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ABSTRACT

Motivated by constraint-based CAD software, we develop
the foundation for the rigidity theory of a very general model:
the body-and-cad structure, composed of rigid bodies in 3D
constrained by pairwise coincidence, angle and distance con-
straints. We identify 21 relevant geometric constraints and
develop the corresponding infinitesimal rigidity theory for
these structures. The classical body-and-bar rigidity model
can be viewed as a body-and-cad structure that uses only
one constraint from this new class.

As a consequence, we identify a new, necessary but not
sufficient, counting condition for minimal rigidity of body-
and-cad structures: nested sparsity. This is a slight gener-
alization of the well-known sparsity condition of Maxwell.

Categories and Subject Descriptors: I.3.5 [Computing
Methodologies]: Computer Graphics—Computational Ge-
ometry and Object Modeling ; G.2.3 [Discrete Mathematics]:
Applications; G.2.2 [Discrete Mathematics]: Graph Theory;
J.6 [Computer-Aided Engineering]: Computer-aided design
(CAD)

Keywords: rigidity theory, computer aided design, geomet-
ric constraint system

1. INTRODUCTION

This paper initiates the study and sets up the foundation
for the rigidity theory of body-and-cad structures, a class
of 3D geometric frameworks with specific coincidence, angle
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and distance constraints between rigid bodies. To the best
of our knowledge, these constraints have not been studied
before from this perspective.

Motivation. Popular computer aided design (CAD) soft-
ware based on geometric constraint solvers allow users to
design complex 3D systems by placing geometric constraints
among sets of rigid body building blocks. The constraints
are specified by identifying primitive geometries (points, lines,
planes, or splines) on participating rigid bodies. Analyzing
all of these simultaneously is a very difficult problem. In
this paper, we focus on a subset of these constraints that are
amenable to a rigidity-theoretical investigation.

Underlying classical rigidity theory results is a general
proof pattern, spanning algebraic geometry (for rigidity),
linear algebra (for infinitesimal rigidity) and graph theory
(for combinatorial rigidity). The ultimate goal is a full com-
binatorial characterization of generic infinitesimally mini-
mally rigid structures, but such results are extremely rare:
3d bar-and-joint rigidity remains a conspicuously open prob-
lem, while the 2d version is fully understood. An important
step along the way is identifying a pattern in the rigidity ma-
trix developed as part of the infinitesimal rigidity theory for
the structures. While this is straightforward for the well-
known bar-and-joint model, it is more complicated in the
body-and-bar model. In this abstract, we formulate the even
more involved rigidity matrix for the body-and-cad model.

Results. We define a body-and-cad structure to be com-
posed of rigid bodies connected by pairwise coincidence,
angle (parallel, perpendicular, or arbitrary fixed angle) and
distance constraints. These may only be placed on the
primitive geometries of points, lines or planes. We develop
the pattern of the rigidity matrix and identify a neces-
sary combinatorial counting property called nested sparsity,
which is the counterpart of the well-known Maxwell condi-
tion for fixed length rigidity. We also show that this condi-
tion is not sufficient.

Structure. Only a sketch of our results is presented in
this short abstract. Full details can be found in the second
author’s PhD dissertation [4]. Section 2 gives a very brief
overview of the required mathematical background. Sec-
tion 3 develops the foundation for the infinitesimal rigidity
theory, providing the basic building blocks used for each
new constraint. Due to lack of space, we only include the
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full development for one example: line-line coincidence con-
straints. Finally, Section 4 identifies a new combinatorial
property resulting from the structure of the rigidity matrix;
this nested sparsity condition, while necessary, is unfortu-
nately not sufficient as illustrated with a counterexample.
Related work Classical rigidity theory [2] focuses on dis-
tance constraints between points [3] or rigid bodies [13, 16].
Direction constraints (where 2 points are required to define
a fixed direction, with respect to a global coordinate sys-
tem) are well-understood and arise from parallel redrawing
applications [17]. Motivated by CAD systems, Servatius and
Whiteley present a characterization, which can be viewed as
a generalized Laman counting property, for 2D systems with
both length and direction constraints [11].

