

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806668

Tomas Karnagel, Dirk Habich, Benjamin Schlegel, Wolfgang Lehner

The HELLS-Join - A Heterogeneous Stream join for ExtremeLy Large
windows

Erstveröffentlichung in / First published in:

SIGMOD/PODS'13: International Conference on Management of Data, New York 24.06.2013.
ACM Digital Library, Art. Nr. 2. ISBN 978-1-4503-2196-9

DOI: https://doi.org/10.1145/2485278.2485280

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806668
https://doi.org/10.1145/2485278.2485280

The HELLS-Join - A Heterogeneous Stream join for
ExtremeLy Large windows

Tomas Karnagel, Dirk Habich, Benjamin Schlegel, Wolfgang Lehner

Technische Universität Dresden
Department of Computer Science

Database Technology Group
01062 Dresden

{tomas.karnagel; dirk.habich; benjamin.schlegel; wolfgang.lehner} @tu-dresden.de

ABSTRACT
Upcoming processors are combining different computing units
in a tightly-coupled approach using a unified shared mem-
ory hierarchy. This tightly-coupled combination leads to
novel properties with regard to cooperation and interaction.
This paper demonstrates the advantages of those processors
for a stream-join operator as an important data-intensive
example. In detail, we propose our HELLS-Join approach
employing all heterogeneous devices by outsourcing parts of
the algorithm on the appropriate device. Our HELLS-Join
performs better than CPU stream joins, allowing wider time
windows, higher stream frequencies, and more streams to be
joined as before.

1. INTRODUCTION
Hardware trends are changing towards tightly-coupled het-

erogeneity that means different computing units are com-
bined using a unified memory hierarchy. Fundamentally,
heterogeneity is nothing new; co-processor architectures have
already combined a common CPU with an accelerator like a
GPU. However, these co-processor architectures are rather
loosely-coupled due to the fact that each computing unit
has its own isolated memory block. In this case, data has
to be explicitly transferred between the different units. For
many compute-intensive applications, these data transfers
over the PCIe interface are sufficiently fast and the different
accelerators are efficiently usable. However, the benefit for
data-intensive applications in loosely-coupled environments
is restricted. The performance gain from an accelerator is
usually circumvented by the time needed for data shipping.
Aside from data transfer as one bottleneck, a second bot-
tleneck is the small size of the on-device memory of each
computing unit. Both restrictions result in only a limited
number of data-intensive applications where loosely-coupled
hardware environments can be used efficiently. For data-

©2013 Copyright held by the owner/author(s). Publication rights licensed to
ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in DaMoN’13, June 24 2013, New York, NY, USA
https://doi.org/10.1145/2485278.2485280

intensive applications, a function shipping technique is more
appropriate than a data shipping approach. In this case, an
accelerator would have direct access to the data in a shared
memory block, which avoids the previous mentioned bot-
tlenecks. Upcoming processors like AMD and Intel mobile
chips with integrated GPUs realize this shift. A large uni-
fied memory hierarchy is available and each accelerator has
direct access. This tightly-coupled heterogeneous hardware
approach opens a wide-range of optimization challenges for
data-intensive applications [11]. A B+Tree search has been
proposed as one of the first database algorithms for a tightly-
coupled architecture, showing very promising results[2].
In this paper, we investigate the stream join operation as an
example for a data-intensive application. A stream join is a
fundamental operator in all data streaming systems [6]. It
joins tuples that fulfill certain predicates from two or more
windows, which move continuously over input data streams.
Depending on the size of the windows, the operator has high
performance requirements. The performance of the system
usually limits the size of the stream window, the number of
streams to be joined, or the supported stream frequencies.
Many stream join implementations have been proposed: se-
quential stream join operators [14, 4], which exploit various
index data structures (e.g., hash tables) for a faster pro-
cessing, as well as parallel stream join operators [3, 12, 13],
taking advantage of different types of parallelism and accel-
erator hardware, like GPUs, FPGAs, and the Cell processor.
Join operators without the streaming background have been
proposed for the GPU [5, 7]. However, all of the proposed
GPU implementations work batch-wise, joining two whole
relations and they are not applicable with sliding stream
windows. Additionally, all these approaches are only inves-
tigated in loosely-coupled hardware environments.
Our HELLS-Join approach for a tightly-coupled heteroge-
neous processor, consisting of a CPU and GPU, decomposes
the stream join algorithm in several steps and each step is ex-
ecuted on the appropriate hardware. The compute-intensive
parts are outsourced to the GPU while interpreting the re-
sults is conducted on the CPU. The necessary large number
of comparisons can be done with a high degree of parallelism
and are very suitable for the GPU. However, the GPU can
not forward the result data efficiently, so this has to be done
by the CPU. Our main contributions in this paper are:

