TR-96-012, June 1996.

http://www.ddj.com/windows/184406134
http://www.software.co.il/downloads/breachAnalysis2005.xls
http://www.software.co.il/downloads/breachAnalysis2005.xls
http://www.privacyrights.org/
http://www.softwaretechnews.com/stn8-2/noopur.html
http://www.softwaretechnews.com/stn8-2/noopur.html
http://www.citeulike.org/user/neilernst/author/Burns:RN
http://www.citeulike.org/user/neilernst/author/Dennis:AR
http://portal.acm.org/author_page.cfm?id=81100068453&coll=GUIDE&dl=GUIDE&trk=0&CFID=47564357&CFTOKEN=63733473

	Risk Identification and Preemptive Scheduling In Software Development Life Cycle
	Author
	Abstract
	I INTRODUCTION
	II STATE OF THE ART
	III HANDLING AND AVOIDANCE MECHANISM
	A. Requirements Are Not Properly Stated
	B. Low Estimation And Time And Cost
	C. More Stress Of Users Than Expected
	D. Less Reuse Than Expected
	E. Delivery Deadline Tightened Or Manager Change Circumstances
	F. Funding Will Be Lost
	G. Technology Does Not Meet Expectations
	H. Lack Of Training On Tool Or Staff Inexperience
	I. Staff Turnover
	J. Backup Not Taken & Actual Document/Data Loss
	K. Fire, Flood And Building Loss
	L. Too Many Development Error
	M. Developer Run Away With Code
	N. Lack Of Intuition

	IV CONCLUSION
	V ACKNOWLEDGMENTS
	VI REFERENCES

