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ABSTRACT
Given a 3D polygonal chain with fixed edge lengths and
fixed angles between consecutive edges (shortly, a revolute-
jointed chain or robot arm), the Extremal Reaches Problem
asks for those configurations where the distance between the
endpoints attains a global maximum or minimum value. In
this paper, we solve it with a polynomial time algorithm.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-
ity]: Non-numerical algorithms and problems—Geometrical
problems and computations

General Terms
Algorithms, Theory

Keywords
robot arm, reach problem

1. INTRODUCTION
We present the first polynomial time algorithms for the

Maximum and Minimum Reach problems: given a 3D polyg-
onal chain with fixed edge lengths and fixed angles between
consecutive edges (shortly, a revolute-jointed chain or robot
arm), find configurations where the distance between the
endpoints is extremal (absolute maximum or minimum),
and continuously reconfigure the chain to attain such an
extremum.

To put the problems in their proper context, we have to
introduce a more general concept which includes the polyg-
onal chain as a special case.

Revolute-jointed chains. Whenever we open an ordi-
nary door, we see a revolute joint in operation: one body
(the door) can rotate with respect to another (the wall),
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with the two bodies remaining attached along a common
hinge. When this type of connection is used repeatedly for
articulating, one after another, a series of rigid bodies, the
result is a revolute-jointed robot arm, or, in more geomet-
ric language, a body-and-hinge chain, illustrated in Fig. 2(c).
The terminology in robotics uses link for a body and joint or
turning axis for a hinge. A revolute-jointed robot arm is also
called a serial manipulator with revolute joints. We empha-
size from the beginning that our geometric models have no
rotational limitations around the hinges and no self-collision
prohibitions.

General kinematic properties of robot arms are normally
investigated under these ‘ideal’ assumptions not only for the
sake of theoretical coherence or uniformity but also as a
benchmark level for evaluating the arm’s capabilities before
implementing ‘practical’ limitations resulting from specific
execution decisions and available technologies. For any given
‘ideal’ structure self-collision issues are obviously dependent
on the particular physical execution of the robot arm. It may
be mentioned here that shape designs which avoid physical
self-collision are always possible.

Under our ‘ideal’ assumptions, the shape of the bodies
making the chain is irrelevant. What matters is the rela-
tive position of the two hinges incident to each intermediate
body. Chains where the two hinges incident to each body
are coplanar are called panel-and-hinge chains. A panel is,
in this case, the plane spanned by two consecutive hinges.
The first (as well as the last) body is incident to only one
hinge and an endpoint, which together determine the first
(respectively the last) panel.

In Fig. 1(a) we show the type of robotic arm primarily
considered in this paper, arising from a 3D polygonal chain
with fixed edge lengths and fixed angles between consecutive
edges. The plural form means that, while each edge main-
tains its length, different edges may have different lengths
and similarly for angles: the angle between two consecutive
edges does not vary, but need not be the same for one pair of
consecutive edges and another. The fixed angle between two
rigid edges creates a rigid triangle, and thus the polygon can
be conceived as a chain of rigid panels. See Fig. 1(b). The
polygon edges, except the two extreme ones, act as hinges
between two consecutive panels. Polygonal chains can there-
fore be treated as generic panel-and-hinge chains.

Extremal Reaches. The first body (the base) is con-
sidered fixed, and the last body carries the end-effector or
hand of the robot which is abstracted as a marked point T .
When a point S is marked on the first body, we have two
‘ends’ (see Fig. 2(c)). The distance between S and T , as the
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(a) (b) (c) (d)

Figure 1: (a) A general polygonal chain, viewed in a standard (zigzag) flat configuration. (b) The polygon, turned

into a panel-and-hinge chain. All the edges of the polygon, except the two extreme ones, act as hinges (revolute joints)

and allow for hinge-like rotations of the two incident triangles (gray panels). (c) The endpoint axis, illustrated for

the zigzag flat configuration. (d) A corresponding 3D max reach configuration of the same chain, as calculated by the

algorithm from [6].

chain adopts various configurations, induces the end-to-end
distance function. It takes a continuum of values between
a certain minimum, which may be zero or non-zero, and a
certain maximum. The extremal reaches problem for
a given body-and-hinge chain asks for the determination of
these two values and of configurations achieving them.

A zero minimum means that T can reach the base-point
S. Finding the configurations with S = T is an instance
of the fundamental inverse kinematics problem described in
any robotics textbook (e.g. [14]). For a generic robot arm
with n ≥ 4 revolute joints, the solution space of this inverse
kinematics problem has dimension n−3. On the other hand,
a non-zero minimum means that S cannot be reached and
the minimum reach configurations will be, generically, iso-
lated and therefore in finite number. This sharp contrast is
the reason for setting apart the zero-minimum case, which
is not addressed in this paper.

