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ABSTRACT
Graph databases with the property graph model are used
in multiple domains including social networks, biology, and
data integration. They provide schema-flexible storage for
data of a different degree of a structure and support complex,
expressive queries such as subgraph isomorphism queries.
The flexibility and expressiveness of graph databases make
it difficult for the users to express queries correctly and can
lead to unexpected query results, e.g. empty results. There-
fore, we propose a relaxation approach for subgraph isomor-
phism queries that is able to automatically rewrite a graph
query, such that the rewritten query is similar to the orig-
inal query and returns a non-empty result set. In detail,
we present relaxation operations applicable to a query, car-
dinality estimation heuristics, and strategies for prioritizing
graph query elements to be relaxed. To determine the sim-
ilarity between the original query and its relaxed variants,
we propose a novel cardinality-based graph edit distance.
The feasibility of our approach is shown by using real-world
queries from the DBpedia query log.

Keywords
Query Relaxation, Empty-Answer Problem, Graph Database,
“Why Empty?”-Query

1. INTRODUCTION
The empty-answer problem is well-known in database re-

search as a problem of queries delivering an empty result
set [4, 10, 11, 13, 14]. In many scenarios a user is forced to
debug a query himself to discover a predicate, which over-
specifies a query and therefore is responsible for an empty
result. This process implies iterative rewriting of a query
and checking if it produces any answer. Although such a
query usually includes only several predicates, its debugging
can be a complicated task because of multiple combinations
of predicates that can be relaxed. To support a user in such
cases, automatic and navigational approaches are provided,
where a system relaxes a query automatically till a modified
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Figure 1: System architecture

query returns a non-empty result, or a user navigates the
relaxation by choosing a query candidate to be proven on
the delivery of a non-empty answer in each iteration.

The empty-answer problem in graph databases becomes
even more complicated than in relational databases. Tack-
ling a graph database, we assume that data is stored in a
form of a property graph [19]: It has multiple edges, ver-
tices, and attributes, where a vertex represents an entity, an
edge shows a relationship between entities, and an attribute
describes a specific property of a vertex or an edge. Queries
to a graph database are modeled as property graphs and in-
clude vertices, edges, and predicates for their attributes. A
fundamental graph query is a subgraph isomorphism query
that describes a graph pattern to be discovered in a data
graph and delivers matching subgraphs as a result.

Following the rewriting methods for relational databases,
if a graph query has delivered an empty result set, it has to
be rewritten in such a way that a result set of a revised query
is non-empty. The full relaxation has exponential complex-
ity for graph databases. To support a user in such scenarios,
the rewriting process has to consider the specifics of graph
queries and its complexity has to be reduced. In this paper,
we propose an approach for explanations why a query has
delivered an empty result for subgraph isomorphism queries.
To the best of our knowledge, this is the first rewriting so-
lution for an empty-result problem in graph databases.

Solution Overview
In Figure 1 we present the architecture of our system for
“Why Empty?”-queries. The “Why Empty?”-engine is an
extension of a graph database that is activated by a user,
after a graph database delivered an empty result set. It
includes the following components:
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Figure 2: A single iteration of a relaxation process

• Query Relaxation Component rewrites a user query
delivering an empty result set and generates several
query candidates, which are then redirected to Candi-
date Selection Component.

• Candidate Selection Component consists of a sorted
pool of query candidates as well as cardinality-based
and distance-based comparators for them. This com-
ponent receives relaxed candidates from the query re-
laxation component, and sorts them.

• Query Manager chooses the best query candidate
from the set and requests it from the graph database.
It is also responsible for querying cardinalities.

• Cardinality Estimation Module maintains, calcu-
lates, and estimates cardinalities for cardinality queries
received by the query manager.

After a query ‘failed’, a user can activate the“Why Empty?”-
engine responsible for relaxation of the query. The query is
redirected to the query relaxation component (see a single
iteration of the relaxation process in Figure 2) and is used
to generate multiple query candidates. In the worst case for
the first relaxation iteration, the total number of generated
query candidates is (m + n) ∗ k, where m is a number of
edges, n is a number of vertices in a query graph, and k is a
number of possible relaxation operations. We optimize this
step with relaxation strategies reducing the size of the candi-
date space by choosing the most promising vertex and edge
to be relaxed based on the estimation of cardinality change
of a result set after their relaxation. The query relaxation
component redirects generated candidates to the candidate
selection component that ranks and stores them in the can-
didate pool. The ranking ensures the prioritization of more
promising query candidates and therefore is a crucial point
in the discovery of a query candidate delivering a non-empty
answer. For this step, we propose a comparator based on
distance and cardinality estimation. After the query gener-
ation the query manager selects the best candidate from the
pool and sends it to the graph database. If this candidate
delivers again an empty result set, the query manager for-
wards it to the query relaxation component for its further
relaxation. The process terminates if a query delivering a
non-empty answer is found. In general, our relaxation pro-
cess is based on A* search, where in each step we generate
a set of query candidates that are stored in a sorted list of
candidates. We always select the best candidate from this
list to be tested on the delivery of non-empty results.

Contributions
In this paper we make the following contributions and pro-
pose:

• Relaxation operations that are specific for property
graphs.

• A cardinality-based graph edit distance that is used for
comparison of any two graph queries. It is based on
the cardinality estimation of the result sets produced
by the compared queries.

• A relaxation process based on A* search allowing to
quickly identify a more reliable query candidate first.

• Relaxation strategies that reduce the search space of
query candidates.

• Heuristics for sorting and selecting query candidates
according to how likely a query candidate will deliver
a non-empty result set.

We introduce relaxation operations and our cardinality-
based graph edit distance in Section 2. We then describe a
relaxation process, candidate selection, and cardinality es-
timation in Sections 3 – 5. We introduce related work in
Section 7 and evaluate our solution in Section 6.

