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Outerplanar graphs and Delaunay triangulations

Ashraful Alam ∗ Igor Rivin† Ileana Streinu‡

Abstract

Over 20 years ago, Dillencourt [1] showed that all out-
erplanar graphs can be realized as Delaunay triangula-
tions of points in convex position. His proof is elemen-
tary, constructive and leads to a simple algorithm for
obtaining a concrete Delaunay realization. In this note,
we provide two new, alternate, also quite elementary
proofs.

1 Introduction

The Delaunay triangulation of a point set in convex po-
sition is, combinatorially, an outerplanar graph. Dil-
lencourt [1] has shown, constructively, that the other
direction is also true: any graph which arises from
a triangulation of the interior of a simple polygon
can be realized as a Delaunay triangulation. Dil-
lencourt’s proof uses a simple and natural criterion
on the angles of triangles in a Delaunay triangula-
tion, and gives an O(n2) time incremental algorithm
to calculate their angles and infer a realization. Lam-
bert [2] adapted this method into a linear time algo-
rithm, whose implementation in Java is available at
http://www.cse.unsw.edu.au/̃lambert/java/realize/
The general question, of characterizing and recon-

structing arbitrary Delaunay triangulations (in two-
or higher dimensions), is substantially more difficult.
A closely related problem, going back to Steiner (see
Grünbaum [6], page 284), asks for a characterization
of the graphs of inscribable or circumscribable polyhe-
dra: those whose vertices lie on a sphere, resp. whose
faces are tangent to a sphere. Such graphs are said to
be of inscribable or circumscribable type. The best re-
sult to date is due to Rivin [4], who proved necessary
and sufficient conditions for a polyhedral graph to be
of inscribable or circumscribable type. Dillencourt and
Smith [3] linked inscribability of a graph to its realiz-
ability as a Delaunay triangulation, and gave a criterion
relating Hamiltonicity to inscribability.
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In this paper, we present two new simple and elemen-
tary proofs of the Delaunay realizability of outerplanar
graphs. We are not aware of them previously appearing
in the literature. The first one is an easy consequence
of Dillencourt and Smith’s [3] criterion relating Hamil-
tonianicity and inscribability. The second one, which
occupies most of this note, uses Rivin’s [4] inscribabil-
ity criterion and constructs an explicit ”witness” of this
inscribability, in the form of certain weights assigned to
the edges of the graph.

Preliminaries

A graph G = (V,E) is a collection of vertices V =
{1, · · · , n} and edges E, where an edge e = ij ∈ E
is a pair of vertices i, j ∈ V . A graph is planar if it can
be drawn in the plane in a way such that no two edges
cross, except perhaps at endpoints. A planar drawing of
a planar graph is called a plane graph. It subdivides the
plane into regions called faces. A plane graph has one
unbounded face, called the outer face. A plane graph
is denoted by its vertices, edges, faces and the outer
face: G = (V,E, F, f). A plane graph where all vertices
lie on the outer face is called an outerplanar graph. A
stellated outerplanar graph is obtained from an outer-
planar graph by adding one vertex and connecting it
to all the original vertices. We call this the stellating
vertex, and all edges emanating from this vertex the
stellating edges.
Two paths between two vertices are independent if

they do not share any vertices except the end-points. A
graph is connected if there is a path between any two
vertices and it is k-connected if there are k independent
paths between any two vertices. A cutset of a graph
is the minimal set of edges whose removal makes the
graph disconnected. A cutset is coterminous if all the
edges emanate from a single point.
A graph is polyhedral if it is planar and 3-connected.

In this case, the faces of a plane realization are uniquely
determined up to the choice of the outer face. By
Steinitz theorem (see Grünbaum [6]), any polyhedral
graph can be realized as a convex polyhedron. A poly-
hedral graph is inscribable if its corresponding convex
polyhedron is combinatorially equivalent to the edges
and vertices of the convex hull of a set of noncoplanar
points on the surface of the sphere.
Given a set P of points in the Euclidean plane, a tri-

angulation of these points is a planar graph where all
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faces, with the possible exception of the outer face, are
triangles. A Delaunay triangulation of P is a triangu-
lation where the circumscircle of any triangle does not
contain any other points of P .

Our result

We give two new proofs of Dillencourt’s theorem:

Theorem 1 Any outerplanar graph can be realized as
a Delaunay triangulation.

2 The first proof

The first proof that an outerplanar graph can be realized
as a Delaunay triangulation relies on two elegant results
due to Dillencourt and Smith [3] and to Rivin [4, 5].
They relate inscribability, realization as Delauney tri-
angulation and Hamiltonicity.

