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Factorial Hidden Markov Model analysis of
Random Telegraph Noise in Resistive Random

Access Memories
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ABSTRACT

This paper presents a new technique to analyze the
characteristics of multi-level random telegraph noise
(RTN). RTN is de�ned as an abrupt switching of ei-
ther the current or the voltage between discrete values
as a result of trapping/de-trapping activity. RTN sig-
nal properties are deduced exploiting a factorial hid-
den Markov model (FHMM). The proposed method
considers the measured multi-level RTN as a super-
position of many two-levels RTNs, each represented
by a Markov chain and associated to a single trap,
and it is used to retrieve the statistical properties of
each chain. These properties (i.e. dwell times and
amplitude) are directly related to physical properties
of each trap.

Keywords: RTN, Multi-level, FHMM, Trapping,
Noise.

1. INTRODUCTION

Random telegraph noise (RTN) is usually found
in metal-oxide-semiconductor �eld-e�ect transitors
(MOSFETs) and in other novel devices (e.g. Resis-
tive Random Access Memeories, RRAM [1-3]) as an
abrupt and random change of either the voltage or the
current between discrete levels. This can result in un-
predictable deviation of key parameters (e.g. thresh-
old voltage of MOSFETs, read current in RRAMs)
from their expected values. Currently, RTN is be-
coming a challenging issue limiting the full industrial
exploitation of RRAM concepts and their reliability
since its e�ects are expected to be even more severe in
nanoscale devices. Even though the physical mecha-
nisms responsible for RTN have not been completely
assessed, it is commonly accepted that it is the result
of capture and emission processes of charge carriers
in/from defect centers acting as traps [4]. Fig. 1
shows our interpretation of the mechanism leading to
both two-levels (a) and multi-level (b) RTN in metal-
oxide-based RRAMs in High Resistance State (HRS)
along with experimental time series [5,6]. Our pre-
vious works [5,6] exploited the color-coded time-lag
plots to investigate the nature of RTN in RRAMs,
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showing that multi-level RTN can be seen as a super-
position of many two-levels RTNs. Formerly, we used
hidden Markov model [7] (HMM) to investigate RTN.
However, HMM can be used to extract the discrete
levels in the current but cannot be used directly to
extract the amplitude of each two-levels �uctuation
in multi-level RTN.

In this paper, we propose a more re�ned implemen-
tation of the HMM which is best suited to solve for
the statistical properties of multi-level RTN caused
by multiple traps. Retrieving traps parameters is of
utmost importance to gain a deeper understanding of
the phsyical mechanisms leading to RTN since they
are strictly related to the physical properties of the
defect centers, such as their positions and energies
in the oxide layer and their relaxation energy (taking
into account the structural lattice relaxation occuring
during the trapping and detrapping of charge carri-
ers) [4]. Traps parameters are estimated using a fac-
torial hidden Markov model [8,9] (FHMM) approach:
the the proposed method is self-consistent (the num-
ber of active traps is automatically determined) and
its implementation can be parallelized, leading to bet-
ter performances with respect to other methods such
as Markov chain Monte Carlo-based techniques [10].
This paper is organized as follows: the mathematical
description is given in Section 2, underlining the limi-
tations of HMM approach when analyzing multi-level
RTN and proposing FHMM; in Section 3 we report
results and discussion. Conclusions follow.

2. STATISTICS BACKGROUND

The capture/emission process of charge carri-
ers in/from traps into the barrier, Fig. 1, can
be described by a Hidden Markov Model, i.e. a
Markov (memoryless) process with unobserved (hid-
den) states. Whereas in simple Markov models the
state of the system at each instant of time is directly
visible to the observer, in HMM the output of the sys-
tem is directly visible at each instant of time while
the state of the system is hidden, even though the
output strictly depends on the state. Each state is
characterizied by a probability distribution over all
the possible values assumed by the output, statisti-
cally linking the sequence of observations (output) to
the sequence of hidden states. Moreover, each state
is associated to a set of transition probabilities (one
per each state) de�ning how likely is for the system,
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Fig.1: a) Experimental two-levels RTN and its sim-
pli�ed physical mechanism involving one trap only. b)
Experimental multi-level RTN and its simpli�ed phys-
ical mechanism involving two (many) traps. Black
spots are the charge carriers and the black holes are
active traps. Metal-oxide-based RRAM conduction in
HRS is modelled as trap-assisted tunneling via the
traps in the barrier, leading to 2-levels (a) or multi-
level RTN (b).

being in a given state at a given instant of time, to
switch to another of the possible states (including the
same state) at the successive instant of time.

