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Compu ta t i ona l  
G e o m e t r y  
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Illumination by floodlights 
William Steiger a,*'~,2, Ileana Streinu b,2 

a Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, USA 
b Department of Computer Science, Smith College, Northampton, MA 01063, USA 

Communicated by J. Urrutia; submitted 22 February 1996; accepted 14 July 1997 

Abstract 

We consider three problems about the illumination of planar regions with floodlights of prescribed angles. 
Problem 1 is the decision problem: given a wedge W of angle 0 ~< 7r, n points P l , . . .  ,P~, in the plane and 

12 
n angles c~l,...,c~,~ such that ~ i = l  c~i ~< 0, decide whether W can be illuminated by floodlights of angles 
c t l , . . . , c~ ,  placed in some order at the points P l , . . .  ,p~ and then rotated appropriately. We show that this 
problem is the exponential time and a specialized version of it (when 4) = 0) is in NP. The second problem 
arises when the n points are in the complementary wedge of W and 0 /> & Bose et al. have shown that 
a solution exists and gave an O(nlogr~) algorithm to place the floodlights. Here we give a matching lower 
bound. Problem 3 involves the illumination of the whole plane. The algorithm of Bose et al. uses an O(n log n) 
tripartitioning algorithm to reduce problem 3 to problem 2. We give a linear time tripartitioning algorithm of 
independent interest. © 1998 Elsevier Science B.V. 

1. Introduction and summary 

Illumination problems have a niche in Combinatorial and Computational Geometry, for example 
in the area of Art Gallery theorems and algorithms (e.g., see [16]). Traditionally, the sources of 
i l lumination were light bulbs, sending rays in every direction. The goal was to illuminate a given 
region of  IR 2. Here  we use floodlights, sources of  light which are constrained to shine within a cone of  
a fixed angle c~. The cone may  be placed at a point p and then oriented (rotated) as desired. Il lumination 
by floodlights has recently begun to receive some attention. The paper  of  Bose et al. [3] posed some 

of  the questions. Related work appeared in Czyzowicz  et al. [6], Estivill-Castro and Urrutia [11], 
Estivill-Castro et al. [10], and Steiger and Streinu [19]. 

In the 2-dimensional  Floodlight Problem [3], n points (sites) P l , . . . , P n  are given, together with zz 
angles c~l, • . . ,  c~,~ meant  to describe the spans of  n floodlights. The task is to make an ass ignment  of  

* Corresponding author. E-mail: steiger@cs.rutgers.edu. 
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Fig. 1. A wedge W'  at q and the generalized wedge W. 

a floodlight to each point (a matching), and a way to orient them by rotation, so that a given target 
region W is illuminated. The decision problem asks if this can be done. If so, the algorithmic problem 
is to actually place each floodlight at a point and then orient them so W is illuminated. 

In this paper targets are generalized wedges W of angle 0 <~ 7r. A wedge W ~ of size (or angle) 0 at 
a point q is the region in R 2 between (and including) two rays from q, A and p, which span an angle 0. 
The generalized wedge W is any unbounded, convex, polygonal subset of W ~ (even W ~ itself) whose 
infinite edges are infinite subrays of A and p (see Fig. 1). 

We will always label the left ray of a wedge (first in clockwise ordering) A and the right ray p. We 
say A is to the left of p. A point p E W t is left of, or before p and right of, or after A. In fact we can 
always arrange that the rays A and p point to the left of the vertical line through q, as in Fig. 1. Now 
the wedge W ~ is above the line through A and below the line through p. We will use these conventions 
throughout. A floodlight F of angle a is just a wedge of size a. If p E F we say F illuminates p. If 
a ray p from a point p is in F we say F illuminates p; W ~ illuminates A and p in Fig. 1. 

The decision problem asks whether floodlights of angles a l , .  • •, an can somehow be placed at sites 
P l , . . .  ,Pn so as to illuminate W. We study the decision problem in Section 2. A trivial case is when 

n ~--]i=l ai  </9, because then there is no solution. 
In general it is not obvious that the problem is even decidable, since the set of possible solutions 

is not countable. Indeed, a solution is given not only by a permutation 7- assigning the angle a~-(i) to 
the point p~, but it is also required to describe the angle of rotation for each floodlight, so we need a 
real number. In Section 2 we show how to express the decision problem in the first-order theory of 
the reals. This allows for the use of Tarski's result [21] on quantifier elimination in this theory and 
shows that the decision problem is decidable. By applying more recent results on the complexity of 
these problems, we show that the general decision problem is in exponential time. 

