
Fakultät Informatik Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

Extending Artemis With a
Rule-Based Approach for
Automatically Assessing Modeling
Tasks
Franz Rodestock
franz.rodestock@tu-dresden.deBorn on: 9th May 2000 in ZwenkauCourse: InformatikMatriculation number: 4883445Matriculation year: 2019

Bachelor Thesis
to achieve the academic degree
Bachelor of Science (B.Sc.)

Supervisor
Dr. Sebastian Götz
Supervising professor
Prof. Dr. rer. nat habil. Uwe Aßmann

Submitted on: 20th May 2022

mailto:franz.rodestock@tu-dresden.de

Contents
1 Introduction 61.1 Motivation . 61.2 Research Questions . 7
2 Background 82.1 Artemis and Semi-Automatic Assessment of Modeling Exercises 82.2 Inloop and Rule-Based Assessment Using Inloom 9
3 Related Work 113.1 Systems for Automatic Modeling Feedback 113.1.1 Assessment Using a Similarity-Based Approach 113.1.2 Assessment Using a Rule-Based Approach 133.2 Grading and Feedback . 133.3 Comparison Between Similarity-Based and Rule-Based Approaches . . 13
4 Analysis 164.1 Evaluation Criteria . 164.2 Replacing the Built in Assessment System for Modeling Tasks 174.3 Adding a Continuous Integration Pipeline for Modeling Tasks 174.4 Reusing Programming Exercises . 174.5 Conclusion . 17
5 System Design 195.1 Proposed Integration . 195.2 Adding Mars as a New Type of Programming Language 195.3 Specifying Repository Templates for an Effortless Task Setup 225.4 Submitting Models by Leveraging the Online Editor 225.5 Jenkins Continuous Integration Pipeline 225.6 Using Docker Containers for Increased Security 235.7 Converting the Test Engine’s Output . 235.7.1 Current Test Engine Output . 235.7.2 Accepted Output by Artemis . 245.8 Sending the Results Back to Artemis . 245.9 Grading the Assignment and Displaying the Feedback 25
6 Implementation 266.1 Prerequisites . 26

2

6.2 Adding Mars as a New Type of Programming Language 266.3 Specifying Repository Templates for an Effortless Task Setup 266.3.1 Exercise . 276.3.2 Solution . 276.3.3 Test . 276.4 Using Docker Containers for Increased Security 286.5 Specification of the Mars Output Converter 286.5.1 Test Engine’s Feedback Classes 286.5.2 Creation of Test Cases From the Results Objects 286.6 Jenkins Pipeline . 306.6.1 Specifying the Docker Image . 306.6.2 Checking Out the Git Repositories 306.6.3 Running the Test Engine and Converting the Output 316.6.4 Notify Artemis with the Test Results 316.7 Displaying the Results to Students . 326.8 Creating a Test Set to Ensure Stability . 33
7 Evaluation 347.1 Design . 347.1.1 Quantitative Analysis of the Pipeline Run Time 347.1.2 Qualitative Analysis of the User Experience 347.2 Results . 357.2.1 Results of the Quantitative Analysis of the Pipeline Run Time . . 357.2.2 Results of the Qualitative Analysis of the User Experience 367.3 Discussion of the Results . 387.4 Limitations of the Evaluation . 38
8 Conclusion and Future Work 398.1 Research Questions . 398.2 Future Work . 408.2.1 Deploy Web Based UML Editor 408.2.2 Improving the Creation of the Mars Exercises 408.2.3 Future Work Regarding the Rule-Based Assessment System . . 408.3 Conclusion . 41
Bibliography 42

9 Appendix 449.1 Setup . 449.1.1 Creation of Mars Exercises . 449.1.2 Assess a Model Using Mars . 449.1.3 List of Files Modified by This Thesis 459.2 Digital Attachments . 459.3 Complete Students Submission . 459.4 Example Test Engine Output . 469.5 Example jUnit Results XML . 479.6 Full Jenkins Pipeline . 48

3

List of Figures
2.1 An Overview of Artemis’ Top-Level Design. 92.2 An Overview of Inloop’s Top-Level Design. 10
3.1 Two Different Models Describing the Same Domain. 14
4.1 An Overview of Supported Exercises by Artemis. 18
5.1 An Overview of the Proposed Pipeline for the Integration of Mars. . . . 205.2 An Overview of Artemis’ Exercise Relevant Data Model. 21
6.1 An Example Feedback Page for a Submission a Student Has Made. . . 32
7.1 Run Time Differences Between Components. 36

4

List of Tables
3.1 An Overview of Model Assessment Systems Found in the Literature. . 123.3 A Comparison of Similarity-Based ApproachesWith a Rule-Based Approach 14
4.1 A Comparison Between the Presented Approaches for Integration. . . 18
6.1 Number of Test Cases for Real-World Student Submissions 29
7.1 Overview of Pipeline Run Times for Different Tasks. 35

5

1 Introduction

1.1 Motivation

E-learning systems have become an integral part of university education in recent years.The Technische Universität Dresden has multiple projects in use. The Chair of Software
Technology uses Inloop to teach students object-oriented programming through auto-matic feedback [12]. In the last years, interest has grown in giving students automatedfeedback on modeling tasks. This is why there was an extension developed by Hamannto automate the assessment of modeling tasks in 2020 [8].

The TU Dresden currently has plans to replace Inloop with Artemis, a comparable sys-tem developed by the TU Munich. This decision was made in favor of a more extensiverange of functions, and more rapid feature development due to the higher numberof developers [11]. Artemis currently supports the semi-automatic assessment ofmodeling exercises, which feedback is therefore not instantaneous for students. Incontrast, the system proposed by Hamann, called Inloom, is based on a rule-basedapproach and provides instant feedback. A rule-based system has certain advantagesover a similarity-based system. One advantage is the mostly better feedback that thesesystems generate. The feedback is essential for the learning process of students.

To give instructors more flexibility and choice, this work tries to identify possibleways of extending Artemis with Inloom. In the second step, this thesis will providea proof of concept implementation. Furthermore, a comparison between differentsystems is developed to help instructors choose the best suitable system for their usecase.

6

1.2 Research Questions

This thesis establishes multiple research questions:
RQ1 What are the current technologies used to automate the feedback for modelingexercises?
RQ2 What are ways to integrate Inloom into Artemis?
RQ3 What is the best way for the integration of Inloom?
RQ4 How does the newly integrated system performs when used by students?
The first question (RQ1) is needed to get the required background knowledge toproperly evaluate and compare the already existing semi-automated assessment withthe implemented rule-based assessment. This question is answered by a literaturesurvey of already existing methods for automatic model assessment. To answer thesecond question (RQ2), this work presents multiple approaches for implementing therule-based assessment system. The found approaches are going to be comparedand ranked against each other. The third question (RQ3) is answered by proposing aprototypical implementation. The last question (RQ4) deals with the newly implementedsystem and how it may affect the student’s process of learning and improving theirmodeling skills.

7

2 Background
This section gives a brief overview of technology and concepts needed to understandthis thesis. Among other things, the design of Artemis and Inloom is explained. Inloomis the system that will be integrated into Artemis in this thesis.

2.1 Artemis and Semi-Automatic Assessment of Modeling
Exercises

Artemis is an automatic assessment management system for interactive learning de-veloped by the TU Munich [11]. Artemis is an acronym for AuTomated assEssment
Management System for interactive learning. The goal of Artemis is to provide stu-dents in larger classes with instant feedback. Artemis is deployed by eleven differentuniversities1, primarily used in software engineering courses. Artemis supports differ-ent types of exercises. It currently supports programming- and modeling exercises,questionnaires, text-based- and upload exercises2, but the main focus is clearly seton the programming exercises. It does not depend on the programming languageand currently supports nine programming languages. Figure 2.1 shows Artemis’ top-level design. Students’ solutions are pushed to a version control system (VCS) whichare then evaluated by a continuous integration (CI) pipeline. This process ensures amaximum scalability. Artemis offers an online editor. The editor entirely hides theimplementation of the automatic assessment, which offers a low-key possibility forstudents to participate in these kinds of tasks. More advanced students may pushtheir solutions directly to the version control system without the need to interact withArtemis.
Artemis also supports modeling exercises. These exercises are currently assessed ina semi-automatic way using supervised machine learning [10]. Modeling tasks do notuse the CI pipeline for assessment. Compared to manual assessments, the goal is tospeed up the assessment, increase the fairness and the quality of provided feedback.Students create their solutions in a graphical editor called Apollon4. The core conceptis to assess the first few solution models students have proposed manually. Whileassessing the models, the system learns correct elements and appropriate feedback.

1https://github.com/ls1intum/Artemis, 13.05.20222https://docs.artemis.ase.in.tum.de, 13.05.20223https://docs.artemis.ase.in.tum.de/_images/TopLevelDesign.png, 13.05.20224https://github.com/ls1intum/Apollon, 13.05.2022

8

https://github.com/ls1intum/Artemis
https://docs.artemis.ase.in.tum.de
https://docs.artemis.ase.in.tum.de/_images/TopLevelDesign.png
https://github.com/ls1intum/Apollon

actor

Application Client (Angular) Application Server (Spring Boot)

Version Control System

Continuous Integration System

Figure 2.1 An overview of Artemis’ top-level design. The figure is based on thetop-level design figure from the Artemis documentation3.
When grading more solutions, the system gives the reviewer suggestions on assessingcertain elements of the model.

