
Smith ScholarWorks Smith ScholarWorks 

Computer Science: Faculty Publications Computer Science 

1-1-1999 

Stretchability of Star-Like Pseudo-Visibility Graphs Stretchability of Star-Like Pseudo-Visibility Graphs 

Ileana Streinu 
Smith College, istreinu@smith.edu 

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Streinu, Ileana, "Stretchability of Star-Like Pseudo-Visibility Graphs" (1999). Computer Science: Faculty 
Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/csc_facpubs/267 

This Article has been accepted for inclusion in Computer Science: Faculty Publications by an authorized 
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/267?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F267&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Stretchability of Star-like Pseudo-Visibility Graphs 

Ileana Streinu 
Dept. of Computer Science, 

Smith College, 
Northampton, MA 01063, USA. 

streinu@cs.smith.edu. * 

Abstract 

We present advances on the open problem of charac- 
terizing vertex-edge visibility graphs (ve-graphs), re- 
duced by results of O’Rourke and Streinu to a stretch- 
ability question for pseudo-polygons. We introduce 
star-like pseudo-polygons as a special subclass contain- 
ing all the known instances of non-stretchable pseudo- 
polygons. We give a complete cdmbinatorial char- 
acterization and a linear-time decision procedure for 
star-like pseudo-polygon stretchability and star-like 
ve-graph recognition. 

To the best of our knowledge, this is the first prob- 
lem in computational geometry for which a combi- 
natorial characterization was found by first isolating 
the oriented matroid substructure and then separately 
solving the stretchability question. It is also the fist 
class (as opposed to isolated examples) of oriented ma- 
troids for which an efficient stretchability decision pro- 
cedure based on combinatorial criteria is given. The 
difficulty of the general stretchability problem implied 
by Mngv’s Universality Theorem makes this a result 
of independent interest in the theory of oriented ma- 
troids. 

Keywords: oriented matroid, pseudo-polygon, vis- 
ibility graph, pseudoline arrangement. 

1 Introduction 

In this paper we present new results on the open prob- 
lem of characterizing visibility graphs. 

The Problem. The (internal) visibility graph (v- 
graph) of a simple planar polygon P has a vertex cor- 
responding to each vertex of P and an edge for each 
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internal unobstructed line-of-sight between two ver- 
tices. The problem of characterizing visibility graphs 
asks for simple necessary and sufficient conditions sat- 
isfied by v-graphs. The ideal solution would be a theo- 
rem similar to Kuratowski’s characterization of planar 
graphs, or at least a set of conditions whose validity 
could be checked efficiently. A closely related problem 
with applications in graphics and graph drawing is to 
reconstruct a polygon compatible with some given vis- 
ibility information. We first have to check if the input 
data is consistent, then if so, to find coordinates for a 
model polygon. 

Previous Results. Several authors ([Gho88], 
[Ev89], [AK95], [Gho97]) have proposed necessary con- 
ditions, conjectured to be sufficient but later disproved. 
Some special cases (spiral, staircase, weakly visible 
polygons, etc.) have been completely settled. Decid- 
ing in general if a graph is a v-graph is so far known 
only via the Existential Theory of the Reals, for which 
exponential time algorithmic solutions are available 
(see Canny ([Ca88], [CaSS]) and Basu et al. [BPR]). 
Abello and Kumar [AK951 introduced the oriented 
matroid approach in the study of v-graphs. O’Rourke 
and Streinu[ORS96] introduced the concept of pseudo- 
visibility, isolated the stretchability question from the 
combinatorial aspects and gave a complete character- 
ization of pseudo-visibility graphs. They also intro- 
duced vertex-edge visibility graphs (ve-graphs) [OS981 
as a class of graphs containing more combinatorial in- 
formation than the v-graph and gave a polynomial 
algorithm for pseudo ve-graph and an NP-algorithm 
for psetido v-graph recognition. Streinu[Str96b] has 
shown that there exist non-stretchable ve- and v-graphs 
In particular, these examples imply that none of the 
previously proposed sets of necessary conditions are 
sufficient to characterize straight line visibility graphs. 