It also helps if n ~-'~i= l ai  =- 0, the tight floodlight problem. In this case we can show that the decision 
problem is in NE Any solution for the tight problem can be described in a certain standard form in 
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which the angles of rotation belong to a finite set. The set of candidate solutions is of size (n!) 2 and 
the verification can be achieved in polynomial time. 

This characterization of the tight problem involves two existential quantifiers, each going over the 
set of all permutations of n items. If we fix one of these permutations, the resulting floodlight problem 
admits a nice characterization using duality. As a by-product, we can characterize situations when the 
solution is unique. We also analyze the number of possible solutions for the tight problem, and show 
that it can be exponentially large, even if all floodlight angles are equal. 

When W is a wedge of size 0 ~< re, the sum of the angles is at least 0, and all the points are in the 
complementary wedge W1 (see Fig. 1), then there is always at least one solution. Bose et al. [3] have 
given an O(n log n) algorithm to find a solution. In Section 3 we prove a matching lower bound by 
reduction to sorting. 

The third problem arises in connection with illuminating the whole plane with angles, each less 
than re and summing to at least 2re. Bose et al. [3] solved this problem by reducing it to the wedge 
illumination problem. The reduction involved construction of a certain tripartitioning where the rz points 
are split into three wedges determined by three rays originating from the same point, each of a 
prescribed angle, and each containing a prescribed number of points. This tripartitioning was achieved 
in time O(n log r 0. In Section 4, using a simple prune-and-search, we give a linear time algorithm of 
independent interest. 

2. The decision problem 

Let W be a generalized wedge of size 0 ~ re (see Fig. 1) and suppose rz sites P l , . . .  ,Pn and 
n floodlights with angles c q , . . . ,  c~n are given. We must decide if it is possible to illuminate W with 
these lights. To place floodlight j at Pi we assign a wedge Ej of size c~j at Pi and then orient it. The 
question is whether 

n 

UF . 
j = l  

(l) 

The following lemma establishes a necessary condition. 

I TL Lemma 1. ~ }-~,i=l c~i < O, then for  any points P l , .  . . , Pn and any generalized wedge W of  angle 0 
the f loodlight problem has no solution. 

Proof. Suppose rz = 1. For any point Pl, a wedge F1 at Pl of size c~1 < 0 meets W in a proper 
subset of W; in fact it must exclude an infinite sub-wedge of W. This is the basis for an induction. 
Assume the lemma is true for each j ~< n; thus given 0' E (0, re], if c~1 + -. .  + c~j < 0', then no 
placement of floodlights of sizes c~i at any j points can illuminate a wedge W of size 0'. Now, by way 
of contradiction, suppose that W is a wedge of size 0 that can be illuminated by angles c q , . . . ,  c~,,+1, 

X--~n+ 1 placed at some r~ + 1 points, and that z_~i=l c~ < 0. Pick a point (say, Pl) which illuminates the point 
at infinity on the ray p and let F denote the wedge (say of size ~5) illuminated by this floodlight. 
Suppose Pl E W~ tO W2 (see Fig. 1 for notation). In this case W \ F is a wedge of size at least 0 - 0 
which must be illuminated by r~ floodlights with total size < 0 - O, an impossibility by the induction 
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hypothesis. The case Pl E W3 is the same. If Pl E W t a subset of W \ F is a wedge of size at least 
0 - ¢. The details are omitted. [] 

Setting aside the trivial instances we want to make the following observation. 

Observation. The general floodlight decision problem is in exponential time. 

Proofi We use known results about the complexity of decision procedures for the first-order theory of 
the reals. Formulas in the first-order theory of the reals are built up as follows. First, they have a block 
of existential and universal quantifiers running over real variables. This is followed by a quantifier-free 
formula, which is a Boolean combination of atomic formulas. Each atomic formula is a polynomial 
inequality in several free variables. For example, (ax + by + c > 0) and (atx + bty + d > 0) are two 
atomic formulas, each true for points (x, y) in an open halfspace of ]R 2. The Boolean combination 
(ax + by + c > O) A (a'x + b~y + d > 0) describes a certain wedge. We abbreviate this formula by 
Wedge(x, y, a, b, c, a ~, U, d),  with parameters a, b, c, a ~, b t, d and free variables x, y. To say one 
wedge contains another we write 

VxYy (Wedge(x,y,a,b,c,a' ,b' ,c ')  --~ Wedge(x , y ,d , e , f , d ' , e ' , f ' ) ) .  

