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Abstract 

The COVID-19 pandemic has created a worldwide healthcare crisis. Convolutional Neural 

Networks (CNNs) have recently been used with encouraging results to help detect COVID-19 
from chest X-ray images. However, to generalize well to unseen data, CNNs require large labeled 

datasets. Due to the lack of publicly available COVID-19 datasets, most CNNs apply various data 

augmentation techniques during training. However, there has not been a thorough statistical 
analysis of how data augmentation operations affect classification performance for COVID-19 

detection. In this study, a fractional factorial experimental design is used to examine the impact of 

basic augmentation methods on COVID-19 detection. The latter enables identifying which 
particular data augmentation techniques and interactions have a statistically significant impact on 

the classification performance, whether positively or negatively. Using the CoroNet architecture 

and two publicly available COVID-19 datasets, the most common basic augmentation methods in 
the literature are evaluated. The results of the experiments demonstrate that the methods of zoom, 

range, and height shift positively impact the model's accuracy in dataset 1. The performance of 

dataset 2 is unaffected by any of the data augmentation operations. Additionally, a new state-of-
the-art performance is achieved on both datasets by training CoroNet with the ideal data 

augmentation values found using the experimental design. Specifically, in dataset 1, 97% 

accuracy, 93% precision, and 97.7% recall were attained, while in dataset 2, 97% accuracy, 97% 
precision, and 97.6% recall were achieved. These results indicate that analyzing the effects of data 

augmentations on a particular task and dataset is essential for the best performance. 
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1- Introduction 

In January 2020, Wuhan, China, reported the first case of the novel coronavirus disease (COVID-19) [1]. On March 

12, 2020, the World Health Organization declared the SARS-CoV-2 virus a global pandemic due to its rapid spread and 

the thousands of deaths it caused [2]. The scientific community recognized the need for and urgency in developing new 

methods for detecting SARS-CoV-2. The initial methods appeared to successfully identify COVID-19 [3], ranging from 

nucleic acid amplification tests to antibody detection assays. However, these methods have limitations such as low 

detection sensitivity, long detection times, frequent false-negative nucleic acid results, and the need for professional 

technicians to perform them [3]. 
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One of the primary symptoms of COVID-19 is viral pneumonia, which has led to the use of a different screening 

method that involves examining a potential patient's chest X-ray (CXR) [1]. However, due to the high inter-and intra-

observer variability among practitioners, interpreting the image can be difficult and frequently inconsistent. By 

recognizing and classifying patterns in medical images, Deep Neural Networks, and in particular Convolutional Neural 

Networks (CNNs), have transformed automated disease detection [4-7]. As a result, several researchers have proposed 

CNNs designed specifically for COVID-19 chest X-ray classification. These CNNs analyze a chest X-ray image as input 

and determine whether or not the subject is SARS-CoV-2 virus-infected. The COVID-Net, a CNN architecture created 

by Wang et al. [8], introduced a lightweight projection-expansion-projection-extension design that enables an improved 

representation capacity. The model was tested on the open-access COVIDx dataset and achieved a 93% accuracy on the 

test dataset. Monshi et al. [9] developed CovidXrayNet, a CNN based on the EfficientNet-B0 with hyperparameters and 

a data augmentation strategy optimized for COVID-19 detection. With only 30 training epochs, CovidXrayNet obtained 

a 95.82% accuracy on the COVIDx dataset. Finding the best activation function and optimizer to create a model that 

can recognize COVID-19 from CXR and CT images was the focus of a study conducted by Algarni et al. [10]. The 

results of the experiments demonstrated that the best accuracy is obtained by combining the stochastic gradient descent 

algorithm with momentum and ReLU activation functions. Three different CNN architectures were tested by varying 

the hyperparameter values of the learning rate, batch size, and number of epochs according to a method proposed by 

Cohen et al. [11]. The results demonstrated that the Xception architecture [12] performed optimally. Khan et al. [13] 

proposed CoroNet, a deep CNN architecture based on the Xception architecture and pre-trained on the ImageNet dataset. 

CoroNet achieved an accuracy of 95% for a 3-class classification task. 

CCNs typically have tens of millions of parameters and necessitate a large amount of data to avoid overfitting the 

training set. Overfitting occurs when a neural network models the training set perfectly but performs poorly on unseen 

data. Overfitting is a major issue in fields where large datasets are unavailable. This is the case with medical image 

analysis, where obtaining well-annotated data can be time-consuming, costly, and even impossible in some pathologies. 

Data augmentation is one of the most commonly used techniques to avoid overfitting. Data augmentation expands and 

diversifies the training set by altering the appearance of the original images or creating new ones. 

Due to the scarcity of publicly available COVID-19 datasets, most CNNs developed for COVID-19 detection on 

chest X-rays employ diverse data augmentation techniques to improve classification accuracy. The most frequently 

reported operations were basic augmentation techniques. However, how the data augmentation operations affect model 

prediction is not discussed in detail. Although many studies have been conducted to investigate how data augmentation 

affects CNN performance on specific datasets for natural image classification [14-16] and medical image classification 

[17-19], very little research has been conducted to investigate its effect on COVID-19 classification. Furthermore, many 

authors regard data augmentation as necessary and use it without first analyzing its impact. Elgendi et al. [2] investigated 

the effectiveness of four geometric data augmentation strategies in COVID-19 detection and concluded that these 

strategies significantly reduce accuracy. However, the authors did not investigate how each data augmentation operation 

affected the model's detection accuracy. Given that data augmentation can be a powerful tool for improving a model's 

generalization and robustness, and that its effect varies across tasks and datasets, it is critical to understand the impact 

of each operation better when training a CNN for COVID-19 detection. 

