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How far can you reach?

Ciprian Borcea 1 and Ileana Streinu 2

Abstract

The problem of computing the maximum reach config-
urations of a 3D revolute-jointed manipulator is a long-
standing open problem in robotics. In this paper we
present an optimal algorithmic solution for orthogonal
polygonal chains. This appears as a special case of a
larger family, fully characterized here by a technical con-
dition. Until now, in spite of the practical importance
of the problem, only numerical optimization heuristics
were available, with no guarantee of obtaining the global
maximum. In fact, the problem was not even known
to be computationally solvable, and in practice, the nu-
merical heuristics were applicable only to small problem
sizes.

We present elementary and efficient (mostly linear)
algorithms for four fundamental problems: (1) finding
the maximum reach value, (2) finding a maximum reach
configuration (or enumerating all of them), (3) folding
a given chain to a given maximum position, and (4)
folding a chain in a way that changes the endpoint dis-
tance function monotonically. The algorithms rely on
our recent theoretical results characterizing combinato-
rially the maximum of panel-and-hinge chains. They
allow us to reduce the first problem to finding a short-
est path between two vertices in an associated simple
triangulated polygon, and the last problem to a simple
version of the planar carpenter’s rule problem.

1 Introduction

The revolute-jointed robot arms considered in this paper
are spatial polygonal chains with fixed edge lengths and
fixed angles between consecutive edges. The possible
motions of the chain are rotations about the interior
edges. These edges are called revolute joints or, when
viewed as entire lines, hinges. As the robot arm moves
between possible configurations, the distance between
the two endpoints of the polygon (the endpoint distance
function) takes on a continuum of values, of which the
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maximum one makes the focus of this paper. We remark
that our chains are allowed to self-intersect during the
motion. The following is a basic, long-standing open
question in robotics, where it appears in connection
with the much studied workspace computation problem
[19, 3]:

The Maximum Reach Problem. Given a 3D
revolute-jointed robot arm, compute the maximum value
of the endpoint distance function and a corresponding
configuration.

The main result of this paper is a surprisingly
simple, optimal, linear time algorithms for finding a
maximum reach configuration for orthogonal chains,
and other classes (fully characterized by a technical
condition). We show how to find the maximum value
of the endpoint distance function, one of the (possibly
exponentially many) maximum reach configurations,
and how to fold to one of these configurations in a linear
number of steps.

Although research on this problem spans over 40
years (see, e.g. [10, 8, 6, 1]), theoretical results con-
tributed little to computational advances. The typical
approach was based on formulating it as an optimization
problem. In practice, for small-sized instances, it was
solved with numerical approximation methods. Even
very basic questions, such as whether a candidate so-
lution can be verified in polynomial time, or whether
the maximum is at all computable by a discrete algo-
rithm, remained open. Indeed, in order to find the maxi-
mum, one has to look for it in a high dimensional space,
described by the algebraic equations arising from the
length and angle chain constraints. No a priori discrete
underlying structure was known, to guide the search.
For instance, if a gradient-based method landed in a
potential well (local maximum), there was no theoret-
ical criterion to distinguish a local maximum from the
global one.

Papers studying the maximum reach of revolute
jointed robotic manipulators have appeared in the
robotics literature since at least 1969 [10], and gained
momentum in the early 1980’s, when a general, nec-
essary condition satisfied by all critical points of the
endpoint distance function was identified [8, 13, 19, 16].
An approximation method received in 1985 the ACM
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Distinguished Dissertation Award [12]. Recent activ-
ity focuses on effectively finding or approximating the
workspace boundary for specific mechanical manipula-
tors with few joints [2, 1]. A strong impetus comes from
the applications of robotics methods in Molecular Biol-
ogy ( see e.g. [5]).

Our Results. We present combinatorial algo-
rithms for the following four fundamental problems on
robot arm reachability, applied to orthogonal chains:

1. Maximum Reach Value: compute the maximum
value of the endpoint distance function.

2. Maximum Reach Configuration: compute one
(or all, when the number if finite) of the config-
urations that achieve the global maximum of the
endpoint distance.