• We propose an approach to decompose a stream join
algorithm, employing all devices in a tightly-coupled

Final edited form was published in "SIGMOD/PODS'13: International Conference on Management of Data. New York 2013", Art. Nr. 2, ISBN 978-1-4503-2196-9
https://doi.org/10.1145/2485278.2485280

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

hardware (CPU/GPU) system. Instead of executing
an algorithm only on one hardware component, either
CPU or GPU, we utilize all hardware components for
several algorithm steps.

• We present an extensive evaluation showing the ben-
efits of tightly-coupled hardware environments for our
HELLS-Join. In particular, we demonstrate that our
developed approach is scalable beyond on-device mem-
ory limitations as present in loosely-coupled environ-
ments.

• As we are going to show, our HELLS-Join performs
better than CPU stream joins, allowing wider time
windows, higher stream frequencies and more streams
to join as before.

In the following section, we discuss two different CPU/GPU
systems. Afterwards, we explain a naive stream join ap-
proach as foundation in Section 3. Our HELLS-Join ap-
proach is presented in Section 4, while Section 5 proposes
different execution optimizations. An extensive evaluation
is presented in Section 6. The paper closes with a conclusion
and future work in Section 7.

2. CPU/GPU-SYSTEMS
This section gives a short overview of our underlying het-

erogeneous hardware infrastructures. The combination of
CPU and GPU is available as loosely-coupled as well as
tightly-coupled system. Therefore, we have chosen this com-
bination to evaluate the differences of both systems for a
data-intensive operation.

2.1 Loosely-Coupled Approach
The loosely-coupled combination of CPU and GPU is well-

established, where a discrete GPU, denoted further by dGPU,
can be used (i) for high performance image processing and
(ii) as general purpose co-processor for compute-intensive
applications. CPU and dGPU have their own separate mem-
ory hierarchies with different access bandwidths and laten-
cies, and they are connected by a PCIe interface enabling
necessary data exchanges. The dGPU consists of multi-
processors that are optimized for Single Instruction-Multiple
Data (SIMD) executions.

2.2 Tightly-Coupled Approach
In tightly-coupled approaches, multiple different comput-

ing units are combined on one die with the advantage that
bus and main memory systems are shared. In the past,
this was only done in a homogeneous way by placing multi-
ple CPU cores on one chip to improve parallelism. Due to
smaller form factors, lower power consumption guidelines,
and the demand for system on chips (SoC), hardware ven-
dors integrate different processors and accelerators into one
chip. The most common examples are integrated graphic
processing units (denoted by iGPU). The iGPU is fully in-
tegrated and shares the main memory with the rest of the
system. Examples of this kind of heterogeneous integrations
are IntelsR© 2nd, 3rd, and 4th generation core processors for
desktop and mobile systems and the AMDR© Fusion proces-
sors (also called Accelerated Procession Unit (APU)). To
illustrate the integration of the iGPU, Figure 1 shows the
AMDR© Trinity Architecture, the newest desktop Fusion pro-
cessor from AMD. The iGPU and the CPU cores can access

