The Vertex-Edge Visibility Graph of a Polygon

Joseph O'Rourke
Smith College, jorourke@smith.edu
Ileana Streinu
Smith College, istreinu@smith.edu

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs
Part of the Computer Sciences Commons

Recommended Citation

O'Rourke, Joseph and Streinu, Ileana, "The Vertex-Edge Visibility Graph of a Polygon" (1998). Computer Science: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/321

This Article has been accepted for inclusion in Computer Science: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu

The vertex-edge visibility graph of a polygon ${ }^{2 i}$

Joseph O'Rourke *, Ileana Streinu
Department of Computer Science, Smith College, Northampton, MA 01063, USA
Communicated by J.-R. Sack: submitted 9 July 1996; accepted 18 November 1996

Abstract

We introduce a new polygon visibility graph, the vertex-edge visibility graph $G_{V E}$, and demonstrate that it encodes more geometric information about the polygon than does the vertex visibility graph G_{V}. © 1998 Elsevier Science B.V.

Keywords: Visibility graphs; Visibility complex

1. Introduction

The polygon vertex visibility graph has been studied extensively, often with the goal of characterization. However, progress has only been achieved by restriction of either the class of polygons or the class of graphs [9]. In this paper we introduce a polygon visibility graph $G_{V E}$ that contains more information than the vertex visibility graph G_{V} (at least for polygons in general position), and so might be an easier target for characterization. Indeed in other work [10,11] we characterize $G_{V E}$ in a "pseudo-visibility" context; in this paper, however, we consider only straight-line polygons. Our goal is to demonstrate that information is derivable from $G_{V E}$ that is not available from G_{V}, thus establishing that $G_{V E}$ is a "richer" combinatorial structure. The emphasis is on structural relationships and not on the algorithms for constructing the structures.

1.1. Definitions of visibility graphs

Let P be a polygon (a closed region of the plane), V its set of vertices, and E its set of edges. Let $V=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ with indices increasing in counterclockwise (ccw) order, and let $E=$ ($e_{0}, e_{1}, \ldots, e_{n-1}$) with $e_{i}=v_{i} v_{i+1}$, an open segment (excluding both endpoints). ${ }^{1}$ Define two points

[^0]

Fig. 1. (a) P. (b) $G_{V E}(P)$.
x and y of P to be visible to one another if the segment $x y$ is nowhere exterior to P. The vertex visibility graph $G_{V}(P)$ of P has node set V, with an arc between two vertices iff they are visible to one another; we will not mention P if it is evident from the context. Note the definition of visibility implies that every edge of P is included as an arc of G_{V}. Also note that G_{V} is labeled by the indices of the vertices, which are given in ccw order. Therefore the Hamiltonian cycle corresponding to the polygon boundary is known from the labeling of the vertices/nodes.

Define two objects α and β to be visible to one another if there are points $x \in \alpha$ and $y \in \beta$ such that x sees y. This is the notion of weak visibility [2], but we will drop the modifier. For our purposes, the two objects will be a vertex and an edge of P.

Define $G_{V E}(P)$ to be a bipartite graph with node set $V \cup E$, with an arc between $v \in V$ and $e \in E$ iff v can see the (open) edge e. Note that v must see a point interior to e because we define edges as open. We explored the graph resulting from treating edges to include their endpoints, and found it much less useful. ${ }^{2}$ We will use " \rightarrow " synonymous with "sees", so that " $(v, e) \in G_{V E}$ " may be abbreviated $v \rightarrow e$. Again we consider the nodes labeled by the vertex and edge indices in ccw order, and again we will drop P when convenient. See the example in Fig. 1. Although this graph has been mentioned in the literature, ${ }^{3}$ it seems not to have been studied systematically.
$G_{V E}$ may be constructed in $\mathrm{O}(n+k)$ time for a polygon with n vertices and k visibility edges, by a slight modification of Hershberger's algorithm that constructs G_{V} in this time bound [8] from a polygon triangulation. Supplementing with Chazelle's linear-time triangulation algorithm achieves the claimed bound.

A polygon is in general position (g.p.) if no three of its vertices lie on a line. Many of our results only hold for g.p. polygons. Collinearities present a significantly more complex situation for visibility graphs, which we explore briefly in Section 10.

1.2. Summary of results

We establish that for g.p. polygons, $G_{V E}$ determines which vertices are reflex and which convex (Section 2), determines G_{V} uniquely (Section 3), determines for each vertex v the visibility polygon

[^1]$\Lambda(v)$, the "partial local sequence" $\sigma(v)$, and the shortest path tree $\tau(v)$ (Sections 4-6). We introduce the edge-edge visibility graph in Section 7 and show $G_{V E}$ contains the same information. Relatedly, we sketch in Section 8 an argument that $G_{V E}$ and the incidence structure of the "visibility complex" of Pocchiola and Vegter are derivable from one another. We also show that the external vertex-edge visibility graph $G_{V E}^{e}$ determines the convex hull vertices (Section 9). In none of these cases does G_{V} determine the same information. We conclude in Section 10 with a discussion of collinearities.

2. Reflex vertex determination

We will use the symbol \Rightarrow to mean "determines".
Let $V_{r} \subset V$ be the set of reflex vertices, vertices at which the interior angle is strictly greater than π.
Lemma 1. $v_{i} \in V_{r}$ iff $v_{i-1} \nrightarrow e_{i}$.
Proof. Suppose v_{i} is reflex. Then v_{i-1} cannot see e_{i} because e_{i}, being open at v_{i}, lies entirely right of the extension of $v_{i-1} v_{i}$. Suppose on the other hand that v_{i} is not reflex: its internal angle is flat or strictly convex. Then v_{i-1} must be able to see a point of e_{i} in a neighborhood of v_{i}.