Problem History and Importance. The extremal
reaches problem is fundamental in robotics, where it ap-
pears in robot design, placement in the environment, mo-
tion planning and performance evaluation. Robotic manip-
ulators are expensive mechanical objects, often designed for
specific tasks. Many practical robot arms have relatively
few degrees of freedom (dofs), usually up to 6. Six degrees
of freedom are enough for performing locally any 3D rigid
transformation on objects held by the end-effector. Robot
arms with more than six degrees of freedom are called redun-
dant. One example is the Canadarm2 robotic manipulator
operating on the space station: it has seven revolute joints
and hence 7 dofs [12]. But recent applications are bringing
to the forefront the so-called hyper-redundant robots, with
large number of joints. In all these cases, the specifications
of the manipulator must include its reachability region, or
workspace.

The relevance of extremal reaches for the workspace deter-
mination problem has been recognized since the early days
of robotics [11, 15, 19]. An ACM best thesis award [10]
was given 25 years ago for an approximate computational
method. Models of articulated body-and-hinge structures
(from human limbs to snakes and caterpillars) appear abun-
dantly not only in the industrial applications of robotic ma-
nipulators, but also in biologically inspired robotics, robots

in surgery, nano-robotics, video game design, computer graph-
ics and animation. Most importantly, formulations based on
robot arm kinematics are applied to molecular conforma-
tions, in particular protein structures (see e.g. [7, 20]), and
the end-to-end length of a protein is a significant parameter
in mechanical unfolding and refolding experiments [13].

Although both extremal values are important, virtually
all previous investigations focused on the maximum reach.
A necessary condition, satisfied by all critical points of the
end-to-end (squared) distance function (points where the
differential is zero, which include the extrema) was identi-
fied in the early 1980’s [9, 11, 16, 19]. However, the number
of critical points increases exponentially with the number
of joints and the absence of a criterion for distinguishing
maxima and minima among them hampered computational
advances: neither gradient-based optimization nor Monte
Carlo sampling guarantee the correctness or accuracy of
their ”solutions”. Moreover, the numerical methods do not
scale up for large chains, as demanded by modern applica-
tions in nano-robotics or sampling of protein conformation
spaces.

In the computational geometry literature, a restricted ver-
sion of the problem appeared in the 2001 PhD thesis of Soss
at McGill University [17], who looked at the minimum and
maximum among all flat configurations of polygonal chains
with fixed edge lengths and fixed consecutive angles, and
showed these problems to be NP-hard. A formulation as an
optimization problem, and an analysis of the resulting nu-
merical approximation method is also presented in Chapter
6 of this thesis. This led to the conjecture stated in [8], p.
135, that the 3D version would also be NP-hard.

Recent contributions. Our recent theoretical results
[5], provide a complete characterization of the maximum
reach for body-and-hinge chains and a complete character-
ization of the non-zero minimum reach for panel-and-hinge
chains. We remind the reader that a panel-and-hinge chain
is a body-and-hinge chain which has any two consecutive
hinges in the same plane. A generic panel-and-hinge chain
has intersecting consecutive hinges, with no more than two
hinges incident in one point. The non-generic ones may have
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(b)
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Figure 2: (a) A general revolute-jointed robotic arm.

One end is a grounded base and the other is called an

end-effector. (b) The red hinge-axes (revolute joints) al-

low for hinge-like rotations. (c) The robotic arm viewed

as a body-hinge chain: a series of rigid bodies (shown as

tetrahedra) connected along the red hinges, which allow

rotations of one body relative to the neighboring one.

The start point S on the base and the terminus point T

on the end-effector are shown.

parallel hinges, or several hinges incident in one point. By
retaining, on each hinge, only the segment between the in-
tersection with its neighboring hinges and by joining S to a
point on the first hinge and T to a point of the last hinge, a
generic panel-and-hinge chain is equivalently represented as
a polygonal chain with fixed edge lengths and fixed angles
between consecutive edges. This is the model used by most
computational geometers who investigated revolute-jointed
robot arm problems [2, 3, 18]. When all the fixed angles are
equal to π

2
, we have an orthogonal chain.

In [6] we have shown that our theoretical characterizations
have important computational implications by giving opti-
mal linear time algorithms for the maximum reach problem
of a class of polygonal chains (characterized by a technical
property). This class will be referred to, from now on, as
zigzag foldable polygons. It includes the easier-to-define or-
thogonal chains, used in our previous papers as an alias for
the larger class. See Fig. 1(d) for an example of such a zigzag
foldable polygon which is not orthogonal. More recently, we
also obtained a linear time algorithm for the minimum reach
problem on zigzag foldable chains. This is the basis for the

theory and efficient algorithms developed in [4] for tracing
the precise workspace boundary of orthogonal chains.

