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ABSTRACT
Scientific computations and analytical business applications are of-
ten based on linear algebra operations on large, sparse matrices. 
With the hardware shift of the primary storage from disc into mem-
ory it is now feasible to execute linear algebra queries directly in 
the database engine. This paper presents and compares different 
approaches of storing sparse matrices in an in-memory column-
oriented database system. We show that a system layout derived 
from the compressed sparse row representation integrates well with 
a columnar database design and that the resulting architecture is 
moreover amenable to a wide range of non-numerical use cases 
when dictionary encoding is used. Dynamic matrix manipulation 
operations, like online insertion or deletion of elements, are not 
covered by most linear algebra frameworks. Therefore, we present 
a hybrid architecture that consists of a read-optimized main and a 
write-optimized delta structure and evaluate the performance for 
dynamic sparse matrix workloads by applying workflows of nuclear 
science and network graphs.

Categories and Subject Descriptors
E.1 [Data Structures]: Arrays, Tables; G.1.3 [Numerical Lin-
ear Algebra]: Sparse, structured, and very large systems; H.2.8
[Database Applications]: Scientific databases

General Terms
in-memory databases, linear algebra

1. INTRODUCTION
Linear algebra in the context of database systems has recently been 
discussed in the research community, as it is a fundamental pillar of 
analytical algorithms. Matrices and matrix operations are used in a 
variety of use cases in the science and business world. Among these 
application fields are: nuclear physics [29], genome analysis [25], 
electrical, mechanical and chemical engineering [35], economical 
correlation analysis, machine learning and text mining [19], and 
graph algorithms [28], to mention only a few.
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In the era of big data and data deluge in business and science en-
vironments, data replication from database management systems
(DBMS) into external linear algebra systems, for instance Matlab
or R, becomes more and more time- and memory-consuming. As
a consequence, data should only reside in a single system, which
for business environments usually is a relational DBMS. However,
disk-based DBMS’s exhibit poor performance of random access pat-
terns on big data sets, such as linear algebra operations on very large
matrices. The decrease in RAM prices over the last years laid the
foundation for the shift of the database storage from hard disc into
main memory, which resulted in a considerable performance boost
of analytical queries on large data sets [18]. With the data residing
in RAM, it has become worthwhile to investigate how structures and
algorithms of numerical libraries can be integrated into the database
engine. Besides the change in database system design due to the
emerging hardware trends, the introduction of a column-oriented
database design [9] has shown performance advantages on analyti-
cal workloads in contrast to conventional row-oriented approaches.
As we show in this work, a columnar storage layout yields an easy
adoption of known sparse matrix structures.

We outline two major limitations of using of a conventional DBMS
for linear algebra applications: first, random access on hard disc
and unsuitable data structures and operators result in a poor per-
formance. The second restriction is usability. Since relational
DBMS’s do not provide appropriate data objects, such as matrices
and vector, data scientists often rely on hand-written and highly spe-
cialized solutions. But rather than being responsible for maintaining
hardware-dependent solutions, many scientists would prefer to work
on a more conceptional level. A DBMS with integrated support
for matrices as first class citizens could serve as a framework for
scalable linear algebra queries, and supersedes the need for copying
data to an external algebra system.

The integration of linear algebra operations into the database system
imposes the following requirements:

• Avoidance of data transfer. With the data persisted and kept
consistently in a single database system with integrated linear
algebra functionality, the expensive copying into external
systems becomes dispensable.

• Single source of truth. The absence of redundant copies of
data in external systems avoids data inconsistencies. More-
over, the corresponding meta data of data sets can be updated
synchronously and consistently with the raw data.
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• Efficient implementation. Data scientists require a system
that is able to compete with existing high performance sys-
tems, which usually are optimized for the platform hardware.
Efficient algorithms for linear algebra have been researched
thoroughly for decades, so there is no need to re-invent the
wheel. Carefully tuned library algorithms can be reused as a
kernel for medium-sized matrices1 [23, 34].

• Manipulation of data. In several analytic workflows, large
matrices are no static objects. Single elements, rows, columns,
or matrix subregions should be able to be read, updated or
deleted by the user.

• Standardized user API. Users from science environments
desire to have an declarative and standardized language for
matrix manipulation primitives and linear algebra operations.

To address each of these requirements, we present an architecture for
sparse matrices that seamlessly integrates with a column-oriented
in-memory DBMS, and provide an application interfaces that al-
lows workflows from science and business environments to be run
efficiently on our system. Our main contributions are:

• Mutable sparse matrix architecture. We present a matrix
architecture with a columnar layout by taking advantage of
well-known, ordered sparse matrix data structures. Moreover,
we show how a two-layered main-delta storage can be ex-
ploited to provide dynamic matrix manipulation in constant
time, without being penalized by a reordering of the optimized
main matrix representation.

• Matrix application interface. Similar to the data manipula-
tion language of transactional, relational systems, we sketch
an application interface to access and manipulate matrices.

• Applicability to non-numeric use cases. We show how rela-
tional tables can reinterpreted as sparse matrices, and analyti-
cal queries can be rewritten to exploit efficient linear algebra
algorithms.

• Evaluation. We implemented different matrix representations
and evaluate the performance of our architecture against al-
ternative approaches using real world applications of science
and network graphs.

The remainder of this paper is structured as follows: Section 2
provides an overview of recent research about the integration of
array and sparse matrix structures into databases. In section 3 we
discuss different representations for large, sparse matrices. Section 4
presents our physical storage architecture. A brief introduction
about different matrix access patterns, manipulation types and linear
algebra primitves is provided in section 5. Two example workflows
are described in 6, which are taken as a benchmark for our extensive
evaluation in section 7.

2. RELATED WORK
This section is subdivided into four topics of related work where we
see intersections with our work.

1We refer to medium-sized matrices as data volumes which fit into
the memory of a single machine

2.1 Linear Algebra in Databases
Within the past years, a lot of research has been pursued to integrate
multidimensional arrays and linear algebra operations into database
systems. A popular work to mention within this area is MAD Skills
[16], which shows how plain SQL can be utilized to calculate linear
algebra expressions, although the authors add user defined functions
(UDFs) and infix operators to make the query look more natural.
Moreover they admit that SQL terms are rather suitable to pair up
scalar values than treating vectors as “whole objects” and do not fit
the natural way of thinking of a data scientist with a mathematical
background. It is also stated that expressions based on SQL require
the knowledge of a certain storage representation, for instance the
triple representation for matrices, which is not optimal for many use
cases. Their work is continued by introducing a UDF library for
data mining algorithms on SQL DBMS’s, which however requires a
DBMS supporting C++-written UDFs [21].