2. CARDINALITY-BASED
GRAPH EDIT DISTANCE

A graph query can be modified by standard graph edit
operations [5] like vertex/edge insertion, vertex/edge dele-
tion, and vertex/edge substitution, which are qualified by
their implied costs. Based on these costs, we can determine
a graph edit distance that measures the difference between
two graphs. A graph edit distance is an aggregated cost of all
graph edit operations that have to be applied to one graph
in order to transform it into another one. In this section we
extend the graph edit operations with operations suitable
for the used data model, a property graph, and propose a
cardinality-based graph edit distance based on them. As a
preparation step, we introduce several definitions.

2.1 Prerequisites
As the underlying data model we use a property graph.

Definition 1 (Property Graph). We define a prop-
erty graph as a directed graph G = (V,E, u, f, g) over at-
tribute space A = AV ∪̇AE, where: (1) V,E are finite sets
of vertices and edges; (2) u : E → V 2 is a mapping between
edges and vertices; (3) f : V → AV and g : E → AE are
attribute functions for vertices and edges; and (4) AV and
AE are their attribute spaces.

A data graph Gd is a property graph consisting of Md edges
and Nd vertices. A query graph Gq is a property graph with
Mq edges and Nq vertices.

Definition 2 (Cardinality). We define cardinality
C(v) of query vertex v as a number of data vertices it matches.

We denote the cardinality of vertex vi as C(vi) and the car-
dinality of edge ej as C(ej). The cardinality of a vertex
can be annotated by predicate ak and vertex degree deg;
the cardinality of an edge can be annotated by type T , di-
rection D, or predicate ah. We express the cardinality for
vertices without any predicate as C(V ) = Nd and for edges
without any constraints as C(E) = Md. Therefore, C(V |ak)
describes the cardinality of a vertex with only single predi-
cate ak – the number of data vertices matching to predicate
ak. The difference in cardinality introduced by a predicate
ak is denoted as ∆C(V, ak) and shows the maximum cardi-
nality increase of a result set by discarding a predicate ak.
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Type Target Relaxation Operation

Topology

Edge Edge Deletion

Vertex Vertex Deletion

Edge Direction Deletion

Notation
Edge, Vertex Predicate Deletion

Edge Type Deletion

Table 1: Relaxation operations for property graphs

In addition, we define src(ej) a vertex where edge ej starts
and tgt(ej) a vertex where edge ej ends.

Definition 3 (Path). A path with n steps is a prop-
erty graph consisting of n edges.

A single path represents a path with only one edge and its
two adjacent vertices. The cardinality of a query path rep-
resents the number of paths in the data graph matching this
query path. Assume we have k paths in query Gq then the
average path cardinality of Gq is the average number of data
instances of these k query paths.

2.2 Graph Edit Operations
We extend the list of standard graph edit operations [5]

including vertex/edge insertion, vertex/edge deletion, and
vertex/edge substitution with new operations specific for
property graphs like predicate deletion/insertion, type dele-
tion/insertion, and direction deletion/insertion. Each oper-
ation has an inverse operation.

Furthermore, we denote operations that reduce the graph
in terms of a number of edges, vertices, predicates, types,
or directions relaxation operations. We call the inverse op-
erations augmentation operations, because they enrich the
description of a query with additional information. Both
relaxation and augmentation operations describe minimal
modifications that can be applied to a graph. Since we
specifically focus on the empty-answer problem, we apply
only relaxation operations to a query graph. We also clas-
sify the relaxation operations according to their target graph
elements and types as notational and topological operations
(see Table 1).

The introduced relaxation operations may have different
impact on a query graph: a small query change can increase
the size of a result set dramatically. To assess the extent
of the changes they imply, we introduce a novel cardinality-
based graph edit distance.

2.3 Purpose of Cardinality-Based Graph Edit
Distance

To compare two graphs, standard graph edit distance ap-
proaches (see Section 7) can be applied that describe the
difference between two graphs in terms of different num-
bers of edges, vertices, labels, etc. Since our system deals
with graph queries delivering empty results, we strive to
systematically increase the cardinality of a result set. To
achieve this, two graph queries have to be compared by
the estimated cardinalities of their result sets. We intro-
duce a cardinality-based graph edit distance as a measure
of a difference between two graph queries. It is expressed
by the maximum expected difference in the result cardinal-
ity between these two queries introduced by transforming
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Figure 3: Cardinality-based graph edit distance

one graph query into another. We model this distance as a
tree with leaves describing the distances introduced by the
instances of relaxation operations and vertices representing
aggregated distances. This tree exposes all upper bounds for
distances for all operations and graph elements. A tree con-
sists of notational and topological parts, and has four levels:
(I) a root node – the full relaxation (the total graph edit dis-
tance), (II) aggregated notational and topological impacts,
(III) types of relaxation operations, and (IV) operations’ in-
stances (see Figure 3).

By applying a relaxation operation to a specific graph el-
ement, its corresponding leaf’s distance is used as the mea-
sure of cardinality change it implies. At the same time, this
relaxation operation changes the distances for other leaves
as well. This leads to a complexity of O(mnk), where n, m
are number of vertices and edges in a query graph, and k is
a number of candidates. We avoid this complexity by intro-
ducing a heuristic, which models the distances to be inde-
pendent and calculates them only for the single leaf element.
We model the distances as the upper bound of cardinality
changes caused by a relaxation operation. As a result, we
get a complexity of O(n+m).

The tree is constructed in two steps before the relaxation
takes place: First, independent distances are calculated that
show the distances of operations on independent graph ele-
ments. Second, distances are normalized by the aggregated
impact. In the following we present how to derive such dis-
tances at the leaves and give some examples of applying our
model to different use cases.