Note this holds true even without a general position assumption, since even if $\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$ are collinear, v_{i-1} sees (every point of) $e_{i}=\left(v_{i}, v_{i+1}\right)$. The lines of sight could only be completely blocked by violating the simplicity of the polygon.

Theorem 1. $G_{V E} \Rightarrow V_{r}$.
Proof. Follows immediately from Lemma 1.
Lemma 2. $G_{V} \nRightarrow V_{r}$.
Proof. This is established by the polygons in Fig. 2.
3. Determination of G_{V}

Lemma 3. $G_{V} \nRightarrow G_{V E}$.

Fig. 2. $G_{V}(A)=G_{V}(B)$, but v_{1} is reflex in A and v_{3} is reflex in B.

Fig. 3. $G_{V}(A)=G_{V}(B)$, but v_{4} sees different edges in A and B, so $G_{V E}(A) \neq G_{V E}(B)$.

Fig. 4. If v sees e_{i} and e_{i+1}, it must also see v_{i+1}.

Proof. Fig. 3 shows two polygons with identical vertex visibility graphs: $G_{V}(A)=G_{V}(B)$. But in A, v_{4} sees e_{0} but not e_{1}, whereas in B, v_{4} sees e_{1} but not e_{0}. So $G_{V E}(A) \neq G_{V E}(B)$. Non-isomorphic A and B with the same property may also be found.

To establish that $G_{V E} \Rightarrow G_{V}$, we first prove some lemmas that bridge between vertex-edge and vertex-vertex visibility.

Lemma 4. If v sees e_{i} and e_{i+1}, it must also see v_{i+1}.
Proof. The segment $v v_{i+1}$ lies within the region bounded by a segment from v to an interior point of e_{i}, a segment from v to an interior point of e_{i+1}, and e_{i} and e_{i+1} (see Fig. 4).

Thus any exterior point z on $v v_{i+1}$ is enclosed by points of P, a contradiction to the simply connectedness of P.

We use the following notation to specify parts of the polygon boundary: $P[i, j]$ is the closed subset of the polygon boundary ccw from v_{i} to v_{j}. $P(i, j]$ excludes $v_{i} ; P[i, j)$ excludes $v_{j} ;$ and $P(i, j)$ excludes both. Let $l_{i j}$ be the line through v_{i} and v_{j}. Let $r_{j}^{i} \subset l_{i j}$ be the ray along $l_{i j}$ starting at and including v_{j}, directed away from (and therefore excluding) v_{i}.

Lemma 5. For g.p. polygons P, if v_{i} sees v_{j}, then v_{i} sees one of the two edges incident to v_{j} : either e_{j-1} or e_{j} (or both). More precisely, v_{i} sees both when they lie on opposite sides of the line $l_{i j}$, and just one when they lie on the same side: e_{j-1} when they lie to the right, and e_{j} when they lie to the left.

Proof. This follows easily from the general position assumption.
Lemma 6. If v_{k} sees two distinct vertices, it must see an edge between them: if v_{k} sees v_{i} and v_{j}, $v_{k} \in P[j, i]$, then v_{k} sees an edge $e_{m} \in P[i, j]$.

Proof. By Lemma 5, v_{k} sees at least one of the two edges incident to v_{i}. If v_{k} sees $e_{i} \in P[i, j]$, the lemma is satisfied. So suppose v_{k} sees e_{i-1} but not e_{i}. By Lemma 5, this occurs when e_{i-1} and e_{i} lie to the right of $l_{k i}$. But then the line of sight along $l_{k i}$ must exit P somewhere in $P[i, j]$. The general position assumption prevents exit at a vertex; so it must exit interior to an edge $e_{m} \in P[i, j]$.

A counterpart to the preceding lemma is the following, which is equally straightforward.
Lemma 7. If v_{k} sees two distinct edges, it must see a vertex between them. In particular, if v_{k} sees edges e_{i} and e_{j} and no edge between, $v_{k} \in P[j+1, i]$, then v_{k} sees either v_{i+1} or v_{j}.

Proof. We discuss only the more particular claim. One of the two edges can block the view from v_{k} of one of the two endpoints v_{i+1} or v_{j}. Only the chain $P(i+1, j)$ could block the view of the other endpoint. But if this chain did, v_{k} would see an edge between, in contradiction to the assumption of the lemma.

The preceding three lemmas lead up to a key property that we will use often in the sequel.
Lemma 8. If v_{k} sees non-adjacent edges e_{i} and e_{j} and no edge between, $v_{k} \in P[j+1, i]$, then exactly one of Cases A or B holds (see Fig. 5):

Case A

(1) v_{k} sees v_{i+1} but not v_{j}; and
(2) v_{i+1} sees e_{j}, but v_{j} does not see e_{i}.

Case B
(1) v_{k} sees v_{j} but not v_{i+1}; and
(2) v_{j} sees e_{i}, but v_{i+1} does not see e_{j}.

Proof. We first illustrate the lemma with the example in Fig. 1. Let $v_{k}=v_{0}$, which sees $e_{i}=e_{1}$ and $e_{j}=e_{3}$ and no edge between. This falls under Case A of the lemma: v_{0} sees v_{2} but not v_{3}, and v_{2} sees e_{3} but v_{3} does not see e_{1}. We now proceed with the proof.

We know from Lemma 7 that v_{k} sees at least one of v_{i+1} and v_{j}. The accuracy of the case partition between $\mathrm{A}(1)$ and $\mathrm{B}(\mathbf{i})$ is guaranteed: for if v_{k} saw both v_{i+1} and v_{j}, it must see an edge between by Lemma 6, violating the no-edge-between assumption. Let us then consider Case A , where v_{k} sees v_{i+1}, and prove $\mathrm{A}(2)$.

