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A B S T R A C T   

More than one billion people worldwide receive cash or in-kind transfers from social protection programs. In 
low-income countries, these transfers are often conditioned on participation in labor-intensive public works to 
rehabilitate local infrastructure or natural resources. Despite their popularity, the environmental impacts of 
public works programs remain largely undocumented. We quantify the impact on tree cover of Ethiopia’s Pro-
ductive Safety Net Program (PSNP), one of the world’s largest and longest-running public works programs, using 
satellite-based data of tree cover combined with difference-in-differences and inverse probability treatment 
weighting methodologies. We find that the PSNP increased tree cover by 3.8% between 2005 and 2019, with 
larger increases in less densely populated areas and on steep-sloped terrain. As increasing tree cover is considered 
an important strategy to mitigate global warming, our results suggest a win–win potential for social safety net 
programs with an environmental component.   

1. Introduction 

Reducing poverty while addressing climate change and restoring 
terrestrial ecosystems are critical challenges that lie at the core of the 
United Nations Sustainable Development Goals (SDGs) (United Nations, 
2015). Despite sub-Saharan Africa’s impressive economic growth over 
the past two decades (Beegle et al., 2018), this region is projected to host 
the greatest number of poor and undernourished people in the world by 
2030 (FAO, 2020; Yonzan et al., 2020). Moreover, rapid population 
growth combined with climate change are likely to hasten environ-
mental degradation in the region (Bradshaw and Di Minin, 2019; Olsson 
et al., 2019). To address these challenges, governments and interna-
tional organizations are turning to social safety net programs that pro-
vide cash or in-kind transfers to the poorest and most vulnerable 
segments of society (Kuriakose et al., 2013; World Bank, 2018). It is 
estimated that more than one billion people worldwide receive assis-
tance from such programs (Alderman et al., 2017). Since 2000, the 
number of safety net programs in sub-Saharan Africa has doubled 

(Hickey et al., 2018) and today, all 46 sub-Saharan countries implement 
at least one program (Beegle et al., 2018). 

While safety net programs have generally been found to improve 
food security and increase asset accumulation (Beegle et al., 2018; 
Hidrobo et al., 2018), the evidence on their environmental impacts re-
mains mixed. Studies linking safety net programs to environmental 
outcomes have been largely limited to cash transfer programs condi-
tioned on beneficiary households meeting health or education related 
objectives. For example, Mexico’s Oportunidades program (which pro-
vided conditional cash transfers for school attendance, health clinic 
visits, and nutritional support) increased deforestation, with larger im-
pacts found in poorer and more remote communities (Alix-Garcia et al., 
2013). In contrast, Indonesia’s Keluarga Harapan program (which pro-
vided conditional cash transfers if households accessed specific health 
and educational services) reduced expected deforestation (Ferraro and 
Simorangkir, 2020). Brazil’s Zero Hunger social protection program, 
which includes a conditional cash transfer component (conditioned 
against on child school attendance and family health checks) had mixed 
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impacts on natural vegetation cover, which varied by biome (Dyngeland 
et al., 2020). 

Many safety net programs include public works components, which 
hold particular promise in delivering on both social and environmental 
objectives. In these programs, beneficiary households receive cash or in- 
kind transfers conditioned on labor-intensive works that aim to build or 
restore community assets, such as roads, schools, or degraded natural 
resources including communal lands and forests (Beegle et al., 2018; 
Subbarao et al., 2012). Public works programs are popular in South-Asia 
and sub-Saharan Africa, with the largest programs found in India and 
Ethiopia covering millions of beneficiaries (World Bank, 2018). Glob-
ally, it is estimated that more than $10 billion USD are spent annually on 
public works programs that provide work to almost 70 million people 
(McCord and Paul, 2019). Despite their popularity, the extent to which 
public works programs generate public goods that promote development 
and environmental sustainability remains poorly understood (Beierl and 
Grimm, 2019; Gehrke and Hartwig, 2018; Ravallion, 2019). 

We examine the effects of Ethiopia’s Productive Safety Net Program 
(PSNP) on tree cover between 2005 and 2019 and estimate how po-
tential carbon sequestration benefits may offset the administrative costs 
of the program and reduce CO2 emissions. With eight million benefi-
ciaries (World Bank, 2020), the PSNP is the largest public works pro-
gram in the world outside of India (World Bank, 2018). Being 
implemented by the government of Ethiopia, its design and success at 
achieving social protection gains has made it a model for other social 
protection programs on the African continent (Monchuk, 2013). The 
purpose of the PSNP is to relieve poverty and food insecurity through 
cash or in-kind transfers in exchange for labor on public works designed 
to build sustainable community assets that increase communities’ 
resilience to shocks (MoARD, 2006; Wiseman et al., 2010). The public 
works projects are implemented exclusively on publicly owned lands 
and are identified and designed by the communities themselves with 
technical support from higher administrative levels (MoARD, 2006; 
Wiseman et al., 2010). The focus of these work projects has largely been 
soil and water conservation activities like terracing, embankments, gully 
check dams, water-infiltration trenches, and especially reforestation 
(MoARD, 2006; Wiseman et al., 2010). 

These environmental activities of the PSNP can potentially help to 
alleviate the negative impacts of climate change, contribute to climate 
change mitigation, and restore terrestrial ecosystems. Among these, the 
PSNP’s potential to increase tree cover is of particular interest in this 
paper. Deforestation and land degradation are major environmental 
problems in Ethiopia (Lemenih and Kassa, 2014) with the former being a 
substantial source of carbon emissions worldwide (IPCC, 2019). In the 
last three decades, Ethiopia is estimated to have lost 33,400 km2 of 
forest cover (falling from 204,100 km2 in 1990 to 170,700 km2 in 2020) 
(World Bank, 2021). Globally, the urgency to maintain and increase tree 
cover has launched several initiatives including the Bonn Challenge 
(International Union for Conservation of Nature, 2021), the New York 
Declaration on Forests (Climate and Land Use Alliance, 2021), and the 
African Forest Landscape Restoration Initiative, AFR100 (African Union 
Development Agency, 2021), to which Ethiopia is a major contributor. 
Forests and trees play a key role in the regulation of water, energy, and 
carbon cycles and have climatic and environmental benefits that support 
adaptation and mitigation strategies for climate change (Ellison et al., 
2017). Trees reduce erosion, stabilize water supply, increase soil 
fertility, and can exert a cooling effect and promote rainfall—making 
communities more resilient against adverse impacts of climate change 
(Ellison et al., 2017; Zuazo and Pleguezuelo, 2009). In addition, the 
relatively high rate of carbon sequestration of trees makes increasing 
tree cover an important global warming mitigation strategy, among 
others (Griscom et al., 2017; Masson-Delmotte et al., 2018; Vincent 
et al., 2021). 

Independent evaluations show that the PSNP has been successful in 
improving household food security, resilience, and asset levels (Berhane 
et al., 2014; Knippenberg and Hoddinott, 2017). These studies used a 

large panel dataset representative of all areas of PSNP implementation. 
The few impact evaluations focused on the PSNP’s environmental out-
comes, however, have focused on a much smaller geographic area using 
households surveys. These studies have investigated participants’ in-
vestments in sustainable land management practices like soil erosion 
and soil fertility practices in two districts (Adimassu and Kessler, 2015) 
and household-level livestock and tree holdings in six sub-districts 
(Andersson et al., 2011). While household soil management and tree 
planting strategies can have positive environmental effects, these studies 
did not have sufficiently broad data to quantify the size of a program- 
wide benefit from these activities. In addition, PSNP’s potential for 
climate change adaptation and mitigation is largely unknown, although 
it is increasingly being recognized (Subbarao et al., 2012). Relevant 
empirical studies include Conway and Schipper (2011)’s analysis of 
mainstreaming climate risk adaptation actions into development ini-
tiatives using a case study on drought risk financing mechanisms within 
the PSNP, and Woolf et al. (2018)’s estimation of PSNP’s Global 
Greenhouse Gas (GHG) reduction based on 24 site surveys on sustain-
able land, soil, and water practices using an IPCC based modeling 
approach. 

This study advances our understanding of the PSNP’s environmental 
outcomes and its potential for climate change mitigation by providing a 
robust impact evaluation of the PSNP on tree cover. In the context of 
existing studies of the PSNP, our study is novel in four ways. First, we use 
satellite imagery on tree cover and other spatial variables allowing us to 
cover a larger area consistently throughout the study period. Second, we 
use an econometric method to assess the impact of the PSNP by applying 
difference-in-differences and inverse probability treatment weighting 
methods to construct a credible counterfactual (i.e., what the tree cover 
would have been had the PSNP area not participated in the program). 
The control areas were identified via statistical matching and can be 
thought of as locations that appear similar to those participating in the 
PSNP based on agro-ecological and socio-economic characteristics, but 
were not treated with the program. Third, we conduct a series of checks 
to explore the robustness of our results. These checks include altering 
the way our outcome variable is defined, exploring the sensitivity of 
changing the way we control for common shocks and district charac-
teristics, recalculating our confidence intervals using a method that is 
robust to spatial autocorrelation (Conley, 1999) and checking whether 
data quality issues are driving our findings. Finally, we estimate how the 
social benefits from the estimated tree growth could offset the admin-
istrative costs of the program. 

2. Ethiopia’s Productive Safety Net Program (PSNP) 

Ethiopia is the second most populous country in Africa, with a 
population of over 110 million, projected to increase 2.5% annually 
(World Bank, 2021). Rainfed agriculture is a major component of the 
national economy providing livelihood to approximately 80% of the 
population. Ethiopia’s history is characterized by catastrophic droughts 
that triggered the large-scale famines in the 1970s and 1980s. Mean-
while, the 1990s and early 2000s were characterized by localized food 
shortages that were typically addressed by ad hoc requests for humani-
tarian food aid (De Waal, 2017). Despite substantial economic growth 
coupled with major improvements in various domains of health and 
development over the last two decades, the country remains vulnerable 
to droughts and flooding with climate change expected to further 
intensify these adverse weather events (Alemu and Mengistu, 2019; 
Conway and Schipper, 2011; Federal Democratic Republic of Ethiopia, 
2021; Funk et al., 2008). 

Launched in February 2005, the PSNP was designed as a multiyear 
food security program to provide a more sustainable response mecha-
nism than recurring ad hoc humanitarian appeals (Wiseman et al., 
2010). The households benefiting from the PSNP receive food or cash 
payments in return for labor-intensive public works carried out over a 
six-month period outside of the main agricultural season while a small 
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share of households with limited labor capacity (e.g., pregnant and 
lactating women, elderly) receive unconditional transfers. The PSNP is 
largely externally funded (World Bank, 2018), but the program is led 
and implemented by the government of Ethiopia. 

At the onset of the program, there were 192 districts (woredas, 3rd- 
level administrative division in the country) with 4.8 million benefi-
ciaries in the four highland regions (Amhara; Oromia; Southern Nations, 
Nationalities and Peoples’ Region; and Tigray), as well as smaller and 

predominantly urban regions in the east (Dire Dawa and Harar) (World 
Bank, 2020). Since the launch of the PSNP, caseloads in the original 
PSNP districts in the highland regions have increased and the program 
has expanded to Ethiopia’s lowland regions (Afar and Somali). By 2019, 
the PSNP operated in more than 300 districts, providing support for 
approximately eight million people (World Bank, 2020). So far, none of 
the districts selected into the PSNP have exited the program (World 
Bank, 2020). 

Fig. 1. Map of Ethiopia showing the highland study region and the spatial variables used in this study over a hill-shaded terrain. The area of the nonstudy region has 
a light transparency effect applied for added context. A: Study region with the PSNP districts (boundaries not shown) in light brown and the non-PSNP districts in 
beige. B: Percent change in tree cover based on satellite data from MODIS Vegetation Continuous Fields percent tree cover dataset (VCF-TC) mean values of the 
period preceding the PSNP (2002–2004) and the last PSNP period (2017–2019). C: Population density, 2005. D: Terrain slope. E: Land cover type aggregated into 
eight categories, 2005. The cropland category includes natural vegetation mosaics from 40 to 60%. F: Mean annual rainfall between 2005 and 2019. Water bodies are 
only shown in the study region. See Table A1 for data sources. 
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The PSNP combines geographic and community level targeting. 
Districts were initially selected for the program based on the frequency 
they had requested and received emergency food assistance prior to the 
launching of the program in 2005 (MoARD, 2006; World Bank, 2020). 
Communities themselves then select the most food-insecure households 
as PSNP beneficiaries. Evaluations based on household data collected 
from the PSNP localities show that the program is relatively well tar-
geted at the community level (Coll-Black et al., 2011). However, a recent 
assessment of the geographic targeting suggests that many poor and 
food insecure districts are not included into the PSNP (World Bank, 
2020). 