Some commercial data warehouse vendors claim to offer linear
algebra operations that have been pushed down to the database
engine [1, 2], e.g. in conjunction with support for the R statistical
language. However, details about their systems are rare and they are
– to the best of our knowledge – restricted to dense linear algebra
and not amendable to non-numeric use cases. Another approach
based on Hadoop is SystemML [19], where basic linear algebra
primitives are addressable via a subset of the R language with a
scalable MapReduce back-end.

2.2 Array DBMS
Approaching from a scientific point of view, there are array-based
DBMS’s like RasDaMan [13] and SciDB [15, 33], which come with
query languages that are designed for array processing, e.g. RASQL,
AQL [3] or SciQL [24]. However, many array DBMS’s and the
associated languages came up in domain-specific environments, for
example multidimensional image processing, and are often geared
towards the particular workflows of this domain, and not towards
common linear algebra operations. SciDB [33] addresses this dis-
crepancy by providing three different programming interfaces, each
with a different flavor. In contrast, our work comprises an interface
that could be integrated in many languages, hence, is rather indepen-
dent from the particular language design. Another major difference
of our work to array-based DBMS’s is that our system smoothly
integrates with the relational world, since we use the data structures
of a columnar RDBMS engine. This obviates the urge to transfer or
convert the present data into arrays, which is often infeasible, e.g.
for large, sparse graph data.

In order to combine linear algebra with in-memory, column-oriented
DBMS’s, we recently proposed a two-layered architectural model [23].
The model foresees a logical component in the databases engine,
which contains the language interface, linear algebra expression
parsing and a logical optimization. The physical component uti-
lizes the persistence infrastructure of the database system and maps
sparse matrices to a columnar storage layout. This paper ties in
with the physical part, where we will describe how two-dimensional
matrices are efficiently integrated in a column-oriented database
architecture and show how concepts from sparse matrix technology
can be exploited on general dictionary-encoded value columns.

2.3 BLAS and Sparse Structures
As we strive for a solution that is able to compete with hand-tuned
implementations, it is essential to take a glance outside the data-
base world, where efficient linear algebra computation has been
thoroughly researched for several decades. From a performance
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perspective, Stonebraker et al. [34] propose the reuse of carefully
optimized external C++ libraries as user defined functions for linear
algebra calculations, but leave the problem of resource management
and suitable data structures in this hybrid world yet unsolved.

It is commonly agreed that a tuned BLAS implementation is the
best choice for computations on small, dense matrices. Its inter-
face is implemented by specially tuned libraries utilizing single-
instruction multiple-data (SIMD) instructions. Libraries are pro-
vided by the open-source world or directly by hardware vendors,
like the Automatically Tuned Linear Algebra Software (ATLAS [4]),
Intel Math Kernel Library (MKL [5]) or AMD Core Math Library
(AMCL [6]). BLAS has been extended by the Linear Algebra Pack-
age (LAPACK [11]) and its distributed version ScaLAPACK [14],
providing various solvers for linear equation systems and matrix
factorization, which are however restricted to dense matrices.

Since sparse matrix algebra has been less established than dense
in numerical computing applications, some library providers just
started in the last decade to provide implementations for sparse
matrices. However, sparse matrix operations on large, distributed
systems is yet a topic of research [36, 10, 37]. It is widely known
that there are various ways to store a sparse matrix, and each of
them might be the best for a certain scenario. The efficiency of
a storage representation highly depends on the specific topology
of the matrix, since there are typically recurring shapes, such as
diagonal, block diagonal or blocked matrices. A comprehensive
overview of the different types of sparse storage representations is
given in Saad et al. [30]. Among the most used formats are the
compressed sparse row (CSR) [12] and compressed sparse column
(CSC) representations of matrices. A further description of the CSR
representation is given in section 3.4, as it plays a key role in our
indexed columnar database storage layout.

2.4 Generalization to Other Scenarios
Database-integrated sparse matrix representations and linear algebra
operations may also be used for scenarios of other fields that contain
matrix-like data structures. The duality between the representation
of graphs as a set of vertices and edges and its adjacency matrix is
well-known in the graph science community. Nevertheless, graph
algorithms and efficient numerical linear algebra computing have
been evolving rather separately. Recent research [22] has been
pursued on the similarity between graphs and sparse matrices, and
outlines that graph algorithms could benefit from the highly efficient,
array-like access patterns of sparse linear algebra. For example, the
Boost CSR graph [7] provides a compressed sparse row-based C++
graph implementation, which however has the disadvantage of being
immutable. In contrast, our sparse matrix architecture described in 4
is not limited by immutability.

3. MATRIX STORAGE ARCHITECTURE
In this section we face the architectural question of how a large
sparse matrix should be represented in a columnar database system.
We therefore consider different columnar data structures for matrices
with regard to their integrability into an in-memory DBMS.

The challenge of many analytical database systems, which strive for
both quick query execution and immediate updates, is the dualism
of read- and write-optimized structures. Therefore, we examine the
representations according to the following two criteria: optimiza-
tion for read access and the complexity of manipulations, i.e. the
mutability of the data structure. Since these opposed characteristics
are unlikely to be satisfiable achieved by a single structure, we use

a main-delta approach. The separation of an abstract storage layer
into two different physical representations, which is normally an
optimized (compressed) static and an mutable delta structure, has
already been applied in recent database systems [17].

We describe four different representations for matrices with respect
to their applicability in our main-delta architecture, which is then
presented in detail in section 4.

3.1 Matrix Table
A straightforward way of storing matrices in a RDBMS is to trans-
late matrix rows to table rows and matrix columns to table columns.
This approach results in a m × n-sized table for a m × n matrix,
as shown in Fig. 1a. In a column-oriented DBMS this would be
reflected as n separate column storage containers. However, this
representation often reaches its limitations if matrices are very wide,
since the number of table columns in common DBMS’s is usually
restricted. The apparent advantage, that the matrix table representa-
tion is intuitive because it preserves the logical two-dimensionality
of a matrix, loses its justification when the matrix size grows to
an extent where displaying the matrix interactively is simply not
feasible anymore.