CPU Core CPU Core
Unified

North

Bridge

integrated GPU

Physical Memory

CPU Memory (managed by OS) GPU Local Memory

L2 Cache L2 Cache

Figure 1: AMD Fusion, Trinity Architecture

the physical main memory. This memory is divided in an
iGPU dedicated part and a part managed by the operat-
ing system. The partition sizes can be set on boot time.
The iGPU and the CPU can access both parts of the mem-
ory using the unified north bridge; however, both devices
have faster transfer rates when accessing their own dedi-
cated memory. It is possible for the CPU and the iGPU to
work on the same data stored in one of the memory parts.
At the moment, iGPUs are only integrated in desktop and
mobile systems. However, recent announcements show the
advances in the field. The Sony PlayStation 4 [9], for ex-
ample, will have an 8 core CPU and an iGPU with 1152
processing elements, both accessing a fast GDDR5 Mem-
ory. There are also plans to equip micro server with hetero-
geneous CPU/iGPU processors. In the future, processors
with similar properties are likely be used in large server en-
vironments, providing high performance for data-intensive
applications.

2.3 Access Bandwidth Evaluation
As a first proof of concept, we evaluated the memory ac-

cess bandwidth of a loosely-coupled as well as of a tightly-
coupled CPU/GPU processor.
In the first part of this evaluation, we placed a predefined
data block in the GPU dedicated memory. To measure the
transfer bandwidth from GPU to CPU, we called a map
and an unmapped command on the CPU. The map com-
mand maps the specified data block into the main mem-
ory, where the CPU can modify the data. If the data is
not residing in the CPU’s main memory, mapping results
in a copy operations to the main memory, while unmap
releases the main memory and copies the data back. As
expected and depicted in Table 1, the tightly-coupled ap-
proach has as better mapping bandwidth for its dedicated
GPU memory, because data is not transferred via the PCIe
bus as in the loosely-coupled approach. This is clearly ben-
eficial for data-intensive operations, where lots of data has
to be processed by different computing units. Additionally,
when the memory already resides in the CPU main memory

Loosely Env. Tightly Env.
Local Mem Local Mem CPU Mem

Avail. Mem. 1 GB 2 GB 30 GB

Map 1.47 GB/s 5.18 GB/s 3092 GB/s
Unmap 2.53 GB/s 5.09 GB/s 240 GB/s

Table 1: Memory Transfer between GPU and CPU.1

Final edited form was published in "SIGMOD/PODS'13: International Conference on Management of Data. New York 2013", Art. Nr. 2, ISBN 978-1-4503-2196-9
https://doi.org/10.1145/2485278.2485280

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

part as it is possible in tightly-coupled systems, there is no
copy operation needed and the memory bandwidth increases
massively (on our system, we achieved a theoretical band-
width of 3092GB/s for the map and 240GB/s for the unmap
operation1). The second part of this evaluation focuses on
bandwidth for read and write operations on the GPU, where
the GPU reads and writes data to direct accessible memory
blocks.

Loosely Env. Tightly Env.
Local Mem Local Mem CPU Mem

Avail. Mem. 1 GB 2 GB 30 GB

Kernel Read 35.94 GB/s 25.29 GB/s 24.6 GB/s
Kernel Write 57.99 GB/s 21.76 GB/s 6.57 GB/s

Table 2: GPU Memory Access Bandwidth.1

In the loosely-coupled environment, the GPU can only ac-
cess its local on-device memory, while in the tightly-coupled
environment accessing the CPU’s main memory is a second
possibility. This time, the bandwidth of the loosely-coupled
environment is much better than in the tightly-coupled en-
vironment as illustrated in Table 2. The reasons are spe-
cific optimizations for memory access and the usage of faster
DRAM in our discrete GPU. However, the tightly-coupled
environment shows two important properties:

1. There is no significant bandwidth difference in reading
data from iGPU local memory or CPU memory.

2. There is a difference in write access times between ded-
icated and main memory. The relatively slow write ac-
cess to CPU’s main memory is caused by cache snoop-
ing to the CPU caches for coherent memory accesses.