Stretchability. The main obstruction in finaliz- 
ing a characterization of (straight-line) ve-graphs lies 
in the question of stretchability for a special class of 
rank 3 affine partial oriented matroids. The deep re- 
sult of Mngv [Mn91] indicates that this is a highly 
non-trivial problem, as stretchability of pseudo-line 
arrangements is NP-hard (Shor[ShSl]), in fact as hard 
as the existential theory of the reals. However, there 
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exist various techniques to prove stretchability for par- 
ticular instances, most prominently Bokowski’s [BS89a] 
final polynomial method (see [BS89b], [BRSSO]), and 
Richter-Gebert’s ([Ri89], [Rigl]) reduction sequence 
technique (cf. [Bj93]). 

Our Results. While not completely settling the 
open question, in this paper we make significant steps 
towards its solution. We prove that stretchability is 
decidable in linear time for the class of generalized 
configurations of points (rank 3 affine uniform oriented 
matroids) arising from vertex-edge visibility graphs of 
star-like pseudo-polygons (defined in section 2). Those 
unstretchable instances in this class form an (infinite) 
set of forbidden subconfigurations for straight-line ve- 
graphs. We conjecture that pseudo ve-graphs not con- 
taining these substructures are stretchable. 

As a consequence of our results, the characteri- 
zation of visibility graphs is reduced to an interesting 
question regarding whether global stretchability is im- 
plied by a local type of stretchability for the ve-graph 
compatible rank 3 oriented matroids. 

Star-like Pseudo-Polygons. The starting point 
for the definition of our class is the family of non- 
stretchable pseudo-polygons given in [Str96b], based 
on Goodman and Pollack’s bad pentagon and its gener- 
alizations ([GPSS]). The underlying oriented matroids 
of these examples are minor-minimal non-realizable 
([BS89b]): deleting any point leads to a stretchable 
configuration. Both these unstretchable pseudo-polygons 
and the stretchable ones defined on the minors gen- 
eralize to what in the present paper we capture by 
the concept of a star-like pseudo-polygon (not to be 
confused with a star-shaped polygon, despite certain 
superficial similarities). 

We have been unable so far to Ilnd examples of un- 
stretchable pseudo-polygons not having an unstretch- 
able star-like pseudo-polygon as a substructure. The 
main difficulty may just be that there are not many 
concrete examples of non-stretchable configurations 
published in the literature, and that among those avail- 
able, some lose the non-stretchable character by the 
deletion of chirotopal constraints induced by the place- 
ment of a pseudo-polygon. Understanding the stretch- 
ability properties of this particular class of pseudo- 
polygons (star-like) is a necessary step towards solving 
the general question. 

Proof Techniques. Our two proof techniques 
may also be of independent interest. The elemen- 
tary non-stretchability proof is based on an intuitive 
idea of area comparison. To prove stretchability we 
use a global argument for realizability of a relaxation 
of the problem with points in circular position, cou- 
pled with local perturbations inspired by [BS89b]. A 
systematic procedure based on the cycle analysis of 
a directed graph associated to the star-like pseudo- 
polygon guarantees the consistency of the sequence of 
perturbations. 

Novelty. To the best of our knowledge, this is the 
first problem in computational geometry for which a 
combinatorial characterization was found by first iso- 
lating the oriented matroid substructure and then sep- 
arately solving the stretchability question. It, is also 

the first class (as opposed to isolated examples) of 
oriented matroids for which an efficient stretchability 
decision procedure based on combinatorial criteria is 
given. The difficulty of the general stretchability prob- 
lem implied by Mnev’s Universality Theorem makes 
this a result of independent interest in the theory of 
oriented matroids. On page 373 of the reference mono- 
graph [Bj93] on Oriented Matroids, the authors ex- 
press the belief that “oriented matroids might play an 
increasingly important role for computational geome- 
try in the future”. We see our work as a contribution 
in this direction. 

2 Definitions and Preliminaries 

References. For oriented matroid terminology, we 
refer the reader to [Bj93]; for pseudo-line arrange- 
ments, to [Go971 and [Gr72]. To insure a uniform 
(and natural) frame of reference, we will use the clus- 
ter of stars or hyperline sequences model for rank 
3 affine oriented matroids ([GP84], [Bo93], [Str96a]), 
with its topological representation given by the gen- 
eralized configurations of points of [GP84]. 

