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Periodic auxetics: Structure and design

Ciprian S. Borcea∗ and Ileana Streinu†

Abstract

Materials science has adopted the term of auxetic behavior for
structural deformations where stretching in some direction entails lat-
eral widening, rather than lateral shrinking. Most studies, in the last
three decades, have explored repetitive or cellular structures and used
the notion of negative Poisson’s ratio as the hallmark of auxetic be-
havior. However, no general auxetic principle has been established
from this perspective. In the present paper, we show that a purely
geometric approach to periodic auxetics is apt to identify essential
characteristics of frameworks with auxetic deformations and can gen-
erate a systematic and endless series of periodic auxetic designs. The
critical features refer to convexity properties expressed through fami-
lies of homothetic ellipsoids.

Keywords: auxetic behavior, periodic framework, auxetic design, homoth-
etic ellipsoids.

Introduction

A flexible structure exhibits auxetic behavior when stretching in a given di-
rection involves widening in orthogonal directions. In elasticity theory, this
type of behavior amounts to negative Poisson’s ratios (for orthogonal direc-
tions paired with the given tensile direction). Materials and structures with
negative Poisson’s ratios have attracted increased attention after the 1987
publication of Lakes’ results on foams [23]. The term auxetic (from increase,
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growth) gained currency after [16]. The extensive literature generated in
three decades of auxetic studies is reviewed in several recent surveys e.g.
[1, 14, 17, 21, 22, 24, 26, 30, 32].

Although the role of the underlying geometry is widely recognized, the
approach via Poisson’s ratios involves modeling assumptions about and de-
pendence on physical properties of the material under consideration. The
catalog of auxetic structures found in this literature is rather confined and
no general principles of auxetic design have been formulated.

The main purpose of the present paper is to show that a purely geometric
approach to periodic auxetics, introduced by the authors in [7], leads to
new insights and solves two fundamental problems on structure and design,
namely, what geometry is required for auxetic behavior and how to construct
periodic frameworks with auxetic deformations.

1 Distinctive constituents of the geometric

theory

Our theory applies to periodic bar-and-joint frameworks. The dimensions
most important for applications are two and three, but the theory works in
arbitrary dimension d. Periodic frameworks represent the next of kin to finite
linkages.

The foundations of a deformation theory for periodic frameworks were
presented in [3], with rigidity aspects developed in [4] and additional per-
spectives discussed in [5, 10]. In [8], we formulated and proved a periodic
analog of Maxwell’s theorem on liftings and stresses and used it to obtain
a complete characterization of expansive behavior in dimension two through
the notion of periodic pseudotriangulation [6, 8]. A pseudotriangle is a sim-
ple planar polygon with exactly three vertices on its convex hull. Expansive
behavior, when all distances between pairs of vertices increase or stay the
same, clearly satisfies the ‘growth’ requirements of auxetic behavior, that is,
expansive implies auxetic.

Periodic auxetics. The theory introduced in [7] looks directly at deforma-
tion trajectories which exhibit auxeticity. The ‘lateral widening upon stretch-
ing’, or rather, in the reverse sense, ‘lateral shrinking upon compression’ is
adequately captured in the notion of contraction (norm at most one) for the
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linear transformation which takes the periodicity lattice at one moment to
the periodicity lattice at a subsequent moment.

This characterization is completely geometric, valid in arbitrary dimension
d and focused on the evolution of the periodicity lattice of the framework.
After a choice of independent generators, the deformation of the periodicity
lattice gives a curve in the space of symmetric d × d matrices, through the
variation of the Gram matrix of these generators. In this language, a one-
parameter deformation is auxetic when all velocity vectors along the curve
belong to the positive semidefinite cone and strictly auxetic, when velocity
vectors are in the positive definite cone.

Remarks. In contrast to the conventional route via Poisson’s ratios, this
geometric approach is formulated directly and exclusively in terms of struc-
ture and periodicity. The mathematical model of periodic frameworks is
in agreement with the rigid unit mode theory used for crystalline materials
[13]. The bar-and-joint mechanical model is frequently adopted in the liter-
ature [15, 18, 28] and is gaining critical importance in structural design due
to recent advances in digital manufacturing and the quest for mechanical
metamaterials [2, 31].