This study aims to determine the effect of basic augmentation techniques on detecting COVID-19 using CNNs on 

chest X-ray images. The analysis is carried out using a fractional factorial experimental design, which allows for the 

determination of which specific data augmentation techniques, and their interactions, have a statistically significant 

positive or negative effect on classification accuracy. The most commonly used basic augmentation techniques for 

COVID-19 detection found in the literature are tested using the CoroNet [13] architecture on publicly available COVID-

19 datasets. The experiments show that the techniques of zoom, range, and height shift improve model accuracy in 

dataset 1. Meanwhile, none of the data augmentation techniques affected the performance of the CNN in dataset 2 [20, 

21]. 

Furthermore, we achieve a new state-of-the-art performance on both datasets by training CoroNet with the optimal 

data augmentation operations and values obtained from the experimental design. This work makes the following 

contributions: 

 Firstly, we statistically investigate how each data augmentation technique and their interactions affect the 

classification accuracy of a CNN on chest X-ray images for COVID-19 classification. To the best of our 

knowledge, this is the first study to examine data augmentation operations on the task of COVID-19 detection 

using a fractional factorial experimental design. Furthermore, the methodology presented here can be used to 

analyze data augmentation in other tasks and datasets. 

 Secondly, we present the optimal data augmentation strategies for obtaining new state-of-the-art results on the two 

publicly available datasets tested. 

 Thirdly, we demonstrate that implementing data augmentation during training does not always improve CNN 

performance and, in some cases, can even degrade it. Therefore, emphasizing the importance of always analyzing 

the impact of each augmentation operation on the problem at hand. 
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2- Literature Review 

This Section reviews the data augmentation techniques applied for COVID-19 classification and how experimental 

design has been used to determine the most suitable machine learning hyperparameter values. 

2-1- Data Augmentation Techniques for COVID-19 Classification 

Data augmentation is a technique for artificially inflating the training set to avoid overfitting and improve 

performance. Due to the scarcity of data in medical image analysis, this technique is critical. According to Chalp et al. 

(2021) [22], data augmentation techniques are classified into three types: basic augmentation techniques, deformable 

augmentation techniques, and deep learning augmentation techniques. Basic augmentation modifies an image by 

applying a transformation that maps an image's points to distinct positions or by manipulating the pixel value intensities. 

Because it is generally quick and simple to implement, this technique is the most commonly used when training deep 

learning models. Deformable augmentation techniques, on the other hand, are used when basic augmentation does not 

provide enough variability. The user defines the deformation scale to ensure that the result is clinically plausible. Finally, 

in deep learning techniques, networks automatically learn image representations and generate new ones. Although data 

augmentation has been shown to improve test set accuracy in some tasks, other studies have found that using specific 

data augmentation techniques may negatively impact model performance [2, 23]. 

Several works have developed CNN architectures to automatically diagnose COVID-19 from chest X-rays. Table 1 

compares highly cited studies on this subject, including the name of the neural network, data augmentation operations 

used, training set size, and accuracy achieved. Since this study aims to analyze how basic data augmentations affect the 

accuracy of a model, if mentioned in the manuscript, we include the ranges in which the augmentation operations are 

applied. Vertical flip, horizontal flip, rotation, zoom, width shift, height shift, and shear are the most frequently used 

data augmentation techniques, as demonstrated. 

Table 1. Data Augmentation Techniques for COVID-19 detection in Chest X-ray images 

Author 
Neural Network 

Architecture 
Data Augmentation Operations Dataset size per class Accuracy achieved 

Abbas et al. [24] 

AlexNet 

VGG19 

ResNet 

GoogleNet 

SqueezeNet 

Horizontal Flip 

Vertical Flip 

Width shift 

Rotation 

COVID: 105 

Sars: 11 

Normal: 80 

Total: 196 

Multi-class classification:  

AlexNet: 89.10 

VGG19: 93.10 

ResNet: 93.10  

GoogleNet: 89.65  

SqueezeNet: 82.75 

Baldeon et al. 
[25] 

COVID-19 ResNet 

Height Shift: -0.13  

Width Shift: 0.23  

Horizontal Flip Rotation: 187.5 

Zoom: range 0.36 

COVID: 140 

Normal: 140 

Pneumonia viral: 140  

Total: 420 

Multi-class classification: 94 

Chowdhury et al. 