2.1 The probabilistic model of HMM

In HMM, a sequence of observations {Y t} t = 1...T
is modeled by specifying a probabilistic relation be-
tween the observations and a set of hidden (unknown
a priori) states St through a Markov transition struc-
ture linking the states. In this framework the state is
represented by a random variable assuming one out of
N values at each instant of time. The HMM approach
relies on two conditional independence assumptions:

1) St only depends on St−1 (known as the �rst-
order Markov or �memory-less� property)

2) Yt is independent of all other observations
Y1, ..., Yt−1, Yt+1, ..., YT given St.

The joint probability for the state sequence and
observations can be formalized as:

P (St|yt) = Pinit �
T∏

t=2

P (St|St− 1) � P (Yt|St)

Pinit = P (S1) � P (Y1|S1)

(1)

A schematic representation of the HMM is given
in Fig. 2, where the Markov property is evi-
denced. According to the formalism used by Rabiner
in [7], an HMM is completely de�ned as a 5-tuple
(N,M,A,B, π). N is the number of hidden states, S,
in the model (i.e. the number of discrete current lev-
els to be found in RTN); since observations assume
discrete values, M is de�ned as the number of distinct
observable symbols (i.e. the possible current values
assumed by RTN). A is an N-by-N matrix de�ning
the transition probabilities among states and B is a
N-by-M matrix de�ning the observation probability
of each observable symbol in each hidden state; π is a

vector de�ning the initial state probability distribu-
tion [7]. The inference problem in this model consists
in �nding the most likely set of probability of hid-
den states given the observations. This is achieved
through a maximum likelihood estimate of the HMM
parameters given the observations using the forward-
backward algorithm [7]. Then the most likely se-
quence of hidden states representing the dynamics of
the observations can be achieved via the �Viterbi� al-
gorithm, a dynamic programming paradigm. As a
result, HMM analysis can e�ciently estimate the dis-
crete current levels and the best sequence of states
representing RTN data, as shown in Fig. 3(a).

Fig.2: Graphical representation of an HMM. At
each instant of time t, each output Yt is related only
to the current state of the Markov chain de�ning the
model.

Fig.3: a) Experimental two-levels RTN and HMM
�tting. The hidden levels and most likely state se-
quence are correctly retrieved. The distinctive fea-
tures of the two-levels RTN (amplitude of the �uc-
tuation and average capture/emission times) are ev-
idenced. b) Experimental multi-level RTN and HMM
�ting. Though succesful in characterizing the hidden
states and their durations, HMM output is unsu�-
cient to achieve a comprehensive characterization of
all the traps leading to the observed noise.

2.2 The limitations of HMM for multi-level

RTN analysis

Even though being e�ective in capturing the
Markov dynamics of RTN, HMM is nevertheless un-
suitable to comprehensively characterize multi-level
RTN, although is still valid to fully describe a two-
levels RTN (for which N = 2). Indeed, the distinc-
tive feature of a two-levels RTN �uctuation, related
to the physical properties of the associated trap, are
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the amplitude of the �uctuation and the average cap-
ture/emission times, see Fig. 3(a). While dealing
with a two-levels �uctuation, the output of the HMM
analysis is su�cient to extrapolate all the character-
istic features of the RTN data: the amplitude of the
�uctuation is simply given by the di�erence between
the two hidden states while the average capture and
emission times can be extracted by averaging the du-
ration of each state. In the case ofmulti−level RTN
, a superposition of many two-levels RTNs each gen-
erated by the contribution of a single trap [5,6], a
complete characterization would be achieved only by
de�ning all the distinctive features of every trap con-
tributing to the observed RTN. Unfortunately this
result cannot be achieved with the HMM approach:
Fig. 3(b) reports an experimental multi-level RTN
(generated by many traps) along with the HMM out-
put. Though the HMM analysis is correctly de�ning
the hidden states of the multi-level RTN and their
most likely sequence, it is generally impossible to sep-
arately de�ne the amplitudes of �uctuations and cap-
ture/emission times for each single trap contributing
to the RTN. This implies that even though the char-
acterization of the RTN signal is achieved, it is im-
possible to retrieve the distinctive features of each
trap contributing to the observed noise. In this pa-
per we show how this limitation can be overcome by
using a more re�ned HMM-based concept, namely the
FHMM.