Besides being completely rigorous, the geometric approach brings the
following advantages:

(i) a linear infinitesimal theory which allows detection of auxetic capabil-
ities via semidefinite programming [7] or other algorithms [9];

(ii) for several degrees of freedom, the notion and description of the in-
finitesimal auxetic cone, which is a spectrahedral cone (i.e. a section of the
positive semidefinite cone by a linear subspace) or a linear preimage of a
spectrahedral cone [7];

(iii) a theorem of isomorphism for auxetic cones under affine transforma-
tions of periodic frameworks [11];

(iv) a general method for converting finite linkages with adequate de-
formations into periodic frameworks with auxetic deformations [11]. This
method provides infinite series of auxetic designs.

As mentioned earlier, the literature based on the traditional approach has
generated only a limited list of sporadic patterns and considers the invention
of new auxetic designs a challenging problem [26], p. 4792.
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2 Outline of the main results

In this paper, we give comprehensive answers to the following central prob-
lems:

(1) What structural characteristics are required for auxetic capabilities?
(2) How to design periodic frameworks with auxetic deformations?

We give first a description of key facts and ideas. Technical details are
provided in the next section.

(1) Structural characteristics. The rather stringent structural constraints
which must be satisfied by a periodic framework with auxetic deformations
become visible when using lattice coordinates i.e. coordinates relative to the
periodicity lattice, with a chosen basis of generators [5]. As detailed below,
these coordinates implicate directly the Gram matrix of the generators and
the existence of a strictly auxetic infinitesimal deformation has a geomet-
ric formulation which brings forth a family of homothetic ellipsoids. This
family is indexed by all pairs of vertex orbits with at least one edge orbit
connection. All edge vector representatives emanating from a vertex vi to
the orbit of, say, vj must have their origin and endpoint on the associated
ellipsoid. In particular, these points must be in strictly convex position, a
fairly restrictive necessary condition (which, in dimension three, is visually
easy to assess). There are also cycle vanishing relations involving the centers
of these ellipsoids.

The essential fact is that a strictly auxetic infinitesimal deformation is com-
pletely expressed through a geometric diagram with homothetic ellipsoids.

(2) Auxetic design. The design methodology is based on the possibility to
satisfy the requirements identified above in a systematic way. One condition
needs particular attention, namely, that vectors which must be periods should
generate (over Z) a lattice. In Figure 1, we illustrate a case with two vertex
orbits, respecting this condition. In general, the lattice condition will be
satisfied when we construct our designs using rational points as detailed below
in Section 3.

The design procedure starts with a given quotient graph and can gener-
ate an infinite series of periodic frameworks (with that quotient). By con-
struction, the generated frameworks will have a strictly auxetic infinitesimal
deformation. A guaranteed one-parameter deformation (extending the in-
finitesimal one) is obtained whenever the local deformation space is smooth.
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Figure 1: A blueprint for a three-dimensional auxetic periodic framework
with one degree of freedom. Periodicity generators are shown as red arrows.
The framework has two vertex orbits and eight edge orbits. The white vertex
and the endpoints of the eight bars emanating from it are on a sphere. The
vertical projection explains why all vectors between vertices in solid blue are
in the lattice spanned by the generators.

In this respect, our results in [4] can be used for selecting quotient graphs
with generic liftings which do have smooth local deformation spaces. The
number of degrees of freedom can be predetermined as well.

Thus, our design method can generate an infinite virtual catalog of peri-
odic frameworks with auxetic deformations. While our paper [11] has already
demonstrated that infinite series of auxetic designs are possible in any dimen-
sion d ≥ 2, the new method is comprehensive and amenable to algorithmic
treatment.

3 Technical details, statements and proofs

Periodic graphs and (reduced) quotient graphs. A d-periodic graph is
a pair (G,Γ), where G = (V,E) is a simple infinite graph with vertices V ,
edges E and finite degree at every vertex, and Γ ⊂ Aut(G) is a free Abelian
group of automorphisms which has rank d, acts without fixed points and has
a finite number of vertex (and hence, also edge) orbits. We assume G to be
connected. The group Γ is thus isomorphic to Zd and is called the periodicity
group of the periodic graph G. Its elements γ ∈ Γ ' Zd are referred to as
periods of G. We denote by G/Γ = (V/Γ, E/Γ) the quotient (multi)graph,
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with n = |V/Γ| the number of vertex orbits and m = |E/Γ| the number of
edge orbits. We also make use of an associated reduced quotient graph, where
multiple edges have been replaced with simple edges.