Moreover, the matrix table is a dense representation, which makes
it unusable for sparse matrices, unless the individual columns are
compressed. Compressing the individual columns would decrease
memory consumption, but usually adds the decompression to the
algorithm execution runtime. The advantage of individual column
compression in conventional business tables becomes superfluous
as the columns of a matrix tend to be of similar structure.

3.2 Single Value Column
Another way of representing a matrix is to put every value (including
zeros) adjacently into one large, consecutive value sequence. This
translates into a single table column (see Fig. 1b) and internally
results in a large value container.2

For this representation, a 2D to 1D linearization is needed. This
mapping is implicitly performed on regular 2D-arrays in most pro-
gramming languages, since the memory is sequentially addressable
either way. In our example we use a row-by-row sequence, which
is effectively a linearization according to the row-major order. The
position of each matrix element in the sequence can be calculated
using its 2D coordinates and the matrix m × n dimensions, i.e. the
position of an element (i, j) in the sequence is i · n + j. The advan-
tage of this uncompressed representation is obviously that reads and
writes are of constant complexity, whereas the disadvantage lies
in the static memory consumption of O(m · n), independent of the
sparsity of the matrix.

It should be mentioned that the single value column representation
is clearly not relational, since positional referencing within a single
table column elements is usually not supported and contradicts the
relational thought of having an unordered set of relations. We will
however assume that a logical layer for addressing single matrix
elements in the DBMS exists and use the uncompressed 1D array
representation as a comparison measure in our evaluation.

2In order to avoid misunderstandings with a matrix column, con-
tainer refers to the storage structure for a column in a column-store
DBMS.
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Figure 1: Overview of the different approaches to represent a matrix logically in a DBMS (middle) and their internal representations in a
columnar storage (right): a) Matrix table, b) single value column, c1) triple table, c2) CSR representation

3.3 Triple Table
A third way of representing a matrix is as a collection of triples
(Fig. 1c), where each triple contains the row and column coordinate,
and the value of the corresponding matrix element: 〈row, col, val〉.
The row and col attributes form a composite primary key, thus
duplicate matrix elements are avoided. This variant turns out to be
effective if the matrix is sparse, because only the non-zero elements
have to be kept and the order of the rows is generally arbitrary.

In a column-oriented database, this triple table is represented as
separate containers in the storage layer. Each of the containers has
the length Nnz, which is equal to the number of non-zero matrix
elements, resulting in a total memory consumption of O(3Nnz). To
find an element in the unsorted, not indexed triple table a full column
scan (O(Nnz)) is required. The insertion of additional non-zero
matrix elements is performed in constant time as they can just be
appended to the end of the respective physical container, which
makes the triple representation suitable as delta structure in our
architecture. Further compression of the triple table can be achieved
by sorting it according to one of the coordinates. The thereby
resulting adjacent chunks of identical numbers in the corresponding
container can then be compressed. This, however, influences the
update and algorithmic behavior, so that the compressed format is
considered as a separate representation.

3.4 CSR Representation
The compressed sparse row and compressed sparse column for-
mat [12, 30] are well-known sparse matrix structures in the numeri-
cal algebra community. For the sake of simplicity, we confine this
description to the CSR representation (Fig. 2), which we briefly
recapitulate. The CSC representation of a matrix A is equal to the
CSR representation of the transposed matrix AT , and vice versa.
The CSR representation is effectively a compression of the row-

major-ordered triple representation. The row-major order allows

0
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3
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4

Row
[0..1]

[1..4]

[4..5]
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4
4
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34
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3.2
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3.8
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Figure 2: The CSR representation. Left: Compression of the row
container. Right: The row pointer vector (RowPtr). The access path
to the first matrix row is sketched.

replacing the row container by a row pointer vector (RowPtr) which
contains only the start positions of each matrix row, as shown in
Fig. 2. The central characteristic of the row pointer vector is that
it also acts as an index, since a look-up for a row coordinate value
provides the physical positions of the matrix row in the remaining
containers of the triple table. As an example, to get all elements of
the first row, every triple from the row start position RowPtr[1] up to
the end position RowPtr[2] − 1 is returned. The row pointer vector
of an m×n matrix has thus the size m+1, where the (m+1)th element
denotes the end position of the mth row in the column and value
containers. The total memory consumption is O(2Nnz +(m+1)), thus
usually less than that of the triple format, because the inequation
(m + 1) ≤ Nnz is only violated if the matrix contains rows of zeros.

In the original CSR implementation [12], the materialized row con-
tainer is discarded and replaced completely by the row pointer
vector. As contrasted to the uncompressed triple representation,
the complexity for the inverse access, i.e. , finding the row coordi-
nate x to a table position i is not constant. For this operation the
interval of the start positions I : [IV , IV+1] where i ∈ I has to be
determined. However, this can be easily performed using a binary
search in an asymptotic complexity of O(ln(m + 1)), as the row
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pointer vector is sorted. In contrast to many naive conventional
compression techniques that are used columnar stores, a partial or
complete decompression of the row pointer vector is not necessary.
The row access in O(1) and the (average) single element access in
O(ln

√
Nnz) time makes it a reasonable choice for our static main

storage structure.

3.5 Impact of the Linearization Order
As the linearization order plays an important role in most of the
abovementioned representations, it is essential to know that cer-
tain algorithmic patterns favor certain orders. The row-major and
column-major ordering are biased linearization techniques. For in-
stance, a row-major order would not be chosen as internal layout
when it is likely that complete columns are accessed. A single col-
umn iteration translates into a jump memory access pattern on a
row-major order, since the addresses are separated by the row width
and spread over the complete memory section, whereas it yields in
a cache-efficient, locally restricted and sequential memory scan on
a column-major order. Although there are non-biased linearizations,
such as the recursive Morton order [27] or the Hilbert curve, they
exhibit poor cache locality for one-directional algorithmic patterns,
e.g., BLAS level 2 operations [8].