Our analysis measures the impact of the PSNP on tree cover in the 
participating districts of four highland regions (Amhara; Oromia; 
Southern Nations, Nationalities and Peoples’ Region; and Tigray) 
(Fig. 1A). The reasons for this geographic restriction were threefold. 
First, the PSNP has operated the longest time in these highland regions, 
permitting a longer time window to observe impacts on tree cover. We 
also note that the highland regions did not have a staggered roll-out of 
the program. Second, while the program has expanded to other regions 
since its inception, the focus on the highland regions has remained. In 
2019, more than 70% of all PSNP beneficiaries originated from the four 
highland regions. Third, compared to the two lowland regions, the PSNP 
has been relatively better-implemented in the highland regions (Lind 
et al., 2022; Sabates-Wheeler et al., 2013). 

3. Spatial data 

We used the Vegetation Continuous Fields percent Tree Cover data 
(VCF-TC) L3, Collection 6, product from the MOderate Resolution Im-
aging Spectrometer (MODIS) (DiMiceli et al., 2015) for the period 
2000–2019 as our outcome variable (Fig. 1B). VCF-TC’s widely used 
applications include forest change assessments across time and space 
(Cuaresma et al., 2017; Gao et al., 2018; Ryan et al., 2017), biomass and 
carbon emissions estimates (Anaya et al., 2009; Rodríguez-Veiga et al., 

2016; Tang et al., 2021; Zomer et al., 2016), biodiversity and conser-
vation (Miles et al., 2006; Vijay et al., 2016), payment for ecosystem 
services (Phan et al., 2018), the parametrization of environmental and 
climate models (Forrest et al., 2020; Lawrence and Chase, 2017), and as 
input or integrated use with Landsat data for forest cover mapping 
(Hansen et al., 2008; Sexton et al., 2013). 

Collection 6 is the most accurate MODIS fractional cover product to 
date and has been improved from previous collections with updated 
input data (DiMiceli et al., 2021). The data are distributed as a global 
tiled grid in Sinusoidal projection at a spatial resolution of 250 m. We 
mosaicked the VCF-TC tiles to cover Ethiopia throughout the study 
period and integrated them with the data described below in Sinusoidal 
projection using ArcGIS 10.7 (ESRI, 2019) and Terrset (Clark Labs, 
2019). 

Previous research using VCF-TC has noted that year-to-year variation 
in tree cover estimates appears to be higher than expected and may be 
driven by the quality of the underlying remote sensing data and pre-
cipitation, among other factors (Gao et al., 2018; Zomer et al., 2016), 
which discourages its use for inter-annual comparisons. To mitigate this 
issue we followed Zomer et al. (2016) and calculated three-year aver-
ages of tree cover for our analysis (except for the first period which is 
based on a two-year average): 2000–2001; 2002–2004; 2005–2007; 
2008–2010; 2011–2013; 2014–2016; 2017–2019. 

Each VCF-TC pixel was coded to indicate its participation (or not) in 
the PNSP (Fig. 1A) and matched to its corresponding district and region 
using the district boundaries from Ethiopia’s Central Statistical Agency 
in 2007 (unpublished data) and the PSNP district administrative re-
cords. In addition, we obtained the annual PSNP beneficiaries at district 
level by digitizing PSNP’s annual planning documents drafted by the 
Ministry of Agriculture of Ethiopia. We used the year 2007 as a bench-
mark for the administrative units since it matches with the latest Ethi-
opian census year and corresponding administrative boundaries. 
Increases in the number of PSNP-eligible highland districts from the 
census year onward were due to administrative divisions of the districts 

Fig. 2. The PSNP increased tree cover, particularly in less densely populated areas and steep-sloped terrains. Tree cover also increased in forests and woody areas 
(see Table A3 for exact aggregation) and in croplands, based on land cover classifications defined at the onset of the program in 2005. Estimates measure % change in 
tree cover due to the PSNP calculated using pixel-level observations. All estimates are based on a difference-in-differences method combined with an inverse 
probability treatment weighting. The unit of observation is a pixel observed periodically. The 95% confidence intervals are computed from standard errors clustered 
at the district level. A: Impact estimates for all pixels in the study region (N = 45,229,114) and for rural areas defined as population density <300 people/km2 (N =
42,977,984) and <150 people/km2 (N = 35,702,079). B: Impact estimates by terrain slope quintiles: 1st quintile (Q1): 0.0 to 2.9 degrees (N = 10,403,050); 2nd 
quintile (Q2): 3.3 to 5.6 degrees (N = 7,954,821); 3rd quintile (Q3): 5.8 to 10.7 degrees (N = 8,781,612); 4th quintile (Q4): 10.7 to 19.1 degrees (N = 9,055,319); 5th 
quintile (Q5): 19.1 to 78.4 degrees (N = 9,034,312). C: Impact estimates for different land cover types at the onset of the program in 2005: Forests (N = 1,956,304); 
Croplands (N = 16,631,643); Grasslands (N = 18,452,994); Savannas (N = 8,178,569). 
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(Wiseman et al., 2010), which we dealt with by merging the child dis-
tricts back to their parent district as of 2007 along with the number of 
PSNP beneficiaries. After removing pixels flagged as no data or over 
large bodies of water, the area of our study region was approximately 
61.4 million ha (about 11.4 million of pixels), including 617 districts. Of 
these pixels, 49.5% were located in participating PSNP districts (247 
districts). 

In addition to VCF-TC, we used several datasets to generate spatial 
variables as controls and to explore impact heterogeneity. These 
included: population density per km2 from the Gridded Population of 
the World, 2005 (GPW) (CIESIN: Center for International Earth Science 
Information Network, Columbia University, 2016) (Fig. 1C), elevation 
from the Shuttle Radar Topography Mission (SRTM), a global digital 
elevation model (DEM) of the world (USGS, 1996) from which we also 
derived the slope (Fig. 1D), and land cover type at the onset of the 
program in 2005 from MODIS (MCD12Q1) (Friedl and Sulla-Menashe, 
2015). We used the International Geosphere-Biosphere Programme 
(IGBP) land cover classification scheme and aggregated the land over 
classes into eight categories for mapping purposes (Fig. 1E). The Climate 
Hazards Group InfraRed Precipitation with Station (CHIRPS) annual 
rainfall data (Funk et al., 2015) (Fig. 1F) from 1995 to 2019 was used to 
control for rainfall. 

We also used the aboveground live woody biomass density dataset 
(AGBM) for the year 2000 (Zarin et al., 2016) distributed by the (Global 
Forest Watch GFW, 2021) to estimate the average AGBM (in megagrams 
biomass ha-1) corresponding to different tree cover percentages as the 
first step of the carbon sequestration and the benefit-cost analyses. 

Lastly, the quality flag information provided with VCF was used to 
assess the sensitivity of our results to the uncertainty in tree cover es-
timates associated with data quality. The quality information of the 
input MODIS surface reflectance data used to predict the vegetation 
cover is provided as a separate quality band indicating if a pixel in any of 
the eight input data periods used to generate the annual product is 
flagged as poor quality due to clouds, high aerosol levels, cloud 
shadows, or having a view zenith angle higher than 45◦ (Townshend 
et al., 2017). Estimates of vegetation cover with two or more flags in a 
year may be erroneous and should be used with caution (Townshend 
et al., 2017). 

Table A1 in the Appendix summarizes the characteristics and sources 
of the datasets used. For more details about VCF and the spatial methods 
see Section A.1 in the Appendix, DiMiceli et al. (2021); Townshend et al. 
(2017), and Hansen et al. (2003). 

4. Methods 

4.1. Impact of PSNP on tree cover 

We evaluated the impact of the PSNP program on tree cover by 
applying a difference-in-differences method. Specifically, we estimated 
the difference in tree cover before and after the PSNP program began, 
and in participating PSNP districts versus non-PSNP participating dis-
tricts (Fig. 1A). Implementing our difference-in-differences method 
using a regression approach, we estimated: 

ln(TCiwrt) = γPSNPw + β(PSNPw*POSTt)+ δXit +αrt + uiwrt (1)  

where TCiwrt is the mean percent of tree cover in pixel i in district w in 
region r during the three-year period t. PSNPw is a binary variable that is 
defined at the district level; it equals one if the pixel belongs to a district 
that was selected into the program in 2005–2006 and equals zero 
otherwise. The variable POSTt equals one if period t occurs after the 
2005 launch of the PSNP (i.e., periods 2005–2007, 2008–2010, 
2011–2013, 2014–2016, or 2017–2019) and equals zero if the period 
occurs before the PSNP launch (i.e., 2000–2001 or 2002–2004). We 
controlled for mean annual rainfall in pixel i in period t (Xit) as well as all 
period- and region-specific aggregate shocks through period-by-region 

fixed effects (αrt). The term uiwrt represents the error term. The impact 
of the PSNP on the change in log of tree cover is measured by β; the 
coefficient on the interaction between PSNPw and POSTt. We converted 
these coefficients to percentages using the following formula: (eβ − 1) * 
100. Finally, we clustered our standard errors at district level; i.e., at the 
level in which the treatment variable was defined (Abadie et al., 2017). 

The key identifying condition of the difference-in-differences 
method in our application is that tree cover in the pixels within treat-
ment (PSNP) and control (non-PSNP) districts was on a parallel trend 
before the program began in 2005. Ethiopian highlands are extremely 
diverse agro-ecologically, ranging from rugged high altitude plateaus in 
the north and central to arid and semi-arid terrains in the south (see 
Fig. 1F). The western highlands enjoy reliable and abundant rainfall, 
while the conditions in the east—where most PSNP districts are loca-
ted—are generally drier with more erratic rainfall (Fig. 1F). Unsurpris-
ingly then, the parallel trend hypothesis was rejected when we used all 
non-PSNP pixels in the highland regions as our control areas (Table A4 
in the Appendix). To address this, we first restricted the analysis to PSNP 
and non-PSNP pixels that had similar agro-ecological conditions before 
the program was launched in 2005. To do so, we used a propensity score 
matching algorithm (Rosenbaum and Rubin, 1983) to identify an area of 
common support (Caliendo and Kopeinig, 2008); a set of PSNP and non- 
PSNP pixels with sufficient overlap in predicted probability to be 
included into the program based on selected agro-ecological and socio- 
economic characteristics (Figs. A1, A2, A3 in the Appendix). Fig. A2 in 
the Appendix shows the spatial distribution of the propensity scores and 
the area of common support. As matching covariates, we considered 
variables that were likely to capture this agro-ecological heterogeneity 
and thus correlate with selection into the program in 2005–2006: mean 
and standard deviation of annual rainfall in 1995–2004 (and their 
quadratics), population density in 2005, elevation and the slope of 
terrain (Table A5 in the Appendix). Finally, since the PSNP imple-
mentation and targeting benchmarks vary across administrative regions 
(Wiseman et al., 2010), we also included binary indicators for each re-
gion in our matching model. We defined the area of common support as 
pixels with the estimated propensity score within the [0.1; 0.9] interval 
(Crump et al., 2009) (Table A6). 

We then used these pixel-level propensity scores (PS) to calculate 
inverse probability treatment weights (IPTW) (Abadie, 2005; Joffe et al., 
2004): 1/PS for the treated (PSNP) pixels and 1/(1 − PS) for the un-
treated (non-PSNP) pixels. After restricting the pixels in our dataset to 
common support and applying IPTW on our regression model, the par-
allel trend assumption was satisfied; we cannot reject the null hypothesis 
that the tree cover in the PSNP and non-PSNP districts areas were on a 
similar trend before the PSNP was launched in 2005 (Table A4, Col.7 in 
the Appendix). The matching covariates were also in balance after 
restricting pixels to the common support and applying IPTW (Table A7 
in the Appendix). Once we restricted the area to the common support, 
the final data used in the analysis had approximately 6.5 million pixels 
(53% from PSNP districts), coming from 513 districts (227 of which 
were PSNP districts). Section A.2 in the Appendix provides more infor-
mation about our impact evaluation approach. Figs. A4,A5,A6 in Section 
A.3 in the Appendix show the distributions of key variables used in the 
analyses, after restricting to the area of common support. 

4.2. Spatial variability of tree cover change 

We explored heterogeneity in impact across socio-economic and 
environmental characteristics at pixel-level to better understand the 
PSNP impacts through space, particularly in the context of the program 
design and objectives (see Section A.4 in the Appendix). First, as the 
PSNP is a rural public works program, ideally we would have restricted 
the analysis to rural areas only. However, Ethiopia does not have an 
official definition for rural areas based on population density (Schmidt 
et al., 2018). Mindful of this ambiguity, we estimated the impacts for all 
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pixels as well as for rural pixels based on two different population 
density thresholds. Following the recent recommendation made by in-
ternational organizations (EU and UN-Habitat, 2020), we defined rural 
areas as pixels that fall below 300 people per km2. As an alternative 
definition for rural areas, we used 150 people per km2 population 
density threshold based on previous work in Ethiopia (Schmidt and 
Kedir, 2009; Schmidt et al., 2018). Second, the PSNP was specifically 
designed with the objective of rehabilitating sloped areas in mind (MoA, 
2010). Sloped areas are also less suited for agriculture due to the 
increased risk of erosion and soil degradation, problems that exacerbate 
at higher slope inclination (Shaxson, 1999). We therefore hypothesized 
that the PSNP’s impact on tree cover was likely to be larger in sloped 
terrain. To explore this, we sequentially restricted the analysis to quin-
tiles based on the inclination of the slope. Third, we explored whether 
the impacts varied by the type of land cover at the onset of the program 
in 2005. We aggregated land cover types derived from MODIS into 
Forests and woody areas (7.6% of all pixels), Croplands (25.7%), 
Grasslands (43.6%), and Savannas (22.8%). Pixels categorized as urban, 
wetland, water, or barren (0.3% in total) were not considered (Tables A2 
and A3 in the Appendix). Finally, we explored whether the impacts were 
larger in districts that had more PSNP beneficiaries relative to their total 
population compared to districts that had fewer. To do this analysis, we 
computed the average number of PSNP beneficiaries in each district over 
the study period and divided this number by its total population. Using 
this variable as our measure of beneficiary caseload intensity, we split 
the pixels originating from the PSNP districts into two groups using the 
median caseload intensity as the threshold. We then replaced our 
treatment variable with these two binary variables and reran the 
regression. 