2.4 Calculation of Independent Distances
An independent distance shows the upper bound of the

cardinality change of an element or its neighboring elements
caused by a relaxation operation without considering the
correlation between graph elements and their predicates. In-
dependent distances are calculated bottom up along the tree
presented in Figure 3. First, the distances at the leaves are
calculated. Then they are propagated and aggregated on
the parental nodes. The relaxation of notational and topo-
logical parts has different types of impact on a query graph,
which we will discuss in the following.

2.4.1 Notational Distances
The predicate deletion for edges and vertices and the type

deletion for edges are notational operations that can be ap-
plied to relax a query graph (see Table 1). We distinguish
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a type as an important attributes for an edge in a property
graph and therefore we consider its deletion separately from
a predicate deletion. The notational operations only modify
the notational description of a graph query: no vertices or
edges are removed. In order to outline the calculation of no-
tational weights, we start from the bottom of the tree and
calculate independent distances at the leaves.

Each notational operation describes the distance between
relaxed and original queries caused by this operation in terms
of a maximum cardinality change of a relaxed element. The
predicate deletion PD(vi, ak) of predicate ak for vertex vi is
a cardinality change of vertex vi caused by the relaxation of
predicate ak:

PD(vi, ak) = PD(V, ak) =
C(V )− C(V |ak)

C(V )
=

∆C(V, ak)

Nd

(1)
In the same way we calculate the distance for the predicate
deletion PD(ej , ah) of a predicate ah of an edge ej :

PD(ej , ah) = PD(E, ah) =
C(E)− C(E|ah)

C(E)
=

∆C(E, ah)

Md

(2)
The similar equation is used for the type deletion TD(ej)
for an edge ej :

TD(ej) = TD(E, T ) =
C(E)− C(E|T )

C(E)
=

∆C(E, T )

Md
(3)

The distances at the leaves are propagated to the next level
– an operation’s type level, where we sum the distances of
the same operation’s type up, namely:

PD(V ) =

Nq∑
i=0

K∑
k=0

PD(vi, ak),

PD(E) =

Mq∑
j=0

H∑
h=0

PD(ej , ah),

TD(E) =

Mq∑
j=0

TD(ej)

(4)

On the information type level (level II), these aggregated
distances are summed up into the aggregated distance of
the notational subtree:

dist(notation) = PD(V ) + PD(E) + TD(E) (5)

2.4.2 Topological Distances
Topological operations are represented by a vertex dele-

tion, an edge deletion, and a direction deletion. While nota-
tional influence can be expressed by the relative cardinality
of the relaxed elements themselves, topological distances for
a vertex and an edge deletion are difficult to express, because
if the elements are removed, their cardinalities cannot be cal-
culated. We therefore interpret the topological distances as
cardinality changes of direct neighbors of a removed element
for an edge deletion and a vertex deletion. The distance for
a direction deletion is expressed by the cardinality change of
a relaxed edge. We start from the bottom of the tree and,
first, calculate independent distances at the leaves.

A direction deletion DD(ej) of an edge ej removes its di-
rection. This operation increases the cardinality of a relaxed
edge twice, because a relaxed edge can be considered during

graph traversal in both directions.

DD(ej) = DD(E) =
C(E)− C(E|D)

C(E)
=

∆C(ej , D)

Md
= 0.5

(6)
By applying a vertex or an edge deletion, the cardinal-

ity of neighboring vertices changes in terms of their degrees.
Assume we have a graph query as presented in Figure 4(a).

v
1

v
4

v
3

v
2

deg = 1 deg = 2

deg = 2deg = 3

(a) Initial graph

v
1

v
4

v2

deg = 1 deg = 1

deg = 2

(b) Without v3

v
1

v
4

v
3

v2

deg = 1

deg = 1deg = 3

deg = 1

(c) Without v2−v3

Figure 4: Example of changing degree of neighbors
with deletion

We have four vertices with a degree deg ∈ [1, 3]. The dele-
tion of a vertex v3 also removes its adjacent edges. There-
fore, the degrees of direct neighbors v2, v4 are reduced by
the number of removed adjacent edges like presented in Fig-
ure 4(b). If we delete the edge between vertices v2, v3, then
their degrees reduce as well (see Figure 4(c)).

If we delete an edge ej by the edge deletion operation
ED(ej) the degrees of its source and target will decrease.
We express the distance of an edge deletion as a cardinality
change of an edge’s ends derived from the change of the
number of instances with a specific degree:

ED(ej) =
C(V |deg(src(ej))− 1)− C(V |deg(src(ej)))

C(V |deg(src(ej))− 1)
+

C(V |deg(tgt(ej))− 1)− C(V |deg(tgt(ej)))

C(V |deg(tgt(ej))− 1)
(7)

V D(vi) =

Nadj∑
p=0

C(V |deg(vp)− 1)− C(V |deg(vp))

C(V |deg(vp)− 1)
(8)

where C(V |deg(vp) − 1), C(V |deg(vp)) is a number of data
vertices with deg ≥ deg(vp) − 1 or deg ≥ deg(vp), respec-
tively.

The upper levels are calculated like for the notational
weight: the impact is aggregated bottom up.

2.5 Normalization of Distances
The independent distances show only cardinality changes

of specific graph elements. Therefore, we need to sum up the
notational and topological distances. The overall distance
describes the full relaxation of the query (level I in Figure 3)
and equals to 100 %:

dist(total) = dist(notation) + dist(topology) = 100% (9)

At this level we calculate the normalization factor and prop-
agate it top down the tree (see Figure 3).