A Hamiltonian cycle in a graph is a simple spanning
cycle. Any graph that has a Hamiltonian cycle is called
Hamiltonian. A graph is 1-Hamiltonian if removing any
vertex from the graph makes it Hamiltonian.

Dillencourt and Smith [3] proved:

Theorem 2 A 1-Hamiltonian planar graph is of in-
scribable type.

Next, we need this result of Rivin [4, 5].

Theorem 3 A plane graph G = (V,E, F, f), with f as
the unbounded face, is realizable as a Delaunay triangu-
lation for some point set P if and only if the graph G′

obtained from G by stellating f is of inscribable type.

To complete our first proof, we just need to show that:

Lemma 4 A stellated outerplanar graph G′ is 1-
Hamiltonian.

Proof. Let {1, 2, · · · , n} be the vertices of the under-
lying outerplanar graph G of G′, in counterclockwise
order on the outer face, with modulo n indices, and
let s be the stellating vertex. If we remove a ver-
tex i, 1 ≤ i ≤ n, then we find a Hamiltonian cycle
i+ 1, i+ 2, · · · , i− 1, s, i+ 1. If we remove vertex s, we
get the original outerplanar graph G which is Hamilto-
nian. �

In the next section, we present our main result, which
is a more technical proof for the same result. It is based
on a very general criterion of Rivin, and has the advan-
tage of illustrating specific properties (besides Hamil-
tonicity) of Delaunay triangulation realizations for out-
erplanar graphs.

3 The main proof

Rivin [4, 5] gave this very general criterion for the
Steiner’s problem:

Theorem 5 A planar graph G′ = (V,E) is of inscrib-
able type if and only if it satisfies the following condi-
tions:

1. G′ is a 3-connected planar graph.

2. A set of weights W can be assigned to the edges of
G′ such that:

(a) For each edge e, 0 < w(e) ≤ 1/2.

(b) For each vertex v, the sum of all weights of
edges incident to v is 1.

(c) For each non-coterminous cutset C ⊆ E, the
sum of all the weights of edges of C must ex-
ceed 1.

Combining this with Theorem 3, we have to prove
that if G′ is a stellated outerplanar graph, then a weight
assignment as in Theorem 5 exists. But first, let us ver-
ify that any stellated outerplanar graph is 3-connected.
The following lemma is straightforward:

Lemma 6 Any outerplanar graph is 2-connected.

Proof. In an outerplanar graph, all the vertices lie
on the unbounded face f . If we label the vertices as
1, 2, · · · , n in the order in which they appear on the
outer face, there are two independent paths between
any pair of vertices i and j: one from i, i+1, · · · , j and
another is i, i− 1, · · · , j. �

This leads immediately to the verification of the first
condition in Theorem 5:

Lemma 7 Any stellated outerplanar graph G′ is planar
and 3-connected.

Proof. Planarity is straightforward, since G′ was ob-
tained from an outerplanar graph G by stellating (with
a new vertex s) its unbounded face. We show now that
there exists three independent paths between any two
vertices i and j of G′. Let i and j be two vertices of the
outerplanar graph G. Lemma 6 showed that there are
two independent paths between i and j. A third inde-
pendent path is i, s, j where s is the stellating vertex.
To complete the proof we show the existence of three
independent paths between s and any other vertex i of
G: they are (s, i), (s, i− 1, i) and (s, i+ 1, i), where in-
dex arithmetic is done modulo n in the range 1, · · · , n.
Notice that we implicitly assume that G has at least
three vertices, otherwise the theorem is trivial. �
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In the rest of the paper, we describe a weight assign-
ment for G′ which satisfies Rivin’s criteria. In section
3.1 we give an inductive scheme to compute the weights,
and prove that they satisfy the first two properties (2a
and 2b) in Theorem 5. The proof is completed in section
3.2, where we verify the third property (2c) in Theorem
5.

3.1 Weight assignment

Instead of assigning weights on the edges of a stellated
outerplanar graph G′, we will assign them on the edges
of the dual graph G′

D of G′, so first we look closer at the
structure of the dual of a stellated outerplanar graph.

The duals of the stellating edges of G′ form a cycle,
and the remaining ones form a tree (denoted by TD)
whose leaves lie on the cycle (see Fig 1). Furthermore,
the tree is partitioned into a path whose vertices are
not leaves (the backbone) and edges incident to the tree
leaves, called leaf-edges. We thus partition the edges of
G′ into three classes, colored blue (cycle), green (back-
bone) and black (leaf edges). Primal and dual edges
get the same color, see Fig 1(c). One end of the leaf
edge is connected to a backbone edge and another end
is connected to a cycle edge.