Notation and abbreviations. Our setting is the 
Euclidian plane. All index arithmetic is done mod n 
in the set [n] := (1, . . . , n}. We abbreviate “counter- 
clockwise” as cc2u, “pseudo-line” as p-line, “general- 
ized configuration of points” as gcp, “pseudo poly- 
gon” as p-polygon, “vertex-edge visibility graph” as 
ve-graph and “vertex-edge pseudo-visibility graph” as 
pseudo ve-graph. 

Pseudoline Arrangements and Generalized Con- 
figurations of Points. An arrangement of pseudo- 
lines (p-lines) is a finite set of simple curves, pairwise 
intersecting exactly once, at which point they cross 
properly. It is in general position if no more than two 
lines cross at the same point. A generalized configura- 
tion ojpoints (gcp) in general position is a finite set of 
planar points P = {PI,. . . ,pn},pi E RZ together with 
an arrangement of p-lines C = {lij Ii, j E [n], i < j}, 
such that lij contains the points pi and pj but no other 
point pk. The circular sequence of indices of p-lines 
lij, j # i in the ccw order in which they appear around 
the vertex pi is the cluster at i, and the set of all these 
sequences forms the (affine uniform rank 3) oriented 
matroid given by the cluster of stars associated with 
the gcp. Two gcp’s are equivalent if they have the 
same oriented matroid. A gcp is stretchable or real- 
izable if it is equivalent to a planar configuration of 
points, i.e. one for which the p-line lij is the straight 
line joining points pi and pj in the plane, Vi, j E [n]. 
Otherwise it is unstretchable. 

For a partial gcp only a subset of pseudo-lines C = 
{l;j](i,j) E S), for some subset S C {ij]i,j E [n], i < 
j} is given. A partial gcp induces a partial cluster of 
stars, and it is realizable if there exists a configura- 
tion of points joined by straight lines whose partial 
clusters coincide with the given ones. A partial gcp is 
unstretchable if all its possible extensions to a gcp are 
unstretchable. A partial gcp should not be confused 



with partially drawing the underlying arrangement of 
pseudo lines of a (partial) gcp, which is sometimes 
done for avoiding cluttering a picture. 

IfI) (b) 

Figure 1: (a) Goodman and Pollack’s unstretch- 
able pentagon. (b) An unstretchable pseudo-polygon 
based on the bad pentagon. The pseudo-lines under- 
lying the sides of the polygon are not drawn to avoid 
cluttering the image, but the reader should be able to 
infer their location in the cluster of stars of the points. 

Example. In Fig.l(a) we have partially drawn a par- 
tial gcp. Some pseudo-lines which are not drawn can 
be inferred from the rest, e.g. the position of 112 in 
the circular order of p-lines around vertex 1 is be- 
tween 21s and 117. Not all the information about the 
missing p-lines between even numbered points can be 
inferred. There might be several ways of adding them 
to the picture, e.g. with the vertices 2,4,6 forming a 
positive or a negative triangle. It is known ([GP93], 
[BS89b]) that this partial gcp is unstretchable. 

Pseudo-Polygons. The scgmentpipj is the bounded 
part of the directed p-line lij lying between the points 
pi and pj. A pseudo-polygon P = {PI,. . . ,p,,} de- 
fmed on an underlying gcp ({pl,...,pn),L: = {lij}), 
is a simple planar Jordan curve joining the points 
Pl,“‘, pn,pl in this order along pseudo-line segments 
&pi+1 Of p-lines 1i,i+i. The pseudo-visibility graph 
(pseudo v-graph) G, = (Vv, E,) associated to the 
pseudo-polygon P is defined on an abstract ordered 
set of vertices V, = [n] corresponding to the vertices 
of P, with an edge (i, j) in G, for each pseudo-segment 
pipj strictly interior to P except for the endpoints. 

In this paper we are interested only in internal vis- 
ibility of polygons. Therefore we will often use only a 
partial gcp for specifying a pseudo-polygon, where the 
irrelevant information of how the pseudo-lines cross 
outside the pseudo-polygon is not given. The partial 
cluster of stars of such a partial gcp is captured by the 
concept of a pseudo ve-graph. 