Application to Different Use Cases.
The proposed cardinality-based graph edit distance is gen-

eral and not limited to any specific use case. We provide a
possibility for a user to adapt the distance to a particular
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use case by introducing weights α, 100% − α for notational
and topological subtrees, respectively. In our approach, we
consider property graphs, for which the notational and topo-
logical descriptions are equally important and, thereby, we
can assign the same weights α = 100% − α = 50%. There-
fore, we calculate corresponding normalization coefficients
like

unit(notation) =
dist(notation)

α

unit(topology) =
dist(topology)

100%− α

(10)

Assume we have a corporate database including informa-
tion about company partners, business processes, etc. and
we fill it with additional information about data flows in the
company, which is extracted from internal text documents.
The quality of a created graph depends strongly on the ex-
tractors and cannot be fully correct. Based on the quality
of extractors, a user can define different weights for nota-
tional and topological parts. In this example, the topology
is created from unreliable data and includes mistakes and,
therefore, a root for the topological subtree can be annotated
by a smaller distance 100%− α� α, which would describe
how much this information is trusted. An advanced user can
adapt the normalization factor even finer by specifying it on
the operation level (level III).

3. QUERY RELAXATION COMPONENT

Relaxation 
Heuristics

Relaxation Manager

Relaxation 
Operators

Query Relaxation

Cardinality
Estimation

Q1Qn Q2…Q0

Figure 5: Query relaxation component

The main component of “Why Empty?”-engine is a query
relaxation component illustrated in Figure 5. Its Relaxation
Manager implements the relaxation process. As an input
it receives a query, which has to be relaxed, and produces
a set of query candidates (relaxed versions of the query) as
an output. To modify a query, Relaxation Operations and
Relaxation Heuristics are used. Relaxation operations have
been already presented in Section 2. Relaxation heuristics
select graph query elements to be relaxed based on the car-
dinality derived by the cardinality estimation module.

3.1 Relaxation Heuristics
In general, the number of relaxation candidates depends

on the number of edges mq, vertices nq, and relaxation op-
erations k and equals to (m + n)k. This candidate space
represents the full relaxation space for a query and a relax-
ation iteration. With an increasing number of iterations l,
the candidate space grows and can include up to (m+ n)kl
candidates. To reduce the candidate space, we propose two
heuristics for selection of edges and vertices to be relaxed.

H1: Minimum Cardinality of Edges and Vertices
This strategy selects those elements for modification that
promise to have the lowest cardinality in the data set. For

this, the cardinality estimation module provides estimated
cardinalities for each query vertex and edge. Those elements
are chosen for the relaxation, which have the lowest cardi-
nality. At least one edge and vertex are selected by this
heuristic. If several elements have the same number of data
instances, then all of them are chosen.

H2: Maximum Impact & Minimum Vertex Cardinality
This heuristic is based on the calculation of minimum ver-
tex cardinality and path cardinality. Vertices are selected
according to the relaxation strategy H1. To choose an edge,
we observe how cardinalities of its direct neighbors change
by relaxing the edge and estimate impact of a relaxation
operation for this particular edge as a sum of relative path
cardinalities of neighboring edges (As a reminder, a single
path cardinality shows the number of edge instances by con-
sidering specific source and target of a single edge). Edges
with the maximum impact are chosen for the further relax-
ation. This heuristic accounts for the correlation between
edges and their vertices in a query graph and allows to re-
lax less representative elements first. If several vertices have
the same number of data instances or several edges have
the same maximum impact, then all of them are considered
to be relaxed. This heuristic includes as much information
as possible and allows the quick discovery of a candidate
delivering a non-empty answer.

In Section 6 we will compare both heuristics with the
baseline where the whole candidate space is produced. The
heuristics H1 and H2 require independent cardinalities for
edges, vertices, and cardinalities for paths. This information
is provided by the cardinality estimation component.

4. CANDIDATE SELECTION
When a new candidate is produced, the candidate selec-

tion component has to rate it by comparing with other can-
didates kept in the system and to store it correspondingly.
This component consists of three parts: a candidate pool
and two comparators for a distance and a path. The can-
didate pool represents an ordered list of query candidates,
where more preferable candidates are located at the begin-
ning of the pool. To add a new candidate, a two-step com-
parison is done: a new candidate is compared with other
candidates from head to tail of the list based on the average
path cardinality and on the distance (Figure 6).

Conditional
Cardinality

…Q
1

Q
i

Q
n

C(Q
i
)< C(Q

new
)

Distance
Comparator

D(Q
i
) => D(Q

new
)

i= i+1

Qnew
yes

no

yes

i= i+1

no

==
Qi

Figure 6: Candidate selection component

The comparison of path cardinalities is hierarchical. First,
we choose the maximum path level available for two candi-
dates and compare them. If average path cardinalities are
equal, then we decrement the level and compare them again.
The last available level is a single path. If a new candidate
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Query-Dependent Statistics
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Figure 7: Query-dependent statistics

has higher average path cardinality then it is placed before
a current candidate, otherwise, after it. If new and current
candidates have the same average single path cardinality,
then their distances are compared. The first rule – path
cardinality – considers the cardinality of edges and vertices
in terms of correlation. Therefore, additional cardinality-
relevant parameters are not required. The second rule – dis-
tance – shows how strong the impact on cardinality changes
is. In other words, the first rule chooses the most relevant
changes (from small cardinality to higher cardinality), the
second rule keeps the changes minimal. From these rules,
the distance is a stronger comparator: it leads us to a bet-
ter solution by passing all possible relaxations. Although
we can get better results in term of distance, it increases
the search time strongly. Based on these observations, we
set it to be the second rule. If we would use it on the first
place, the changes to the original query would be too small
and this would increase the number of iterations and, as a
consequence, the response time.

5. CARDINALITY ESTIMATION
To relax a query and to sort query candidates, relaxation

strategies and comparators rely on cardinality estimation,
which is done by the cardinality estimation module that re-
ceives requests for the number of data edges or data vertices
matching to ej or vi, respectively. This module keeps general
information about a query like the number of edges, vertices,
predicates, and general statistics about the data graph like
a number of edges, vertices, and vertex-edge mapping. To
speed up the estimation of requested statistics, the module
also maintains earlier requested statistics.

