
Smith ScholarWorks Smith ScholarWorks

Computer Science: Faculty Publications Computer Science

3-10-1995

A Pseudo-Algorithmic Separation of Lines from Pseudo-Lines A Pseudo-Algorithmic Separation of Lines from Pseudo-Lines

William Steiger
Rutgers University–New Brunswick

Ileana Streinu
Rutgers University–New Brunswick, istreinu@smith.edu

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Steiger, William and Streinu, Ileana, "A Pseudo-Algorithmic Separation of Lines from Pseudo-Lines" (1995).
Computer Science: Faculty Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/csc_facpubs/227

This Article has been accepted for inclusion in Computer Science: Faculty Publications by an authorized
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/227?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F227&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu

A pseudo-algorithmic separation of lines from
pseudo-lines

William Steiger1;2 and Ileana Streinu1

Computer Science Department
Rutgers University

New Brunswick, NJ 08903
email: steiger@cs.rutgers.edu, streinu@paul.rutgers.edu

April 14, 1994

Keywords:Analysis of algorithms, computational complexity,
computational geometry

1 Introduction

Let L = f�1; � � � ; �ng be a collection of n continuous functions on R with
the property that for each pair i 6= j there is an x = xij such that �i(xij) =
�j(xij) and (�i(t)��j(t))(�i(u)� �j(u)) < 0 whenever u < xij and t > xij .
L is a collection of pseudo-lines. In the special case where the �i are linear
functions we have a set of distinct lines, no two parallel. Let

S = fxij : i < jg

be the set of the x-coordinates of the vertices �i \ �j of the collection.
L induces a decomposition of the plane into regions bounded by edges

and vertices. This decomposition, A(L), is called the arrangement of the
pseudo-lines. It is known that pseudo-line arrangements have a richer com-
binatorial structure than arrangements of lines: the number of combinato-
rially di�erent pseudo-line arrangements is much larger than the number of
line arrangements, as shown by Goodman and Pollack [6].

1The authors express gratitude to the NSF DIMACS Center at Rutgers and Princeton
2Research Supported in Part by NSF grant CCR-9111491

1

It would be of great interest to �nd a geometric property (or another
combinatorial property besides cardinality) whose combinatorial expression
could be used to separate line and pseudo-line arrangements. The complex-
ity of the k-th level (number of k-sets) is believed to be such a property,
though with the present knowledge no such separation can be claimed (see
[11]). The same may be said about the complexity of an x-monotone path
(see [10]).

In this paper we give an algorithmic-type of separation for these two
classes via the complexity of sorting the elements of S, the x-coordinates
of the vertices of the arrangement. We call this the x-sorting problem for
L. Using ideas from Goodman and Pollack[6] (or from a straightforward
reduction argument) it is necessary to make
(n2 logn) comparisons to sort
S for pseudo-lines; by applying Fredman's result [4] on sorting under partial
information, there exists a quadratic decision tree of depth O(n2) to sort the
vertices of a line arrangement. This separation is called pseudo-algorithmic
because it holds in the decision tree model, which is a non-uniform model of
computation. A truly algorithmic separation is not known: no polynomial
time way of actually constructing the comparisons in an algebraic decision
tree of depth O(n2) is known.

Although the idea of applying Fredman's result to x-sorting may not
be new, we have not been able to �nd it in the literature. Neither does
the separation observation seem to have been made. We think that this
is the �rst example of a problem for which getting an optimal algorithm
would require the use of some property that holds for lines but not for
pseudo-lines. As many algorithms in Computational Geometry use only
combinatorial properties of line arrangements they work for pseudo-lines as
well. We think this is an interesting situation, where a geometric distinction
is needed.

x-sorting for lines has an interesting special case, the X + Y problem:
given sets X and Y of n numbers each, sort the n2 sums fxi+yj jxi 2 X; yj 2
Y g. In [4], Fredman showed that there exists a decision tree of depth O(n2)
for sorting X + Y . Later, Lambert [9] gave an algorithm to actually get
such a quadratic depth tree. Lambert did not give a RAM implementation
for his algorithm, but it seems to incur a large bookeeping cost. In section
3 we will present a much simpler algorithm which will construct the O(n2)
comparisons to sort X+Y and use only O(n2 logn) total time. It is still an
open problem to �nd an algorithm for sorting X+Y in o(n2 logn) time and
we think that our approach may eventually lead to a solution to this long
standing question.