Vertex-Edge Pseudo-Visibility Graphs. The (in- 
ternal) vertex-edge pseudo-visibility graph (pseudo ve- 
graphj of P is a bipartite graph G,, = (V,,, E,,,A,,) 
on circularly ordered sets V,,, and E,, (called an or- 
dered bipartite graph). The vertex vi E V,,, corre- 
sponds to the vertex pi E P, and ej E E,, corresponds 

to the side pjpj+l of the polygon P. The circular order 
corresponds to the ccw ordering of vertices and edges 
around the boundary of the polygon and i < j < k 
should be read as i, j, k occurring ccw in this order. 
There is an edge in G,, between V; and ej (denoted by 
ui + ej) when either j = i or j = i - 1, or when there 
exists an empty (of other vertices and edges of P) 
pseudo-triangle bounded by two pseudo-lines lij, and 
2ij, and by the edge pjpj+i, with the two pseudo-lines 
crossing the edge on its interior or at its endpoints, 
and with a non-empty pseudo-segment between the 
crossing points. 

See Fig.l(b) for an example of a pseudo-polygon 
with the underlying gcp given by the bad pentagon in 
l(a). Its v-graph is a clique on the subset {1,3,5,7,9}, 
plus the edges of the polygon. The ve-graph has ~1 + 
el,e2,e4,e6,e7,eg,elO, 2rz +e2,es,ei; theotheredges 
are symmetric replicas of these two cases. 

Theorem 2.1 Characterization of pseudo ve- 
graphs ([ORS96]) An ordered bipartite graph is the 
ve-graph of a pseudo-polygon iff the following three 
conditions hold. 

(1) v; + ei and vi + e;-1. 
(2) If vi + ej, vi + ek, i < j < k and vi fi ~1, 

vl,j < 1 < k, then either (a) Vj+l + ek or (b) vk + ej 
but not both. 

(3) Let Qi,k] = {urli 5 1 5 k} and E[i,k) = {erli 5 
1 < k}. Then in (2), (a) implies that vj+l is an ar- 
ticulation point of the induced subgraph on V[i,k] and 
Eli,k), and (b) implies that vk is an articulation point 
on the induced subgraph on Vlj+l,i] and Eli+l,i). 

A byproduct of the proof of this theorem is the fact 
that we can associate to each ve-graph G,, a unique 
v-graph, called the v-graph induced by G,,. 

The reader is advised that now we change the con- 
vention for labelling the vertices of a polygon, to ac- 
commodate the special star-like case. The previous 
labelling, which we call the p-polygon labelling con- 
vention, was used in the theorem of characterization 
of pseudo ve-graphs. From now on, we will not make 
explicit use of the p-polygon labeling convention but 
expect the reader to translate the indices from the 
star-labelling (introduced next) to the p-polygon la- 
belling whenever the need should arise. 

Star-like Partial Generalized Configurations of 
Points. First some intuition. Goodman and Pollack’s 
family of non-stretchable gcp’s generalize the bad pen- 
tagon example, but when we place a pseudo-polygon 
on such a gcp, some constraints disappear and the 
resulting structure may be stretchable. The star-like 
partial gcp’s form a family whose stretchability prop- 
erties are preserved when a p-polygon is superimposed 
in a way that resembles a star-polygon: a nucleus and 
some triangular “spikes” attached to it. A star-like 
gcp is obtained from a set of points in convex posi- 
tion (the nucleus) labeled pi, i E N := [n]. Additional 
points, labeled pi’, i E S C [n], are used to enforce 
certain intersection patterns of some pairs of p-lines 
joining some of the points in the nucleus. More pre- 
cisely, for a 4-tuple of points i, j, k, 1 occuring ccw in 
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this order on the convex hull of the nucleus, the two 
p-lines 1i[ and Ijk can meet either on the side of ij or 
of kl. See Fig. 4(a) for an example where they meet 
on the side of ij. 

Formally, a star-like (partial) gcp has an underly- 
ing set of m = n + n’, n’ 5 n points P partitioned 
into two labeled sets, (N, S), called the nucleus and 
the spikes (we will often use the same notation for the 
points and for their indices). The points of the nu- 
cleus are labeled pi, i E N := [n] and the spikes are 
labeled pi’, i E S, with S C [n]. The points of the 
nucleus occur ccw (in the given order) in convex po- 
sition, i.e. Vj # i,i + 1, the point pj is on the left 
of the directed p-line li,i+i . A vertex of a spike pit, 
i E [n], is associated to two distinct pairs of consec- 
utive points of the nucleus, (i, i + 1) [the head) and 
(j, j < 1) (the tail). The two’ p-lines’ li’+r,j and ‘~i,j+tl 
meet on the side of i. i + 1 and the point n;, lies in 
the spike wedge to the right of lj+i,i-and t-0. the left 
of Ij,i+i. The gcp in Fig.a(a) is an example where the 
number of spikes equals the number of vertices in the 
nucleus, while Fig.a(b) has 5 nucleus vertices but only 
4 spikes. 

