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Mimicking biological neurons with a nanoscale
ferroelectric transistor†

Halid Mulaosmanovic, *a Elisabetta Chicca,b Martin Bertele,b Thomas Mikolajick a,c and Stefan Slesazecka

Neuron is the basic computing unit in brain-inspired neural networks. Although a multitude of excellent artificial neurons 
realized with conventional transistors have been proposed, they might not be energy and area efficient in large-scale 
networks. The recent discovery of ferroelectricity in hafnium oxide (HfO2) and the related switching phenomena at the 
nanoscale might provide a solution. This study employs the newly reported accumulative polarization reversal in nanoscale 
HfO2-based ferroelectric field-effect tran-sistors (FeFETs) to implement two key neuronal dynamics: the integration of 
action potentials and the subsequent firing according to the biologically plausible all-or-nothing law. We show that by 
carefully shaping electrical excitations based on the particular nucleation-limited switching kinetics of the ferro-electric 
layer further neuronal behaviors can be emulated, such as firing activity tuning, arbitrary refractory period and the leaky 
effect. Finally, we discuss the advantages of an FeFET-based neuron, highlighting its transferability to advanced scaling 
technologies and the beneficial impact it may have in reducing the complexity of neuromorphic circuits.

1. Introduction

The conventional von Neumann computer architectures might
prove highly inefficient in the near future, mainly due to the
prohibitive time and power consumption in transferring an
immense amount of data between the processor and the
memory.1 Neuromorphic computing emerges as an appealing
alternative, inspired by the low-power operation of the human
brain.2 The basic computing elements in such an architecture
are neurons, which are massively interconnected to each other
by plastic synapses.

In recent years, much effort has been directed in developing
artificial synapses using emerging nonvolatile memory
devices, with the aim of building dense crossbar synaptic
arrays.3 Such arrays, coupled with artificial neurons realized in
complementary metal–oxide–semiconductor (CMOS) techno-
logy, as depicted in Fig. 1, are recognized to be one possible
path to building energy and area efficient neuromorphic
systems.4–7 However, the CMOS neurons, even their simplest
realizations (such as Axon-Hillock neuron8 in Fig. 1(b)) often

comprise a large capacitor (to emulate the integration of post-
synaptic potentials) and several transistors (for amplification,
threshold and firing functions). Any further attempt of model-
ing additional neuronal dynamics (e.g. spike-frequency adap-
tation, refractory period, etc.) or lowering the power consump-
tion results in a drastic increase in the number of transistors.9

Therefore, to map more than 1010 neurons present in the
human brain10 in a compact and low-power hardware realiz-
ation, other electronic elements might be more suitable than
pure CMOS neurons. Recently, several proposals in this regard
have been suggested, which usually exploit some sort of
accumulative switching and/or transient and oscillatory behav-
ior in nanoscale memory devices.11–16

Ferroelectric materials have been newly recognized as an
attractive framework for alternative devices and unconven-
tional computing. Based on the voltage-controllable polariz-
ation reversal, memristive behavior in a ferroelectric tunnel
junction (FTJ) has been demonstrated17 and biological learn-
ing rules, such as spike-timing dependent plasticity, have been
implemented.18 In this study, we explored the feasibility of a
nanoscale ferroelectric field-effect transistor (FeFET) to electri-
cally mimic the biological neuron. An FeFET resembles the
conventional transistor, with the exception of having a ferro-
electric material in the gate stack, capable of modulating the
transistor conductivity by its spontaneous polarization charge.
FeFETs have been under intense study for nonvolatile memory
applications,19,20 which has lately been intensified after the
discovery of ferroelectricity in hafnium oxide (HfO2).
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respectively. Fig. 2c shows the ID–VG curves of the device
corresponding to the two polarization (P) states, namely, polar-
ization down (P↓) and polarization up (P↑). Application of a
positive gate pulse VG = VP larger than the coercive voltage (VC)
of the ferroelectric sets the polarization downwards, which
results in the program (PRG) transition from high threshold
voltage (VT) to low-VT state. Alternatively, on applying a
sufficiently negative pulse VN, the polarization reverses, result-
ing in the erase (ERS) transition from low-VT to high-VT state.
The FeFET-based memory devices rely on this reversible
switching between the two states, which are separated by
several orders of magnitude in drain current (see ESI Fig. S1†).
Generally, in the scaled devices considered in this study, both
transitions are abrupt in terms of switching voltage and time.
For instance, Fig. 2d shows the PRG switching for three
different VP values, which is explored by increasing the pulse
duration tP while keeping the respective VP constant (inset of
Fig. 2d). The transition is sharp and the switching time
decreases with the increase in VP. This voltage–time dualism is
characterized by a specific exponential relationship,22 which
has been attributed to the nucleation-limited switching in this
type of FeFET devices.