Incidence constraints have been studied in the literature,
mostly in connection with Geometric Theorem Proving [7,
8] for projective incidence theorems. Angle constraints also
have received some attention. Zhou and Sitharam [19] char-
acterize a large class of 2D angle constraint systems along
with a set of combinatorial construction rules that maintain
generic independence. Saliola and Whiteley [9] prove that,
even in the plane, the complexity of determining the inde-
pendence of a set of circle intersection angles is the same as
that of generic bar-and-joint rigidity in 3D.

Combinatorial sparsity conditions [5, 6, 12] are intimately
tied with rigidity theory, appearing often as necessary con-
ditions (as for 3D bar-and-joint rigidity) and sometimes even
as complete characterizations (as for 2D bar-and-joint, body-
and-bar in arbitrary dimension) [3, 13, 18].

2. PRELIMINARIES

Geometric constraints. Besides the well-studied distance
constraint between points (as in body-and-bar structures),
we identify 20 new pairwise coincidence, distance and an-
gle constraints between points, lines and planes. We label
constraints by the geometries involved, e.g., a line-plane per-
pendicular constraint between bodies A and B indicates that
a line on A is perpendicular to a plane on B. Here is the
full set of body-and-cad constraints that we study:
• Plane-plane constraints. Parallel, perpendicular,

fixed angle, coincidence, distance.

• Plane-line constraints. Parallel, perpendicular, fixed
angle, coincidence, distance.

• Plane-point constraints. Coincidence, distance.

• Line-line constraints. Parallel, perpendicular, fixed
angle, coincidence, distance.

• Line-point constraints. Coincidence, distance.

• Point-point constraints. Coincidence, distance.
Terminology and notation. Our results rely on the same
mathematical background as in the work on body-and-bar
rigidity by Tay [13] and White and Whiteley [16]. We use
Grassmann-Cayley algebra, Plücker coordinates and instan-
taneous screw theory (see, e.g., [14, 15] and [10]). In this
paper, we restrict ourselves to dimension 3; 2-tensors in the
Grassmann-Cayley algebra (see, e.g., [14, 15]) are identified
with vectors in R6. The Grassmann-Cayley join operator is
represented with ∨. The dot product of two vectors u and
v is denoted 〈u, v〉.
Instantaneous rigid body motions. An instantaneous
screw motion (see page 24 of [10]) is defined by an instanta-
neous translation and rotation about a screw axis. It is used

to represent an instantaneous rigid body motion. An in-
stantaneous screw is represented by a 6-vector t = {−ω,v},
where ω,v ∈ R3; the minus sign in front of ω is a conve-
nient, technical convention. The first component ω encodes
the angular velocity and, as a vector, gives the direction of
the screw axis. The translational velocity can be computed
from ω and v, but we skip the details as they are not relevant
for the rest of the paper. There is an exact correspondence
between 2-tensors and instantaneous screws.

Notation. We will work with a body-and-cad structure
composed of n bodies. Each body i will have associated to
it an instantaneous screw si. The star operator ∗ swaps the
first and last 3 coordinates of a 6-vector; i.e., for a screw
t = {−ω,v}, t∗ = {v,−ω}. Let s = {s1, . . . , sn} ∈ R6n and
s∗ = {s∗1, . . . , s∗n}.

The vector s is an infinitesimal motion of a body-and-
cad structure if it infinitesimally respects the constraints.
This can be expressed with the help of a matrix (called the
rigidity matrix), fully described in Section 3. An infinitesi-
mal motion is a vector in the kernel of the rigidity matrix.
When si = sj for all i and j, this is a trivial infinitesimal
motion.

Body-and-cad rigidity. A body-and-cad structure is rigid
if the only motions respecting the constraints are the trivial
3D motions (rotation and translation); otherwise, it is flexi-
ble. It is infinitesimally rigid if the only infinitesimal motions
are trivial. Infinitesimal rigidity is the linearized version of
rigidity and is the only type we study in this paper.

Body-and-cad minimal rigidity.

Figure 1: Two dice
rigidly stacked; die A
is above B. Faces are
labeled by the number
of dots, and face 6 lies
at the bottom (oppo-
site 1). The length of
an edge is 1.