Similarly, given coordinates for two points p and q and two angles a and/3 (or perhaps the values 
of the trigonometric functions tan a and tan/3) we can describe with a quantifier free formula the fact 
that q belongs to the wedge at p of size a whose first ray in clockwise ordering makes an angle/3 
with the x-axis. Write Flood(q, p, a,/3) for this predicate. 

To express the floodlight decision problem in the first-order theory of the reals, first assume that 
the permutation matching angles to points has been fixed (with no loss of generality take it as the 
identity). The decision problem asks about the existence of angles of rotation of the floodlights so that 
the given wedge is fully illuminated, i.e., whether (1) can hold. This in turn is equivalent to the truth 
of a formula of the form 

3 ~  . . .  3 ~  VxVy 

(Wedge(x,y,a,b,c,a' ,b' ,c ')  -+ Flood(x,y, pl,al,/31) V . . .  VFlood(x,y, pn, an,/3n)). (2) 

The formula has n existential quantifiers, ranging over angles of rotation, and two universal quantifiers, 
going over the coordinates of a point. It has O(n) variables and is of linear size. 

Tarski [21] has shown that the decision problem for formulas like (2) are decidable, but his pro- 
cedure is quite complicated. Subsequent advances described decision procedures which were doubly 
exponential in n, and recently Grigor'ev [13] has given a procedure which is double-exponential in 
the number of quantifier alternations. Since there is one such alternation in (2), there is a decision 
procedure for the floodlight problem which has complexity 2 cnk for some constants c > 0 and k > l 
(independent of n). 

Now we repeat this procedure for each of the n! formulas arising from a particular assignment of 
angles to points. The complexity is 2 cnk+nl°gn+an, or  2 c'nk. [] 

We note that Grigor'ev's algorithm also depends on the bit precision of the inputs, so it is not a 
real RAM algorithm. 
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2.1. The tight floodlight decision problem is in NP 

I f  Ein__l O~ i = O, the illumination problem is said to be tight. In this case the previous observation 
can be substantially improved, as the section-heading states. The reason is that any solution for a tight 
floodlight problem has a nice combinatorial characterization which allows one to read off the angles 
of rotation from a pair of permutations of { 1 , . . . ,  n}. Lemma 1 is basic to the proof of the following 
theorem. 

Theorem 1. Consider an instance of  the tight floodlight problem for  a generalized wedge W o) r 
size 0 defined by rays A and p from q, with points P l , . . .  ,Pn and floodlight angles a l , . . .  ,an,  
0 = al + " "  + an. Then there is a solution if and only if there are permutations ~r and 7- of  { 1 , . . . ,  r~} 
so that: (1) floodlight 7-1 with rays A1 and Pl is placed at Pa~ and illuminates the point at ~ on p; 
then (1 < i <~ n) floodlight 7-i with rays Ai and Pi is placed at Pa~ and illuminates the point at ~ on 
Ai-1; also floodlight ~:r~ illuminates the point at oe on A. This means the following conditions must 
hoM: 
(1) Pal is above p and Pl is parallel to p; 
(2) Pa~+~ is above Ai and Pi+l is parallel to Ai, i = 1 , . . . ,  r~ - 1 (so An is parallel to A); 
(3) Pa~ is below A. 

Remark  1. These conditions say that (1) floodlight ~-l, is placed at Pa~ above p, has angle 0%, and is 
oriented so its right ray, Pl, is parallel to p. Next, (2) floodlight 7-2 is placed at Pa2 above A1, has angle 
ar2, and is oriented so its right ray, P2, is parallel to Al. In general (i > 1) floodlight 7-i is placed at Pa~ 
above Ai-1, has angle a~-~ and is oriented so its right ray, Pi, is parallel to Ai-1. Point Pan must also 
be below A. These conditions and tightness imply that An is parallel to A, and below it. The matching 
# of floodlight i to point/zi is given by # -- cr-l('r). We call this the standard representation of a 
solution. 

