

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806674

Julian Eberius, Maik Thiele, Katrin Braunschweig, Wolfgang Lehner

Top-k entity augmentation using consistent set covering

Erstveröffentlichung in / First published in:

SSDBM 2015: International Conference on Scientific and Statistical Database
Management, La Jolla 29.06. – 01.07.2015. ACM Digital Library, Art. Nr. 11. ISBN 978-1-4503-
3709-0

DOI: https://doi.org/10.1145/2791347.2791353

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806674
https://doi.org/10.1145/2791347.2791353

Top-k Entity Augmentation using Consistent Set Covering

Julian Eberius, Maik Thiele, Katrin Braunschweig, and Wolfgang Lehner
Technische Universität Dresden

[firstname.lastname]@tu-dresden.de

ABSTRACT
Entity augmentation is a query type in which, given a set
of entities and a large corpus of possible data sources, the
values of a missing attribute are to be retrieved. State of the
art methods return a single result that, to cover all queried
entities, is fused from a potentially large set of data sources.
We argue that queries on large corpora of heterogeneous
sources using information retrieval and automatic schema
matching methods can not easily return a single result that
the user can trust, especially if the result is composed from
a large number of sources that user has to verify manually.
We therefore propose to process these queries in a Top-k
fashion, in which the system produces multiple minimal con-
sistent solutions from which the user can choose to resolve
the uncertainty of the data sources and methods used. In this
paper, we introduce and formalize the problem of consistent,
multi-solution set covering, and present algorithms based
on a greedy and a genetic optimization approach. We then
apply these algorithms to Web table-based entity augmenta-
tion. The publication further includes a Web table corpus
with 100M tables, and a Web table retrieval and matching
system in which these algorithms are implemented. Our
experiments show that the consistency and minimality of the
augmentation results can be improved using our set covering
approach, without loss of precision or coverage and while
producing multiple alternative query results.

1. INTRODUCTION
In recent years, a large body of work studied Web tables,

i.e., HTML tables published in Web pages that contain re-
lational information, and their usage in data management.
One application of special interest for data analysis are so
called entity augmentation queries, in which, given a set of
entities and an attribute not defined for them, the attribute’s
values for each entity is to be returned. With this query type,
the missing attribute is usually specified just by its name,
while the entity augmentation system decides on how to
lookup Web tables, how to match them to the existing table

©2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in SSDBM ’15, June
29 - July 01, 2015, La Jolla, CA, USA
DOI: http://dx.doi.org/10.1145/2791347.2791353

Revenue

Agricultural Bank of China x1

Banco do Brasil x2

AT&T x3

China Mobile x4

Revenue

Bank of China x1

Banco do Brasil x2

Revenue

Rogers x1

China Mobile x2

AT&T x3

S1 0.69 Revenues 2013

S3 0.85

S4 0.85

Revenue

AT&T x1

S2 0.92 US Market Share

Banking Sector

TelCo Sector

Revenue Growth

Bank of China x1 y1

China Mobile x2 y2

S5 0.87 Chinese Market Growth

Company Revenue1 Revenue2 Revenuen

Bank of China ? ? ... ?

Banco do Brasil ? ? ?

Rogers Communications ? ? ?

China Mobile ? ? ?

AT&T ? ? ?

Entity Augmentation Query Q(a , E)

Revenue

Rogers x1

AT&T x2

Bancoo do Brasil x3

S6 0.9
Revenue Changes

Revenue

Rogers x1

S7 0.95 Revenues 2013

Figure 1: Example of a top-k augmentation scenario: query
table and available data sources

and possibly how to merge multiple candidate Web tables
into one result. In principle, entity augmentation queries
could also be answered based on integrated knowledge bases
or ontologies. However, using relations extracted from Web
corpora offers a lot more long tail information and does not
rely on the missing attribute being defined in some central
repository. These properties make this type of querying
both powerful as well as user-friendly, and thus interesting
for exploratory analysis queries. While many methods for
identifying matching Web tables and ranking them exist,
two aspects have been studied less well so far: The first is
constructing minimal consistent results with respect to the
number of sources used. The second is computing several
alternative results, or in other words, Top-k Entity Augmen-
tation. We will discuss and motivate these two aspects using
the example shown in Figure 1. The queried entities and
the attribute to be augmented are shown in the top table,
while the other tables represent available data sources. These
sources are annotated with source number, a quality score
and some table context.
Minimal Consistent Results: Existing methods compose
the query result from many data sources on a per-entity basis.
Though more complex algorithms exist (see Section 5), con-
sider as an introductory example an algorithm that picks for

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

1

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

every queried entity the value from the best-ranked source,
according to some measure of source-quality. Here, this naive
algorithm would pick values from the sources S7 for “Rogers”,
S2 for “AT&T”, S5 for “Bank of China” and “China Mobile”,
and finally S4 for “Banco do Brasil”, using the highest ranked
available source for each queried entity. This means that the
algorithm picks a large number of data sources, almost one
distinct source for each entity. More sophisticated methods
for pruning candidate tables and picking values from the
remaining candidates can be used, such as correlating or
clustering sources, mapping sources to knowledge bases, or
quality-weighted majority voting (again, see Section 5), but
they will not fundamentally change this fact as long as values
are picked on a per-entity basis. We argue that using a large
number of sources is a problem for two reasons:
Firstly, it promotes issues of consistency, as the sources may
be of high quality when considered on their own, but still do
not form a consistent answer. For example, the sources may
subtly vary in meaning, such as S2, which in contrast to the
other sources shows US-revenue only. This difference has to
be extracted from the table context in this case, which is not
trivial for automatic methods. Even though better methods
for creating consistent augmentations for some important
dimensions such as time and unit of measurement have been
proposed [16, 12], picking fewer candidate sources will help
to improve consistency in general.
A second argument is concerned with the usability of an
entity augmentation result: When coercing multiple data
source’s values into one result, properties important for data
analysis such as transparency, lineage and trustworthiness
of the result are lost. This is because in many domains the
user can not blindly trust an automatic integration result,
no matter how sophisticated the method used to create it.
Rather he or she will use this result as a starting point, check
the sources proposed by the system, and correct mistakes or
switch some sources manually. If the system fuses data from
many sources, this process is complicated.
In this paper, we therefore investigate methods that produce
not only consistent augmentation results from several sources,
but minimal augmentations, i.e., augmentations that use a
minimal number of sources to facilitate the usage of the
result. In the running example, one such result would be
S3, S4, as it only uses two sources to augment all entities,
even though the sources’ average score is slightly worse than
the score of the naive solution above.
Top-k Results: Entity augmentation queries are exploratory
in nature, and the information need of the user, given by
just a keyword, is relatively underspecified. Even though
entity augmentation operates on structured data such as a
big Web table corpus, the user still queries data unknown
to him or her, and may thus not be able to form a precise
query, or may even want to stumble on new aspects of his or
her information need, similarly to working with a document
search engine.
Consider the example query: the attribute was specified as a
simple keyword “revenue”. However, the real world concept
is more complex, with subtle variants such as “sales revenue”,
different years of validity and different sources. A user may
not even know on the spot which variant he or she is inter-
ested in. Information retrieval systems solve this problem of
uncertainty in sources and unclear user intent by presenting
not one exact, but multiple, ranked, alternative answers.
In the running example, instead of returning only one result