Periodic frameworks and deformations. A periodic placement (or sim-
ply placement) of a d-periodic graph (G,Γ) in Rd is defined by two functions:
p : V → Rd and π : Γ ↪→ T (Rd), where p assigns points in Rd to the vertices
V of G and π is a faithful representation of the periodicity group Γ, that is,
an injective homomorphism of Γ into the group T (Rd) of translations in the
Euclidean space Rd, with π(Γ) being a lattice of rank d. These two functions
must satisfy the natural compatibility condition p(γv) = π(γ)(p(v)). The
translation group T (Rd) can be identified with the additive group of vectors
in Rd.

A periodic framework F = (G,Γ, p, π) is a periodic graph (G,Γ) together
with a placement (p, π). Edges are represented as straight segments between
their endpoints. Two frameworks are considered equivalent when one is ob-
tained from the other by a Euclidean isometry. A one-parameter deformation
of the periodic framework F is a (smooth) family of placements pτ : V → Rd

parametrized by time τ ∈ (−ε, ε) in a small neighborhood of the initial place-
ment p0 = p, which satisfies two conditions: (a) it maintains the lengths of
all the edges e ∈ E, and (b) it maintains periodicity under Γ, via faithful
representations πτ : Γ→ T (Rd) which may change with τ and give an asso-
ciated variation of the periodicity lattice of translations πτ (Γ). Smoothness
requires all functions pτ (v) and πτ (γ) to be (indefinitely) differentiable with
respect to τ . (It is enough to have this condition satisfied for a complete set
of vertex representatives modulo Γ and a set of generators for Γ.)

After choosing an independent set of d generators for the periodicity lattice
Γ, the image π(Γ) is completely described via the d×d matrix Λ with column
vectors (λi)i=1,...,d given by the images of the generators under π. The Gram
matrix for this basis will be ω = Λt · Λ.

Infinitesimal deformations in lattice coordinates. Infinitesimal defor-
mations in Cartesian coordinates are discussed in [3], section 3(b). Let us
fix now a complete set of vertex representatives v0, v1, ..., vn−1 for the n ver-
tex orbits of (G,Γ). The framework F has them positioned at pi = p(vi).
When we pass from these Cartesian coordinates to lattice coordinates qi, we
consider v0 to be the origin, that is q0 = 0, and then Λqi = pi − p0.
We recall the form of the equations expressing the constant (squared) length
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of edges, when using parameters (q1, ..., qn−1, ω), cf. [5], formula (4.1). Let
us consider an edge (denoted here simply by eij) which goes from vi to a
vertex in the orbit of vj. Then, in Cartesian coordinates, the edge vector is
given by pj + λij − pi, with some period λij = Λnij ∈ π(Γ) and nij ∈ Zd.
In lattice coordinates, the edge vector is given by eij = qj + nij − qi and the
squared-length equation is:

`(eij)
2 = 〈ωeij, eij〉 (1)

For infinitesimal deformations we use the notation (q̇1, ..., q̇n−1, ω̇). From (1)
we obtain by differentiating:

〈ω̇eij, eij〉+ 2〈ωeij, ėij〉 = 0 (2)

and since ėij = q̇j − q̇i, we have

〈ω̇eij, eij〉+ 2〈ω(q̇j − q̇i), eij〉 = 0 (3)

Key observation. The definition of auxetic behavior from [7], reviewed in
Section 1, implies that an infinitesimal deformation is strictly auxetic pre-
cisely when ω̇ is positive definite. In this case, the geometric meaning of
equation (3) is that all edge vectors eij from the orbit of vi to the orbit of vj,
when seen as fixed vectors, have all their endpoints on the ellipsoid:

〈ω̇x, x〉+ 2〈ω(q̇j − q̇i), x〉 = 0 (4)

which passes through their common origin x = 0 and has its center cij at:

cij = −ω̇−1ω(q̇j − q̇i) = ω̇−1ω(q̇i − q̇j) (5)

Homothetic ellipsoids on the reduced quotient graph. Since all the
ellipsoid formulae in (4) have the same quadratic part 〈ω̇x, x〉, they are all
homothetic and can be labeled by the edges ij of the reduced quotient graph of
the given framework. Under the assumption of a strictly auxetic infinitesimal
deformation, it follows immediately that the quotient graph has no loops.