(B) Integrate-and-fire behavior

Artificial neuron models often neglect complex neuronal
dynamics to allow for the simulation and hardware implemen-
tation of large-scale networks. While some neuron circuits
operate in biologically realistic time-constants (in the milli-
second regime and typically using CMOS transistors in the
sub-threshold and weak-inversion domain), other implemen-
tations perform at highly accelerated time scales (up to 105-
fold faster than the nervous system). This is mainly conducted
to reduce the power and silicon area consumption while adopt-
ing transistors in the strong-inversion regime and lower capaci-

Fig. 1 (a) Neural network consisting of a crossbar synaptic array connecting presynaptic neurons to postsynaptic neurons. Synapses are represented
by a variable conductance G and can be implemented with nonvolatile memory devices, whereas neurons are illustrated by circles and can be rea
lized with pure CMOS components. (b) Schematic of an Axon Hillock CMOS neuron circuit:8 the input synaptic currents are integrated on the mem
brane capacitance Cmem, which is connected to the amplifier. Once the amplifier threshold voltage is reached, the output voltage Vo increases
(neuron fires), activating the positive feedback through capacitor Cf, which produces a sudden increase in Vmem. This is followed by the discharge of
Cmem at a rate set by the bias voltage Vres, allowing for the reset of both Vc and Vmem, therefore starting a new integration and fire cycle. Such a
circuit might not be suitable for large scale neural networks and simpler solutions might be preferable.

the scaling of these devices proceeds, additional integration 
possibilities as well as novel switching phenomena start to 
appear.22 Very recently, it has been reported that ultra-scaled 
FeFETs (having 10 nm-thick ferroelectric HfO2 and 30 nm-long 
channel) display an accumulative switching behavior under 
certain electrical conditions,27 contrasting the classical binary 
switching mode. The accumulation has been attributed to the 
progressive polarization reversal through localized ferroelectric 
nucleation. In the present study, we exploited this property 
and the resulting highly nonlinear switching response to elec-
trically emulate two prominent neuronal dynamics, namely, 
the integration of action potentials and the subsequent firing, 
according to the biologically plausible all-or-nothing law. 
Moreover, we explored the implementation of an arbitrary 
refractory period and the possibility to tune the spiking 
dynamics upon simple voltage–time pulsing schemes, which 
were a direct consequence of ferroelectric nucleation mecha-
nisms governing the device physics. Finally, we discuss the 
guidelines for implementing the leaky integrate-and-fire activity 
as well as the benefits of using FeFET-based neurons. Therefore, 
the aim of this study was to demonstrate key neuronal dynamics 
with simple electrical experiments, which might set the basis 
for simulating or building real ferroelectric neuronal circuits.

2. Results and discussion
(A) FeFET characteristics

Fig. 2a and b show a transmission electron microscopy (TEM) 
image and a schematic illustration of our FeFET device, 
respectively. The gate stack consists of the dielectric (interface) 
layer (1.2 nm silicon oxynitride SiON), the ferroelectric layer 
(10 nm silicon-doped HfO2) and the top gate electrode (TiN 
and polysilicon).22 The device has nanoscale dimensions with 
30 nm and 80 nm for the length and width of the transistor,
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which triggers the abrupt polarization reversal of the entire
grain connecting the two terminals. For any lower number of
pulses, the dispersed nanodomains are not capable of indu-
cing a significant charge inversion in the channel, leading to
the absence of the conduction path (OFF state).27 Note also,
that this is a different scenario from the one occurring in FTJs,
where the tunneling current flows through the ferroelectric
and each nucleated domain contributes to the overall current,
as usually described by the parallel conduction model.17 The
sharp OFF to ON transition is also exemplified in Fig. 3(b),
showing the ID–VG curves as the number of excitation pulses
increases.