[26] 
PDCOVIDNet 

Height Shift: 0.15  

Width Shift: 0.15  

Shear: range 0.10  

Rotation: 30 

Zoom: 0.10 

COVID: 175 

Normal: 1072 

Pneumonia viral: 1076 

Total: 2323 

Multi-class classification: 96.58 

Goel et al. [27] 
OptCoNet GWO-

based CNN 

Data augmentation  

operations not specified 

COVID: 900 

Normal: 900 

Pneumonia: 900 

Total: 2700 

Multi-class classification: 97.78 

Khan et al. [13] CoroNet 

Height shift 

Width shift 

Shear 

Re-scale 

Rotation 

Zoom 

COVID: 284 

Normal: 310 

Pneumonia Bacteria: 330 

Pneumonia Viral: 327  

Total: 1251 

Binary classification: 97.60 

Kumar et al. [28] SARS-Net 

Elastic Deformation Intensity Shift  

Horizontal Flip 

Width shift 

Motion Blur 

Rotation 

Zoom 

COVID: 258 

Normal: 7966 

Pneumonia: 5451 

Total: 13675 

Binary classification: 97.60 
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Marques et al. 

[29] 
EfficientNetB 

Rotation 

Flipping 

Noise 

Blur Shift 

Distortion 

COVID: 404 

Normal: 404 

Pneumonia: 404 

Total: 1212 

Binary classification: 99.62 

Multi-class classification: 96.70 

Nishio et al. [30] VGG16 

Horizontal Flip 

Width Shift: 0.15  

Height Shift: 0.15  

Rotation: 15 

Zoom: 0.15 

Shear: 0.15 

COVID: 215 

Normal: 533 

Pneumonia: 500 

Total: 1248 

Multi-class classification: 83.6 

Rahimzadeh et 
al. [31] 

Xception and 

ResNet50V2 

concatenated 

Horizontal Flip 

Vertical Flip 

Width Shift 

Height Shift 

Rotation 

Zoom 

COVID: 149 

Normal: 1634 

Pneumonia: 2000 

Total: 3783 

Multi-class classification:  

Xception: 91.31  

ResNet50V2: 89.79 

Concatenated: 91.40 

Yoo et al. [32] 
Deep learning-based 

decision-tree classifier 

Horizontal Flip 

Width Shift: 0.20  

Height Shift: 0.20  

Rotation: 15 

COVID: 120 

Non COVID: 120 

Total: 240 

Binary classification 95.0 

2-2- Experimental Design 

The experimental design, also known as the design of experiments (DOE), is a systematic method for studying 

multiple factors and a response variable. The objective is to determine if a set of factors and their interactions influence 

the response variable. DOE allows for the optimization of the response variable in addition to identifying the influencing 

factors [33]. To model the experimental design, the factors and their corresponding ranges, as well as the number of 

runs required to identify the relationship between the factors and the response variable, must be specified. The most 

basic type of experiment is the two-level factorial design, denoted as 2k. The factors in this experiment have only two 

possible values: high level or low level. A 2k design's effects model can be represented as follows: 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗 + (𝜏𝛽)𝑖𝑗 + 𝜀𝑖𝑗𝑘  (1) 

where μ is the overall mean, 𝜏𝑖 is the effect of treatment i, 𝛽𝑗 is the effect of block j, (𝜏𝛽)𝑖𝑗  is the interaction effect of 

treatment i in block j, and 𝜀𝑖𝑗𝑘 is the random error term [33]. One drawback of the 2k factorial design is that as the 

number of factors increases, the number of runs grows exponentially. Hence, the fractional factorial design is an 

alternative method that exploits the sparsity-of-effects principle and selects only a subset of the experiments from the 

full factorial design to run. Although conclusions about the most important factors can be obtained, some main effects 

and two-way interactions can be confounded [34]. Fractional factorial designs are a good choice when running an 

experiment can be costly or time-consuming. The notation used to identify a fractional design is 2 k-p , where k refers to 

the number of factors being investigated and p the number of generators. 

Although previous research has not used experimental design to determine the best data augmentation strategies, it 

has been used to find the best hyperparameters in machine learning algorithms. Lujan-Moreno et al. [34] proposed using 

the design of experiments methodology to screen for the most significant hyperparameters, followed by a Response 

Surface Methodology to fine-tune their value. Staelin et al. [35] developed an algorithm inspired by the DOE 

methodology that iteratively refines the boundaries and resolution of a search grid. The algorithm is tested on the 

hyperparameter optimization of a least-squares SVM regression. F.Chou et al. [36] conducted research to determine the 

combination of hyperparameters that improves the performance of a CNN for image recognition. They define the 

Uniform Experimental Design (UED) concept as a space-filling design that can be used when the underlying model is 

unknown [37]. 

3- Research Methodology 

This study investigates the effect of basic data augmentation techniques on the classification accuracy of a CNN for 

COVID-19 detection on chest X-ray images. The tests are performed on two publicly available COVID-19 datasets of 

varying sizes. Furthermore, the CoroNet CNN architecture [13] was chosen because it has good prediction performance, 

uses model parameters efficiently, and is open-source code. Finally, a 2(7-1) factorial experimental design is used to 

understand the statistical impact of each data augmentation operation. This Section describes the COVID-19 datasets 

used, reviews the CoroNet architecture, explains the data augmentation factors examined, and presents the experimental 

design methodology. 
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3-1- Datasets Description 