-We will require the tails (jr, ji + 1) and (js, jz + 1) 
of two consecutive snikes i’ and (i + 1)’ to satisfv the 

\ I 

crossing condition j, 5 jz 5 i. Thecrossing condition 
ensures the existence of no more than one spike vertex 
in a spike wedge, and guarantees that the following 
definition of a star-like p-polygon produces a simple 
curve as boundary. 

(8) w 

Figure 2: Two examples of star-like generalized con- 
figurations of points. 

Star-like Pseudo-Polygons. A star-like pseudo- 
polygon is defined on an underlying star-like gcp, with 
the boundary given by the points in the following or- 
der: if there is no vertex i’, i + 1 follows i. Otherwise, 
i’ follows i and is followed by i + 1. See Fig.l(b) with 
the vertices relabeled as in Fig.a(a). The nucleus of 
the star-like polygon is the subpolygon obtained by 
joining the points of the nucleus in the given order 
1,. . , n. The nucleus is a convex polygon. We will 
refer to the segments (i, i + 1) as sides or edges of the 
nucleus. A spike i’ of the star-like polygon is a pseudo- 
triangle (i, i’, i + 1) corresponding to a spike vertex i’ 
of the underlying gcp. The vertex i’ is called the tip 

of the spike, or the spike vertex. When a nucleus edge 
(i, i + 1) has no corresponding spike i’ associated to 
it, it will be called a free edge. 

The v- and ve-graphs of a star-like polygon have 
special structures. All the vertices of the nucleus are 
mutually visible, therefore they form a clique in the v- 
graph. Each spike vertex i’ sees only its two adjacent 
vertices i and i+ 1 in the v-graph. In the ve-graph, it 
sees its two adjacent edges and exactly one more edge, 
which can be either an edge of the nucleus (j, j + 1) 
corresponding to the tail of the spike (when this is a 
free edge) or one of the two edges (j, j’) or (j’, j + 1) 
of a j-spike. 

A graph G, = (V,, E,) (resp., bipartite graph G,, = 
(V,,, E,,, Ave)) is a star-like pseudo v-graph (resp. ue- 
graph), if it is the v-graph (resp. ve-graph) of a star- 
like p-polygon. Star-like v-graphs are always realiz- 
able, but star-like ve-graphs are not (see Fig.l(b), also 
in [Str96b]). 

Our goal in the next section is to characterize stretch- 
able star-like gcp, and therefore star-like p-polygons 
and ve-graphs. To do this, we introduce another com- 
binatorial structure, which in the case of a star-like 
p-polygon is sufficient for deciding its stretchability 
status. 

Arc Graph. The arc graph is a directed graph D 
defined on the set of vertices [n], with a directed edge 
i + j whenever there is a spike with head (i, i+ 1) and 
tail (j, j + 1). It is called so because its vertices will 
correspond to arcs on a circle, when we will attempt 
to define a realization of the p-polygon. A cycle in D 
is a directed cycle in the usual graph-theoretic sense. 
It is easy to see that there cannot be cycles of length 1 
(loops) or 2? but there might be isolated vertices. The 
out-degree of each vertex in D is at most 1 since there 
is at most one spike on each nucleus edge. Therefore 
D is the digraph of a partial map f : [n] + [n], and 
has a well understood structure (see Lov6sz[Lo]). It 
may have one or more connected components. Each 
component is either an isolated vertex, a tree or has 
at most one cycle. In this last case, if the edges of the 
cycle are removed, what remains in the component 
is a forest of directed trees, oriented from the leaves 
towards the root, which is a vertex belonging to the 
unique cycle in the component. See Fig. 3. A cycle 
(il,iz,... ,ik) is trivial, if k = n and ij+i = ij + 1,Vj 
or ij+l = ij - l?Vj. If each component is a cycle, 
but D is not the trivial cycle, D is called a non-trivial 
union of cycles. 

The main result can now be stated. The proof will 
be sketched in the next section. 