Furthermore, the linearization order defines the compression into ei-
ther CSR (row-major) or CSC (column-major). With the row pointer
vector as index, algorithms with a row-centric pattern obviously ben-
efit from a CSR structure whereas column-centric algorithms would
favor a CSC-based approach. This introduces obviously a bias in
algorithmic performance, but according to our notion the majority
of algorithms usually are one-directional, i.e , they can be expressed
in a way that accesses only one of the two dimensions. Examples
are the matrix-vector multiplication or the graph breadth-first search,
which we sketch in section 6. However, if an algorithm favors a CSC
structure, but the matrix is available in CSR representation, then
often an alternative algorithm working on the transposed structure
can be used, since ACSR = (AT )CSC.

Nevertheless, in contrast to the sole use of numerical libraries or
common algebra systems, where the user is required to define the
matrix representation in advance, and has to be aware of the algorith-
mic access and manipulation patterns, a DBMS that accommodates
query statistics can act as advisor to reorder the matrix representa-
tion, as proposed in [23].

4. SYSTEM ARCHITECTURE
In this section, we present a novel approach for supporting mutable
sparse matrices, which seamlessly integrates with a column-oriented
DBMS. We show in particular how the mutability of large ma-
trix data sets, which is one of our main requirements, is provided
without losing the advantage of optimized storage structures. More-
over, we underline that the efficient indexing method of the CSR
representation can be exploited by arbitrary tables, when integer
dictionary-encoding is used.

We point out that all of the following data structures of our archi-
tecture are contained in RAM. In particular in sparse linear algebra,
random access patterns are usual, which becomes clearer when we
sketch example algorithms in section 6. For not being penalized
by hard disk accesses, we chose a main memory database environ-
ment [18], which does not pose a limitation, since recent in-memory
systems [17] are nowadays reaching storage scales of 1 TB and
more.

In recent DBMS’s [17] the storage architecture of each column is
separated into a static main structure, which is compressed and
read-optimized for online analytical processing (OLAP), and an
incremental delta structure, which is write-optimized for online
transactional processing (OLTP). The delta storage is merged into
the main storage periodically, and each of these merge steps includes
a reorganization, the original purpose of which is to improve the
compression ratio by reordering the table rows. In our system, we
exploit the reorganization to sort the columns by their values. This
step is transparent to the user and can be implemented in a way
so that online query execution performance is not affected. The
internal algorithms are usually dependent on the representation and
are therefore executed separately on the main and the delta storage.

4.1 Static Main
The static main component of our architecture contains a data rep-
resentation that is optimized for read operations, and moreover to
the patterns of sparse matrix algorithms. Our evaluation in section 7
shows that a CSR (CSC) representation turns out to be beneficial
in a variety of use cases, especially in the applications we present
in section 6, which are related to the sparse matrix-vector multipli-
cation. Besides its efficiency and applicability in many numerical
libraries, the CSR representation integrates well into a column-
oriented DBMS, since the row pointer vector is at the same time
both an index for the triple table and the compressed version of the
row container itself.

We want to emphasize that the CSR representation, and thus the
derived CSR index3 are not limited to applications with matrices.
Every database table accommodating a relation R = {a1, a2, ...} of
at least two attributes and arbitrary values, except the null value
(ai , NULL), can be transformed into an internal CSR structure, if
the values are translated into subsequent integer values. We con-
sider a column-store DBMS [17] that uses by default dictionary
encoding for every column in order to reduce the memory con-
sumption and improve the scan performance, since table values in
business environments are predominantly reoccurring strings. That
means, each table value of arbitrary format is assigned an integer
id ∈ {0, 1, ..., nvalues − 1}, so that only the integer value IDs are ma-
terialized and kept in the containers. This circumstance allows for
creating a CSR-based representation for a large group of use cases.

The dictionary encoding is sketched in Fig. 3, which shows the inter-
nal database representation of a social network table. The dictionary
of the Name attribute is sorted in ascending order by its values,
which are then assigned consecutive integers, starting with zero. As
a result, the materialized container for a table column consists only
integer values. The single precondition for the applicability of our
CSR-based representation is the ordering of the table. The sorting
of every container in the corresponding table according to the value
ids of the leading attribute, which is Name in Fig. 3 and Row for a
matrix table, is performed during the reorganization step following
a delta merge. After sorting the table, the CSR index is created.

It is noteworthy that in the original form of CSR [12] a two-level
nested sorting is used to achieve a strictly row-major ordering of
a two-dimensional matrix: the sort order is first by row, then by
column values. However, the latter is not required to create the CSR
index, although a subordering of the column leads to an increased
algorithmic performance. This can be explained by cache effects:
during a matrix vector multiplication, the column coordinates refer

3The CSR index corresponds to the row pointer vector
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Friend of

0
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1
1
0
1

Since

Table Column Container (TC)

Figure 3: The dictionary-encoded columnar storage architecture of a social network graph table that contains string and date values. a) The
logical view of the table in the database with two attributes (Name, Friend of ) that denote the graph topology, and an auxiliary attribute (Since).
b) The internal representation that consists of dictionaries and integer columns.

to positions in the target array. If they were randomly ordered, many
cache-lines would have to be evicted and reloaded again, whereas
an ascending order leads to cache-friendly writes.

4.2 Incremental Delta
The sorted characteristic of the optimized CSR representation makes
it a static structure that is not mutable in constant time. Hence, in
common numerical algebra workflows the representation has to be
rebuilt after manipulating the matrix, even for slight changes like the
single insert of an additional nonzero matrix element. This results
in a O(N ln N) sorting overhead that becomes particularly expensive
for very large matrices in a dynamic workload, like the example
workflow described section 6.
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3
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1
2
3
4
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1

1

0

1

∆-VC

+

Delta ∆Main (CSR)

Figure 4: Column-oriented architecture containing a static main and
an incremental delta structure.

Thus, our architecture (Fig. 4) foresees an updatable, incremental
delta structure that coexists with the static main structure.

Inserts of non-zero elements are processed by simply appending
a 〈row, col, val〉 triple to the unsorted delta structure. Updates of
already existing nonzero elements are performed in-place, i.e., either
in main or delta . For a single element update, this requires a binary
search on the column container on the main and a scan on the delta
structure, thus on average O(ln

√
NM

nz + N∆
nz) time.

Deletions of elements require an additional structure to keep track
of the deleted elements. For this purpose our architecture contains
validity control (VC) bitvectors for the main table, the CSR index
and the delta structure. For every deleted element, the bit of the

corresponding container position in the respective main (II-VC) or
delta bitvecor (∆-VC) is unset. Moreover, if a complete matrix row
is removed, for instance row k, then the corresponding bit at position
k of the TC-VC bitvector is unset.