The concept of minimal rigid-
ity is usually defined as fol-
lows: a rigid structure is min-
imally rigid if the removal of
any constraint results in a flex-
ible structure. However, in
our case, geometric constraints
may correspond to more than
one “primitive” constraint. For-
mally, a primitive constraint
yields only one row in the rigid-
ity matrix (defined in Section
3), while the body-and-cad con-
straints may yield several rows.
In our setting, we define mini-
mal rigidity as above, but refer-
ring to the removal of primitive
constraints only.

The example in Figure 1 il-
lustrates the subtleties of this
concept. Let A and B be two
dice rigidly stacked with the fol-
lowing constraints: (i) (Plane-
plane parallel) A’s Face 1 is
parallel to B’s Face 1, (ii) (Plane-plane perpendicular)
A’s Face 2 is perpendicular to B’s Face 3, (iii) (Plane-line
distance) The distance between A’s Face 1 and B’s Line 12
(intersection of Faces 1 and 2) is 1, and (iv) (Point-point
coincidence) A’s Corner 236 (the point defined by Faces
2, 3 and 6) is coincident to B’s Corner 123. This struc-
ture is rigid. We say the structure is overconstrained since
it remains rigid even after removal of constraint (iii). The
resulting structure is now minimally rigid. As we will see
in Section 3, constraints (i), (ii) and (iv) correspond to 6
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primitive constraints. Thus, the removal of any primitive
constraint results in a flexible structure.

Now consider stacking the dice with the following two con-
straints: (i) (Line-line coincidence) A’s Line 26 is coinci-
dent to B’s Line 12 and (ii) (Line-line coincidence) A’s
Line 36 is coincident to B’s Line 13. This structure is still
rigid. While it becomes flexible after the removal of either
constraint (i) or (ii), it is not minimally rigid. As we will see
in Section 3, a line-line coincidence constraint corresponds
to 4 primitive constraints. Thus, this structure has 8 prim-
itive constraints and is overconstrained. To give some in-
tuition, note that a structure composed of 2 rigid bodies
has 12 degrees of freedom. Of these, 6 are trivial, so we
fix body A to factor them out. Now consider constraint (i);
the structure is left with 2 degrees of freedom, as B may
slide along the line and rotate about it. This indicates that
a line-line coincidence constraint is somehow “killing” 4 de-
grees of freedom. This intuition is formalized by the 4 rows
of the rigidity matrix developed in Section 3 for the line-line
coincidence constraint.

Rigidity theory roadmap. To develop the rigidity theory
for a new model, three steps must be accomplished. (1) Al-
gebraic theory. Formulate the rigidity concept in algebraic
terms, resulting in an algebraic variety. (2) Infinitesimal the-
ory. Analyze the local behavior at some point on the alge-
braic variety. This reduces to the study of a rigidity matrix.
(3) Combinatorial rigidity. Whenever possible, find a com-
binatorial characterization of minimal rigidity in terms of
properties of an underlying graph structure. This is usually
derived from properties of the rigidity matrix at a generic
point on the algebraic variety. In this paper, we skip Step 1
and jump immediately to the infinitesimal rigidity theory for
body-and-cad structures as it is natural to reason directly
in the world of instantaneous screw motions.

3. INFINITESIMAL THEORY

The previous example shows that body-and-cad constraints
are more complicated to analyze than classical distance con-
straints. We introduce two new concepts to simplify the
analysis: primitive angular and blind constraints. We then
define, as building blocks, 4 basic angular and blind con-
straints and develop their infinitesimal theory. All of the 21
body-and-cad constraints can be studied using these build-
ing blocks, leading to the body-and-cad rigidity matrix.

3.1 Primitive constraints

A primitive constraint is one that may affect at most one
degree of freedom. We also classify constraints into two
types: angular and blind; as the theory is developed, it will
become more clear why these classifications are appropriate,
as they correspond to constraints demonstrating different
algebraic behaviors.

A rigid body in 3D has 6 degrees of freedom, 3 of which
are rotational and 3 of which are translational. A primi-
tive angular constraint may affect only a rotational degree
of freedom, whereas a primitive blind constraint may affect
either a rotational or a translational degree of freedom. We
will associate a set of primitive angular and a set of primitive
blind constraints with each body-and-cad constraint.