3. Motion Planning: given an arbitrary configura-
tion of the chain, reconfigure it to a maximum reach
position: i.e. compute a trajectory in configuration
space ending at a specific maximum reach configu-
ration.

4. Optimized Motion Planning: given a flat con-
figuration, reconfigure it in such a way that the
distance function increases towards the maximum
throughout the motion.

The class of chains for which these algorithms
work is actually larger, and fully characterized by a
technical condition, related to the triangle inequality
on the sphere. This will be described in Section 5. In
particular, this holds for chains with all angles equal to
α, for α ≥ π

3 . However, in order to avoid cluttering
the presentation with technicalities, we’ll focus on the
orthogonal case.

The main effort goes into solving problem (1). We
do so with a linear time algorithm for computing not
just the maximum reach value, but also the fold points
and the fold pattern of the flat pieces of the correspond-
ing configuration. After that, in linear time we compute
the angles by which the panels will be rotated at the
fold points. A maximum reach configuration is then
computed in linear time by standard forward kinemat-
ics calculations. Similarly, problem (3) can be solved
by designing a trajectory that sequentially rotates the
panels by the appropriate angles. The solution to prob-
lem (4) relies on expansive motions, and will be briefly
sketched at the very end. To stay within our goal of de-
signing combinatorial algorithms whose complexity can
be described in terms on n, we use the O(n3)-events al-
gorithm [17] for the planar Carpenter’s Rule Problem.

Overview of the paper. We give the necessary
definitions in Section 2, and state our previous theoret-
ical results in Section 3. Along the way, we describe a
structure theorem for maximum configurations, based
on so-called rope segments and fold points, and present
the equivalent shortest-path formulation which is more
amenable to algorithmic treatment. The main algo-
rithm appears in Section 4. It computes not just the
length of the maximum reach, but also identifies, from
a certain flat configuration, the structural elements of a
maximal one. In Section 5, we describe the algorithm
for computing a maximum reach configuration, which
allows us to identify the technical condition which makes
this process possible: the single-vertex origami folding.
We now prove that the algorithm works correctly if and
only if this condition is satisfied. In Section 7, we fur-
ther refine the folding process to work in a manner that
increases the endpoint distance monotonically. We con-
clude with some open problems.

2 Definitions

Revolute-jointed chains. A robot arm with n
revolute joints (hinges) is given by a polygonal chain
p = {p0, p1, · · · , pn+2} in 3D, with fixed edge lengths
and fixed angles between consecutive edges. The hinges
correspond to the internal edges ei = (i, i + 1), i =
1, · · · , n. The two points s = p0 and t = pn+2 are
referred to as the endpoints of the chain, with s being the
start or origin, and t the terminus or end point. Another
way to look at such a chain is as follows: the fixed angle
constraint turns all triplets of vertices pipi+1pi+2 into
rigid triangles, since the length of the edge pipi+2 is
implied by the other two and by the angle between
them. The plane of the triangle is called a panel,
and consecutive panels pipi+1pi+2 and pi+1pi+2pi+3 are
joined by the hinge ei+1 running through pi+1pi+2. A
reminder: a hinge should be conceived as an entire line,
not just a line segment.

Panel-and-hinge chains. More generally, a
panel-and-hinge chain is a sequence of panels connected
by hinges. A panel is a plane, and a hinge is a line,
rigidly attached to it. In a chain, all panels have exactly
two hinges, except for the two extreme ones which con-
tain just one hinge each. Two consecutive panels are
free to rotate, one relative to the other, around their
common hinge. An origin or start point is fixed on the
first panel, and an end-point or terminus is marked on
the last.
Panel-and-hinge chains allow for the case of parallel
consecutive hinges or several consecutive hinges incident
in the same point, but a generic chain won’t have such
degeneracies. If we connect the start point to a point
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0 1

2 3

4 5

6 7

Figure 1: Rigid triangles in the panel-and-hinge chain
associated to the revolute-jointed chain of Fig. 3(a).

on the first hinge by a line segment (an edge) and the
terminus point to a point on the last hinge by another
edge, we retrieve a revolute-jointed chain presentation
with internal edges given by the segments on the hinges
between two crossing points. The panels can be again
conceived as triangles. See Fig. 1.