2

2 Main Result

Given a collection L = f�1; : : : ; �ng of n pseudo-lines with vertices �i \ �j
we make the general position assumption that no point meets three pseudo-
lines. This implies that in a suitable coordinate system the set S = fxij :
i < jg has �n

2

�
distinct elements. The x-sorting problem for L is to order the

elements of S.

Theorem 1 There exists a quadratic algebraic decision tree of depth O(n2)
that does x-sorting for lines. The depth of any decision tree that does x-
sorting for pseudo-lines is
(n2 logn).

Proof: The proof of the upper bound for lines is based on the following
result

Theorem 2 (Fredman[4]) There exists a decision tree of depth at most
log jP j + 2N which solves the problem of sorting under partial information
for a set X of N elements, with partial information from the set P .

Here X = fx1; � � � ; xNg is an N element set and P is a subset of the N !
possible linear orderings on X . The problem of sorting under partial infor-
mation is to identify an unknown ordering ! 2 P by performing comparisons
between the elements of X . A decision tree is said to solve the problem of
sorting under partial information for X if it has a leaf for each ! 2 P . We
will be interested in the depth of the optimal decision tree which solves the
sorting problem for X .

We apply this theorem when X = S, the set of x-coordinates of the
N =

�n
2

�
vertices of the given n lines and P , the set of all possible sorted

orders of S. The x-coordinate of the intersection of two lines y = aix + bi
and y = ajx+ bj is

xij =
bi � bj
aj � ai

:

Assuming that we have already sorted the slopes a1; : : : ; an (in O(n logn)
time), we know the sign of the denominators. Thus the comparison between
xij and xkl can be transformed into a comparison between (bk� bl)(ai� aj)
and (bi � bj)(ak � al), each product appropriately adjusted for sign. The
latter comparison is achieved in a quadratic algebraic decision tree. Finally,
jP j can be estimated using a result of Goodman and Pollack [6]. Once
the lines are in the order of decreasing slope, their theorem implies that

3

jP j = O(n8n). We get the upper bound for x-sorting lines by plugging this
into Fredman's result.

The lower bound for x-sorting pseudo-lines is information-theoretic. The
number of x-sorted orders of the vertices of an arrangement of n pseudo-
lines � is given by the following precise formula, independently obtained by
Edelsman and Greene[2] and Stanley[12] (cf. Goodman and Pollack [6]):

� =
(n� 2)!

�n
2

�
!

1n�13n�2 � � � (2n� 3)1

The logarithm of this is asymptotically cn2 logn. It follows that any decision
tree for x-sorting pseudo-lines has depth
(n2 logn).

Note that the lower bound for pseudo-lines is tight since the O(n2) in-
tersection points of n pseudo-lines can be sorted in O(n2 logn) time by
any optimal sorting algorithm. For x-sorting lines the situation is di�er-
ent. Information theoretically (i.e. in the decision tree model) the upper
bound doesn't match the lower bound, which is just
(n logn). It is an
open question whether one can do x-sorting for n lines with only O(n logn)
comparisons or whether a better lower bound is possible. Neither do the
bounds match in the general (RAM) model of computation, where a lower
bound of
(n2) can be obtained just from the complexity of writting down
the sorted list of vertices. It's an open problem to do x-sorting for lines in
o(n2 logn) total time.

Remark: The lower bound to x-sorting for pseudo-lines can also be
obtained easily without using the precise formula given above. We can
reduce the problem of sorting the entries of an n by n ordered matrix A

(all rows and all columns are non-decreasing) to x-sorting the vertices of 2n
pseudo-lines . Then we use the lower bound of Harper et al. [8]: sorting an
ordered matrix of size n requires
(n2 logn) time. For the reduction, givenA
with nondecreasing rows and columns, we want to construct n pseudo-lines
for which xij = A(i; j). Just de�ne points Pij = (xij ; j�i), for i; j = 1; : : : ; n
and let I = (x11; xnn). For each i, de�ne (row) pseudo-line ri as the piecewise
linear function joining the Pij ; j = 1; : : : ; n and for each j de�ne (column)
pseudo-line cj as the piecewise linear function joining Pij ; i = 1; : : : ; n. The
ri are non-decreasing and the cj are non-increasing. Also, ri(Pij) = cj(Pij)
but there are no other incidences. Finally the ri and cj can be extended
to plus and minus 1 so the ri are increasing and each pair has a proper
intersection outside I and so the cj are decreasing and each pair has a proper

4

intersection outside I . x-sorting for these pseudo-lines will order the entries
of A and the reduction can be done in O(n2) steps.

