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The concept of location depth was introduced as a way to extend the univariate notion of ranking to a
bivariate configuration of data points. It has been used successfully for robust estimation, hypothesis
testing, and graphical display. The depth contours form a collection of nested polygons, and the center
of the deepest contour is called the Tukey median. The only available implemented algorithms for
the depth contours and the Tukey median are slow, which limits their usefulness. In this paper we
describe an optimal algorithm which computes all bivariate depth contours in O(n2) time and space,
using topological sweep of the dual arrangement of lines. Once these contours are known, the location
depth of any point can be computed in O(log2 n) time with no additional preprocessing or in O(log n)
time after O(n2) preprocessing. We provide fast implementations of these algorithms to allow their
use in everyday statistical practice.

Keywords: bagplot, bivariate median, graphical display, robust estimation, Tukey depth

1. Introduction

The location depth of a given point θ relative to a bivari-
ate data set first occurred (without being given a name) as
a test statistic of Hodges (1955) for the hypothesis that θ

is the center of the probability distribution from which the
data was drawn. More recently, Rousseeuw and Struyf (2002)

have put this test in a broader context by proving that loca-
tion depth actually characterizes angular symmetry. Liu and
Singh (1997) constructed other statistical tests based on location
depth.

Definition. Let Z = {z1, . . . , zn} be a finite set of data points
in R

p and let θ be an arbitrary point, not necessarily in Z .

0960-3174 C© 2003 Kluwer Academic Publishers
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θ

Fig. 1. The point θ (which is not a data point) has location depth 1

The location depth of θ relative to Z is the smallest number
of points of Z lying in any closed halfspace determined by a line
through θ .

The location depth thus varies between 0 (when θ lies outside
the convex hull of Z ) and n (when all points of Z coincide with
θ ). Figure 1 shows a point θ with location depth 1. The more θ

is centrally located, the higher its depth. For sets Z in general
position, the depth can be at most �n/2� (this occurs when Z is
symmetric about θ ). Throughout this paper, we will concentrate
on bivariate data sets (p = 2).

Definition. For a fixed positive integer k, the set of points in
the plane with location depth ≥ k is a convex polygonal region,
called the k-th depth contour (referred to as the k-hull in the
computational geometry literature).

Tukey (1975) proposed to use depth contours in a graphical
display of the data. The k-th contour is the intersection of all
halfplanes containing n − k + 1 data points (Fig. 2). Note that
the vertices of depth contours are either points from the original
set or new points from the intersection of lines through two data
points. The maximum depth (over all θ ) of Z is denoted by
k∗, and from Helly’s theorem (see Wenger 1997) it follows that

Fig. 2. The boundary of depth contour 2 is drawn in bold

always k∗ ≥ �n/3� (this fact is also known as the existence of at
least one centerpoint of Z ).

Definition. The Tukey Median, T ∗, is the center of gravity of
the deepest contour.

Donoho and Gasko (1992) showed that T ∗ is a location esti-
mator with several desirable properties. They define the finite-
sample breakdown value of an estimator as the smallest fraction
of contamination that needs to be added to a data set to make
the estimator arbitrarily large. Thus,

ε∗(T ∗; Zn) = min

{
m

n + m
; sup

Zn+m

‖T ∗(Zn+m) − T ∗(Zn)‖ = ∞
}
,

where Zn+m is a data set formed by adding m observations to Zn .
The Tukey median has a good breakdown value (making it more
robust than the median based on Liu’s (1990) simplicial depth)
with ε∗(T ∗; Z ) ≥ 1/( p + 1) for any sample in general position.
When the data set is drawn from an angularly symmetric distri-
bution, ε∗(T ∗; Z ) tends to 1/3 in any dimension. Hence, when
at least 2/3 of the points come from such a distribution, then the
median remains in a bounded region, regardless of the position
of the other points. Moreover, the location depth is invariant un-
der affine transformations, making T ∗ affine equivariant (unlike
the spatial median, which is based on distances). The asymp-
totics of the Tukey median have been studied by Bai and He
(1999).