Two de-identified publicly available COVID-19 chest X-ray datasets are selected. The first dataset, denominated as 

dataset 1 throughout this work, is presented by Khan et al. [13] and is a recollection of images from the Github repository 

of Cohen et al. [11], images from the RSNA, Radiopedia, and Kaggle databases [21]. The images in the database are 

divided into four categories: COVID-19 positive, normal, bacterial pneumonia, and viral pneumonia. Following the 

approach of [13], the dataset is modified to have only three classes (COVID-19 positive, normal, and pneumonia) by 

combining bacterial and viral pneumonia observations into one class. The dataset contains 1678 images, of which 15% 

are used for testing, 17% for validation, and 68% for training. Zargari Khuzani et al. [20] made the second dataset 

available, referred to as dataset 2 throughout this paper. This dataset contains images from three classes: COVID-19 

positive, normal, and pneumonia. The dataset is already balanced and has 381 images in total. 10% of the images are 

used for testing, 18% for validation, and 72% for training. For a fair comparison of methods, the partition used on both 

datasets is the same as that used by Khan et al. [13] and Zargari Khuzani et al. [20] in their respective works. Table 2 

summarizes the number of images per dataset and class. In addition, randomly selected images from each dataset and 

class are shown in Figure 1. Both images are preprocessed by rescaling by 1/255, applying ZCA whitening, dividing 

pixel values by standard deviation, and setting the input mean to 0. 

Table 2. Summary of classes and number of images per datasets 

Data Repository Images Classes Train and Validation Size Test Size 

Khan et al. [13] 

COVID-19 

Normal 

Pneumonia 

300 

368 

768 

20 

77 

145 

Zargari Khuzani et al. [20] 

COVID-19 

Normal 

Pneumonia 

126 

90 

126 

14 

10 

15 

 

 

Figure 1. Randomly selected images from each dataset and class 

3-2- Model Architecture 

The CoroNet architecture [13] used in this study is a CNN designed to detect COVID-19 from chest X-ray images. 

CoroNet is based on the Xception architecture [12], an extreme version of the Inception model. The Xception model 

uses depthwise separable convolution layers with residual connections that replace the classic n×n×k convolutional 

operation with a 1×1×k pointwise convolution followed by an n×n channel-wise spatial convolution. The CoroNet 

architecture is based on the Xception architecture, with the addition of a dropout layer and two fully connected layers at 

the end. In addition, it includes a batch normalization layer after all convolutional and separable convolutional layers to 

reduce training time. Figure 2 depicts the architectural details of CoroNet. 
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Figure 2. The CoroNet Architecture proposed by Khan et al. [13]. The numbers following the convolutional layers and 

separable convolutional layers refer to the number of filters and the size of the kernel window. Similarly, the number following 

the fully connected layers refers to the number of nodes in that layer. Note that all convolutional and separable convolutional 

layers are followed by a batch normalization layer not shown in the graph. 

The architecture is relatively simple compared to competitor CNNs proposed for the same task, allowing for better 

evidence of the impact of different data augmentation operations on classification accuracy. Furthermore, CoroNet 

outperformed other studies in the literature in the task of COVID-19 multi-class classification. Finally, the CoroNet 

code is open source and is available on the author's Github repository [13]. 

3-3- Image Data Augmentation 

The most commonly used basic data augmentation techniques for detecting COVID-19 found in the literature (refer 

to Table 1) were selected for testing in this work. Vertical and horizontal flip, rotation, zoom/scaling, width and height 

shift, and shear are the seven operations considered. Table 3 defines these operations, while Figure 3 depicts how each 

operation affects the appearance of an image. Table 4 also shows the high and low-level values tested for data 

augmentation operations. The values have also been determined based on a review of the literature. For each data 

augmentation operation, a high or low-level value is selected and used to train the CNN for a specific run. During 

training, the Data Image Generator tool from the TensorFlow library is used to augment the data on the fly. 

Table 3. Definition of the Data Augmentation Operations 

Data Augmentation 

Operation 
Definition 

Vertical flip 
Performs a reflection of the original image along the vertical axis, swapping the upward and downward sections of 

the image. The function receives a Boolean as input data. 

Horizontal flip 
Performs a reflection of the original image along the horizontal axis, swapping the left and right sections of the 

image. The function receives a Boolean as input data. 

Rotation range 
The function receives an input angle in the form of an integer value and rotates the image by an angle randomly 

selected between zero and the input angle. 

Zoom range The function receives as input a float value and performs a random zoom between zero and the input value. 

Width shift range 
Shifts the image on the horizontal axis. The function receives as input a float value that represents a fraction of the 

total width the image can be shifted. 

Height shift range 
Shifts the image on the vertical axis. The function receives as input a float value that represents a fraction of the total 

height the image can be shifted. 

Shear range 
Performs a shear distortion in a counter-clockwise direction in degrees. The function receives an input angle in the 

form of a float value. 
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Figure 3. The Appearance of Images Altered by Data Augmentation 

Table 4. Levels of the Data Augmentation Operations for the Experimental Factorial Design 

Data Augmentation Operation Low Level High Level 

A: Vertical flip False True 

B: Horizontal flip False True 

C: Rotation range 0 15 

D: Zoom range 0 0.15 

E: Width shift range 0 0.20 

F: Height shift range 0 0.25 

G: Shear range 0 0.20 

3-4- Experimental Design Process 

A factorial fractional experimental design is used, with the factors analyzed being the seven data augmentation 

operations listed in Table 3 and the response variable being the test set classification accuracy. The levels of the factors 

within the experimental model are shown in Table 4. As shown in Figure 4, the methodology used to implement the 

experimental design consists of four steps. 

