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1 Introduction

Let L = f�1; � � � ; �ng be a collection of n continuous functions on R with
the property that for each pair i 6= j there is an x = xij such that �i(xij) =
�j(xij) and (�i(t)��j(t))(�i(u)� �j(u)) < 0 whenever u < xij and t > xij .
L is a collection of pseudo-lines. In the special case where the �i are linear
functions we have a set of distinct lines, no two parallel. Let

S = fxij : i < jg

be the set of the x-coordinates of the vertices �i \ �j of the collection.
L induces a decomposition of the plane into regions bounded by edges

and vertices. This decomposition, A(L), is called the arrangement of the
pseudo-lines. It is known that pseudo-line arrangements have a richer com-
binatorial structure than arrangements of lines: the number of combinato-
rially di�erent pseudo-line arrangements is much larger than the number of
line arrangements, as shown by Goodman and Pollack [6].

1The authors express gratitude to the NSF DIMACS Center at Rutgers and Princeton
2Research Supported in Part by NSF grant CCR-9111491
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It would be of great interest to �nd a geometric property (or another
combinatorial property besides cardinality) whose combinatorial expression
could be used to separate line and pseudo-line arrangements. The complex-
ity of the k-th level (number of k-sets) is believed to be such a property,
though with the present knowledge no such separation can be claimed (see
[11]). The same may be said about the complexity of an x-monotone path
(see [10]).

In this paper we give an algorithmic-type of separation for these two
classes via the complexity of sorting the elements of S, the x-coordinates
of the vertices of the arrangement. We call this the x-sorting problem for
L. Using ideas from Goodman and Pollack[6] (or from a straightforward
reduction argument) it is necessary to make 
(n2 logn) comparisons to sort
S for pseudo-lines; by applying Fredman's result [4] on sorting under partial
information, there exists a quadratic decision tree of depth O(n2) to sort the
vertices of a line arrangement. This separation is called pseudo-algorithmic
because it holds in the decision tree model, which is a non-uniform model of
computation. A truly algorithmic separation is not known: no polynomial
time way of actually constructing the comparisons in an algebraic decision
tree of depth O(n2) is known.

Although the idea of applying Fredman's result to x-sorting may not
be new, we have not been able to �nd it in the literature. Neither does
the separation observation seem to have been made. We think that this
is the �rst example of a problem for which getting an optimal algorithm
would require the use of some property that holds for lines but not for
pseudo-lines. As many algorithms in Computational Geometry use only
combinatorial properties of line arrangements they work for pseudo-lines as
well. We think this is an interesting situation, where a geometric distinction
is needed.

x-sorting for lines has an interesting special case, the X + Y problem:
given sets X and Y of n numbers each, sort the n2 sums fxi+yj jxi 2 X; yj 2
Y g. In [4], Fredman showed that there exists a decision tree of depth O(n2)
for sorting X + Y . Later, Lambert [9] gave an algorithm to actually get
such a quadratic depth tree. Lambert did not give a RAM implementation
for his algorithm, but it seems to incur a large bookeeping cost. In section
3 we will present a much simpler algorithm which will construct the O(n2)
comparisons to sort X+Y and use only O(n2 logn) total time. It is still an
open problem to �nd an algorithm for sorting X+Y in o(n2 logn) time and
we think that our approach may eventually lead to a solution to this long
standing question.
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2 Main Result

Given a collection L = f�1; : : : ; �ng of n pseudo-lines with vertices �i \ �j
we make the general position assumption that no point meets three pseudo-
lines. This implies that in a suitable coordinate system the set S = fxij :
i < jg has �n

2

�
distinct elements. The x-sorting problem for L is to order the

elements of S.

Theorem 1 There exists a quadratic algebraic decision tree of depth O(n2)
that does x-sorting for lines. The depth of any decision tree that does x-
sorting for pseudo-lines is 
(n2 logn).

Proof: The proof of the upper bound for lines is based on the following
result

Theorem 2 (Fredman[4]) There exists a decision tree of depth at most
log jP j + 2N which solves the problem of sorting under partial information
for a set X of N elements, with partial information from the set P .

Here X = fx1; � � � ; xNg is an N element set and P is a subset of the N !
possible linear orderings on X . The problem of sorting under partial infor-
mation is to identify an unknown ordering ! 2 P by performing comparisons
between the elements of X . A decision tree is said to solve the problem of
sorting under partial information for X if it has a leaf for each ! 2 P . We
will be interested in the depth of the optimal decision tree which solves the
sorting problem for X .