The bagplot proposed by Rousseeuw, Ruts and Tukey
(1999) is a two-dimensional generalization of Tukey’s univari-
ate boxplot (Tukey 1977). It is based on location depth and pro-
vides a visual representation of the location, spread, correlation,
skewness, and tails of the data. Figure 3 shows the bagplot of the
spleen weight versus the liver weight of 73 hamsters (Cleveland
1993). The Tukey median T ∗ is depicted by a cross, and the dark
grey area around the median is the bag which contains 50% of
the data. The bag is constructed as an interpolation between two
subsequent depth contours and gives us an idea of the shape of
the data cloud. Here we see that there is a positive correlation
between the two variables. A data point is considered an out-
lier if it lies outside of the fence (not displayed in the bagplot),
which is obtained by inflating the bag by a factor 3 relative to
T ∗. The light grey area is the convex hull of the bag and the non-
outliers. The computation of the fence and the light grey area
are immediate once the Tukey median and the bag are known.
Here we have two outlying observations, depicted by stars. These
two hamsters have a large spleen relative to the weight of their
liver.

1.1. Previous implementations and our results

Theoretical complexity results on depth contours, or k-hulls,
have been known for some time (Cole, Sharir and Yap 1987).
The best theoretical result for computing the Tukey median is
an O(n log5 n) algorithm by Matoušek (1991), but its complex
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Fig. 3. Bagplot of the spleen weight versus the liver weight of
73 hamsters

structure makes it an unlikely candidate for actual imple-
mentation. Fast implementations of depth contours are criti-
cal for several applications. An overview of statistical meth-
ods based on the location depth is given by Liu, Parelius and
Singh (1999). Not many implemented algorithms were avail-
able. The program ISODEPTH (Ruts and Rousseeuw 1996)
computes the k-th depth contour in O(n2 log n) time, and hence
needs O(n3 log n) time to compute all depth contours. The
programs HALFMED (Rousseeuw and Ruts 1998) and BAG-
PLOT (Rousseeuw, Ruts and Tukey 1999) give O(n2 log2 n)
implementations to compute the Tukey median and the bag.
These programs become impractically slow for large data
sets.

We present an O(n2) time algorithm for computing all the
depth contours, as well as the location depth of all the data points.
Consequently, we compute the Tukey median and the bag in the
same time bound. We achieve our results by using duality and
topological sweep of an arrangement of lines. All our algorithms
are numerically stable. Our code allows collinearities in the data
set, but currently assumes that no two data points have the same
x-coordinate (which can always be achieved by rotating the data
first). Preliminary code which does not have this assumption is
also available. We also give empirical results on the dramatic
speed-up (by a factor of more than 300 for data sets of size 700
and higher) provided by our algorithm over ISODEPTH and
HALFMED.

In the paper, we will use standard notations to describe the time
and space complexities of our algorithms. For functions f (n) and
g(n), f (n) = O(g(n)) if there exists a c > 0 and an N0 > 0 such

that for all n > N0, f (n) ≤ cg(n). Conversely, f (n) = �(g(n))
if there exists a c > 0 and an N0 > 0 such that for all n > N0,
f (n) ≥ cg(n). Moreover, f (n) = 	(g(n)) denotes that both
f (n) = O(g(n)) and f (n) = �(g(n)). Finally, f (n) = o(g(n))
if limn→∞ f (n)/g(n) = 0.

2. The algorithms

2.1. Preliminaries

The planar partition induced by a set L of non-vertical lines
in the plane is referred to as the arrangement induced by L .
An arrangement consists of vertices, edges, and cells. Some
of the edges and cells are unbounded. We give below some
standard definitions (see e.g. de Berg et al. 1997, Preparata
and Shamos 1985) that are relevant to the description of our
algorithm.

Definition. Given an arrangement of lines L in the plane, the
lower envelope (upper envelope) of L is the boundary of the
“lowermost” (“uppermost”) unbounded cell. This is the cell with
the property that if a downward (upward) vertical ray is drawn
from any point in the cell, it will not intersect the arrangement
anywhere (Fig. 4(a)).