3.2 Rigidity matrix

The rigidity matrix for a body-and-cad structure has 6 col-
umns for each body i, corresponding to the components
of the instantaneous screw si, as was done for the origi-
nal body-and-bar rigidity matrix1. There is a row for each
primitive constraint associated to the original body-and-cad
structure. A primitive angular constraint results in a row
containing zero entries in the first 3 columns for each body,
and a primitive blind constraint may have non-zero entries
in any of the 6 columns for each body. In the schematic
below, gray cells indicate potentially non-zero entries, and
red cells highlight the zero entries for angular constraints.

s∗1 s∗i s∗n
v1 ω1 · · · vi ωi · · · vn ωn

0 · · · 0 · · · 0

Angular
...

... · · ·
...

... · · ·
...

...
constraints 0 · · · 0 · · · 0

...
... · · ·

...
... · · ·

...
...

0 · · · 0 · · · 0

Blind
...

... · · ·
...

... · · ·
...

...
constraints

Since the trivial motions corresponding to the 3-dimension-
al rigid motions are necessarily in the kernel of R, the max-
imum rank of R is 6n − 6. By definition, a structure is
infinitesimally rigid if its rigidity matrix has rank 6n− 6.

3.3 Building blocks

We now define 4 very specific basic angular and blind con-
straints (2 of each) and develop the infinitesimal theory for
them. This section is the most technical part of our paper;
everything else is derived from these basic building blocks.

Angular building blocks.
All body-and-cad angular constraints can be reduced to the
following two basic ones between pairs of lines: (i) line-line
non-parallel fixed angle and (ii) line-line parallel.

(i) Basic line-line non-parallel fixed angle. A line-line non-
parallel angle constraint between bodies i and j is defined by
identifying a pair of non-parallel lines, each rigidly affixed
to one body. Let di and dj be the directions of the lines
affixed to bodies i and j, respectively. Then the constraint
is infinitesimally maintained if the axis of the relative screw
si − sj is in a direction lying in the plane determined by di

and dj , i.e.,

〈(ωi − ωj),di × dj〉 = 0

Since −ωi is composed of the last three coordinates of s∗i ,
this is equivalent to˙

(s∗i − s∗j ), ((0, 0, 0),−(di × dj))
¸

= 0 (1)

This corresponds to one row in the rigidity matrix:

s∗i s∗j
· · · vi −ωi · · · vj −ωj · · ·
···0··· 0 −(di × dj) ···0··· 0 dj × di ···0···

1The starred version s∗i will be used to conveniently order the
columns of the rigidity matrix.

1129



(ii) Basic line-line parallel constraint. A line-line parallel
constraint between bodies i and j is defined by identifying
a pair of parallel lines, each rigidly affixed to one body. Let
d = (a, b, c) be the direction of the parallel lines. Then
the constraint is infinitesimally maintained if the axis of the
relative screw si − sj is in the same direction as d, i.e.,
(ωi − ωj) = αd, for some scalar α. This can be expressed
by the following two linear equations, where ω = ωi − ωj :

ωxb− ωya = 0

ωyc− ωzb = 0

Since −ωi is composed of the last three coordinates of s∗i ,
these are equivalent to˙

(s∗i − s∗j ), (0, 0, 0,−b, a, 0)
¸

(2)˙
(s∗i − s∗j ), (0, 0, 0, 0,−c, b)

¸
(3)

and correspond to two rows in the rigidity matrix:

s∗i s∗j
· · · vi −ωi · · · vj −ωj · · ·
···0··· 0 (−b, a, 0) ···0··· 0 (b,−a, 0) ···0···
···0··· 0 (0,−c, b) ···0··· 0 (0, c,−b) ···0···

Blind building blocks.
Let p be a point and p′ its instantaneous velocity resulting
from the instantaneous screw associated with a 2-tensor t ∈
R6. Let c ∈ R3 be an arbitrary direction vector. We either
constrain the velocity p′ to be orthogonal or parallel to c.
This yields the remaining basic constraints (iii) basic blind
orthogonality and (iv) basic blind parallel. Expressing both
of them becomes straightforward using the following fact:

Fact 1. Let t ∈ R6 be an instantaneous screw, p ∈ R3

a point and p′ the velocity of p under the screw motion t.
Then

t ∨ (p : 1) = (p′,−
˙
p,p′

¸
) (4)

and, for any q ∈ R3 and qw ∈ R,

t ∨ (p : 1) ∨ (q : qw) = 〈p′,q〉 − qw ˙
p,p′

¸
(5)

The derivation of this fact can be found in the appendix.

p
c

p'

(a) Allowable p′ velocity vec-
tors for p when constrained to
be orthogonal to a direction c
must lie in the plane through
p with normal c.

p
c

p'

(b) Allowable p′ velocity vec-
tors for p when constrained to
be in the same direction as c.