Note that because v_{k} sees e_{i} but not e_{i+1}, Lemma 5 shows that both these edges are right of $l_{k, i+1}$, as illustrated in Fig. 5A. The ray r_{i+1}^{k} from v_{i+1} along $l_{k, i+1}$ must exit on e_{j}, and therefore v_{i+1} sees e_{j}. Since v_{j} is in the shaded pocket, it cannot see e_{i}, and we have established A(2).

Case B of the lemma is the same as Case A under mirror reflection of the polygon (and appropriate relabeling).

We prove in [10] that v_{i+1} and v_{j} are articulation points in the subgraphs induced by $P[i, j]$ and $P[j+1, i]$ in Cases A and B, respectively; other authors have called these "blocking" vertices $[1,4]$.

A

B

Fig. 5. Cases in the proof of Theorem 2: v_{k} sees e_{i} followed by e_{j}.
We call the shaded regions in Fig. 5 the far pockets of the $v_{k} \rightarrow e_{j}$ visibility relation. More precisely, the chains $P(i+1, j]$ and $P[i+1, j)$ are the far pockets in Cases A and B , respectively. It is important that these chains can be identified from $G_{V E}$ according to Lemma 8.

Let $E(v)$ be the list of edges visible from v (i.e., the neighbors of v in $G_{V E}$) sorted ccw about v. Let $\left|G_{V E}\right|$ be the size (number of arcs) in $G_{V E}$. It is clear that $\left|G_{V}\right|=\Theta\left(\left|G_{V E}\right|\right)$.

Theorem 2. For g.p. polygons $P, G_{V E} \Rightarrow G_{V}$, and G_{V} can be constructed from $G_{V E}$ with an algorithm linear in $\left|G_{V E}\right|$.

Proof. For each $v_{k} \in V$, scan the list of edges $E\left(v_{k}\right)$. For each pair of edges e_{i} and e_{j} consecutive in $E\left(v_{k}\right)$, consider two cases.
(1) e_{i} and e_{j} are adjacent edges of P, i.e., $i+1=j$. Then by Lemma 4 , v_{k} must see v_{i+1}, so $\left(v_{k}, v_{i+1}\right) \in G_{V}$.
(2) e_{i} and e_{j} are not adjacent. Then Lemma 8 applies, and we know exactly one of Cases A or B holds (Fig. 5). Case A holds iff $v_{i+1} \rightarrow e_{j}(\mathrm{~A}(2))$, in which case we have $\left(v_{k}, v_{i+1}\right) \in G_{V}$ and $\left(v_{k}, v_{j}\right) \notin G_{V}(\mathrm{~A}(1))$. Case B holds iff $v_{j} \rightarrow e_{i}(\mathrm{~B}(2))$, in which case we have $\left(v_{k}, v_{j}\right) \in G_{V}$ and $\left(v_{k}, v_{i+1}\right) \notin G_{V}(\mathrm{~B}(1))$.
We now argue that this procedure uniquely determines G_{V}. Consider an arc $\left(v_{k}, v_{i+1}\right) \in G_{V}$. By Lemma $5, v_{k}$ sees at least one of the two edges incident to v_{i+1}. If it sees both, then we fall into (1) above. If it only sees one, suppose it only sees e_{i} without loss of generality. Let e_{j} be the edge in $E\left(v_{k}\right)$ following e_{i}. Now we fall into (2) above. Therefore every arc of G_{V} is identified by the algorithm.

Moreover, it is clear that the algorithm only identifies true vertex visibilities, so no arc will be identified for a pair of invisible vertices.

4. Visibility polygon determination

Let $\operatorname{Vis}(x)$ be the region of points in P visible from x. This is often called the visibility polygon from x, but it might not be a polygon if x is collinear with two or more vertices. For general
positions P, however, $\operatorname{Vis}(x)$ is always a polygon. Let $V(v)$ be the (circular) list of vertices visible from v, a list readily available from G_{V}. (Recall that G_{V} is labeled with vertex indices.) This is a partial representation for $\operatorname{Vis}(v)$. A slightly more informative representation includes the edge labels: let $\Lambda(v)$ be a list of the labels of the vertices and edges encountered in a boundary traversal of Vis (v).

Theorem 3. $G_{V E} \Rightarrow \Lambda(v)$ for each vertex v of P; each list of labels can be constructed from $G_{V E}$ with an $\mathrm{O}(n)$ algorithm.

Proof. $\Lambda(v)$ is just a merging of the two lists $V(v)$ and $E(v)$.
Lemma 9. $G_{V} \nRightarrow \Lambda(v)$.
Proof. This is established by the two polygons with equal G_{V} 's in Fig. 3. $\Lambda\left(v_{4}\right)$ is different: $\left(v_{4}, e_{4}, v_{5}, e_{0}, v_{3}, e_{4}\right)$ in A but $\left(v_{4}, e_{4}, v_{5}, e_{1}, v_{3}, e_{4}\right)$ in B.

5. Partial local sequence determination

We now examine a structure slightly richer than the visibility polygon. Define the partial local sequence ${ }^{4} \sigma(x)$ of a point $x \in P$ to be a list of lists of vertex labels, as follows. Let a directed line pass through x, and record, as L spins from 0 to π about $x \mathrm{ccw}$, the ordered sets of vertices (and x) visible to x that lie on L. For $x=v_{0}$ a vertex of a g.p. polygon, only one other vertex may lie on L at any orientation, and then we define $\sigma\left(v_{0}\right)$ to be this list of vertices. For example, for the polygon shown in Fig. 6,

$$
\sigma\left(v_{0}\right)=\left(v_{1}, v_{5}, v_{10}, v_{11}, v_{6}, v_{7}, v_{12}, v_{13}, v_{9}\right)
$$

The partial local sequence $\sigma(v)$ contains more information than $\Lambda(v)$, since the former rotates a line through v, while the latter effectively rotates a ray through v. We have found $\sigma(v)$ useful in our work on pseudo-visibility.