Definition. Given an arrangement of n lines in the plane,
the k-level of the arrangement is the set of points of the ar-
rangement that have at most k − 1 lines strictly above it, and
at most n − k lines strictly below it (Fig. 4(b)). Note that
the 1-level is the upper envelope and the n-level is the lower
envelope.

Definition. The upper hull (lower hull ) of a planar set of points
Z is defined to be the set of edges of the convex hull of Z that
have Z below (above) the supporting line (Fig. 5).

Definition. We define a k-divider of the point set Z as a line
having exactly k − 1 points of Z on one side and at most n − k
points of Z on the other side (so the line must contain at least one
point of Z ). A special k-divider is a k-divider that contains at
least two points of Z . A special k-halfplane is a closed halfplane

Lower envelope

Upper envelope

2-level

(a) (b)

Fig. 4. (a) Upper and lower envelopes of an arrangement of lines; (b)
the 2-level



156 Miller et al.

Upper hull

Lower hull

Fig. 5. The upper and lower hulls of a set of points

bounded by a special k-divider and containing n − k + 1 points
of Z .

The k-th depth contour is the convex polygon obtained by
intersecting all the special k-halfplanes of Z (Cole, Sharir and
Yap 1987). A special k-halfplane is an upper (resp. lower) half-
plane if it is bounded from below (resp. above). Therefore the
k-th depth contour is the intersection of the lower envelope
of the lines that bound the lower special k-halfplanes, with
the upper envelope of the lines that bound the upper special
k-halfplanes.

2.2. Determining the depth contours

Constructing the depth contours involves three major steps. The
first step describes a conceptual tool and provides the framework
on which Steps 2 and 3 are based. A brief description of each
step is given below. Explanatory and algorithmic details appear
later in the section.

1. First we use a duality to map every data point to a line. In
particular, we map the point zi = (xi , yi ) to the line b =
(−xi )a + yi in the (a, b)-space. Hence the set of data points
in the primal defines an arrangement of lines in the dual. An
intersection point of two lines in the dual (i.e., a vertex of the
arrangement) corresponds to a line between the respective
points in the primal.

2. Then we use topological sweep to find all vertices of the
arrangement of lines efficiently. As we find each vertex in
the dual, we can determine the level of that vertex. This
gives us the depth contour to which the corresponding line
(and its associated halfplane) potentially contributes in the
primal.

3. Finally, each convex depth contour is given by the intersection
of the halfplanes determined in the previous step. This is
equivalent to finding the upper and lower convex hulls of
the corresponding vertices in the dual. The intersection of
the halfplanes determined by the hull vertices gives the final
depth contour.

A high-level description of the algorithm to construct the
depth contours for a data set Z of n points may be given as
follows.

Algorithm DepthContours(Z , n)
{

L ←− dual(Z );

// TopoSweep returns, for each k, the sorted list of arrangement
// vertices that potentially contribute to the k-th depth contour
Levels ←− TopoSweep(L , n);

// FindHulls finds the upper and lower hulls of the arrangement
// vertices identified above as potential contributors to a given
// contour
for (i = 1 to n/2)

contours[i ] ←− FindHulls(Levels[i ]);

return contours;
}

This method was first suggested by Cole, Sharir and Yap
(1987), but without using topological sweep. Also for the least
median of squares regression estimator (Rousseeuw 1984), effi-
cient algorithms have been constructed by means of duality and
topological sweep (Edelsbrunner and Souvaine 1990, Souvaine
and Steele 1987). In the remainder of this section, we provide a
detailed description of each step of the algorithm. The discussion
assumes that no two data points have the same x-coordinate.