based on S3, S4, one alternative would be a result based
on S1, S7, which has a worse average score, but has clearly
marked year in both sources, which may be more useful for
the user on manual inspection. Another aspect are attribute
variations, which, due to the exploratory nature of entity
augmentation queries, may also be of interest to the user.
An example would be a third result based on S6 and the
second column of S5, representing changes in revenue instead
of absolute revenue. Effectively, this means we aim to extend
entity augmentation to a Top-k operation.
Note that we want to generate solutions that are real alter-
natives, such as the three examples above. We want to avoid
slight variations of one solution that just switch a single
data source for another, and also avoid creating multiple
solutions from very similar datasets, as this would add little
information to the top-k result. A meaningful top-k list
would need to consider a diverse set of sources, exploring
the space of available data sources while still creating correct
and consistent answers. We will define our notion of result
diversity in the following sections.
Finally, in addition to supporting exploratory querying, we
also argue that this extension helps to reach sufficient levels
of precision for data analysis tasks. Entity augmentation is
based on information retrieval operations, such as lookup in
a data source index, coupled with automatic schema- and
instance matching algorithms. Even though these methods
are ever-improving, they are not perfect and may still pro-
duce subtle mistakes, e.g., use S2 in a general revenue query
as discussed above. We will show how the trustworthiness
and usefulness of entity augmentations can be improved by
extending it to a Top-k operation.
Note that the two aspects, construction of minimal consistent
single results, and providing meaningful alternative solutions
are complementary to each other. Based on these insights,
we make the following contributions:

• We propose new entity augmentation algorithms that
construct multiple minimal and consistent augmenta-
tions for a given entity set and attribute. For that
purpose, we formalize the problem of top-k entity set
augmentation by extending the classic weighted set
cover problem to the Top-k consistent set cover prob-
lem.

• We propose a greedy algorithm that picks consistent
data sources to construct individual augmentations,
while maximizing the diversity between the results to
provide meaningful alternative solutions.

• We improve on this first algorithm with a genetic set
covering approach that naturally models the creation
of a diverse set of individually strong solutions.

• We implement the algorithms in a new Web table re-
trieval and matching system called REA, and evaluate
the system on a new corpus of about 100 million Web
tables extracted from a public Web crawl, and measure
the effects of our proposed algorithms on precision,
coverage and runtime, but also the new dimensions
consistency and diversity of the Top-k query results.
We make the implementation and the Web table corpus
available for other researchers.

In the following, we will formalize entity augmentation, dis-
cuss baseline implementation methods, our data model and

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

2

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

general strategies to construct augmentation results from
several data sources in Section 2. We will then introduce our
algorithms in abstract terms in Section 3.1 and then describe
our system and the implementation details in Section 3.2.
Evaluation, related work and conclusion appear in Sections 4,
5 and 6 respectively.

2. ENTITY AUGMENTATION QUERIES
This section will introduce entity augmentation queries,

and the methods typically used to process them. We discuss
issues of consistency in entity augmentation and the necessity
of a Top-k extension, as well as the challenges that these
imply.
An entity augmentation query is a query of the form

QEA(a+, Ea1,...,an)

The result of such a query is the same set of entities with
the augmented attribute added Ea1,...,an,a+ .
An entity augmentation system manages a corpus of data
sources, and is able to select a subset D relevant to a query
QEA. Sources d ∈ D can provide values for some subset of
E, denoted cov(d). The next section discusses the baseline
approach to this problem.

2.1 Baseline Method Analysis
Entity augmentation is typically implemented based on a

table corpus extracted from the Web, usually in the order of
several hundred million datasets [3, 14, 16]. The tables are
indexed to enable quick retrieval based on attribute names,
entities that the tables describe, and various forms of meta-
data, such as table or page titles. To process a query, the
system retrieves tables with an attribute fuzzily matching
a+ and at least one entity from E. Then, various stan-
dard schema and instance matching methods such as string
distances and synonym dictionaries are used to calculate a
mapping between queried entities and entities in the Web
table, as well as between the queried attribute and those of
the candidate table. This process is repeated for further hits
in the Web table index until matching tables for each entity
are found.
Note, that if the entity augmentation system is implemented
on top of a large body of unreliable data sources such as Web
tables, the system will return a set of possible values for a
given combination (a+, en) instead of a single value as in a
regular database query.
The main difficulty is deciding which value candidate to re-
turn as the augmented value for each entity. Most systems
from literature assume that they can reconcile the multiple
results into one result (see Section 5). As stated in Sec-
tion 1, we argue that automatically merging the results of
an inherently uncertain IR-based operation such as entity
augmentation will not lead to a result the user can blindly
trust and use in an analysis query. Furthermore, automatic
methods of schema- and instance matching will never achieve
perfect accuracy, and are always volatile with respect to
thresholds, so it is never certain that a single augmentation
will be valuable to the user. Instead of assuming that the
perfect result can be created, one possibility would be to just
return the whole set of possible values per entity, i.e., leaving
out the error-prone coercion step.

QEA(a+, {e1, ..., en}) = {V1, ..., Vn}

Ent ties

Sources by rank

C11

C10

C9

C8

C7

C6
C5

C

C3

C2
C1

(a) Aggregation

Ent ties

Sources by rank

C11

C10

C9

C8

C7

C6
C5

C

C3

C2
C1

(b) TopRanked
Ent ties

Sources by rank

C11

C10

C9

C8

C7

C6
C5

C

C3

C2
C1

(c) MinSources

Ent ties

Sources by rank

C11

C10

C9

C8

C7

C6
C5

C

C3

C2
C1

(d) Consistent

Figure 2: Strategies for creating augmentations

This, however, is of little use when the operation is used in
context of an analytical query, as the user would have to
choose the correct value on a per-entity basis, and the result
would be unlikely to be very consistent, as every value might
originate from a different Web table. In this paper, we use a
more general definition of an EA query result, in which a set
of k possible value sets is returned:

QEA(a+, {e1, ..., en}) = [{v11 , ..., vn1}, ..., {v1k , ..., vnk}]
Note that the result does not consist of k possible values for
each instance, but k sets of values, each one containing exactly
one new attribute value for each respective entity. We call one
such set an augmentation, and the set of augmentations the
query result. The user can then choose the most promising
augmentation from the ranked list of alternatives for their
information need, treating each one of them as one consistent
source, just as in classic search engines. This, of course,
leads to the question of how to construct useful Top-k entity
augmentations from a set of partly matching data sources.

2.2 Constructing Augmentations
In this section, we discuss several näıve ways of construct-

ing augmentations from a ranked list of data sources and
analyze their weaknesses. Reconsider the running example
(Figure 1), in which the user requires the addition of a new
dimension revenue to an existing table containing various
companies. We assume that a set of possible data sources
D has been identified, matched and scored by an entity aug-
mentation system. We will give details on how our system
proceses these steps in Section 3.2. For now, consider the
visualization of this intermediate result shown in Figure 2,
in which the vertical axis shows the queried companies ci,
the gray boxes denote sources and what entities they pro-
vide a candidate value for, while the horizontal axis plots
the sources’ rank. The usual approach from related work
is visualized in Figure 2a for the first three entities: each
one is considered separately by aggregating all candidate
values into one result, for example by performing some form
of majority voting, or by clustering values and then picking
a representative from the highest ranked cluster [14].