Proof. The sufficiency is obvious. The necessity is an induction on n. The basis, n = 1, is trivial 
since there is a solution only if Pl is in the complementary wedge W1 and the floodlight has sides 
parallel to A and p. 

Now assume we have a solution with n + 1 points and write Pa, for the point whose floodlight, 
F ,  illuminates the point at infinity on the ray p. Let its angle be a~-~ and denote its rays by A1 and 
Pl. If Pa~ is above p then Pl must be parallel to p. Otherwise we could decrease the angle a~- 1 (by 
rotating Pl counter-clockwise) and still illuminate W, in contradiction to Lemma 1. In this case then, 
the induction hypothesis applies; there are n remaining points and W \ F is a generalized wedge of 
angle 0 - a~-~. 

On the other hand Lemma 1 implies there can be no solution when Pal is below p. In this case, 
W \ F contains a generalized wedge of size greater than 0 - a~-~. [] 

The following statement is easily obtained from Theorem 1. 

Corollary 1. The tight floodlight problem is in NP. 

A nondeterministic algorithm will guess the permutations of points and angles in the standard 
representation of the solution. For any such guess the conditions of Theorem 1 may be checked in 
linear time. 
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Fig. 2. A solution for a tight floodlight problem (n  = 3) when W is a generalized wedge at q. 

In Fig. 2 P~2 and per 3 are in the complementary wedge• In fact it is necessary that there be at least 
one point in this wedge if a solution exists• 

Corol la ry  2. If there exists a solution to a tight floodlight problem, at least one point must be in the 
complementary wedge. 

Proof.  If n = 1 this statement is clear. The details of the induction are similar to previous arguments 
and are omitted. [] 

2.2. Duality and some special cases 

Suppose we have a tight floodlight illumination problem within a wedge W of angle 0 formed by 
rays A and p, n sites p~, . . .  ,Pn, and n floodlights with angles ~ 1 , . . .  ,c~n, o~1 ÷ • ' "  71- O~ n ~ 0. By 
Theorem l any solution is characterized by two permutations, cr and 7-, as follows: the floodlight 7- 5 is 
used to illuminate p; it is placed at p ~ ,  has angle c~T~, and rays As and pl. In general the floodlight 7-i, 
i > l, is used to illuminate Ai- l ; it is placed at p ~ ,  has angle c~-~, and rays Ai and Pi. Things become 
easier if we restrict 7- to be, for example, the identity permutation. We call this the restricted problem. 
In these instances the order is fixed in which the floodlights are used in covering the sectors of  the 
wedge. This will simplify the decision problem and, when solutions exist, the algorithmic problem of 
actually matching the lights to points. In addition we can isolate instances where there is a unique 
solution. 

It will be convenient to work with a dual form of the problem. The duality transform T maps the 
point p with coordinates (x, y) to the line g = Tp with equation v = xu + y; the line g~ with equation 
y = m x  + b maps to the point T£ ~ = ( - m ,  b). It is familiar that this transformation preserves incidence 
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Fig. 3. The dual of a wedge W at q with rays A and p. Lines meeting the segment Ap from above (like p and r) correspond 
to points in W. Line p~ is in the complementary wedge; line p~ is in W~. The segment from L to R on p3 defines the dual 
of a floodlight placed at p3. It blocks (illuminates) p, but not r. 

and "above/below";  i.e., if p is above f (without restriction to y-coordinate) then T p  is above T f  in 
the dual. 

To describe the dual of  the wedge W p at q (as in Fig. 1), note that q becomes a line and the lines 
through A and p become points. By our labeling convention A has the larger slope so it is the point 
with smaller x-coordinate in the dual (see Fig. 3). 