 

Figure 4. Flowchart of the research methodology 
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Step 1: The experimental design model is defined in this step by determining the response variable, factors, and 

levels. In addition, the experimental design model is selected. Implementing a fractional factorial 2(7-1) model results in 

64 distinct data augmentation parameter value combinations. The Design-Expert software V.13 is used to obtain the 

specific combinations to test. Given the computational resources and time required to train a CNN for COVID-19 

classification, this fractional factorial design reduces the number of runs required. Furthermore, the model has a VII 

resolution, which means that the main effects, second and third-order interactions, will be aliased with high-order 

interactions, resulting in simple structures. As shown in Equation 2, the selected response variable is the classification 

accuracy of the test set. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁º 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁º 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠
  (2) 

Step 2: The experiments are carried out in this step. CoroNet is trained with the specific data augmentation parameters 

and the response variable saved for each of the 64 data augmentation combinations obtained in step 1. The Adam 

optimizer is used to train the models, with a learning rate of 0.0001, a batch size of 25, and 300 training epochs. The 

models are implemented with Keras and Tensorflow 2.0 as the backend. Furthermore, the experiments are carried out 

on a Linux Ubuntu 18.04 platform equipped with an Nvidia Tesla V100 graphics card using an Nvidia Docker VM. To 

perform the statistical analysis, the classification accuracy of the test set is entered into the Design-Expert software. 

Step 3: The results of the experiments are statistically analyzed, and significant factors and interactions are selected 

using a half-normal probability plot and the Analysis of Variance (ANOVA). Furthermore, the ANOVA assumptions 

are validated: a) the residuals are normally distributed, and b) the observations are chosen randomly and are independent. 

c) The variances are homogeneous. If the assumptions are not met, the data is mathematically transformed. 

Step 4: The ANOVA table is examined to determine the statistically significant terms. In addition, the significance 

of the mathematical model developed to predict the response variable is evaluated. Subsequently, a cube plot is obtained 

to understand the relationship between the interactions and the response variable. 

4- Results 

The experimental design results for the two datasets are presented in this Section. Furthermore, the CoroNet 

architecture is compared to other proposals in the literature using the "optimal" data augmentation technique. 

4-1- Classification Accuracy on Dataset 1 

Figure 5 shows a half-normal probability plot with the experimental design results on dataset 1. The data 

augmentation operations of zoom (factor D), height shift (factor G), and the combination of the factors vertical flip, 

horizontal flip, and shear (third level interaction ABF) have effects that differ from 0 and will be statistically analyzed 

using the ANOVA. As this is an unreplicated design, the other terms will constitute the error portion of the experiment. 

Due to the hierarchy model building technique, non-significant terms such as shear (factor F) and horizontal flip and 

shear interaction will be added to the final model (second-level interaction BF). 

 

Figure 5. Half Normal Plot for Dataset 1 
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As shown in Table 5, the ANOVA is performed after selecting the significant factors and interactions with the 

suggested hierarchy terms. The results indicate that the data augmentation operations of zoom (factor D, p-value 

<0.0001), height-shift-range (factor G, p-value 0.0009), and the combination of the factors of vertical flip, horizontal 

flip, and shear (ABF interaction, p-value 0.0133) are not only significant but positively affect the accuracy of the model. 

In addition, a cube analysis is used to analyze the interaction, as shown in Figure 6. This plot shows the best combination 

of data augmentation operations. When vertical flip (factor A) is true, horizontal flip (factor B) is false, zoom (factor D) 

is high, shear (factor F) is high, and height shift (factor G) is high, the optimal data augmentation configuration is 

achieved. All other operations, such as rotation and width shift, are irrelevant and do not affect the model's accuracy. 

Table 6 summarizes the findings. 

Table 5. ANOVA Results for Dataset 1 

Source Sum of Squares df Mean Square F-value p-value 

Model 0.1660 9 0.0184 7.73 < 0.0001 

A-Vertical Flip 6.250E-06 1 6.250E-06 0.0026 0.9594 

B-Horizontal Flip 0.0004 1 0.0004 0.1677 0.6838 

D-Zoom 0.1106 1 0.1106 46.35 < 0.0001 

F-Shear 0.0039 1 0.0039 1.64 0.2061 

G-Height 0.0298 1 0.0298 12.47 0.0009 

AB 0.0001 1 0.0001 0.0419 0.8385 

AF 6.250E-06 1 6.250E-06 0.0026 0.9594 

BF 0.0056 1 0.0056 2.36 0.1305 

ABF 0.0156 1 0.0156 6.55 0.0133 

Residual 0.1288 54 0.0024   

Cor Total 0.2948 63    

 

Figure 6. Cube analysis of the predicted classification accuracy on dataset 1. The optimal combination of data augmentation 

operations is when vertical flip (factor A) is true, horizontal flip (factor B) is false, zoom (factor D) is at its high level, shear 

(factor F) is at its high level, and height shift (factor G) at its high level. 