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

3

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

Let us now consider alternative strategies. One näıve strat-
egy, called TopRanked, is shown in Figure 2b. Starting from
the highest ranked data source, pick all the values it pro-
vides for entities that do not have a value yet. While this
strategy does not pick values individually but according to
their source’s rank, it may still piece together data sources
not fitting each other at all. Furthermore, a large number of
data sources might be picked, making it harder for the user
to understand the query result and assess its quality.
A näıve approach to solve this last problem would be to pri-
orize data sources with large coverage of the queried entities.
This strategy, called Minimality, is illustrated in Figure 2c.
Although the selected data source has a low score, it was
picked because it can single-handedly cover all input entities.
Obviously, with this strategy the augmentation consists of a
minimal number of data sources, but the quality according
to the chosen ranking function might be low.
What is needed is a strategy that creates augmentations
on the level of data sources, not entities, but without the
disadvantages of TopRanked or MinSources . In Figure 2d,
we give an intution for our approach: by introducing a simi-
larity function between the data sources in addition to the
scoring function, we will construct augmentations that are
both minimal in the number of sources, maximal in the score
of the datasets used, but also consistent with each other, as
we will show in the next section. We will also show how such
a function can be used to construct not only one augmenta-
tion, but several meaningful alternative solutions to present
to the user. In the next section, we will present our Top-k
consistent entity augmentation algorithms.

3. TOP-K CONSISTENT
ENTITY AUGMENTATION

We will now first describe Top-k consistent set covering
as an abstract solution to the problem of Top-k consistent
entity augmentation in Section 3.1, and then apply it to the
specifics of Web table-based augmentation in Section 3.2.

3.1 Ranked Consistent Set Cover
We propose a new approach for constructing entity set

augmentations by modeling it as an extended form of the
Weighted Set Cover Problem. Given a universe of elements
U and a family of subsets of this universe S, each associated
with a weight wi, the Weighted Set Cover problem is to find
a subset s of S whose union equals U , such that

∑
i∈s wi is

minimized.
In our specific problem domain, the algorithm input consists
of a set of entities E that are to be augmented, corresponding
to U in the original problem, and a set of data sources
D = {d1, ...dn}, as retrieved and matched by the underlying
entity augmentation system, which corresponds to S. A
single cover is then defined as an ordered subset of D that
covers E, i.e., c = [di, ..., dx] with

⋃
d∈c cov(d) = E. A score

associated with each data source representing its quality with
respect to the query is then used in place of the weights w.
So far, we could trivially map our problem to the well known
Set Cover problem. Still, there are some crucial differences:
In contrast to the original problem, where only a single
minimal cover is required, for reasons given in Section 2.1,
the output we aim for is a ranked list of covers, denoted
C = [c1, ..., cn]. Furthermore, as illustrated in Section 2, the
entity augmentation use case does not only require small

covers with high scores, but consistent covers, i.e., covers
consisting of datasets that fit each other well according to a
similarity function sim().

∀c ∈ C maximize
∑

di,dj∈c

sim(di, dj) (Consistency)

We will discuss the definition of this function sim() in Sec-
tion 3.2. And lastly, the covers created should be diverse,
i.e., they should not consist of the same or similar datasets
throughout the Top-k list, but be complementary alterna-
tives.

minimize globally
∑

ci,cj∈C

sim(ci, cj) (Diversity)

We now discuss the reasoning behind these properties and
incrementally build up to our proposed algorithms for Top-k
consistent set covering.

3.1.1 Basic Framework
To reach these properties, we start from the well known

greedy algorithm for the Weighted Set Cover problem, which,
given a universe U , a set of sets S with weights w, and a set
of yet uncovered elements F , in each iteration picks the set
which minimizes:

wi

|Si ∩ F |
Applying this to entity augmentation requires a scoring
function for datasets yielding the weights w, which we call
score(d). This function assigns a score to each dataset re-
flecting its relevance to the query. We give a specific instance
of this function for scoring Web tables in respect to an entity
augmentation query in Section 3.2. Using this function, an
initially empty cover C and a free entity set initially F = E,
we can use the original greedy Set Cover algorithm to pro-
duce an ordered subset of D, by picking in each iteration the
dataset d that maximizes:

score(di) · |cov(di) ∩ F | (1)

until F = ∅. Note that we maximize scores instead of min-
imizing weights as this is more intuitive for the problem
domain.
An augmentation constructed in this way would roughly cor-
respond to a middle ground strategy between the TopRanked
and MinSources strategies discussed in Section 2.2, which
means it may create single augmentations from very hetero-
geneous data sources.
Furthermore, if only the individual score(d) per dataset is
used, there is no intuitive way of creating useful Top-k aug-
mentations. While it would be possible to create alternative
augmentations using this algorithm by, for example, remov-
ing datasets already used in previous augmentations from
consideration for further executions, there is no clear benefit,
as it would likely just construct a worse version of the first
augmentation.
• Cover Consistency: To counteract these effects, we
model consistency between the datasets that make up a
cover explicitly. We first require a similarity function be-
tween two datasets sim(d1, d2) in [0, 1], which operates both
on the tables themselves as well as the extracted metadata.
We give a specific instance of this function for Web tables
in Section 3.2. Then, given an initially empty cover c and

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

4

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

a similarity aggregation function F such as average or max,
we can greedily generate covers using consistent datasets by
picking in each iteration the dataset d that maximizes:

score(d) · |cov(d) ∩ F | · simF (d, c) (2)

This means we encourage picks of data sources that are simi-
lar to data sources that were already picked for the current
cover. We assume as a special case that simF (di, ∅) = 1,
which implies that the first data source picked will be the
same as in regular set covering. Subsequent picks on the
other hand will be influenced by already picked sources. This
also implies that datasets with a low inherent score, that are
not be picked early because of this, may still be picked in a
later iteration, if they fit very well with the datasets picked
at first. Since we still require |cov(d) ∩ F | to be greater than
zero, the algorithm will still make progress with every pick,
as only datasets that provide at least one new value can be
picked.
• Result Diversity: Using objective function 2, the algo-
rithm picks datasets to create covers that not only score well
with regard to the query, but also fit well together according
to sim(d1, d2). Still, the question how to create multiple and
complementary augmentations is unanswered.
Let C denote the set of previously created covers. Our core
idea is to do consecutive runs of the greedy algorithm using
the same input datasets, with each run placing greater em-
phasize on datasets that are dissimilar to datasets picked in
previous iterations, i.e., dissimilar to datasets in

⋃
C . Im-

plementing this idea näıvely however, for example by di-
viding function 2 by

∑
di∈

⋃
C
sim(d, di) does not yield the

expected results. While the second iteration might then
choose datasets from a different part of the similarity space
than the first iteration, the score becomes more and more
meaningless with more iterations as

⋃
C grows and the newly

picked datasets are compared to a larger and larger subset
of the candidate set D, leading to more and more uniform
values for

∑
di∈

⋃
C
sim(d, di).

Instead, we introduce a more complex dissimilarity metric
based on individual entities in E and the datasets that were
used to cover them in previous iterations. We define a func-
tion coveredBy(e, C) which yield the datasets that were used
to augment entities in covers created in previous iterations.
We can then define out final scoring function as

score(d) · |cov(d) ∩ F | · simAgg(d, c)

redundancy(d, F, C)
(3)

where

redundancy(d, F, C) =
∑

e∈F∩cov(d)

simF (d, coveredBy(e, C))

(4)
This means we penalize picks that would cover entities with
data sources that are similar to datasets that were already
used to cover these entities in previous iterations, and even
more so if they were used multiple times. This scheme pro-
duces the same cover as the previous scheme in its first run,
as C is empty initially. However, in further iterations it
picks the highest scoring datasets that are dissimilar to those
picked in the first iteration. By penalizing similarity to pre-
vious covers, we avoid using the same top-ranking datasets
again and again for all covers in the Top-k list we aim for.

Algorithm 1 Top-k consistent set covering: Greedy

function Greedy-TopK-Covers(k,E,D)
C ← ∅

U ←

⎛
⎜⎝
0 . . . 0
...