The complete solution of the orthogonal case and the
strong combinatorial character of the theoretical criterion
for extremal configurations in the panel-and-hinge case, led
to our conjecture [6] on the possibility of polynomial time
algorithms for computing the extremal reaches of panel-and-
hinge chains.

Results. In this paper, we settle the polynomial time com-
plexity for the Extremal Reaches Problem of arbitrary polyg-
onal chains. We first prove a new structural theorem, valid
for all polygonal chains, which characterizes flat maxima in
terms of an empty ellipse criterion. Our algorithms are easy
to implement and have immediate applications to workspace
determination problems in robotics or computing geometric
parameters of protein backbones in bio-geometry.

Figure 3: Geometric and algorithmic classification of

revolute-jointed robot arms.

As in [6], the algorithms apply to three types of questions:

1. Extremal Reach Value: compute the maximum,
resp. minimum value of the endpoint distance func-
tion.

2. Extremal Reach Configurations: compute one (or
enumerate all) of the configurations that achieve the
global maximum, or global minimum endpoint dis-
tance, when this value is not zero.

3. Path Planning: given an arbitrary configuration of
the chain, reconfigure it to an extremal reach position,
when not zero; i.e. compute a trajectory in configura-
tion space ending at the extremal reach configuration.

The main effort (and the focus of this paper) goes into the
second problem. Once an extremal reach configuration has
been computed, it yields the extremal value, and it contains
the necessary information for computing the folding (dihe-
dral) angles that induce a path in configuration space using
classical forward kinematics techniques. We remark that
our results extend to arbitrary panel-and-hinge chains (not
necessarily the generic ones arising from polygonal chains).

A key element in our proofs is an empty ellipse criterion
for flat maxima. It is reminiscent of other distinctive struc-
tures in Computational Geometry, such as the empty circle
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Figure 4: Illustration of the natural order criterion for maximum, resp. minimum reach of polygonal chains. Extensions

of the thick hinge segments are shown with thinner lines. (a) This flat chain is in its global maximum position, since the

oriented segment ST crosses the hinges in the natural order. (b) The hinges are crossed here in a different order: this

flat configuration, although a critical one for the endpoint distance function, is not a maximum. (c) A configuration

in a flat non-zero minimum: the oriented projective complement of ST is crossed by the hinges in natural order.

property of Delaunay triangulations. We use it to develop
a procedure for “merging” recursively the solutions obtained
for subchains, in a dynamic programming fashion. Another
new theoretical tool introduced here is a form of projective
duality, in the panel-and-hinge case, between maximum and
minimum reaches. It turns the ellipse in the empty ellipse
criterion into a hyperbola, and leads to an extension of the
maximum reach algorithm to solve the minimum reach. This
is a context specific occurrence. The combinatorial charac-
terization of [5] for minima of panel-and-hinge chains does
not carry over to minima for the body-and-hinge case, indi-
cating that the minimum reach may be substantially more
difficult than the maximum reach. Likewise, the linear time
algorithm for maxima of orthogonal chains [6] does not carry
over to the case of minima, which requires non-trivial ideas
in order to stay within the same complexity class [4].

2. DEFINITIONS
A polygonal chain in 3D with n revolute joints (hinges)

is denoted by p = {p0, p1, · · · , pn+2}, and assumed to have
fixed edge lengths and fixed angles between consecutive edges.
The hinges correspond to the internal edges ei = (pi, pi+1),
i = 1, · · · , n. The two points p0 and pn+2 are referred to
as the endpoints of the chain, with S = p0 being the start
or origin, and T = pn+2 the terminus or end point. The
example in Fig. 1 has n = 6 hinges. Another way to look
at a revolute-jointed polygonal chain is as follows: the fixed
angle constraint turns all triplets of vertices pipi+1pi+2 into
rigid triangles, since the length of the edge pipi+2 is im-
plied by the other two and the angle between them. The
plane of the triangle is called a panel, and consecutive pan-
els pipi+1pi+2 and pi+1pi+2pi+3 are joined by the hinge ei+1

running through pi+1pi+2. Occasionally, we may use indices,
such as i, to refer to the point pi, or designate the intersec-
tion of two consecutive hinges Ai and Ai+1 by pi,i+1 = pi+1.
We emphasize that a hinge should be conceived as an entire
line, not just a line segment.