Theorem 2.2 Main Result: Stretchability of Star- 
like Pseudo-Polygons 

A star-like ve-graph is non-stretchable if and only 
if its associated arc graph is a non-trivial union of 
cycles. 

3 Proofs 

Overview. We start with a structural characteriza- 
tion of a star-like ve-graph to reduce the problem to 
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Figure 3: The structure of a connected component in 
the arc graph. 

the study of its arc graph D. When D is a union of 
cycles it has a very regular structure, which is used 
to prove that it has no straight line realization unless 
it is trivial. In all other cases there exists a realiza- 
tion. To show this we first prune the arc graph of 
inessential information like consecutive arcs i + i + 1 
and i + i - 1 and work with this reduced graph D. 
When D has no cycles, it can be realized with the nu- 
cleus vertices on a circle. Otherwise D has at least 
one cycle and at least one vertex of in-degree 0. A 
relaxation of the problem is obtained by realizing all 
vertices of D contained in cycles with equally sized 
arcs on a circle, and all the other vertices with arcs of 
sizes in an order compatible with the one induced by 
D. We show that this relaxed partial solution can be 
turned into a stretchable configuration by inductively 
perturbing the points, starting with one adjacent to 
an arc corresponding to vertex of in-degree 0 in D. 

Lemma 3.1 G,, is the pseudo ve-graph of a star-like 
pseudo-polygon ifl its vertices can be partitioned into 
two sets N and S, so that (a) the vertices in N form 
a clique in the v-graph induced by G,, (b) there are no 
internal visibilities between vertices of V and S (dif- 
ferent from vi + ei,ei-1) (c) each vertex in S sees 
exactly one other edge besides its two adjacent ones, 
and (d) the conditions in Theorem 2.1 are satisfied. 

Lemma 3.2 Consider a star-like pseudo-polygon, its 
ve-graph G,, an d its arc digraph D. If i’ + (j, j’) in 

G,,, then j -+ k in D, with i < k < j. If i’ -+ (j’, j + 
1) in G,,, then j + k in D, with j < k < i. The 
converse also holds, if there is a spike on the nucleus 
edge (ij + 1). 

The proof follows easily from Theorem 2.1, prop- 
erty 3. As a consequence, from now on we consider 
only the arc graph, as the ve-graph and p-polygon can 
be inferred from it. 

Lemma 3.3 Assume there exists a consequtive edge 
i + (i + 1) or i + (i - 1) in the arc graph D of a ve- 
graph. If removing this edge from D yields a stretch- 
able configuration, then a spike corresponding to this 
edge can always be added. 

The proof is straightforward, because in this case the 
spike vertex is constrained only by one line, and the 
ve-graph property ensures that there exists a feasible 
region to add the vertex. 

Corollary 3.4 If D is a trivial cycle, then it is stretch- 
able. 

From now on we assume that the arc graph has 
been pruned of edges of the form i + (i + 1) and 
i + (i - 1). 

Lemma 3.5 Zf the arc graph is acyclic, then it is 
stretchable. 

Proof. Put n points labeled 1,. . . , n on a circle, 
with the arc (i, i + 1) measuring o; units, 0 < oi < 2n 
and ai < aj whenever i + j. 

Lemma 3.6 If all the vertices of D have in- and out- 
degree 1 (D is a union of cycles), and il + j,, iz + j, 
are two edge of D, then j, - il = j, - iz. 

Proof: By contradiction. Assume not all differ- 
ences are equal, and let i + j be the edge in D with 
the maximum difference j - i. Because of the crossing 
condition, the edge i + 1 + 1 has to satisfy j 5 1 5 i 
(with 5 interpreted circularly mod n). The,case j = 1 
is ruled out because it would give a vertex of in-degree 
2. If j + 1 < 2, then i + 1 - 1 > i - j, contradicting the 
maximality of i + j. Therefore i + 1 -+ j + 1, and this 
edge also attains the maximal difference. The proof is 
completed inductively for all other edges. 

Lemma 3.7 If D is a non-trivial union of cycles, 
then it is non-stretchable. 