5.1 Query-Dependent Statistics
The query-dependent statistics is an underlying data struc-

ture that keeps cardinalities of elements of a query graph and
is represented in Figure 7. It keeps an original query (shown
on the left side) and supports three kinds of cardinality (see
Figure 7): independent cardinalities for edges and vertices,
which are stored in the cardinality maps on the top of the
figure, as well as cardinalities of path expressions, which are
kept in the path catalogs on the bottom of the figure.

The maps for independent vertex and edge cardinalities
represented on the top of the figure have two levels. On

the first level, the key is a query vertex id or query edge
id. The value of this map is a map itself binding a key
(mask for a specific configuration of a query element) with
a data mask that has bits set for vertices or edges matching
the configuration mask. The size of a key for an internal
map is derived from the description of the original query.
Each bit of a key represents a particular property of a vertex
(edge). Any key for a vertex consists of a reservation bit and
predicate bits (see Figure 8). Any key for an edge consists
of at least three elements (see Figure 8): a reservation bit,
a direction bit, and a type bit. In addition, it can include
bits for predicates, if available.

1:110(1:111,2:1)

Edge ID

Edge Mask

Source ID

Vertex Mask Vertex Mask

Target ID

11…1

Reservation

Attribute 1

Attribute K

K times

1111…1

Direction

Attribute H

H times

Attribute 1

TypeReservation

Path (1) Key Vertex Key Edge Key

Figure 8: Components of the keys for statistics

Example. Assume the original query and its statistics pre-
sented in Figure 7. The vertex v1 has two predicates, there-
fore, its key includes two bits for predicates and one reser-
vation bit. The vertex v2 has no predicates and its mask
consists of a single reservation bit. On the top in Figure 7
we provide keys and data masks for vertex v1 and edge e1
in the cardinality maps.

Path statistics are collected in the catalogs responsible
for storing empty paths, and paths up to size n. A key
for any path catalog is a hash of a string descriptor that
is a set of simple path descriptors, each of them consisting
of three components: a bit mask for a query edge together
with masks for its source and target. In our example on the
bottom in Figure 7, path(1) for edge e1 can be encoded as
1 : 111(1 : 111, 2 : 1) and stored in the path(1) catalog.

The empty path catalog on the bottom in Figure 7 keeps
hashes of empty paths. The catalog for paths with length
1 maps hashes of simple paths to data edge masks. Based
on this information and the corresponding vertex-edge map-
ping, cardinalities for n-paths can be estimated without re-
questing them from the graph database.
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Algorithm 1 Calculate Cardinality Vector

function calculateCardinality(mask, candidates[])
resultCandidates← ∅
finalMask ← ∅
for all candidate ∈ candidates[] do

for all bit ∈ mask do
if (bit == 0) AND (candidate[bit] <> 0) then

break
if bit is last bit then

resultCandidates← candidate
for all candidate ∈ resultCandidates do

if candidate is first then
finalMask ← mask for candidate

else
finalMask & = mask for candidate

return finalMask

5.2 Statistics Initialization
Before relaxation starts we fill the statistics with inde-

pendent cardinalities for vertices and edges together with
the description of an original query delivering an empty re-
sult set. For each predicate of a vertex and vertices without
any predicates, we ask the graph database, which vertices
have this predicate or the whole vertex set, respectively.

As a result set, we get a bit mask that has set bits indicat-
ing that a particular vertex matches to this particular query
vertex. In such a way, we collect all independent bit masks
for all vertices. Assume our previous example in Figure 7,
for vertices we have to ask four queries: three for vertex v1
and one for vertex v2. We can reduce this number of queries
by the number of vertices, because each query for a vertex
without any predicates delivers the same bit mask with all
bits set. We initialize the statistics with edges in the same
way like with vertices. The only difference is that we include
two additional queries: for the type and direction of an edge.

5.3 Statistics Maintenance
During relaxation, the statistics are requested for particu-

lar query elements. They depend on used relaxation heuris-
tic and comparators sorting the buffer of query candidates.
If statistics cannot be delivered, a miss is happened.

Any independent miss refers to a failed attempt to read an
independent edge or vertex. Such a miss forces the statistics
controller to derive a missing cardinality mask from avail-
able masks. This is possible because we collected all the
cardinality masks for each single bit from a key in advance.
To solve an independent miss, first, the statistics controller
chooses all masks for the required element. Then it selects
from them all matching candidates for a required key mask
and derives the final mask. This is presented in Algorithm 1.
First, the statistics controller selects only matching candi-
dates based on the unset bits in the keys on lines 4 – 9.
Second, the data masks for selected candidates are bitwise
summed up on lines 10 – 14. Finally, the calculated data
mask is returned at line 14.

A path miss happens when a path is not presented in the
statistics. In this situation a corresponding data mask has
to be acquired from the graph database or estimated based
on the already collected information.

Empty Path Resolution.
If no bit is set in a data edge mask for a path, then we store

the hash of the key of this path in the empty path catalog.
Each time a mask for a path is requested the hash of its key
is matched to hashes stored in the empty path catalog. If
the hash is found, then this path has no representatives in
a data set and as a consequence its cardinality equals to 0.

In the following, we will present how paths with multiple
steps can be estimated from the existing statistics.