The set of all possible spatial positions of the vertices
which satisfy the edge length and angle constraints of a
revolute-jointed chain, up to rigid motions, forms the con-
figuration space of the chain. When all the panels are copla-
nar, we say that the panel-and-hinge structure is in a flat

configuration or simply flat. If the panels arise as triangles
from a revolute-jointed polygonal chain, a special standard
or zigzag configuration is distinguished, where two consec-
utive triangle do not overlap. Equivalently, the polygonal
chain turns, alternately, left or right at consecutive vertices.
Figures 1(a,b,c) show a chain with 6 hinges in its zigzag flat
configuration, while the chains in Fig. 4 are not in zigzag
configurations.

The endpoint axis is the line through S and T . It is divided
into two pieces: the finite segment [ST ] (the endpoint seg-
ment) and its projective complement ]ST [, consisting of two
infinite rays, thought of as connected by a projective point
at infinity. These ”segments” are oriented: [ST ] is oriented
in the usual way, from S to T , and the projective comple-
ment ]ST [ is oriented from S, away from T towards infinity,
and then, on the other ray, back from infinity towards T .

S TP34

P67

P23

P12

P45

P56

P78

A2
A1

A8

Figure 5: A panel-and-hinge chain in a 3D maximum

reach configuration. The segment from S to T intersects

all hinges in their sequential order. There are two fold

points, at p34 and p67, three flat pieces and two folding

panels, each induced by the pair of hinges incident to a

fold point.

The end-to-end or endpoint distance function assigns a
real non-negative value, the distance between the endpoints
S and T , to each spatial configuration of the chain. In fact,
the squared distance function is more convenient for compu-
tations. The endpoint distance varies between two extreme
values, the global minimum and maximum, with the possibil-
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ity of various other local minima, maxima, or other critical
values of the squared endpoint function.

It is known [9, 11, 16, 19] that in all critical configura-
tions, the endpoint axis meets all the hinges. When applied
to polygonal chains, three cases are distinguished: the end-
point axis meets hinge i (line through pi and pi+1) either
inside the segment pipi+1, outside it, or at one of the end-
points. Two or more consecutive hinges cut by the endpoint
axis away from their intersection point must be coplanar:
the panels between them are folded over in a flat configura-
tion. This leads to a structural decomposition of a polygo-
nal (panel-and-hinge) chain (in a critical configuration), into
(a) flat pieces and (b) fold points. The flat pieces arise from
contiguous segments of the chain (i.e. within an interval i
to j of vertex indices), in which several coplanar consecu-
tive hinges are cut (simultaneously, in their common plane)
by the endpoint axis. The flat pieces are connected at fold
points, which are those vertices of the polygon which meet
the endpoint axis. The two hinges incident at each fold point
determine, in addition, a simpler ”triangular” folding panel,
which is met by the endpoint axis only at the fold point.
These concepts are further illustrated with 3D examples in
[6]. They can also be observed in the 3D maximum reach
configuration from Fig. 1(d), although the 2D rendering of
3D space makes it more difficult to ”see”the geometry. Fig. 5
sketches this structural decomposition.

3. IDENTIFYING FLAT MAXIMA
The natural order of the hinges is 1, 2, 3, · · · as they ap-

pear on the chain. In [5], we proved that a body-and-hinge
chain is in a global maximum configuration if and only if
the oriented segment [ST ] intersects all hinges in their nat-
ural order. We also proved that for panel-and-hinge chains,
a non-zero minimum reach configuration has the property
that the oriented projective complement ]ST [ of [ST ] meets
the hinge axes in the natural order. This leads, in particular,
to a simple verification method for flat extrema, illustrated
with a few examples in Fig. 4.

A dual characterization of the global maximum as a con-
strained shortest-path is also proven in [5]: The global max-
imum of the endpoint distance function coincides with the
length of the shortest path from S to T which meets all
hinges in their natural order. This result allowed us to re-
cast the reach calculation as a constrained shortest path
problem. In [6], we identified those polygonal chains where
this constrained shortest path can be computed from the
standard zigzag configuration. In this case, an additional,
very special property holds: the endpoint axis cuts through
all the polygon segments, i.e. it meets the hinges in the in-
terior of their defining polygon segment, not outside. The
algorithm we gave in [6] works by finding a shortest path
from S to T constrained to lie inside the paneled polygon,
which is the union of all triangular panels, in the flat zigzag
position (see Fig. 1(b)). The shortest path is a polygonal
line: its intermediate vertices become the fold points of the
final max reach configuration. The panels crossed by the
shortest path segments become frozen to form a larger flat
panel. Viewed in isolation, as a smaller chain, the subchain
between two fold points attains a flat maximum in its zigzag
configuration. This is the reason we have chosen the name
zigzag foldable polygons for the class on which our previous
algorithm works, as referred to in the introduction and in
Fig. 3.