Based on our bandwidth evaluation, we are able to con-
clude that dedicated memory accesses are slower for the
tightly-coupled CPU/GPU than for the loosely-coupled vari-
ant. However, the data transfer times to the local memory
are orders of magnitude faster if not obsolete at all. Look-
ing at the memory sizes of our example setup, it should be
clear that only the CPU’s memory is sufficient to support
data-intensive operations. These results motivate the inves-
tigation of the stream join algorithm in a tightly-coupled
CPU/GPU environment and using the integrated GPU to
provide scalability for extremely large stream window sizes.

3. STREAM JOIN OPERATOR
Stream joins are heavily used in stream and event based

systems. Applications like position tracking or click stream
evaluation are able to produce millions of events per second.
Hence, an efficient stream join approach is required to pro-
vide online evaluation of these events.
Generally, the stream join is a regular join operator, in which
the input data comes from two or more streams. In this
paper, we focus on a stream join with band condition as il-
lustrated in Figure 2. The join is performed on two streams
in which tuples are continuously arriving. Instead of hold-
ing all data, the continuous stream is partitioned in sliding
1Measurements were taken with AMD OpenCL Sample
BufferBandwidth using default parameters (0% cache-hit
rate). Map/unmap function call times were used for cal-
culation. If no data is copied, the bandwidth is theoretical.

Window 1

Window 2

Stream 1

Stream 2

...

�� Check Band Condition Join Results

Figure 2: Stream join with band condition.

stream windows, for which the join is executed. For every
arriving tuple, a join with all values in the window of the
opposite stream is performed. For the example in Figure 2,
a tuple arrives from Stream 1, the tuple is added to Window
1 and will be compared with all values in Window 2. For
the comparisons, a band condition is applied if more than
equality has to be evaluated. In this band condition case,
the join tuples of Window 2 need to fall within a predefined
band of the newly arrived tuple of Stream 1.
There are many variants and optimizations available for the
stream join operator with band condition. Aggarwal [1] pro-
vides an excellent overview about these variants and respec-
tive sequential optimizations. Recently, parallel stream join
operators gained much attention. This includes stream join
approaches for FPGAs and NUMA systems [12] as well as for
the Cell processor [3]. In the latter case, chunks of tuples are
transferred to the 8 co-processors of the cell processor and
these cores perform a nested-loop like operation. The au-
thors chose a nested-loop join technique over the hash join or
sort-merge join to implement the join with band conditions.
There are approaches to do an efficient sort-merge join [8]
or hash join [10] with band conditions but the nested-loop
join is a straightforward approach for sliding stream win-
dows. For sliding windows, there are periodically arriving
and leaving tuples. For hash joins, this would mean chang-
ing the hash table on every arriving tuple. A tuple can be
added to the table without a big effort but for leaving tuples
the whole table needs to be scanned and timestamps need
to be compared. Sort-merge joins would sort the window by
the value that is compared. This would result in resorting
for every arriving tuple. Also the window has to be scanned
for leaving tuples (similar to hash table). The nested loop
join does not keep an intermediate state like hash-tables or
sorted data, so no additional update work is necessary.

4. HELLS-JOIN
In the previous sections, we discussed CPU/GPU systems

and a basic stream join implementation. Having a hetero-
geneous hardware environment, the main challenge is to de-
compose the stream join algorithm in several components
that can be scheduled on the appropriate device. We pro-
pose a three component division for the stream join: (i) a
comparison step, (ii) an interpretation step and (iii) a step
for adding tuples to a window. These steps are repeated for
every arriving tuple. The several components are described
as next.

4.1 Step 1: Comparison
Every arriving tuple has to be compared to all values from

the opposite time window. In an empirical evaluation, we
identified that the necessary tuple comparisons for large win-

Final edited form was published in "SIGMOD/PODS'13: International Conference on Management of Data. New York 2013", Art. Nr. 2, ISBN 978-1-4503-2196-9
https://doi.org/10.1145/2485278.2485280