The vertical line x = s through A contains the duals of  lines parallel to A. Points above A correspond 
to lines of  the same slope, - s ,  and larger intercepts. The same for the line x = t, t > s, through p. 
The set of  lines T W  ~ joining a point on x = s above A (dashed part on Fig. 3) to a point on x = t 
below p (dashed part in Fig. 3) is the dual W ~. The vertical strip between x = s and x = t must reflect 
the fact that A and p are rays subtending an angle 0, and having slopes - s  and - t ,  respectively. The 
relation is 0 = tan - I  t - tan -1 s; it depends on the location s and width t - s of  the strip. In Fig. 3 
the segment L R  on P3 defines the dual of  a floodlight F placed at P3- The vertical strip f rom x = Lx 
to x = Rx containing L R ,  reflects ¢, the size of  F via ~ = tan -1 R~ - tan -1 Lx.  The lines joining 
points on the dashed line above A to points on the dashed line below p that meet  L R  are duals of  
points covered by F .  In this way illumination o f  a point  p E W ~ by F dualizes to visibility blocking 

by L R  f o r  the pair  o f  points where T p  meets  x = s and x = t. n floodlights map to n segments, each 
on a different line. They cover  W iff their union blocks x = s above A from x = t below p. 

We now refer to Theorem 1 and dualize the characteristic placement of  floodlights in a solution to 
the tight problem. As before there will be two permutations, or, now for lines and 7-, for floodlight 
angles. 

T h e o r e m  2. Consider the dual o f  a tight f loodlight  illumination problem defined by the segment  Ap, A 
on x = s and p on x = t, s < t, with lines p~ and f loodlight  angles o~i. Every  solution is characterized 
by permutat ions o" and 7-. The latter induces n infinite vertical strips between x = s and x = t. 
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Fig. 4. Dual solution for the tight floodlight problem in Fig. 2. 

Strip i is x = ai on the left a n d  x = a i_ l  on the right, where  s = an < "'" < ao = t and  

tan - l  ai - tan -1 a i - i  = a~-~ (i.e., it dual i zes  f lood l igh t  7-i). In addi t ion 

(1) In strip i we  use p ~ .  This def ines  the s e g m e n t  Aipi = (strip i) A p ~ .  (There fore  Pl a n d  p have  

x - coord ina te  t a n d  Pi+l a n d  Ai have  x -coord ina te  ai. An and  A have  x - coord ina te  s.) 

(2) p ~  is above  p. p,~+, is above  Ai, i = 1 , . . . ,  n - 1. p~,,~ is be low  A. 

R e m a r k  2. Segments satisfying 1 and 2 are necessary and sufficient to block the visibility of x = s 
above A from x = t below p. Fig. 4, the dual of  the problem in Fig. 2, illustrates these conditions. 

R e m a r k  3. In [3] it was shown that if all points were in the complementary wedge then the tight 
illumination problem has a solution. It is easy to deduce this fact directly from Theorem 2. We are 
given n lines P l , - - . , P n  each meeting x = s below A and x = t above p. We will choose "r, take 
a0 = t, and define ai to satisfy tan -1 a i - t a n  -1 a i - l  = c~r~, i = 1 , . . . ,  n (so an = s). To compute or, we 
use the following greedy procedure: an is the line with maximal intercept at x = an-1 and thereafter 
for i < n, cr~ # crj, j > i, is the remaining line with maximal intercept at x = ai-1 .  It is trivial to 
prove by induction that the conditions of  Theorem 2 are satisfied. This simple argument is a good 
example of the power of  geometric duality. 

Floodlight placement is limited by the conditions of  Theorem 2 (or 1). In the res tr ic ted t ight 
i l lumination p r o b l e m  it is further limited by requiring that ~- be fixed, for example as the identity 
permutation. As we shall see in the next section there are situations in which there is a unique 
placement. Nevertheless it is still possible that restricted, tight illumination problems can have many 
solutions. 

L e m m a  2. There is a restricted, t ight  f lood l igh t  p r o b l e m  that  has  at  least  2 n/3 solutions.  
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Fig. 5. Three floodlights with two placements. 