The FHMM [8] extends the HMM potential by
considering the hidden state as a collection of K state
variables, instead of a single random variable, each
potentially assuming one out of N values at each in-
stant of time (i.e. K di�erent and parallel Markov
chains). This results in a space state having a dimen-
sion of NK . If no constraints are applied to the model,
it can potentially take into account all the possible
interdependencies between the K Markov chains, re-
sulting in a high computational burden. However, a
natural approach consists in assuming that each of
the K Markov chains evolves independently from the
other chains, resulting in a signi�cant reduction of
the problem complexity. This can be formalized as:

P (St|St−1) =

K∏
k=1

P (Sk
t |Sk

t−1) (2)

This is also the most suitable representation of a
multi-level RTN, seen as a superposition of many two-
levels RTNs [5,6], each associated to a single trap.
This assumption also constraints each Markov chain
state to assume only one out of two values at each
instant of time (which is N=2). A graphical repre-
sentation of the FHMM concept is given in Fig. 4:
Sm
t represents the state of the m − th chain at time

t, while Yt represents the output of the whole pro-
cess (i.e. the expected value of the multi-level RTN)
at time t. The inference problem is solved by using
the expectation-maximization algorithm, an iterative

method for �nding maximum likelihood estimates of
parameters in statistical models depending on hidden
variables. The iteration alternates between an expec-
tation step, calculating the expectation of the like-
lihood evaluated using the current estimate for the
model parameters, and a maximization step, com-
puting the parameters maximizing the expected like-
lihood found on the previous step. These estimates
can be used to determine the probability distribution
of the hidden variables in the next iteration. This ap-
proach allows decomposing the multi-level RTN into
a superposition of two-levels RTNs: since the output
of the FHMM is a collection of two-levels �uctuations,
it is now possible to separately retrieve the distinc-
tive features of each trap contributing to the observed
multi-level RTN.

Fig.4: Graphical representation of an FHMM. At
each instant of time t, each output Yt is related to
the superposition of the states of M independent and
parallel Markov chains.

2.3 Implementation issues and self-consistency

The implementation of either HMM or FHMM suf-
fers from a trade-o� between the computational bur-
den and the �tting accuracy. Indeed, a more com-
plex model (higher number of hidden states in HMM
or higher number of Markov chains in FHMM) re-
sults in higher time-to-solution. Regrettably, as in
HMM the number of hidden states is an input param-
eter for the model, so the number of parallel Markov
chains (i.e. the number of traps contributing to the
observed RTN) should be estimated beforehand in
FHMM. This theoretically requires an a priori esti-
mation of the number of traps contributing to the
RTN. However this issue can be solved by feeding
the algorithm a reasonably large number of expected
traps (though resulting in a more time-consuming al-
gorithm): the chains related to traps which are un-
necessary to match the input RTN will be character-
ized by negligible amplitude of the �uctuation and
can easily be discarded after the analysis. The ad-
vantage of the FHMM over HMM is evident even in
this aspect: a too large estimation of the number of
hidden states in HMM can cause the algorithm to be
forced to identify more hidden levels than the e�ec-
tive number, resulting in an erratic signal characteri-
zation. Instead in the FHMM approach, using a large
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number of parallel chains is not a�ecting the goodness
of �tting. This results in the FHMM approach to be
self-consistent and extremely accurate.

3. RESULTS AND DISCUSSION

The proposed method has been tested using math-
ematically generated RTN data simulating the activ-
ity of three traps with additive gaussian noise. The
number of expected traps was intentionally set to �ve,
a reasonably high value, in order to check the al-
gorithm capability of automatically determining the
number of active traps contributing to the observed
RTN. Results are summarized in Tab. 1 and plot-
ted in Fig. 5. Fig.5 (a) shows the extremely accu-
rate matching of the FHMM output and the input
multi-level RTN. Moreover, input data are correctly
separated in three two-levels RTNs time series with
remarkable accuracy, Fig.5 (b-d). Noticeably, since
only three traps were necessary to match the input
signal, the algorithm assigned negligible amplitude
to two out of �ve chains (see Tab. 1), con�rming its
self-consistency. The algorithm was also successfully
applied to a real experimental time series, see Fig. 6.
Results are summarized in Tab. 2.