Endpoint axis and segment. The line (resp. line
segment) joining the start and terminus is called the
endpoint axis (resp. endpoint segment) of the chain.

Configuration space. The set of all possible spa-
tial positions of the vertices which satisfy the edge
length and angle constraints of a revolute-jointed chain
(resp. panel-and-hinge), up to rigid motions, forms the
configuration space of the chain. We allow our chains
to self-intersect. The configuration space is natu-
rally isomorphic to the n-dimensional torus (S1)n, for
all the types of chains defined above. For panel-and-
hinge chains, it can be parametrized by the dihedral
angles between consecutive panels.

We emphasize that we address primarily the
generic case in each class of chains. That means work-
ing on the complement of a proper algebraic subvariety
of the parameter space of that class. Nevertheless, once
a pattern is recognized, it is not difficult to see which
aspects persist for the “non-generic” limit locus.

Flat configurations. When all the panels are
coplanar, we say that the panel-and-hinge structure is
in a flat configuration or simply flat. If the panels arise
as triangles from a revolute-jointed polygonal chain, a
special standard configuration is distinguished: when
consecutive triangle do not overlap. Fig. 3 illustrates
the standard flat configuration of an orthogonal chain
(with equal right angles) having 5 hinges. Its panel-and-
hinge representation from Fig. 1 illustrates the local
non-overlapping property. More generally, it is easy to
show that there is no global overlap for all chains with
equal obtuse angles.

Endpoint (squared) distance. The endpoint
distance function assigns a real non-negative value (the
distance between the endpoints p0 and pn+2) to each
spatial configuration of the chain. In fact, the squared
distance function is more convenient for computations.
The endpoint distance varies between two extreme val-
ues, the global minimum and maximum, with the possi-
bility of various other local minima or maxima.

3 Theoretical background

The insufficient theoretical understanding of maximum
configurations seems to be partially responsible for the
lack of discrete (non-numerical) algorithms. A necessary
condition for extremal non-zero 5 configurations was
recognized and proven in several papers [8, 13, 19, 16].
In the words of [16], this necessary condition says:
“the line of sight from the base-point to the hand must
intersect all turning axes”6, where the base-point may
be chosen arbitrarily, the end-point is called “hand” and
the “turning axes” are what we call hinges. However,
all critical points with non-zero value for the squared
distance function between the extreme points (not just
the maxima) satisfy this condition.

Structure of critical configurations. As an im-
mediate consequence of this condition, we obtain simple
structural properties of panel-and-hinge chains in crit-
ical non-zero configurations. Two consecutive hinges
may be met by the endpoint axis either in two dis-
tinct points (in which case, the axis lies in the plane,
or panel, spanned by the two hinges), or in their inter-
section point; in this last case, the endpoint axis may
not lie in the plane of the two hinges. If several consec-
utive hinges are met at distinct points, they (and conse-
quently the panels they span) must be coplanar. Thus,
the chain is subdivided into flat pieces (made by several
consecutive coplanar panels cut by the endpoint axis),
and connector panels. A connector panel is not coplanar
with the endpoint axis. Instead, it meets the endpoint
axis at the intersection of its two incident hinges. These
special points, where the endpoint axis meets two (or
more) concurrent hinges simultaneously, are called fold
points.

In summary: the endpoint axis cuts across the
hinges in the flat regions, and goes simultaneously
through two consecutive hinges at fold points. See 8(b)
for an example with two fold points; the endpoint axis
meets three hinges in the middle region. We will make

5Configurations where the endpoint distance function is zero
are also critical points, but they are not isolated for n ≥ 4.

6This incidence of the origin-to-terminus line with the hinges
is understood projectively, that is, it includes the possibility of
parallelism.

930 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

2/
22

 to
 2

4.
62

.2
06

.2
39

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



substantial use of this property in the description of our
algorithms.