Herein, we highlight the analogy to the IF neuron. The
accumulation operation mode upon sub-threshold input
pulses prior to the PRG transition can be regarded as the
process of integration of synaptic inputs, whereas the sub-
sequent highly nonlinear switching can be regarded as the
firing event. It should be noted that the firing has an all-or-
nothing character, indicating that the FeFET-based neuron
either does not externally respond to the sub-threshold exci-
tations or it displays a full-fledged firing signal (PRG switch-
ing) after all the necessary pulses have been received.
Interestingly, this represents a strong similarity to the all-or-
nothing law found in biological neurons, where the action
potential is elicited in its full magnitude only if the exciting
stimulus exceeds the threshold.29

Fig. 2 FeFET structure and switching characteristics: (a) cross sectional TEM image of a device having L = 30 nm and W = 80 nm for the channel
length and width, respectively. ‘G’, ‘D’ and ‘S’ indicate gate, drain and source terminals, respectively. (b) FeFET schematic indicating the structure of
the gate stack, having the polarization vector P pointing downwards. (c) ID VG curves collected for the two polarization states by sweeping VG from
1 V to 1 V in 500 μs while keeping drain voltage VD = 100 mV. This fast sweep limits the current resolution to 10 nA. A higher resolution and thus

ION/IOFF > 105 can be achieved by a longer VG sweep (ESI Fig. S1†). (d) Abrupt switching from OFF to ON state upon varying pulse duration tP in the
excitation scheme shown in the inset for three different VP values. ID is extracted from ID VG curves at VG = 0 V, as indicated by the vertical dashed
line in (c).

tance values.9 Generally, integrate-and-fire (IF) neuron models 
are widely adopted owing to their relatively simple mathemat-

ical description yet sufficient accuracy in capturing essential 
biological features.28 They are characterized by two prominent 
dynamics: the integration of weighted synaptic inputs that 
arrive from other neurons and the subsequent firing after a 
certain threshold is reached. This simple behavior will be 
implemented using an FeFET in this study.

The sharp transition in Fig. 2d shows that the device 
remains seemingly unperturbed under pulses having tp 

shorter than the switching threshold. For instance, a pulse 
having VP = 2.2 V and duration lower than tp = 10  μs has no 
influence on the OFF state of the device. However, it has been 
recently reported that even such sub-threshold (sub-coercive) 
excitations can induce an accumulative effect within the ferro-
electric material, which eventually leads to switching.27 In fact, 
by applying identical gate pulses (VP = 2.2 V, tP = 1 μs), as 
shown in Fig. 3(a), each of which is insufficient for switching, 
the device remains in the OFF state as expected. However, after 
the 21st pulse is received, the FeFET abruptly undergoes the 
PRG transition to the highly conductive state, as illustrated in 
Fig. 3(c). The sharp OFF to ON switching takes place when a 
continuous conduction pathway is formed in the channel 
between the source and drain terminals. We assume that this 
happens when after a sufficient number of pulses have been 
reached, a critical number of nanodomains is nucleated,
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to the OFF state is ruled by an exponential dependence
between Vreset and treset, which is similar to the one between
VP and tP shown in Fig. 2(d). Depending on the value of Vreset,
treset can range from hundreds of milliseconds to nanoseconds
(see, for instance, Fig. 3b of ref. 22). In this way, the refractory
period can be chosen arbitrarily to match the biologically
plausible as well as the accelerated-time neural dynamics.

Hence, with this pulsing scheme, a complete IF cycle can
be emulated, after which a new cycle can begin. Fig. 4(d)
shows the experimental results for different pulse amplitudes
(VP) while keeping tP = 1 μs, where several IF cycles were con-
secutively repeated. For resetting the neuron in the OFF state,
a single pulse Vreset = −4 V, treset = 1 μs was adopted. As a
result, the output firing activity can be considerably modulated
by changing the input excitation strength.

It should also be noted that the specific tP and VP firing
dependence of an FeFET-based neuron can be exploited for
implementing the weighted synaptic input from a presynaptic
neuron. It is conceivable to take tP (or alternatively VP) as
weighted input so that a larger pulse width (pulse amplitude)
corresponds to a larger weight. Although the choice is directly
related to the specific circuital implementation of the neural
network, it might be argued that tP is a more suitable para-
meter in this regard, given the almost linear relationship in
the log–log graph between the number of pulses until firing
and tP.