5.4 Estimating n-Paths
An n-path is a path consisting of n single paths. Cardinal-

ity for an n-path with n > 1 can be estimated from the single
paths, which it consists of, with the help of the vertex-edge
mapping. The vertex-edge mapping (see on the right side in
Figure 7) provides source and target vertices for data edges
representing with their data identifiers. For the cardinality
estimation, we encode each single path from the n-path as
a sparse matrix in the coordinate format. This coordinate
format consists of three fields: an id of source and target
vertices as well as a number of data edges between these
two data vertices. First, data masks for single paths are
collected for each single path in an n-path from the path(1)
catalog in Figure 7. Second, all bit set in retrieved data
masks are substituted by corresponding source and target
vertices from the vertex-edge mapping. If a single path is
specified as undirected then edges in the opposite direction
have to be retrieved. For this, entries are transposed and
added to directed edges. As a result, each entry in a map
represents a single data edge between two vertices. Finally,
we sum the number of edges between the same source and
target vertices. In this way we have encoded each single path
in the coordinate format. Our system supports acyclic paths
with mixed directions allowing to calculate larger paths for
queries. To estimate the cardinality of an n-path, we have to
transpose paths for the opposite direction and then multiply
produced matrices along the path.

v
0

v
1

v2

v
3

cover

type

artist name = various

name = album

Edges:

e1: v0 →v1

e2: v0 →v2

e3: v0 →v3

Figure 9: Query example

Example Assume an example in Figure 9, we need to cal-
culate the path e1, e2. This query describes an item of type
album, which has a cover and is specified by an artist who
has produced it. To calculate n-path, first, we prepare sparse
matrices in the coordinate format. As next, we select ver-
tices that can be used as a start or an end of a path. Such
vertices should have degree = 1. Assume we take vertex v1
with an incoming edge e1. From vertex v1 we traverse back-
ward to vertex v0. For this, we transpose the sparse matrix
for edge e1. Vertex v0 in path e1, e2 has two outgoing edges:
already processed edge e1 and not-processed edge e2. We
take edge e2 and traverse to its target vertex v2. The direc-
tion of this edge corresponds to the direction of traversal.
Therefore, we do not have to transpose its sparse matrix
and can just simply multiply both matrices. The sum of all
non-zero elements of the produced matrix is the estimated
cardinality of 2-path e1, e2.
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Figure 10: Comparison of strategies for candidate selection

6. EVALUATION
In this section we evaluate our framework for relaxation of

subgraph isomorphism queries. We describe the evaluation
setup and used data sets and evaluate different relaxation
strategies and comparator configurations. We also show how
the chosen candidate selection strategies converge and evalu-
ate weight specification for topological and notational parts
for cardinality-based graph edit distance.

6.1 Evaluation Setup
We implemented our “Why Empty?”-engine in C++ as

an extension to a prototypical graph database [18] imple-
menting the property graph model. It stores a graph in
separate tables for vertices and edges, where vertices are rep-
resented by a set of columns for their attributes, and edges
are simplified adjacency lists with attributes in a table. Both
edges and vertices have unique identifiers. To enable efficient
graph processing, the database provides optimized flexible
tables [2, 20]. This enables schema-flexible storage of data
without a predefined rigid schema. The “Why Empty?”-
engine and the graph database were running on the same
system. In a query, each graph element is described with
predicates for attribute values.

For the evaluation we constructed three property graphs
from DBpedia RDF triples, where labels represent attribute
values of entities. The first data graph D0 has 100K edges,
49K vertices, and 163 attributes. The second data graph D1

consists of 213K edges, 30K vertices, and 740 attributes.
The third data graph D2 has 819K edges, 182K vertices,
and 1542 attributes. The edges of the graph D2 are in-
cluded in the graph D3. We have evaluated 20 real queries
from the DBpedia SPARQL query log endpoint1, which we
expressed in a subgraph isomorphism language of the used
graph database. As a quality measure we use the distance
between an original query and a query candidate delivering
a non-empty result expressed by the number of changes be-
tween them. As a performance measure we use the number
of relaxation iterations required for the discovery of a query

1ftp://download.openlinksw.com/support/dbpedia/

candidate with a non-empty answer. We normalize both
measures by their maximal values.

6.2 Relaxation Heuristics
First, we evaluated different comparator configurations

and the two relaxation strategies H1 (minimum cardinal-
ity), H2 (maximum impact) introduced in Section 3 with
two baselines: random relaxation and full relaxation.

We have created 240 comparator configurations for sort-
ing query candidates as follows. Each configuration has two
parts: rule-based and aggregated parts (sum), each of them
consists of at most three comparators based on: an average
edge cardinality, an average vertex cardinality, an average
and minimum single path cardinality, a number of query
vertices, a number of query edges, or a distance between
a candidate and an original query. Each comparator par-
ticipates only in a rule-based or in an aggregated part. If
no difference between two query candidates exists based on
a rule-based part, then they are compared by the sum of
comparator answers from the aggregated part.

We conducted this experiment on the D1 data set and
evaluated the average numbers of relaxation iterations, which
are required to discover a query candidate with a non-empty
answer, normalized to the maximum number of relaxation
iterations over all configurations for a single query and the
average normalized distances. As we can see on the left in
Figure 10, most of the comparators show high distances and
number of relaxation iterations, before a query delivering a
non-empty result set was found. We selected three compara-
tors exhibiting the highest quality and the best performance:
(1) avg.vertex + distance: first, average vertex cardinalities,
then distances are compared; (2) avg.edge + distance: first,
average edge cardinalities, then distances are compared; (3)
avg.path(1) + distance: first, average single path cardinali-
ties, then distances are compared.

We studied these three comparators in detail by applying
four relaxation strategies for three data sets D0, D1, and D2

(see on the right in Figure 10). For this, we normalized the
number of relaxation iterations and distances to the highest
values among these three data sets. The worst quality and
performance are shown by the random strategy. Compara-
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Figure 11: Convergence of relaxation strategies for candidate comparators

tors avg.vertex + distance and avg.edge + distance based
on cardinality without considering correlation between edges
and vertices deliver candidates of better quality because of
small changes they apply to a query, but worse performance
caused by a high number of iterations. In contrast, com-
parator avg.path(1) + distance considers as much informa-
tion as possible and leads to the faster discovery of a lo-
cal minimum by lacking quality in comparison to the first
two comparators. In addition, avg.path(1) + distance ex-
hibits less variance in its results. Figure 10 also demon-
strates that the impact of a relaxation strategy is weaker
than the influence of a comparator. Our proposed compara-
tor avg.path(1)+distance with maximum impact relaxation
strategy shows the best combination of distance and relax-
ation iterations for all data sets. We further evaluate our
comparators for paths 1, 2, 3 in Figure 12. We normalized
the results to the maximum values of relaxation iterations
and distances among paths. As we can see, the number of
relaxations remains the same, but the distance can increase
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Figure 12: Path evaluation
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answers

a little. This happens because longer paths bring some noise
into the results. Based on this observation, we can conclude
that the use of single paths is enough, and in the following
experiments we use only single paths.