5. APPLICATION PROGRAMMING INTER-
FACE

In classical database workloads, tables are commonly manipulated
dynamically by inserting, updating or deleting data elements. How-
ever, the dynamic characteristic of relational database workflows
also holds for large sparse matrix applications, as we describe for
the nuclear science use case in section 6. Hence, it is a valid assump-
tion that sparse matrices are not just queried in a single-pass, but
rather modified in-between subsequent query executions as part of
an analytical workflow, for instance that of section 6.1. Therefore,
our system offers the user an interface with which sparse matrix data
can be manipulated in a similar manner as relational tables with data
manipulation language (DML) commands. This interface can then
be utilized by the application programmer to construct user-specific
UDFs for complex linear algebra workflows. In this section, we
discuss basic manipulation primitives for matrix data from a logical
perspective and describe how an matrix application programming
interface (API) could look like.

We propose a database system that contains matrices as first-class
citizens, for instance by extending SQL with a matrix data type,
similar to the array type presented in [24]. Thus, matrices are
defined in the data definition language (DDL) as such with the
specification of its dimensions, which are stored as meta data in
the system. The following API can then be exposed as built-in
procedures that process matrix data types.

5.1 Access Patterns
As a basis for the following algorithms and examples, we briefly
introduce the application programming interface for referencing
matrix elements and regions. Each of the two matrix dimensions
can be queried by providing either a point, range or no restriction.
Based on this assumption, we define the subarray referencing matrix
which is shown in Fig. 5.

To fetch single elements or matrix subregions we define the com-
mand
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None Point Range
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([r1,r2],*) ([r1,r2],c1) ([r1,r2],[c1,c2])

(r1,*) (r1,c1) (r1,[c1,c2])

(*,*) (*,c1) (*,[c1,c2])

Figure 5: Matrix subarray access patterns

• get: is the counterpart of the relational select ... where state-
ment, where the filter condition is replaced by a topolog-
ical reference according to patterns shown in Fig. 5. For
example, get A(5,3) returns a single matrix element, get
A(*,3) references the third column and get A(1,*) the
first row of matrix A. Two-dimensional submatrices are re-
turned by defining their row and column range, such as get
A([2,5],[3,5]) to retrieve the rectangular region between
the edge elements A(2,3) and A(5,5). The complete matrix
is referenced by providing no restriction in both dimensions,
thus A(*,*).

5.2 Data Manipulation Primitives
From the relational SQL perspective, the DML comprises com-
mands to insert, delete, and update elements. The difference to a
logical matrix context is that every single element of the matrix
space m × n does in fact exist, independent of its value, including
zero elements. Thus, there is no other interpretation of inserting
a single matrix element than updating the already existing zero
element of the matrix at the corresponding position. In the same
way a deletion of a single element is rather described as setting the
nonzero value to zero. However, if a complete row or column, or
a submatrix is inserted with dimensions of either m × k or k × n,
then an insert can also be interpreted as an expansion of the matrix
by k rows or columns, respectively. In the same way, a deletion of
regions spanning the whole row- or column range can be seen as
an effective shrinking of the matrix. To remove this ambiguity, we
define the following commands:

• set: sets any single element or region in the matrix space
m × n and overrides the previous value of the corresponding
matrix region. As an example, set A(9,3) value 5.0 sets
a value at position (9,3), whereas set A([2,2],[3,3])
values (0.0, 0.0, 0.0, 0.0) sets all the values of the
square submatrix to zero.

• delete: only applies to either a m × k (k rows) or a k × n (k
columns) subregion of the corresponding m × n matrix. It
affects the matrix dimension in such a way that the adjacent
parts are shifted to the first free place which was formerly
populated by a deleted row/column. Thus, the resulting matrix

has either the dimension of (m−k)×n or m×(n−k), respectively.
For instance, delete A(*,3) executed on a 4 × 4 matrix A
deletes the third column which changes the dimensions of A
to 4 × 3.

• insert: is the logical counterpart of the delete operation. The
insertion of either k rows or k columns results in matrix di-
mensions of either (m + k) × n or m × (n + k).

• copy: copies single elements, complete rows, columns or
submatrices from any source position to a target position. If
the target position exceeds the matrix bounds, then the copy
operation only applies to m × k or k × n subregions. The
overflowing rows or columns then affect the matrix dimension
in the same way as an insert. The copy operation is derived by
a consecutive get and set operations, if the target position
stays within the matrix bounds, and by a get and set/insert
operation if the target position exceeds the matrix bounds.

• flip: exchanges a k × l subregion from a source position to
a target position, which must not exceed the matrix bounds.
The flip can not be implemented solely by consecutive get
and set commands, since either the target or source region has
to be buffered temporarily.

Next to these basic commands, one can indeed define a variety of
further operations, such as transpose. However, manipulations of
a sparse matrix, such as insertion of elements, is not foreseen in
common algebra systems such as Matlab [20], whereas they can
be seamlessly integrated in our matrix architecture. Setting single
elements in a matrix is a fundamental operation in a variety of
applications, for example in LU-decomposition methods, such as
Gaussian Elimination or the Doolittle algorithm [26]. Moreover,
some analytical workflows tend to remove complete matrix rows
or columns. In the example from nuclear science described in
section 6.1, chunks of k rows and columns are deleted from the
sparse matrix. More obvious examples are graph algorithms, where
the elimination of a graph vertex corresponds to the removal of the
adjacency matrix row (and the respective column).

5.3 Linear Algebra Primitives
In addition to access and manipulation commands, data scientists
require basic linear algebra primitives to construct their application
algorithms. Desired primitives include, but are not limited to mul-
tiplication, addition or inversion of matrices. We describe how a
sparse matrix-vector multiplication operator spGemv is implemented
on our columnar main-delta architecture. Sparse matrix-vector multi-
plication serves as building block for many applications, for example
eigenvalue problems or cosine similarity calculations.

Let

y = A · x

be a matrix-vector multiplication with x ∈ Rm and A ∈ Rm×n. For
illustration purposes we consider the transposed equation

yT = xT · AT

which can be written as follows

yT = (x1 x2 x3 ...) ·


A11 A12 A13

A12 A22 A23 ...
A13 A23 A33

...