The final ingredient was a lemma stating under which con-
ditions the frozen panels, now forming themselves a panel-
and-hinge chain, can be folded in 3D, around the hinges
incident to the fold points, to allow for the shortest path to
straighten in 3D. These conditions (related to the triangle
inequality on the sphere) are always satisfied for orthogonal
chains. Fig. 1 shows a non-orthogonal example where this
approach works (in other words, the example in Fig. 1 is a
zigzag foldable polygon), and it is not difficult to produce
examples where it fails (such as Fig. 6(a)).

The chains for which the previous algorithm yields non-
foldable vertices on the shortest path from S to T con-
tain subchains which attain their maxima in flat but not
zigzag configurations (see Fig. 6(a)). The characterization
and identification of these non-standard subchain maxima
remains the main difficulty to overcome. We do it in two
steps. First, we handle the basic case of chains with no
more than two hinges. Then we show how to identify larger
flat chains from smaller flat ones.

Contextual comparison with previous approaches. It
is instructive, at this point, to comment on our results in the
context of previous work. Soss [17] proved that finding the
maximum (resp., minimum) among all flat configurations
is NP-complete. What is the relationship between his NP-
hardness result, and our polynomial time algorithm for flat
maxima? The difference is that Soss’ problem asks for the
maximum over a smaller set of configurations, and that max-
imum may not be a maximum over all 3D configurations. In
our case, when we know a priori that the maximum is flat,
we use the additional structure given by the empty ellipse
criterion. Without it, we would be reduced to trying all flat
folding patterns, which are exponentially many.

3.1 The case of two hinges: fold points and flat
patterns

Critical configurations of panel-and-hinge chains are, as
we indicated, subdivided into flat pieces connected at fold
points. A fold point must be located at the intersection
of two consecutive hinges. A local condition (the antipodal
triangle inequality), satisfied by three special angles traced
on the flat pieces at a fold vertex, has been derived in [6] as
a criterion used for identifying the fold vertices of (in this
paper’s terminology) the maximum reach configurations of
zigzag foldable polygonal chains. In [4], this is supplemented
with a criterion for minimum reach, which is a spherical
triangle inequality.

This leads to the following small subroutine (which we
call the two-hinge rule) for identifying the folding patterns
of extremal reach configurations for chains p0p1p2p3p4 with
two hinges, in constant time: (a) Calculate the three relevant
angles, ∠p0p2p1, ∠p1p2p3 and ∠p3p2p4, as in [6]; (b) Test
if they satisfy the spherical triangle inequality. If so, the
minimum reach of the chain is attained in a 3D position,
where the three panels fold, allowing the alignment in 3D
of the segments p0p2 and p4p2, by rotations about hinges
p1p2 and p3p2 incident to the fold vertex p2; (c) Test for
the antipodal triangle inequality, to see if the Max Reach
is attained in a 3D position. If so, the maximum reach
of the chain is attained in a 3D position, where the three
panels fold, allowing the alignment in 3D of the two line
segments p0p2 and p4p2, by rotations about hinges p1p2 and
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Figure 6: Four patterns of folding a 2-hinge chain which achieves both max and min reaches in flat positions.

p3p2 incident to the fold vertex p2. Finally: (d) Check all
the four flat positions, as in Fig 6, for flat extrema. We will
use this subroutine in our main algorithms.

Fig. 6 shows the four possible ways in which a 2-hinged
chain can fold flat: in the case illustrated here, both the
maximum and minimum reach are achieved in flat positions.

3.2 The Empty Ellipse Property
We turn now to our new criterion for flat maxima. Let

us consider a polygonal chain whose maximum reach is at-
tained in a flat (not necessarily zigzag) configuration. We
denote it by ST (not to be confused with the endpoint axis,
or the endpoint segment [ST ]). For an arbitrary vertex of
the polygon P , we denote by SP , resp. PT , the two sub-
chains from S to P , resp. from P to T . If the subchains SP
and PT are in flat configurations, then they induce a short
(three panels and two hinges) panel-and-hinge chain consist-
ing of the flat configuration of SP , the panel between the
two hinges incident at P , and the flat configuration of PT .
We say that we apply the two-hinge rule to this two-hinge
chain, when we determine its maximum reach, according to
the subroutine described above in Section 3.1.

In the sequel, by a proper vertex of a polygonal chain, we
mean one which is the intersection of two hinges, i.e. we
exclude p0, p1, pn+1 and pn+2. The main theoretical result
of the paper can now be stated.