Recently, in [4], we have extended this condition to a
combinatorial, necessary and sufficient characterization
of the Maximum Reach configurations. Because it helps
to compare what is specific to the special case addressed
in this paper, we state it in its full generality, for body-
and-hinge chains. This is the most general class of
serial robotic manipulators with revolute joints, defined
as a collection of rigid bodies connected serially by
hinges. The difference from panel-and-hinge chains is
that the two hinges attached to each body (except the
first and the last, which have only one hinge) need not
be coplanar. As before, we mark two points, a base
or start point on the first body, and an end point, or
terminus on the last body, and ask for the maximum
distance between them. The natural order of the hinges
is 1, 2, 3, · · · as they appear on the chain. See Fig. 2. We
have the following complete theoretical characterization
(valid in arbitrary dimension):

Theorem 3.1. [4] (Global Maximum) A body-and-
hinge chain is in a global maximum configuration if and
only if the oriented segment from the origin s to the
terminus t intersects all hinges in their natural order.

B

A

B
B

B

A

A

s t

1

1

2

2

n=3 hinges

n

n+1

n

Figure 2: A body-and-hinge chain in R3 with n = 3
hinges, 4 bodies (visualized as tetrahedra) and two
marked points s and t on the end-bodies. In a maximum
reach position, the axes meet the oriented segment st in
the natural order.

Indeed, given a configuration satisfying this condi-
tion, we will mark in red the line segment from s to t,
and think of its pieces, between the intersection points
with the hinges, as being rigidly attached to the cor-
responding bodies. In any other configuration of the
chain, the red path appears as a polygonal chain in 3D;
hence the endpoint distance will be shorter than the
length of the red path. The necessity of the condition is
obtained from a characterization of the global maximum
as a global minimum of another function:

Theorem 3.2. [4] (Global Maximum as a Global
Minimum) The global maximum of the endpoint dis-
tance function coincides with the length of the shortest
path from s to t which meets all hinges in their natural
order.

See Fig. 3 for an example of a flat configuration which
is, and one which is not a maximum, as witnessed
by the pattern of intersection of the hinges with the
endpoint axis. Notice that flat configurations are
automatically critical points of the endpoint distance
function, since the endpoint axis and all hinges are
coplanar, and therefore projectively incident. Later on,
Fig. 8 illustrates a flat, non-maximal configuration and
a corresponding global maximum.

0 1

2 3

4 5

(a)

0 1

2 3

4 5

6 7

(b)

Figure 3: Illustration of Theorem 3.1. (a) This flat
orthogonal chain is in its global maximum position,
since the segment from the start to the terminus crosses
the hinges in the natural order. (b) The hinges (in light
gray) are crossed in a different order. The maximum
reach requires a non-flat configuration in this case.

In this paper, we rely on these properties to devise
the algorithms. The proofs of these Theorems have
appeared in [4].

Notice that Theorem 3.1 immediately yields a sim-
ple linear time verification algorithm for the Maximum
Reach. By contrast, the ”classical” necessary condition
of [8, 13, 19, 16] leads only to a verification procedure
for being a critical point, not necessarily an maximum.
The number of critical points of the endpoint distance
function could be exponentially large, and - to the best
of our knowledge - there is no known procedure that can
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isolate from them the maxima, based on this informa-
tion alone. Theorem 3.2 is also an essential ingredient
in our algorithm for Maximum Reach, since it allows us
to reduce its calculation to a constrained shortest path
problem.

As we said, critical configurations of panel-and-
hinge chains are subdivided into flat pieces connected
at fold points. When a panel-and-hinge chain is folded,
the angles induced by the two incident hinges at a
fold point and the constrained shortest path between
the endpoints will satisfy a simple condition related to
the triangle inequality on the sphere (this is a crucial
condition; we’ll say more about it later in the paper). At
each fold point, the incident panels can be (generically)
folded in two distinct ways (the applicable concept of
genericity includes most of the polygonal chains). We
obtain:

Theorem 3.3. [4] (Number of Extremal Configu-
rations) Generically, the number of distinct configura-
tions of panel-and-hinge chains attaining the maximum
reach is 2f , where f is the number of fold points. All
maxima are global.