Figure 2: Basic blind geometric constraints.

(iii) Basic blind orthogonality constraint
To express that p′ is orthogonal to c, we simply substitute
q = c and qw = 0 into Equation 5. Then 〈p′, c〉 = 0 if and
only if

t ∨ (p : 1) ∨ (c : 0) = 0

plane line point

angular blind angular blind angular blind
plane

coincidence 2 1 1 1 0 1
distance 2 1 1 1 0 1
parallel 2 0 1 0
perpendicular 1 0 2 0
fixed angle 1 0 1 0
line

coincidence 2 2 0 2
distance 0 1 0 1
parallel 2 0
perpendicular 1 0
fixed angle 1 0
point

coincidence 0 3
distance 0 1

Table 1: Association of body-and-cad (coincidence, angular,
distance) constraints with the number of blind and angular
primitive constraints.

if and only if

〈t∗, (p : 1) ∨ (c : 0)〉 = 0 (6)

(iv) Basic blind parallel constraint
To express that p′ lies in the same direction as c, we apply
Equation 5 twice by substituting q = (cy,−cx, 0) and qw = 0
first, then q = (0, cz,−cy) and qw = 0. We obtain that
p′ = αc for some α ∈ R if and only if

t ∨ (p : 1) ∨ (cy,−cx, 0, 0) = 0

t ∨ (p : 1) ∨ (0, cz,−cy, 0) = 0

if and only if

〈t∗, (p : 1) ∨ (cy,−cx, 0, 0)〉 = 0 (7)

〈t∗, (p : 1) ∨ (0, cz,−cy, 0)〉 = 0 (8)

3.4 Body-and-cad constraints
In the full version of this paper, we will present the complete
analysis of all 21 body-and-cad constraints. The infinitesi-
mal theory for each is derived from these 4 building blocks.
We summarize the associations for each constraint to the
number of primitive angular and blind constrains in Table
1. As an example of how to read the table, the second two
columns of row 1 indicate that a plane-line coincidence con-
straint reduces to 1 angular and 1 blind primitive constraint.

In the rest of this section, we show just one example: the
derivation of the line-line coincidence constraint.

Figure 3: Line-line coin-
cidence.

Let c,p ∈ R3 define a line,
with c as its direction and p
a point on the line, affixed
to bodies i and j. We begin
with a line-line parallel an-
gular constraint, resulting in 2
primitive angular constraints
from Equations 2 and 3:˙
(s∗i − s∗j ), (0, 0, 0,−cy, cx, 0)

¸
(9)˙

(s∗i − s∗j ), (0, 0, 0, 0,−cz, cy)
¸

(10)

Then, to maintain coinci-
dence, associate 2 primitive
blind constraints from Equa-
tions 7 and 8 to force the rel-
ative velocity of p to lie along
c:

〈(si − sj)∗, (p : 1) ∨ (cy,−cx, 0, 0)〉 = 0 (11)

〈(si − sj)∗, (p : 1) ∨ (0, cz,−cy, 0)〉 = 0 (12)
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These 4 equations maintain the line-line coincidence
constraint infinitesimally and correspond to 4 rows in the
following rigidity matrix schematic:

s∗i s∗j
· · · vi −ωi · · · vj −ωj · · ·
···0··· 0 (−cy, cx, 0) ···0··· 0 (cy,−cx, 0) ···0···
···0··· 0 (0,−cz, cy) ···0··· 0 (0, cz,−cy) ···0···
···0··· (p : 1) ∨ (cy,−cx, 0, 0) ···0··· −((p : 1) ∨ (cy,−cx, 0, 0)) ···0···
···0··· (p : 1) ∨ (0, cz,−cy, 0) ···0··· −((p : 1) ∨ (0, cz,−cy, 0)) ···0···

4. COMBINATORICS

Now we address the question of combinatorially character-
izing when a body-and-cad rigidity matrix is generically in-
dependent, i.e., the rank function drops only on a measure-
zero set of possible entries. We derive a necessary condition
called nested sparsity and prove by a counterexample that it
is insufficient. We observe that finding a complete combina-
torial characterization may require overcoming well-known
obstacles such as detecting dependences in 3D bar-and-joint,
2D points-and-angles, 2D circles-and-angles and 2D point-
line incidence constraint systems.