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yT = x1 · (A11 A12 A13 ...) +

x2 · (A21 A22 A23 ...) +

...

From an implementation perspective, the linearity of the operation
enables the independent, sequential processing on the main-delta
data layout. With A = AM + A∆, one obtains the superposition

yT = xT · (AM + A∆)T = xT · AM,T︸    ︷︷    ︸
1

+ xT · A∆,T︸    ︷︷    ︸
2

We sketch the implementation of the spGemv sparse matrix-vector
multiplication operator based on our main-delta architecture in algo-
rithm 1.

Algorithm 1 The spGemv operator

1: function spGemv(Matrix A, Vector x)
2: y← 0 . y: Target Vector
3: Main, Delta← getImpl(A)

. Main part 1
4: for xi , 0 ∈ x do
5: start← Main.CSRIndex[i]
6: stop← Main.CSRIndex[i + 1]−1
7: switch Main.iivc[i] do
8: case 0 continue
9: case 1

10: for start ≤ k < stop do
11: if Main.ivvc[i] = 0 then continue
12: col← Main.Col[k]
13: y[col]← y[col] + xi ×Main.Val[k]

. Delta part 2
14: for 0 ≤ i < Delta.Size do
15: if Delta.vc[i] = 0 then continue
16: col← Delta.Col[i]
17: y[col]← y[col] + x[Delta.Row[i]] × Delta.Val[i]
18: return y

The first part of the code (line 4-13) shows the main multiplication
part using the CSR index. For each non-zero vector element xi, a
index lookup for the corresponding matrix row i provides the start
and end position of the containers in the main structure. Moreover,
the II-VC bitvector is checked for each xi in order to skip the mean-
while deleted matrix rows. The same check is performed in the inner
loop for each element using the IV-VC bitvector before the target
vector y is written.

The second part (line 14–17) of the algorithm iterates over the valid
elements of the incremental delta structure and adds the product
results to the respective element holder in the target vector. It is
noteworthy that by using this implementation, neither the first nor
the second part of algorithm 1 requires a search scan in contrast to
naive column store approaches.

6. APPLICATIONS AND WORKFLOWS
We present two sparse matrix applications from different domains
and show how they can be run our system: the lanczos algorithm for
numerical eigenvalue calculation, taken from a theoretical nuclear
physics analysis, and an inclusive breadth-first search on network
graphs.

6.1 Nuclear Energy State Analysis
We briefly sketch a workflow from theoretical nuclear physics,
which we use as a benchmark in the evaluation. In this analysis, the
energy states of an atomic nucleus are determined by an eigenvalue
calculation of a large, sparse Hamiltonian matrix that stems from
a preprocessed nuclear physics theory simulation. The eigenvalue
calculation is based on the Lanczos method sketched in algorithm 2.

Algorithm 2 Lanczos with importance truncation

1: function getEnergyStates(Hamiltonian H)
2: · · · . H: Symmetric n × n Matrix
3: while not isConverged(λk) do
4: r1, r2, c1, c2← selectDel(H)
5: delete(H, r1, r2, c1, c2)
6: λk ← lanczos(H)
7: · · ·

8: function lanczos(Hamiltonian H)
9: T, vk, vk−1 ← initialize(T, vk, vk−1) . vi: vectors

10: for 1 ≤ i < m do
11: w← spGemv(H, vk)
12: update(T, vk, vk−1,w)
13: λ← diagonalize(T, vk, vk−1) . T : tridiagonal matrix
14: return λ

The pseudocode is written in an abstract higher level language and
shows the definition of the user defined functions getEnergyStates
and lanczos. Depending on the DBMS, UDFs can either be written
in SQL, or in a programming language like C++, R, or others. For
our implementation, we used the L language [31] of the SAP HANA
database, which is close to C. However, we emphasize that our work
is generally independent from the language. The only requirement is
that it includes the previously defined matrix API, which references
our low-level operators that are implemented in the database engine.
Furthermore, algorithm 2 contains calls to other UDFs, selectDel,
update and diagonalize, which are defined elsewhere. We omit their
definition and further domain-specific details of the code in order to
outline the API calls to the database system.

The getEnergyStates procedure resembles the importance trunca-
tion method as described in Roth et al. [29]. The dots denote pre-
and postprocessing steps of the analysis which contain domain-
specific parameters and are left out for the sake of clarity. A crucial
part of the analysis is a quantum state selection that we sketched
via the selectDel function, which returns the coordinates of the
matrix rows and columns that are selected for truncation. Since
the Hamiltonian matrix is symmetric, the operation comprises the
deletion of row-column pairs which is executed by calling the delete
command of our matrix interface (line 5). After the deletion, the
Lanczos function is called again. These two steps are repeated until
a goodness criteria is achieved. Finally, the resulting eigenvalues λ
were returned, which refer to the nuclear energy states.

The lanczos function itself is an iterative method, which effectively
consists of a matrix-vector multiplication (line 11) and an update part
(line 12). It processes the resulting vectors and forms an orthonormal
basis of the eigenspace. For more details about the Lanczos method,
we refer to the work of Stewart [32]. In the context of this paper, it
is sufficient to know that the bottleneck of the lanczos function is
the matrix-vector multiplication in line 11, which in this case is a
call to our algorithm 1.
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6.2 Breadth-First Search
In this part we show how queries on relational data from a non-
numeric environment, especially with a graph-like topology, can
be evaluated by exploiting our sparse matrix architecture. As an
example we sketch an inclusive breadth-first search. We call it
inclusive, because it returns all vertices that are discovered on paths
with a length up to a certain traversal depth. However, this does not
pose a restriction, since the algorithm can be rewritten in such a way
that exclusively paths of a certain lenght are returned.

The breadth-first search is inherently similar to a matrix vector
multiplication (algorithm 1), which is explained by the dualism
between a graph and its adjacency matrix. This connection has
already been topic of various works, and a comprehensive insight
into this relation and its impact on graph algorithms is provided by
the work of Kepner et. al. [22].

Fig. 3 shows an example table that represents friend connections of a
social network graph. It sketches two attributes Name and Friend_of
which denote the start and the target vertices of the graph, and thus
the sparse adjacency matrix. Furthermore it contains an additional
attribute Since, but we want to emphasize that the table may contain
an arbitrary number of additional property attributes since they have
no effect on the leading topological attributes. A common query on
such a social networks table would for instance be: ’who are the
friends of the friends of person X?’, which is in fact a breadth-first
search with depth=2 and start node X.