Before proving that $G_{V E}$ determines local sequences, we need a technical lemma.
Lemma 10. $G_{V E}$ uniquely determines, for each pair of visible vertices $\left(v_{i}, v_{j}\right)$, the label of the vertex or edge at which the ray r_{j}^{i} first exits P.

Proof. Recall that $r_{j}^{i} \subset l_{i j}$ is the ray directed from v_{j} excluding v_{i}. If v_{i} sees both edges incident to v_{j}, then they lie on opposite sides of $l_{i j}$ by Lemma 5 , and r_{j}^{i} exits at v_{j}. If v_{i} sees only one edge incident to v_{j}, let it see e_{j-1} without loss of generality, again according to Lemma 5. Then r_{j}^{i} exits on the first edge $e_{m} \mathrm{ccw}$ of e_{j-1} visible from v_{i}.

Theorem 4. $G_{V E}(P)$ uniquely determines the partial local sequence $\sigma(v)$ of each vertex v of P, and each of these sequences can be constructed from $G_{V E}$ with an $\mathrm{O}(n)$ algorithm.

[^2]

Fig. 6. Definition of partial local sequence.
Proof. We seek to insert the "backwards" ray projections r_{k}^{i}, into $V\left(v_{k}\right)$. Consider each vertex v_{i} ccw of v_{k} in turn. If r_{k}^{i} exits P at v_{k} (as does r_{0}^{9} in Fig. 6), then label i is not altered in $V\left(v_{k}\right)$. If on the other hand r_{k}^{i} exits P on an edge e_{m} and $e_{m} \in P[k, i]$, then i is deleted from its original location, and inserted between labels i_{1} and i_{2} if $e_{m} \in P\left[i_{1}, i_{2}\right]$. Where r_{k}^{i} exits is determined according to Lemma 10. If there are several labels already moved between i_{1} and i_{2}, because several rays project to the same edge, then i is placed according to the ccw order of the vertices. The process ceases when a complete pass through the vertices has been made.

For example, for $i=5$ in Fig. $6, r_{0}^{5}$ exits on e_{9}, but because $e_{9} \notin P[0,5]$, no change is made. For $i=12, r_{0}^{12}$ exits on e_{7}, and because $e_{7} \in P[0,12], v_{12}$ is moved to reside between v_{7} and v_{9}. Continuing, v_{13} is placed after v_{12} between v_{7} and v_{9}, because v_{13} is ccw of v_{12}.

Lemma 11. $G_{V} \nRightarrow \sigma(v)$.
Proof. In Fig. 2, $\sigma\left(v_{1}\right)=\left(v_{2}, v_{0}, v_{3}\right)$ in A but $\sigma\left(v_{1}\right)=\left(v_{2}, v_{3}, v_{0}\right)$ in B.

6. Shortest path trees

Perhaps our most interesting result is that $G_{V E}$ determines the "shortest path tree" from each vertex, a notion introduced in [7]. What is surprising is that these trees can be captured by a combinatorial structure containing no metric information.

Let $\pi\left(v_{i}, v_{j}\right)$ be the shortest path between two vertices of P that is nowhere exterior to P. Define $\tau(v)=\bigcup_{i} \pi\left(v, v_{i}\right) . \tau(v)$ is a plane tree rooted at v, called the shortest path tree for v.

For example, let $v=v_{0}$ be the root of visibility in Fig. 7(a); then $\tau\left(v_{0}\right)$ is as shown in Fig. 7(b). The children of v_{0} in $\tau\left(v_{0}\right)$ are just those vertices directly visible to v :

$$
V\left(v_{0}\right)=\left(v_{1}, v_{2}, v_{8}, v_{9}, v_{11}, v_{12}\right)
$$

Fig. 7. (a) A polygon with lines of visibility (dashed) from v_{0} through the articulation vertices (marked). (b) The shortest path tree rooted at v_{0}.

We identify which of these themselves have children in $\tau\left(v_{0}\right)$ as follows. Call a vertex an articulation vertex (with respect to v) iff it lies between two non-adjacent edges in the list $\Lambda(v)$. For v_{0},

$$
\Lambda\left(v_{0}\right)=\left(e_{0}, v_{1}, e_{1}, v_{2}, e_{6}, v_{8}, e_{8}, v_{9}, e_{10}, v_{11}, e_{11}, v_{12}, e_{12}\right)
$$

Let $A(v) \subseteq V(v)$ be the list of the articulation vertices. ${ }^{5}$ Thus $A\left(v_{0}\right)=\left(v_{2}, v_{8}, v_{9}\right)$ are the articulation vertices in the example: v_{2} because it lies between e_{1} and e_{6}, v_{8} because it lies between e_{6} and e_{8}, v_{9} because it lies between e_{8} and e_{10}. To move further down the tree we need to employ the notion of "far pockets".