4.3. Spillover analysis 

We estimated the percent tree cover change in non-PSNP districts 
adjacent to PSNP districts to assess if the PSNP had an spillover effect 
into neighboring non-PSNP districts that could have affected our results. 
First, we identified the pixels from 134 districts that did not benefit from 
the PSNP but shared an administrative border with a PSNP district 
through spatial analysis. We then appended the estimated model with an 
additional treatment variable capturing these adjacent non-PSNP dis-
tricts (see Section A.5 in the Appendix for more details). 

4.4. Carbon sequestration and benefit-cost analysis 

Changes in tree cover were converted to sequestered carbon using 
the VCF-TC data and average aboveground live woody biomass (AGBM) 
from the Global Forest Watch GFW (2021) dataset (Zarin et al., 2016) in 
metric tons of biomass per ha for the year 2000. First we calculated the 
estimated average of AGBM corresponding to the percent tree cover at 
pixel level in 2000. Then we used our regression estimates, along with 
the baseline levels of tree cover in 2000 to estimate the predicted in-
crease in tree cover (and hence AGBM), due to the PSNP and converted 
this biomass to carbon. 

To estimate the benefit-cost ratio of the negative carbon emissions 
relative to the PSNP’s cost we used the social cost of carbon (SCC) es-
timate from the Interagency Working Group on Social Cost of Green-
house Gases (2016), along with the report’s median assumption of 3% 
for the discount rate and 2.2% for the average growth rate of the SCC to 
calculate the benefits. We then used information on the administrative 
costs of the PSNP program from Drechsler et al. (2017) and bench-
marked the social benefits of negative CO2 emissions against the 
implementation costs of the program. 

5. Results 

5.1. Change in tree cover 

The PSNP increased tree cover on average by 3.8% (95% CI: 0.0006; 
0.0777) in the participating PSNP districts in our study area, relative to 
what would be expected in the absence of the program (Fig. 2A). This 
change represents a 0.54 percentage point increase in tree cover. To put 
this estimate in context, the mean tree cover in the non-PSNP pixels in 
the common support increased by 0.77 percentage points (from 14.27% 
to 15.04%) between 2002–2004 and 2017–2019. The impact of the 
PSNP on tree cover is additional to this; thus, in PSNP districts tree cover 
increased by 1.31 percentage points (this can be thought of as a change 
from approximately 14.27% to 15.58%). When we disaggregated by 
population density (Fig. 1C), the impact estimates were larger for less 
densely populated areas. Specifically, the estimated impact was 4.4% 
(95% CI: 0.0051; 0.0843) in areas with less than 300 people per km2 and 
6.0% (95% CI: 0.0142; 0.1078) when a more stringent threshold of 150 
people per km2 was used (Fig. 2A). 

The positive impacts on tree cover were also larger on steeper sloped 
land areas (Fig. 2B). For the middle quintile (average slope ranging 
between 5.8 and 10.7 degrees), we estimated that the PSNP increased 
tree cover by 5.6% (95% CI: 0.0047; 0.1089). The estimated impact was 
largest at the 4th quintile (10.7 to 19.1 degrees) of the slope distribution; 
7.5% (95% CI: 0.0352; 0.1161). The estimated impacts by terrain slope 
were consistently larger in magnitude when we restricted the area to less 
densely populated areas (Figs. A7 and A8 in the Appendix). 

In addition, we documented statistically significant impacts in areas 
classified as forests and woody areas (see Table A3 in the Appendix for 
land cover types and their aggregation) and cropland, but not in grass-
lands or savannas (Fig. 2C). In forests and woody areas, we estimated 
that the PSNP increased tree cover by 11.4% (95% CI: 0.0169; 0.2195) 
and in croplands by 3.7% (95% CI: 0.0075; 0.0682). The magnitudes of 
the corresponding impact estimates were sizably larger when we 
restricted the area of analysis to less densely populated pixels (Figs. A9 
and A10 in the Appendix). 

Lastly, we also found that the impacts on tree cover were larger in 
districts that had a large number of PSNP beneficiaries relative to their 
total population compared to districts that had relatively fewer PSNP 
beneficiaries (Fig. A11 in the Appendix). We did not detect statistically 
significant spillover effects to districts directly adjacent to the PSNP 
districts (see Fig. A12 in the Appendix). 

5.2. Carbon sequestration and benefit-cost analysis 

We estimated the carbon sequestered by increased tree cover over 
the period 2005–2019. Changes in tree cover were converted to 
sequestered carbon using the VCF-TC data and AGBM from the Global 
Forest Watch GFW, 2021 dataset (Zarin et al., 2016) in metric tons of 
biomass per Ha for the year 2000. 

We found that the average increase in biomass per VCF-TC pixel due 
to the increased tree cover was 1.12 metric tons per ha, which is 
equivalent to an estimated 62.4 million metric tons of negative CO2 
emissions (95% CI: 1.1 to 113.5; note that this and subsequent confi-
dence intervals are non-symmetrical relative to the point estimate, due 
to the nonlinear relationship between tree cover and AGBM). This is 
equivalent to 4.16 million metric tons annual negative CO2 emissions. 

We next estimated the benefit-cost ratio of the negative carbon 
emissions relative to the PSNP’s cost we using the SCC estimate from the 
Interagency Working Group on Social Cost of Greenhouse Gases (2016) 
and information on the administrative costs of the PSNP program from 
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Drechsler et al. (2017). We benchmarked the social benefits of negative 
CO2 emissions against the implementation costs of the program under 
the four scenarios shown in Table 1. We note that other factors that can 
affect carbon sequestration estimates, including species type, carbon 
uptake rate, and planting location (Griscom et al., 2017; Holl and 
Brancalion, 2020; Kirby and Potvin, 2007; Schulp et al., 2008) were not 
considered. 

The benefit-cost ratio of the carbon stored in the tree cover results 
indicate that the social benefits of the carbon sequestered by the pro-
gram could offset as much as 49% of the administrative costs of the 
program (Table 1), although the magnitude of the carbon storage ben-
efits depends heavily on how long the increase in tree cover is preserved. 

5.3. Robustness checks 

We conducted a series of robustness checks to assess the sensitivity of 
our results (see Section A.6 in the Appendix). First, accounting for the 
skewed nature of the tree cover data (see Fig. A4 in the Appendix), we 
used a natural logarithm of the tree cover as our outcome variable. This 
meant discarding 0.02% of observations with a zero tree cover value. 
Therefore, we reran our regression applying an inverse hyperbolic sine 
transformation (Burbidge et al., 1988) as well as using a raw tree cover 
variable instead of the logged variable. Our findings are robust to these 
alternative ways of defining our outcome variable, see Table A8 in the 
Appendix. 

Second, in our main analyses, we used three-year averages of tree 
cover. To explore the sensitivity to the time period aggregation, we re- 
estimated our model using annual tree cover data. We also checked 
whether our results held if we collapsed the data only to two time pe-
riods: pre-PSNP (2000–2004) and PSNP (2005–2019) (see Table A9 in 
the Appendix). Our results were robust to these alternative ways of 
constructing our dataset. 

Third, we used alternative ways to control for time trends. Instead of 
region-specific period fixed effects, we showed that our results are 
robust to using less data-intensive approaches, such as simple linear time 
trend (=1 if first period; =2 if second period; and so on) and un- 
interacted period fixed effects (see Table A10 in the Appendix). 

Fourth, our impact estimates were not influenced by additional 
district level characteristics (Table A11) or time-invariant district 
characteristics (Table A12). 

Fifth, to explore the possibility that our findings were driven by a 
particular district (e.g., due to its size or because of unusually large 
changes in tree cover after the launch of the PSNP), we reran our re-
gressions by omitting each district one at a time. The estimates remained 
stable when individual districts were omitted from the dataset, indi-
cating that the findings were not driven by a particular district (Fig. A13 
in the Appendix). 

Sixth, our confidence intervals were calculated using clustered 
standard errors, which may not be appropriate if the error terms are 

spatially auto-correlated. Fully adjusting for spatial autocorrelation is 
not computationally feasible in our setup due to the large size of the 
dataset (see Table A13 in the Appendix). However, using random subsets 
of our data suggests that our results are robust to adjusting our standard 
errors and confidence intervals to control for spatial autocorrelation 
(Conley, 1999) (see Table A14 in the Appendix). 

Finally, we used MODIS VCF’s data quality band as described in 
section 3 (Spatial Data) to assess the robustness of our results to the 
quality of the input surface reflectance data used to estimate tree cover. 
To this end, we identified the number of data quality flags of each pixel 
per year and re-ran the analysis after discarding all the pixels that were 
flagged twice or more in a year during our study period. Our findings 
were not driven by data quality issues (see Table A15 in the Appendix). 

6. Discussion 

The United Nations SDGs (United Nations, 2015) underscore the 
urgent need to address multiple dimensions of climatic, social, and 
ecological challenges in an integrated manner (Downing et al., 2021; Gil 
et al., 2019; Norton et al., 2020; Seddon et al., 2020). 

Food security, poverty, and forests are closely linked and are affected 
by and contributors to climate change (FAO, 2008; IPCC, 2019). While 
higher food production is necessary to feed an increasingly populated 
world, the agricultural sector remains an important source of GHG 
emissions, deforestation, and negative environmental impacts (Agrawal 
et al., 2014; Bahar et al., 2020; Gil et al., 2019; Godfray et al., 2011; 
Knoke et al., 2013; IPCC, 2019). Forests support climate change miti-
gation through carbon sequestration and can also contribute to food 
security through the provisioning of ecosystem services and increased 
yields in agroforestry systems (Amadu et al., 2020; Bahar et al., 2020). 
Deforestation and land degradation contribute to climate change 
through GHG emissions and reduced rates of carbon uptake (IPCC, 
2019), while poverty exacerbates food insecurity and increases vulner-
ability to climate change by reducing coping and adaptive capacity 
(FAO, 2008; Paul et al., 2016). 

While Ethiopia has made considerable commitment to reduce its 
vulnerability to climate change, its climate change adaptive capacity is 
still limited and there is a need to strengthen it across sectors, in-
terventions, and actors (Federal Democratic Republic of Ethiopia, 2019; 
Federal Democratic Republic of Ethiopia, 2021). The PSNP is designed 
as a safety net program for households that are chronically food insecure 
and poor while supporting community development and environmental 
restoration practices through its public works program (MoA, 2010; 
Wiseman et al., 2010). As such, it is an example of a program that in-
tegrates climate change actions into development programming. 

Our results show that the PSNP increased tree cover by 3.8% on 
average over 15 years in the districts of the Ethiopian highlands that 
participated in the program. The estimated tree cover increases are 
larger in less densely populated areas, steep-sloped terrain, and areas 

Table 1 
Benefit-cost analysis of the PSNP for carbon storage.     

Scenario How many years until trees are cut? Benefit-cost ratio for carbon storage 

1 Trees never cut 0.495 
2 50 years 0.160 
3 30 years 0.103 
4 15 years 0.055 

Note: This table compares the social benefits of the negative carbon emissions from the PSNP against the PSNP program implementation costs. The table does not factor 
in any other PSNP program benefits such as poverty alleviation. Each row corresponds to a different assumption of how many years elapse before the trees are cut and 
carbon is released into the atmosphere. 
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classified as forests and croplands at the onset of the program. These 
heterogeneous impacts align with the literature on forest conservation 
policies showing that conservation practices tend to be more successful 
in areas in which the opportunity cost of converting land to agricultural 
use is relatively high (Angelsen, 2010; Börner et al., 2020): distance to 
markets and terrain slope drive agricultural income and costs, making it 
less profitable to convert forests to cropland in steep-sloped terrains and 
in areas farther away from urban centers (Sandel and Svenning, 2013; 
von Thünen, 1826). Therefore, conservation projects and programs 
often target areas in which the land conversion pressures are low to 
begin with (Barton et al., 2013; Joppa and Pfaff, 2009). This is also the 
case with the PSNP as the program targets rehabilitation efforts on 
communal lands and steep-sloped terrain that are typically not well 
suited for crop-agriculture (MoA, 2010; Wiseman et al., 2010). While in 
Ethiopia the land area allocated to crop agriculture has grown over the 
past two decades, a recent study suggests that the returns to converting 
more of the highlands to agriculture are limited because further agri-
cultural expansion is not economically profitable (Schmidt and Thomas, 
2018). We estimate that the annual negative CO2 emissions from the 
increased tree cover are equivalent to 1.5% of Ethiopia’s annual emis-
sions reduction pledged by 2030 in its Nationally Determined Contri-
bution for the Paris Agreement (Federal Democratic Republic of 
Ethiopia, 2021). Our estimate is larger, but on the same magnitude as 
Woolf et al. (2018) on the PSNP negative carbon emissions using 
different methods.1 

Our study focuses on a large-scale safety net program with a public 
works component that is increasingly viewed as an important part of 
Ethiopia’s response to climate change (Federal Democratic Republic of 
Ethiopia, 2020; Wiseman et al., 2010). Related work in this area has 
focused on conditional cash transfer programs without explicit envi-
ronmental goals and documented mixed environmental impacts (Alix- 
Garcia et al., 2013; Dyngeland et al., 2020; Ferraro and Simorangkir, 
2020). Also relevant is research on India suggesting that a public works 
program led to negative environmental impacts in the form of increased 
air pollution (Behrer, 2019). 