2.2 Inloop and Rule-Based Assessment Using Inloom

Inloop is another representative system for automatic assessments of programmingexercises [12]. It was developed at TU Dresden. Inloop stands for INteractive Learningcenter for Object-Oriented Programming. Currently, Inloop supports Java program-ming exercises. While the scope of functions is not comparable to Artemis, the struc-ture is, in principle, similar. Tasks are also defined using a version control system,and the students’ submissions are checked by running them in Docker containers asArtemis does.
Inloom [8] was developed as an extension for Inloop to support the automaticgrading of modeling exercises. As of 2022, it is not actively used at TU Dresden. Inloomwas used for testing purposes and was ready for use. In fall 2021, however, the decisionwas made to switch to Artemis.In contrast to the currently used semi-automated assessment by Artemis, Inloomuses an alternative way of assessing modeling tasks. Inloom utilizes a rule-basedapproach. Models are represented within the Eclipse Modeling Framework5 (EMF).Inloom creates the constraint-based test set (evaluation rules) out of an examplesolution given by instructors. The instructors can then adjust this generated test set.Task artifacts like the task description, the test engine or the test set are stored in aGit repository.Figure 2.2 shows Inloop’s top-level design. After a student submits a solution, thesolution will be built by background workers. The workers pull the necessary artifactsfrom the task repository. Afterward, they build the submission and execute the testusing Docker containers. In Inloom, the test engine is called instead. The test enginewill match the students’ solutions against the previously created test set. Inloom alsogrades the model and gives the students generated feedback.

5https://www.eclipse.org/modeling/emf/, 13.05.2022

9

https://www.eclipse.org/modeling/emf/

actor

Web Application (Django)

Background Workers

Container Runtime (Docker)

Database

Task Repository

Job Broker

Figure 2.2 An overview of Inloop’s top-level design. The figure is based on thetop-level overview from the work of Morgenstern and Demuth [12]

10

3 Related Work

This chapter will give an overview of concepts and systems currently used for theautomatic assessment of modeling exercises. Furthermore, various technologies willbe compared, which might serve as a guideline to help instructors choose the bestassessment method for their objective or university course. The goal of this chapter isto answer Research Question RQ1.
The literature research was done using keywords like "automatic", "assessment","grading", "evaluation", "machine learning", "rule-based", "UML", "class diagram" or anycombination of them querying popular archives like Google Scholar/IEEE or Researchgate.Afterward, a reference search was conducted on the found literature to increasethe search radius by following promising references further. This chapter’s primaryfocus will be on systems proposed after 2018, the year of Hamann’s work to mitigateduplications [8].
When discussing modeling tasks, this chapter refers to modeling exercises of classdiagrams. This limitation to class diagrams is due to the literature’s primary focus onthese diagrams.
Table 3.1 lists related work categorized for the approach used and the kind of gradingsystem used. The grading is an essential characteristic for instructors to know becausethe grading defines the system’s potential use.
The following sections will introduce and explain the two main approaches to auto-maticmodel assessment. Furthermore, the different approaches are further comparedin the Conclusion section.

3.1 Systems for Automatic Modeling Feedback

There are two main approaches for automatic assessment of modeling exercises. Onesubsection will deal with similarity-based systems, another with rule-based systems.

3.1.1 Assessment Using a Similarity-Based Approach

Matching a student’s solution to one or multiple sample solutions is the most commonapproach in most recent literature. These systems create and use an abstract similaritymeasure for determining the similarity of themodels. The abstract value can be createdheuristically or by machine learning algorithms.

11

Table
3.1Anoverviewofmodelassessmentsystemsfoundintheliterature.Thetableissortedbydate.

Author
Year

Approach
FeedbackandGrading

Krusche[10]
2022

manualassessmentsupportedwithmachinelearning
generatedfeedbackandpoint-basedgradingsystem

Anas[1]
2021

similarityongraphs
similaritymeasure

Boubekeur[5]
2020

machinelearning
predictionofgrades(A-E)

Hamann[8]
2020

rule-based
feedbackandpoint-basedgradingsystem

Reischmann[13,14]
2019

similarity-basedsupportedwithmachinelearning
generatedfeedback

Ichinohe[9]
2019

similarity-based
similaritymeasure

Cheers[7]
2019

machinelearning
generatedfeedback

Bian[4]
2019

rule-based
generatedfeedbackandpoint-basedgradingsystem

Stikkolorum[15]
2019

machinelearning
classificationintocategories(e.g.good,pass,fail)

Striewe[16]
2011

rule-based
generatedfeedback

12

Anas et al. first creates an UML graph and then measures syntactic, structural andsemantic similarity to an expert solution [1]. Based on this, a similarity value to thesample solution is generated, which serves as feedback for students.An example of a similarity approach using a machine learning algorithm was pro-posed by Boubekeur et al. [5]. They use different machine learning approaches topredict a grade (A-E) for the submitted solution.Another system, based on similarity but working differently, is the currently usedsystem in Artemis proposed by Krusche, which uses machine learning to assist tutorswhile evaluating the students’ solutions, and is therefore not automatic [10]. Thefunctionality of this system is further described in Chapter 2.
3.1.2 Assessment Using a Rule-Based Approach

Another way of automatic assessment is to grade the student’s solution by matching itto an expert solution by algorithmic element matching, introducing rules or constraints,or using graph techniques.This approach is less common in literature than the similarity approach. This wasdifferent in the past, so older works were also reviewed.One system was proposed by Bian et al. [4]. A student’s solution is matched to theexample solution by using syntactic, semantic, and structural information. Striewe andGoedicke proposed another system [16]. They interpret UML diagrams as graphs. Theinstructor can define rules which are then validated using graph queries. Inloom, whichthis thesis is going to integrate into Artemis, is also representative of the rule-basedapproach [8]. The functionality of Inloom has already been described in Chapter 2.

3.2 Grading and Feedback

Systems provide different kinds of feedback. Feedback can be in the form of textualfeedback, for example, on correct or missing elements. Explanatory feedback is "Class
Profile was found" or "Operation accept of Friendship was found". The two sentences aretaken from Inlooms output. The systems proposed by Reischmann, Cheers are furtherrepresentatives of systems with this kind of feedback [7, 14].Feedback can also quantitatively predict a grade or assign the student’s submissiona number of points. Representatives of systems that give quantitative feedback wereproposed by Boubekeur or by Hamann [5, 8].The feedback the systems provide is crucial for defining the areas of application asystem has. For teaching purposes, the quality of textual feedback is essential, whilefor exams, the grading system has to be of high quality. For exams, the origin of thefeedback has to be traceable. Similarity-based approaches, especially those supportedby machine learning, do not provide that.

3.3 Comparison Between Similarity-Based and Rule-Based
Approaches

This section compares the two main approaches used. This is to support the decisionmade by instructors on which approach to take for a specific use case. Table 3.3compares the similarity-based with the rule-based approach. Non-self-explanatoryattributes are explained in this section.

13

Table 3.3 A comparison of similarity-based approaches with a rule-based approach.
Similarity/MachineLearning-Based Approach Rule-BasedApproach

Setup Easy as providing an examplesolution is sufficient
Might be more complicateddue to higher complexity forunderstanding rules

Grading Similarity value or predictionof grade Point based system
Feedback Mostly no textual feedback Textual feedback on modelelementsAssessing AlternativeSolutions Might be hard to incoporate
Assessment Time Basically instantaneous

Student

name

Student name

Figure 3.1 An example of two models describing the same domain but modeleddifferently.

Preparing and setting up a task with similarity systems is mostly pretty straight-forward since only one or more example solutions are needed, against which thestudents’ solutions are compared. The preparation of a rule-based system can bemore tedious since a set of rules must be prepared. This effort can be reduced byauto-generating a set of rules from example solutions, which then can be edited andrefined by instructors. Inloom leverages exactly that process [8].
One general drawback of fully automated systems is that it is hard to assess alterna-tive solutions correctly. Alternative solutions are also correct, but the instructor hasnot thought of them. Modeling class attributes as a second class with a relation isa typical example. Figure 3.1 shows that example. Rule-based systems can managethat by predefining rules matching specific alternative solutions. Furthermore, a setof alternative solutions can be stored with similarity and rule-based systems, againstwhich the student solutions are matched.
Finding alternative solutions can be done by searching the students’ solutions, whichhave performed poorly, to find valid alternative solutions. The found solutions canthen be integrated as another sample solution, or the rules can be updated. Thistedious task could be diminished by automatically generating alternative solutions byrefactoring and transforming the model. Such a system does not currently exist and isleft for future work [3, p. 373].
One of the main differences between both approaches is the quality of created feed-back and the grading they provide. Similarity-based systems sometimes only providea predicted grade or a similarity score. However, feedback on the correct/erroneousmodel elements is necessary for learning progress. Rule-based assessment systemsoffer precisely that. When the system is going to be used for bonus points or evengrading of exams, the extra effort of creating andmaintaining the rules for a rule-basedsystemmay be worth it. This is because the rule-based feedback is mostly more helpfulto students than the output of a similarity-based system.

14

The decision for a system is not easily made. Both approaches have their advantagesand disadvantages. The recommendation is to test the desired system thoroughlybefore using it in software engineering courses.

15

4 Analysis

This thesis aims to present the best possible integration of Inloom into Artemis. In thischapter, Artemis is analyzed to find starting points for the integration. This will lay thefoundation to answer Research Question RQ2.
Firstly, the following section introduces criteria with which the identified approachesfor the integration are compared. Secondly, three potential approaches get furtheranalyzed. In the conclusion section, an approach is identified, which this thesis willpursue further.