If v_{i} is an articulation vertex with respect to v, let $F\left(v, v_{i}\right)$ be the vertices in the far pocket (Section 3) of v incident to v_{i}. In Fig. 7(a), $F\left(v_{0}, v_{2}\right)=\left(v_{3}, v_{4}, v_{5}, v_{6}\right), F\left(v_{0}, v_{8}\right)=v_{7}$ and $F\left(v_{2}, v_{6}\right)=\left(v_{4}, v_{5}\right)$. It is clear that the shortest path from v to some vertex that is in the far pocket of an articulation vertex v_{j}, must pass through v_{j}. This is incorporated into Step 3 of the algorithm below.
(1) For a root v, the children of v in $\tau(v)$ are the vertices in $V(v)$.
(2) Each of these nodes itself has children in $\tau(v)$ only if it is in $A(v)$.
(3) Let a node v_{i} of $\tau(v)$ have a child v_{j}. Then v_{j} has children iff $v_{j} \in A\left(v_{i}\right)$. In that case, its children are the vertices in $V\left(v_{j}\right) \cap F\left(v_{i}, v_{j}\right)$.
We illustrate the use of this procedure to construct one branch of the tree for the polygon in Fig. 7(a). The children of v_{0} in $\tau\left(v_{0}\right)$ are $V\left(v_{0}\right)$ with all but $A\left(v_{0}\right)$ leaves. Now let $v_{i}=v_{0}$ and $v_{j}=v_{2}$. Then v_{2} has children because $v_{2} \in A\left(v_{0}\right)$.

$$
\begin{aligned}
& F\left(v_{i}, v_{j}\right)=F\left(v_{0}, v_{2}\right)=\left(v_{3}, v_{4}, v_{5}, v_{6}\right), \\
& V\left(v_{2}\right)=\left(v_{0}, v_{1}, v_{3}, v_{6}, v_{7}, v_{8}, v_{12}\right), \\
& V\left(v_{2}\right) \cap F\left(v_{0}, v_{2}\right)=\left(v_{3}, v_{6}\right) .
\end{aligned}
$$

Continuing, let $v_{i}=v_{2}$ and $v_{j}=v_{6} . v_{6}$ has children because $v_{6} \in A\left(v_{2}\right)$.

$$
\begin{aligned}
& F\left(v_{2}, v_{6}\right)=\left(v_{4}, v_{5}\right), \\
& V\left(v_{6}\right)=\left(v_{2}, v_{3}, v_{6}, v_{7}, v_{8}\right), \\
& V\left(v_{6}\right) \cap F\left(v_{2}, v_{6}\right)=\left(v_{4}, v_{5}\right) .
\end{aligned}
$$

[^3]Theorem 5. $G_{V E}(P)$ uniquely determines the shortest path tree from each vertex of P, and each of these trees can be constructed from $G_{V E}$ with an $\mathrm{O}\left(\left|G_{V E}\right|\right)$ algorithm.

Proof. The construction only requires identifying $\Lambda\left(v_{i}\right), V\left(v_{i}\right) \subseteq \Lambda\left(v_{i}\right)$, and $A\left(v_{i}\right) \subseteq V\left(v_{i}\right)$ for each vertex. These lists are then restricted to far pockets (identified by Lemma 8) of a parent node to obtain the children. Repeating the process yields the complete shortest path tree.

The cost is dominated by the cost of constructing G_{V} in time linear in $\left|G_{V E}\right|$ via Theorem 2. $\Lambda\left(v_{0}\right)$ is obtained in $\mathrm{O}(n)$ time via Theorem 3. $A\left(v_{0}\right)$ is identified by a single scan through $\Lambda\left(v_{0}\right)$; the far pockets lists $F\left(v_{0}, v_{i}\right)$ can be constructed in the same scan. Because subsequent processing is restricted to these far pockets, each intersection $V\left(v_{j}\right) \cap F\left(v_{i}, v_{j}\right)$ can be computed in time proportional the size of this intersection, by scanning the sublists of $V\left(v_{j}\right)$ and $E\left(v_{j}\right)$ (available from G_{V} and $G_{V E}$, respectively, or equivalently, from $\Lambda\left(v_{j}\right)$) between the endpoints of the far pocket, noting whether each vertex is in $A\left(v_{j}\right)$ and creating the relevant subpockets along the way. The total processing will then not exceed the number of children nodes identified. Because $\left|\tau\left(v_{0}\right)\right|=\mathrm{O}(n)$, the claim that the total cost is dominated by constructing G_{V} is now established.

We will not explore the possibility of efficiencies in the computation of all the shortest path trees.
If desired, it is a simple matter to add notation to each non-root, non-leaf node v_{j} of τ to indicate whether its children lie in the right or left far pocket with respect to $\left(v_{i}, v_{j}\right)$, where v_{i} is the parent of v_{j}. For example, in Fig. 7, v_{2} 's children lie in the right pocket and v_{8} 's children in the left pocket. The right/left determination is made according to which of Cases A or B in Fig. 5 holds.

Lemma 12. $G_{V} \nRightarrow \tau(v)$.
Proof. This is established by Fig. 2: e.g., $\tau\left(v_{0}\right)$ differs in the two polygons.

7. The edge visibility graph

Define the edge visibility graph G_{E} of a polygon P to have a node for each edge of P, and an $\operatorname{arc}\left(e_{i}, e_{j}\right) \in G_{E}$ iff e_{i} sees e_{j}, i.e., iff there is a point x on the (open) edge e_{i} and a point y on the (open) edge e_{j} such that x sees y. We show in this section that $G_{V E}$ determines G_{E} and vice versa.

Lemma 13. $\left(e_{i}, e_{j}\right) \in G_{E}$ iff $\pi\left(v_{i}, v_{j+1}\right)$ and $\pi\left(v_{i+1}, v_{j}\right)$ are disjoint from one another.
Proof. If e_{i} and e_{j} can see one another, it was proven in [7] that the indicated paths are disjoint. They named the region delimited by these chains and the edges the hourglass for the edge pair; see Fig. 8.