The arrangement. We use the standard dual mapping that maps
each point z = (x, y) to the non-vertical line D(z) : b =
(−x)a + y, and each non-vertical line l : y = ax + b to the
point D(l) = (a, b) (see e.g. Dobkin and Souvaine 1987,
Edelsbrunner 1987). This duality has a number of interesting
properties. It preserves the above/below relationship: point
z lies above/on/below line l in the primal plane if and only
if line D(z) lies above/on/below point D(l). It is intersection
preserving: lines l1 and l2 intersect at point z if and only if line
D(z) passes through points D(l1) and D(l2), and line l passes
through points z1 and z2 if and only if lines D(z1) and D(z2)
intersect at point D(l). The line between two points in the
primal dualizes to the intersection point of the corresponding
lines in the dual.

Given a set L of non-vertical lines in the dual, we use D(L)
to denote the set of its primal points. Since the slope of a
line in the dual is the negative x-coordinate of the primal
point, the left-to-right list of edges of the lower envelope of
L corresponds exactly to the right-to-left list of points of the
lower hull of the points of D(L). Similarly, the left-to-right
list of edges of the upper envelope of L corresponds to the
left-to-right list of points of the upper hull of D(L). So, the
lower (resp. upper) envelope of a set of lines in the dual can be
found by computing the lower (resp. upper) hull of the primal
set of points (Fig. 6).

Consider the arrangement induced by the set of dual (non-
vertical) lines of Z . Since no two points of Z have the same
x-coordinate, no two lines of the arrangement are parallel. Let
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Fig. 6. The lower envelope of lines in the dual is the lower hull of the
primal set of points

l be a line through two points in the primal corresponding to
the intersection point i in the dual. The vertical line v through
i in the dual intersects every line of the arrangement, some
above i and some below i . The number of lines intersected
above (resp. below) i exactly equals the number of points lying
above (resp. below) l in the primal. Let m be the number of
crossings above i and let r be the number of crossings below
i . Define k = min{m, r} + 1. It follows that l is a special
k-divider and its associated special k-halfplane potentially
contributes to the k-th depth contour.

During the topological sweep of the arrangement (the next
step of the algorithm), in order to make the future computation
of the depth contour easier, when a vertex of the arrangement
is identified, it is classified as upper or lower. Using the no-
tation from above, if m was the minimum, more points lie
below the corresponding line in the primal and we say that
the vertex belongs to the k-th upper set. Conversely, if r was
the minimum the vertex is said to belong to the k-th lower set.
(Fig. 7). After the sweep, since all vertices have been exam-
ined, for each k we have a list of arrangement vertices, sorted
by x-coordinate, that form the upper and lower sets. These
vertices correspond to lines in the primal that potentially con-
tribute to the k-th depth contour. Observe that the points of

2v1 v

1i

2i

Fig. 7. Intersection point i1 has 4 lines above and 0 line below; hence
it belongs to the lower set of the first contour. Intersection point i2 has
1 line above and 3 lines below; hence it belongs to the upper set of the
second contour

the k-th upper set are the vertices of the k-level of the arrange-
ment of dual lines, whereas the points of the k-th lower set are
the vertices of the (n − k + 1)-level of the arrangement.

The lower envelope of the lines that bound the lower special
k-halfplanes in the primal corresponds exactly to the lower
hull of the k-th upper set in the dual. Similarly, the upper
envelope of the lines that bound the upper special k-halfplanes
in the primal corresponds exactly to the upper hull of the k-th
lower set in the dual. In particular, an edge of the k-th lower
(or upper) hull that is not included in a line of the arrangement
provides a vertex of the k-th depth contour that is not a point
from Z . Once the k-th upper and lower hulls are computed in
the dual, the k-th depth contour is found by intersecting the
corresponding set of upper and lower special k-halfplanes in
the primal. If the intersection is empty, the depth contour does
not exist.