Theorem 3.1. (Empty Ellipse Property) Consider a
polygonal chain from S to T which attains its maximum
reach in a flat configuration C. Let P be a proper poly-
gon vertex with the property that, in this maximal config-
uration C, the ellipse with foci at S and T , going through
P , contains, in its interior, no other proper vertices of the
polygonal chain in configuration C. Then the subchains SP
and PT are also in flat maximal configurations.

Let |SP | and |PT | denote the distance between S and P ,
respectively P ant T in the maximal flat configuration C.
Then, for any other proper vertex Q, we have:

|SP |+ |PT | ≤ Max{SQ}+Max{QT} (1)

where Max{SQ} and Max{QT} denote the maximum reach
of the subchain SQ, respectively QT .

Proof. It is a simple observation that when the max-
imum reach configuration is flat, then it is (generically)
unique. Indeed, when there are f fold vertices, the number
of configurations is 2f [5]. In a flat maximum reach config-
uration, let P = pi+1 be a proper vertex with the property
that the sum of the lengths of the two segments [SP ] and
[PT ] be minimal among such sums. Then the ellipse with
foci at S and T , going through P , is empty of all other
proper polygon vertices pj , j = 2, · · · , n. Indeed, the ellipse
is the locus of points with a given distance sum to the two
foci, and for points inside the ellipse, this sum decreases.

Let us denote by Ak the kth hinge of the chain, in this flat
maximum reach position, i.e. the line through points pk and
pk+1, for k = 1, · · · , n. Fig. 7(a) illustrates the argument,
which goes as follows.

Because the configuration is a maximum reach, the seg-
ment from S to T intersects all hinges in the natural order
in points ak = [ST ] ∩ Ak. But then these same hinges, for
k < i, will intersect the segment from S to P in the natural
order in points bk = [SP ]∩Ak, for otherwise we would have
a consecutive hinge crossing inside the ellipse. Similarly, for
i+ 1 < j, the hinges Aj intersect the segment from P to T
in the natural order. Applying our Maximum Reach crite-
rion, it follows that we have a flat maximum reach SP for
the initial sub-chain of the first i panels and a flat maximum
reach PT for the terminal sub-chain of the last n − i pan-
els. Moreover, the maximum reach for the full chain and for
the two-hinge chain (with just two hinges meeting at vertex
P = pi+1) coincide.

Relation (1) follows easily from the fact that, in the planar
configuration C, the sum of the lengths of the segments [SQ]
and [QT ] is at least |SP |+|PT |, since Q is not in the interior
of the ellipse, while each segment length is less or equal with
the maximum reach of the corresponding subchain.

This theorem shows that when we know that a plygonal
chain ST has a flat maximal configuration C, we can re-
construct this maximal configuration based on information
relating only to maximal reaches of proper subchains. In-
deed, we find first a proper vertex P such that

Max{SP}+Max{PT} ≤ Max{SQ}+Max{QT} (2)

for all proper vertices Q. Then P must be on the empty
ellipse of the maximal flat configuration C, hence the sub-
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(b) A flat minimum reach configuration dual to a flat
maximum reach configuration of the type illustrated
in (a).

Figure 7: A projective transformation between an el-

lipse and a hyperbola. This turns the correctness proof

for max reach into a correctness proof for min reach.

chains SP and PT must have flat maximal reaches. We lock
them in their maximal flat configurations and then obtain,
by the two-hinge rule, the flat maximal configuration C.

Figure 8 illustrates three chains in flat maximal reach con-
figurations and shows the corresponding ‘empty ellipses’.

We turn now to the main algorithmic results.

4. THE MAXIMUM REACH ALGORITHM
The overall idea and structure of our polynomial time al-

gorithm can now be described. The structural empty ellipse
property of maximum reach, proven in Theorem 3.1, leads
directly to the following recursive algorithm:

Algorithm 1. Maximum Reach (Recursive Version)
Input: A 3D chain p = {p0, p1, · · · , pn+1, pn+2}, n ≥ 0.
Output: The value of the maximum reach between the chain

endpoints and a max reach configuration.
Method:
Base cases. If n = 0 (no hinge), there is only one possible

configuration of the chain, which is of course maximum. If n = 1
(one hinge), the maximum is reached in a flat configuration, with
S = p0 and T = p3 on opposite sides of the hinge p1p2. When
n = 2 (two hinges), compute the maximum reach in constant
time.

Recursive step.
[1]. For each vertex pi of the chain which is the intersection

of two hinges, i.e. for i = 2, · · · , n:
[1a]. Compute recursively the maximum reaches ML

i and

MR
i of the two subchains Li = {p0, · · · , pi} and Ri = {pi, · · · , pn+2}.