Conditions on cycles. Whenever we have a cycle in the reduced quotient
graph, the sum of the vectors cij is zero (with the ordering ij corresponding
to traversing the cycle). In other words, we obtain (up to translation) a
placement of the reduced quotient graph, with edge vectors cij (or 2cij).
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It will be observed that, while these properties have been discovered in lat-
tice coordinates, they hold true in Cartesian coordinates as well, since the
two representations are related by an affine transformation, which takes ho-
mothetic ellipsoids to homothetic ellipsoids and zero-sum vector relations to
zero-sum vector relations.

Illustration with Kagome frameworks. The structural features disclosed
above will be necessarily present in planar frameworks of Kagome type. Such
frameworks have n = 3 vertex orbits, m = 6 edge orbits and their deforma-
tion space is one dimensional. The quotient graph is a triangle with doubled
edges. The auxetic character of Kagome periodic mechanisms with congru-
ent equilateral triangles has been noticed earlier [8, 19, 20, 34]. In Figure 2,
the three vertex orbits are colored in red, blue and green. The three ellipses
are actually circles. The red circle passes through a green vertex and the two
blue vertices connected with it. The centers of the circles are not shown, but
the cycle condition is clearly satisfied by symmetry.

Figure 2: A Kagome framework has one degree of freedom and its deforma-
tion is strictly auxetic until the unit cell reaches maximal area. The geometric
manifestation of this fact is the existence of three homothetic ellipses (which
are circles, as a result of symmetry) satisfying the cycle condition.

Remarks. The return from lattice coordinates (q1, ..., qn, ω) to Cartesian
coordinates requires finding a matrix Λ with ω = Λt · Λ. This equation
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is solved by diagonalizing the symmetric positive definite matrix ω via an
orthogonal change of coordinates ω = M ·D ·M t, where D is diagonal, with
positive diagonal entries and M t = M−1. Then one takes the positive square
root D1/2 of D and obtains the solution Λ = M ·D1/2 ·M t. The corresponding
framework will have the vertex orbit representatives at p0 = 0 and pi = Λqi,
i = 1, ..., n and periodicity matrix Λ. Since any other solution Λ̃ differs
from Λ by some orthogonal transformation, Λ̃ = TΛ, with T t = T−1, the
framework is uniquely defined, up to equivalence under isometries. The fact
that solving for Λτ in a smooth (local) family ωτ can be done smoothly in τ
follows from the holomorphic functional calculus for the operators with real
positive spectra ωτ .

Theorem. The reduced quotient graph (with its placement) and the family
of homothetic ellipsoids (4), with all the edge vector representatives in them
allows the reconstruction of the periodic framework and (up to a scalar) the
corresponding strictly auxetic infinitesimal deformation.

Proof: The periodic framework is determined by the complete set of edge vec-
tor representatives. The strictly auxetic infinitesimal vector (q̇1, ..., q̇n−1, ω̇)
can be retrieved, up to a non-zero scalar, since we have ω̇, up to a non-zero
scalar, from any of the ellipsoids, and then the linear system (5) for q̇i is
compatible due to the vanishing of sums over cycles observed above.

Simplifying observation. Since affine transformations of a periodic frame-
work preserve infinitesimal characteristics (such as strict auxeticity), we may
adopt coordinates which turn all our homothetic ellipsoids into spheres.

Generating periodic frameworks with auxetic capabilities. We can
construct (generate) such frameworks by following in reverse the steps of
the previously described procedure. Particular attention must be paid to the
vectors between endpoints of edge vector representatives in any given ellipsoid
and to sums of edge vectors over cycles in the reduced quotient graph: these
vectors must be periods and must generate, by linear combinations with
integer coefficients, a (periodicity) lattice.

This rational dependence requirement is always fulfilled if we operate only
with rational points (i.e. points with rational coordinates). More precisely,
we have the following scenario (in arbitrary dimension d ≥ 2).

Construction procedure. We start with a (connected) finite multi-graph
without loops (which plays the role of a given quotient graph). We want to
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construct periodic frameworks with strictly auxetic (infinitesimal) capabili-
ties and with the given quotient graph.

(1) We take the reduced graph of the given multi-graph.
(2) We choose a (general, non-degenerate) placement of its vertices in Qd

i.e. at rational points in Rd and represent the edges by segments between
adjacent vertices.