By contrast, for body-and-hinge chains, the global
maximum is generically achieved by a unique configura-
tion, and there may be exponentially many local max-
ima.

This theorem clarifies our goals: we will aim at
computing the maximum reach value (which is unique)
but not the maximum reach configuration (which is
not). We will settle to folding the chain to one of the
maximum reach positions, characterized by a certain
pattern of orientations at fold points. The theorem
also explains the observed behavior of gradient-based
numerical methods, since there are no local (non-global)
maxima (this is valid for all polygonal chains with fixed
edge lengths and angles, not just the orthogonal ones).

4 Finding the maximum reach

We are ready now to describe the main algorithm. It
finds the value of the maximum reach and computes
additional information which will be used, in the next
section, to compute one of the (possibly exponentially
many) configurations in which the maximum can be
attained. The proof of correctness, for orthogonal
chains, is also addressed in the next section.

Recall the structural decomposition of a chain in a
critical, and in particular in a maximum reach position
described in the beginning of Section 3: it consists in flat
regions connected at fold points via connector panels.
An example appears in Fig. 8(b).

Preview. To compute the maximum reach, our algo-
rithm computes the fold points and flat pieces. Fold-
ing the chain to one of these maximum configurations
can then be done by sequentially rotating along the two
hinges of the connector panel at each fold point, for an-
gles that can be computed in constant time using basic
spherical geometry. We remark that the algorithms are
valid for a larger class of chains, described in the next
section by a quite technical condition related to the tri-
angle inequality on the sphere; it is much easier to follow
and illustrate them for orthogonal chains.

(a)

(b)

Figure 4: Finding the maximum reach for orthogonal
chains. (a) The loose rope as a pseudoline inside the
polygon. (b) The taut rope is the shortest path between
the endpoints, and its length is the maximum reach.

Let us define the polygon associated to a flat orthog-
onal chain in standard configuration as the union of all
triangles pipi+1pi+2, as in Fig. 1. Notice that the poly-
gon interior, in gray in Fig. 1, is already triangulated
by the chain hinge segments pipi+1, 1 ≤ i ≤ n.

Intuitively, imagine that we join the two endpoints
by a loose rope and constrain it to meet all the hinge
segments in natural order, as in Fig. 4(a), seeking to
satisfy the condition of Theorem 3.1. In other words,
we view the rope as a pseudo-line whose crossing pattern
with the other lines is the natural order of the hinges.
Then we pull the rope, while maintaining the chain flat
and the rope confined inside the polygon. When the
rope is taut, it becomes the shortest (geodesic) path
between the endpoints, inside the polygon. If the path
is a straight line, as in Fig. 3(a), it is the endpoint
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axis intersecting the hinges in natural order. If it is not
straight, it bends at some chain vertices, as in Fig. 4(b).
These are the fold points. Formally:

Algorithm 1. Maximum reach and Fold Points
Input: A 3D orthogonal chain.
Output: The value of the maximum reach between

the chain endpoints and the collection of fold points.
Method:
[1]. In linear time, lay the chain flat in the standard

configuration and compute the associated polygon.
[2]. Compute the shortest (geodesic) path between

the chain endpoints lying inside the polygon.
[3]. Output the length of the shortest path: this is

the maximum reach.
[4]. Output the sequence of vertices on the shortest

path: these are the fold points.

To compute the geodesic path, we can use, for in-
stance, the linear algorithms of [11] or [7]. This is con-
venient since the polygon comes with the triangulation
given by the edges of the orthogonal chain.

If we can show that there is a 3D realization of the
chain in which the shortest path computed by this al-
gorithm, marked in red on the panel-and-hinge chain,
aligns to a straight-line red segment, then the correct-
ness of this algorithm follows from Theorem 3.1. Those
cases in which this property (of having a 3D realization
as described above) also illustrate a more restricted ver-
sion of Theorem 3.2, one where the endpoint axis meets
the hinge segments in the natural order. This is not
true for more general chains, as illustrated in Fig. 5. In-
deed, our algorithm, specialized to achieve this stronger
condition, will not detect the maximum in all panel-
and-hinge chains, e.g. for the example in Fig. 5. In the
next section we characterize the class of chain for which
this stronger property holds, and show that it includes
the orthogonal chains.