27

(D) Leaky behavior

The accumulative switching presented so far appears to be
invariant with respect to the time distance between the incom-
ing pulses.27 This indicates that the leaky behavior is absent

Fig. 3 Accumulative switching in FeFETs: (a) pulsing scheme for the accumulation in the OFF state consists of a train of identical pulses having
amplitude VP and duration tP; (b) evolution of ID VG curves as the number of incoming pulses increases (from blue to red). A clear jump from high
VT to low VT is observed; accumulative switching (c) from OFF to ON state with pulses VP = 2.2 V, tP = 1 μs and (d) from ON to OFF with negative
pulses VN = 3.25 V, tP = 1 μs. The accumulative switching in our devices is invariant with respect to the time interval length between single pulses27

(in this experiment: Δt = 100 ns). Analogy to IF neuron: integration of gate pulses (accumulation regime) → integration of postsynaptic potentials;
abrupt switching after a critical number of pulses → action potential firing after a threshold is exceeded.

The accumulation behavior is also found when starting 
from the ON state and applying negative sub-threshold pulses, 
which eventually lead to the abrupt ERS transition, as shown 
in Fig. 3(d). This symmetry in the accumulation property is a 
direct consequence of the equivalence of the two polarization 
states within the ferroelectric. Moreover, this finding is 
reflected in the fact that both transitions (from P↑ to P↓ and 
from P↓ to P↑) are ruled by the nucleation of ferroelectric 
domains.

(C) Firing dynamics

It has been shown that the number of pulses to be integrated 
prior to switching substantially depends on the choice of pulse 
parameters, i.e., amplitude VP and duration tP.27 This property 
was attributed to the field-time dependence of the ferroelectric 
nucleation. Fig. 4(a) and (b) illustrate this phenomenon for 
varying tP and VP in the waveform of Fig. 3(a), respectively. It 
can be seen that the longer the tP (the larger the VP), the lower 
is the number of pulses necessary to induce switching. It is 
straightforward to recognize that this property can be exploited 
to modulate the firing dynamics of an FeFET-based neuron. 
For instance, Fig. 4c shows a possible pulsing scheme for 
implementing the integration-and-fire operation, discharging 
(FeFET resetting) and arbitrary refractory period: as soon as 
the FeFET undergoes the PRG transition (firing) upon a train 
of VP pulses (which is detected by sensing a larger drain 
current flow in the resulting ON state), a negative pulse Vreset is 
applied at the gate to reset the device to the OFF state upon 
inducing the ERS transition. It should be noted that such a 
pulse can be tailored with a proper amplitude and duration to 
reproduce the desired refractory period. In fact, the switching
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and therefore, our devices are perfect integrators. However, to
implement the leaky effect, the accumulation efficiency has to
decay as the time interval between input pulses increases. One
conceivable option is to modulate the depolarization field Edep
since it directly influences the electrostatic landscape within
the ferroelectric. In other words, Edep plays a significant role in
the stability of the polarization state and is known to be par-
ticularly critical for metal–ferroelectric-insulator field effect
transistors.30 Edep arises from an incomplete polarization
surface charge compensation by the confining layers and can
be approximated as follows:30

Edep ¼ P ε0εF
CIS

CF
þ 1

� �� ��1

ð1Þ

In addition, it should be noted that such a decrease in
polarization retention capability could be exploited for a spon-
taneous reset operation. In fact, by appropriate engineering of
the gate stack, where the P↓ state appears markedly less stable
than P↑ state, a spontaneous decay from ON to OFF state after
an integrate-and-fire cycle could be achieved. By doing this,
the negative reset pulse shown in Fig. 4c and the relative cir-
cuitry could be completely avoided.

Herein, we show an attempt to electrically induce the leaky
effect and thus emulate the depolarization field. This was per-
formed by applying a negative bias Vinh during the time inter-
vals between single input VP spikes, as depicted in Fig. 5(a). In
fact, Vinh generates an electric field in the gate stack, which
points upwards and tends to inhibit the creation of new P↓ fer-
roelectric domains. Therefore, it has a similar effect to the one
produced by the depolarization field in a device having a
thicker interface and Vinh = 0 V. Fig. 5(b) shows that Vinh
indeed reduces the integration efficiency, i.e., as |Vinh| increases,
the number of VP pulses required for switching increases, with
a very steep increase for Vinh < −3 V. In other words, the
leakage effect could be induced electrically.

(E) Discussion

The described IF activity of an FeFET-based neuron might have
several advantages when it comes to area/energy consider-
ations and neuronal dynamics mimicking.

(1) Reduced circuital complexity: the capacitor Cmem in
Fig. 1(b), which generally occupies a large area in the circuit, is
not necessary. In fact, the integration of electrical stimuli is
inherent to the accumulative operation mode of an FeFET.