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

dows are a performance bottleneck. Due to large time win-
dows and independent comparisons, this task can be exe-
cuted highly parallel, making it an ideal step for a GPU.
We hold the tuples in data structures of a predefined size.
The size should be larger than the maximum amount of
expected tuples in a time window (dependent on the time
window and the stream frequency). Every tuple contains a
timestamp, which has to be checked for every comparison.
If a value falls within the time window, the band condition
is checked. A join partner is found when the time window
constraint and the band condition is fulfilled.
Using GPUs, we face certain limitations. Programs written
in common GPU programming languages (e.g., OpenCL, or
CUDA) have no possibility to output the joined data via
network. A second challenge is the undefined number of
join results which depend on various factors like band con-
dition or data distribution. Furthermore, the number of the
join results heavily varies over the stream join processing.
That means, storing the direct join results leads to a large,
often sparsely filled memory object. This straightforward
approach introduces a large memory overhead and would
limit our HELLS-join techniques to small windows sizes.
To overcome this limitation, we propose a method of result
compression. Instead of storing the direct join result, we set
a bit for every found join match. The position of the bit
indicates the join partner for later processing. Because of
memory access patterns of the GPU, only 32 bit results are
written. This means, that each GPU-thread does 32 com-
parisons to write a 32 bit result bitmap. The bitmaps of all
the work-items are placed in a data structure for later inter-
pretation. The comparisons and intermediate result storage
work as follows:

1. Start GPU-program with arriving tuple.

2. Comparisons within the GPU-program.

(a) Compare timestamps and check time window con-
straint.

(b) Compare value and check band condition.

3. Encode the join results as bitmap.

These steps are illustrated as an example in Figure 3. A
tuple with the timestamp t = 130 and a value v = 456
arrives. It is compared to all the tuples in the opposite
window, meaning window sizes and the band conditions are
checked. Only the tuple (t = 120, v = 450) satisfies these
constraints and is encoded as a set bit. The position of the
set bit identifies the found joined tuple (here 5th from top).

4.2 Step 2: Interpretation
Naive CPU stream join implementations do not need a

separate result interpretation because results are processed
during the comparison phase. However, when executing the
comparison step on the GPU, we have to introduce this al-
gorithm component. The interpretation component is able
to access the resulting bitmaps of the previous component
when the processing is finished. The task of this component
is to scan the intermediate data structures for the set bits.
When a position is found, the interpretation component con-
structs the join result for further processing.
This interpretation is not as expensive as the comparison

Arriving Tuple

(t=130, v=456)

Results

Compare
Timestamp

Compare
Value

Window Size = 20 Band Condition =

Xi − 10 ≤ Yj ≤ Xi + 15
100 450

105 460

110 350

115 200

120 450

125 550

0
0
0
0
1
0

Figure 3: Parallel comparisons of one tuple to a win-
dow of tuples.

step. Checking for set bits is less computation than check-
ing the time window constraint and the band condition. Fur-
thermore, with the bitmap, it is easy to scan a group of bits
if they are set (e.g., 32 bits at one time). Only if bits are set
in such a group, the search for set bits becomes more fine
grained. This is especially fast if none or only a few results
need to be returned. This interpretation component is best
suited for the CPU.

4.3 Step 3: Adding new Data
Despite the comparison, new tuples need to be added to

a time window. In our fixed size data structure, this is done
regarding the first-in-first-out (FIFO) concept. While this is
an easy task for a CPU managed data structure, it is rather
a problem for GPU managed memory. There are three ways
to add a value to GPU managed memory:

1. Mapping the data structure to CPU memory and mod-
ifying the tuple within the structure.

2. Copying the tuple directly into the window data struc-
ture with language specific copy commands.

3. Starting an GPU program with the tuple as argument.
It then writes the tuple on the specified location.

For a dGPU, the first approach would lead to expansive
memory transfers and is not applicable. For iGPUs, the
memory transfers are not as problematic but mapping would
mean to stop the execution until the the memory is released
(unmap). Even for a short operation like adding a value, this
would stop the command pipeline and reveal the high call
latency, which GPUs have in general. The second and third
way of adding a value hides the latency because they can
be queued between normal GPU-program executions. We
found that the third way, launching a GPU-program with
one thread to write the tuple, fits best into the command
pipeline and therefore bringing best performance results.