(3) We draw all spheres with these edges as diameters (hence centers are
also rational points).

Lemma. Rational points are dense on all these spheres.
Proof: The standard stereographic projection (from a point e1 on the unit
sphere Sd−1 to the tangent space T−e1(S

d−1) at the opposite point −e1) gives
a bijection between the rational points on the unit sphere and rational points
in the tangent space T−e1(S

d−1). Thus, rational points are dense in the unit
sphere. It follows that rational points are dense on any sphere with rational
center and at least one rational point.

(4) When ij is an edge, we choose as many rational points on the cor-
responding sphere as dictated by the multiplicity in the given multi-graph.
(Again, the choice in supposed to be non-degenerate.) The vectors from ver-
tex vi to the chosen points will represent all edge vectors connecting the orbit
of vi to the orbit of vj.

(5) If degenerate choices are avoided, the span of all vectors between
chosen points in any given sphere and all sums of edge vectors over cycles in
the reduced quotient graph will be a (rank d) lattice, the periodicity lattice
of the framework generated by articulating the chosen edge representatives.

An unfolding example. To illustrate the construction, we use the planar
case shown in Figure 3. The quotient multi-graph for the example (not
shown) has three vertices and double edges between any pair of vertices.
The reduced graph is placed as an equilateral triangle in the plane, and three
circles are drawn with diameters given by the three edges. On each circle, we
have to position two edge vectors, for the two edge orbits in the multi-graph
corresponding to its diameter edge. Choosing a counter-clockwise orientation
for the triangle edges, the edge vectors emanate from the source vertex of
the corresponding reduced oriented edge. The left hand side of the figure
shows this stage of the construction, with the added particularity that in
each circle, the red vector between the endpoints of the two edges is the
same free vector. This particular choice avoids the need to maneuver with
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Figure 3: A planar example starting with a multigraph with n = 3 vertices
and double edges between any pair of vertices (m = 6). The reduced graph is
represented by the highlighted equilateral triangle. The period in each circle
is the same. The framework generating process is shown on the right. In this
case, the result is a periodic pseudotriangulation.

rational points, since this periodicity vector, together with one resulting from
the single cycle in the reduced graph, will span the periodicity lattice.

The periodic framework on the right is now generated from the diagram
constructed on the left, as follows. We start at one vertex and continue to
place (all allowed) edge vectors emanating from the endpoints of the initial
two edges. Indefinite repetitions of this type of edge addition will generate
the entire (connected) periodic framework. The right hand side of the figure
shows the stage reached after adding enough edges to see (in green, yellow
and blue) representatives of the three type of pseudotriangular faces of the
resulting planar framework. Obviously, the initial triangle and the circle are
not part of the framework. As a periodic pseudotriangulation, the framework
has one degree of freedom and its local deformation is not only auxetic, but
actually expansive [8].

An example with higher symmetry. We discuss now a three-dimensional
example based on a multi-graph with four vertices and double edges between
any pair of vertices. The reduced graph is represented as a regular tetrahe-
dron with vertices at: (−1,−1,−1), (1, 1,−1), (1,−1, 1) and (−1, 1, 1). We
trace the six spheres with diameters given by the six edges of this tetrahe-
dron. Our choices of edge vector representatives for the framework will use
the symmetry group of the regular tetrahedron, represented in our setting by
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Figure 4: The essentials of the diagram used for a three-dimensional frame-
work with n = 4 vertex orbits and m = 12 edge orbits. The reduced (quo-
tient) graph is represented by the regular tetrahedron inscribed in the cube.
The six edge vectors emanating from one vertex are shown as arrows. Only
three great circles of the six spheres are traced. Tetrahedral symmetry com-
pletes the information recorded by the diagram.

permutations of the three coordinates and an even number of sign changes in
front of them. Thus, it will be enough to indicate one of the two edge vectors
emanating from (−1,−1,−1) and ending at vertices in the orbit represented
by (1, 1,−1). We choose it to be of the form (α, β, 0). The condition that,
when emanating from (−1,−1,−1), the endpoint of the vector must be on
the sphere over the tetrahedral edge from (−1,−1,−1) to (1, 1,−1) amounts
to: (α− 1)2 + (β − 1)2 = 2.