Table 6. Data Augmentation Operations Effects on Datasets 

Data Augmentation Operation Dataset 1 Dataset 2 

A: Vertical flip Positively affect Does not affect 

B: Horizontal flip Negatively affect Does not affect 

C: Rotation range Does not affect Does not affect 

D: Zoom range Positively affect Does not affect 

E: Width shift range Does not affect Does not affect 

F: Height shift range Positively affect Does not affect 

G: Shear range Positively affect Does not affect 
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4-2- Classification Accuracy on Data Set 2 

As mentioned in step 3, the ANOVA assumptions must be met to validate the analysis. The assumptions were not 

met in this dataset. As a result, the response variable is transformed by applying an ArcSine to the square root of the 

response variable (Equation 3), which has been shown to provide a high percentage of non-normality, heterogeneity of 

variance, and nonadditivity correction [38]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑) = 𝐴𝑟𝑐𝑆𝑖𝑛𝑒(√𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦)  (3) 

Figure 7 shows the resulting half-normal probability plot for dataset 2. The graph shows that horizontal flip (factor 

B), the interaction of rotation range, zoom range, and sheer range (CDF interaction), and the interaction of vertical flip, 

width shift range, and height shift (AEG interaction) may be significant. Due to the hierarchy assumptions, more factors 

are included in the model, as in dataset 1, even though these terms are insignificant. 

 

Figure 7. Half Normal Plot for Dataset 2 

The ANOVA is performed with the significant factors and interactions. Table 7 shows that the model is not 

statistically significant, preventing us from determining the specific levels of each augmentation operation in dataset 2. 

Data augmentation should not be used on dataset 2 in this context. Table 6 summarizes these findings. 

4-3- Data Augmentation Analysis 

Table 8 summarizes the statistical significance of data augmentation operations and their effects on classification 

accuracy, whereas Table 8 depicts the best data augmentation strategy. Data augmentation has a significant effect on the 

classification accuracy in dataset 1. Vertical flip, zoom, height shift, and shear, in particular, improve the model's 

accuracy. Furthermore, zoom and height shift have the greatest effect, as evidenced by the small p-value in the ANOVA 

table. Rotation and width shifts are insignificant, meaning they do not affect the model's accuracy, either positively or 

negatively. Because its implementation raises training costs, it should not be included in the data augmentation strategy. 

Finally, horizontal flip harms the model's performance, so avoiding using it during training is essential. 

However, the results in dataset 2 differ. None of the data augmentation operations have a statistically significant 

effect on the model's performance. This means that data augmentation during training does not affect the model's ability 

to generalize and should be avoided to eliminate unnecessary computations. The optimal data augmentation 

configurations discovered using the implemented methodology differ for the two datasets. When the data augmentation 

strategy for dataset 1 includes vertical flip, zoom with a range of 0.15, height shift with a range of 0.25, and shear with 

a range of 0.20, the best performance is obtained. It is best not to use data augmentation during training in dataset 2. 

These findings show that, even though we are analyzing the same classification task in similar datasets (same image 

modality and anatomical region portrayed), data augmentation strategies are not transferable between datasets and must 
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be performed independently for each case. In the case of medical images, data augmentation must produce images with 

a similar distribution to the original dataset. If this is not the case, the synthetic images can reduce the recognition 

capacity of a CNN by introducing noise. In the experiments presented, this is the case of the horizontal flip operation, 

which reduces test accuracy when applied to dataset 1. Another interesting finding is that data augmentation does not 

always benefit small datasets. The model trained in dataset 2, which contains 381 images, showed no improvement when 

any data augmentation operation was included. We believe that the dataset's limited information and diversity made it 

very difficult for the tested augmentation operations to produce plausible images that introduced "new" training 

information to the model. As a result, the model learned nothing beyond what the original dataset provided. It is 

recommended in this case to assess whether more advanced augmentation techniques can improve the model's 

performance. 

Table 7. ANOVA Results for Dataset 2 

Source Sum of Squares df Mean Square F-value p-value 

Model 0.6480 15 0.0432 1.36 0.2062 

A-vertical_flip 0.0062 1 0.0062 0.1961 0.6599 

B-horizontal_flip 0.1831 1 0.1831 5.76 0.0203 

C-rotation_range 0.0028 1 0.0028 0.0892 0.7665 

D-zoom_range 0.0109 1 0.0109 0.3430 0.5608 

E-width_shift_range 0.0034 1 0.0034 0.1056 0.7466 

F-shear_range 0.0384 1 0.0384 1.21 0.2769 

G-height_shift_range 0.0015 1 0.0015 0.0478 0.8278 

AE 0.0007 1 0.0007 0.0215 0.8841 

AG 0.0020 1 0.0020 0.0639 0.8015 

CD 0.0574 1 0.0574 1.81 0.1853 

CF 0.0149 1 0.0149 0.4700 0.4963 

DF 0.0050 1 0.0050 0.1588 0.6920 

EG 0.0016 1 0.0016 0.0513 0.8218 

AEG 0.1477 1 0.1477 4.65 0.0361 

CDF 0.1722 1 0.1722 5.42 0.0242 

Residual 1.53 48 0.0318   

Cor Total 2.17 63    

Table 8. Optimal Configuration of Data Augmentation Operations on Datasets 

Data Augmentation Operation Dataset 1 Dataset 2 

A: Vertical flip True False 

B: Horizontal flip False False 

D: Zoom range 0.15 0 

F: Height shift range 0.25 0 

G: Shear range 0.20 0 

4-4- Benchmarking 

CoroNet is fully trained in the corresponding dataset using the optimal data augmentation strategies presented in 