In the other direction, assume $\pi_{1}=\pi\left(v_{i}, v_{j+1}\right)$ and $\pi_{2}=\pi\left(v_{i+1}, v_{j}\right)$ are disjoint. We first argue that these two are both reflex chains. ${ }^{6}$ Suppose π_{1} is not reflex: so when directed from v_{i} to v_{j+1}, it turns right at some vertex v_{k}. Then it must be that $v_{k} \in P[i+1, j]$ (touching the chain from "above" in the orientation of Fig. 8). But then π_{2} must also pass "below" v_{k} (actually, it must pass through v_{k}), and therefore π_{1} and π_{2} are not disjoint.

[^4]

Fig. 8. The hourglass for a pair of edges.

Fig. 9. Case A: $v_{i+1} \rightarrow e_{k}$.
Since they are both reflex chains, they support two tangents that cross in the hourglass, as shown in the figure. Then any line through their crossing point with slope between that of the two tangents is a line of sight between points interior to e_{i} and e_{j}.

Theorem 6. $G_{V E} \Rightarrow G_{E}$.
Proof. Construct from $G_{V E}$ the shortest path trees for every vertex of P according to Theorem 5 . For each pair of edges e_{i} and e_{j}, extract the paths $\pi_{1}=\pi\left(v_{i}, v_{j+1}\right)$ and $\pi_{2}=\pi\left(v_{i+1}, v_{j}\right)$ from $\tau\left(v_{i}\right)$ and $\tau\left(v_{j}\right)$. Checking whether they share any vertices then is easy. It only remains to argue that if the paths are not disjoint, they must share a vertex. But if they do cross properly, it is easy to infer that the polygon includes exterior points, a contradiction.

Invoking Lemma 13, we may use disjointness to infer visibility between each edge pair.
For completeness we mention the derivation can run the other way in this case.
Theorem 7. $G_{E} \Rightarrow G_{V E}$.
Proof. We will only sketch a proof, as no new techniques are employed. If e_{k} sees adjacent edges e_{i} and e_{i+1}, then the shared vertex v_{i+1} can see e_{k}. If e_{k} sees non-adjacent edges e_{i} and e_{j} and no
edge between, $e_{k} \in P[j+1, i]$, then we have two cases A and B , just as in Lemma 8. Here we will illustrate just Case A; see Fig. 9. The two segments of visibility between e_{k} and e_{i} and e_{j} either do or do not cross. In the crossing case (illustrated), the line through v_{i+1} and the crossing point shows that $v_{i+1} \rightarrow e_{k}$. The noncrossing case is similar.

Additionally it must be shown that all vertex-edge visibilities may be identified as above, a claim we do not prove in this sketch.

8. The visibility complex

An important new representation of visibility among pairwise disjoint convex objects, the visibility complex, was introduced in [12]. It is a two-dimensional cell complex embedded in a three-dimensional space. Each point of the complex dually corresponds to a ray, with each face the collection of rays seeing the same object forward and backward. A precise definition is technically complicated and will not be repeated here.

Although the visibility complex was originally defined for disjoint, strictly convex objects, one can extend the notion to the visibility complex of the edges of a polygon, which (following [12]) we call $X(P)$. Here the objects are the individual edges. Because the original definitions had no reason to distinguish between internal and external visibility, we must additionally stipulate that only points of the complex corresponding to visibility rays inside P are included in $X(P)$. We now sketch an argument that the incidence structure ${ }^{7}$ of $X(P)$ is determined by $G_{V E}$.

The correspondences between the visibility graphs considered in this paper and the cells of various dimensions of the visibility complex, are as follows.
(1) Each face of X corresponds to an arc of G_{E}, representing all rays that see e_{i} and e_{j} forward and backward. A second face of X, seeing the same pair of edges backward and forward, respectively, also corresponds to the same arc of G_{E}. There is a two-to-one correspondence between elements of X and visibility graph elements due to the directed nature of X contrasting with the undirected graphs.
(2) Each edge of X corresponds to an arc of $G_{V E}$, representing rays that are tangent to exactly one edge, i.e., which see an edge endpoint (a vertex) forward and an edge backwards (or vice versa).
(3) Each vertex of X corresponds to an arc of G_{V}, representing rays tangent to two edges, i.e., lines of sight between two vertices, the "bitangents" of [12].
For example, in Case A of Lemma 8 illustrated in Fig. 5A, the neighborhood of one of the two vertices of X corresponding to $\left(v_{k}, v_{i+1}\right) \in G_{V}$ includes five faces of X, corresponding to the following arcs of G_{E} :

$$
\left(e_{k-1}, e_{i}\right), \quad\left(e_{k}, e_{i}\right), \quad\left(e_{k-1}, e_{j}\right), \quad\left(e_{k}, e_{j}\right), \quad\left(e_{i+1}, e_{j}\right)
$$

These faces meet at the X vertex along four edges of X, corresponding to these arcs of $G_{V E}$:

$$
\left(v_{k}, e_{i}\right), \quad\left(v_{k}, e_{j}\right), \quad\left(v_{i+1}, e_{k}\right), \quad\left(v_{i+1}, v_{k-1}\right)
$$

Since we have seen in Theorems 2 and 6 that $G_{V E}$ determines both G_{V} and G_{E}, we can determine the complete incidence structure of X from $G_{V E}$. For example, two of the faces of X corresponding

[^5]to the arcs $\left(e_{k}, e_{i}\right)$ and $\left(e_{k}, e_{j}\right)$ of G_{E} meet along one of the edges of X corresponding to the arc $\left(e_{k}, v_{i+1}\right)$ of $G_{V E}$. Thus continuously moving a ray that sees e_{k} backward and e_{i} forward, until it changes to see e_{j} forward, corresponds to moving a point between these two faces of X, which necessarily transitions at the X edge with a ray that sees v_{i+1} forward. A detailed justification would be tedious, and we will leave determination of X by $G_{V E}$ a claim. We also claim that the reverse holds as well: X determines all the visibility graphs.