4.1 Evaluation Criteria

All presented approaches are compared using following criteria.

EC1 User Experience:A good user experience is crucial for the future success of the proposed system.Above all, this means how easy it is to use the system.
EC2 Maintainability:How maintainable a system is, decides on the future maintenance effort andthus directly on the costs of the system.
EC3 Invasiveness:The criterion invasiveness describes how profoundly the program has been ad-justed. Less invasiveness of the integration leads most likely to less maintenanceeffort and is therefore desirable.
EC4 Implementation Effort:This thesis has to balance the approach’s implementation effort with the antic-ipated outcomes. Less implementation effort is desirable since it lowers thedevelopment cost in a real-world setting.

16

4.2 Replacing the Built in Assessment System for Modeling
Tasks

In Artemis’ modeling tasks student use the modeling editor Apollon1 to create andsubmit models. These models are then evaluated by the automatic assessmentcomponent Compass.This approach intends to replace this system with Inloom. At first sight, this approachlooks feasible, but unfortunately, it would come with drawbacks.Onemajor drawback is that the Compass systemdoes not accept any input. However,Inloom uses a test set to match the student’s solution to the example solution. Thistest set differs between tasks and therefore needs to be given as input for the testengine. Replacing the assessment system with Inloom would ultimately lead to manychanges in Artemis’ code and, therefore, to a not easily maintainable solution.

4.3 Adding a Continuous Integration Pipeline for Modeling
Tasks

The second approach is to add a continuous integration (CI) pipeline for the modelingtasks. This approach was identified because Inloom currently also uses a build pipeline,which is similar to a CI pipeline. This approach has the same advantage as the reusabilityof the modeling editor, but currently, modeling tasks are not connected to the CIpipeline. Currently, only programming exercises are connected to the CI pipeline.Adding a pipeline to modeling tasks can only be achieved with many backend changesand potentially duplicated code.

4.4 Reusing Programming Exercises

The third approach is to treat the modeling exercise like a programming exercise.Artemis’ programming exercises are already integrated into a CI pipeline, which hope-fully can be used without customization.One drawback is that the modeling exercises currently do not support the graphicalmodeling editor Apollon. This drawback can be combated by enabling the upload ofexternally created models, for example, created with the Eclipse Modeling Tools. Inloomcurrently supports the models students can create with an editor plugin written forEclipse Modeling Tools.If it becomes apparent that this approach has not enough flexibility needed forthe integration of Inloom, it would also be possible to create a new type of exercise,extending the programming exercises.

4.5 Conclusion

The decision on which approach to follow further was not easily made. Since noapproach fits perfectly, there are compromises made. Figure 4.1 shows the maindifferences between all exercise types Artemis offers. This includes the exercisetypes, which were not featured in more detail in this chapter. Table 4.1 compares thepresented approaches more precisely with the introduced design criteria.
1https://github.com/ls1intum/Apollon, 13.05.2022

17

https://github.com/ls1intum/Apollon

Exercise

Programming Exercise

CI pipeline
No model editor

Quiz Exercise

No CI pipeline
No model editor

Text / Upload Exercise

No ci pipeline
No model editor

Modeling Exercise

No ci pipeline
Model editor

New Exercise Type

Ci pipeline
Model editor

Figure 4.1 An overview of supported exercises by Artemis with advantages andlimitations.
Table 4.1Weighing the different presented approaches by the different evaluationcriteria. The scale ranges from strongly negative (- -) to neutral (o) tostrongly positive (++).

EC1 EC2 EC3 EC4Replacing Compass System ++ - - - - -Adding a CI Pipeline to Modeling Tasks ++ - - - - -Reuse Programming Exercises o + ++ +
This thesis is going to pursue the third approach further. The reason for this decisionis the excellent modular ability to add a new type of programming language. Hopefully,the implementation should be straightforward and outweighs the predicted nonperfectuser experience of a missing online model editor.The following chapter will focus on the prototypical system design of the chosenapproach.

18

5 System Design

This chapter will discuss and propose a way of integrating Inloom into Artemis. Bydoing this, Research Question RQ3 is going to be answered. While this thesis wasbeing written, the pipeline behind Inloom was renamed to Mars. Mars is an acronymforModel-driven Assisted Rule-based assessment System.
The previous chapter concluded that the approach of adding Mars as a new type ofprogramming language is the best. This approach is modular since the already existingcodebase is not extensively modified.

5.1 Proposed Integration

Figure 5.1 shows the proposed pipeline for the integration of Mars. The parts of thesteps underlined will be modified by this thesis. The following sections describe whatis needed for the integration and what considerations have been made.

5.2 Adding Mars as a New Type of Programming Language

Artemis programming exercises have the attribute type. The programming exercisescurrently support Java, C, Haskell, and many more. A new type of programminglanguage must be added. Adding Mars as a programming language includes adding itto the back end and front end.
Allowing users to choose Mars in the new exercise form is ultimately needed tocreate a new programming exercise of the type Mars.
Figure 5.2 shows the data model of Artemis. It omits details in favor of betterreadability. The slight adjustment of adding Mars as a new programming language ishighlighted in the diagram.

19

Artemis : Create a programming exercise of type Mars

Artemis : Initialize the repositories with repository templates

Jenkins: Pull the docker image

Jenkins: Run the test engine

Jenkins: Convert the test engine's output

Jenkins: Send the results back to Artemis

Artemis : Grade the assignment

Artemis : Display the feedback

Artemis or Git : Student submission

New student submission?

Figure 5.1 An overview of the proposed pipeline for the integration of Mars. Theprogram responsible for the step is highlighted. Underlined steps of thepipeline are modified by this thesis.

20

ProgrammingExerciseModelingExerciseQuizExerciseTextExercise

Exam

title
startDate
endDate
visibleDate
confirmationText
maxPoints
randomizeOrder
gracePeriod
registeredStudents

Course

title
shortName
startDate
endDate
semester
onlineCourse
studentGroupName
taGroupName
instructorGroupName

ExerciseGroup

title

Exercise

title
shortName
releaseDate
dueDate
maxScore
problemStatement
gradingInstructions
assessmentDueDate
model
assessmentType

StudentExam

workingTime
started
submitted
startedDate
submissionDate
testRun

Team

name
shortName
image

Participation

repositoryUrl
buildPlanId
initializationDate
presentationScore
initializationState

Submission

submitted
submissionDate

User

login
password
firstName
lastName
email
activated
lastLoginNotificationRead
registrationNumber

Result

resultString
completionDate
successful
buildArtifact
score
rated
hasFeedback

«enumeration»

AssessmentType

AUTOMATIC
SEMI_AUTOMATIC
MANUAL

Complaint

complaintText
accepted
submittedTime
complaintType
student : User
team : Team

Feedback

text
detailText
reference
credits
gradingInstruction

ComplaintResponse

responseText
submittedTime
reviewer : User

«enumeration»
ProgrammingLanguage

JAVA
PYTHON
C
HASKELL
KOTLIN
VHDL
ASSEMBLER
SWIFT
OCAML
MARS
EMPTY

* 1

1

*

1 *

1

*

1

*

*
*

1

*
1 owner

user
1 *

1

*

1

*

1

*

1

1

1 *

1 *

1

*

Figure 5.2 An overview of Artemis’ exercise relevant data model with the point ofintegration highlighted. The data model is based on the data model in theArtemis documentation1

21

5.3 Specifying Repository Templates for an Effortless Task
Setup

Every programming exercise has an explanatory task to make the setup process easierfor instructors. This task is predefined in the repository templates. Artemis separatestasks into three Git repositories. The repositories’ naming and functionality are similarto the repositories of other programming languages.
The repositories are the following:

ExerciseWhenever students start an exercise, their repository is initialized with the exer-cise repository. All files included in the exercise repository are copied into thenewly created student repository.
SolutionThis repository contains an example solution.
Test The test repository contains all files necessary for grading the students’ assign-ments. For Java programming exercises, these are, for example, the JUnit tests.
In the process of integrating Mars, all three templates must be defined.

5.4 Submitting Models by Leveraging the Online Editor

Artemis integrated existing online file editor has the necessary functionality to submitstudents’ assignments. The editor includes the creation and editing of files. Studentswill create their models using the offline modeling editor provided as a plugin for the
Eclipse Modeling Tools2. Afterward, they will upload their model using the online fileeditor or alternatively by using Git. The creation and uploading the file is similar to theprocess proposed by Hamann for Inloom [8].