5 Computing a maximum-reach configuration

We move now to the problem of computing a configura-
tion attaining the maximum reach. Expanding upon the
intuitive description given in the previous section, at the
position where the rope is taut, we freeze the lengths of
its segments. Each frozen rope segment may cross some
chain edges, which will stay flat in any maximal config-
uration. We use this observation to construct an associ-
ated panel-and-hinge chain as follows: the hinges (of the
original standard flat chain) crossed by each frozen rope
segment are themselves frozen flat, and their plane be-
comes a single new panel. The hinges of the new chain
are the hinges incident to the fold vertices (two at each
vertex). Note that our new panel-and-hinge chain also

|TV|= 1.72

|VX|= 0.96

(a)

|TV|= 1.72

|VX|= 0.96

(b)

Figure 5: A (non-orthogonal) chain on which Algo-
rithm 1 does not apply. (a) The chain, in a standard
flat position, with the shortest path computed by the
algorithm; this is not, however, the global maximum
reach. (b) The maximum reach is attained in a flat,
non-standard (with locally overlapping panels) position,
in which the endpoint segment (red) meets the hinges
in natural order, but one of them is crossed outside the
hinge segment region (dashed).

contains the (planes of the) triangles between the two
hinges at a fold vertex. See Fig. 6(b).

We now seek to fold this new chain from its flat
position to a spatial configuration where the frozen
rope segments are aligned. This may not be always
possible (for arbitrary chains). But we show that we can
always decide easily when it is so, by verifying a simple
technical property (defined below). Finally, we prove
that orthogonal chains always satisfy this property.

The antipodal triangle inequality on the sphere.
If we focus on one vertex of a panel-and-hinge chain, it
has three panels and two hinges incident to it. This is
visualized in Fig. 6(a). After the computation of the
shortest path, a fold vertex is incident with two hinges
and two segments of the frozen rope, as in Fig. 6(b).

At a fold vertex, the rope bends. This means
that the three angles add up to more than π. The
goal is to align the two rope segments by folding
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(a)

(b)

Figure 6: The three angles incident to a vertex, involved
in the antipodal triangle inequality on the sphere,
illustrated: (a) at a vertex of an orthogonal chain; (b)
at a fold vertex, the three angles induced by the two
red (frozen rope) and two blue (hinges) incident to the
vertex. In this case, the two triangles crossed by the red
line segment on the right become a new panel.

the simple three-edged single vertex origami of total
spherical length between π and 2π (see [18, 14] for
the relationship between spherical polygonal paths and
single vertex origami). This cannot always be done, for
instance when the three angles are 170, 30, 170 degrees.
A necessary and sufficient condition is given by the
following Lemma.

Lemma 5.1. (Antipodal Triangle Inequality) A
spherical polygonal path of 4 vertices, made of three arcs
of lengths a, b, c along the unit sphere, has a realization
with antipodal endpoints iff the triplets of arc lengths
a, b, π−c and π−a, b, c (and consequently also a, π−b, c)
satisfy the triangle inequality.

The spherical path with three arcs, in a position
where its endpoints are antipodal, will be called an
antipodal spherical triangle. See Fig. 7(b) for an
example. The proof of the Lemma is elementary, since
the triangle inequality must be satisfied for spherical
triangles with edge lengths smaller than π, as well,
and the antipodal triangle exists iff the complement
π − c of arc c (with respect to half of a great-circle)

(a)

(b)

Figure 7: Folding three panels satisfying the Antipodal
Triangle Inequality at a fold vertex. (a) The original flat
configuration. (b) The final aligned fold. The taut rope
in this position shows clearly that the maximum reach
is obtained when its segments are aligned. The original
flat chain contour is retained for visual reference.

forms a spherical triangle with the other two, iff the
complement π − a of arc a forms a spherical triangle
with the other two. Elementary calculations show that
the antipodal triangle inequality conditions lead to the
following equivalent formulation:

Corollary 5.1. Antipodal Triangle Criterion
Three angles a, b and c, with 0 < a, b, c < π satisfy
the antipodal triangle inequality iff they satisfy the fol-
lowing system of linear inequalities:

a+ b+ c ≥ π(5.1)
a+ b− c ≤ π(5.2)
a− b+ c ≤ π(5.3)
−a+ b+ c ≤ π(5.4)

Using this criterion, we prove:
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Corollary 5.2. Chains with all equal angles α satisfy
the Antipodal Triangle Inequality at every fold vertex
iff α ≥ π

3 . In particular, equal obtuse angles and
orthogonal chains all fall into this category.

Proof. We denote the three angles at a fold point as a, b
and c, with b being the equal angle of the chain α, and
use the criterion from Corollary 5.1. Notice first that
0 < a, c < π− b: indeed, in the standard position of the
chain, all sides follow just two directions (since the chain
angles are equal), constraining the size of a and c to fall
below π − b. The condition that the vertex is a fold
point implies that the sum of the angles must exceed
π, yielding condition (5.1). To verify (5.2) and (5.4),
observe that a+b−c < a+b < π−b+b = π, and similarly
for −a+b+c. Finally, a−b+c < π−b−b+π−b = 2π−3b,
which is ≤ π exactly when b ≥ π

3 .

Theorem 5.1. (Maximum reach via rope inside
polygon) The maximum reach is the length of the end-
to-end geodesic path inside the associated polygon iff
each fold vertex satisfies the antipodal triangle inequal-
ity on the sphere. A maximum configuration is obtained
by aligning the frozen rope segments at the fold points
via folding the incident angle triplets to an antipodal
spherical triangle.

Proof. As we have observed in the Introduction, in any
critical configuration the endpoint axis leads to the
partitioning of the chain into flat pieces, connected at
fold points (with a triangle in between). In a maximum
reach configuration, the endpoint axis must meet the
hinges in the natural order. At fold points, because
of the alignment of the segments incident to the fold
point, Lemma 5.1 applies. These statements hold in
both directions for orthogonal chains.

Corollary 5.3. The Maximum Reach of chains with
all equal angles α > π

3 is correctly computed by Algo-
rithm 1.

Finally, once we have computed the fold angles, we
can fold the chain to a maximum configuration using
a standard forward-kinematics robotics technique. For
completeness, this is described in the next section.

(a) (b)

(c) (d)

(e) (f)

Figure 8: Folding a standard flat orthogonal polygon
with two fold points to a maximum configuration. (a)
The original flat configuration. (b)(c)(d)(e) With high-
lighted hinge, just before performing the corresponding
rotation. (e) The final maximum fold. The original flat
chain, in gray, is kept for visual reference. Notice the
alignment of the rope segments in (d) and (f).

6 Motion Planning: folding to a maximum

The folding of the single vertex origami of three panels
at each fold vertex into a position where the frozen rope
segments become aligned is done sequentially via two ro-
tations about the two hinges incident to the fold vertex.
The alignment can be accomplished in one of two sym-
metric positions of the incident panels, which leads to
an exponential number of possible configurations. Once
we decide upon a desired fold pattern, then the entire
folding process takes linearly many steps. Each folding
step is a simple rotation of a part of the chain about
one axis. The process of finding the final configuration
becomes an instance of the classical forward kinematics
problem for robotic manipulators.
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Algorithm 2. Folding to Maximum Reach
Input: A 3D orthogonal chain.
Output: A 3D configuration of the chain in maxi-

mum reach position.
Method:
[1]. Using Algorithm 1, compute the fold points and

the position of the frozen rope.
[2]. For each fold point, compute the two dihedral

angles at the incident chain hinges, corresponding to the
alignment of the incident frozen rope segments. Decide
which of the two local folds is to be chosen, and encode
them as signs for the dihedral angles.

[3]. For each hinge incident to a fold point, rotate
the part of the chain containing the terminus by the
angle computed at step [2].