. . .
...

0 . . . 0

⎞
⎟⎠

|E|×|D|

� Usage matrix

while |C| < k do
c ← Cover(E,D,U)
for all (e → d) ∈ c do � Update Usage Matrix

U [e, d] ← U [e, d] + 1

if c �∈ C then � Remove duplicates
C ← c

return C

function Cover(E,D,U)
c ← ∅
F ← E � Free set, uncovered entities
while True do

if |F | = 0 then
return c

d ← arg max
d∈D

score(d)·|cov(d)∩F |·simAgg(d,c)

redundancy(d,D,F,U)

for all e ∈ F ∩ cov(d) do
F ← F \ e � Update free set
c ← c ∪ (e → d) � Update cover

return c

function redundancy(d,D, F, U)
r, norm = 0, 0
for all e ∈ F ∩ cov(d) do � Coverable by d

u ← U [e] � Sources used to cover e

r ← r +
∑|u|

i=0 u[i] ∗ sim(d,D[i])
norm ← norm+ u[i]

return r
norm

With this scoring function, we can construct a greedy con-
sistent set covering Algorithm 1 that produces both consis-
tent individual augmentations, as well as diversified solutions
when run with k > 1. In Algorithm 1, the function Greedy-
TopK-Covers produces k covers by calling the function Cover
k times, while keeping a |E| × |D| matrix called U as state
between the calls. While the Cover function performs the ba-
sic greedy set cover algorithm with the new scoring function
defined above, the main function updates the matrix U after
each iteration by increasing the entry for each entity/dataset
combination that is part of the produced cover. Note that
the main function also discards duplicate solutions, which
may occur if the influence of the redundancy function is
not strong enough to steer the search away from an already
existing solution. Still, the matrix U is updated even if a
solution is rediscovered, so that further choices of the same
data sources become more and more penalized, guiding the
search into a different part of the solution space.
The greedy approach described above, while being easy to im-
plement and fast to execute, will not necessarily construct the
best possible list of solutions, as our evaluation in Section 4
will show. Therefore, we introduce two further algorithms as
extensions of the basic framework in the next two sections.

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

5

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

Algorithm 2 Top-k consistent set covering: Greedy*

function Greedy*-TopK-Covers(k, s, E,D)
C ← Gr-TopKCovers(k ∗ s, E,D) � As in Alg. 1
C ← Select(k, C)
return C

3.1.2 Extension: Greedy*
The first extension of the basic framework is based on the

observation that the first k solutions produced by Algorithm 1
may not necessarily be the best solutions. After the first
solution has been produced the search is mainly guided
by using different datasets for each solution, and thus new
combinations of used data sets are often not considered in
the basic greedy algorithm. One simple extension is called
Greedy* -algorithm, which uses the basic greedy algorithm
to create more covers than requested, and then introduces a
second phase to the query processing called Select, in which
the k best solutions are selected from a pool of s× k possible
solutions, as shown in Algorithm 2, with s being the scale
factor.
This raises the question of how to select the Top-k solutions.
Following [7] we evaluated two ways to pick diversified Top-k
solutions from a pool of possible solution: one again based on
a greedy approach and one based on replacement. The greedy
approach picks the best solution by score and consistency,
then picks further solutions that maximize these criteria while
using dissimilar datasets. This works in the same manner
as the greedy approach from Section 1, but with the scoring
functions defined on the level of covers instead of the level
of data sources. We skip the detailed definitions for space
reasons, as they follow from what is shown in Section 3.1.1,
and the full implementation is available (see Section 4.1).
We also evaluated solutions based on replacement, in which
the first k covers as produced by the greedy approach are
used as the initial Top-k list, which is then iteratively refined.
Refinement is done by removing the cover least fit according
to the scoring functions and replacing it with a new cover
from the pool of possible answers until a stop criterion is
reached, e.g., when the diversity of the Top-k list has fallen
under a threshold.
In comparison to theGreedy algorithm, theGreedy* approach
should find better solutions as it searches a larger portion
of the search space, at the cost of a runtime that increases
with the scale factor s, plus some overhead for the selection
phase.

3.1.3 Extension: Genetic Approach
There is a large amount of literature dedicated to the set

covering problem, in which various optimization methods
apart from the greedy approach are studied (see Section 5).
The genetic approach seems especially viable for our specific
versions of the problem, as it intrinsically generates a pool of
solutions from which k can be picked, and both consistency
and diversity of the results can be modelled intuitively, the
first as part of the fitness function and the second as part of
the population replacement strategy. To apply the genetic
framework to a problem, one needs to define the representa-
tion of individuals and their genomes, a fitness function, a
cross over and a mutation function, as well as a strategy for
creating an initial population and for choosing whic individ-
uals to cross and which to replace in each generation.

Algorithm 3 Top-k consistent set covering: Genetic

function Genetic-TopK-Covers(k, s, E,D)

U ←

⎛
⎜⎝
0 . . . 0
...

. . .
...

0 . . . 0

⎞
⎟⎠

|E|×|D|

� Usage matrix

Pop ← Init-GreedyTopKCovers(k ∗ s, E,D,U)
for i ∈ 0..k ∗ s do

c1, c2 ← pickRandom(Pop) � Select Parents
� Tournament vs. most similar solution

w1, l1 ← tournament(c1, arg max
x∈Pop\c2

sim(c1, x))

w2, l2 ← tournament(c2, arg max
x∈Pop\c1

sim(c2, x))

c+ ← Cover(E,w1 ∪ w2, U) � As in Alg. 1
Mutate(c+)
FillAndPrune(c+)
removed ← minscore(l1, l2)
Pop ← (

pop \ removed
) ∪ c+

U ← UpdateUsage(U, c+, removed) � As Alg. 1

C ← Select(k, Pop) � As in Alg. 2
return C

While our approach is inspired partly by [1], our problem
domain makes different choices for almost all of these deci-
sion necessary. Obviously, we can represent an individual’s
genome as the set of data sources it is comprised of. We can
then use the final scoring function 3 as the fitness function
for individuals. The population is initialized by creating
covers with the Greedy algorithm until all candidate sources
have been used in at least one cover. The Greedy algorithm
is modified in this use case to strongly favor unused data
sources in later iterations to quickly produce such an initial
population.
The most interesting step is the crossover function, as com-
bining two sets of data sources does not necessarily yield a
set that is again a set cover. If the wrong genes are passed
to the descendant solution, the solution may not be feasible,
i.e., there may be uncovered entities, or if too many genes are
passed, the cover may not be minimal. In [1], genes shared
by both parents are passed on definitively, and those only
present in one parent are passed with a probability corre-
sponding to their weight, which leads to potentially infeasible
or non-minimal solutions as mentioned above. To correct
this, another step of pruning redundant genes and adding
random genes from the pool that cover missing entities was
proposed.
However, this solution does not take consistency of the gen-
erated descendant into account. Instead, we again use the
basic Greedy approach as a building block, and take the
union of two parent genes as the set of candidates, instead
of the whole set D. We use the same mutation strategy, i.e.
randomly flipping bits in the gene, and use the prune and fill
approach from [1] to remove datasets that may have become
redundant or add random datasets to fill holes created by
mutation.
Diversity is achieved through several mechanisms. Firstly,
it is achieved implicitly by using the Greedy cover algo-
rithm as a building block, as it uses a global usage matrix U
throughout the run of the genetic algorithm. Secondly, the
mutation step introduces randomness into the population,
which increases diversity. Finally, the parent selection and

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

6

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

replacement strategy we employ encourages diversity. Specif-
ically, we select two parents randomly to create a descendant,
but before crossover, we pair them with the most similar
existing solution in the population, to form two simple bi-
nary tournaments. The respective winners w1 and w2 are
determined by the score()-function, and are used for creating
a new cover, while the losers l1 and l2 are candidates for
replacement in the next generation. Algorithm 3 gives an
overview of our genetic consistent Top-k set covering ap-
proach and all the mentioned mechanics. In this algorithm
description, Select is the selection phase that picks k covers
as discussed in Section 3.1.2.
Having introduced our abstract algorithms for Top-k diversi-
fied and consistent set covering in this section, the next step
is to instantiate them for the problem of Web table-based
entity augmentation by giving the Web table-specific scoring
and similarity functions score(d) and sim(d1, d2) used in our
entity augmentation system REA.