Our implementation uses the above approach of computing
the upper and lower hulls in the dual, followed by halfspace
intersection in the primal. However, it is also possible to de-
termine the k-th depth contour entirely in the dual, as follows:
The convex hull of a set of points in the primal corresponds
to the upper envelope and the lower envelope of the dual ar-
rangement. Note that the leftmost edge of the upper envelope
and the rightmost edge of the lower envelope are colinear.
Similarly, the rightmost edge of the upper envelope and the
leftmost edge of the lower envelope are colinear. Consider
the inner common tangents of the two envelopes. These con-
sist of two finite segments of those same two common lines.
Therefore we can think of the convex hull of a set of points
in the primal as corresponding to the finite edges of the upper
envelope, the finite edges of the lower envelope, and the fi-
nite inner common tangents that join them. Consider now the
lower hull of the k-th upper set and the upper hull of the k-th
lower set. We need to calculate the inner common tangents
between these two convex chains. Then the finite portions of
these tangents and portions of the convex chains that join the
endpoints correspond to the boundary of the depth contour
in the primal. If these inner common tangents do not exist,
then the lower hull of the upper set and the upper hull of the
lower set intersect, and no depth contour at this level exists.
These inner common tangents correspond to the points of in-
tersection between the chains in the primal that bound the
intersections of the lower special k-halfplanes and the upper
special k-halfplanes respectively. If these intersections do not
exist, the boundary of intersection of the lower halfplanes is
below the boundary of intersection of the upper halfplanes
and thus there is no intersection region.

The main motivation for solving the depth contours prob-
lem in the dual is that the technique known as topological
sweep, described in the next step, allows us to efficiently find
all arrangement vertices and their levels. While topological
sweep may be simulated in the primal, it is more easily de-
scribed and implemented in the dual.

Topological sweep. The typical line sweep method is to use a
vertical sweepline to sweep through the arrangement vertices
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in increasing order of their first coordinate. This is done by
maintaining a priority queue (heap) of potential next points
for the vertical sweep. It can be shown that this requires only
a linear amount of space, but at a cost of O(log n) per update
when a new vertex is swept, resulting in a total time complex-
ity of O(n2 log n). In many problems, it is not necessary to
obtain the arrangement vertices in sorted order. It is enough
simply to visit each of them in the following partial order:
the vertices of each level of the arrangement are visited in
increasing order of their first coordinate. Such an approach is
used in topological sweep, which is a variation of vertical line
sweep that gives an improved runtime of O(n2) while retain-
ing the O(n) space bound. The topological sweep algorithm
was introduced by Edelsbrunner and Guibas (1989). For the
sake of completeness, we provide a brief description of their
sweep technique here.

Topological sweep sweeps a curved line, rather than a
straight line, through the arrangement. The curved line retains
an important property of the vertical sweepline, which is that
each line of the arrangement is intersected exactly once by the
sweepline. The set of edges of the arrangement intersected by
the sweepline is called a cut. The sweep algorithm starts at
the leftmost cut (which consists of all unbounded edges of the
arrangement with unbounded left vertices) and ends when it
is at the rightmost cut. A cut is maintained as an array of
indices of the lines in the order they are intersected. When
a consecutive pair of edges of the cut intersect at a common
vertex before intersecting any other line, that vertex becomes
a potential next candidate for the topological sweep (note that
every cut must always have such a pair of edges). If more than
one such vertex exists, any one of them may be chosen next
for the sweep step (Fig. 8(a)). Observe that after the chosen
vertex has been swept, the new cut simply swaps the order of
the pair of lines that gave rise to the vertex (Fig. 8(b)).

It would not be difficult to find the desired pair for each
cut in O(log n) time. However, this would cause the total time
complexity of the algorithm to be O(n2 log n). Instead, the al-
gorithm in (Edelsbrunner and Guibas 1989) achieves its O(n2)

(a)

next candidates

swept vertex

sweepline

(b)

Fig. 8. (a) Cut edges are shown as thick lines. Potential candidate
vertices for the next sweep step are highlighted. (b) A single sweep step

runtime by efficiently finding a consecutive pair of edges of a
cut that intersect at a common vertex. In particular, an amor-
tized cost of O(1) per pair is achieved by maintaining data
structures called the upper horizon tree and the lower horizon
tree (efficiently implemented using arrays). The horizon trees
are used to find all consecutive pair of edges of a cut that share
a common vertex, and all such pairs are stored on a stack. The
next vertex to be swept is given by the pair at the top of the
stack. A single sweep step consists of popping the stack, up-
dating the cut and the horizon trees, and pushing any new
consecutive cut edges with shared endpoints onto the stack.
Note that the stack size remains linear at all times since the
size of the cut is linear. For the runtime analysis, the crucial
facts are that (a) the initial horizon trees can be constructed
in linear time, and (b) updating the horizon trees takes O(1)
amortized time (i.e., a single update may take more than O(1)
time, but the total update time for the entire sweep is O(n2)).