A few steps in the folding algorithm are illustrated
in Fig. 8.

Analysis. Step [1] takes linear time, and step [2]
takes time linear in the number of fold points. Thus the
complexity of the folding process, computed in terms of
number of folding steps, is linear.

Theorem 6.1. A maximal configuration can be reached
in a linear number of vertex folding steps.

Continuous folding. Step [3] of the algorithm
can be adapted in several ways to create a continuous
motion. First, the folding can be simulated continuously
one hinge rotation at a time. Second, all the hinge
rotations can be distributed at each time step, and
applied at the same speed to obtain a folding trajectory.

None of these two motions guarantees that the
endpoint distance increases monotonically. We de-
scribe next a different motion planning strategy, which
achieves this property.

7 Expanding the endpoint distance to
maximum

In the motion planning algorithm described above, the
distance between the endpoints may not vary monotoni-
cally towards the maximum value. This can be observed
for instance in the motion from in Fig. 8. It is natural
to ask whether one can design such a specialized motion
not by pursuing a gradient-based numerical method, but
based on a discrete algorithm.

We next show a modification of the continuous
version of the Algorithm 2 discussed in the previous
section, which accomplishes this via a reduction to the
planar Carpenter’s Rule problem.

Theorem 7.1. Starting from a planar standard con-
figuration, a maximum-reach configuration can be at-
tained in a manner that increases the endpoint distance
throughout the motion.

This is achieved by first applying the pseudo-
triangulation roadmap algorithm of [17] to the planar
chain determined by the frozen rope, in the plane of the
first panel. The relative motion of two incident rope-
segments is then used to determine the folding motion
at each fold vertex.

Algorithm 3. Monotone Folding to Max Reach
Input: A 3D orthogonal chain in a standard flat

configuration, together with its fold points, frozen rope-
segments and desired folding pattern at each fold vertex.

Output: A trajectory that folds the chain to a max-
imum configuration and expands the endpoint distance
throughout the motion.

Method:
[1]. In the plane of the initial flat configuration of

the chain, compute an expansive motion of the polygo-
nal chain given by the frozen rope using the second au-
thor’s combinatorial algorithm [17] for the Carpenter’s
Rule Problem based on pseudo-triangulations. The tra-
jectory consists in continuous motion intervals (called
expansive intervals) between two events which align two
pseudo-triangulation edges.

[2]. For each expansive interval, compute the single-
vertex origami motion at all fold-vertices.

The algorithm has a subtlety in Step [2], since even
with one endpoint fixed and another moving along a de-
termined spherical trajectory, the single vertex origami
has an additional degree of freedom. At the end of
the folding, that degree of freedom disappears, poten-
tially causing some numerical instability. The pseudo-
triangulation algorithm of [17] achieves the straighten-
ing of the frozen rope (and thus a maximal-reach con-
figuration) in at most O(n3) reconfiguration steps.

8 Concluding remarks

Our very simple and efficient algorithms are the first
ones that have a chance to make some aspects of
the computations involved in folding of special families
of chains (not too dissimilar from the actual protein
backbones) tractable. As such, we anticipate that our
techniques may open a new direction in the study
of robot arms and their biomechanical applications.
Although, for keeping the presentation uncluttered, we
have formulated our algorithms for generic chains, it is
not hard to extend them for other situations, such as
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panel-and-hinge with more than four panels incident at
one fold point; this extension is straightforward.

We conclude by formulating the following:

Conjecture: There is a polynomial time, combinatorial
algorithm for the Maximum Reach Problems, for general
panel-and-hinge chains.

We also conjecture that the problem is NP-hard
for body-and-hinge chains, and emphasize that an NP-
completeness would be an important theoretical ad-
vance for this case. So far no known methods, even
approximate numerical ones, are guaranteed to com-
pute the (generically unique) global maximum in this
case: the gradient-based methods may get stuck in lo-
cal maxima, and annealing methods may hop between
local maxima with no criterion to guide them toward the
global maximum. Note, however, that our natural-order
criterion would allow these methods to decide, when in
a local maximum, whether it is or not the global one.
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