3.2 REA System Overview
For space reasons, and since we do not propose novel

methods in this respect, we only give a very short overview
our REA system in this section and refer the reader to the
same section in the longer version of this paper1 for details.
REA uses both relational Web tables, also called“entity-value”
tables, as well as entity-tables, that focus on one entity only,
also called “attribute-value” tables. This allows consistent
results for domains where relational tables are available, but
increases recall in domains where no or only few such tables
are ever published.
Concerning the score(d) function, we employ an average of
the following factors: quality of the schema-/instance match
between the web table and the query table using standard
matching techniques, the overlap of query terms and the
table’s metadata such as top terms extracted from page
context, title and URL, and finally the overall trustworthiness
of the source, approximated from an external Web domain
popularity database.
Concering the sim(d1, d2) function, we use similar measures
as those proposed in [14, 16]: we consider the similarity
between the attribute names, the similarity between the
values provided and the tables’ page contexts. We also
employ similar extractors for units of measurement, orders
of magnitude and time, whose results are then compared.

4. EVALUATION
We conducted an experimental evaluation of the proposed

techniques to study the following questions:

• Do the proposed algorithms reduce the weaknesses
of the baseline algorithms regarding consistency and
minimality?

• Are the Top-k results produced diverse while maintain-
ing individually correct and consistent augmentations?

• How do the basic measures such as coverage and preci-
sion change over the Top-k results?

• How do the proposed algorithms compare with respect
to runtime performance?

1http://wwwdb.inf.tu-dresden.de/misc/publications/
rea-long.pdf

4.1 Repeatability
To enable repeatability we publish the implementation2,

but also include the web table corpus used for the evaluation3.
This corpus contains 100M Web tables extracted from a pub-
licly available Web crawl4. The Scala-based implementation
includes state-of-the-art Web table indexing and retrieval,
as well as schema- and instance matching systems suitable
for working with Web tables, as well as implementations
of the Set Covering-based Entity Augmentation algorithms
described in this paper. The corpus includes not only the
raw table- and meta data, but also the code used for extrac-
tion and a Java library to quickly get started with using it
for other research. We also include the queries and queried
entities, as well as the results and the human judgments (see
Section 4.2) used in the form of an SQLite database with
the implementation code.

4.2 Experimental Setup
This section introduces our experimental setup, specifically

the dataset and queries we use, the baseline algorithms and
most importantly, the indicators we measure and how they
are measured.

Dataset: All queries are run against the full corpus, de-
scribed above in Section 4.1.

Queries: To enable comparable results, we used similar
domains and queried attributes as in related work[14, 16]:
companies from the Forbes 2000 list5 with the attributes
(revenue, employees, founded), countries with the attributes
(population, population growth, area) and large cities (top
3000 worldwide) based on the Mondial database6 with the
attribute (population). When not mentioned otherwise, the
default query set used for the experiments has 4 queries for
each domain-attribute pair, with 20 entities (|E| = 20) each,
and k = 10. For the company and city domain we also dif-
ferentiate between top and random entities, i.e. four queries
from the top 100 of the Forbes list, and four with randomly
picked entities. In addition to the standard queries, we also
vary |E| and k for the performance experiments.

Gold Standards: To establish whether an answer given
by any algorithm is correct, compiling a Gold Standard, i.e.
the set of correct answers for the test queries, is one possible
approach. However, we do not think this method is adequate
as there is usually no single truth even for basic facts. Even
seemingly simple facts such as population counts can refer
to different years, or may use different ways of measurement,
e.g., different ways of defining city borders for the city do-
main. Furthermore, there may be slight variations of the
queried attribute, such as “under 25 years” for the attribute
“population”, which may still be of interest for an exploratory
query. As discussed in Section 1, this is one of the reasons
why we extended entity augmentation to a Top-k paradigm
in the first place.
We therefore asked human judges to classify answers as rel-
evant to the query or not. Specifically, for each entity in

2http://github.com/JulianEberius/REA
3http://wwwdb.inf.tu-dresden.de/misc/dwtc
4http://commoncrawl.org
5http://www.forbes.com/global2000/
6http://www.dbis.informatik.uni-goettingen.de/Mondial/

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

7

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

each result set we asked the judges to evaluate that both
the data source used to cover the entity was relevant to the
query, and also the entity was matched correctly. Note that
while we collected judgments to cover all the domains and
attributes introduced above, to keep the amount of manual
work manageable, the number of augmentations created was
smaller than in the automatic evaluation (only up to k = 5).

Indicators: Due to the nature of the cover problem, it is
not enough to measure precision and coverage of the query
results to asses the quality of the proposed algorithms. We
further need to determine measures such as consistency and
minimality of the individual augmentations, as well as the
diversity of the result list. We will now discuss the indicators
measured in our evaluation in detail.

• Coverage: We measure the percentage of the queried enti-
ties that are augmented with a value. Note that we do not
aim at measuring the quality of the Web tables corpus or
the schema- and instance matching system used, but want
to asses the quality of the covering algorithms and the influ-
ence of different coverage thresholds (explained below) on
the query result. For this reason, if not stated otherwise,
we only measure the indicators for entities for which our
combination of table corpus and matching system can return
at least one (potentially incorrect) result value. We do, how-
ever, also provide absolute coverage percentages for reference
and comparison with other entity augmentation systems in
Section 4.4.

• Precision: Wemeasure the percentage of entities for which a
relevant value was retrieved, as described above in the discus-
sion of Gold Standards. Note that this considers augmented
values for each entity individually, i.e., an augmentation with
precision 1.0 means each entity was augmented with a value
that was judged relevant with respect to the query keyword,
but the augmentation is not necessary consistent.

• Consistency: We measure consistency as the average sim-
ilarity between the datasets that were used to create the
respective cover. A higher value means that the respective
augmentation was created from more similar datasets.

• Minimality: Measures the number of datasets used in a
cover in relation to the number of entities it covers and in-
vert, i.e., 1.0− |c|∑

d∈c |cov(d)| or 1.0 if |c| = 1. The measure is

purposefully not related to the set of all entities E, as a low
coverage would be rewarded with a high Minimality. Thus,
a high value means that the augmentation was created from
a small number of data sources, while 0.0 means that each
entity in the set was covered using a different data source.
As we established in Section 1, a smaller number of sources
(and thus a higher Minimality score) is better, as the user
will have to check less sources to be able trust the result.

• Score: For this indicator, we measure the average ranking
score each individual dataset received from the scoring func-
tion defined in Section 3.