Fig. 4 Integrate and fire dynamics: (a) accumulative switching upon varying tP while keeping VP = 1.6 V; (b) accumulative switching upon varying
VP while keeping tP = 1 μs; (c) pulsing scheme for implementing an IF cycle and an arbitrary refractory period, after which a new IF cycle begins; (d)
consecutively repeated IF cycles for different VP while keeping tP = 1 μs.

where ε0 is the vacuum permittivity (8.85 × 10−12 F m−1), P, εF 

and CF are the polarization, dielectric constant and capaci-
tance of the ferroelectric, respectively, and CIS is the series 
capacitance of the interface layer and semiconductor.

According to eqn (1), by increasing the interface layer thick-
ness, and/or decreasing the ferroelectric layer thickness, the 
depolarization field will increase. This in turn will tend to 
inhibit the nucleation of opposite ferroelectric domains, thus 
making the integration of excitation pulses less efficient. In 
fact, it has been already shown that a thicker interface (3 nm) 
leads to a severe degradation of polarization retention.31 A 
similar effect could be potentially obtained by increasing the 
value of the remnant polarization, which is achievable by 
changing the dopant species, their concentrations, annealing 
conditions as well as deposition techniques.32–35
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This property might provide a great flexibility for a neuron
circuit design and might be used to implement both excitatory
and inhibitory synaptic stimuli. Moreover, it represents an
advantage over some other nanoscale neuron proposals. For
instance, phase-change neurons are highly asymmetric in this
regard as they rely on the accumulative crystallization of the
material, whereas a gradual amorphization is generally not
feasible.13,16

(3) An FeFET-based neuron is CMOS compatible, scalable
and transferrable to other technologies: HfO2 is a well-known
and largely exploited material in microelectronics industry.
Moreover, ferroelectricity in HfO2 is very robust to scaling37

and has been reported for film thicknesses below 3 nm.38

Furthermore, it has been proved compatible with a variety
of deposition techniques and substrates, thus making it
transferrable to different and more advanced technologies. For
instance, a successful fabrication of FeFETs in a fully depleted
silicon-on-insulator (FDSOI) technology has been demon-
strated.24 ESI Fig. S3† shows that these devices display a distinct
ferroelectric switching. In this light, we have experimentally
confirmed the integrate-and-fire activity in such an ultra-scaled
device (having 20 nm and 80 nm for transistor length and
width, respectively), as shown in Fig. 6. An additional advantage
of this technology is the presence of the back-bias electrode (ESI
Fig. S3†), which can be used to tune the threshold voltage of
the transistor and thus provide further functionalities.39

(4) Stochasticity: the ferroelectric nucleation is a stochastic
process, which causes a certain fluctuation of the switching
voltage/time,40 and consequently of the number of pulses for
switching when repeating the IF cycles several times27 (visible
also in Fig. 4d). This stochasticity can be harnessed for emulat-
ing the probabilistic activity of the biological neuron, which is
believed to have an important role in information processing
in the nervous system.41 It has been often convenient to
describe the neuronal noise by some additive random process,
e.g., Poisson process.28 Interestingly, the nucleation of ferro-
electric domains can also be approximately described by a
Poisson process,42 which was experimentally demonstrated for

Fig. 5 Electrical emulation of the leaky effect: (a) inhibit voltage Vinh

was applied in the intervals between consecutive VP pulses (tinh = 10 μs).
Vinh emulates the effect that would have the depolarization field in a
device having a thicker interface as it tends to reduce the integration
efficiency of VP pulses. (b) Number of pulses required for switching
increases as Vinh increases in magnitude, which is equivalent to an
increase in the leakage effect. It should be noted that VP is always kept
constant at 2.2 V, tP = 1 μs. The device used herein is different from the
device shown in Fig. 2 and 3 and has slightly different switching
voltages.

Fig. 6 Integrate and fire behavior in an ultra scaled FDSOI FeFET
having channel length L = 20 nm and channel width W = 80 nm upon a
train of pulses VP = 2 V, tP = 1 μs. Inset: TEM image of a device. ‘G’, ‘S’,
‘D’, ‘FE’, and ‘BOX’ indicate gate, source, drain, ferroelectric layer, and
buried oxide, respectively.

Moreover, no or only limited amplification circuitry as well as 
no thresholding circuits (such as comparators) are needed. 
FeFETs are characterized by an intrinsic gain, which is directly 
reflected in the large ION/IOFF ratio. The all-or-nothing type of 
switching is per se abrupt, highly nonlinear and clearly 
distinguishable.