Proof. We give here an elementary proof. It is 
based on the following simple observation. If 4 points 
i, j, k, 1 are in convex position in the plane in this ccw 
order, if r is the crossing point of ik and jl, and if 
the line kj intersects line li on the side of ij, then the 
area of the triangle rij is smaller than the area of the 
triangle rkl. See Fig.4a. Assume now that D is re- 
alizable. Write the above triangle area inequality for 
all the 4-tuples given by the head and tail pairs of the 
edges of D, and sum up the areas for all the smaller 
and for all the larger triangles. Elementary consider- 
ations show however that these sums should be equal, 
as each set of triangles forms a distinct decomposition 
of the same planar region, hence a contradiction. See 
Fig. 4(b). 

Non-stretchability of a more general family was ob- 
tained in [GP80], using an algebraic technique based 
on the cross product of two vectors. The special case 
when the arc graph consists of two cycles, each with 
three vertices, has been shown by Jiirgen Bokowski 
(personal communication) to be unstretchable, using 
an argument based on a non-Pappus configuration. 

We now turn to the stretchable cases. 

Lemma 3.8 If D is not a union of cycles, then it is 
stretchable. 
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Figure 4: Elementary argument for the non- 
stretchability proof. 

Sketch of the proof. We start with all the points 
on a circle. Intuitively this corresponds to a relaxation 
of the original realization problem, where the mea- 
sures of the arcs (i, i + 1) (on the circle) corresponding 
to vertices i belonging to a cycle of D are allowed to 
be of equal measure. The measures of the arcs corre- 
sponding to tree vertices are in an order compatible 
with the partial order induced by the tree (the leaves 
are the smallest). 

The proof proceeds by walking along the circle in 
ccw order and performing, if necessary, a perturbation 
of each encountered point. The perturbation of point 
i consists of moving the point i off the circle, in such 
a way that the arrows i + j, k + i, i - 1 + j and 
k + i - 1 in D are satisfied. (Remember that in the 
original relaxation, the head and tail of the cycle arcs 
are equal, so these arrows in D are not satisfied). The 
essence of the proof consists in showing that such a 
perturbation is possible at each step where the current 
point i being visited is so that there exists an arc (in 
or out the vertex i or i - 1 in the arc graph D) which 
is not yet satisfied. The existence of a perturbation 
amounts to the existence of a non-empty polygonal 
region adjacent to the current position of the point, 
which captures the satisfiability of the constraints in 
the arc graph for the two vertices i and i - 1. It is 
interesting to remark that this region is non-empty 
because of the special structure of the arc graph (for 
more general structures the proof fails). 

The details are deferred to the full paper. This 
concludes the proof of the main result: 

It is easy to see that the main theorem implies 
a simple linear time algorithm for deciding if a given 
star-like pseudo ve-graph is stretchable. Deciding that 
it is a pseudo ve-graph may take more than linear time 
if based on the conditions from Theorem 2.1, although 
the simple star-like shape indicates that it may be 
improved. 

4 Conclusion 

A slightly more general class can be shown to have 
similar stretchability decision properties, but for lack 
ofspace we have chosen to present here only the com- 
pact, self-contained case of star-like pseudo-polygons. 

From any pseudo-polygon one can isolate all possi- 
ble star-like sub-polygons. If any of these satisfies the 
unstretchability criterion, the whole pseudo-polygon 
will be unstretchable. The reverse is harder to prove. 
We know how to realize any star-like subpolygon, but 
putting them together adds extra restrictions which 
we do not see yet how to handle. However, we conjec- 
ture that it can be done. 

Conjecture If all star-shaped sub-polygons of a 
pseudo-polygon are stretchable, then so is the whole 
pseudo-polygon. 

If true, this would be an interesting case of a class 
of oriented matroids for which global stretchability 
can be decided based on a local substructure. If not, 
one should construct at least one non-stretchable pseudo- 
polygon which is not star-like, and further investiga- 
tions on settling the stretchability question for pseudo- 
polygons should start from there. 

Let us also mention briefly that to complete a theo- 
rem of characterization and efficient reconstruction for 
v-graphs (not just ve-graphs), one has to find an effi- 
cient way of associating a ve-graph to a v-graph. The 
problem is that there might be exponentially many. 
It might be the case that this problem is already NP- 
hard, but so far this is an open question. Moreover, 
one has to find a stretchable compatible ve-graph, if 
one exists. Therefore, understanding the stretchabil- 
ity properties of ve-graphs is a problem that has to be 
fully solved before attacking the corresponding qpes- 
tion for v-graphs. 
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