Proof.  We sketch the idea for a simple construction that builds on 3 floodlights which have two 
illuminating placements. Fig. 5 shows three lines and three strips. In the middle strip between a2 and 
al we will always use line 2. For solution 1 we use line 1 in strip 1 and line 3 in strip 3; for solution 2 
we use line 3 in strip 1 and line 1 in strip 3. Both satisfy the conditions in Theorem 2. Now take n / 3  
adjacent groups of  strips, 3 adjacent strips in each group. We also take n/3 groups of lines, 3 lines 
per group. The groups can be made to obey the following condition: (1) all lines are below A at x = s 
and above p at x = t; (2) lines in group i have no intersections with lines in group j between x = s 
and x = t, i ~ j ;  (3) lines in group i are below lines of  group i + 1 on [s, t]. According to Theorem 2, 
there will be a solution as long as we use lines in group i on strip i. Finally, on strip i, the lines of 
group i can be made to meet as in Fig. 5, i = 1 , . . . ,  n/3. This means that in strip i there are two ways 
to choose how to use the 3 lines in group i, i = 1 , . . . ,  n/3, or at least 2 n/3 solutions overall. [] 

R e m a r k  4. It is easy to improve Lemma 2 by using the 3 lines recursively (3 groups of 3 lines each, 
9 groups of 9 lines each, etc.) rather than inductively. In this way we can give a lower bound of (cn) 6n 
for the number of solutions, b, c > 0. 

3. A lower bound for floodlight placement 

In [3] it was shown that if all points were in the complementary wedge then the tight illumination 
problem has a solution. In addition an algorithm was described and showed to have complexity 
O(n log n) when measured in the unit cost RAM model. The algorithm is based on divide-and-conquer. 
Viewed in the dual, it splits the lines into two groups of  size n/2 each; group 1 are the lines with 
less than median intercept at x = aL,~/2 j and group 2 are the rest. The algorithm proceeds recursively 
on Is, aLn/2]] using group 1 and then on [aL~/2j, t] using group 2. Clearly the combined solutions to 
the two subproblems satisfy Theorem 2 and the complexity is O(n log n) plus the cost to compute the 
a~'s (see the crude algorithm of Remark 3). 
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In fact that algorithm is optimal. Any algorithm for a tight illumination problem that outputs the 
polar angles of  the two rays Pi and Ai incident with p~ so the input wedge is covered can also sort 
arbitrary inputs. To prove this we begin by describing a class of  inputs where the restricted problem 
has a unique solution. 

Lemma 3. The res tr ic ted t ight f lood l igh t  p r o b l e m  with n lines Pl , • • •, Pn that m e e t  x = s be low  A 
and  x = ~ above  p a n d  have  no pa i rw i se  in tersect ions  be tween  x = s and  x = t, has  a unique solut ion 

in wh ich  cri < ~rj i f f  Pi is be low  p j  on [s, ~]. 

Proof. The angles are arbitrary (but fixed), so take any a0, a l ,  • • •, an satisfying s = an < - - - < a0 = t 
and understand that c% = tan -1 ai - t a n  - l  a~_~. Number  the lines so Pi is below pi+l between x = s 
and x = t. The claim is that we must have cri = i (i.e., we use line i in strip i). Suppose the claim is 
true when we have j lines, j < n. Now, with n lines and n strips take any n - 1 of  the lines on the 
first n - 1 strips (from an 1 to t). On strip i we must take the ith of  these lines, by induction. But by 
Theorem 2, at x = a n - l  in strip n, we must have Pn above An-1. This is only possible if line Pn is 
left over from the first n - 1 strips, so the claim is also true when j = n. [] 

R e m a r k  5. Lemma 3 dualizes a problem where all n points are in the complementary wedge W1 and 
the line through every pair misses W. The condition on cr says that in the primal, if we order the 
points according to vertical distance above the line through p, then P~I is first, P~2 is second, etc. 

We now prove the following theorem. 

Theorem 3. A n y  R A M  algor i thm f o r  the tight f lood l igh t  i l luminat ion p r o b l e m  has  complex i t y  
U2(n log n). 

Proof .  We reduce to sorting by a linear decision tree. Given inputs h i , .  • • ,  bn, compute m = min(bi) - 
1, ci = bi - m ,  and Pi = (ci, 1 /c i ) ,  i = 1 , . . . ,  n. This has cost O(n)  and the Pi are on the curve 
y = 1 / x ,  sorted by x-coordinate in the same order as the inputs. 