[1b]. Compute the sum Si = ML
i +MR

i
[2]. Compute an index i achieving the minimum of Si (if

there is a tie, choose any of them), as well as maximum reach
configurations CL

i and CR
i . ”Freeze” these configurations, i.e.

consider them as rigid bodies. The endpoint p0 and the hinge axis
pi−1pi, resp. the axis pipi+1 and the endpoint pn+2, induce two
panels PL

i and PR
i rigidly attached to these bodies. They are also

rigidly attached to the concurrent hinges pi−1pi and pipi+1, in-
ducing a short panel-and-hinge chain qi = {p0, pi−1, pi, pi+1, pn+2}
with exactly two hinges.

[3]. Compute the maximum reach of the 2-hinged chain qi,
and output its value as the maximum reach value for the original
chain p. To obtain a maximum reach configuration, overlay the
frozen bodies CL

i and CR
i over their corresponding panels PL

i and

PR
i in the max reach configuration of qi. In particular, if vertex

pi was a fold point in the chain qi, it will be a fold point in the
large chain p. Otherwise, the flattening pattern at pi in the small
chain, is retained in the large chain.

The algorithm is not yet polynomial, due to superfluous
recursive calls. For the Dynamic programming version, we
maintain an array A = (aij) whose entries store the maxi-
mum reach information (value and configuration) for chains
cij = {pi, · · · , pj}. Then we just follow the steps of the re-
cursive algorithm, but when computing the entry for aij ,
instead of recursively calling the algorithm, we look up the
entries for aik and akj , i ≤ k ≤ j, which have previously
been computed and stored.

Complexity of the algorithm. The base case of n ≤ 2
hinges takes constant time. Each entry aij requires O(j− i)
steps to compute the minimum sum. This leads to an over-
all O(n3) time and O(n2) space complexity for intermediate
max reach values (some care is needed in storing the inter-
mediate max reach configurations, but we defer these details
to the full paper).

Finally, we turn to correctness.

Theorem 4.1. Algorithm 1 correctly computes the Max-
imum Reach, for generic chains.

Proof. In Step [3] of the algorithm, the maximum reach
for the small 2-hinge chain qi either leads to a fold point at pi
or is flat. In the first case, the correctness is straightforward:
by induction we assume that the maximum was computed
correctly for the two subchains Li and Ri; the endpoint
axes of the two subchains, p0pi and pipn+2, correctly cross
the axes in the two subchains, and when they get aligned
(in qi), this leads to global natural order. Notice that if the
maximum reach has several fold points, the minimum sum
in Step [2] will be achieved at all of them. The fact that
each choice is correct is straightforward. The proof reduces
to the case when there are no fold points, i.e. the max reach
of p is flat, which follows from Theorem 3.1 above.

5. THE MINIMUM REACH ALGORITHM
We describe now the algorithm for minimum reach. This

part is self-contained but the interested reader may find a
more detailed and intuitive discussion of (non-zero) mini-
mum configurations for orthogonal chains in [4].

Our algorithm will detect if the minimum reach value is
zero or non-zero and will obtain a minimum reach config-
uration for the non-zero case. As we already indicated in
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Figure 8: (a) In a flat max reach configuration, the ellipse with foci at S and T , going through the point pi computed

in Step 2, does not contain any other intersections of hinge axes. Notice that p1 and pn+1 are not proper vertices (i.e.

intersections of hinges), and for them there is no restriction on being inside the ellipse. (b) For a slightly different

chain, vertex 3 does not have an empty ellipse, although the chain is in a maximum reach position, but (c) the ellipse

is empty at vertex 4, where the minimum of the sums Si from step 2 is achieved.

the Introduction, the zero-case is special: the configurations
achieving it will be, in general, a high dimensional variety,
not a discrete set as in the non-zero case. Selecting any
one of them is an instance of inverse kinematics, a related
problem which falls outside the scope of this paper.

Algorithm 2. Minimum Reach (Recursive Version)
Input: A 3D chain p = {p0, p1, · · · , pn+1, pn+2}, n ≥ 0.
Output: The value of the minimum reach between the chain

endpoints and the collection of fold points.
Method:
Base case. If n = 0 (no hinge), there is only one possible

configuration of the chain, which is of course maximum. If n = 1
(one hinge), the minimum is reached in a flat configuration, with
S = p0 and T = p3 on opposite sides of the hinge p1p2. When
n = 2 (two hinges), compute the minimum reach in constant
time.

Recursive step.
[1]. For each vertex pi of the chain which is the intersection

of two hinges, i.e. for i = 2, · · · , n:
[1a]. Compute recursively the maximum reaches ML

i and

MR
i of the two subchains Li = {p0, · · · , pi} and Ri = {pi, · · · , pn+2}.