Our findings are complementary to the growing literature on the 
benefits of Payment for Ecosystem Services (PES) programs for forest 
restoration and deforestation reduction (Alix-Garcia et al., 2012; Alix- 
Garcia et al., 2015; Alix-Garcia et al., 2018; Jack and Jayachandran, 
2019; Jayachandran et al., 2017; Salzman et al., 2018; Vincent et al., 
2021). While PES programs are typically designed with environmental 
benefits as the primary goal, growing research has demonstrated that 
these programs can have important social benefits including poverty 
reduction (Alix-Garcia et al., 2015) and increasing social capital (Alix- 
Garcia et al., 2018). Our work complements the PES literature in that we 
find a program with primarily social goals (food security and poverty 
reduction) can have important environmental benefits. Combined with 
the PES literature, our findings further cement the importance of 
considering both social and environmental benefits when evaluating 
programs. At the same time, the relatively modest gains that we find in 
tree cover from the poverty-focused PSNP are congruent with the rela-
tively modest reductions in poverty that have been found from PES 
programs (Alix-Garcia et al., 2015). 

The social protection literature has raised concerns about the high 
implementation costs of public works programs, especially when 
benchmarked against alternative social safety net programs, such as 
universal basic income schemes (Ravallion, 2019). However, typically 
public works programs have not accounted directly for the benefits 
generated by the public goods produced by these programs (Beierl and 

Grimm, 2019; Gehrke and Hartwig, 2018; Ravallion, 2019; Subbarao 
et al., 2012). Our estimates suggest that for Ethiopia’s PSNP, the positive 
impact of tree cover alone (through carbon storage) could offset as much 
as 49% of the administrative costs of the program on the long term. Our 
findings show that public works programs can have sizable environ-
mental benefits and should be embedded in benefit-cost calculations to 
avoid under investing in beneficial programs. 

6.1. Considerations in realizing environmental benefits in social 
protection programs 

Potential pathways to increase the environmental and climatic 
benefits of social protection programs include adding or strengthening 
existing environmental components and incentives to increase tree 
cover and to perform sustainable land management practices. In addi-
tion, there is an opportunity for these types of programs to build on 
synergies with tree planting, forest conservation, and sustainable forest 
management initiatives at national (e.g., the African Forest Landscape 
Restoration Initiative, the Green Legacy Initiative, and the Climate 
Resilient Green Economy strategy) and sub-national level, such as 
participatory forest management (Ameha et al., 2014; Siraj et al., 2018), 
Clean Development Mechanism projects (Brown et al., 2011), and other 
re-greening initiatives (Lemenih and Kassa, 2014). However, realizing 
the environmental and climatic benefits of social protection programs 
that have an environmental component is not without challenges, as it 
requires the full integration of the programs within their socio- 
ecological context. Specifically, the success of tree planting projects 
rests on careful planning, evaluation of potential trade-offs, and 
consideration of several social and environmental factors before their 
implementation (Chazdon and Brancalion, 2019; Holl and Brancalion, 
2020).2 Among these, biophysical aspects such as selecting adequate 
species and location have received most of the attention (Boissière et al., 
2021) partly due to their effect on carbon stock as well as the effect of 
trees in the environment and overall climatic impact (Anderson et al., 
2011; Kirby and Potvin, 2007; Schulp et al., 2008). In addition, the 
importance of including many native species to increase biodiversity 
and ecosystem services provisioning, has also been emphasized (César 
et al., 2021; Ellison et al., 2017; IPCC, 2019; Seddon et al., 2020). It is 
also critical to consider the complexity of socio-economic aspects of tree 
planting, including a long-term commitment to land protection, man-
agement, and funding (Holl and Brancalion, 2020), as well as the needs, 
goals, and participation of local communities (Boissière et al., 2021), 
and land tenure issues (Agrawal et al., 2014; Boissière et al., 2021; 
Legesse et al., 2018; Unruh, 2008). 

The design of the PSNP public porks component paid careful atten-
tion to many of these issues. First, the public works projects are inte-
grated into community planning to increase their relevance and improve 
long-term sustainability (MoA, 2010; Wiseman et al., 2010). Combined 
with technical support from environmental experts (Wiseman et al., 
2010), this community-led approach aimed to ensure that public works 
projects were tailored to the socio-ecological context. Second, the PSNP 
public works take place during the agricultural slack season to minimize 
potential crowding-out effects of on-farm labor and output (Holden 
et al., 2006). Third, while the PSNP remains largely externally funded 
(World Bank, 2018), the program is led and implemented by the gov-
ernment of Ethiopia, ensuring long-term commitment to implementa-
tion and results. 

Lastly, we note that the primary focus of the PSNP is on improving 
food security, with a secondary focus on generating community assets. 
Many of the community assets aim to enhance climate change 

1 Note that we benchmark our estimate against Ethiopia’s most recent 2021 
reduction pledge (Federal Democratic Republic of Ethiopia, 2021), whereas 
Woolf et al. (2018) benchmark against Ethiopia’s earlier 2016 reduction pledge 
UNFCCC (2016), so the percentages of the reductions met are not directly 
comparable. 

2 See Lemenih and Kassa (2014) for a review of the factors influencing re- 
greening initiatives in Ethiopia and Boissière et al. (2021) for an examination 
of the socio-economic factors influencing reforestation projects throughout 
Ethiopia. 

K. Hirvonen et al.                                                                                                                                                                                                                               



Global Environmental Change 75 (2022) 102549

9

adaptation and resilience. Climate change mitigation, in contrast, has 
not been a core focus of the program and, as a result, the program 
strategies are not designed to optimize climate change mitigation ben-
efits. Given that Ethiopia is a resource-poor country with limited 
implementation capacity, the burden of mitigation should not fall on 
Ethiopia. However, if external funding to the PSNP were increased, that 
might allow for a greater focus on climate change mitigation (Jirka 
et al., 2015). 

6.2. Limitations 

Many social protection programs in low and middle income countries 
use geographic targeting (Beegle et al., 2018; Coady et al., 2004) making 
it difficult to causally assess their environmental impacts. We addressed 
this by constructing a credible counterfactual, however, in the absence 
of a randomized allocation of the program, we cannot be sure that our 
estimates are entirely free from bias (Alpízar and Ferraro, 2020). 
Another limitation of our methodological approach is that our estimates 
represent local average treatment effects (Imbens and Angrist, 1994). 
More specifically, by restricting the study area to common support (a set 
of PSNP and non-PSNP pixels with similar agro-ecological and socio- 
economic characteristics at the onset of the program), our impact esti-
mates are identified from a sub-set of the area covered by the PSNP. This 
may raise a question whether our local average treatment estimates can 
be generalized to represent overall impacts (i.e., average treatment ef-
fects of the whole program) (Deaton, 2010; Imbens, 2010). We note that 
the area of common support pixels used in the final analysis was quite 
large, covering 345,000 km2 (or 34.5 million ha) and spanning multiple 
agro-ecological zones. Focusing on such a large land area eases the 
concerns of applying local average treatment effects to make broader 
policy relevant statements. To further alleviate these concerns, we also 
uncover several important sources of impact heterogeneity, such as 
population density, terrain slope, forest and cropland land cover, that 
are likely to be highly relevant to policy makers designing similar 
programs. 

While our data did not allow us to explore the mechanisms through 
which the PSNP increased tree cover, we hypothesize that the tree cover 
increases are due to the nature of the public works projects which were 
designed to rehabilitate degraded lands. However, it is also possible that 
the public works projects ‘crowd-in’ investments by inducing house-
holds to plant trees on their private lands (Andersson et al., 2011; 
Holden et al., 2006). If so, this means that the effect of the PSNP on tree 
cover goes beyond the PSNP’s public works area. In our study, we did 
find that the PSNP resulted in small increases of tree cover in areas 
categorized as cropland at the onset of the program in 2005, while the 
largest effects were observed in areas classified as forests and woody 
areas. Additionally, it is also possible that the cash or in-kind transfers 
themselves could have limited the pressure on households to cut and sell 
trees for their immediate cash needs during economic hardship, pre-
venting deforestation. 

Finally, our analysis was retrospective in nature covering a 15-year 
period between the onset of the PSNP and 2019. We should be careful 
in extrapolating our findings beyond the study period. The COVID-19 
pandemic and the large-scale conflict in Ethiopia that both erupted in 
2020 have caused major disruptions to the PSNP. Moreover, the recent 
international events (e.g., the pandemic and the war in Ukraine) have 
resulted in economic downturns and sizable government deficits in high 
income countries raising a risk of future funding cuts to the PSNP. 
However, it is very promising that in early 2021 funding for the PSNP 
was renewed for another five-year phase (U.S. Embassy Ethiopia, 2021). 

7. Conclusion 

We have measured the impact on tree cover of the PSNP using several 
datasets including satellite-based data of tree cover combined with 
difference-in-differences and inverse probability treatment weighting 
methodologies. To the best of our knowledge, this is the first assessment 
of the environmental impacts of a major public works program using 
broad geographic data coverage and counter-factual analysis. It is an 
example of a design-based causal inference strategy to empirically 
evaluate a large sustainability intervention (see Barrett (2021) for a 
recent call to expand this type of analysis in the broader sustainability 
science community). Our work also buttresses Norton et al. (2020)’s 
review on the potential of employment-based social assistance programs 
to promote ecosystem stewardship, in that we quantify the carbon 
sequestration benefits of the PSNP showing that large social assistance 
programs can attain both social and environmental aims. 

Our results show that the PSNP increases tree cover and supports 
climate change mitigation efforts through carbon sequestration, with 
larger increases in less densely populated areas and on steep-sloped 
terrain. The PSNP is one of the largest social protection programs in 
Africa, and our results show the potential that these types of programs 
can have to support mitigation strategies for climate change by 
increasing tree cover and reducing CO2 emissions. 
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Appendix A. Appendix 

A.1. Spatial data and methods 

Table A1 describes the spatial datasets used in this study. 
The main dataset used in this study is the Vegetation Continuous fields (VCF) annual dataset (MODIS44B) L3, Collection 6 derived from the 

MODerate Resolution Imaging Spectrometer (MODIS) sensor on board the Aqua and Terra satellites. This global dataset has a 250 m spatial resolution 
and provides an estimation of three ground cover components in each pixel: percent tree cover (VCF-TC), percent non-tree vegetation, and percent 
non-vegetated (bare) from 0 to 100 (Townshend et al., 2017; DiMiceli et al., 2021). The ground cover components are estimated through a regression 
tree algorithm using training data from Landsat Geocover data, 16-day surface reflectance composites including bands 1–7 and brightness temperature 
from bands 20, 31, and 32, and the MODIS Global 250 m Land/Water map (Townshend et al., 2017). In addition to these variables, the VCF dataset 
also includes a cloud cover band, a data quality band, and two standard deviation bands (percent tree cover and percent non-vegetated) bands 
(DiMiceli et al., 2015; Townshend et al., 2017).  

The Global Forest Change (GFC) dataset (Hansen et al., 2013) is also widely used to assess forest change (Jain, 2020). We used VCF-TC for two main 
reasons. First, although GFC covers our study period at a higher spatial resolution (30 m), we did not consider it appropriate for our analysis due to the 
inconsistencies resulting from differences in data processing between the periods 2000 to 2012 and 2013 to 2019 (University of Maryland, 2019). 
Second, while GFC provides percent tree canopy cover for 2000, the remaining years are coded as a binary variable (either forest gain or loss). VCF-TC 
is better aligned to our research objectives because it allows assesing forest change as a continuous process at the pixel level (DiMiceli et al., 2021; 
Ryan et al., 2017). 

Our outcome variable of interest is the percent tree cover (VCF-TC), defined as the “amount of skylight obstructed by tree canopies equal to or 
greater than 5 m in height” (Hansen et al., 2003). We note that this differs from crown cover, “the amount of the ground which is encompassed by the 
tree’s crown regardless of whether light penetrates.” (Townshend et al., 2017). 