Typically, a neuron circuit consists of (i) a temporal inte-
gration block, (ii) a spike generation block, (iii) a refractory 
period block, and (iv) a spike-frequency or spiking threshold 
adaptation block.9 From the presented results, the functional-
ity of (i) and (iii) can be already implemented with an FeFET. 
Furthermore, the functionality of block (iv) can be attained 
when adjusting the constant negative input bias (or, alterna-
tively, the device back-bias, see point (3)) to tune the firing 
activity of the neuron. However, since the FeFET switches after 
N received pulses, it abruptly increases the drain current, but 
does not generate a spike. Therefore, a spike generation block 
has to be implemented with additional CMOS components. As 
shown in ESI Fig. S4,† we propose a possible realization of the 
FeFET-based neuron circuit, inspired by the work of Lazzaro 
et al.36 It is to be understood, however, that this circuit is a 
first draft at present and has to be analyzed in more detail 
through further research. However, we show that by adopting 
an FeFET, a neuron circuit including blocks (i)–(iv) can be rea-
lized by adding just a small number of CMOS devices.

(2) Symmetry: both positive and negative excitations can be 
integrated, according to the data shown in Fig. 3(c) and (d).
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for building all-ferroelectric neural networks. This might not
only substantially reduce the system complexity, but also
endow neuroscience with a new framework for exploring and
understanding the human brain computation.

4. Experimental

The FeFETs prepared in this study contained a TiN/Si:HfO2/
SiON/Si gate stack fabricated in the following way: first, a
1.2 nm thick interfacial nitrided SiO2 layer (SiON) was grown
on the p-doped silicon substrate, followed by the deposition of
a 10 nm silicon-doped HfO2 layer grown from HfCl4 and SiCl4
in a water-based atomic layer deposition (ALD) process at
300 °C. At this step, 4 mol% silicon doping was introduced in
order to induce the ferroelectric orthorhombic phase in the
film after annealing. The metal gate electrode was obtained by
physical vapor deposition (PVD) of TiN, which was conse-
quently contacted with polysilicon. Then, a two-step litho-
graphic process defined the lateral dimensions, i.e., 30 nm
and 80 nm for transistor length and width, respectively. The
source and drain n+ regions were obtained by phosphorous ion
implantation, which were then activated by a rapid thermal
annealing (RTA) at around 1000 °C. This resulted in a polycrys-
talline Si:HfO2 ferroelectric layer.

All electrical measurements were performed using a
Keithley 4200-SCS Semiconductor Analyzer.
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based neuron.43 The great advantage of the large-area devices 
is their relatively low device-to-device variability, which, instead 
is larger in the state-of-the-art small-area devices.24,44

With the reference to Fig. 1(a), not only neurons but also 
the synapse matrix can be realized with ferroelectric elements. 
There has been a growing body of research that has tried to 
employ ferroelectric switching for emulating the gradual 
synaptic weight using classical ferroelectrics.18,45–47 Very 
recently, the focus has been shifted to the research on 
hafnium oxide-based synapses.48–51 It is, therefore, conceivable 
to couple ferroelectric neurons and synapses to create all-ferro-
electric neural networks. Within this context, an FeFET-based 
neuron presented in this study might open up a completely 
new set of opportunities for the future of neuromorphic 
computing.

3. Conclusions

We showed that the accumulative polarization reversal and the 
resulting abrupt drain current increase in a nanoscale FeFET 
device could be used to emulate the integration of postsynaptic 
spikes and the all-or-nothing firing operation of the biological 
neuron, respectively. The gate voltage pulse shaping allows the 
implementation of several additional key neuronal dynamics, 
such as arbitrary refractory period, firing activity modulation 
and leaky behavior owing to the particular voltage–time depen-
dence of the accumulative switching. Although the presented 
results are obtained on non-optimized devices, they provide 
the first powerful insights in possible neuromorphic appli-
cations. Further device optimization, including ferroelectric 
film composition, doping and/or annealing, along with the 
gate stack engineering might offer additional or novel pro-
perties, such as the intrinsic leaky behavior and the self-reset-
ting operation. Moreover, the inherent switching stochasticity 
of FeFETs might be employed for mimicking probabilistic 
computing of real neurons. The proposed FeFET-based neuron 
is fully compatible with existing integrated circuit fabrication. 
In addition, the synaptic weights could be implemented in a 
circuit by using emerging ferroelectric devices, paving the way
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