5.5 Jenkins Continuous Integration Pipeline

Reusing programming exercises as the point of extension allows for the reuse of thecontinuous integration (CI) pipeline. Artemis runs the checks on student repositorieswith the help of a continuous integration system. Artemis currently supports two CIsystems, namely Bamboo3 and Jenkins4. The TU Dresden is using Jenkins. That is whythe focus of this thesis is on Jenkins. The prototypical implementation will only supportJenkins because Artemis’ Atlassian stack could not be tested.A new Jenkins pipeline must be created to process the Mars assignments. Jenkinswill be responsible for checking out the repository, running the test engine, convertingthe test engine’s output to a format Artemis can handle, and sending back the resultsto Artemis. A more detailed explanation will be given in Chapter 6.
1https://docs.artemis.ase.in.tum.de/dev/system-design/#id4, 13.05.20222https://www.eclipse.org/downloads/packages/release/2022-03/r/
eclipse-modeling-tools, 13.05.20223https://www.atlassian.com/de/software/bamboo, 13.05.20224https://www.jenkins.io/, 13.05.2022

22

https://docs.artemis.ase.in.tum.de/dev/system-design/#id4
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-modeling-tools
https://www.eclipse.org/downloads/packages/release/2022-03/r/eclipse-modeling-tools
https://www.atlassian.com/de/software/bamboo
https://www.jenkins.io/

5.6 Using Docker Containers for Increased Security

Whenever third-party code is executed, security aspects must be considered. Thestudent submissions are such third-party code. That is why Artemis checks the stu-dent submissions within Docker containers. This encapsulation ensures that studentassignments do not have direct access to the host system hence increasing security.
The Docker images contain all the necessary software for running the test engineand converting the output. A new Docker image must be created for the exercises oftype Mars.

5.7 Converting the Test Engine’s Output

Artemis uses test cases to determine the correctness of a submission compared tothe given solution. The Jenkins Server Notification Plugin therefore expects some testcases. Currently, the test engine’s output is not in the form of test cases. Therefore thetest engine’s output needs to be converted to match the test case layout of Artemis.

5.7.1 Current Test Engine Output

The test engine’s output is currently an XML file. It contains some metadata aboutthe version and different metamodels used. However, more importantly, the outputcontains a list of all results and information about the achieved points. The followingexcerpt shows two example result objects. The full output can be found in the appendix9.4.
Listing 5.1 Excerpt of the test engine’s output.

1 <Result>2 <ExpertObject>Student</ExpertObject>3 <ExpertType>Class</ExpertType>4 <TestObject>Student</TestObject>5 <TestType>Class</TestType>6 <Rule>Rule_R010101</Rule>7 <Category>CORRECT</Category>8 <Points>1.0</Points>9 <Msg>Class Student was found.</Msg>10 </Result>11 <Result>12 <ExpertObject>Student_name</ExpertObject>13 <ExpertType>Property</ExpertType>14 <TestObject>Student_name</TestObject>15 <TestType>Property</TestType>16 <Rule>Rule_R020101</Rule>17 <Category>CORRECT</Category>18 <Points>0.5</Points>19 <Msg>Property name of Student were found.</Msg>20 </Result>
The code example shows that the test engine’s output mainly consists of positivemessages ("Class Student was found"). There are no negative messages like "Classstudent was not found" because messages of this kind would give away informationabout the solution and might enable students to reverse engineer the model.

23

5.7.2 Accepted Output by Artemis

Results are sent back to Artemis by the Jenkins Server Notification Plugin5. There aretwo options of formats the plugin accepts. The plugin accepts either JUnit XML reportsor a custom format having one file for each test result.
The following code shows how an example JUnit output looks like.

Listing 5.2 Example JUnit results file.
1 <?xml version="1.0" encoding="UTF−8"?>2 <testsuite name="Mars Output">3 <testcase name="Successful Testcase 1"/>4 <testcase name="Successful Testcase 2"/>5 <testcase name="Failed Testcase 3">6 <failure>Test Failure Message</failure>7 </testcase>8 </testsuite>

One advantage of using JUnit is that the results file’s creation is pretty simple andcan be easily done by modifying the test engine’s output file. However, using JUnit hasa significant disadvantage since it only allows for messages passed in failed tests. Thatis why the second option was developed, which allows for messages, also in successfultests.
The following code shows an example output that follows the standard set by theArtemis Notification Plugin.

Listing 5.3 Example .json results file.
1 {2 "name": "Rule: 1",3 "successful": true,4 "message": "CORRECT 1.0 Points: Class Student was found."5 }

The test engine’s output mainly consists of positive messages. This is another reasonwhy this thesis will pursue the second option of using the JSON files, even though theimplementation effort is higher than just creating a JUnit result.To create these JSON files an executable is needed. This executable will be called Mars
Output Converter.

5.8 Sending the Results Back to Artemis

The Jenkins Server Notification Plugin is responsible for aggregating all files from theprevious step and sending them back to Artemis. The plugin is used as is and willnot be modified to increase the maintainability by not altering the transfer process ofresults.
5https://github.com/ls1intum/jenkins-server-notification-plugin, 13.05.2022

24

https://github.com/ls1intum/jenkins-server-notification-plugin

5.9 Grading the Assignment and Displaying the Feedback

Artemis grades the exercise by comparing the successful tests of the students’ sub-mission with the tests successful in the solution repository.This means that if three out of ten test cases are successful, the student gets 30%of the points assigned to the exercise. Artemis also offers the possibility of changingthe influence of single tests on the overall rating, but this is not necessary for theimplementation of Mars.
Artemis already has the ability to display feedback. This functionality of Artemis willbe reused. Slight alterations in the front end may be necessary for a more structuredand organized view.

25

6 Implementation

This chapter will explain the steps needed for the integration in more detail. First, theprerequisites are presented. Then the creation of test cases from the output of thetest engine is described. Furthermore, the structure of the pipeline for the evaluationof the student models is explained.

6.1 Prerequisites

Mars is going to be integrated using Artemis with the Jenkins and Gitlab stack.The development was done on a branch named rule_based_assessment. The basecommit for the branch is part of Artemis version 5.4.3 and has the commit hash
#20d31161.

6.2 Adding Mars as a New Type of Programming Language

Adding Mars as a new programming language had to be done in the front and backend. This included adding it to the programmingLanguage2 enumeration to allow forthe creation of Mars programming exercises. Instructors are now able to create newprogramming exercises of the type Mars.

6.3 Specifying Repository Templates for an Effortless Task
Setup

Every programming exercise has a template task to simplify creating a task for instruc-tors. There is the exercise, solution, and test repository.The following listing shows the repository directory structure with their includedfiles. The listings omits some files in favor of better readability. The repositories will befurther explained in the following sections.
1https://Github.com/ls1intum/Artemis/commit/20d3116052918a1a3382e11883dade6745afbb3b,13.05.20222https://github.com/ls1intum/Artemis/blob/d19b274081d5e3bb609a5863fa2c2a5ccac1351f/
src/main/java/de/tum/in/www1/artemis/domain/enumeration/ProgrammingLanguage.java,13.05.2022

26

https://Github.com/ls1intum/Artemis/commit/20d3116052918a1a3382e11883dade6745afbb3b
https://github.com/ls1intum/Artemis/blob/d19b274081d5e3bb609a5863fa2c2a5ccac1351f/src/main/java/de/tum/in/www1/artemis/domain/enumeration/ProgrammingLanguage.java
https://github.com/ls1intum/Artemis/blob/d19b274081d5e3bb609a5863fa2c2a5ccac1351f/src/main/java/de/tum/in/www1/artemis/domain/enumeration/ProgrammingLanguage.java

Listing 6.1 Directory structure of repository templates for Mars exercises. Foldersand files are shown.

Exercise
baseModel.ooa_classdiagram

Solution
solutionModel.ooa_classdiagram

Test
Metamodels

gradingmodel.ecore
oaa_classdiagram.ecore

Tests
test_app.evl
rule_class_1.evl
rule_class_2.evl
lib_output.evl

TestEngine.jar
MarsOutputConverter.jar

6.3.1 Exercise

Purpose The exercise repository is the template for all student assignments. When-ever a student starts the exercise, a new student’s repository is initialized withthe contents of the exercise repository. When tested, all tests shall fail.
Structure The exercise repository contains only one pre-initialized Eclipse EMF modelfile (.ooa_classdiagram). Students shall put their assignments in this file. Besidesthe model file, a complete pre-initialized modeling project could be distributedusing this repository.

6.3.2 Solution

Purpose The solution repository is repository with an model a student would submit.It contains an example solution. When tested, all tests shall pass.
Structure The solution repository also contains the Eclipse EMF model file(model.ooa_classdiagram). But this time, the file is not empty but contains thesolution for the given task.

6.3.3 Test

Purpose The test repository is different from the former two repositories. It does notcontain any models submitted by users. Instead, the repository contains all filesnecessary for checking and grading the student’s assignments.
Structure The test repository includes all files necessary for grading the assignments.This includes a folder with the tests, the metamodels, the test engine, and theoutput converter. The tests are generated or written beforehand and thenpushed to the test repository. The Jenkins pipeline then uses the tests to generatethe grading.

27

6.4 Using Docker Containers for Increased Security

The newly created Mars exercises need a Docker container to run separated from thehost system. The Docker image created is as minimalistic as possible.
Listing 6.2 Dockerfile to create the Docker image for running Mars exercises.

1 # Base on Ubuntu 20.04 LTS2 FROM ubuntu:20.043 # Make sure all sources are up to date4 RUN apt−get update5 # Install apache ant6 RUN apt install −y ant
As seen in the Dockerfile, the image is based on Linux Ubuntu and provides thesoftware Apache Ant3. Apache Ant is used to run the rule-based test engine.

6.5 Specification of the Mars Output Converter

The Mars Output Converter is the necessary adapter between the test engine and thegrading of Artemis. The goal is to convert the output to a format Artemis can handle.

6.5.1 Test Engine’s Feedback Classes

The test engine provides five different feedback classes for the elements matched bythe test engine. The following classes provide points to the solution Correct, Warn-
ing and the Error class. The other two classes do not provide points and are forinformational purposes: Missing / Wrong and Info.The feedback class will be prepended to the test message to allow students toreceive the feedback.