Table A1 
Spatial datasets: data source, time period used in the analysis, and spatial resolution.  

Variable (units) Dataset product Data Source Time period Native spatial 
resolution 

Tree Cover (%) MODIS44B v.6 
(VCF) 

NASA EOSDIS Land Processes DAAC 2000–2019 250 m   

https://lpdaac.usgs.gov/products/mod44bv006/   
Elevation (m) SRTM v.3 USGS Earth Explorer (USGS EROS Archive) – 1 arc-second   

https://earthexplorer.usgs.gov/  (∼30 m at equator) 
Slope (degrees) Generated from 

SRTM 
– – 1 arc-second     

(∼30 m at equator) 
Population density (people/ 

km2) 
GWP4.11 Socio-Economic Data and Applications Center 2005 30 arc-second   

(SEDAC), Columbia University  (∼1 km at equator)   
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11   

Land cover MCD12Q1 v.6 NASA EOSDIS Land Processes DAAC 2005 500 m 
(IGBP legend scheme)  https://lpdaac.usgs.gov/products/mcd12q1v006/   
Annual rainfall (mm) CHIRPS v.2 Climate Hazards Center, UC Santa Barbara 2000–2019 0.05 degrees   

https://www.chc.ucsb.edu/data  (∼5.5 km at equator) 
Aboveground live woody  Global Forest Watch 2000 1 arc-second 
biomass density (AGB)    (∼30 m at equator) 
(Mg biomass ha− 1)  https://data.globalforestwatch.org/datasets/aboveground-live-woody- 

biomass-density/    

Table A2 
Land cover type definitions (IGBP classification).  

No. Land cover type Description 

1 Evergreen Needleleaf Forests Dominated by evergreen conifer trees (canopy >2 m). Tree cover >60%. 
2 Evergreen Broadleaf Forests Dominated by evergreen broadleaf and palmate trees (canopy >2 m). Tree cover >60%. 
3 Deciduous Needleleaf Forests Dominated by deciduous needleleaf (larch) trees (canopy >2 m). Tree cover >60%. 
4 Deciduous Broadleaf Forests Dominated by deciduous broadleaf trees (canopy >2 m). Tree cover >60%. 
5 Mixed Forests Dominated by neither deciduous nor evergreen (40–60% of each) tree type (canopy >2 m). Tree cover >60%. 
6 Closed Shrublands Dominated by woody perennials (1–2 m height) >60% cover. 
7 Open Shrublands Dominated by woody perennials (1–2 m height) 10–60% cover. 
8 Woody Savannas Tree cover 30–60% (canopy >2 m). 
9 Savannas Tree cover 10–30% (canopy >2 m). 
10 Grasslands Dominated by herbaceous annuals (<2 m). 
11 Permanent Wetlands Permanently inundated lands with 30–60% water cover and >10% vegetated cover. 
12 Croplands At least 60% of area is cultivated cropland. 
13 Urban and Built-up Lands At least 30% impervious surface area including building materials, asphalt, and vehicles. 
14 Cropland/Natural Vegetation Mosaics Mosaics of small-scale cultivation 40–60% with natural tree, shrub, or herbaceous vegetation. 
15 Permanent Snow and Ice At least 60% of area is covered by snow and ice for at least 10 months of the year. 
16 Barren At least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than 10% vegetation. 
17 Water Bodies At least 60% of area is covered by permanent water bodies. 

Source: Sulla-Menashe and Friedl (2018). 
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VCF data are provided as discrete tiles in sinusoidal projection. We mosaicked the four tiles covering Ethiopia (h22.v08; h22v07; h21v08 and 
h21v07) for all years in our study period. All data except land cover (already in sinusoidal projection) were projected to the sinusoidal projection. 
There are six land cover type classifications available in the MODIS product MCD12Q1. This is also a global yearly product, but at a 500 m spatial 
resolution. We chose the Geosphere-Biosphere Programme (IGBP) 17 land cover type classification scheme (Table A2) because it is more closely 
aligned with our research focus, and aggregated land cover types as described in Table A3 to explore the heterogeneity of the PSNP impacts on the 
main land cover types. 

Each VCF-TC pixel was matched to a district and region using the 2007 Ethiopia’s Central Statistical Agency (CSA) (unpublished data) admin-
istrative boundaries. The latter was joined to the annual PSNP caseloads at district level for our study period. We identified the district splits that 
occurred for each year after 2007 and merged back the child districts to their parent districts along with the PSNP beneficiaries to generate a spatially 
consistent dataset. 

Finally, we used the VCF data quality band to test the sensitivity of the results to the uncertainty in vegetation estimates associated with input data 
quality. This involved processing the VCF-TC quality flags for each year in our study period and reclassifying them to extract the pixels that had two or 
more flags per year during our student period. The flagged pixels were excluded from the analysis for the robustness check. 

A.2. Impact assessment method 

The key challenge of any impact assessment is the construction of the counterfactual; what the outcome would have been had the districts not 
received the program. In randomized controlled trial (RCT) designs, this is solved by randomly allocating the treatment (here PSNP) across eligible 
districts. When program allocation is random, districts assigned to the control arm are identical—in expectation—to districts in the treated group 
before the onset of the program, so these control districts provide a credible counterfactual. Impacts of the program can then be measured as dif-
ferences in outcomes (or differences in changes in outcomes over time) between the randomly assigned treatment and control districts. When an RCT 
or another experimental design is not feasible or ethical, an identification strategy must be developed in which the counterfactual is constructed using 
statistical techniques to create a control group of districts that are as similar as possible to the treated group. Most social safety net programs across low 
and middle income countries are targeted to poor people or poor areas, not randomly allocated (Coady et al., 2004). This is also the case for the PSNP: 
the program was geographically targeted to chronically food-insecure areas of the country (Wiseman et al., 2010). In the absence of an experimental 
design, we combined difference-in-differences (DiD) and statistical matching methods to estimate the impact of the PSNP on tree cover. This approach 
is credible because due to funding constraints or spatial inertia, many poor and chronically food-insecure districts in the highlands are not part of the 
PSNP and instead make recurring annual requests for emergency food assistance (Clay et al., 1999; Jayne et al., 2002; NDRMC, 2018; World Bank, 
2020). 

A.2.1. Difference in differences method 
DiD is a widely used quasi-experimental method to estimate treatment effects when a randomized allocation of a policy or program is not feasible 

or ethical (Angrist and Pischke, 2009). DiD requires data before and after the intervention began and from a group that was subject to the treatment 
(treated group) and a group that was not (control group). A key identifying assumption of DiD is that the two groups were on a similar trend before the 
treatment began (Ryan et al., 2019). To test this ‘parallel trend hypothesis’, data from at least two periods before the intervention began is needed. 

With data before and after the PSNP began from PNSP and non-PSNP districts, we can use the DiD approach to estimate the impact of the PSNP 
program on tree cover. The VCF-TC data are available from 2000 onwards, permitting us to test the parallel trends hypothesis. 

To begin, we tested the parallel trend hypothesis, restricting our data to two periods prior to the launch of the PSNP in 2005 (2000–2001 and 
2002–2004) and defining the binary ‘treatment’ variable to equal one if the period was 2000–2001, and to equal zero if the period was 2002–2004. We 
first estimated the equation provided in the main text using an ordinary least squares (OLS) method. Column 1 in Table A4 shows that the null 
hypothesis of parallel trend (β = 0) was comfortably rejected (p < 0.001). We then attempted to adjust for non-parallel trends using various fixed 
effects estimators. Columns 2 and 3 show that the parallel trends hypothesis was also rejected when both district-level (p < 0.001) and pixel-level 
(p < 0.001) fixed effects were used. 

Table A3 
Distribution of land cover types and their aggregation (pixels).  

Our aggregation Land cover type (IGBP classification) N % 

Forests and woody areas  877,054 7.7  
Evergreen Needle leaf Forests 160 0.0  
Evergreen Broad leaf Forests 420,845 3.7  
Deciduous Broad leaf Forests 39,453 0.3  
Mixed Forests 3,498 0.0  
Closed Shrub lands 201,553 1.8  
Open Shrub lands 71,040 0.6  
Woody Savannas 140,505 1.2 

Savannas  2,607,387 22.8  
Savannas 2,607,387 22.8 

Grasslands  4,991,436 43.6  
Grasslands 4,991,436 43.6 

Croplands  2,937,535 25.7  
Croplands 2,894,468 25.3  
Cropland/Natural Vegetation Mosaics 43,067 0.4 

Not considered  29,630 0.3  
Permanent Wetlands 2,501 0.0  
Urban and Built-up Lands 9,532 0.1  
Barren 17,370 0.2  
Water Bodies 227 0.0 

[3 pt] Total 11,443,042 100.0  
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A.2.2. Statistical matching method 
We used statistical matching estimators that are frequently used in the environmental conservation literature to estimate program impacts (Herrera 

et al., 2019; Naidoo et al., 2019; Pfaff et al., 2015; Soares-Filho et al., 2010), and which have shown to perform well in reducing bias when combined 
with DiD in various contexts (Chabé-Ferret, 2017; McKenzie et al., 2010; Ryan et al., 2019). More specifically, we used a propensity score matching 
algorithm (Rosenbaum and Rubin, 1983) to match the PSNP and non-PSNP pixels based on their pre-program characteristics: mean and standard 
deviation of annual rainfall in 1995–2004 (and their squared terms), population density in 2005, elevation and slope of land (Table A5). We also 
included binary indicators for each region. Table A6 presents the results of the propensity score estimation based on a logit estimation method in 
which the dependent variable is a binary variable that equals one if the pixel belongs to a PSNP district, and zero otherwise. As is common in this 
literature (Imbens, 2015), we were less interested in interpreting the magnitude or statistical significance of the coefficients reported in Table A6. 
Instead, we used the predictions from this model to construct the propensity score. Fig. A1 shows the distribution of the propensity score for both PSNP 
and non-PSNP pixels. As expected, there were a large number of non-PSNP pixels that received a very low score, indicating that they are very unlikely 
to be selected into the program based on their agro-ecological characteristics. Similarly, there were many PSNP pixels for which the probability of 
selection was close to one. Spatially, we see that these ‘poor matches’ are primarily located in the east and west of the study area (Fig. A2). We defined 
the area of common support as pixels with the estimated propensity score within the interval [0.1; 0.9] (Crump et al., 2009). This meant discarding 5.8 
million pixels. In the final dataset used in the analysis, we have 6.5 million pixels and reasonable overlap in the propensity score distributions across 
PSNP and non-PSNP pixels (Fig. A3). Spatially, this meant focusing on the areas in the middle of the study area; those areas just inside and outside of 
the ‘PSNP boundary’ (Fig. A2) where the agro-ecological conditions are comparable (see Fig. 1 in the main text). Restricting the area to common 
support and rerunning the models based on OLS and the two fixed effects methods resulted in smaller coefficients in absolute terms, but the parallel 
trend hypothesis is rejected (p < 0.001) across columns 4 to 6 in Table A4. 

Table A4 
Testing for pre-treatment trends.   

(1) (2) (3)  

Estimation method: OLS District fixed effects Pixel fixed effects  
Area: All pixels All pixels All pixels  
PSNP*(2000–2001) period (β) − 0.178*** − 0.187*** − 0.202***   

(0.018) (0.018) (0.0002)  
District fixed effects no yes no  
Pixel fixed effects no no yes  
Observations: 22,770,182 22,770,182 22,770,182  
Clusters: 617 617 617    

(4) (5) (6) (7) 
Estimation method: OLS District fixed effects Pixel fixed effects IPTW 
Area: Common support Common support Common support Common support 
PSNP*(2000–2001) period (β) − 0.080*** − 0.081*** − 0.078*** − 0.019  

(0.018) (0.02) (0.0002) (0.026) 
District fixed effects no yes no no 
Pixel fixed effects no no yes no 
Observations: 12,920,507 12,920,507 12,920,507 12,920,507 
Clusters: 513 513 513 513 

Note: The unit of observation is a pixel observed in two time periods: 2000–2001 and 2002–2004. The outcome variable is the mean percent of tree cover in each 
period. The standard errors are reported in parentheses and they are clustered at the district level in columns 1, 2, 4, 5, and 7 and at the pixel level in columns 3 and 6. 
All models include a binary variable capturing pixels belonging to PSNP districts (except the models based on fixed effects methods), region specific period fixed effects 
and mean annual rainfall over the period. OLS  = Ordinary Least Squares; IPTW  = Inverse Probability Treatment Weighting. Statistical significance denoted at *** 
p<0.01, ** p<0.05, * p<0.10.  

Table A5 
Descriptive statistics of pre-program matching covariates.   