Algorithm 3 Breadth-First Search

1: procedure bfSearch(GraphName, first, depth)
2: P← 0 . P: result set
3: Q← first . Q: set of vertices to visit
4: x← convert(Q)
5: while depth>0 do
6: y← spGemv(GraphName,x)
7: x← y
8: depth← depth − 1
9: P← convert (y)

10: return P

Algorithm 3 shows the breadth-first algorithm that internally calls
algorithm 1. It effectively wraps an iterative matrix-vector multi-
plication by converting the start vertex set into a vector x and the
target vertices vector y back into a result set. Internally, algorithm 1
multiplies the xi values with the sparse matrix values (A)i j, which
usually refer to the edge weights. However, the graph must not
necessarily have weighted edges. The additional floating point op-
eration is nevertheless rather cheap, so that for unweighted graph
edges, the value container Main.Val in line 13, algorithm 1, might
just be filled with dummy values. A typical example for an algo-
rithm working on weighted graphs is page rank [28]. It should be
mentioned that we will also use a modified version of algorithm 1 in
the evaluation. The modified version uses sparse vectors for x and
y, i.e. , a tuple list of 〈row, val〉 pairs instead of a dense array. This
is in particular a reasonable choice for very sparse matrices, since
the number of non-zero entries of the product vector y depends on
the matrix population density ρ = Nnz/(n × n) and the number of
non-zero elements of x.

7. EVALUATION
In this section, we first compare the static query execution perfor-
mance of our main-delta architecture against the different matrix

representations of section 3. Thereafter, we evaluate how the per-
formance on dynamic workloads using the example of section 6.1
improves against naive approaches.

The system for our prototype implementation contains an Intel
Xeon X5650 CPU with 48 GB RAM. As there are currently no
standardized benchmarks for large scale linear algebra operations
in a database context, it is difficult to provide a comprehensive
comparison against other systems. Therefore, we took the real
world example workflows described in section 6 and compared
how our presented architecture performs against alternative variants
that could be implemented in a database system. In the context
of this evaluation, we implemented a single-threaded version of
the algorithms. However, as each of the structures is horizontally
partionable, we expect that a parallelization does not change the
qualitative results for the applied algorithms.

Table 1: Sparse matrices and graphs of different dimensions and
population densities. The ρ = Nnz/(n × n) value denotes the pop-
ulation density (rounded) of each matrix. All matrices are square
(n × n.)

Name Matrix Type Dim. Nnz ρ[%]

Mat1 NCSM 800 309 K 47.2
Mat2 NCSM 3440 2.930 M 24.7
Mat3 NCSM 17040 42.962 M 14.8
Gra1 Slashdot Netw. 77360 905 K 0.01
Gra2 Roadnet CA 1,971 K 5.533 M 10−6

Tab. 1 lists the matrix data sets which we use in the evaluation.
These include three Hamiltonian matrices from a nuclear science
simulation of different scale (Mat1, Mat2 & Mat3), a social (Gra1)
and a street network graph (Gra2). The Hamiltonian matrices stem
from a no core shell model (NCSM) simulation and were provided
by the theoretical nuclear physics research group of the Technical
University of Darmstadt4. The graphs are taken from the SNAP
graph library5.

7.1 Static Algorithm Execution
Fig. 6 shows the relative performance comparison of algorithm 1
using our columnar main-delta sparse matrix architecture against
the following representations:

• Pure CSR representation: We take the immutable CSR rep-
resentation as a baseline for the algorithmic performance for
the static experiments.

• Triple Representation: The pure triple representation serves
as naive alternative approach for database-integrated algebra
on mutable sparse matrices.

• Dense Representation: The dense representation has been
included in all of the following cases only for illustrational
purposes only, since it is not scaling and for most sparse
matrices its memory consumption is order of magnitudes
higher, as for example 105 x for Gra2.

In this experiment, we subsequently set values of random matrix
elements. We chose randomly the matrix coordinates in order to
4http://theorie.ikp.physik.tu-darmstadt.de/tnp/
index.php
5http://snap.stanford.edu/data/index.html
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Figure 6: Algorithm 1 runtime performance comparison of the
main-delta architecture against static CSR, a pure triple table and
a dense array using different matrices and x-vectors with a varying
population density ρx. For each plot, the corresponding sparse
matrix was filled with nonzero elements between consecutive query
executions, which results in an increasing matrix population density
along the x-axis. The delta merge threshold was set to ∆T = 15%

get an unbiased perception of the set performance. The varying
matrix population density ρ is denoted along the x-axis of the plots,
which reaches up to a complete occupation (Mat1) with nonzero
elements (ρ = 100%). The saw-tooth line belongs to the main-delta
representation. Its shape is reasoned by the dynamically growing
number of non-zero elements. All elements that are inserted into the
main-delta architecture are at first accommodated by the delta triple
representation. Thus, the delta size continuously increases until a
certain occupation threshold ∆T is reached, which we set to 15%.
Then, the delta part is merged into the main structure and the delta
occupation shifts back to zero. The main-delta execution time is
then effectively a superposition of the triple and CSR representation,
i.e. Tm/d = TCSR((1 − ∆)ρ) + Ttriple(∆ρ). The sort overhead for the
pure CSR representation is not included in the static measurement,
but it is taken into consideration in the second part of the evaluation.

The first four plots in of Fig. 6 differ in the number of nonzero
elements of the vector x that takes part in the multiplication. This
variable, which we call ρx = N x

nz/m, has a significant influence on
the algorithm 1 performance and becomes even more significant
for algorithm 3 on the graph Gra1 data set. With increasing ρx

the runtime performance of the triple representation approaches
to that of CSR, which also explains why the slope of saw-tooth
decreases with increasing ρx. If every element xi is nonzero, the
advantage of having the CSR index disappears, since each matrix
row has to be visited either way. Hence, the remaining benefit of the
CSR representation is solely its row-major ordering, which leads
to a better cache locality. It is worthwhile mentioning, that even
for completely dense matrices, the dense representation does not
result in a better performance than using a CSR representation. This
could be explained with the sequential single-pass access pattern of
algorithm 1, which enables prefetching of both the column and the
value container. Finally, the O(Nnz) behavior of algorithm 1 results
in a 1/ρ-convergence of the dense performance relative to CSR.