During the topological sweep, we can easily determine the
level of each arrangement vertex. When a vertex given by a
pair of cut edges is swept, the level of that vertex is simply the
position of the upper cut edge in the cut array. Observe that all
the vertices at the k-level, for any k, are in fact swept in sorted
order of their first coordinate. Our implementation of this step
returns, for each of k = 1 . . . n/2, a sorted list of arrangement
vertices at level k, and at level n − k + 1 (as discussed in the
previous step, these are the vertices that potentially contribute
to the k-th depth contour). Thus, the upper and lower sets
for each depth contour are determined during the topological
sweep at no extra cost. If we are computing all depth contours,
all 	(n2) intersection points of the arrangement are saved in
order to compute the depth contours (step 3 of our algorithm),
producing quadratic space complexity.

Intersection of halfplanes. The lower and upper hulls of a set
of points can be computed in linear time in the size of the
set if the points are given in increasing order of their first
coordinate. For example, this can be done by using an incre-
mental algorithm, which can be found in standard textbooks
in computational geometry (de Berg et al. 1997, Preparata
and Shamos 1985). After the topological sweep, we have the
sorted list of arrangement vertices of the k-th upper and lower
sets. Note that while the size of the lower and upper hulls is
always O(n) (Matoušek 1991), the best known upper bound
on the size of k-levels of the arrangement of dual lines is
O(nk1/3) (Dey 1998).

For each k we find the lower hull of the upper set and the
upper hull of the lower set in time linear in the sizes of the
k-level and (n − k + 1)-level. The hulls represent the upper
envelope and lower envelope of the corresponding halfplanes
in the primal (Fig. 9). The halfspaces bounded by the lower
and upper envelopes are then intersected in the primal. This is
done in time linear in the sum of the sizes of the two envelopes,
which is O(n), which gives us the k-th depth contour (if it
exists). So, we obtain the k-th depth contour in time linear in
the sizes of the k and (n − k + 1)-levels. Therefore, the total
runtime of this step is the sum of the sizes of all the levels
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Fig. 9. The dashed (dotted) lines are the halfplanes associated with the
upper (lower) set of intersection points in the arrangement

of the arrangement of dual lines, which is O(n2). This step is
summarized below.

Algorithm FindHulls(VertexList)
{

U ←− upper set of VertexList;
L ←− lower set of VertexList;

UH ←− lower hull of U;
LH ←− upper hull of L;

// U and L represent the upper and lower
// envelopes of D(U ) and D(L) respectively
U ←− UH in the primal;
L ←− LH in the primal;

return (U ∩ L);
}

2.3. Location depth of a single point

After contour calculations. After calculating all the depth con-
tours, the depth of a given point may be computed efficiently
in two different ways.

• A simple and easily implementable algorithm yields the
depth of a point in O(log2 n) time as follows. The initial
contour calculations provide a set of nested convex poly-
gons representing each depth contour. The depth contours
subdivide the plane into depth regions; the region between
contours k and k + 1 has depth k. Therefore, the depth of
the given point is simply the depth region in which it lies.
Determining if a point lies inside or outside a convex n-
gon takes O(log n) time. To determine the depth of a single
point we can thus perform a binary search on the depth
contours to compute the result in O(log2 n) time.