• Diversity: This indicator is measured not for a single cover,
but a set of covers. It is calculated as the average distance
between all covers in the set. Distance in this context is
defined using the inverse of the similarity function defined
in Section 3.1.1. Since the similarity function is defined on

city
pop

ula
tio

n ran
d

city
pop

ula
tio

n top

com
pan

y em
plo

yee
s r

and

com
pan

y em
plo

yee
s t

op

com
pan

y fou
nde

d ran
d

com
pan

y fou
nde

d top

com
pan

y rev
enu

es
ran

d

com
pan

y rev
enu

es
top

cou
ntr

y are
a

cou
ntr

y pop
. g

row
th

cou
ntr

y pop
ula

tio
n

0

0.5

1

C
o
v
er
a
g
e

Figure 4: Coverable entities by query

pairs of datasets, a similarity aggregation function is needed.
In our experiments, we use the average distance between the
datasets of two covers as the distance between the covers.

Parameters: To study the trade-offs between coverage
and consistency, we introduced early break parameters thCov
and thCons to our algorithms. Specifically, we allow our
algorithms to stop covering if at least thCov percent of the
entities are covered, and the consistency would drop below
thCons by continuing. If not mentioned differently, thCov is
set to 1.0, i.e. we aim for full coverage of the queried entities
regardless of consistency.
The search space factor s, used in the Greedy* and Genetic
approaches (Algorithms 2 and 3) that determines the number
of solutions to create in Greedy* and the number of genera-
tions in the Genetic approach is kept constant at 10 in the
paper for space reasons.

4.3 Baseline Algorithms
We include two baseline algorithms into our evaluation:

ValueGrouping and TopGrouping. Both use exactly the same
Web table retrieval and matching components as our pro-
posed algorithms, so the set of candidate datasets and their
scores are the same as well. We will now describe both in
detail:

• ValueGrouping: This baseline is modeled after the value
prediction strategy used in [14]. It collects all values found
in all candidates into per-entity groups, and clusters these
groups according to their values. It then uses the highest
scoring value from the cluster with the highest sum of scores,
thus favoring high ranking data sources that are supported
by many other sources with similar values. It corresponds to
the aggregation paradigm shown in Figure 2a, and produces
only one augmentation.

• TopRanked: Here, the highest ranked data source that
can produce a value for each entity is chosen to provide the
value for the first augmentation. The next augmentation is
then constructed from each second best ranked value for each
entity respectively, until K results have been constructed.
This approach does produce K different covers of the input
entity set, but does not take consistency or diversity into
consideration. It corresponds to the TopRanked paradigm
shown in Figure 2b.

Having introduced data, queries, measures and baseline
for our experiment, we will now discuss the results of our
experiments, regarding coverage, precision, the cover quality
indicators described above, and also runtime performance.

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

8

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

Greedy Greedy* Genetic TopRanked ValGroup

city
pop

ula
tio

n ran
dom

city
pop

ula
tio

n top

com
pan

y em
plo

yee
s r

and
om

com
pan

y em
plo

yee
s t

op

com
pan

y fou
nde

d ran
dom

com
pan

y fou
nde

d top

com
pan

y rev
enu

es
ran

dom

com
pan

y rev
enu

es
top

cou
ntr

y are
a top

cou
ntr

y pop
ula

tio
n gro

wth
top

cou
ntr

y pop
ula

tio
n top

0

0.5

1
P
re
ci
si
o
n
a
t
R
a
n
k
1

(a) Precision at rank 1

city
pop

ula
tio

n ran
dom

city
pop

ula
tio

n top

com
pan

y em
plo

yee
s r

and
om

com
pan

y em
plo

yee
s t

op

com
pan

y fou
nde

d ran
dom

com
pan

y fou
nde

d top

com
pan

y rev
enu

es
ran

dom

com
pan

y rev
enu

es
top

cou
ntr

y are
a top

cou
ntr

y pop
ula

tio
n gro

wth
top

cou
ntr

y pop
ula

tio
n top

0

0.5

1

A
v
g
.
P
re
ci
si
o
n
u
n
ti
l
R
a
n
k
5

(b) Average precision up until rank 5

Figure 3: Results of manual precision evaluation for thCons=0.0, thCov=1.0

4.4 Evaluating Entity Coverage
As described above, coverage, i.e., the percentage of entities

for which a value could be retrieved from the Web table
corpus, is independent of the Top-k consistent set cover
algorithms that we study. Nevertheless, for reference and
comparison with related work we give coverage stats for our
web table corpus and our matching system in Figure 4.
Generally, our results regarding coverage are in line with the
results from [16]. In the city and country domain, coverage
tends towards 1.0. For countries, the universe is sufficiently
small so that most Web tables concerned with countries
contain all, or a significant portion of them, making this
domain the easiest, also for the following experiments. For
cities, the task could of course be made arbitrarily hard by
allowing very small cities, but as in [16] we only consider
sufficiently populous cities, so that the coverage is still high.
The cities domain is still harder than the countries domain,
as the total number of possible entities is not as limited.
Finally, the company domain is the hardest of our test set.
This is mainly due to the number of companies that exist and
the many possible name clashes with very similar company
names containing generic terms such as “East Japan Railway”
or “National Grid”. Again, our numbers are in line with the
related work: the top companies of the Forbes list can be
easily found in our corpus, while the coverage drops towards
50% for tail companies.

4.5 Evaluating Single Entity Precision
In the case of our consistent set covering algorithms, we

are not only interested in the correctness of the augmented
values for each individual entity, but in the consistency of
these values across a single cover. Still, we will first evalu-
ate the precision of the individual augmented values in this
section, with no consideration of their composition to covers,
and then study cover quality parameters as defined above in
Section 4.2.
First, consider Figure 3, which depicts the average precision
of each algorithm by queried domain/attribute combination.
The left graph (3a) shows the average precision of the respec-
tive first augmentation produced by each algorithm, while
the right graph (3b) shows the average precision over the top
five results. As the baseline algorithm ValueGrouping can
not produce more than one augmentation, it is not shown
in the right plot. For the company and city domain, we
differentiate between top and tail queries as described in
Section 4.2.

Best Result not
on Rank 1

Average Improvement
over Rank 1

Genetic 14% 12%
Greedy* 14% 10%
Greedy 23% 9%

TopRanked 32% 7%

Table 1: Percentage of queries with best solutions not on
rank 1, and improvements over rank 1

Note that the differences between the algorithms in this
experiment are minor. This is because individual entity aug-
mentation correctness is mainly dependent on the corpus
and matching system used, and only less so on the way the
data sources are composed. At rank 1 (Figure 3a), when
removing the outliers, the average precision of all algorithms
is almost equal at about 88% and standard deviations be-
tween 10% (TopRanked) and 14% (Greedy*). When looking
at single entity precision averaged until rank 5 using similar
outlier correction, the greedy set cover-based methods drop
to between 75% and 77%, while the Genetic and TopRanked
approaches reach 82% over all domains. The differences in
general trend between the domains are similar to those in
coverage (Section 4.4).
However, concerning our premise from Section 1 that the
best solution may not always be the first solution generated
by an entity augmentation method, we measured the per-
centage of queries for which the best solution was not on
rank 1, and how much the best solution improved over the
first solution. The results are given in Table 1. We can
see that only in a minority of queries the best solution is
found on later ranks, which is to be expected if the ranking
function has been constructed carefully. Still, for all meth-
ods, a considerable amount of queries, from 14% for Genetic
and Greedy* approaches to 32% for the baseline, is better
answered with one of the later augmentations. This supports
our argument that entity augmentation should use the Top-k
result paradigm. Note that this just considers single entity
precision. Our findings concerning consistency and diversity
presented in Section 4.6 will give further arguments for the
Top-k approach. Even more importantly, while the averaged
single entity precision (Figure 3) may be very similar for
all methods, and thus TopRanked may seem like a viable
strategy because of its simplicity, we will see how the non
set-cover based strategies achieve their individual entity re-
sult quality by not paying attention to the quality of the
result as a whole.