3 Sorting X + Y

Given X = fx1; � � � ; xng and Y = fy1; � � � ; yng, de�ne the lines y = xi; i =
1; � � � ; n and y = x� yj ; j = 1; � � � ; n. The x-coordinates of the intersection
points are the elements of the set X + Y (and because of parallelism, two
degenerate points at in�nity). This shows that sorting the cartesian sums
X + Y is a particular case of the x-sorting problem for lines. Without loss
of generality we may take X and Y positive.

As in Lambert [9], we reduce the X + Y problem to the problem of
sorting interval sums. For a set of m positive numbers a1; � � � ; am, the

�m
2

�
interval sums are de�ned to be

�ij =
jX

k=i

ak; i < j: (1)

For the reduction, given X and Y , we sort them so x1 � � � � � xn and
y1 � � � � � yn. Now de�ne an = x1 and an�i = xi+1 � xi, i < n; also set
an+1 = y1 and an+j+1 = yj+1 � yj ; j < n. It follows that

xi + yj =
n+jX

k=n�i+1
ak = �n�i+1;n+j :

The reduction uses quadratic time to obtain the interval sums. Once the
�ij are sorted, so are the sums X + Y .

At this point remember what we mean by sorted in the two computa-
tional models that we are using: the decision tree and the RAM model. In
the decision tree model, only comparisons between �ij 's are counted and they
cost one unit. Each answer splits the set of possible total orders compatible
with the answers received so far into two subsets. We say that a sequence
of comparisons has sorted the interval sums if the set of comparisons has a
unique permutation compatible with the results of those comparisons. In
the RAM model, by sorted we mean that we have �(�ij), the rank of each
of the N =

�2n
2

�
interval sums and also, for each k = 1; : : : ; N , that we know

the �ij with �(�ij) = k (or equivalently, that the interval sums are arranged
in a linear array L1 � � � � � LN).

5

Theorem 3 The interval sums S = f�ij = ai + � � � + aj ; i < jg over a
set of n positive numbers a1; : : : ; an may be computed in O(n2) comparisons
(between �ij's) in time O(n2 logn).

Proof: We describe a RAM algorithm with the stated complexity. Let T
be the partial order over S induced by the relations

�i;j�1 � �ij and �ij � �i+1;j :

We can represent T as the lattice poset in Figure 1, with triangular shape,
�1n on top, and �ij having left child �i;j�1 and right child �i+1;j .

@
@
@
@@R

�
�
�

��	

@
@
@
@@R

�
�

�
��	

@
@
@
@@R

�
�
�

��	

�
�

�
��	

@
@
@
@@R

�
�

�
��	

@
@
@
@@R

�
�
�

��	

@
@
@
@@R

@
@
@@R

�
�
��	

ana3
a2a1

�23�12

�2n�1;n�1

�1n

Fig.1. The lattice poset associated with the interval sums over a1; � � � ; an

The algorithm uses a divide and conquer approach. Assuming n is even
we split T into two smaller triangles T1 and T2 and a diamond D (see Figure
2):

T1 = f�ij ; i < j � n

2
g; T2 = f�ij ;

n

2
< i < jg;

D = f�ij ; i � n

2
; j >

n

2
g:

6

J
J
J
J
J
J
J

J
J
J
J
J
J
J
J
J
J
J
J
JJ

T2T1

D

Fig.2. Sorting interval sums in T recursively.

It is used as follows.

Algorithm SORT(T)

1. Split T into T1, T2, and D.

2. Run SORT(T1) and SORT(T2).

3. Sort T1 [T2 by merging.

4. Sort D

5. Merge D and T1 [T2.

Step 2 applies the present algorithm recursively to the elements in T1
and T2. When it is completed, the interval sums from T1 are in a sorted
array L1 and those from T2, in a sorted array L2. Step 3 merges these arrays
into the sorted array L.