6.5.2 Creation of Test Cases From the Results Objects

Artemis grades student submission using the concept of successful test cases, butsince the test engine’s output is not assignable to individual test cases, a method ofconverting the output to a list of test cases had to be developed. Test cases do nothave points attached to them and can only succeed or fail.The decision was made to treat the number of test cases as points. Each successfultest case is worth a certain amount of points (e.g., 1 point). The test engine usesvariable grading schemas. The smallest reachable points by the test is used as a basevalue.Tests that do not provide points to the solution (Missing / Wrong, Info) will be markedas failed, but the message will be appended to the result JSON. Failed tests do notaffect Artemis grading, but the messages are shown to the student.When the student does not reach the maximum amount of points, another test withthe status failed is appended, which carries the point result as a message -> INFO: 12.5
/ 23.5 Points reached.Table 6.1 shows the concept for three example submissions.
3https://ant.apache.org/, 13.05.2022

28

https://ant.apache.org/

Table 6.1 Number of test cases sent back to Artemis for real-world studentsubmissions of the Social Network task.
Assignment Student Solution 1 Student Solution 2 Example SolutionPoints Reached 11.5 16 23.5Successful Test Cases 46 64 94Unsuccessful Test Cases 1 1 0Total Test Cases 47 65 95

Example

In the following example, we will use the grading schema of 0 points, 0.25 points, 0.5points, and 1 point for correct tests. That means that for every one-point result, theremust be four 0.25 points tests sent back to Artemis.
Listing 6.3 shows an example test engine result.

Listing 6.3 Example test engine results object.
1 <Result>2 <ExpertObject>Student</ExpertObject>3 <ExpertType>Class</ExpertType>4 <TestObject>Student</TestObject>5 <TestType>Class</TestType>6 <Rule>Rule_R010101</Rule>7 <Category>CORRECT</Category>8 <Points>1.0</Points>9 <Msg>Class Student was found.</Msg>10 </Result>

The example result object is pointed with one point (line 8) and will therefore beconverted to four JSON test case files. The four test case files are shown in the followinglisting. Only one test has a message attached to it (line 5). The others are successfulbut do not have a message. This allows later for a better display of the results.

Listing 6.4 Example JSON tests generated from the example results object.
1 Rule 1_0.json:2 {3 "name": "Rule: 1",4 "successful": true,5 "message": "CORRECT 1.0 Points: Class Student was found."6 }78 Rule 1_1.json / Rule 1_2.json / Rule 1_3.json9 Example for Rule 1_1.json:10 {11 "name": "Rule: 1_1",12 "successful": true,13 }

29

6.6 Jenkins Pipeline

Jenkins is used to running the checker on the solutions the students have provided.The Jenkins pipeline is pretty similar to the pipelines already integrated into Artemis.The Jenkinsfile uses variables that Artemis replaces before creating a building planin the actual Jenkins service. Variables are specified with an hash sign in front of thevariable name (e.g. #dockerImage) A Jenkins pipeline consists of multiple stages. Thefollowing sections describe the stages of tasks in detail.

6.6.1 Specifying the Docker Image

The first step is to specify the agent, Jenkins uses Docker images to run the studentssubmissions. In this case we are using an Docker agent. The URL for the Docker imageis specified by the #dockerImage variable (line 3). The image for the Mars exercises isthen automatically pulled from Dockerhub4.The following listing shows this step in detail. This step is identical to the Java Jenkinspipeline.
Listing 6.5 Step of specifying the agent

1 agent {2 docker {3 image ’#dockerImage’4 label ’docker’5 }6 }

6.6.2 Checking Out the Git Repositories

The next step is to check out the student’s assignment repository and the tests repos-itory to create one workspace to run the tests. The repository URLs #testRepositoryand #assignmentRepository are replaced by the corresponding Git repositories. Thevariables are used because the repositories differ by task and user.This step is identical to the step in the Java Jenkins pipeline and shown in detail in thefollowing listing.
Listing 6.6 Checking out the Git repositories

1 stage(’Checkout’) {2 steps {3 checkout([$class: ’GitSCM’, branches: [[name: ’*/master’]],doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],userRemoteConfigs: [[credentialsId: ’#gitCredentials’, name: ’tests’, url: ’#testRepository’]]])4 dir(’#assignmentCheckoutPath’) {5 checkout([$class: ’GitSCM’, branches: [[name: ’*/master’]],doGenerateSubmoduleConfigurations: false, extensions: [],submoduleCfg: [], userRemoteConfigs: [[credentialsId: ’#gitCredentials’,name: ’assignment’, url: ’#assignmentRepository’]]])6 }7 }

4https://hub.docker.com/repository/docker/rfranzr/artemis-mars-docker, 13.05.2022

30

https://hub.docker.com/repository/docker/rfranzr/artemis-mars-docker

6.6.3 Running the Test Engine and Converting the Output

The student’s submission is run against the checker in the build phase. The functionalityof the test engine was further described in Chapter 2.
Before the student assignment is checked, the output directory is created (line 7).The test engine is called using Apache Ant. The test engine’s output is placed in theoutput directory.The way how the test engine is executed, which model is taken as input, and wherethe output is placed is similar to the way Hamann proposed it [8].
Next, the Mars Output Converters output folder is created. Its contents are sent backto Artemis at the end of the pipeline using the Jenkins Notification Plugin. Afterward, thetest engine’s output file name is renamed to the input filename of the Mars OutputConverter (line 13). The renaming increases the stability of cases where students haverenamed their submission files. Finally, the test engine’s output is converted by theMars Output Converter to comply with Artemis’s format for grading the assignment(line 14).
The following listing shows the described process in detail.

Listing 6.7 Running the test engine and converting the output with the Mars OutputConverter.
1 stage(’Build’) {2 steps {3 timestamps {4 sh ’’’5 cd $WORKSPACE6 rm −rf output7 mkdir −p output8 ant −f run.xml9 ’’’10 sh ’’’11 rm −rf customFeedbacks12 mkdir customFeedbacks13 cp ‘ls −1 output/*.xml | head −1‘ output/testEngineOutput.xml14 java −jar MarsOutputConverter.jar15 ’’’16 }17 }

6.6.4 Notify Artemis with the Test Results

In the last step, the test results are sent to Artemis. The results from the feedbacksdirectory are aggregated and then sent back to Artemis using the Jenkins Server No-
tification Plugin5. The step of sending back the results is identical to the Java JenkinsPipeline. The notification plugin was not modified for the implementation of Mars. Thisincreases the maintainability.
The following listing shows how the notification plugin is called from within the Jenkinspipeline (line 3).

5https://github.com/ls1intum/jenkins-server-notification-plugin, 13.05.2022

31

https://github.com/ls1intum/jenkins-server-notification-plugin

Listing 6.8 Sending back the results by calling the Jenkins Server Notification Plugin
1 post {2 cleanup {3 sendTestResults credentialsId: ’#jenkinsNotificationToken’, notificationUrl: ’#notificationsUrl’4 cleanWs()5 }6 }

6.7 Displaying the Results to Students

Figure 6.1 An example feedback page for a submission a student has made.
The results are displayed like they were test cases for a programming exercise. Slightadjustments were made to visualize the feedback more appealing and to not distractstudents from the essential feedback. To achieve this, all successful tests, which haveno message are aggregated into one feedback. The same aggregation is done withtests not in the results object and therefore marked as not executed. The differentfeedback classes are visually differentiated by assigning them different colors. Figure6.1 shows an example feedback page for a result a student has submitted. It showshow the feedback is presented and how the categories are distinguished.

32

6.8 Creating a Test Set to Ensure Stability

A test set was created to test the Mars Output Converter and the whole pipeline. Fiveexample solutions were modeled for each of the two explanatory tasks. Both taskswere given in former exams of the Software Engineering Course at the TU Dresden.The tasks are called Social Network and Module Chaos.The goal was to create models which are as different as possible. The model scoresare all roughly 50% of the maximum achievable score. The test set includes the modelsand the associated test engine outputs. The pipeline wasmanually tested by submittingthe models and asserting the feedback. Furthermore, the output converter is testedwith unit tests using the test engine outputs as an input for the converter.

33

7 Evaluation
This chapter is going to evaluate the integration of the newly implemented rule-basedassessment system Mars. This is trying to answer the fourth research question RQ4.