We apply this theorem when X = S, the set of x-coordinates of the
N =

�n
2

�
vertices of the given n lines and P , the set of all possible sorted

orders of S. The x-coordinate of the intersection of two lines y = aix + bi
and y = ajx+ bj is

xij =
bi � bj
aj � ai

:

Assuming that we have already sorted the slopes a1; : : : ; an (in O(n logn)
time), we know the sign of the denominators. Thus the comparison between
xij and xkl can be transformed into a comparison between (bk� bl)(ai� aj)
and (bi � bj)(ak � al), each product appropriately adjusted for sign. The
latter comparison is achieved in a quadratic algebraic decision tree. Finally,
jP j can be estimated using a result of Goodman and Pollack [6]. Once
the lines are in the order of decreasing slope, their theorem implies that
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jP j = O(n8n). We get the upper bound for x-sorting lines by plugging this
into Fredman's result.

The lower bound for x-sorting pseudo-lines is information-theoretic. The
number of x-sorted orders of the vertices of an arrangement of n pseudo-
lines � is given by the following precise formula, independently obtained by
Edelsman and Greene[2] and Stanley[12] (cf. Goodman and Pollack [6]):

� =
(n� 2)!

�n
2

�
!

1n�13n�2 � � � (2n� 3)1

The logarithm of this is asymptotically cn2 logn. It follows that any decision
tree for x-sorting pseudo-lines has depth 
(n2 logn).

Note that the lower bound for pseudo-lines is tight since the O(n2) in-
tersection points of n pseudo-lines can be sorted in O(n2 logn) time by
any optimal sorting algorithm. For x-sorting lines the situation is di�er-
ent. Information theoretically (i.e. in the decision tree model) the upper
bound doesn't match the lower bound, which is just 
(n logn). It is an
open question whether one can do x-sorting for n lines with only O(n logn)
comparisons or whether a better lower bound is possible. Neither do the
bounds match in the general (RAM) model of computation, where a lower
bound of 
(n2) can be obtained just from the complexity of writting down
the sorted list of vertices. It's an open problem to do x-sorting for lines in
o(n2 logn) total time.

Remark: The lower bound to x-sorting for pseudo-lines can also be
obtained easily without using the precise formula given above. We can
reduce the problem of sorting the entries of an n by n ordered matrix A

(all rows and all columns are non-decreasing) to x-sorting the vertices of 2n
pseudo-lines . Then we use the lower bound of Harper et al. [8]: sorting an
ordered matrix of size n requires 
(n2 logn) time. For the reduction, givenA
with nondecreasing rows and columns, we want to construct n pseudo-lines
for which xij = A(i; j). Just de�ne points Pij = (xij ; j�i), for i; j = 1; : : : ; n
and let I = (x11; xnn). For each i, de�ne (row) pseudo-line ri as the piecewise
linear function joining the Pij ; j = 1; : : : ; n and for each j de�ne (column)
pseudo-line cj as the piecewise linear function joining Pij ; i = 1; : : : ; n. The
ri are non-decreasing and the cj are non-increasing. Also, ri(Pij) = cj(Pij)
but there are no other incidences. Finally the ri and cj can be extended
to plus and minus 1 so the ri are increasing and each pair has a proper
intersection outside I and so the cj are decreasing and each pair has a proper
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intersection outside I . x-sorting for these pseudo-lines will order the entries
of A and the reduction can be done in O(n2) steps.

3 Sorting X + Y

Given X = fx1; � � � ; xng and Y = fy1; � � � ; yng, de�ne the lines y = xi; i =
1; � � � ; n and y = x� yj ; j = 1; � � � ; n. The x-coordinates of the intersection
points are the elements of the set X + Y (and because of parallelism, two
degenerate points at in�nity). This shows that sorting the cartesian sums
X + Y is a particular case of the x-sorting problem for lines. Without loss
of generality we may take X and Y positive.

As in Lambert [9], we reduce the X + Y problem to the problem of
sorting interval sums. For a set of m positive numbers a1; � � � ; am, the

�m
2

�
interval sums are de�ned to be

�ij =
jX

k=i

ak; i < j: (1)

For the reduction, given X and Y , we sort them so x1 � � � � � xn and
y1 � � � � � yn. Now de�ne an = x1 and an�i = xi+1 � xi, i < n; also set
an+1 = y1 and an+j+1 = yj+1 � yj ; j < n. It follows that

xi + yj =
n+jX

k=n�i+1
ak = �n�i+1;n+j :

The reduction uses quadratic time to obtain the interval sums. Once the
�ij are sorted, so are the sums X + Y .