Other statistical machine learning methods can
solve this problem using Markov chain Monte Carlo
(MCMC) approaches, the simplest of which is Gibbs
sampling [10]. Although this technique is guaranteed
to converge to the real probability distribution of the
data [8,10], the whole space de�ned by unknown vari-
ables in the model has to be sampled, resulting in
an extreme computational burden as a consequence
of the so-called curse of dimensionality. Moreover,
Gibbs sampling technique is intrinsically non paral-
lelizable since every step is based on the result of
the previous one, preventing an e�cient implementa-
tion from being possible. Conversely, the FHMM ap-
proach takes advantage of parallel computing: since
the time-to-solution is strictly dependent on the ini-
tial guess of the model variables (namely A, B and
π, according to the formalism used by Rabiner it is
possible to run parallel instances of the FHMM al-
gorithm on di�erent cores and then choose the result
maximizing the likelihood. Furthermore, as shown
in [8], approximated inference techniques can be used
to speed-up the FHMM routine: the expectation step
of the expectation-maximization algorithm discussed
in Section 2.3 can be replaced with either a Gibbs
sampling approach or a variation inference method at
the cost of lower accuracy. Nevertheless the speed-up
gain is strictly dependent on the model complexity
and, in our speci�c case, the exact expectation has
been found to be the best choice in terms of trade-o�
between a good accuracy and a reasonable time-to-
solution. [7]), it is possible to run parallel instances
of the FHMM algorithm on di�erent cores and then
choose the result maximizing the likelihood. Further-
more, as shown in [8], approximated inference tech-

niques can be used to speed-up the FHMM routine:
the expectation step of the expectation-maximization
algorithm discussed in Section 2.3 can be replaced
with either a Gibbs sampling approach or a variation
inference method at the cost of lower accuracy. Nev-
ertheless the speed-up gain is strictly dependent on
the model complexity and, in our speci�c case, the ex-
act expectation has been found to be the best choice
in terms of trade-o� between a good accuracy and a
reasonable time-to-solution.

Table 1: FHMM Output for Generated Data.

Trap Amplitude Amplitude Amplitude
Nr. (Generated) (FHMM) % of Trap 1
1 2 1.994 100.00%
2 1 1.004 50.35%
3 5 4.998 250.65%
4 - 0.024 (discarded) 1.20%
5 - 0.002 (discarded) 0.10%

Table 2: FHMM Output for Experimental Data.

Trap Amplitude Amplitude
Nr. (FHMM) (% of Trap 1)
1 1.78× 10−8 100.00%
2 9.87× 10−9 55.45%
3 4.1× 10−11 (discarded) 0.23%
4 3.4× 10−11 (discarded) 0.19%
5 7.6× 10−12 (discarded) 0.04%

Fig.5: a) An eight-levels RTN generated by three
traps with superimposed additive gaussian noise (blue
curve) and FHMM �tting (red curve). b, c, d) Ampli-
tudes of �uctuations and state sequences for all traps
are easily found and traps characteristics can be in-
ferred.

4. CONCLUSIONS

In this paper we proposed the FHMM approach
to achieve a full and comprehensive characterization
of multi-level RTN, resulting from the activity of
multiple traps. HMM limitations in characterizing
the multi-level RTN were underlined and the novel
FHMM approach has been used to solve for the sta-
tistical properties of each trap contributing to multi-
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Fig.6: a) An experimental multi-level RTN and b)
FHMM �tting. c, d) Amplitudes of �uctuations and
state sequences for all traps are easily found and traps
characteristics can be inferred.

level RTN. As a result, a complex RTN has been sepa-
rated in multiple two-levels RTNs, allowing inferring
the distinctive features of each of the traps leading
to the observed RTN. This is of crucial relevance for
studying the trap-assisted conduction in novel devices
as the inferred trap properties are directly linked to
their physical properties. This method is compre-
hensive and self-consistent, and has been succesfully
tested with both experimental and mathematically
generated data. Moreover it can take advantage of
parallel computing on distributed cores, resulting in
a consistent speed-up.
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