The edges of a face of G′
D are duals of edges incident

to a vertex in G′. If there are n cycle edges, there will
be n faces in G′

D. Let these faces be f1, f2, · · · , fn in
counter-clockwise order. Clearly, it suffices to make sure
that the sum of all weights of cycle edges and sum of all
weights of the edges of each face of G′

D are separately
equal to 1. In addition, we have to make sure that the
remaining two conditions 2a and 2b of Theorem 5 are
also satisfied.

(a) (b)
(c)

Figure 1: (a) An outerplanar graph (b) A stellated out-
erplanar graph obtained from (a). Blue edges are stel-
lating edges and blue vertex is the stellating vertex. (c)
Dual graph of the stellated outerplanar graph. Dual
edges are colored according to their primal edges. Dark
blue, green and black edges are cycle, backbone and leaf
edges respectively.

The weight assignment is carried out in two steps, the
contraction step and the expansion step. During con-
traction, all the backbone edges are contracted to ob-
tain a very specific type of dual graph, on which a simple
weight assignment is possible. The edges are then ex-
panded back, and adjustments to the initial weights are
locally performed, while maintaining Rivin’s conditions.

Contraction:

In this step we contract all the backbone edges of TD.
Then all the cycle edges and leaf edges of G′

D remain un-
changed, but all the faces become triangular (see Fig 2).
Next, we assign a weight of 1/n to each cycle edge. Here
n is the number of cycle edges of G′

D. Next we assign
each leaf edge (one of the remaining two edges of a tri-
angular face) a weight of n−1

2n . This weight assignment
satisfies Rivin’s conditions 2a and 2b for n > 1.

(a)
(b)

Figure 2: (a)A dual of a stellated outerplanar graph.
Bold edges are backbone edges. (b) Dual graph after
contraction of backbone edges. (c) Expansion of a single
backbone edge.

Expansion:

Now we incrementally expand back the backbone edges
of TD. Consider a backbone edge eb which is shared by
face fi and face fj . We assign a weight of 0 < ε < 1/2
to eb, for some positive ε to be determined later. This
creates an imbalance into the sum of weights for the
edges of faces fi and fj . We remove this imbalance by
subtracting ε

2 from the cycle edges of fi and fj , and
subtracting ε

4 from each of the two leaf edges of fi and
fj , respectively. Although this restores the balance of
weights for faces fi and fj , it creates an imbalance for
faces fi−1, fi+1, fj−1, fj+1 and cycle edges of G′

D. To
fully balance the weights, we add ε

4 to the cycle edges
of these four faces. This assignment of weights meets
Rivin’s conditions. The process is repeated for each
expanded backbone edge. See Figure 3.
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Figure 3: Three possible cases when a backbone edge
is expanded. Expanded face is shared by (a) four dis-
tinct faces, (b) two distinct faces and one common face
and (c) two common faces. When a backbone edge is
expanded, only weights of these neighbor faces have to
be adjusted; weights of other faces remain unchanged.
Here w(l) = n−1

2n

The weight assignment scheme leads to a maximum
possible weight of 1/n for each edge. When n > 2,
this is always smaller than 1/2. When we expand a
backbone edge, we subtract a value from some of the
edges of G′

D, and always add ε
4 to two cycle edges of the

adjacent cells. The maximum amount that we subtract
is ε/2 from a cycle edge of G′

D. Therefore, the only case
when the weight on any edge becomes negative is when
we subtract more than the initial value of the edge.

Figure 4: A stellated outerplanar graph and its dual
(shown in red edges) where the backbone is a single
vertex.

An extreme case occurs when, for each expansion
of a backbone edge, ε/2 is subtracted from the same
edge. This is only possible when our original outer-
planar graph G has all chords emanating from a single
vertex. Consider a face in G′

D corresponding to such
vertex in G. For each expansion of the backbone edge,
the weight of the cycle edge of that face is decremented
by ε/2. Similarly, for each expansion, the weight of each
of the two cycle edges is increased by ε

4 . It remains to
prove that the weight of each edge of G′

D satisfies con-
dition 2a of Theorem 5, if ε lies within a certain range.

Lemma 8 The weight of each edge e lies within the
range 0 < w(e) ≤ 1/2.