To sort the n2 elements in D we follow the control of any optimal
O(n2 logn) sorting algorithm. A typical step will ask for comparisons be-
tween �rs and �uv , elements of D. We may assume r < u. If also s � v then
by (1) and additivity, �rs � �uv, and no work is required for this comparison.
Otherwise note that

�rs � �uv =
u�1X
i=r

ai �
vX

i=s+1

ai = �r;u�1 � �s+1;v : (2)

7

Also �r;u�1 2 T1 and �s+1;v 2 T2. Since T1 [T2 is already sorted, the sign
of the di�erence of these two interval sums is obtained at no cost in the
comparison model, and at unit cost in the RAM model, namely the cost of
comparing �(�ru) with �(�sv); the whole cost of step 4 is O(n2 logn) in the
RAM model.

Let C(n) be the comparison complexity of SORT(T) when T represents
interval sums of a1 � � � � � an, and R(n), the RAM complexity. Therefore

R(n) � n2

2
+ 2R(

n

2
) +

n2

4
+ �n2 logn+

n2

2
:

The �ve terms on the right are the costs of the above steps. The relation is
satis�ed by R(n) = O(n2 logn).

From the RAM algorithm SORT it is straightforward to construct a
decision tree for a �xed n. Here only steps 2,3 and 5 need to be considered.
Step 4 may be ignored, since by (2) there is a unique permutation of the
�ij 2 D that is compatible with the merge in step 3. This means that:

C(n) � 2C(
n

2
) +

n2

4
+
n2

2
:

The �rst term is the cost of step 2, the next of step 3, and the last of step
5. We get C(n) = O(n2).

4 Final Remarks

For x-sorting vertices in line arrangements, it is not even known how to
construct a quadratic depth decision tree whose existence is guaranteed by
Theorem 1. We do not know how to do this even for the particular case when
the n lines are the duals of n points in convex position. This arrangement
has a simple lattice structure, so it is as close to the structure of the X + Y
problem that we can get with general lines. However we do know that
to carry out such a construction it will be necessary to utilize geometric
properties - and their combinatorial expression - that are not satis�ed by
general pseudo-lines .

Acknowledgement: We thank Hari Hampapuram for valuable conver-
sations.

8

References

[1] R.Cole, J. Salowe, W. Steiger and E. Szemer�edi, An Optimal-time al-
gorithm for Slope Selection, SIAM Journal on Computing 18, 792-810,
1989

[2] P. Edelman and C. Greene, Combinatorial correspondences for Young
tableaux, balanced tableaux, and maximal chains in the Bruhat order
of Sn, in Combinatorics and Algebra, Contemporary Math., vol. 34,
American Mathematical Society, 1984.

[3] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-
Verlag (1987).

[4] M. Fredman, How good is the Information Theory bound in Sorting?,
Theoretical Computer Science 1, pp. 355-361, 1976.

[5] J.E. Goodman and R. Pollack,Multidimensional sorting, SIAM J. Com-
put. vol. 12, No.3, August 1983.

[6] J.E. Goodman and R. Pollack, Upper Bounds for Con�gurations and
Polytopes in Rd, Discrete Comput. Geom. 1 : 219� 227,1986.

[7] J.E. Goodman and R. Pollack, Allowable Sequences and Order Types
in Discrete and Computational Geometry, DIMACS Tech. Report
92-1; in: J.Pach (ed.), New trends in Discrete and Computational
Geometry,1991.

[8] L.H. Harper, T.H. Payne, J.E. Savage and E. Strauss, Sorting X + Y ,
Comm. ACM, vol.18, no.6, pp.347� 349, 1975.

[9] J.L. Lambert, Sorting X + Y in O(n2) comparisons, STACS 1991,
pp.195-206.

[10] J. Matou�sek, Lower Bounds on the Length of Monotone Paths in Ar-
rangements, Discrete and Comp.Geom. 6, 129-134, 1991.

[11] J. Pach, W. Steiger, and E. Szemer�edi. An upper bound on the number
of planar k-sets. Discrete and Comp. Geom. 7, 109-123, 1992.

[12] R.Stanley, On the Number of Reduced Decompositions of Elements of
Coxeter Groups, Europ. J. Combinatorics 5, pp. 359� 372, 1984.

9

	A Pseudo-Algorithmic Separation of Lines from Pseudo-Lines
	Recommended Citation

	tmp.1663079403.pdf.d1fDL