The twenty-four transforms of this edge vector give representatives for the
twelve edge orbits in twelve pairs with opposite signs. The six edge vectors
shown in Figure 4 are:

12A = (α, β, 0), 12B = (β, α, 0),

13A = (0, α, β), 13B = (0, β, α),

14A = (β, 0, α), 14B = (α, 0, β).

With IJA = −JIA and IJB = −JIB, the remaining six edge vector repre-
sentatives are:

23A = (−α, 0, β), 23B = (−β, 0, α),

24A = (0,−β, α), 24B = (0,−α, β),
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34A = (β,−α, 0), 34B = (α,−β, 0).

The periodicity lattice is spanned by the tetrahedral group transforms of
vectors of the form 12A− 12B = (α − β, β − α, 0) and 12A + 23A + 31A =
(0, β − α, 0), which illustrates a period associated to a cycle in the reduced
graph. It follows that, regardless of the rationality or irrationality of α 6= β,
the resulting periodicity lattice is (α− β)Z3.

The periodic framework itself is obtained by indefinite articulation of new
edge vectors, proceeding from the endpoints of the six depicted arrows and
always respecting the vertex orbits. A partial extension, with all twelve edge
representatives, is shown, from a different perspective, in Figure 5. With the
vertex marked 1 placed at the origin (and seen “in depth”), one may observe
three skew quadrilaterals, resulting from the following relations.

12A+ 23A = 14B + 43B = (0, β, β) = 33

13A+ 34A = 12B + 24B = (β, 0, β) = 44

14A+ 42A = 13B + 32B = (β, β, 0) = 22

Figure 5: The essentials of the resulting framework. The periodicity lattice
is generated by red vectors, with (22)(2A)=(44)(4B), (33)(3A)=(22)(2B),
(44)(4A)=(33)(3B).

As a consequence of tetrahedral symmetry for the initial diagram, the re-
sulting framework has a crystallographic symmetry group which is transitive
on vertices and transitive on edges. The one-parameter auxetic deformation
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which maintains this crystallographic symmetry and extends the strictly aux-
etic infinitesimal deformation provided by our construction can be described
as follows. Dilate the (cube and inscribed) tetrahedron of the initial dia-
gram, but maintain the squared length of the new edge vector representative
(α̃, β̃, 0), that is α̃2 + β̃2 = α2 + β2. Thus, at the vertex marked 1, the edge
pairs (12A, 12B), (13A, 13B), (14A, 14B) increase their angle in their respec-
tive planes (and by symmetry, this type of local motion is replicated at any
other vertex).

Remarks. This family of periodic frameworks has (geometrically allowed)
self-intersections. It can be shown that these equal edge-length frameworks
have four degrees of freedom i.e. a smooth four-dimensional local deformation
space.

This design invites comparison with a structure possessing cubical sym-
metry, introduced in [33] and studied in [12] from the perspective of cubic
materials [29].

4 Perusal of the virtual auxetic design cata-

log

We have described above a procedure which associates to an initial diagram in
Rd, a d-periodic framework with a strictly auxetic infinitesimal deformation.
The initial diagram consists of the following elements:

(i) a finite connected multi-graph without loops,
(ii) a placement of the (simple) reduced graph in Rd,
(iii) spheres with diameters given by all edges of the placed reduced graph,
(iv) in a sphere, say, over the edge from vi to vj, a depiction of (frame-

work edge) vectors ekij, k = 1, ...,mij, where mij is the number of edges in
the multigraph over the specified edge in the reduced graph; all vectors ekij
emanate from vi and have their endpoints on the sphere,

(v) a rank d lattice generation condition for the span of the periodicity
vectors; a periodicity vector is either a vector between the endpoints of two
(framework edge) vectors in the same sphere or a (cycle) vector of the form
e∗i1i2 + e∗i2i3 + ...+ e∗iJ i1 for a cycle of edges in the reduced graph.

The associated periodic framework may turn out to be a singular point
in its deformation space and in this case additional investigations would be
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required for deciding if the strictly auxetic infinitesimal deformation belongs
to a local auxetic path or not. If the periodic framework has a smooth local
deformation space, there are always strictly auxetic path extensions.