7.1 Design

This section will explain the evaluation design. A quantitative analysis that benchmarksthe run time of Mars and a qualitative analysis evaluating the user experience wereconducted.
7.1.1 Quantitative Analysis of the Pipeline Run Time

Assessment speed is an essential criterion since it directly affects the student’s motiva-tion to learn. Therefore the assessment should be as fast as possible. All successfulruns of two example Mars exercises are compared to the run time of a Java exercise.The run times are measured by the Jenkins continuous integration server. The Jenkinsserver runs on a machine with an eight-core Intel Core i7-8550U, 16 gigabytes ofram, and with the operating system Manjaro Linux. Artemis is installed across twocomputers. Jenkins and Gitlab run on the already mentioned machine, Artemis Client/ Server, and the MySQL database runs on a second machine. Both machines areconnected to the same local area network.
7.1.2 Qualitative Analysis of the User Experience

A user survey was conducted to evaluate the quality of the proposed integrationfrom a user’s perspective. The user’s task was to create a Mars exercise using thetemplate exercise and then try to solve the created exercise. The Eclipse Modeling
Tools1, containing the editor plugin used to create models, were preinstalled. Theexercise used in this study is an old exam exercise from the software engineeringmodule at TU Dresden and was given as an Artemis template.The survey consisted of a system usability scale (SUS). The SUS was proposed already1995 by Brooke. It consists of ten questions and has a reliabilty score of 0.85. Thesystem usability scale tries to make usability comparable across various contexts [6].
1https://www.eclipse.org/downloads/packages/release/juno/sr1/eclipse-modeling-tools,13.05.2022

34

https://www.eclipse.org/downloads/packages/release/juno/sr1/eclipse-modeling-tools

Table 7.1 Overview of longest, shortest, and average pipeline run times for differenttasks.
Task Mars:Module Chaos Mars:Social Network Java:Sorting StrategiesNumber of modelelements 34 31 -
Longest pipeline run 14.0s 13.0s 16.0sShortest pipeline run 8.7s 8.4s 9.4sAverage run time 9.7s 9.9s 11.6s

Furthermore, the participants were asked what they like and what they do notlike about Mars using free-text answers. Five participants completed the survey. Allparticipants had prior experience in modeling and had already passed the softwareengineering module Software Technology 12 at TU Dresden.The free text questions included, but were not limited to:
• What are your opinions on creating a Mars exercise?• How do you like the feedback?• What do you like the most?• What problems occurred during the use of Mars?• What would you like to improve?

7.2 Results

This section shows the results and findings for the study conducted. Quantitative- andqualitative analysis are presented separately. Tables and diagrams are used to presentthe results more visually.

7.2.1 Results of the Quantitative Analysis of the Pipeline Run Time

The pipeline run time depends on pulling and building the Docker image, running thetest engine, converting the output, and sending back the test results to Artemis. Thepipeline run time depends on pulling and building the Docker image, running the testengine, converting the output, and sending back the test results to Artemis. This thesisintegration adds the run time of the test engine and the output converter and doesnot influence the use of the Docker image and the notification plugin.Table 7.1 compares the pipeline run times between two Mars tasks and the ArtemisJava default task. Both Mars exercises are tasks taken from old exams held at TUDresden. The scope of the Java exercise is smaller, therefore, not large enough to beasked in an exam. The table shows that the average run time of the pipeline does notstrongly depend on the number of model elements. Furthermore, the average runtime of the Mars exercises was lower than the average run time of the Java example.This is an important finding and concludes that the system is scalable and practicalenough for tasks of a typical size. That the scope of the Mars exercises is greater thanthe scope of the Java exercise is a significant benefit of the proposed integration.
2https://tu-dresden.de/ing/informatik/smt/st/studium/lehrveranstaltungen?leaf=1&
lang=de&subject=446&embedding_id=47eddfa7c5a54ed5be49042aff35a31b, 13.05.2022

35

https://tu-dresden.de/ing/informatik/smt/st/studium/lehrveranstaltungen?leaf=1&lang=de&subject=446&embedding_id=47eddfa7c5a54ed5be49042aff35a31b
https://tu-dresden.de/ing/informatik/smt/st/studium/lehrveranstaltungen?leaf=1&lang=de&subject=446&embedding_id=47eddfa7c5a54ed5be49042aff35a31b

Figure 7.1 Run time differences between the different components over the achievedpoints by the submitted solution. The chart is ordered by the pointsachieved.

Figure 7.1 shows the pipeline run time over the submissions points. The remainderincludes the pipeline and Docker setup. The Git repository checkout and the runtimeof the server notification plugin. Zero points represent a submission with syntacticalerrors, which failed the build. The chart shows a slight decrease in run time, with greaterpoints achieved on successful builds. This is expected and property of rule-basedassessment systems.
The run time of the test engine fluctuates between 2.4s (17.5 point run) and 3.3s(7.5 point run). The worse the output, the more additional tests, and alternatives haveto be run. The Mars Output Converters’ run time is more constant between 0.5s and0.8s. This is to be expected. The run time directly depends on the number of resultobjects which need to be converted.
The chart also shows that running the test engine and the Output Converter roughlytakes 40% of the whole pipeline run. That means the run time is dominated by thesetup of the Docker image and the notification plugin, both not altered by the proposedintegration of this thesis.

7.2.2 Results of the Qualitative Analysis of the User Experience

Identifying and organizing the comments relevant to the integration of Mars was noteasily done. This is because the evaluating students came in contact with a lot ofdifferent systems, and the proposed integration has not always control over the othersystems. An example is that missing feedback for the models was criticized, but thefeedback is solely dependent on the test set used and not directly part of the Marsintegration.

36

System Usability Scale

The system usability scale gives a general overview of the system’s usability. It helpsidentify the existence of usage problems, but not where the problems are concretelylocated. The scale ranges from 0 to 100 points.After calculating the results, the average score is 74.5 with the lowest score of 70and the highest score of 80. According to Bangor et al., a score of 74.5 is considered"good" [2, pp. 591–593].

Free Text Answers

Some questions were targeted to the creation of exercises. Only a tiny amount ofinstructors do this step. Students will not come into contact with that process. There-fore, creating a new exercise is not as important as the process of students submittingmodels for grading. The more essential students’ user experience was surveyed too.
The following list represents a selection of the most meaningful answers. Answerswhich are not directly linked to the integration of Mars are excluded. The answerswere rephrased for a better understanding. The number of evaluators supporting thecomment is specified behind the answer.

Positive Feedback

• Setting up the Mars exercise (as tutor):
– The example task helps in understanding how to create own tasks. (2/5)

• Submitting the Mars exercise (as student):
– Independent modeling with immediate feedback helps me improve mymodeling skills. (5/5)
– In my opinion, the feedback is intuitive. (3/5)
– The different coloring helps me to categorize the feedback better. (2/5)

Negative Feedback

• Setting up the Mars exercise (as tutor):
– I was expecting the creation under the modeling exercise category. Whyis Mars a programming exercise? (5/5)

• Submitting the Mars exercise (as student):
– I couldn’t upload a file. I had to copy and paste the contents. (5/5)
– Submitting the model’s works, but I ammissing a graphical model editor.(1/5)

All evaluators were not expecting Mars to be created under the programmingexercises. This can easily be remedied with comprehensive documentation or amessage displayed in the creation of a modeling exercise pointing to the programmingexercises.The first evaluating person mentioned that the feedback given was unorganized.Afterward, the feedback displayed was adjusted by better aggregating failed and suc-cessful tests. The following evaluations did notmention the feedback to be unorganizedanymore. Further improvements can be made by grouping the feedback by matchedelement type (e.g., class, relation).

37

Unexpectedly only one out of the five evaluators mentioned an online editor asmissing. Jack, an evaluation system of the University of Duisburg Essen, also uses thesame method of downloading and uploading the submission3. All evaluators wereunanimous in that independent learning with instant feedback positively affects theirmodeling skills. This shows that an online editor is not necessary for the successfuluse of Mars in university courses.The negative feedback given will be further addressed in future work, Chapter 8.

7.3 Discussion of the Results

The evaluation shows that Mars is a seamless integration to Artemis, works well, andcan already be used in software engineering courses. This is backed by the resultof the system usability scale and the positive feedback from the free-text answers.Regarding displaying feedback, minor adjustments like categorizing the feedback byelement type (class, relation) or hiding the points Artemis assigns to a test might clearall ambiguities.Furthermore, the run time for the grading of Mars exercises is compelling as it evenoutperforms the run time of Java exercises.The necessary part of designing and creating own tasks was not evaluated since it isnot within the scope of this thesis. It seems that the rules and tests of the test engineare rather hard to grasp with a high complexity for instructors. One bright spot is thattask design only needs to be done once.

7.4 Limitations of the Evaluation

This section tries to analyze the limitations of the evaluation regarding the validity ofthe results. The focus lies on qualitative feedback.The first limitation follows from the small number of evaluators. The number isminimal and not enough to obtain reliable results. Furthermore, only one task wasevaluated, and therefore potential usability issues with other tasks were not identified.A more extensive survey catered to students using the system in production might beconducted to solve this limitation.Another limitation is concernedwith the wording and understanding of the questionsasked. This was limited by conducting the evaluations in presence. The evaluators hadthe chance to ask when something was unclear.That the whole pipeline was evaluated brings the downside of not easily gettingfeedback regarding the Mars integration since the feedback is also targeting otherparts of the system out of the control of Mars.The use of the system usability scale brings all their limitations, like no concrete hintson weaknesses of the system or the nondifferentiability between single tests with it.

3https://jack-community.org/wiki/index.php/Aufgabentyp_UML, 13.05.2022

38

https://jack-community.org/wiki/index.php/Aufgabentyp_UML

8 Conclusion and Future Work

Previous chapters have compared current systems (Chapter 3) and identified a suitablestarting point for the integration of the rule-based evaluation system Mars in Artemis(Chapter 4). It has been shown that the new evaluation system could be successfullyintegrated into Artemis. After the description of the implementation in Chapter 6 andthe subsequent evaluation in Chapter 7, a conclusion can be drawn. The ResearchQuestions are answered and potential future work is presented.

8.1 Research Questions

The following research questions got defined in Chapter 1. This thesis’s success ismeasured by answering the research questions, which are summarized in this section.

RQ1 What are the current technologies used to automate the feedback for modelingexercises?