5. EXECUTION OPTIMIZATION
In the previous section, we have proposed our novel HELLS-

Join technique. In this section, we are applying hardware
specific optimizations to enhance the performance. Our tar-
get platform is an iGPU of the Trinity architecture (as shown
in Figure 1). However, for small stream windows, we want to
use our implementation with dGPUs as well. In the follow-
ing, we propose a way of optimal memory management for

Final edited form was published in "SIGMOD/PODS'13: International Conference on Management of Data. New York 2013", Art. Nr. 2, ISBN 978-1-4503-2196-9
https://doi.org/10.1145/2485278.2485280

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Window 1 Input/Output Window 2

Tuple of
Stream 1

Add Tuple Compare

Interpret,
Return

Tuple of
Stream 2

Add TupleCompare

Interpret,
Return

Dependencies within operation
Dependencies between operations

Figure 4: Execution pattern with a synchronous in-
terpretation step.

iGPUs and dGPUs and introduce a way to enhance parallel
execution by reducing dependencies.

5.1 Memory Placement
For the memory placement, we have to differentiate be-

tween the dGPU and the iGPU. The dGPU has a fixed local
memory with a high memory access bandwidth. Most dG-
PUs are not able to directly access CPU’s main memory, so
the local device memory must suffice. Here, we have to store
both stream windows and the result data structures within
the device memory. If both windows do not fit within the
device memory, then a window (or a part of it) needs to be
stored in main memory and copied if needed. These copy
operations introduce an significant overhead to the normal
execution and should be avoided.
Using an iGPU, we have two choices to store the data: the lo-
cal memory or the OS managed memory. Even both memory
locations are on the same physical memory, there are differ-
ent access bandwidths for each of them. As shown in Table
2, reading from both parts of the main memory has a similar
bandwidth, because a specialized GPU bus (Radeon Memory
Bus) is used for the access. Also, the memory is allocated
as uncached by the CPU, leading to these high GPU band-
widths. This means that the window data can be stored in
the CPU managed main memory without bandwidth losses
on read access, allowing significantly bigger stream windows
to be stored and processed. For the iGPU, the result data
structures are also stored into CPU memory. Due to the
small size of the results, the effects from the low write band-
width (Table 2) are not as significant as the high access
bandwidth of the CPU (Table 1).

5.2 Parallel Execution
Given our algorithm with three steps, the aim is to run the

steps in parallel on the GPU and the CPU. The three steps

Window 1 Input/Output Window 2

Tuple of
Stream 1

Add Tuple Compare
Interpret,
Return,

Add Localy

Tuple of
Stream 2

Add TupleCompare
Interpret,
Return,

Add Localy

Dependencies within operation
Dependencies between operations

Figure 5: Execution pattern with a asynchronous
interpretation step.

are illustrated in Figure 4 for two arriving tuples. First, a
tuple of Stream 1 arrives, shown in the Input/Output sec-
tion. Adding the tuple to Window 1 and comparing the
tuple to Window 2 can be done in parallel because the two
operations do not depend on each other. Interpreting the
result is triggered after the comparison finished. Then, the
resulting bitmap needs to be evaluated. Tuples are fetched
from the data of Window 2 according to the bitmap, to com-
bine the final join results. Therefore, Window 2 can not be
modified until the interpretation is done. When a tuple from
Stream 2 arrives, it can not be added to Window 2 until the
interpretation step finished accessing the data. Reading the
data of Window 2 in the interpretation step is stalling the
execution until the interpretation is finished. Also there are
multiple expansive copy operations when the dGPU is used.
Therefore, we propose storing the window data twice. The
first copy is reserved for the comparisons, while the second
copy is used for the interpretation step. This way, the de-
pendencies are reduced and the interpretation step can run
totally asynchronous to the comparisons and tuple adding.
This is illustrated in Figure 5. During the interpretation
step, the tuple is added to a local window copy. To ensure
correctness, the interpretation must be done in the same or-
der as the comparisons. This way, we can ensure that the
comparisons and the interpretation step work on the same
data.
In our implementation, the operations on Window 1 and
Window 2 are done on the GPU. For each window, we main-
tain a separate in-order command queue (using OpenCL).
There, commands are queued and executed in order. Com-
mands in different command queues can be executed in any
order because they should not depend on each other. This
gives the GPU the flexibility that is needed to hide latency
and schedule the commands as good as possible.