At this point remember what we mean by sorted in the two computa-
tional models that we are using: the decision tree and the RAM model. In
the decision tree model, only comparisons between �ij 's are counted and they
cost one unit. Each answer splits the set of possible total orders compatible
with the answers received so far into two subsets. We say that a sequence
of comparisons has sorted the interval sums if the set of comparisons has a
unique permutation compatible with the results of those comparisons. In
the RAM model, by sorted we mean that we have �(�ij), the rank of each
of the N =

�2n
2

�
interval sums and also, for each k = 1; : : : ; N , that we know

the �ij with �(�ij) = k (or equivalently, that the interval sums are arranged
in a linear array L1 � � � � � LN ).
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Theorem 3 The interval sums S = f�ij = ai + � � � + aj ; i < jg over a
set of n positive numbers a1; : : : ; an may be computed in O(n2) comparisons
(between �ij's) in time O(n2 logn).

Proof: We describe a RAM algorithm with the stated complexity. Let T
be the partial order over S induced by the relations

�i;j�1 � �ij and �ij � �i+1;j :

We can represent T as the lattice poset in Figure 1, with triangular shape,
�1n on top, and �ij having left child �i;j�1 and right child �i+1;j .
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Fig.1. The lattice poset associated with the interval sums over a1; � � � ; an

The algorithm uses a divide and conquer approach. Assuming n is even
we split T into two smaller triangles T1 and T2 and a diamond D (see Figure
2):

T1 = f�ij ; i < j � n

2
g; T2 = f�ij ;

n

2
< i < jg;

D = f�ij ; i � n

2
; j >

n

2
g:
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Fig.2. Sorting interval sums in T recursively.

It is used as follows.

Algorithm SORT(T)

1. Split T into T1, T2, and D.

2. Run SORT(T1) and SORT(T2).

3. Sort T1 [ T2 by merging.

4. Sort D

5. Merge D and T1 [ T2.

Step 2 applies the present algorithm recursively to the elements in T1
and T2. When it is completed, the interval sums from T1 are in a sorted
array L1 and those from T2, in a sorted array L2. Step 3 merges these arrays
into the sorted array L.

To sort the n2 elements in D we follow the control of any optimal
O(n2 logn) sorting algorithm. A typical step will ask for comparisons be-
tween �rs and �uv , elements of D. We may assume r < u. If also s � v then
by (1) and additivity, �rs � �uv, and no work is required for this comparison.
Otherwise note that

�rs � �uv =
u�1X
i=r

ai �
vX

i=s+1

ai = �r;u�1 � �s+1;v : (2)
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Also �r;u�1 2 T1 and �s+1;v 2 T2. Since T1 [ T2 is already sorted, the sign
of the di�erence of these two interval sums is obtained at no cost in the
comparison model, and at unit cost in the RAM model, namely the cost of
comparing �(�ru) with �(�sv); the whole cost of step 4 is O(n2 logn) in the
RAM model.

Let C(n) be the comparison complexity of SORT(T ) when T represents
interval sums of a1 � � � � � an, and R(n), the RAM complexity. Therefore

R(n) � n2

2
+ 2R(

n

2
) +

n2

4
+ �n2 logn+

n2

2
:

The �ve terms on the right are the costs of the above steps. The relation is
satis�ed by R(n) = O(n2 logn).

From the RAM algorithm SORT it is straightforward to construct a
decision tree for a �xed n. Here only steps 2,3 and 5 need to be considered.
Step 4 may be ignored, since by (2) there is a unique permutation of the
�ij 2 D that is compatible with the merge in step 3. This means that:

C(n) � 2C(
n

2
) +

n2

4
+
n2

2
:

The �rst term is the cost of step 2, the next of step 3, and the last of step
5. We get C(n) = O(n2).

4 Final Remarks

For x-sorting vertices in line arrangements, it is not even known how to
construct a quadratic depth decision tree whose existence is guaranteed by
Theorem 1. We do not know how to do this even for the particular case when
the n lines are the duals of n points in convex position. This arrangement
has a simple lattice structure, so it is as close to the structure of the X + Y
problem that we can get with general lines. However we do know that
to carry out such a construction it will be necessary to utilize geometric
properties - and their combinatorial expression - that are not satis�ed by
general pseudo-lines .

Acknowledgement: We thank Hari Hampapuram for valuable conver-
sations.
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