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

9

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

Greedy Greedy* Genetic TopRanked ValGroup

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

C
o
n
si
st
en

cy

(a) Consistency

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

D
iv
er
si
ty

(b) Diversity

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

In
h
er
en
t
S
co
re

(c) Inherent Score

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

M
in
im

a
li
ty

(d) Minimality

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

C
ov
er
a
g
e

(e) Coverage

Figure 5: Cover quality indicators by rank, Full covers scenario: thCov=1.0 thCons=0.0

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

C
o
n
si
st
en

cy

(a) Consistency

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

D
iv
er
si
ty

(b) Diversity

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

In
h
er
en
t
S
co
re

(c) Inherent Score

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

M
in
im

a
li
ty

(d) Minimality

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

C
ov
er
a
g
e

(e) Coverage

Figure 6: Cover quality indicators by rank, Relaxed Scenario: thCov=0.75 thCons=0.4

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

C
o
n
si
st
en

cy

(a) Consistency

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

D
iv
er
si
ty

(b) Diversity

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

In
h
er
en
t
S
co
re

(c) Inherent Score

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

M
in
im

a
li
ty

(d) Minimality

0 2 4 6 8
0

0 2

0 4

0 6

0 8

1

Rank

C
ov
er
a
g
e

(e) Coverage

Figure 7: Cover quality indicators by rank, Full consistency scenario thCov=0.0 thCons=0.4

4.6 Evaluating Cover Quality
In this section, we will demonstrate where our novel en-

tity augmentation methods differentiate themselves from the
baseline approaches: consistency and diversity, as well as
minimality of the number of sources used. First, consider
Figures 5 to 7, which depict the five indicators consistency,
diversity, score, minimality and coverage by rank, from 0,
the first augmentation, to 9, the last one in the k = 10
case. Since the ValueGrouping baseline algorithm can only
produce a single result using majority voting between all
possible values for an entity, it is only plotted as a larger dot
instead of a line.
In Figure 5, the special threshold thCov (see Section 4.2)
is set to 1.0, demanding full covers and representing the
default case. We can see that the baseline algorithms, while
producing results with very high average scores, do so at
the expense of using more different sources per cover, which
is visible in the Minimality and the Consistency indicators.
Here, the benefit of viewing the augmentation problem as
a form of the set cover problem becomes apparent: the set
cover-based algorithms can create solutions that are much
smaller, without loosing noticeably in score. It is also quite
noticeable that the basic Greedy approach, while construct-
ing smaller solutions, is not able to outperform the baseline
in terms of consistency or score. The Greedy* algorithm,
by exploring more possible solutions is able to improve on
the baseline, while the Genetic approach finally beats the
baselines clearly with respect to minimality and consistency:
It produces results that are 18% more consistent and achieve
a 23% better minimality on average, while maintaining diver-

sity of the result set and and average score of the data sources
used. Note that these are average scores over all ranks, and
the gains on the first ranks are even higher. Comparing the
first cover created to the ValueGrouping baseline yields a
23% improvement in both consistency and minimality.
Now consider the diversity plots, which show at each rank the
diversity for all results from the first one until the respective
rank. This explains shape of the curves: they start at zero for
one solution, then jump sharply at rank two, when distances
between the two solutions can be measured. The plot shows
that the algorithms behave differently with respect to using
similar datasets for further solutions after the initial ones
have been generated. The basic approach moves through
the similarity space of the candidate sources as it fills its
usage matrix U (see Algorithm 1), penalizing used candi-
dates and those similar to it. Since it only creates at most
k solutions, it is likely to pick new, unpenalized candidates
in each iteration, which explains the strong diversity of the
augmentations generated. The Greedy* approach on the
other hand creates a multiple of the necessary solutions and
will often “wrap around” the similarity space of candidates,
reconsidering used sources in new combinations. The same is
even more true for the Genetic approach, that will combine
existing good solutions to new ones, promoting the survival
of useful data sources.
While the benefit of reusing good partial solutions is obvious,
this leads to more uniform results across the first results of
the Top-k list, as shown in Figure 5b. Note however that
all algorithms converge to a similar diversity level as more
solutions are added to the Top-k list, as it becomes harder
to keep a set diverse the larger it is. At k = 10, the Genetic

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

10

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

Greedy Greedy* Genetic TopRanked ValGroup |D|

10 20 40 50 60 80
100

101

102

103

Number of entities |E|

R
u
n
ti
m
e
in

m
s

100

200

300

N
u
m
b
er

o
f
ca
n
d
id
a
te
s
|D

|

(a) Runtime by |E|, fixed k = 10

3 5 10
100

101

102

Number of covers requested k

R
u
n
ti
m
e
in

m
s

(b) Runtime performance by k, fixed |E| = 20

approach that dominates the baselines in all other aspects
reaches similar levels of diversity when looking at the whole
result list, even though it produces more similar solutions on
the first few ranks.
Next, consider Figures 6 and 7. In these figures we demon-
strate the useful trade-off between coverage and consistency
that is possible with our algorithms: if we lower thCov, i.e.,
we allow a certain amount of uncovered entities if necessary
to keep consistency over thCons. The baseline algorithms do
not have early braking included and stay constant as a frame
of reference. In Figure 6, we allow 25% uncovered entities,
if necessary to keep consistency above 0.4, and in Figures 7
we allow the algorithms to leave as much uncovered as nec-
essary to keep consistency above 0.4. Note that thCons and
thCov are guidelines for the covering process, not hard limits.
Allowing 25% uncovered entities can dramatically improve
the results in all areas, especially consistency and minimality,
which in this case improve 26% and 31% respectively, using
the genetic approach. Interestingly, the results are even more
diverse in this case, improving 12% over the default case
for the genetic algorithm. These two observations can be
explained by the fact that certain entities can only be covered
by data sources that have no fitting “partner” sources, which
reduces consistency if they have to be covered in one cover,
while other entities are coverable by only a small number
of sources, which then have to be included in almost every
cover, reducing diversity.
In the third covering experiment shown in 7, we allow ag-
gressive optimization of the result regarding consistency by
sacrificing coverage completely. We can see that perfectly
consistent and diverse results can mostly only be reached by
not using more than one source: both Greedy* and Genetic
return mostly single datasets as single augmentation on the
first few ranks. Note how in this configuration the algorithms
all select almost completely different datasets for every aug-
mentation as the diversity stays above 0.8 throughout the
higher ranks, but to do so have to choose smaller and smaller
datasets, which is visible in the coverage quickly falling to
unusable levels.

4.7 Evaluating Runtime Performance
We evaluate the runtime performance of the proposed

methods on a Ubuntu 12.04 Virtual Machine running on
2,4GHz Intel Xeon CPUs. As mentioned in Section 4.1, the
algorithms are implemented in Scala, using version 2.11, and
are executed on a version 1.8.0 Oracle JVM. We do not mea-
sure the runtime of the Web table retrieval and the schema
and instance matching step, as this is a constant overhead
for all methods, but do include the similarity calculations,

as they are part of our methods and not of the baseline
algorithms. The set of queries is the same as in the main
experiment reported on in Section 4.6. We give the runtime
once as a function of |E|, the number of entities queried
in Figure 8a, and once as a function of k, the number of
covers to be created in Figure 8b. Note that general set cover
algorithms’ performance depends both on the size of the
universe, or in our case |E|, and on the number of candidate
subsets, or of candidate data sources |D| in our case. In
our system however, the number of candidates |D| directly
correlates with |E|, as our retrieval and matching system
returns more candidate Web tables when more entities are
queried, as shown on the secondary axis in Figure 8a. We
thus measure the influence of both dimensions of the problem
size in one experiment.
From the results it is clear that the baseline techniques are
superior in their runtime performance due to their simplicity.
Both basically consist of grouping possible values by entity,
and ordering by score in the case of TopRanked, or by fuzzy
majority vote on the values in the case of ValueGrouping.
The set covering approaches are more complex, moving them
into a different order of magnitude concerning runtime. Still,
even our prototypical implementation was able to answer all
our test queries in less than one second.