• A more efficient algorithm computes the depth of a point
in O(log n) time using any of the optimal algorithms for
planar point location (e.g. Kirkpatrick 1983, Sarnak and
Tarjan 1986, and Edelsbrunner, Guibas and Stolfi 1986). It
is easy to connect each interior nested convex polygon to the
next larger polygon by adding a line segment from its ver-
tex with minimum x-coordinate to the comparable vertex
on the larger polygon and a second line segment connect-
ing the vertices of maximum x-coordinate. All bounded
regions are now monotone, meaning that the remaining
preprocessing for any of the three cited algorithms can be
completed in linear-time in the size of the subdivision. The
collection of depth contours is a planar subdivision of size
O(n2). Hence, after O(n2) preprocessing time, computing
the depth of a point takes O(log n) time. A version using
the Edelsbrunner et al. approach has been implemented by
Mitchell (2002).

Without contour calculations. The depth contours need not be
calculated first to find the depth of a single point. An alterna-
tive O(n log n) time algorithm is described in Rousseeuw and
Ruts (1996). Recently it was shown (Langerman and Steiger
2000) that any algorithm for computing the location depth
of a point needs �(n log n) time, so the above algorithm has
optimal time complexity. This algorithm has also been ex-
tended to three dimensions in O(n2 log n) time (Rousseeuw
and Struyf 1998).

2.4. The bag

There are three main steps in the construction of the bag. Recall
that the bag contains at most half of the original data points, and
lies between the contour containing less than or equal to half
and the contour containing more than half of the points.

1. The first step in the construction is to identify these two
contours. Let Dk and Dk−1 be two consecutive contours
containing respectively nk and nk−1 data points, such that
nk ≤ �n/2� < nk−1. Since the contours have already been
calculated, start at the deepest and count the number of orig-
inal points lying on each contour until the count exceeds
�n/2�. The contour at which we stop counting is Dk−1 and
the previous one is Dk .

2. Next, we calculate the value of a parameter λ, which deter-
mines the relative distance from the bag to each of the two
contours. This is given by λ = (50 − J )/(L − J ), where Dk

contains J% of the original points and Dk−1 contains L% of
the original points.

3. Finally, the bag is constructed by interpolating between the
two contours by using the λ value. For each vertex v on Dk or
Dk−1 let l be the line going through v and the Tukey median
T ∗. Let u be the intersection of l with the other contour (Dk−1

or Dk). Each vertex w of the bag lies on l, interpolated be-
tween v and u, i.e., w = λv+(1−λ)u. The value of λ weights
the position of the bag towards Dk or Dk−1. See Fig. 10.
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Fig. 10. Determining the vertices of the bag

3. The implementations

The algorithm described in the previous section has theoretical
running time faster than any existing implementation for depth
contours. As our empirical results show, this is borne out in
practice as well.

3.1. Complexity

The overall complexity of the implementation is O(n2) time and
O(n2) space to compute all the depth contours for a planar set of
n points. Topological sweep in itself uses linear space. Nonethe-
less, the space complexity is 	(n2) when all of the contours are
found, because all intersection points of the arrangement need
to be saved. Note that the space complexity would be linear if
only the k-th depth contour is needed, because the convex hull
of the k-set can be computed incrementally and, as pointed out
earlier, the size of any depth contour is always O(n).

The complexity of each step is as follows. Specifying the ar-
rangement takes O(n) time and space. Topological sweep takes
O(n2) time and O(n) space. Since we compute all the contours
for the testing of the code, our runs use O(n2) space. Comput-
ing the upper and lower hull of the intersection points in the
arrangement for all contours requires O(n2) time and space.

3.2. The code

The main focus of the implementation is the computation of
all depth contours and the bag. Our program is implemented in
C++ using the LEDA libraries (Library of Efficient Data struc-
tures and Algorithms,www.mpi-sb.mpg.de/LEDA). The bivari-
ate data points may be entered interactively or by reading from a
file, and the contours can be output either in graphical form or as
a file containing lists of vertices for each contour. See Figs. 11
and 12 for examples of the graphical output produced by our
program.

Once the contours are available, computing the bag requires
only linear time. Our implementation referred to the C code for
topological sweep given in (Rosenberger 1990), but we rewrote
the code in order to make it compatible with the LEDA libraries.