(1) PSNP (2) Non-PSNP T-test Difference 

Variable Mean/SE Mean/SE (1)-(2) 

Mean rainfall (cm), 1995–2004 84.480 (2.042) 129.100 (2.125) − 44.620*** 
Standard deviation of rainfall (cm), 1995–2004 12.247 (0.284) 13.341 (0.236) − 1.094*** 
Population density (people/km2), 2005 88.545 (6.833) 105.825 (5.644) − 17.280* 
Slope (degrees) 10.685 (0.486) 10.103 (0.237) 0.582 
Elevation (meters) 1630.141 (47.368) 1751.708 (50.873) − 121.567* 
Amhara region (0/1) 0.232 (0.032) 0.273 (0.036) − 0.040 
Oromia region (0/1) 0.473 (0.048) 0.505 (0.038) − 0.032 
SNNP region (0/1) 0.170 (0.031) 0.178 (0.030) − 0.009 
Tigray region (0/1) 0.125 (0.025) 0.044 (0.026) 0.081**     

N 5,663,428 5,779,614  
Clusters 247 370  

Note: Mean values followed by standard errors in parentheses. The value displayed for t-tests are the differences in the means across the two groups. Standard errors 
(SE) are clustered at district level. Statistical significance of the t-test (last column) denoted at *** p<0.01, ** p<0.05, * p<0.10. 0/1 refers to binary variable.  
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Table A6 
Propensity score regression results.   

(1) 

Mean rainfall (cm), 1995–2004 − 0.201***  
(0.0003) 

— squared term 0.0005***  
(0.000001) 

Standard deviation of rainfall (cm), 1995–2004 0.350***  
(0.002) 

— squared term − 0.005***  
(0.00007) 

Population (people/km2) 0.0003***  
(0.000005) 

Slope (degrees) 0.032***  
(0.00009) 

Elevation (meters) 0.0009***  
(0.000002) 

Amhara region (0/1) − 0.864***  
(0.004) 

Oromia region (0/1) − 1.958***  
(0.004) 

SNNP region (0/1) 0.251***  
(0.004) 

Constant 10.71***  
(0.014)   

Observations 11,443,042 
Clusters: 617 

Note: The unit of observation is a pixel. Coefficients are log-odds units. Standard errors are reported in pa-
rentheses. Statistical significance denoted at *** p<0.01, ** p<0.05, * p<0.10. 0/1 refers to binary variable.  

Fig. A1. The propensity scores for all pixels (N  = 11,443,042 pixels; 49.5% from PSNP districts). The area between the vertical red lines marks the area of 
common support. 
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Fig. A2. Spatial distribution of propensity scores.  

Fig. A3. Propensity scores in the [0.1–0.9] interval. The common support includes N  = 6,461,302 pixels (53.1% from PSNP districts).  
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Finally, we used these pixel level propensity scores (PS) to calculate inverse probability treatment weights (IPTW) (Abadie, 2005; Joffe et al., 
2004): 1/PS for the treated (PSNP) pixels and 1/(1 − PS) for the untreated (non-PSNP) pixels. After restricting the pixels in our dataset to common 
support and applying IPTW on our regression model, we cannot reject the null hypothesis that the tree cover in PSNP and non-PSNP areas were on a 
similar trend before the PSNP was launched in 2005 (Column 7 in Table A4); p  = 0.473. Table A7 further shows that the pre-program matching 
covariates are in balance after we restrict the area to common support and apply IPTW. 

A.3. Additional descriptive statistics 

Figs. A4,A5,A6 display the distribution of average tree cover, population density, and terrain slope, respectively, after restricting to the area of the 
common support. 

Table A7 
Covariate balance after restricting the area to common support and applying inverse probability treatment weights.   

(1) PSNP (2) Non-PSNP T-test Difference 

Variable Mean/SE Mean/SE (1)-(2) 

Mean rainfall (cm), 1995–2004 105.121 (2.209) 104.771 (2.161) 0.350 
Standard deviation of rainfall (cm), 1995–2004 12.623 (0.296) 12.614 (0.314) 0.009 
Population density (people/km2) 125.328 (8.655) 116.236 (10.366) 9.092 
Slope (degrees) 11.109 (0.454) 11.185 (0.479) − 0.076 
Elevation (meters) 1775.538 (47.546) 1792.522 (87.601) − 16.984 
Amhara region (0/1) 0.281 (0.038) 0.300 (0.046) − 0.018 
Oromia region (0/1) 0.374 (0.045) 0.390 (0.056) − 0.016 
SNNP region (0/1) 0.270 (0.044) 0.237 (0.049) 0.032 
Tigray region (0/1) 0.075 (0.035) 0.073 (0.053) 0.003     

N 3,428,265 3,033,037  
Clusters 227 286  

Note: Mean values followed by standard errors in parentheses. The value displayed for t-tests are the differences in the means across the two groups. Standard errors 
(SE) are clustered at district level. Observations are weighted using inverse probability treatment weights. Statistical significance of the t-test (last column) denoted at 
*** p<0.01, ** p<0.05, * p<0.10. 0/1 refers to binary variable.  

Fig. A4. Distribution of average tree cover in 2002–2004 after restricting to the area of common support. N  = 6,461,302 pixels.  
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Fig. A5. Distribution of population density (people/km2) in 2005 after restricting to the area of common support. The horizontal axis is truncated at the 99 percentile 
of the population density distribution. N  = 6,396,660 pixels. The vertical dashed lines represent the population density thresholds used the analyses; 150 people/km2 

and 300 people/km2. 

Fig. A6. Distribution of terrain slope after restricting to the area of common support. The horizontal axis is truncated at the 99 percentile of the terrain slope 
distribution. N  = 6,394,787 pixels. 
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A.4. Heterogeneity analyses 

A.4.1. Heterogeneity by population density 
In the main text, we provide estimates of the impact of the PSNP on tree cover by terrain slope (Fig. 2B). We replicate that analysis, but restrict the 

area to rural areas using two population density thresholds. Fig. A7 shows the estimates when rural areas are defined as areas with less than 300 people 
per km2 and Fig. A8 shows the estimates when rural areas are defined as areas with less than 150 people per km2. In line with Fig. 2 presented in the 
main text, we see that the slope-specific impacts are larger when we move to less densely populated areas (especially areas with <150 people/km2). 

Fig. A7. Estimates measure % change in tree cover due to the PSNP. Area restricted to pixels containing less than 300 people/km2. The unit of observation is a pixel 
observed periodically. Impact estimates for terrain slope quintiles: 0–20 percentile (0.0 to 2.9 degrees; N = 9,924,180); 20–40 percentile (3.3 to 5.6 degrees; N =
7,496,279); 40–60 percentile (5.8 to 10.7 degrees; N = 8,217,594); 60–80 percentile (10.7 to 19.1 degrees; N = 8,568,854); 80–100 percentile (19.1 to 78.4 degrees; 
N = 8,771,077). Estimates are based on a difference in differences method combined with an inverse probability weighting. Confidence intervals are computed from 
standard errors clustered at the district level. 
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A.4.2. Heterogeneity by land cover type 
Fig. 2C in the main text provides the estimates by land cover type at the onset of the program in 2005. We replicate that analysis, but restrict the 

area to rural areas using two population density thresholds. Fig. A9 shows the estimates when rural areas are defined as areas with less than 300 people 
per km2 and Fig. A10 the estimates based on the 150 people per km2 threshold. As before, we see that the slope-specific impacts are considerably larger 
when we move to less densely populated areas (<150 people/km2). This is particularly so for the forests and woody area category and croplands where 
we find that the PSNP increased tree cover by 15.0 percent and 6.9 percent, respectively. 

Fig. A8. Estimates measure % change in tree cover due to the PSNP. Area restricted to pixels containing less than 150 people/km2. The unit of observation is a pixel 
observed periodically. Impact estimates for terrain slope quintiles: 0–20 percentile (0.0 to 2.9 degrees; N = 8,366,596); 20–40 percentile (3.3 to 5.6 degrees; N =
6,204,891); 40–60 percentile (5.8 to 10.7 degrees; N = 6,670,860); 60–80 percentile (10.7 to 19.1 degrees; N = 7,010,199); 80–100 percentile (19.1 to 78.4 degrees; 
N = 7,449,533). Estimates are based on a difference in differences method combined with an inverse probability weighting. Confidence intervals are computed from 
standard errors clustered at the district level. 
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Fig. A9. Estimates measure % change in tree cover due to the PSNP. Area restricted to pixels containing less than 300 people/km2. The unit of observation is a pixel 
observed periodically. Impact estimates for different land cover types at the onset of the program in 2005: Forests and woody areas (N = 1,847,615); Croplands (N =
15,959,503); Grasslands (N = 17,587,542); Savannas (N = 7,574,035). See Table A3 for exact aggregations. Estimates are based on a difference in differences method 
combined with an inverse probability weighting. Confidence intervals are computed from standard errors clustered at the district level. 

Fig. A10. Estimates measure % change in tree cover due to the PSNP. Area restricted to pixels containing less than 150 people/km2. The unit of observation is a pixel 
observed periodically. Impact estimates for different land cover types at the onset of the program in 2005: Forests and woody areas (N = 1,621,046); Croplands (N =
12,810,903); Grasslands (N = 14,987,602); Savannas (N = 6,275,269). See Table A3 for exact aggregations. Estimates are based on a difference in differences method 
combined with an inverse probability weighting. Confidence intervals are computed from standard errors clustered at the district level. 
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A.4.3. Heterogeneity by caseload intensity 
We also explored whether the impacts were larger in districts that had more PSNP beneficiaries relative to total population compared to districts 

that had fewer. To do this analysis, we computed the average number of PSNP beneficiaries in each district over the study period and divided this 
number by the total population of the district. Using this variable as our measure of beneficiary caseload intensity, we split the pixels originating from 
the PSNP districts into two groups using the median caseload intensity as the threshold. We then replaced our treatment variables with these two 
binary variables and reran the regression. The results of this analysis are shown in Fig. A11. For pixels with a lower caseload intensity, we find positive 
point estimates of the impact of the program, but these estimates are relatively small, ranging from 1.6 to 3.0 percent depending on the population 
threshold used, and are not statistically significant. On the other hand, for the pixels with a higher caseload intensity, the estimated increase in tree 
cover is larger (ranging from 7.1 to 10.9 percent) and statistically significant in all specifications. Wald tests further confirmed that the differences in 
impact estimates between low and high intensity areas were statistically different from zero in all three regressions (p < 0.05). These results are 
reassuring in that it is participation in the PSNP, and not some other omitted factor, which is driving our main results. 

A.5. Spillover analysis 

To assess spillovers from PSNP districts to neighboring non-PSNP districts, we split our control area into two groups: non-PSNP districts directly 
adjacent to PSNP district and other non-PSNP districts. In total, there were 134 adjacent non-PSNP districts that shared a border with at least one PSNP 
district. We re-ran our regression using two binary treatment variables: one capturing PSNP and the other capturing adjacent non-PSNP districts. A 
positive and significant impact estimate on the variable capturing adjacent districts would indicate that neighboring non-PSNP districts also benefit 
from the program. The estimates reported in Fig. A12 quantify the change in tree cover relative to non-PSNP districts that do not share a border with a 
PSNP district. The impact estimate for the PSNP districts is statistically significant in all three columns, while the estimate for the adjacent non-PSNP 
districts is not. Therefore, we conclude that there is no statistical evidence in favor of spillover to non-PSNP districts. 

Fig. A11. Estimates measure % change in tree cover due to the PSNP. Impacts are estimated separately for low caseload intensity versus high caseload intensity 
pixels. A pixel is defined as high caseload intensity if its average caseload per capita over our study period is above the median. The unit of observation is a pixel 
observed periodically. The figure displays separate panels for all pixels (N = 45,229,114), pixels containing less than 300 people/km2 (N = 42,977,984), and pixels 
containing less than 150 people/km2 (N = 35,702,079). 
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A.6. Robustness checks 

We conducted a series of robustness checks to assess the sensitivity of our results. 
A.6.1. Alternative ways of defining the outcome variable 

Our results are not sensitive to the way we define our outcome variables. First, accounting for the skewed nature of the tree cover data (see Fig. A4), 
we used a natural logarithm of the tree cover as our outcome variable. This meant discarding 0.02% of observations with a zero tree cover value. 
Therefore, we re-estimated our regression applying an inverse hyperbolic sine transformation (IHS) as well as using a raw tree cover variable instead of 
the logged variable. The results reported in Panel B of Table A8 show that the estimates are near identical to those reported in the main text 
(reproduced in Panel A of Table A8) when we use the IHS transformed outcome variable. However, the estimate for ’all pixels’ is only significant at the 
10% level. The estimates are statistically significant when we use the non-transformed (or raw) tree cover variable (Panel C of Table A8), although as 
before the ’all pixel’ estimate is significant at the 10% level. The magnitudes are also comparable to those reported in the main text. We find that the 

Fig. A12. Estimates measure % change in tree cover due to the PSNP. Impacts are estimated separately for PSNP districts and non-PSNP districts adjacent to PSNP 
districts (’Adjacent’, N = 134 districts), against other, non-adjacent, non-PSNP districts. The unit of observation is a pixel observed periodically. The figure displays 
separate panels for all pixels (N = 45,229,114), pixels containing less than 300 people/people/km2 (N = 42,977,984), and pixels containing less than 150 people/ 
km2 (N = 35,702,079). 
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PSNP increased tree cover by 0.497 percentage points. Considering the mean tree cover percent in non-PSNP districts before PSNP was launched 
(14.27), this estimate corresponds to a 3.48 percent increase in tree cover. 