5. RELATED WORK
Notable first work on using the wealth of tables on the

Web was done in [4]. The authors extracted a large scale
corpus of Web tables and proposed several applications for
such a corpus. In [3], this work was continued and an algo-
rithm called MultiJoin was proposed that attempts to find
matching Web tables for each queried entity independently,
and then clusters the tables found to return the cluster with
the largest coverage. However, it does not try to construct
consistent solutions, but returns the set of possible values
for each entity.
The most strongly related work is the InfoGather system[14],
and its extension InfoGather+[16]. Infogather improved the
state of the art especially by identifying more candidate ta-
bles than the direct matching approach by introducing Web
table similarity measures and identifying tables indirectly
matching the query through them. They also introduce
methods for efficiently computing the similarity graph be-
tween all indexed tables offline, which could be applied to
our approach as well, as we currently perform similarity cal-
culations online. This is due to the main difference between
the two approaches: InfoGather uses the similarity graph
to find more candidate tables, but the actual choice of aug-
mented value is done per entity and based on fuzzy grouping

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

11

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

of the values. On contrast, we use the similarity measures
as evidence for selecting a minimal number of Web tables
for our answer, and also produce alternative solutions, which
would not be straightforward based on the fuzzy grouping
value prediction.
InfoGather+ improves the system by tackling similar consis-
tency issues as our work: it assigns labels for time and units
of measurements to tables, and propagates these labels along
the similarity graph described above to other tables where
such labels can not be found directly. While InfoGather+
tackles the problem of producing more consitent results from
various possible Web sources, it does not produce Top-k
results, or minimize the number of sources used.
Web Tables have not only been used to augment attributes
to a set of entities. There is a large body of work that uses
Web table corpora for specific query types. For example, in
[10] whole tables are materialized automatically just from
keyword queries without any known entities, while [15] uses
Web tables to answer single fact keyword queries.
Furthermore, there is more work about similarity between
tables such as [5], where the authors propose methods to
identify tables related to a given query table in a large cor-
pus. Another class of work focuses on understanding the
content of Web tables by trying to match table columns to
an existing knowledge base such as [9, 13]. These works are
complementary to ours: correct labels on candidate tables
could be used for more precise similarity functions between
tables, which would increase both consistency of single covers,
as well as the diversity of the result lists.
Moving away from Web tables, there is a large body of re-
lated on general and web data fusion and truth discovery
from multiple conflicting or correlating sources, see [2, 8] for
surveys. This class of work is concerned with fusing many
sources for a fact to single truth, while we aim at provid-
ing “alternative truths” for a set of facts using a minimal
number of consistent sources. In [6], a similar argument
regarding minimizing the number of sources to consider is
made, though there the aim is to reduce the search space for
data fusion techniques before applying them, while the aim
in our case is to create results minimal covers of an entity
set to make the result easier to understand and verify. In
general, many methods from this area could be applied to
our problem to prune low quality candidate tables, and to
improve our candidate quality scoring.
Our work is also based on automatic schema matching. The
survey [11] gives a good introduction to this large field. Di-
versity in search results is often studied in Web search and
recommender systems research. A good overview is given
in [7]. Finally, the set cover problem is a problem that has
been extensively studied in theoretical computer science and
in operations research with a wealth of works published. We
only want to refer to [1], as our genetic set covering approach
is inspired by this work, which treats the problem of how to
represent and how to cross solutions to the set cover problem
so that the new solutions are feasible set covers as well.

6. CONCLUSION
We have argued that entity augmentation queries based on

large corpora of data sources should be processed as Top-k
queries, while ensuring consistency and minimal size of the
individual augmentations and the diversity of the result list
as a whole. We presented new algorithms for consistent,
multi-solution set covering, and then applied them to Web

table-based entity augmentation. This publication includes
our Web table corpus with 112M tables, as well as the source
code of our Web table retrieval and matching system used
to evaluate these algorithms.
Our experiments show that our genetic set covering-based
approach improves both consistency and minimality of the
results significantly, without loss of precision or coverage,
and while producing a diverse set of results for the user to
choose from. Possible future work includes a more theoretic
analysis of the top-k consistent set cover problem, as well
the investigation of the applicability of further set covering
heuristics.

7. REFERENCES
[1] J. Beasley and P. Chu. A genetic algorithm for the set

covering problem. European Journal of Operational
Research, 94(2):392–404, 1996.

[2] J. Bleiholder and F. Naumann. Data fusion. ACM
Comput. Surv., pages 1–41, 2009.

[3] M. J. Cafarella, A. Halevy, and N. Khoussainova. Data
integration for the relational web. VLDB, pages
1090–1101, 2009.

[4] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: exploring the power of tables on
the web. VLDB, pages 538–549, August 2008.

[5] A. Das Sarma, L. Fang, N. Gupta, A. Halevy, H. Lee,
F. Wu, R. Xin, and C. Yu. Finding related tables. In
SIGMOD, pages 817–828, 2012.

[6] X. L. Dong, B. Saha, and D. Srivastava. Less is more:
selecting sources wisely for integration. In VLDB, pages
37–48, 2013.

[7] M. Drosou and E. Pitoura. Search result diversification.
SIGMOD Rec., pages 41–47, 2010.

[8] X. Li, X. L. Dong, K. Lyons, W. Meng, and
D. Srivastava. Truth finding on the deep web: is the
problem solved? In VLDB, pages 97–108, 2013.

[9] G. Limaye, S. Sarawagi, and S. Chakrabarti.
Annotating and searching web tables using entities,
types and relationships. VLDB, pages 1338–1347, 2010.

[10] R. Pimplikar and S. Sarawagi. Answering table queries
on the web using column keywords. VLDB, pages
908–919, 2012.

[11] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB, pages 334–350,
2001.

[12] S. Sarawagi and S. Chakrabarti. Open-domain quantity
queries on web tables: Annotation, response, and
consensus models. In KDD, pages 711–720, 2014.

[13] P. Venetis, A. Halevy, J. Madhavan, M. Paşca, W. Shen,
F. Wu, G. Miao, and C. Wu. Recovering semantics of
tables on the web. VLDB, pages 528–538, 2011.

[14] M. Yakout, K. Ganjam, K. Chakrabarti, and
S. Chaudhuri. Infogather: entity augmentation and
attribute discovery by holistic matching with web
tables. In SIGMOD, pages 97–108, 2012.

[15] X. Yin, W. Tan, and C. Liu. Facto: a fact lookup
engine based on web tables. In WWW, pages 507–516,
2011.

[16] M. Zhang and K. Chakrabarti. Infogather+: semantic
matching and annotation of numeric and time-varying
attributes in web tables. In SIGMOD, pages 145–156,
2013.

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 8,
ISBN 978-1-4503-3709-0

https://doi.org/10.1145/2791347.2791353

12

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

	ADPDA8E.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Julian Eberius, Maik Thiele, Katrin Braunschweig, Wolfgang Lehner
	Top-k entity augmentation using consistent set covering