Nested sparsity. A graph on n vertices is (k, `)-sparse if
every subset of n′ vertices spans at most kn′ − ` edges; it is
tight if, in addition, it spans kn− ` total edges.

LetG = (V,R∪B) be a graph with its edge set colored into
red and black edges, corresponding to R and B, respectively.
We define G = (V,R ∪B) to be (k1, `1, k2, `2)-nested sparse
if G is (k1, `1)-sparse and G1 = (V,R) is (k2, `2)-sparse; the
graph is (k1, `1, k2, `2)-tight if G is (k1, `1)-tight. Note that
nested sparsity only makes sense when (k2, `2)-sparsity is
more restrictive than (k1, `1)-sparsity.

Given a body-and-cad structure, let G = (V,R∪B) be the
graph obtained by assigning vertices to bodies and primitive
constraints to disjoint edge sets R and B, corresponding
respectively to primitive angular and blind constraints. For
each body-and-cad constraint, associate primitive angular
constraints with edges in R and primitive blind constraints
with edges in B.

Theorem 1. Let G = (V,R ∪B) be the graph associated
to a body-and-cad structure, where R and B correspond to
primitive angular and blind constraints, respectively. Then
(6, 6, 3, 3)-nested sparsity is a necessary condition for generic
minimal rigidity of the structure.

Counterexample. We now show that (6, 6, 3, 3)-nested
sparsity is not sufficient. The example in Figure 4 depicts a
flexible structure whose associated graph is (6, 6, 3, 3)-nested
tight. It is composed of 3 bodies A,B and C; Figure 4b col-
ors the constraints. A and B have 2 point-point distance
constraints (cyan and purple) and a line-line coincidence
constraint (pink); A and C have a line-line angle constraint
(orange) and a plane-plane coincidence constraint (yellow);
B and C have a plane-line coincidence constraint (green).

5. CONCLUSIONS AND FUTURE DI-
RECTIONS

Motivated by CAD applications, we have initiated the study
of body-and-cad rigidity. Constraint-based CAD software
contains a rich set of geometric constraints. As a first step
towards understanding these, we have identified a class of
constraints amenable to rigidity-theoretical investigation. We

A
B

C

(a) Constraint
structure in Solid-
Works.

(b) The structure is
flexible with one de-
gree of freedom.

A

B C

(c) Corresponding
graph is (6, 6, 3, 3)-
nested tight.

Figure 4: Counterexample shows nested sparsity condition
is not sufficient.

are hopeful that the study of all or some of the body-and-cad
constraints introduced here will prove to be more tractable
than classical 3D bar-and-joint rigidity. A possible difficulty
arises from projective incidence theorem, which are combi-
natorially undetectable.
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Appendix
Notation. Superscripts x, y, z, w denote the components of a vector
in R4. The minor of a 3×4 matrix A determined by columns i, j and
k is denoted |Aijk|.
Proof of Fact 1.
If t is a decomposable 2-tensor (a 2-extensor), then its components
are the minors of a 2×4 matrix M . Let A be the 3×4 matrix obtained
by appending (p : 1) to the bottom of M . Then

t ∨ (p : 1) ∨ (q : q
w

) =

˛̨̨̨
˛̨ M

px py pz 1
qx qy qz qw

˛̨̨̨
˛̨

Performing a Laplace expansion along the 4th row of the matrix yields
qx|A234|−qy|A134|+qz|A124|−qw|A123| = qx(t∨(p : 1))x+qy(t∨(p :
1))y + qz(t ∨ (p : 1))z + qw(t ∨ (p : 1))w.

Crapo and Whiteley [1] derived that t ∨ (p : 1) = (p′,−
˙
p, p′

¸
).

Applying it, we obtain our desired result. The derivation when t is
indecomposable (the sum of two 2-extensors) is a simple extension.
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