We carried out a similar measurement using the inclusive breadth-
first search (algorithm 3) on both graphs (Gra1 and Gra2). Therefore,
we left the graph matrices unmanipulated and solely varied the
search depth parameter of algorithm 3, which is denoted along the
x-axis of the plots. We remark that the main-delta architecture is
(up to a negligibly deviation) equal to CSR in this measurement,
since we consider an isolated query execution on static data under
the condition that all data has been merged and is residing in the
main structure.

Fig. 7 presents the execution runtimes of CSR and triple representa-
tion, each with the dense and the sparse version of the intermediate
result vectors x, y. The noticeable influence of the x vector popula-
tion density ρx, which referes to the number of discovered vertices Q
in algorithm 3, on the overall algorithmic performance was already
observed in the previous measurements in Fig. 6. This dependency
is even more significant for the inclusive breadth-first search, since
the start x vector only contains a single non-zero element. In this
case, the dense array-based x implemention (DI) iterates over every
zero entry, which is why algorithm 3 performs obviously worse
for small depths than using the list-based sparse x implementation
(SpI). However, there is a turning point, where the vector density of
x reaches a certain density threshold ρx

T , the exact value of which
depends on the details of the respective implementation. In our
experiment, the turning point is reached between depth two and
three for the social graph Gra1. In the analogous measurement on
Gra2, the turning point depth is at a considerably larger depth, which
exceeds the x-range of the plot.
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Figure 7: Comparison of the execution duration of algorithm 3 on
graph Gra1 (left) and Gra2 (right) between a CSR and a triple table
with respective sparse (SpI) and dense (DI) intermediate structures.
The x-axis denote the depth parameter of algorithm 3.
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CSRMem on Mat1 (left) and Mat3 (right).

Finding the right spot to internally switch from a sparse to a dense
representation of vector x provides clearly a tweak option that could
be part of an optimizer. Nevertheless, we observe that independent
from the intermediate vector representation, the inclusive breadth-
first search using the CSR representation outperforms the naive
triple approach by up to four orders of magnitude (right plot of
Fig. 6, SpI). This can be reasoned with the index character of CSR,
which is of particular importance for hypersparse problems, which
are regularily found in graph contexts.

7.2 Dynamic Workload
In this part, we measured the throughput of dynamic workloads on
large, sparse matrix data and compared our main-delta architecture
against four different alternative approaches. These include the
triple, the dense representation, and the following:

• CSRMem: This approach is is taken as a baseline for the
following comparisons. A cached CSR version of the sparse
matrix is kept in memory and is only rebuilt when an read
query is requested, after a manipulation of the matrix has been
executed.

• Copy-sort CSR: It is fair to compare against a naive ap-
proach, which includes copying and ordering of the data be-
fore each algorithm execution request. This is commonly
done in science and analytic workflows, in order to transfer
the data and bring it in shape for a third party system, where
the actual calculations are executed.

In the first experiment, we interleave consecutive single element
inserts, which we call write queries, with periodic executions of
algorithm 1, which we call read queries. Moreover, we varied the
ratio of the number of read queries Nread to the number of interleaved
writes Nwrite according to following formula: Nread + Nwrite = (1 +

α)Nread, where α is the insert-to-query ratio Nwrite/Nread which takes
values from 0.02 to 1.

Fig. 8 presents the resulting relative query throughput of a mixed
query workflow performed on matrices Mat1 and Mat3. To put it
in other words, it shows the speedup factor of the overall execution
time for Nread + Nwrite = (1 + α) · 50 queries using our main-delta ar-
chitecture and other approaches compared relative to CSRMem. For
α→ 1, the main-delta architecture outperforms the naive CSRMem
and copy-sort CSR approaches by orders of magnitude, whereas the
difference to the triple and dense array representation is similar as
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Figure 9: Average duration of a matrix k-rows (upper plot) and
a k-column (lower plot) delete operation and the following algo-
rithm 1 (20 times repeated) execution query. The left bar denotes
the total query execution time. The operations were performed on
matrix Mat1 (left) and Mat2 (right) with k = 0.01m and k = 0.01n,
respectively.

in the static comparison, since these structures are both mutable and
not significantly affected by interleaved inserts.

In the second experiment, we chose a scenario close to the workflow
from theoretical nuclear physics that is sketched in algorithm 2.
Although the original scenario comprises row- and column deletions,
we decided to split the experiment in a row- and an column-exclusive
deletion variant, in order to measure the impact of linearization on
the respective deletions.

Fig. 9 shows the average duration of a k-rows delete operation
(k = 0.01m), which is followed by a read query. It is observable
that the deletion costs of our main-delta architecture are negligible,
and the algorithm execution performance is nearly as good as the
pure CSR representation. The low costs of the delete row operand
on the dense and CSRMem representations can be explained by its
efficient implementation, which essentially consists of copying of
a contiguous memory section. The analogous measurements for
column delete operations shows that our main-delta approach has
the best deletion performance on Mat2. When the matrix is larger,
the impact of cache misses by jumping over the row-major-ordered
dense array increases significantly.

8. SUMMARY AND CONCLUSIONS
We have presented an approach to seamlessly integrate sparse ma-
trices into a column-oriented in-memory database system with in-
tegrated API-level support for accessing, manipulating, and per-
forming elementary linear algebra operations. The evaluation has
shown that the algorithmic performance of our hybrid architecture,
consisting of the read-optimized CSR main and the write-optimized,
mutable triple delta representation, outperforms naive approaches,
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and deviates only negligible from using CSR-only. Moreover, the
integer dictionary encoding of the columnar database architecture
allows a flawless transition from pure numerical matrices to general
structured data, for example graph data. From a system perspective,
the use of the well-known CSR representation in the database engine
opens the door to employ efficient numerical C++ libraries [5, 6,
4] as kernel, and hence, dispenses the need of time- and memory-
consuming data transfers to third party software.

To put it in a nutshell, we showed that introducing mutability of
sparse matrices without losing algorithmic performance yields an
overall benefit for users of dynamic sparse matrix workloads. We
have used database technologies to improve the overall performance
for graph algorithms and science workflows, which bridges the gap
between linear algebra and relational DBMS’s.
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