9. External vertex-edge visibility graph

It was established in [3] that the external vertex visibility graph of P does not uniquely determine which vertices are on the convex hull of P. Here we show that the external vertex-edge visibility graph $G_{i \in E}^{e}$ does. ${ }^{8}$ We define ($\left.v, e\right) \in G_{V E}^{e}(P)$ iff there is a point x on the (open) edge e such that the segment $v x$ is nowhere interior to P.

Lemma 14. Two vertices v_{i} and v_{j} of P are on the hull of P iff deletion of v_{i} and v_{j} from $G_{V E}^{e}$ disconnects it into two components.

Proof. We first handle the easier case when v_{i} and v_{j} are adjacent vertices, $i+1=j$, in which case $v_{i} v_{i+1}$ is both a hull edge and a polygon edge. Such "polygon hull edges" are the only edges of P visible just from its endpoints.

Certainly if an edge e is a polygon hull edge, it is only externally visible from its endpoints, whose deletion isolates e in $G_{V E}^{e}$. Conversely, any edge e isolated by deletion of its endpoints must have no vertices in the exterior halfplane determined by e, which implies e is a polygon hull edge.

In the remainder of the proof we assume that v_{i} and v_{j} are not adjacent. Let $C_{1}=P(i, j)$ and $C_{2}=P(j, i)$ be the two chains delimited by v_{i} and v_{j}, both contain at least one vertex. If v_{i} and v_{j} are on the hull, it is clear that no vertex of C_{2} can see an edge of C_{1} and vice versa. So $G_{V E}^{e}-\left\{v_{i}, v_{j}\right\}$ consists of two components, H_{1} induced by C_{1} and H_{2} induced by C_{2}. This establishes the lemma in the easy direction.

Now let us assume that deletion of v_{i} and v_{j} separates $G_{V E}^{e}$ into at least two components, H_{1} and H_{2}. First we argue that (without loss of generality) $H_{1} \subseteq G_{V E}^{e}\left(C_{1}\right)$ and $H_{2} \subseteq G_{V E}^{e}\left(C_{2}\right)$, where $G_{V E}^{e}\left(C_{i}\right)$ is the subgraph of $G_{V E}^{e}$ induced by the vertices and edges of C_{i}. For suppose H_{1} contained nodes corresponding to elements in both subchains. Then regardless of where H_{2} lies, one of its vertices or edges must be connected by the polygon's boundary to a vertex or edge in H_{1}, the connection lying entirely in either $P(i, j)$ or $P(j, i)$. But these chains constitute paths in $G_{V E}^{e}-\left\{v_{i}, v_{j}\right\}$, contradicting the assumption that H_{1} and H_{2} are separate components.

So we may assume that $H_{i} \subseteq C_{i}, i=1,2$. Imagine any embeddings of C_{i} that realize $G_{V E}^{e}$. Let L_{i}^{1} be the line of sight of a point on C_{1} that sees v_{i} which is most clockwise about v_{i}, and let L_{j}^{1} be the most counterclockwise such line through v_{j}; see Fig. 10. Then no point of C_{2} may fall outside the exterior halfplanes delimited by these two lines. For imagine a point of C_{2} did; then some vertex $x_{2} \in C_{2}$ could see a point $x_{1} \in C_{1}$. But these points x_{i} are connected by their chains C_{i} to all other points in those chains, and so there would be a path between H_{1} and H_{2} via $x_{1} x_{2}$ and the chains, contradicting the disconnectedness of H_{1} and H_{2}.

[^6]

Fig. 10. Lemma 14 establishes that v_{i} and v_{j} must be hull vertices.
Similarly no point of C_{1} may fall outside the exterior halfplanes delimited by the lines L_{i}^{2} and L_{j}^{2}, as in the figure. The two lines through v_{i} can now be threaded by a third through v_{i}, supporting the entire polygon to one side. Thus v_{i} is a hull vertex, and a symmetric argument applies to v_{j}.

Theorem 8. $G_{V E}^{e} \Rightarrow$ hull vertices.
Proof. For each v_{i}, remove v_{i} from $G_{V E}^{e}$, and then see if removal of $v_{i+k}, k=1,2, \ldots$, disconnects according to Lemma 14. If v_{j} is found to disconnect, then (v_{i}, v_{j}) is a hull edge, and the search loop can be restarted with $i \leftarrow j$.

A naive implementation of this is $\mathrm{O}\left(n^{4}\right)$, a bound which no doubt can be improved.

10. Remarks on collinearities

We would like to indicate here briefly why the general position assumption we have maintained throughout is more than just an assumption of convenience. First, Theorem 2 is false if collinear vertices are permitted.

Lemma 15. $G_{V E} \nRightarrow G_{V}$.
Proof. Consider the two polygons shown in Fig. 11, with $\left\{v_{0}, v_{4}, v_{2}\right\}$ collinear. $G_{V E}(A)=G_{V E}(B)$: moving v_{4} down in B does not block any lines of sight between vertices and points interior to edges. For example, v_{0} cannot see e_{2} in both A and in B. But v_{0} can see v_{2} in A but not in B. Therefore $G_{V}(A) \neq G_{V}(B)$.

Note that this example also demonstrates that $G_{V E} \nRightarrow$ collinearities: which vertices are collinear is not determined by $G_{V E}$. The next lemma shows that throwing in G_{V} doesn't help.

Lemma 16. $G_{V E}+G_{V} \nRightarrow$ collinearities.
Proof. In Fig. 12, $G_{V E}(A)=G_{V E}(B)=K_{5,5}$, and $G_{V}(A)=G_{V}(B)=K_{5}$, but B has collinearities and A does not.