Final edited form was published in "SIGMOD/PODS'13: International Conference on Management of Data. New York 2013", Art. Nr. 2, ISBN 978-1-4503-2196-9
https://doi.org/10.1145/2485278.2485280

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0 50 100 150 200

0
10

0
20

0
30

0
40

0

Size of Window (mio entries)

tim
e

pe
r

tu
pl

e
(m

s)

dGPU iGPU
Boundary Boundary

Single CPU
Parallel CPU
iGPU/CPU
dGPU/CPU

Figure 6: Scalability with window size.

6. EVALUATION
We implemented our HELLS-Join in C++ and OpenCL.

It performs the three steps as described in Section 4. We
applied our memory considerations and the dependency im-
provement for a better parallel execution. Our test environ-
ment consists of an AMD APU (A10-5800K) with a memory
access pattern as shown in Figure 1 and a discrete NVIDIA
GPU (Geforce GTX 295). The properties of the CPU and
GPU are compared in Table 3. The Nvidia GPU consists
of two chips on one board. For comparison and complex-
ity reasons, we only use one of those chips. Comparing
one NVIDIA GPU chip with the AMD iGPU shows, that
the iGPU has only 69% of the compute performance as the
dGPU. However, the transfer bandwidth is higher for the
iGPU and there are more memory options to choose from
(Table 1 and Table 2 represent these two GPUs).
We evaluated our implementations concerning the scalabil-
ity with window sizes in Figure 6. All implementations
have a linear scaling behavior for small window sizes. How-
ever, when the dGPU/CPU (loosely-coupled) implementa-
tion reaches the limits of the device memory (dGPU Bound-
ary), further execution is limited by data transfers for swap-
ping. These data transfers have an significant influence on
execution times resulting in slower execution than single
thread performance. Avoiding transfers, the iGPU version
scales linearly even beyond its on-device memory (iGPU
Boundary). The data is residing completely in the CPU
managed memory space, so the device memory boundary
has no impact. The speedup of the iGPU version is not sig-
nificant for small windows, however, for large windows, the
speedup reaches 12.3x compared to single threaded execu-
tion and 4.5x compared to multi threaded execution.
The test was done on random data with a selectivity around
0,004% per tuple. This means for each tuple, 0,004% of the
tuples within the window matched and were joined. For a
large window like e.g., 200 million entries, this would mean
8000 join results per arriving tuple. We believe an output of
that size is realistic for common stream join applications like
joining vehicle positions over a long time period. There, po-

AMD A10-5800K NVIDIA
CPU HD 7660D GTX 295

Compute Units 4 6 2 x 30
Cores 4 384 2 x 240

Frequency (MHz) 3800 800 1242
Perf. (GFLOPS) 121.6 614.4 2 x 894.2
Max Power Cons. 100 W 300 W

Table 3: AMD APU and Nvidia GPU

sitions usually differ enough, resulting in only a small subset
of the data being joined with the arriving tuple. However,
we evaluated higher selectivities, where the interpretation
step shows increasing significance on the execution time. We
have seen a break even point with the CPU version around
40% selectivity and a performance drop of 0.5x for 100% se-
lectivity. In these unlikely cases, the bottleneck shifts from
the comparisons to the interpretation. In these unusual set-
tings, a pure CPU version performs better.

7. CONCLUSIONS AND FUTURE WORK
In this paper we propose the HELLS-Join, a heteroge-

neous stream join on loosely and tightly-coupled hardware
environments (CPU/GPU) for extremely large stream win-
dows. We decompose the stream join algorithms, schedule
the components on CPU and GPU devices, and introduce
optimizations that enhance memory placement and paral-
lel execution. Furthermore, we use an integrated GPU to
enable scalability beyond device memory reaching speedups
of over 12x compared to single threaded performance. With
our implementation, we evaluate integrated GPUs for highly
parallel and data intensive tasks. We show that integrated
GPUs have reached a performance level that is useful for
compute intensive algorithms combined with data sharing
options for data intensive algorithms. Integrated GPUs es-
sentially solve data storage and transfer problems of discrete
GPUs, making GPUs ready for data intensive applications.