Second, in our main analyses, we used three-year averages of tree cover. To explore the sensitivity in this regard, we re-estimated our model using 
annual tree cover data. We also checked whether our results hold if we collapsed the data to two time periods: pre-PSNP (2000–2004) and PSNP 
(2005–2019). The results reported in Panel B and C of Table A9 show that the estimates are very similar to those reported in the main text (reproduced 
in Panel A of Table A9) and and statistically significant at least at the 10% level. 

Table A8 
Sensitivity analyses: alternative outcome variables.   

(1) (2) (3) 

Area: All <300 ppl/km2 
<150 ppl/km2 

Panel A: Logged tree cover as outcome variable (Fig. 2, Panel A) 
PSNP district X period: 2005–2019 0.038** 0.043** 0.058***  

(0.019) (0.019) (0.022) 
Region X period fixed effects? yes yes yes 
Observations 45,219,651 42,968,863 35,694,111 
Clusters 513 500 452 
R2 0.204 0.207 0.231     

Panel B: Inverse hyperbolic sine transformed tree cover as outcome variable 
PSNP district X period: 2005–2019 0.036* 0.042** 0.057**  

(0.019) (0.019) (0.022) 
Region X year fixed effects? yes yes yes 
Observations 45,229,114 42,977,984 35,702,079 
Clusters 513 500 452 
R2 0.204 0.207 0.231     

Panel C: Raw (non-logged) tree cover as outcome variable 
PSNP district X period: 2005–2019 0.497* 0.560* 0.675*  

(0.294) (0.300) (0.350) 
Region X period fixed effects? yes yes yes 
Observations 45,229,114 42,977,984 35,702,079 
Clusters 513 500 452 
R2 0.163 0.165 0.183 
Mean tree cover non-PSNP (2000–2004) 14.70 14.60 14.96 

Note: The unit of observation is a pixel observed periodically. The outcome variable is mean percent of tree cover in the period. In Panel A, the outcome variable is 
logged. In Panel B, the outcome variable is inverse hyperbolic sine transformed. In Panel C, non-transformed tree cover is used. The standard errors are reported in 
parentheses and they are clustered at the district level. All models include a binary variable capturing pixels belonging to PSNP districts, region specific period fixed 
effects and mean annual rainfall over the period. *** p<0.01, ** p<0.05, * p<0.10.  

Table A9 
Sensitivity analyses: data structure.   

(1) (2) (3) 

Area: All <300 ppl/km2 
<150 ppl/km2 

Panel A: Periodic data (Fig. 2, Panel A) 
PSNP district X period: 2005–2019 0.038** 0.043** 0.058***  

(0.019) (0.019) (0.022) 
Region X period fixed effects? yes yes yes 
Observations 45,219,651 42,968,863 35,694,111 
Clusters 513 500 452 
R2 0.204 0.207 0.231     

Panel B: Annual data 
PSNP district X period: 2005–2019 0.040* 0.044* 0.059**  

(0.022) (0.023) (0.027) 
Region X year fixed effects? yes yes yes 
Observations 129,130,790 122,701,616 101,923,551 
Clusters 513 500 452 
R2 0.183 0.187 0.209     

Panel C: Two periods model 
PSNP district X period: 2005–2019 0.035* 0.039* 0.053**  

(0.021) (0.021) (0.025) 

(continued on next page) 
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A.6.2. Controlling for common shocks 
We used alternative ways to control for common shocks. Instead of region-specific period fixed effects, we explored sensitivity by using less data- 

intensive approaches, such as a simple linear time trend (=1 if first period; =2 if second period; and so on) and un-interacted period fixed effects. The 
results reported in Panel B and C of Table A10 show that the magnitudes of the estimates are similar to those reported in the main text (reproduced in 
Panel A of Table A10) and and statistically significant at least at the 10% level. 

Table A9 (continued )  

(1) (2) (3) 

Area: All <300 ppl/km2 
<150 ppl/km2 

Region X period fixed effects? yes yes yes 
Observations 12,922,264 12,279,089 10,200,361 
Clusters 513 500 452 
R2 0.208 0.211 0.235 

Note: The unit of observation is a pixel observed periodically or annually. The outcome variable is the (log) mean percent of tree cover in each period or year. The 
standard errors are reported in parentheses and they are clustered at the district level. All models include a binary variable capturing pixels belonging to PSNP districts, 
region specific period or year fixed effects and mean annual rainfall over the period or mean annual rainfall. Panel A: Estimates reported the main text; see Panel A of 
Fig. 2. Panel B: Annual data used instead of periodic data. Panel C: Data collapsed to two periods: pre-PSNP (2000–2004) and PSNP (2005–2019). *** p<0.01, ** 
p<0.05, * p<0.10.  

Table A10 
Sensitivity analyses: time trends.   

(1) (2) (3) 

Area: All <300 ppl/km2 
<150 ppl/km2 

Panel A: Region X period fixed effects (Fig. 2, Panel A) 
PSNP district X period: 2005–2019 0.038** 0.043** 0.058***  

(0.019) (0.019) (0.022) 
Region X period fixed effects? yes yes yes 
Observations 45,219,651 42,968,863 35,694,111 
Clusters 513 500 452 
R2 0.204 0.207 0.231     

Panel B: Simple time trend 
PSNP district X period: 2005–2019 0.035* 0.043** 0.064**  

(0.020) (0.021) (0.024) 
Time trend? yes yes yes 
Observations 45,219,651 42,968,863 35,694,111 
Clusters 513 500 452 
R2 0.140 0.139 0.146     

Panel C: Period fixed effects 
PSNP district X period: 2005–2019 0.035* 0.043** 0.064***  

(0.020) (0.021) (0.024) 
Period fixed effects? yes yes yes 
Observations 45,219,651 42,968,863 35,694,111 
Clusters 513 500 452 
R2 0.141 0.140 0.147 

Note: The unit of observation is a pixel observed periodically. The outcome variable is mean percent of tree cover in each period. In Panel A, region specific period fixed 
effects are used. In Panel B, these are replaced by simple time trend (=1 if first period; =2 if second period; and so on). In Panel B, these are replaced by period fixed 
effects. The standard errors are reported in parentheses and they are clustered at the district level. All models include a binary variable capturing pixels belonging to 
PSNP districts, region specific period fixed effects and mean annual rainfall over the period. In panel C, a binary variable obtaining a value 1 if the period is after the 
launch of PSNP (i.e., in 2005–2019), and zero if before (i.e., in 2000–2004). *** p<0.01, ** p<0.05, * p<0.10.  
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A.6.3. Observed and unobserved district characteristics 
Both our propensity score model and the IPTW regression model contain covariates that are only defined at the pixel level. This may raise a concern 

that our model is not correctly specified if district level characteristics – beyond pixel level characteristics – influence program selection. Our esti-
mation approach offers two ways to address this: adding district level variables to the propensity score model and introducing district fixed effects to 
the regression model. The ’doubly robust’ feature of the IPTW estimator means that our approach is valid if either the PS model or the regression 
model is correctly specified (Sant’Anna and Zhao, 2020). To explore this, we sequentially adjusted both models to assess whether our impact estimates 
are sensitive to the addition of additional district level controls. We first appended our propensity score model with additional variables capturing 
district level means of population density, slope and elevation. Re-estimating the model specified in the main text based on these revised propensity 
scores yields similar coefficients to those reported in the main text (Table A11). We then used the alternative way of controlling for time-invariant –and 
unobserved– district characteristics by introducing district fixed effects to the regression model. We implemented the fixed effects by appending the 
main model with binary variables for each district. This IPTW fixed effects estimator yields identical impact estimates to those estimated by the main 
IPTW estimator (Table A12) 

We also verified that our findings were not driven by a particular district (e.g., due to its size or because of unusually large changes in tree cover 
after the launch of the PSNP). To do this, we reran our regression by omitting one district at a time from the dataset. The results of this analysis are 
presented graphically in Fig. A13. In this figure, the blue line represents the coefficient estimate when a given numbered district is dropped, the shaded 
gray area represents the 95% confidence intervals. We ran this district exclusion exercise across all pixels and over all rural pixels (restricted to <300 
ppl/km2 or <150 ppl/km2). As can be seen from the figure, our point estimates remain relatively stable through this sensitivity test. 

Table A11 
Sensitivity analyses: adding district level variables to the propensity score model and re-estimating the IPTW regression model.   

(1) (2) (3) 

Area: All <300 ppl/km2 
<150 ppl/km2 

Panel A: IPTW model (Fig. 2, Panel A) 
PSNP district X period: 2005–2019 0.038** 0.043** 0.058***  

(0.019) (0.019) (0.022) 
Observations 45,219,651 42,968,863 35,694,111 
R2 0.204 0.207 0.231     

Panel B: Propensity scores estimated using additional district level variables 
PSNP woreda X period: 2005–2019 0.053* 0.061** 0.074**  

(0.029) (0.030) (0.034) 
Observations 34,563,115 32,597,164 27,351,429 
R2 0.206 0.210 0.227 

Note: The unit of observation is a pixel observed periodically. The outcome variable is mean percent of tree cover in each period. In Panel A, the equation reported in 
the main text is estimated. In Panel B, the inverse probability treatment weights are based on propensity scores estimated using additional district level variables. The 
standard errors are reported in parentheses and are clustered at the district level. *** p<0.01, ** p<0.05, * p<0.10.  

Table A12 
Sensitivity analyses: adding district fixed effects to the IPTW regression model.   

(1) (2) (3) 

Area: All <300 ppl/km2 
<150 ppl/km2 

Panel A: IPTW model (Fig. 2, Panel A) 
PSNP district X period: 2005–2019 0.038** 0.043** 0.058***  

(0.019) (0.019) (0.022) 
District fixed effects? no no no 
Observations 45,219,651 42,968,863 35,694,111 
R2 0.204 0.207 0.231     

Panel B: IPTW model appended with District Fixed Effects 
PSNP district X period: 2005–2019 0.038** 0.043** 0.058**  

(0.019) (0.019) (0.023) 
District fixed effects? yes yes yes 
Observations 45,219,651 42,968,863 35,694,111 
R2 0.469 0.459 0.461 

Note: The unit of observation is a pixel observed periodically. The outcome variable is mean percent of tree cover in each period. In Panel A, the equation reported in 
the main text is estimated. In Panel B, the equation is appended with District Fixed Effects. The standard errors are reported in parentheses and are clustered at the 
district level. The model used in Panel A includes a binary variable capturing pixels belonging to the PSNP districts, region specific period fixed effects and mean annual 
rainfall over the period. The model used in Panel B includes region specific period fixed effects, mean annual rainfall over the period and binary variable capturing each 
district. *** p<0.01, ** p<0.05, * p<0.10.  
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A.6.4. Controlling for spatial autocorrelation 
The confidence intervals reported in the main text are calculated using clustered standard errors. This may not be valid if the error terms exhibit 

significant spatial autocorrelation. The standard approach to address this in the literature is to use Conley standard errors that are robust to both 
spatial autocorrelation and heteroskedasticity (Conley, 1999). The Conley approach is based on a weighting matrix that places more weight on 
observations located closer to each other. These weights decay to zero after a user-specified distance cutoff. Unfortunately, with more than 6 million 
pixels and 40 million observations, calculating Conley-type standard errors is not computationally feasible. To demonstrate this, we used the user- 
written Stata command acreg (Colella et al., 2019) that computes Conley standard errors while permitting the use of probability weights. We then 
selected small random subsets of pixels from our data and estimated the duration it takes for a standard laptop in 2021 (Quad core processor, 1.80 
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Fig. A13. Estimates measure % change in tree cover due to the PSNP. The blue line represents the estimated percent change in tree cover when a given numbered 
district is dropped from the dataset, and the shaded gray area represents the 95% confidence interval for this estimate. We use the formula (exp(b) − 1)* 100 to 
convert from our regression estimates to percent changes; as a result, confidence intervals are slightly asymmetrical. The figure displays separate panels for all pixels, 
pixels containing less than 300 people/km2, and pixels containing less than 150 people/km2. 

Table A13 
Computer processing time when calculating Conley standard errors, by different random samples of pixels.         

(1) (2) (3) (4) (5) (6) (7) 

% of pixels N number of pixels hours minutes seconds total time in minutes 

0.05 21,613 3,088  1 27 1.5 
0.1 42,864 6,124  7 27 7.5 
0.25 106,372 15,199  35 46 35.8 
0.5 213,050 30,441 3 13 47 194 
1 428,679 61,254 11 27 39 688 

Note: This table shows the estimated processing times when we estimated regressions based on Conley standard error adjustments (Conley, 1999) using the user- 
written acreg command in Stata with small random samples of all pixels in our dataset. The parent dataset is defined as all pixels in the common support with 
population density <300 people/km2. The first column shows the % of pixels selected, the second is the number of pixel-time period observations, and the third is the 
number of pixels in the given sample. The remaining columns indicate the time it took for a standard laptop to estimate the regression.  
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GHz; 32 GB RAM) to run the regressions. Table A13 shows the results. First, we see that the processing time increases exponentially with the sample 
size. Second, using just 1% of all pixels (N = 428,679; 61,254 pixels) took more than 11 h. We also tested this on a slightly larger subset of 5% of all 
pixels using a high-end computer with more processing power (Quad core processor, 3.60 GHz; 24 GB RAM). The processing time in this case was 
15,465 min, or 10 days and more than 17 h. 