Fig. 11. $G_{V E}(A)=G_{V E}(B)$ but $G_{V}(A) \neq G_{V}(B)$.

Fig. 13. The graph $G_{V E}(P)$ is not realized by any g.p. polygon.

Fig. 12. r_{1}^{0} exits at different vertices in A and B.

Fig. 14. $G_{V E} \nRightarrow$ star-shapedness. Moving the $v_{0} v_{1}$ edge down does not change the visibility graph but does alter the polygon to become star-shaped.

Lemma 10 fails in Fig. 12: in A, r_{1}^{0} exits at v_{1}, while in B it exits at v_{2}.
Although $G_{V E}$ does not determine collinearities, it does carry some information about collinearities, in the following sense.

Lemma 17. There is a graph $G=G_{V E}(P)$ that is not realized by any general position P.
Proof. Consider the polygon P in Fig. 13. Because $v_{0} \rightarrow e_{3}$, v_{0} must lie on or above $l_{4,3}$. Knowing that v_{5} is not reflex (by Lemma 1), only v_{1} can block v_{0} from seeing e_{2} to ensure that $v_{0} \nrightarrow e_{2}$. This requires v_{0} to lie on or below $l_{1,3}$. Together these conditions force $l_{4,3}$ to pass below $l_{1,3}$ left of their point of intersection v_{3}. But if the lines cross properly at v_{3}, then $v_{4} \rightarrow e_{1}$, which is not the case. Therefore $l_{4.3}=l_{1,3}$, forcing collinearity.

We note that this is an open problem for vertex visibility graphs. ${ }^{9}$
Conjecture 1. For any polygon P, there is a general position polygon P^{\prime} such that $G_{V}\left(P^{\prime}\right)=G_{V}(P)$.
Finally, we mention one among the many characteristics of a polygon not determined by $G_{V E}$: whether or not the polygon is star-shaped (visible from one point). Fig. 14 shows a polygon $P=$ $\left(v_{0}, \ldots, v_{7}\right)$ that is not star-shaped. Moving the $v_{0} v_{1}$ edge downward to $v_{0}^{\prime} v_{1}^{\prime}$ creates a polygon P^{\prime} that is star-shaped: any point in the shaded triangle (the kernel) can see all of P^{\prime}. But $G_{V E}(P)=G_{V E}\left(P^{\prime}\right)$.

[^7]
References

[1] J. Abello, K. Kumar, Visibility graphs and oriented matroids, in: R. Tamassia, I.G. Tollis (Eds.), Graph Drawing (Proc. GD '94), Lecture Notes in Computer Science 894, Springer, New York, 1995, pp. 147-158.
[2] D. Avis, G.T. Toussaint, An optimal algorithm for determining the visibility of a polygon from an edge, IEEE Trans. Comput. 30 (1981) 910-1014.
[3] H. Everett, A. Lubiw, J. O'Rourke, Recovery of convex hulls from external visibility graphs, in: Proc. 5th Canad. Conf. Comput. Geom., Waterloo, Canada, 1993, pp. 309-314.
[4] S.K. Ghosh, On recognizing and characterizing visibility graphs of simple polygons, Discrete Comput. Geom. 17 (2) (1997) 143-162.
[5] S.K. Ghosh, D.M. Mount, An output-sensitive algorithm for computing visibility graphs, SIAM J. Comput. 20 (1991) 888-910.
[6] J.E. Goodman, R. Pollack, Semispaces of configurations, cell complexes of arrangements, J. Combin. Theory Ser. A 37 (1984) 257-293.
[7] L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, R.E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons, Algorithmica 2 (1987) 209-233.
[8] J. Hershberger, An optimal visibility graph algorithm for triangulated simple polygons, Algorithmica 4 (1989) 141-155.
[9] J. O'Rourke, Computational geometry column 18, Internat. J. Comput. Geom. Appl. 3 (1993) 107-113; also: SIGACT News 24 (1) (1993) 20-25.
[10] J. O’Rourke, I. Streinu, Pseudo-visibility graphs in pseudo-polygons: Part I, Technical Report 041, Dept. Comput. Sci., Smith College, Northampton, MA, January 1996; revised April 1996.
[11] J. O'Rourke, I. Streinu, Pseudo-visibility graphs in pseudo-polygons: Part II, Technical Report 042, Dept. Comput. Sci., Smith College, Northampton, MA, April 1996.
[12] M. Pocchiola, G. Vegter, The visibility complex, Internat. J. Comput. Geom. Appl. 6 (3) (1996) 279-308.

[^0]: Supported by NSF grant CCR-9421670.

 * Corresponding author. E-mail: \{orourke,streinu\} @cs.smith.edu.
 ' All index arithmetic is mod n throughout the paper.

[^1]: ${ }^{2}$ For example, Lemma 1 does not hold if edges include their endpoints.
 ${ }^{3}$ [5, p. 909]: ". . . from this the vertex-edge weak visibility graph can be derived (where a vertex and edge are adjacent if the vertex can see at least one point of the edge)." We have not located any other references.

[^2]: ${ }^{4}$ This is a specialization of Goodman and Pollack's "local i-sequences" for point configurations [6]. We call our sequences "partial" because ours contain no information about invisible vertices.

[^3]: ${ }^{5}$ It will be convenient sometimes to treat lists as sets, so that subset notion and set intersection make sense.

[^4]: ${ }^{6}$ Called "outward convex" in [7].

[^5]: ${ }^{7}$ [12, Section 2.4]: "[This] incidence structure [is] the basis for our choice of a data structure representing the visibility complex."

[^6]: ${ }^{8}$ We thank Estie Arkin for posing this question.

[^7]: ${ }^{9}$ Posed by the authors at the Ottawa Geometry Day, January 1995.