An answer to this question can be found in Chapter 3. Ten different systemswere analyzed and categorized by their approach and the feedback they output.Seven systems were similarity-based. The other three systems use a rule-basedapproach to assess models. Furthermore, a comparison was developed to helpfuture instructors decide on the best system which suits their needs.
RQ2 What are ways to integrate Inloom into Artemis?

In Chapter 4, three potential approaches for the integration were identified.These approaches were then compared against each other using previouslydefined evaluation criteria. Potential weaknesses were addressed as well asstrengths of the proposed approaches. The approach chosen is to add Marsas a new type of programming language. The following chapters were thenimplementing this approach.

39

RQ3 What is the best way for the integration of Inloom?
The identified approach of adding Mars as a new type of programming languagefrom Chapter 4 was now being implemented. Chapter 5 gives an overview ofthe proposed system design for the integration, while the following Chapter 6concretely implements the rule-based system. Technical details are explainedhere. For example, a converter converting the test engine’s output to test caseswas written. Furthermore, a continuous integration pipeline assessing students’submissions was created. A usable system was designed and implemented atthe end of the implementation chapter.

RQ4 How does the newly integrated system performs when used by students?
The goal of this research question was to get real-world feedback and evaluatethe proposed integration of the feedback. This research question was thereforeanswered in Chapter 7. Five students tested the system. As a result of thefeedback, minor adjustments in displaying the feedback were already made. Theintegration got a total system usability score of 74.5. Potential future work gotalso derived from the student’s feedback.

8.2 Future Work

A few topics could not be addressed during this thesis or came up while writing thisthesis. These topics may be a good starting point for improvements or future research.
8.2.1 Deploy Web Based UML Editor

Even though only one out of the five evaluators has wished for an online model editor,an editor is great for not having to download files on their computer and upload themagain. An online editor would improve the overall user experience flow and minimizethe need for lengthy introductions. The Apollon web modeling editor, which is alreadyintegrated with Artemis, might be reused for that purpose. The editor already supportsdifferent model types, which the automatic assessment can support all. The editor’soutput has to be in EMF form or converted.
8.2.2 Improving the Creation of the Mars Exercises

Currently, Mars exercises are just created within the same dialog as programmingexercises. In the future, Mars exercises should be created in their own dialog. Thiswould also allow the ability to create the necessary test set for Mars exercises. Creatingthe test set is currently done offline on the instructor’s machine. The new dialog couldleverage the created web-based UML editor to automatically create the test set outof the example solution. The new creation dialog directly mitigates the problem ofinstructors not finding the correct dialog to create Mars exercises.
8.2.3 Future Work Regarding the Rule-Based Assessment System

Future work regarding the rule-based assessment system proposed by Hamann [8] isstill relevant. Future work, mentioned in this thesis, includes creating a "Test Suite forMaster Constraint Sets" or the "Assessment of Textual Task Descriptions".

40

8.3 Conclusion

E-Learning systems have become an integral part of university education in recentyears. Modeling is one of the foundational pillars of software engineering. It is becomingmore important at universities, and therefore the demand for automatic assessmentsystems has grown.This thesis gives an overview of the already existing systems and compares the twomain approaches to help instructors of software engineering courses to choose theright system suitable to their needs.The Faculty of Computer Science at Technische Universität Dresden will use Artemis,an interactive learning system for software engineering courses in the future. Unfor-tunately, Artemis currently does not support the automatic assessment system withinstant feedback for models. Inloom is such a rule-based assessment system withinstantaneous feedback, which this thesis successfully implemented into Artemis.Course instructors now have the option to create modeling tasks that are assessedby the Inloom test engine. This thesis provides a ready for use task template to simplifythe setup process. Students now can submit their models and receive instant feedbackwith a grade of their submission. The models currently have to be created using anoffline modeling editor. Integrating an online modeling editor is left for future work.However, only one out of five students mentioned the missing editor, so the newsystem, called Mars, is ready to be tested in software engineering courses.

41

Bibliography
[1] Outair Anas, Tanana Mariam, and Lyhyaoui Abdelouahid. “New method forsummative evaluation of UML class diagrams based on graph similarities”. In:

International Journal of Electrical and Computer Engineering 11 (2 Apr. 2021),pp. 1578–1590.
[2] Bangor et al. “The System Usability Scale (SUS): an Empirical evaluation”. In:

International Journal of Human-Computer Interaction 24 (Aug. 2008), pp. 574–594.
[3] Weiyi Bian, Omar Alam, and Jörg Kienzle. “Is automated grading of models ef-fective?: Assessing automated grading of class diagrams”. In: Association forComputing Machinery, Inc, Oct. 2020, pp. 365–376.
[4] Weiyi Bian, Omar Alam, and Jorg Kienzle. “Automated grading of class diagrams”.In: Institute of Electrical and Electronics Engineers Inc., Sept. 2019, pp. 700–709.
[5] Younes Boubekeur, Gunter Mussbacher, and Shane McIntosh. “Automatic as-sessment of students’ software models using a simple heuristic and machinelearning”. In: Association for Computing Machinery, Inc, Oct. 2020, pp. 84–93.
[6] John Brooke. “SUS: A quick and dirty usability scale”. In: Usability Eval. Ind. 189(Nov. 1995), pp. 189–194.
[7] Hayden Cheers et al. “Exploring a Comprehensive Approach for the AutomatedAssessment of UML”. In: Institute of Electrical and Electronics Engineers Inc., July2019, pp. 133–139.
[8] Markus Hamann. “AUTOMATIC FEEDBACK FOR UML MODELING EXERCISES ASAN EXTENSION OF INLOOP”. 2020.
[9] Yuta Ichinohe et al. “Effectiveness of automated grading tool utilizing similarityfor conceptual modeling”. In: vol. 108. Springer Science and Business MediaDeutschland GmbH, 2019, pp. 117–126.
[10] Stephan Krusche. Semi-Automatic Assessment of Modeling Exercises using Super-

vised Machine Learning. Jan. 2022.
[11] Stephan Krusche and Andreas Seitz. “ArTEMiS - An automatic assessment man-agement system for interactive learning”. In: vol. 2018-January. Association forComputing Machinery, Inc, Feb. 2018, pp. 284–289.
[12] Martin Morgenstern and Birgit Demuth. Continuous Publishing of Online Program-

ming Assignments with INLOOP. 2018, pp. 32–33.

42

[13] Tobias Reischmann and Herbert Kuchen. “A web-based e-assessment tool fordesign patterns in UML class diagrams”. In: vol. Part F147772. Association forComputing Machinery, 2019, pp. 2435–2444.
[14] Tobias Reischmann and Breno Menezes. “Application of Swarm-intelligent Meth-ods to Optimize Error-tolerant Graph Matching for Automatic E-Assessment”. In:Institute of Electrical and Electronics Engineers Inc., Nov. 2019.
[15] Dave R. Stikkolorum et al. “Towards automated grading of UML class diagramswith machine learning”. In: BNAIC/BENELEARN. Vol. 2491. CEUR-WS, 2019.
[16] M Striewe and M Goedicke. Automated Checks on UML Diagrams. ACM, 2011,pp. 38–42.

43

9 Appendix

9.1 Setup

This section explains how to setup the assessment of Mars exercises.

9.1.1 Creation of Mars Exercises

• Install Artemis1 using the Gitlab / Jenkins Stack. The Atlassian stack is not sup-ported. Documentation on how to install Artemis on your machine can be foundwithin the Artemis repository. Some Dockerfiles got altered to get the setupworking. These files can be found in the digital attachments for this thesis.• Login in Artemis as administrator and create a new Course under the coursemanagement tab.• Enter the course overview and click create new exercise.• Select programming exercise as the exercise type and enter the dialog.• Select Mars as the programming language, follow the dialog, and adopt thepreloaded Mars task template

9.1.2 Assess a Model Using Mars

• Go to the Course Overview and join the previously created course• Start the previously created exercise• Open the online code editor or clone the repository• Replace the model.ooa_classdiagram file with a submission (Do not rename thefile!)• After submitting, the feedback is displayed in the feedback section of the editor

An example submission is provided in the next section. For setup of the eclipse modeleditor, files provided by Hamann are needed. Information for the setup can be foundin the appendix of Hamanns work [8].
1https://github.com/ls1intum/Artemis, 13.05.2022

44

https://github.com/ls1intum/Artemis

9.1.3 List of Files Modified by This Thesis
• .jhipster/ProgrammingExercise.json• artemis.jh• src/main/java/de/tum/in/www1/artemis/domain/enumeration/ProgrammingLanguage.java• src/main/java/de/tum/in/www1/artemis/service/connectors/ContinuousIntegrationService.java• src/main/java/de/tum/in/www1/artemis/service/connectors/bamboo/BambooBuildPlanService.java• src/main/java/de/tum/in/www1/artemis/service/connectors/jenkins/JenkinsBuildPlanService.java• src/main/java/de/tum/in/www1/artemis/service/connectors/jenkins/JenkinsProgrammingLanguageFeatureService.java• src/main/java/de/tum/in/www1/artemis/service/programming/ProgrammingExerciseService.java• src/main/java/de/tum/in/www1/artemis/service/programming/TemplateUpgradePolicy.java• src/main/resources/templates/jenkins/mars/regularRuns/Jenkinsfile• src/main/resources/templates/mars• src/main/webapp/app/exercises/programming/manage/update/programming-exercise-update.component.html• src/main/webapp/app/exercises/programming/manage/update/programming-exercise-update.component.ts• src/main/webapp/app/exercises/programming/shared/code-editor/file-browser/supported-file-extensions.ts• src/main/webapp/app/exercises/shared/result/result-detail.component.ts• src/main/webapp/app/exercises/shared/result/result-detail.scss• src/main/webapp/i18n/de/programmingLanguage.json• src/main/webapp/i18n/en/programmingLanguage.json

9.2 Digital Attachments

Further files like the program code of Artemis and the Mars Output Converter can befound in the digital attachments of this thesis. This also includes all files created duringthe evaluation of this thesis.