Considering all this, computing Conley standard errors using the full set of data would take several months. We therefore settled for using these 
random subsets of pixels to gauge how the standard errors change when we use the Conley adjustment compared to when clustered standard errors are 
used. Focusing on rural areas defined as population density below 300 people/km2, we used four different distance cutoff values (50 km, 100 km, 200 
km, and 500 km) to calculate the Conley adjusted standard errors. Table A14 shows the results. As expected, the standard errors decrease as the size of 
the sample increases. Interestingly, the standard errors seem to stabilize already when the subset covers at least as little as 0.25% of all pixels. Focusing 
on the results based on 0.25% or more pixels, we see that the Conley adjusted standard errors are somewhat larger than the clustered standard errors 
when 50 km or 100 km cutoffs are applied but similar in magnitude or smaller when the cutoff values are larger. However, the Conley adjusted 
standard errors do not render the estimates statistically insignificant even when 50 or 100 km cutoff values are applied. 

A.6.5. VCF Data quality 
The MODIS surface reflectance data used to estimate tree cover comes with quality indicators indicating if a pixel in any of the 8 input data periods 

used to generate the annual product is flagged as poor quality due to clouds, high aerosol levels, cloud shadows, or having a view zenith angle higher 
than 45◦ (Townshend et al., 2017). It is considered that estimates of vegetation cover with two or more flags in a year may be erroneous and should be 
used with caution (Townshend et al., 2017). To assess the sensitivity of our results in this regard, we reran the analysis after discarding all pixels that 
were flagged twice or more any year during our study period. Our findings are robust to restricting the dataset to pixels that never had such data 
quality concerns during the 2000–2019 study period (Table A15). 

Table A14 
Estimated Conley standard errors, by different random subset of (<300 people/km2) pixels.   

(1) (2) (3) (4) 

Method: coeff std err t p 

Panel A: 100% of the pixels; N  = 42,968,863 (6,139,629 pixels) 
Clustered standard errors 0.043 0.019 2.23 0.026      

Panel B: 0.05% of the pixels; N  = 21,613 (3,088 pixels) 
Clustered standard errors 0.048 0.024 2.03 0.043 
Conley, with distance cutoff at 50 km 0.048 0.028 1.69 0.092 
Conley, with distance cutoff at 100 km 0.048 0.031 1.52 0.128 
Conley, with distance cutoff at 200 km 0.048 0.030 1.62 0.106 
Conley, with distance cutoff at 500 km 0.048 0.020 2.36 0.018      

Panel C: 0.10% of the pixels; N  = 42,864 (6,124 pixels) 
Clustered standard errors 0.047 0.020 2.38 0.018 
Conley, with distance cutoff at 50 km 0.047 0.024 1.92 0.055 
Conley, with distance cutoff at 100 km 0.047 0.025 1.86 0.063 
Conley, with distance cutoff at 200 km 0.047 0.022 2.11 0.035 
Conley, with distance cutoff at 500 km 0.047 0.018 2.60 0.009      

Panel D: 0.25% of the pixels; N  = 106,372 (15,199 pixels) 
Clustered standard errors 0.044 0.019 2.34 0.020 
Conley, with distance cutoff at 50 km 0.044 0.022 2.00 0.046 
Conley, with distance cutoff at 100 km 0.044 0.022 2.00 0.045 
Conley, with distance cutoff at 200 km 0.044 0.015 2.94 0.003 
Conley, with distance cutoff at 500 km 0.044 0.014 3.22 0.001      

Panel E: 0.5% of the pixels; N  = 213,050 (30,441 pixels) 
Clustered standard errors 0.046 0.019 2.39 0.017 
Conley, with distance cutoff at 50 km 0.046 0.023 2.04 0.041 
Conley, with distance cutoff at 100 km 0.046 0.023 1.99 0.047 
Conley, with distance cutoff at 200 km 0.046 0.018 2.57 0.010 
Conley, with distance cutoff at 500 km 0.046 0.019 2.39 0.017      

Panel F: 1% of the pixels; N  = 428,679 (61,254 pixels) 
Clustered standard errors 0.047 0.019 2.52 0.012 
Conley, with distance cutoff at 50 km 0.047 0.022 2.10 0.035 
Conley, with distance cutoff at 100 km 0.047 0.023 2.01 0.045 
Conley, with distance cutoff at 200 km 0.047 0.019 2.47 0.013 
Conley, with distance cutoff at 500 km 0.047 0.010 4.68 0.000 

Note: Panel A shows estimates based on <300 ppl/km2 pixels as described in the main text. The subsequent panels use random subsets of pixels as labeled. The first row 
in each panel (‘Clustered standard errors’) shows the impact estimates (‘coeff’), standard errors (‘std err’), t-value (t) and p value (p). The remaining rows in Panels B to 
F show the impact estimates, standard errors, t-values and p values when Conley standard errors are computed with different distance cutoffs.  
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A.7. Carbon sequestration and Benefit-cost analysis 

A.7.1. Carbon sequestration 
We calculated the carbon sequestered resulting from increased tree cover from the pooled impact of the program across all districts that partic-

ipated in the PSNP over the period 2005–2019 in our study area. We estimated that, controlling for rainfall, tree cover in the PSNP districts increased 
by 3.8% (95% CI: 0.0006; 0.0777) from 2000–2004 levels, relative to changes in tree cover in non-PSNP districts during the same period. Looking at 
the PSNP districts, we calculated from our VCF-TC data that their average tree cover in 2005 was 8.76%, and hence the 3.8% increase in tree cover due 
to the PSNP corresponds to a predicted final tree cover value of 9.10% (95% CI: 0.0864, 0.0944). 

To convert these changes in tree cover to changes in carbon emissions, we used data on average aboveground live woody biomass (AGBM) from the 
Global Forest Watch Data (Zarin et al., 2016). This data was also used by (Ferraro and Simorangkir, 2020). The AGBM is distributed in tiles and 
provides data on the metric tons of biomass per ha at approximately 30 m spatial resolution for the year 2000. To convert from tree cover to tons of 
biomass, we analyzed the AGBM and VCF-TC data from 2000 and noted that for pixels with 8.76% tree cover in 2000, the average AGBM for those 
pixels is 30.8 metric tons of biomass per ha. In addition, the average AGBM for VCF-TC pixels with 9.10% tree cover is 31.9 metric tons of biomass per 
ha. Thus, we calculated that the average increase in biomass per VCF-TC pixel due to the PSNP was 1.1 metric tons per ha. Next, we converted these 
changes in biomass to negative CO2 emissions. To begin, we multiplied the average AGBM by 0.5, because biomass is composed of approximately 50% 
carbon (Penman et al., 2003). We next multiplied the result by 3.67 to convert from tons of carbon to tons of CO2, based on the relative molecular 
weights of carbon and CO2. Finally, we scaled up by the total area of all the districts eligible for the PSNP (30.4 million ha), to calculate that the 
program resulted in 62.4 million metric tons of negative CO2 emissions (95% CI: 1.1 to 113.5; note that this and subsequent confidence intervals are 
non-symmetrical relative to the point estimate, due to the nonlinear relationship between tree cover and AGBM). 

Annualizing our estimates over the 15 years in our study period during the PSNP was in effect, we estimated that the program-induced increases in 
tree cover lead to annual negative CO2 emissions (4.16 million metric tons). Our estimate is larger, but on the same magnitude, as the estimate of 
carbon negative emissions due to the PSNP found by (Woolf et al., 2018) using different methods. We also note that our estimate is equivalent to 1.5% 
of the reduction pledged by Ethiopia in the Paris Agreement (Federal Democratic Republic of Ethiopia, 2021).3 

A.7.2. Estimating cost 
We estimated the annual administrative costs of the PSNP to be approximately 302 million USD (2007 dollars) using data from Drechsler et al. 

(2017), which, in turn, draw on data from the PSNP Interim Financial reports, annual reports and World Bank analyses. Program costs are given in 
current dollars. We deflated them to 2007 using the US CPI, because the social cost of carbon (SCC) is given in 2007 dollars, see below. Given our 
estimate that the program induced 4.10 (95% CI: 0.058, 9.28) million metric tons of negative CO2 emissions annually, we thus calculated that the per 
unit cost to reduce a ton of CO2 was USD 72.68 (95% CI: 39.98, 4,318). 

A.7.3. Estimating benefits 
To estimate the benefits due to negative carbon emissions, we used estimates of the SCC from the Interagency Working Group (Interagency 

Working Group on Social Cost of Greenhouse Gases, 2016). Specifically, we used the SCC from the year 2015 (close to the midpoint of our treatment 
period) of 36 USD (2007 dollars) per metric ton of CO2, which is the median estimate of the report, corresponding to a 3% discount rate. Since we did 
not have data on how long the increased tree cover will persist, we calculated benefits for four scenarios: assuming that trees are cut after fifteen years, 
30 years, 50 years, or never. 

To calculate the value of reducing a million metric tonnes of CO2 emissions, we followed Jayachandran et al. (2017) and Ferraro and Simorangkir 
(2020), and used the following formula: 

Table A15 
Sensitivity analyses: restricting the data to pixels with no quality flags.   

(1) (2) (3) 

Area: All <300 ppl/km2 
<150 ppl/km2 

Panel A: IPTW model (Fig. 2, Panel A) 
PSNP district X period: 2005–2019 0.038** 0.043** 0.058***  

(0.019) (0.019) (0.022) 
Observations 45,219,651 42,968,863 35,694,111 
R2 0.204 0.207 0.231     

Panel B: Data restricted to pixels without data quality flags 
PSNP woreda X period: 2005–2019 0.027* 0.029* 0.045***  

(0.015) (0.015) (0.017) 
Observations 26,375,040 25,779,547 22,110,539 
R2 0.242 0.245 0.261 

Note: The unit of observation is a pixel observed periodically. The outcome variable is mean percent of tree cover in each period. In Panel A, the equation reported in 
the main text is estimated. In Panel B, the same equation is re-estimated after omitting all pixels with quality flags. The standard errors are reported in parentheses and 
are clustered at the district level. The models used in both panels include a binary variable capturing pixels belonging to PSNP districts, region specific period fixed 
effects and mean annual rainfall over the period. *** p<0.01, ** p<0.05, * p<0.10.  

3 Note that we benchmark our estimates against Ethiopia’s most recent 2021 reduction pledge (Federal Democratic Republic of Ethiopia, 2021), whereas Woolf 
et al. (2018) benchmark against Ethiopia’s earlier 2016 reduction pledge UNFCCC (2016), so the percentages of the reductions met are not directly comparable. 
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Value = SCC ×
1

(1 + r)S

(

1 −
1

(1 + r)D

)

(2) 

In this equation, SCC is the social cost of carbon and r is the effective discount rate, calculated by combining the time discount rate (δ) and the growth 
rate at which the SCC rises over this time period (g), by the formula in r = (1 + δ)/(1 + g) − 1. Following the estimates from the Interagency Working 
Group on Social Cost of Greenhouse Gases (2016), we used the median time discount rate of 3%, and an average SCC growth rate of 2.2%, resulting in 
an effective discount rate of 0.78%. S is the length of storage, which captures the period between deforestation and carbon emission; we assume S to be 
equal to zero in all our scenarios. Lastly D is the program-induced delay in carbon emissions, measured in years. 

We calculated the benefit-cost ratio for four different scenarios:  

1. Scenario 1: D = Infinity; S = 0. Under this scenario, we assumed that the increased tree cover due to the PSNP remains permanently in place (D =
infinity) and CO2 is released as soon as the trees are cut (S = 0). Using the formula above, we found that the benefit per metric tonne of negative 
CO2 emissions  = SSC = USD $36.  

2. Scenario 2: D = 50 years; S = 0. Under this scenario, we assumed that the increased tree cover from the PSNP remains in place for 50 years, at which 
time the trees are cut down and all carbon is immediately released into the atmosphere. Using the formula above, we found that the benefit per 
metric tonne of negative CO2 emissions  = USD $11.62.  

3. Scenario 3: D = 30 years; S = 0. Under this scenario, we assumed that the increased tree cover from the PSNP remains in place for 30 years, at which 
time the trees are cut down and all carbon is immediately released into the atmosphere. Using the formula above, we found that the benefit per 
metric tonne of negative CO2 emissions  = USD $7.51.  

4. Scenario 4: D = 15 years; S = 0. Under this scenario, we assumed that the increased tree cover from the PSNP remains in place for 10 years, at which 
time the trees are cut down and all carbon is immediately released into the atmosphere. Using the formula above, we found that the benefit per 
metric tonne of negative CO2 emissions  = USD $3.97. 

Benefit-cost ratio 
Table 1 in the main text reports the benefit-cost ratios for the four different scenarios analyzed. 
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