6.3 Convergence
Second, we evaluate convergence of relaxation strategies

and comparators in terms of the discovery of the first candi-
date delivering a non-empty result and time for discovering
candidates of better quality. For this purpose, we take a
time budget of five minutes and plot the ratio of 20 evaluated
queries with discovered the first query candidate delivering a
non-empty result set in Figure 11(a) and the best discovered
solution (in terms of the average normalized distance) at the
end of every 30 seconds in Figure 11(b). We conducted this
set of experiments on two data sets D1 and D2. The conver-
gence to the first answer occurs faster for our path-based so-
lution (see in Figure 11(a)). The convergence time increases
with the increasing size of a data set. As we can see in Fig-
ure 11(b), the maximum impact relaxation strategy shows

the best results for all three strategies (comparator configu-
rations avg.path(1)+distance and avg.edge+distance show
the same results and are overlapped for D1). The maximum
impact relaxation strategy with the path-based comparator
outperforms both baselines: random and full relaxations,
and also converges faster than minimum cardinality relax-
ation strategy. With an increasing size of the data graph
(see bottom charts D2 in Figure 11), the impact of com-
parators becomes stronger and requires a path-based solu-
tion for fast convergence. Random relaxation exhibits the
worst results as the distance of produced query candidates
is very high and the relaxation process does not converge to
the best solution during these five minutes. The evaluation
shows that it is possible to discover results of higher qual-
ity if we continue the search after the discovery of the first
candidate with a non-empty answer. Still these solutions do
not out-perform the maximum impact strategy.

6.4 Graph Edit Distance
In this section we evaluate the weight distribution for the

notational and topological parts. For this, we change them
between [0, 100] and additionally compare them with dy-
namic weights (this is a general use case: no separation of
weights for notation and topology, weights are propagated
to the root and then normalized). We normalize the mea-
surements between the minimum and maximum number of
relaxation iterations and distances for each query and then
calculate average. The results are presented in Figure 13.

We can see that by using our cardinality-based distance
we can get the fastest result of the best quality (see “Dy-
namic” case). Regarding the weight propagation, our com-
parator avg.path(1) + distance provides the fastest results.
The topology of evaluated queries already exists in our data
graph, but suitable notation is missing. This can be seen
from the best distance for the strategies based on indepen-
dent cardinality for cases where the notational part has a
low weight. For these cases, queries with relaxed notational
parts are preferred.

In Figure 14 we present a query delivering an empty result
set and its solutions for maximum impact relaxation strat-
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egy. This evaluation supports our conclusions: our strategy
is stable for different weight configurations. The candidate
comparator avg.edge+ distance based on edge cardinalities
relaxes the whole query description in order to improve the
independent cardinality.

7. RELATED WORK
In this section we present state of the art research in ex-

plaining unexpected answers and graph edit distance.

7.1 Solutions for Empty Answer Problem
The empty-answer problem is being extensively studied

for conjunctive queries in traditional relational settings. A
typical example of such queries is a web form, where a user
enters predicates for attributes of the search, which are in-
teresting for him in order to discover some information, for
example: flight information like departure time, duration of
travel etc. There are two common ways to support a user
in case a query delivered an empty result: automatic and
navigational solutions. In the first group [4, 10, 11], a sys-
tem generates several query candidates by relaxing some of
the attributes. This approach suffers from a large number
of candidates that complicates the selection of the best can-
didate. Chaudhuri [4] defines extended queries that provide
additional constraints on the result set and examines some
query constrains as flexible constraints. Jannach et al. [10]
calculate user-optimal query relaxations by evaluating sub-
queries and detecting conflicts for fast relaxation of preferred
conflicts on demand. The second group [13, 14] overcomes
the problem of too many query candidates by involving a
user into the relaxation process. Instead of recommending
a lot of proposals, a system provides only a small portion
and a user chooses his favorite if required. In such systems
a user navigates the search, this is the reason why they are
called navigational. A further improvement is to integrate
user interest into the generation of proposals. In this case
the effectiveness of the proposal with respect to an objective
goal and likelihood of its acceptance is considered.

These approaches solve the empty-answer problem for re-
lational databases and conjunctive queries. In our use case
we work with subgraph isomorphism queries delivering empty
answers. We need to consider specifics of a graph query and
predicates on edges and vertices. These proposed solutions
represent only a partial problem for predicates. In our pre-
vious work [22, 23], we mainly focused on determining which
parts of a graph query are represented in a data set without
considering partial representations for edges and vertices.
Therefore, in this current work we focus on rewriting and
consider specifics of graph queries like a direction, predi-
cates, edges’ types, edges, and vertices.

7.2 Solutions for Missing Answers
The problem of empty answers can also be modeled as a

problem of missing answers. In this case“Why Not?”-queries
are used that explain why items of interest are missing from
a result set. “Why Not?”-queries can be classified into two
groups according to explanations they provide: provenance-
based and query rewriting. The first group, provenance-
based methods, generates one of the following explanations:
query-based [1, 3], instance-based [7, 8, 9], or hybrid expla-
nations [6]. To provide query-based explanations [3], a query
tree is traversed and operations, which reject the tuples of
interest are delivered to a user as explanations. Instance-

based explanations [7, 8, 9] show how a data source has to
be modified in order to deliver missing answers. This kind
of explanations can be used in data integration tasks, where
the extraction process can fail and deliver not fully correct
data. Like in the previous section, these approaches are
relation-oriented and do not consider specifics of a graph.