Fig. 11. Depth contours produced by our program for a set of 20 points

Fig. 12. Depth contours produced by our program for a set of 79 points

A linear time incremental algorithm for computing the upper and
lower hulls of points given in sorted order was implemented as
well. This step also identifies the location depth of the original
data points, which is required for the bag computation. Our im-
plementation allows collinearities in the data set, but currently
assumes that no two points have the same x-coordinate. There is
preliminary code that makes no assumptions about the input set.
All primitive geometric computations rely on LEDA and inherit
their numerical stability.

3.3. Significance

The testing phase consists of runtime comparisons for comput-
ing the Tukey median. To check the correctness of our code, we
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Table 1. Average runtimes

Average CPU time over 10 runs (sec.)

n HALFMED Our algorithm

10 .03 2.1
20 .09 2.1
40 .61 2.1
80 5.6 2.2

100 11.8 2.3
160 37.2 2.8
200 84.4 3.1
320 490 4.5
500 760 6.0
640 1143 8.3
750 4954 14.2

1000 9002 22.1

first ran it on data sets for which the Tukey median was already
known. The previously best-known algorithm for computing the
Tukey median is HALFMED (Rousseeuw and Ruts 1998), which
uses an O(n2 log n) time algorithm to compute a single contour.
It then uses binary search to repeatedly apply this algorithm
until the deepest contour is found, giving an O(n2 log2 n) algo-
rithm for computing the Tukey median (the center of gravity of
the deepest contour). Our algorithm finds the Tukey median by
computing all the contours, as described in Section 2, in O(n2)
time.

Our program was tested on a Sun Ultrasparc 167 MHz work-
station, running SunOS, and was compiled using the GNU C++
compiler. HALFMED is written in Fortran, and was compiled
using the GNU Fortran compiler. The testing was done on ran-
domly generated point sets of various sizes. Ten data sets of
each size were generated, and the total runtime for each size was
recorded using perl benchmark scripts. The average runtimes
for HALFMED and our code are shown in Table 1.

As Table 1 shows, our algorithm provides a dramatic speed-up
over HALFMED for data sets of size greater than 40. For smaller
data sets, the overhead of computing the arrangement and using
more sophisticated data structures makes the algorithm slower
than HALFMED. However, the improvement in runtime for
larger data sets is notable.

4. Concluding remarks

We have constructed fast algorithms for computing all depth
contours, the Tukey median and the bag and for performing sub-
sequent depth queries. Our results provide a significant speed-up
over existing algorithms. The code, which requires LEDA 3.8
or higher, is available at

http://www.eecs.tufts.edu/r/geometry/locdepth.

Our implementation currently performs depth queries in
O(log2 n) time and assumes that no two points in the input set

have the same x-coordinate. This assumption can easily be satisi-
fied, for example by an appropriate linear transformation of the
data set. Recently Rafalin, Souvaine and Streinu (2002) devel-
oped a method for removing this non-degeneracy assumption
and preliminary code for computing the depth contours of an
arbitrary point set is available at

http://www.eecs.tufts.edu/r/geometry/half space.

Mitchell (2002) has also implemented an algorithm for O(log n)
depth query.

A natural open question concerns faster algorithms for com-
puting only the Tukey median. Theoretically, faster algorithms
exist (Matoušek 1991). However, a more implementable algo-
rithm is required in practice. The problem of an efficient imple-
mentation for computing the Tukey median in o(n2) time is the
outstanding open problem in two dimensions from a practical
point of view. Analysis and implementation of a randomized
version of Matoušek’s algorithm is underway.

The next goal is to compute all depth contours, the Tukey me-
dian, and the bag in three dimensions. Anagnostou, Guibas, and
Polimenis (1990) presented an algorithm for topological sweep
in three dimensions from a theoretical perspective that assumes
general position. Building off of this algorithm but creating and
incorporating a generalized version of the Rafalin, Souvaine,
and Streinu (2002) strategy for handling degeneracy and in-
corporating our strategies for building two dimensional con-
tours should lead to the desired three dimensional code. Work is
underway.
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