We use n floodlights, each with angle ¢ = 7r/2n at the pi and try to illuminate the third quadrant. 
Since all angles are the same we may regard the floodlight angle order as fixed. Lemma 2 may be 
applied to guarantee a unique solution for or. In this solution, according to Theorem 2, Pi = 7r + ( i -  1)¢ 
and Ai = 7r + i¢  define the floodlight at p ~ .  The primal form of  Lemma 2 says that p~,~ is the point 
with ith largest x-coordinate.  From the list of  the 2n rays and the n points to which they are matched, 
we can just read off  the permutation of  the original inputs. [] 

4. Tripartitioning in the plane 

The tripartitioning problem has inputs which are P l , - . . ,  Pn, n given points in the plane, angles 
0j, 02, 03 which sum to 27r, and positive integers kl, k2, k3 which sum to n. The output is a 
tr ipart i t ioning c law defined by these parameters. A c law of  size 01, 02, 03, is a point q and three 
rays Pl, P2, P3 which emanate from it; rays Pl and P2 define wedge W1 of  size 01; rays P2 and 
P3 define wedge W2 of  size 02; rays p3 and Pl define wedge W3 of  size 03. A claw tr iparti t ions 
iff there are ki of  the points in wedge Wi .  Bose et al. [3] have given an O(n  log n) algorithm for 
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constructing a tripartitioning and then used it as a key part of their floodlight illumination algorithm. 
In this section we present a new tripartitioning algorithm that is of independent interest. In particular 
it has complexity O(n). 

Theorem 4. Given ~ points P l , . . .  ,pn in general position in the plane, angles 01, 02  and 03 = 
27r - 01 - 02, and positive integers kl, k2, k3 = ~ - k l  - k 2 ,  the complexity of  tripartitioning the 
points according to the parameters is ®(n). 

Proof. We prove the theorem by giving an O(n) algorithm. First we show that a tripartitioning claw 
always exists. The existence proof can easily be turned into an O(n log n) algorithm, which we then 
improve to linear time. 

Let S = { p j , . . .  ,p~} denote the points. Consider parallel lines Ll and L2, (i) incident with no 
points of S, (ii) not parallel with a line through any pair of points, (iii) L1 having kl points of S on its 
left, and (iv) L2 having k3 points of S on its right (see Fig. 6). Now: (1) take a point B1 on Ll such 
that the ray Al (obtained by rotating LI counterclockwise through BI by 01 radians), has kl points of S 
above it; (2) take a point/32 on L2 such that the ray P2 (obtained by rotating L2 clockwise through/32 
by 03 radians), has k3 points of S above it; (iii) take a point A1 on L1 such that the ray Pl (obtained by 
rotating Ll clockwise through A1 by 03 radians), has k3 points of S above it, and k2 below; (iv) take 
a point A2 on L2 such that the ray A2 (obtained by rotating L2 counterclockwise through A2 by 01 
radians), has kl points of S above it, and k2 below. Note that all this can be performed in linear time 
using the fast selection algorithm of Blum et al. [2]. 

The two configurations in Fig. 6 are degenerate claws: in the left one, e.g., the region above A1 to 
the left of L1 is a wedge of size 01; the region above Pl to the right of LI is a wedge of size 03; the 
region below Al and Pl is a degenerate wedge of size 02. Now observe that given a line L with i + kj 
points to its left and j + k3 points to its right, i, j >/ 0, i ÷ j = k2, we can construct a degenerate 
claw of sizes 0j, 02, 03 that tripartitions the rz points to the left of L as follows: first find the slope 
(say rrz) of Al and then adjust the intercept of the line y = rnx so/el of the points to the left of L are 
above; then find the slope (say rn') of Pl and then adjust the intercept of the line y = mZx so k3 of 
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Fig. 6. Existence of a tripartitioning claw. 
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the points to the fight of L are above. The degenerate wedge just constructed will have i + j points, 
i to the left of L and j to the right. 

Without loss of generality in Fig. 6, we only consider the case when A1 is above/31. Otherwise, if 
no point of S were below Al, we could move A1 down until/31 = Al. The rays A1 and Pl and the ray 
pointing up along L1 from At would form a tripartitioning claw at q = A1. Similarly we only need 
to consider the case when A2 is above B2. 