Table 8, and its performance is evaluated on the test set. The metrics accuracy, precision, F1-score, and recall are used 

for evaluation. The metrics' formulation is presented in Equations 2 to 6. Meanwhile, the CoroNet results for each dataset 

and class are shown in Table 9. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  (5) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (6) 
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Table 9. Evaluation metrics of the CoroNet with the optimized data augmentation strategy on dataset 1 and dataset 2 

Class Dataset 1 Precision F1-Score Recall Dataset 2 Precision F-Score Recall 

COVID-19 83% 91% 100% 100% 100% 100% 

Normal 96% 96% 96% 91% 95% 100% 

Pneumonia 100% 99% 97% 100% 97% 93% 

The results from Table 9 demonstrate that the data augmentation strategies defined in this study positively affect 

classification accuracy. In dataset 1, the precision, F1- score, and recall values for COVID-19 class are 83%, 91%, 100% 

respectively. For dataset 2, the precision, F1-score, and recall values for the COVID-19 class are 100%, 100%, and 

100%, respectively. Furthermore, Figure 8 shows the confusion matrix for each experiment, demonstrating that all of 

the mismatches for the COVID-19 class fall in the false-positive region, with no false negatives registered. The latter is 

an important discovery because, in this case, a false positive is a less costly error than diagnosing a person with COVID-

19 as non-infected. 

 

Figure 8. Confusion Matrix for Datasets 1, 2 

Tables 10 and 11 show the average class-wise results for the proposed CoroNet and state-of-the-art models published 

using datasets 1 and 2, respectively. Furthermore, the results of CoroNet with the original data augmentation strategy 

implemented by Khan et al. [13] and tested on the corresponding datasets (denoted as Original DA in CoroNet) are 

shown in both Tables to provide a richer comparison. Finally, CoroNet without data augmentation, or CoroNet without 

DA, is evaluated for dataset 1. 

Table 10. Evaluation metrics of the proposed CoroNet with the optimized data augmentation strategy (*) and competing state-

of-the-art models on COVID-19 classification on dataset 1. The values presented are as reported in the published papers. 

Model Accuracy Precision F1-Score Recall 

Original DA in CoroNet [13] 95.0% 95.0% 95.6% 96.9% 

CoroNet without DA 79.0% 79.0% 71.0% 78.3% 

Optimized DA in CoroNet (*) 97.0% 93.0% 95.3% 97.7% 

Table 11. Evaluation metrics of the proposed CoroNet with the optimized data augmentation strategy (*) and competing state-

of-the-art models on COVID-19 classification on dataset 2. The values presented are as reported in the published papers; a 

dash means the specific metric has not been reported. 

Model Accuracy Precision F1-Score Recall 

COVID-Classifier [20] 94.0% 96.0% 94.3% - 

Baldeon et al. [25] 94.0% 93.6% 93.3% 93.6% 

Original DA in CoroNet [13] 95.0% 96.0% 95.3% 95.6% 

Optimized DA in CoroNet (*) 97.0% 97.0% 97.3% 97.6% 
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Although the purpose of this study is to investigate the impact of various data augmentation techniques on the 

classification accuracy of a CNN, with the optimal data augmentation strategy discovered, it was possible to improve 

the results of the base CoroNet architecture and achieve new state-of-the-art performance. On dataset 1, the optimized 

CoroNet reached a 97% accuracy, which increased by 2% the accuracy achieved by the original CoroNet [13]. This 

means that by improving the data augmentation strategy, 20000 more patients can be correctly diagnosed for every 1 

million. CoroNet without DA reached a 79% accuracy. As a result, an adequate data augmentation strategy can correctly 

diagnose 180000 more patients for every million patients. These findings also show that, when used correctly, data 

augmentation can be an effective technique. 

On database 2, the CoroNet architecture with the optimal configuration of data augmentation achieved a 97% 

accuracy. Compared with the COVID-Classifier architecture proposed by Zargari Khuzani et al. [20] and the COVID-

19 ResNet proposed by Baldeon Calisto et al. [25], our network has a 3% increase in performance. With the 

improvement, 30000 more patients can be correctly diagnosed for every 1 million. The authors of Baldeon Calisto et al. 

[25] use a Bayesian hyperparameter optimization approach to determine the best data augmentation values. We 

improved that performance using a fractional factorial design, indicating that the proposed methodology can compete 

with well-established hyperparameter optimization approaches. Similarly, compared to CoroNet with the original data 

augmentation strategy, the proposed optimized CoroNet outperforms it in all evaluation metrics, demonstrating that data 

augmentation can reduce performance when used incorrectly. 