[1b]. Compute recursively the minimum reaches mL
i and mR

i
of the two subchains Li = {p0, · · · , pi} and Ri = {pi, · · · , pn+2}.

[1c]. Compute the differences DS
i = mL

i −MR
i and DT

i =

ML
i −mR

i .

[2]. Compute an index i achieving the maximum M of DS
i

and DT
i , for all i’s (if there is a tie, choose any of them), and, if

M > 0, also the minimum, resp. maximum reach configurations
CL

i and CR
i .

If M < 0, we conclude that the minimum reach value is
zero. (No particular minimum reach configuration is provided by
the algorithm in this case.)

Otherwise, we ”freeze” these configurations, i.e. consider
them as rigid bodies. The endpoint p0 and the hinge axis pi−1pi,
resp. the axis pipi+1 and the endpoint pn+2, induce two panels
PL
i and PR

i rigidly attached to these bodies. They are also rigidly
attached to the concurrent hinges pi−1pi and pipi+1, inducing a
short panel-and-hinge chain qi = {p0, pi−1, pi, pi+1, pn+2} with
exactly two hinges.

[3]. Compute the minimum reach of the short chain qi, and
output its value as the minimum reach value for the original chain
p. To obtain a minimum reach configuration, when the minimum
reach is non-zero, overlay the frozen bodies CL

i and CR
i over their

corresponding panels PL
i and PR

i in the max reach configuration
of qi. In particular, if vertex pi was a fold point in the chain qi, it
will be a fold point in the large chain p. Otherwise, the flattening
pattern at pi in the small chain, is retained in the large chain.

Note that M > 0 always implies a non-zero minimum
reach. It will be seen from subsequent arguments that (un-
der our genericity assumption) the case M = 0 can occur
only for n = 2.

Theorem 5.1. Algorithm 2 correctly computes the Mini-
mum Reach, for generic chains.

The reader may observe the symmetry between the Max
and Min Reach algorithms. The proof of correctness for
the minimum could proceed in a similar fashion as for the
maximum. However, a more elegant argument is obtained
via a projective transformation.

Proof. It suffices to treat the case with no fold points
(otherwise, the proof is similar to the one for the maxi-
mum). We show that the flat extremal cases are related
by a projective duality transformation. In adequate coordi-
nates, the duality transformation takes the form: (x, y) →
( 1
x
, y
x
), S = (−1, 0), T = (1, 0). Indeed, this projective

transformation takes the line y = 0 through S = (−1, 0) and
T = (1, 0) to itself, but exchanges the affine segment [S, T ]
with the segment from S to T passing through the point
at infinity. In essence, this means that a Minimum configu-
ration is transformed into a Maximum configuration, which
justifies the conclusion. We remind the reader that the el-
lipse is the locus of points with constant sum of distances to
the two foci, while the hyperbola uses the difference, which
justifies the calculations performed by the algorithms.

The line x = 0 is exchanged with the line at infinity and
the family of ellipses with foci at S and T : (1 − 1

λ2 )x
2 +

y2 = λ2(1 − 1
λ2 ), λ ≥ 1 with the family of hyperbolas:

λ2(1− 1
λ2 )x

2 − y2 = (1− 1
λ2 ), λ ≥ 1 The ellipse in Figure

7(a) corresponds to SP + PT = 2λ and the hyperbola in
Figure 7(b) corresponds to |SP − PT | = 2(1− 1/λ).

Complexity of the algorithm. Using an additional
array data structure, the recursive algorithm can be imple-
mented with dynamic programming to yield an efficient so-
lution for Min Reach, with overall O(n3) time and O(n2)
space complexity. The analysis is identical to the one for
Max Reach.
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6. CONCLUDING REMARKS
We have presented the first polynomial time algorithm for

the Maximum and Minimum Reach of arbitrary polygonal
chains. We conclude by formulating the following:

Conjecture: The Extremal Reaches Problem, for general
body-and-hinge chains, is NP-hard.

Any upper bound, even an exponential one, for either the
Maximum or the Minimum Reach would be an important
theoretical advance. So far no known methods, even approx-
imate numerical ones, are guaranteed to compute the (gener-
ically unique) global maximum in this case: the gradient-
based methods may get stuck in local maxima, and Monte
Carlo methods may hop between local maxima with no cri-
terion to guide them toward the global maximum. Note,
however, that our natural-order criterion would allow these
methods to decide, when in a local maximum, whether it is
or not the global one. As we indicated in Section 2, no such
criterion exists for the global minimum of arbitrary body-
and-hinge chains. It remains an open problem to elucidate
the theoretical underpinnings of this intriguing asymmetry
between the maximum and minimum reach in the general
case.
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