Thus, for a systematic and unencumbered generation of auxetic designs,
we need a direct guarantee of property (v) for initial diagrams and a simple
smoothness criterion for the local deformation space of the resulting periodic
framework. We have already shown that, when operating with rational initial
diagrams, that is, diagrams which have the vertices of the reduced graph at
rational points and the endpoints of the (edge framework) vectors at rational
points of the corresponding spheres, property (v) is guaranteed to hold. For
the smoothness issue, a sensible restriction is to use as multi-graphs only
quotient graphs of minimally rigid periodic frameworks, with one or more
edges removed. The class of quotient graphs of minimally rigid periodic
frameworks has been characterized in combinatorial terms in [4]. With this
restriction, smoothness is guaranteed by a single (maximal rank) linear test.

Classification outlook for two vertex orbits. It is natural to organize
the virtual catalog according to increasing values of the number n of vertex
orbits and the number f of degrees of freedom. For n = 2, the reduced
(quotient) graph is a single edge. Thus, we have a single ellipsoid and no
cycles. We consider here the case of periodic frameworks with f = 1, i.e. one
degree of freedom, for dimensions d = 2 and d = 3. For independent edge
constraints, we have f = dn+

(
d
2

)
−m, with m denoting the number of edge

orbits. This follows from formula (3.16) of [3], with readapted notation.

In the planar case, we have m = 4. A periodic framework (with four
independent edge orbit constraints) is immediately recognized as a strictly
auxetic mechanism by tracing the unique conic through a vertex and the four
endpoints of the bars emanating from it: this conic must be an ellipse. Con-
versely, planar auxetic periodic mechanisms can be generated by adopting as
periodicity lattice Z2 ⊂ R2. We choose four points in Z2, forming a (non-
degenerate) convex quadrilateral. In general, the Z-span of the edge vectors
will be a sublattice of Z2, but we shall retain only choices with equality
(without any loss of design patterns). For classification purposes, one must
identify equivalent choices of this nature. There is a one parameter family
of ellipses running through four such points. We may select any ellipse and
place the vertex representative of the second vertex orbit on it (away from
the four points). The four (framework) edge vectors from this new point
to the previous four points provide the data for articulating the associated
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auxetic periodic mechanism.

Figure 6: The double arrowhead framework can be generated from a single
quadrilateral by adopting the diagonals as periods. The auxetic character is
confirmed by the ellipse through one vertex and the endpoints of the four
edges emanating from it.

In Figure 6, we illustrate a design obtained by topology optimization in [25].
It simplifies a structure proposed in [27]. The double arrowhead framework
has n = 2 vertex orbits and m = 4 edge orbits. It can be obtained from
a single quadrilateral (in a pseudotriangle configuration) by a construction
principle described in [11]: the two diagonal vectors generate a periodicity
lattice and the periodic framework is made of the joint translates of the
quadrilateral. The result is a periodic pseudotriangulation, hence the local
one-degree-of-freedom motion is expansive and therefore auxetic [8]. From
the perspective of the present paper, the auxetic capability is demonstrated
by the ellipse running through one vertex and the endpoints of the four edges
emanating from it.

In dimension three, we have m = 8. A periodic framework (with eight
independent edge orbit constraints) is immediately recognized as a strictly
auxetic mechanism by tracing the unique quadric surface through a vertex
and the eight endpoints of the bars emanating from it: this quadric must
be an ellipsoid. The design procedure is slightly more complicated than in
the planar case because eight points in strictly convex position need not lie
on any ellipsoid. We start with eight points in Z3 in strictly convex position
and check that the Z-span of the vectors between all point pairs equals Z3.
Then we check that the family of quadrics passing through the eight points is
one dimensional (i.e. a pencil) and contains ellipsoids. If this is the case, the
choice is valid. Again, for classification purposes, one must identify equivalent
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choices of this nature. Auxetic mechanisms will be obtained, as above, by
selecting an ellipsoid through the eight points and a vertex representative of
the second vertex orbit on it (away from the quartic curve through the eight
points which is the axis of the pencil, that is, the common vanishing locus
of the pencil’s quadrics). Up to an affine transformation, Figure 1 illustrates
one such blueprint.

5 Conclusion

Although auxetic behavior is typically non-linear, we have found a structural
characterization of periodic auxetics from infinitesimal i.e. linear consider-
ations. This necessary and sufficient condition for periodic bar-and-joint
frameworks with strictly auxetic infinitesimal deformations is expressed in
a diagram with homothetic ellipsoids over the reduced quotient graph and
leads to endless, yet systematic possibilities for generating auxetic periodic
designs.
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