5- Concluding Remarks 

5-1- Discussion 

Due to the rapid spread of the COVID-19 pandemic, a lack of nasopharyngeal testing materials and the limited 

availability of medical practitioners, accurate automated COVID-19 diagnosis methods are required. Chest images, such 

as X-rays, can be analyzed to provide a quick diagnosis. However, identifying pulmonary illnesses caused by a COVID-

19 infection necessitates the use of skilled radiologists. Detecting COVID-19 automatically using CNN models is a 

promising direction. In this paper, we present a methodology for statistically identifying the effects of data augmentation 

operations on COVID-19 detection accuracy via chest X-ray analysis. The methodology is used in two publicly available 

COVID-19 datasets. Vertical flip, zoom, height shift, and shear positively affect accuracy in dataset 1. Horizontal flip 

has a negative effect, while rotation and width shift have no effect. These results indicate that the dataset contained 

substantial variation regarding image size and vertical placement. As a result, zooming in and out of the region of interest 

and vertically shifting it improved the model's generalization. None of the data augmentation operations in dataset 2 

statistically affect the accuracy. This means that by introducing data augmentation, the CNN learns nothing new from 

the original dataset and thus should not be used during training. 

In addition to the latter analysis, the implemented fractional factorial experimental design enables determining the 

optimal data augmentation strategy to maximize classification accuracy. On dataset 1, we outperformed Khan et al. [13] 

by 2% in average accuracy by training CoroNet with these optimal strategies. In dataset 2, we improved the average 

accuracy of the results obtained by Zargari Khuzani et al. [20] and Baldeon Calisto et al. [25] by 3%. We emphasize 

that the methodology and analysis presented here can be applied to other network structures or applications to help 

identify each augmentation operation's effect on the established evaluation metric and help define the optimal data 

augmentation policy to improve performance. 

Although many studies have reported the success of data augmentation in classification or segmentation problems 

[22], little research has been conducted to statistically determine the positive or negative effects of data augmentation 

operations on COVID-19 detection performance. Elgendi et al. [2] investigated the impact of four data augmentation 

strategies for COVID-19 classification and proposed clinically based general guidelines for its use. Despite this, our 

findings are inconsistent with their conclusions. Vertical reflections and shearing, according to Elgendi et al. [2], should 

be avoided because they produce non-physiologic images in practice. Nevertheless, as demonstrated in Tables 10 and 

9, our results indicate that vertical flip and shear have a statistically positive effect on the classification accuracy of 

dataset 1 and therefore produce better results for all evaluation metrics. According to Chlap et al. [22], many basic 

augmentation techniques do not aim to produce realistic images but encourage the model to learn more general features. 

The rotation and width shift operations do not appear to have a statistically significant influence on classification 

accuracy on either dataset and should not be included in the data augmentation strategy. This conclusion contradicts the 

guidelines of Elgendi et al. [2], which label rotation and translation as beneficial operations. 

Several studies have shown that data augmentation is especially useful when the dataset is small [39, 40]. However, 

dataset 2, which only contained 381 images, did not benefit from data augmentation during training. As shown in Table 

11, not using data augmentation improves the original CoroNet's performance (which implements a data augmentation 

strategy during training) and even outperforms [25], which uses a Bayesian hyperparameter optimization approach to 

set the data augmentation values. This finding was also found in skin lesion analysis [17], where data augmentation 

harmed the results for datasets with fewer than 500 images. As previously stated, this could be due to the original 

dataset's lack of diversity and information. Furthermore, it emphasizes the importance of considering the size of the 

dataset before implementing data augmentation. 
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Data augmentation strategies are frequently transferred between datasets without thoroughly evaluating their utility. 

For example, the data augmentation strategy developed by Krizhevsky et al. [41] in 2012 for the ImageNet dataset 

remains the standard for image classification [42]. Our findings, however, show that even when the same task (COVID-

19 classification) and network structure are used, the optimal data augmentation policy can differ across datasets. 

Differences in image acquisition protocols, imaging equipment, and pixel value distribution can contribute to this 

behavior. As a result, developing methods that identify the optimal augmentation policy on a specific dataset and analyze 

the impact of each operation, as presented in our work, is critical. Moreover, due to the varying effects an augmentation 

operation may have on two distinct datasets, it is not prudent to recommend its use on all datasets. 

Based on previous research, we chose a limited combination of basic data augmentation operations and levels, which 

is a limitation of the current investigation. Future research could investigate the effects of a broader range of 

augmentation operations (deformable and deep learning techniques) and levels on various applications and datasets. 

5-2- Conclusion 

A 2(7-1) fractional factorial experimental design is used in this study to statistically examine the effect of basic data 

augmentation techniques on detecting COVID-19 on chest X-Ray images. This method also allows optimizing the 

optimal combination of data augmentation factors to maximize classification accuracy. The CoroNet architecture was 

selected for its performance and efficiency, and it was tested on two publicly available COVID-19 datasets. Vertical 

flip, zoom, shear, and height shift operations improve accuracy in dataset 1, while horizontal flip has the opposite effect. 

The dataset mentioned achieves a new state-of-the-art performance with the best combination of data augmentation 

parameters, achieving an accuracy of 97%. The experimental model in dataset 2 was not statistically significant. As a 

result, this dataset's best data augmentation parameter combination was to avoid using data augmentation operations. A 

97% accuracy rate is achieved, outperforming all competing models by avoiding data augmentation during training. The 

experiments show that optimizing the values of the data augmentation operations for each dataset is essential. Finally, 

the findings presented show significant progress in incorrectly identifying COVID-19 from chest X-ray images, which 

will aid in a swift and accurate diagnosis. 
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