9.3 Complete Students Submission

This example submission is for the Social Network task, since the template task is thesame.
<?xml version="1.0" encoding="ASCII"?><ooa_classdiagram:OOAClassModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema−instance" xmlns:ooa_classdiagram="http://www.inloom.org/ooa_classdiagram" ID="SocialNetworks"><classes xsi:type="ooa_classdiagram:Class" name="Profile"><properties name="username"/><operations name="invite"/><operations name="accept"/><operations name="decline"/><operations name="follow"/><operations name="post"/><operations name="comment"/></classes><classes xsi:type="ooa_classdiagram:Class" name="Friendship"/><classes xsi:type="ooa_classdiagram:Enumeration" name="Status"><literalgroups><literals name="PENDING"/><literals name="ACCEPTED"/><literals name="DECLINED"/></literalgroups></classes><classes xsi:type="ooa_classdiagram:Class" name="Posting"><properties name="text"/>

45

</classes><classes xsi:type="ooa_classdiagram:Class" name="Comment"><properties name="text"/></classes><classes xsi:type="ooa_classdiagram:Class" name="Subject"><properties name="name"/></classes><relationships id="r1"><relationshipEnds upper="1" lower="1" class="Profile" id="r1e1"><role name="inviter"/></relationshipEnds><relationshipEnds upper="1" lower="1" class="Profile" id="r1e2"><role name="invitee"/></relationshipEnds><associationclassEnd class="Friendship"/></relationships><relationships id="r4"><relationshipEnds upper="1" lower="1" type="shared" class="Posting" id="r4e1"><role name="commented"/></relationshipEnds><relationshipEnds upper="−1" class="Comment" id="r4e2"/></relationships><relationships name="" id="r5"><relationshipEnds upper="−1" class="Comment" id="r5e1"/><relationshipEnds upper="1" lower="1" type="shared" class="Profile" id="r5e2"><role name="commenter"/></relationshipEnds></relationships><relationships id="r6"><relationshipEnds upper="−1" type="shared" class="Profile" id="r6e1"/><relationshipEnds upper="−1" class="Subject" id="r6e2"><role name="interests"/></relationshipEnds></relationships><relationships id="r3"><relationshipEnds upper="1" lower="1" type="shared" class="Profile" id="r3e1"><role name="poster"/></relationshipEnds><relationshipEnds upper="−1" class="Posting" id="r3e2"/></relationships><relationships id="r2"><relationshipEnds upper="1" lower="1" type="shared" class="Friendship" id="r2e1"/><relationshipEnds upper="1" lower="1" class="Status" id="r2e2"><role name="status"/></relationshipEnds></relationships></ooa_classdiagram:OOAClassModel>

9.4 Example Test Engine Output

<?xml version="1.0" encoding="UTF−8"?><TestResult><TestData><ExpertModel>New_OOA_Class_Model</ExpertModel><TestModel>New_OOA_Class_Model</TestModel><MetaModel>OOAClassModel</MetaModel><MCSIdentifier>mcs_inloom_ooa_class</MCSIdentifier><MCSVersion>1.1.0</MCSVersion></TestData><Results><Result>

46

<ExpertObject>Chair</ExpertObject><ExpertType>Class</ExpertType><TestObject>Chair</TestObject><TestType>Class</TestType><Rule>Rule_R010101</Rule><Category>CORRECT</Category><Points>1.0</Points><Msg>Class Chair was found.</Msg></Result><Result><ExpertObject>Student</ExpertObject><ExpertType>Class</ExpertType><TestObject>Student</TestObject><TestType>Class</TestType><Rule>Rule_R010101</Rule><Category>CORRECT</Category><Points>1.0</Points><Msg>Class Student was found.</Msg></Result><Result><ExpertObject>Student_name</ExpertObject><ExpertType>Property</ExpertType><TestObject>Student_name</TestObject><TestType>Property</TestType><Rule>Rule_R020101</Rule><Category>CORRECT</Category><Points>0.5</Points><Msg>Property name of Student were found.</Msg></Result><Result><ExpertObject>r3</ExpertObject><ExpertType>Relationship</ExpertType><TestObject>r3</TestObject><TestType>Relationship</TestType><Rule>Rule_R080101</Rule><Category>CORRECT</Category><Points>1.0</Points><Msg>A Relationship between Student and Chair was found (Type: Association).</Msg></Result><Result><ExpertObject>r2e2_chairs</ExpertObject><ExpertType>Role</ExpertType><TestObject>r2e2_chairs</TestObject><TestType>Role</TestType><Rule>Rule_R100101</Rule><Category>CORRECT</Category><Points>0.5</Points><Msg>Role chairs for Chair was found.</Msg></Result></Results><ResultPoints><MaxPoints>9.5</MaxPoints><TestPoints>7.5</TestPoints></ResultPoints></TestResult>
9.5 Example jUnit Results XML

<?xml version="1.0" encoding="UTF−8"?><testsuite name="Mars Output"><testcase name="Successful Testcase 1"/><testcase name="Successful Testcase 2"/><testcase name="Failed Testcase 3">

47

<failure>Test Failure Message</failure></testcase></testsuite>
9.6 Full Jenkins Pipeline

// ARTEMIS: JenkinsPipeline
pipeline {options {timeout(time: #jenkinsTimeout, unit: ’MINUTES’)}agent {docker {image ’#dockerImage’label ’docker’}}stages {stage(’Checkout’) {steps {checkout([$class: ’GitSCM’, branches: [[name: ’*/master’]],doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [],userRemoteConfigs: [[credentialsId: ’#gitCredentials’, name: ’tests’, url: ’#testRepository’]]])dir(’#assignmentCheckoutPath’) {checkout([$class: ’GitSCM’, branches: [[name: ’*/master’]],doGenerateSubmoduleConfigurations: false, extensions: [],submoduleCfg: [], userRemoteConfigs: [[credentialsId: ’#gitCredentials’,name: ’assignment’, url: ’#assignmentRepository’]]])}}}stage(’Build’) {steps {timestamps {sh ’’’cd $WORKSPACErm −rf outputmkdir −p outputant −f run.xml’’’sh ’’’rm −rf customFeedbacksmkdir customFeedbackscp ‘ls −1 output/*.xml | head −1‘ output/testEngineOutput.xmljava −jar MarsOutputConverter.jar’’’}}}}post {cleanup {sendTestResults credentialsId: ’#jenkinsNotificationToken’, notificationUrl: ’#notificationsUrl’cleanWs()}}}

48

	Title page
	Contents
	Introduction
	Motivation
	Research Questions

	Background
	Artemis and Semi-Automatic Assessment of Modeling Exercises
	Inloop and Rule-Based Assessment Using Inloom

	Related Work
	Systems for Automatic Modeling Feedback
	Assessment Using a Similarity-Based Approach
	Assessment Using a Rule-Based Approach

	Grading and Feedback
	Comparison Between Similarity-Based and Rule-Based Approaches

	Analysis
	Evaluation Criteria
	Replacing the Built in Assessment System for Modeling Tasks
	Adding a Continuous Integration Pipeline for Modeling Tasks
	Reusing Programming Exercises
	Conclusion

	System Design
	Proposed Integration
	Adding Mars as a New Type of Programming Language
	Specifying Repository Templates for an Effortless Task Setup
	Submitting Models by Leveraging the Online Editor
	Jenkins Continuous Integration Pipeline
	Using Docker Containers for Increased Security
	Converting the Test Engine's Output
	Current Test Engine Output
	Accepted Output by Artemis

	Sending the Results Back to Artemis
	Grading the Assignment and Displaying the Feedback

	Implementation
	Prerequisites
	Adding Mars as a New Type of Programming Language
	Specifying Repository Templates for an Effortless Task Setup
	Exercise
	Solution
	Test

	Using Docker Containers for Increased Security
	Specification of the Mars Output Converter
	Test Engine's Feedback Classes
	Creation of Test Cases From the Results Objects

	Jenkins Pipeline
	Specifying the Docker Image
	Checking Out the Git Repositories
	Running the Test Engine and Converting the Output
	Notify Artemis with the Test Results

	Displaying the Results to Students
	Creating a Test Set to Ensure Stability

	Evaluation
	Design
	Quantitative Analysis of the Pipeline Run Time
	Qualitative Analysis of the User Experience

	Results
	Results of the Quantitative Analysis of the Pipeline Run Time
	Results of the Qualitative Analysis of the User Experience

	Discussion of the Results
	Limitations of the Evaluation

	Conclusion and Future Work
	Research Questions
	Future Work
	Deploy Web Based UML Editor
	Improving the Creation of the Mars Exercises
	Future Work Regarding the Rule-Based Assessment System

	Conclusion

	Bibliography
	Appendix
	Setup
	Creation of Mars Exercises
	Assess a Model Using Mars
	List of Files Modified by This Thesis

	Digital Attachments
	Complete Students Submission
	Example Test Engine Output
	Example jUnit Results XML
	Full Jenkins Pipeline