Final edited form was published in "SIGMOD/PODS'13: International Conference on Management of Data. New York 2013", Art. Nr. 2, ISBN 978-1-4503-2196-9
https://doi.org/10.1145/2485278.2485280

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Our stream join implementation is highly optimized for the
AMD Trinity architecture and shows very promising results.
It is not foreseeable if these results are similar on coming ar-
chitectures or hardware from different vendors. For porta-
bility, future work could include a general approach for de-
ciding memory placement and execution devices on runtime
to adapt to different hardware properties.

8. ACKNOWLEDGMENTS
This work is partly funded by the German Research Foun-

dation (DFG) within the Cluster of Excellence “Center for
Advancing Electronics Dresden”, by the European Union
together with the Free State of Saxony through the ESF
young researcher group “IMData” 100098198, and by the
iBIT project, as part of the Leading-Edge Cluster “Cool Sil-
icon” 100067363.

9. REFERENCES
[1] C. C. Aggarwal. Data Streams: Models and

Algorithms (Advances in Database Systems). 2006.

[2] M. Daga and M. Nutter. Exploiting coarse-grained
parallelism in b+ tree searches on an apu. In
Proceedings of the 2012 SC Companion: High
Performance Computing, Networking Storage and
Analysis, SCC ’12, pages 240–247, Washington, DC,
USA, 2012. IEEE Computer Society.

[3] B. Gedik, P. S. Yu, and R. R. Bordawekar. Executing
stream joins on the cell processor. In VLDB ’07, pages
363–374, 2007.

[4] L. Golab and M. T. Özsu. Processing sliding window
multi-joins in continuous queries over data streams. In
VLDB ’03, pages 500–511, 2003.

[5] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju,
Q. Luo, and P. Sander. Relational joins on graphics
processors. In SIGMOD ’08, pages 511–524, 2008.

[6] J. Kang, J. Naughton, and S. Viglas. Evaluating
window joins over unbounded streams. In ICDE’03,
pages 341–352, 2003.

[7] M. D. Lieberman, J. Sankaranarayanan, and
H. Samet. A fast similarity join algorithm using
graphics processing units. In ICDE ’08, pages
1111–1120, 2008.

[8] H. Lu and K.-L. Tan. On sort-merge algorithm for
band joins. IEEE Trans. on Knowl. and Data Eng.,
7(3):508–510, June 1995.

[9] S. E. playstation.com. Playstation4 specification.

[10] V. Soloviev. A truncating hash algorithm for
processing band-join queries. In ICDE, pages 419–427,
1993.

[11] K. L. Spafford, J. S. Meredith, S. Lee, D. Li, P. C.
Roth, and J. S. Vetter. The tradeoffs of fused memory
hierarchies in heterogeneous computing architectures.
In CF’12, pages 103–112, 2012.

[12] J. Teubner and R. Mueller. How soccer players would
do stream joins. In SIGMOD ’11, pages 625–636, 2011.

[13] K. Tsakalozos, M. Tsangaris, and A. Delis. Using the
graphics processor unit to realize data streaming
operations. In MDS ’09, pages 3:1–3:6, 2009.

[14] S. D. Viglas, J. F. Naughton, and J. Burger.
Maximizing the output rate of multi-way join queries
over streaming information sources. In VLDB ’03,
pages 285–296, 2003.

Final edited form was published in "SIGMOD/PODS'13: International Conference on Management of Data. New York 2013", Art. Nr. 2, ISBN 978-1-4503-2196-9
https://doi.org/10.1145/2485278.2485280

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	ADPB75B.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Tomas Karnagel, Dirk Habich, Benjamin Schlegel, Wolfgang Lehner
	The HELLS-Join - A Heterogeneous Stream join for ExtremeLy Large windows