Proof. We prove this first for the extreme case where
a face f of G′

D shares all the backbone edge, as in Fig
4. First we show the upper bound of w(e). Each time
a backbone edge is expanded, the weight of each of the
two cycle edges which are the edges of two adjacent faces
of f is increased by ε

4 . Therefore, each such edge takes
extra at most ε

4 (k+1) from the weights, where k is the
number of backbone edges in G′

D or chords in G′. In an
outerplanar graph, k is exactly n− 3. To maintain the

upper bound of w(e), we need 1
n + ε(n−2)

4 ≤ 1
2 or ε ≤ 2

n .
Now we prove the lower bound of w(e). Each time

a backbone edge is expanded, ε
2 and ε

4 are subtracted
from the cycle and leaf edges of the face f respectively.
Therefore, it suffices to show that the final weight of



CCCG 2011, Toronto ON, August 10–12, 2011

cycle edge remains positive. After adjusting weights
for all backbone edges, the final weight of a boundary

edge is w(e) = 1
n − (n−3)ε

2 , as there are (n − 3) chords
in the outerplanar graph. Since the base weight 1/n
is always less than 1/2, w(e) < 1/2. To make w(e)

positive, we have to choose ε such that (n−3)ε
2 < 1

n or
ε < 2

n(n−3) . This completes the proof, with weights

assignments w(e) lying within the required range when
ε < min{ 2

n(n−3) ,
2
n}. �

3.2 Proof of non-coterminous cutset condition

A non-coterminous cutset is a cutset where all the edges
of the cutset do not emanate from a single vertex. A
non-coterminous cutset, like any other cutset, divides a
connected graph into two components, where each com-
ponent consists of at least two vertices. Since each ver-
tex in the primal graph is represented by a face in the
dual, the non-coterminous cutset in the primal is repre-
sented by a non-facial cycle in the dual. To prove the
non-coterminous condition 2c of Theorem 5, we show
now that for any non-facial cycle in the dual, the sum
of weights of the edges of the cycle is strictly greater
than 1.
For simplicity, let us consider a non-coterminous cut-

set where the non-facial cycle contains two adjacent
faces in the dual, as in Fig 5. Let e be the edge shared
by this two faces. According to condition 2b, the sum
of the weights of the edges of each of these two faces
is 1. Therefore, the sum of the weights of edges of the
non-facial cycle is 2 − 2w(e). Since the weight of any
edge is less than 1

2 , the weight of the cutset is strictly
greater than 1. It is important to note that this cutset
divides the primal graph into two components where
one component has only two vertices joined by an edge.
The two faces of the non-facial cycle represents these
two vertices in the dual and edge e is the dual of the
connecting edge in the primal.

e

Figure 5: The dotted lines show the non-facial cycle in
the dual graph. Edge e is the extra edge in the cycle.

Now consider a non-facial cycle C which contains n

faces f1, f2, · · · , fn. An edge ex is called an extra edge, if
it is shared by two faces fi and fj , where 1 ≤ i 6= j ≤ n.
Denote by k the extra edges in C and by wmax the
largest weight possible on any of these k edges (which is
essentially less than 1

2 ). In order to satisfy the condition
2c, we need n− 2kwmax > 1. We need an upper bound
of wmax (lower bound is trivially greater than 0). In
order to find that, we need an upper bound of k too.
Recall that the extra edges in any non-facial cycle

represent the edges of one of the two components. Since
a non-coterminous cycle divides the primal graph into
exactly two components, one of the components has at
least as many vertices than the other one. Therefore,
the number of vertices of the smaller component is v ≤
n
2 and the number of edges in that component satisfy
e ≤ 2v − 3 = n− 3. Therefore the upper bound of k is
n−3. Substituting this value in the equation above, we
get wmax < n−1

2(n−3) , where wmax is clearly less than 1
2 .

Finally, we need to convert wmax in terms of ε. Ini-
tially, in the contracted form, the cycle edges are as-
signed 1

n each and leaf edges are assigned n−1
2n each.

Both of these initial weights are within the bound of
wmax. Whenever a backbone edge of face fi is ex-
panded, the weights of cycle and leaf edges of fi are
decreased. The only edges whose weights are increased
are the cycle edges of face fi−1 and fi+1. Hence it is pos-
sible for these edges to violate only the wmax condition.
We get the bound of wmax based on these edges. The
maximum weights of such cycle edges are encountered
when the outerplanar graph is similar to the extreme
case stated in lemma 8. In that case, only one face fi
shares all the backbone edges and the cycle edges of
faces fi−1 and fi+1 incur maximum additional weights.
Since there can be at most n − 3 possible chords in
the primal or backbone edges in the dual, the weight of

each of these two cycle edge is 1
n + (n−3)ε

4 . Therefore,
the weights of these edges has to satisfy the condition

that 1
n +

(n−3)ε
4 ≤ wmax or 1

n +
(n−3)ε

4 < n−1
2(n−3) . Solving

this equation, we get ε < 2(n2−3n+6)
n(n−3)2 .

To satisfy both conditions 2a and 2c, we will choose

an ε such that 0 < ε < min{ 2
n(n−3) ,

2
n ,

2(n2−3n+6)
n(n−3)2 }

This concludes our main proof.
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