To prove the existence of a tripartitioning claw, note that k2 points of S lie between lines LI and 
L2. We will move L1 to the right, crossing these points one at a time (assume also that no pair of 
points of S is on a line parallel to A~, or Pl). Each time L1 moves across some point P ,  we will 
move A1 up and Pl down - as necessary - to maintain kl points above /~1 and k3 points above Pl. 
For example, if P is above Al after L1 moves past P ,  Al would move up to cross one point of S; 
otherwise AI doesn't move. If P was above Pl before L 1 moved past P ,  Pl moves down one point; 
otherwise Pl doesn't move. This defines a step, namely moving L1 past the next point, adjusting AI 
up one point if necessary and pl down one point if necessary, so the degenerate claw still tripartitions. 
Since/32 is below A2, there must be a point P ,  where P l n  L1 is below Am n L 1 after the step at P ,  
but Pl N L 1 is above )k I N L 1 before the step at P.  By continuity, after the step at P ,  Pl and A1 may be 
moved without crossing any points so they meet at a point on L~; i.e., we have a tripartitioning claw. 

This argument also implies an O(n logn) algorithm based on knowing the sorted orders of the 
points in the directions orthogonal to L1, tO Pl, and to A1. Once this is known, each of the "steps" 
described above brings a new point to the right of L1, above Al, and below Pl, and the moves can 
be performed in constant time. To improve this crude approach to O(n), we use linear-time selection 
together with "prune-and-search", as follows. Among the k2 points between L1 and L2 we select qj, 
the (jk2/lO)th closest point to LI, j = 1 , . . . ,  9, in linear time. Just to the left of each qj we construct 
(in time O(n)) the directed vertical line gj and the degenerate claw with rays "~j parallel to A1 and 
~j parallel to Pl; ~j has k 1 points of S above it and 6j has k3. Note also that 7j has jk2/lO points 
below it. All 9 degenerate claws can be constructed in linear time. Let g0 = LI and gl0 = L2. Then 
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Fig. 7. The prune-and-search. 
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there is an adjacent pair gj, gj+l, j = 0 , . . . ,  9, where 7j Agj is below (Sj Ngj but '~j+l f-'l gj-t-I is above 
~5j+1 N gj+l (see Fig. 7). 

We are able to delete a fixed fraction of the kl + k2 + k3 points because: 
(1) There are nl = 9k2/10 points below 7j or below 6j+l and these points must be in W2 in the final 

partitioning. They are in W2 because if we make a "step" right from gj, 7j moves up; if we make 
a step left from gj+l, 6j+l also moves up. 

(2) There are n2 = min(0, kl - k2/10) points above 7j - and furthest from it in orthogonal distance 
- which must be in W1 in the final partitioning. The reason is that as gj steps towards ~ j+ l ,  "YI 
will move up at most k2/10 points before the tripartitioning claw is discovered. 

(3) There are n3 = min(0, ]C 3 -- k2/10) points above 6j+1 - and furthest from it - which must be in 
W3. The explanations is as in (2). 

We may delete all nl + n2 + n3 points whose final wedge is known and continue searching between 
gj and gj+l for the tripartitioning of the remaining points that agrees with the one we seek. Specifically, 
if k~ = k~ - hi, i = l, 2, 3, the ktl , kt2 , k~3 partition of the remaining points agrees with the original hi, 
k2, k3 partition. It will exist at a claw between the degenerate claws at gj and gj+l. Since nl + r~2 ÷ n3 
is at least 3n/10 the entire algorithm is linear. [] 

R e m a r k  6. Streinu [20] described a different linear time tripartitioning algorithm. It used a somewhat 
different prune-and-search. 

In an important paper on triangulations in IR a, Avis and E1Gindy [1] consider a simpler case of the 
following problem: given n points in a triangle T c R 2, construct a point P E T so that the rays from 
P to the vertices o f t  form subtriangles containing prescribed numbers, kl ~> 0, ]¢2 ) 0, n - - k  I --]¢2 ) 0 
of points of T. They gave an O(n log n) algorithm for the simpler version. On the other hand it is 
straightforward to modify our prune-and-search to solve this general problem in linear time. Instead 
of sweeping L1 across the points we rotate a line al through one of the vertices, say Vl, passing the 
points one at a time. Instead of moving a ray A1 up in each step we will rotate a line a2 from vertex v2 
so as to keep kl points above a2 and to the left of al, etc. This analogue of the O(n log rz) sequential 
algorithm is improved to O(r~) via prune-and-search. The improvement may be useful because the 
Avis-E1Gindy algorithm has been applied to other problems such as quadrangulizations (see [4], for 
example). 
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