7.3 Flexible Query Answering
To prevent an empty-answer problem, flexible query an-

swering can be used. Approximate queries [12] can include
approximation for topology and vocabularies. This approach
calculates notational relatedness between vertices to iden-
tify if the connection is meaningful and deals with incorrect
annotations for edges and vertices. In comparison to this
approach, we assume that vertices and edges are described
grammatically correctly, but the construction of a query and
assignment of predicates is wrong. The approach of uncer-
tain predicates [26] is similar to our assumptions, where a
user has to point out which predicates can be uncertain and
relaxed. For this, a user has to annotated a set of predicates
with probability (relevance for a user). Another approach
for flexible query answering is realized by keyword-search.
Originally, keyword search does not provide a way to spec-
ify the topology for subgraph isomorphism queries, but the
structure is derived by the search of substructures match-
ing the provided keywords. For example, Tran et al. [21]
compute query proposals from the keywords and provide
them to a user, who chooses a candidate to be processed
by a query processor. These methods help a user to create
a meaningful query and prevent him from creating a query
delivering empty answers. In contrast, we give help to a user
when he already knows what he wants exactly to get from a
graph database and to debug the query by providing query
candidates delivering non-empty results.

7.4 Graph Edit Distance
Graph edit distance [5] measures similarity between two

graphs by transforming one graph into another with a se-
quence of edit operations (vertex deletion, edge deletion,
and vertex substitution). Every operation is characterized
by its cost. The least-cost edit operation sequence is used
as a graph edit distance. Algorithms for graph edit distance
are classified into two groups according to a graph type they
consider: non-attributed graphs and attributed graphs [5].
Graph edit distance for a non-attributed graph describes
topological difference. In this case, compared graphs are
coded as strings and a string distance is used as a graph
edit distance, for example: Hamming [25], Levenstein [15],
and Markov [24] edit distances. The dissimilarity of two at-
tributed graphs is calculated according to their attributes.
If a vertex has k attributes and an edge has h attributes,
then k-dimensional and h-dimensional attribute space is con-
structed, which is used to calculate the distances between
attributes of graphs. This can be done with self-organizing
maps [17], probability approach estimating the frequency of
edit operations and hereby constructing the distribution of
edit operations [16]. For further reading we recommend the
survey on a graph edit distance [5] to interested readers. In
comparison to these solutions, our approach calculates the
difference between a query candidate and an original query
based on the number of instances of their edges and vertices
in a data graph. We do not compare the structure and label

Final edited form was published in "SSDBM 2015: International Conference on Scientific and Statistical Database Management. La Jolla 2015", Art. Nr. 28, 
 ISBN 978-1-4503-3709-0 

https://doi.org/10.1145/2791347.2791382 

11 
 

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden



similarity for these two graphs, because a query candidate
is already a subgraph of an original query.

8. CONCLUSION
The empty-answer problem known from the database re-

search on conjunctive queries becomes a difficult problem in
graph databases explained by the complexity of graph data
model and supported graph queries. In this paper we pro-
pose a solution for this problem for subgraph isomorphism
queries based on “Why Empty?”-queries that are triggered
by a user in case of getting an empty result set. These
queries are processed by the “Why Empty?”-engine that
rewrites an original query in such a way that a new query
delivers a non-empty result set. The full relaxation process
has exponential complexity because of the variety of combi-
nations of elements to be relaxed and relaxation sequences.
We reduce the complexity heuristically by providing com-
parators considering path cardinalities and choosing only a
subset of elements to be relaxed based on the impact of their
relaxation on the neighbors in a graph query. We also in-
troduce relaxation operations for property graphs and our
cardinality-based graph edit distance that expresses the dif-
ference between two query candidates in terms of maximum
estimated cardinality difference between them. We evalu-
ate our system on three data sets with real queries from the
DBpedia log. Our approach based on the cardinality-based
graph edit distance with the maximum impact relaxation
strategy shows the best combination of quality and perfor-
mance and scales with an increasing size of a data graph.
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[2] C. Bornhövd, R. Kubis, W. Lehner, H. Voigt, and
H. Werner. Flexible information management,
exploration and analysis in SAP HANA. In DATA,
pages 15–28, 2012.

[3] A. Chapman and H. V. Jagadish. Why Not? In Proc.
SIGMOD, pages 523–534. ACM, 2009.

[4] S. Chaudhuri. Generalization and a framework for
query modification. In Proc. ICDE, pages 138–145.
IEEE Computer Society, 1990.

[5] X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph
edit distance. Pattern Anal. Appl., pages 113–129,
2010.

[6] M. Herschel. Wondering why data are missing from
query results?: Ask conseil why-not. In Proc. CIKM,
pages 2213–2218. ACM, 2013.

[7] M. Herschel and M. A. Hernández. Explaining missing
answers to SPJUA queries. Proc. VLDB Endow.,
pages 185–196, 2010.

[8] M. Herschel, M. A. Hernández, and W.-C. Tan.
Artemis: A system for analyzing missing answers.
Proc. VLDB Endow., pages 1550–1553, 2009.

[9] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On
the provenance of non-answers to queries over

extracted data. Proc. VLDB Endow., pages 736–747,
2008.

[10] D. Jannach. Techniques for fast query relaxation in
content-based recommender systems. In Proc. KI,
pages 49–63. Springer-Verlag, 2007.

[11] U. Junker. QUICKXPLAIN: preferred explanations
and relaxations for over-constrained problems. In
AAAI, pages 167–172, 2004.

[12] F. Mandreoli, R. Martoglia, G. Villani, and W. Penzo.
Flexible query answering on graph-modeled data. In
Proc. EDBT, pages 216–227. ACM, 2009.

[13] D. Mottin, A. Marascu, S. Basu Roy, G. Das,
T. Palpanas, and Y. Velegrakis. IQR: An interactive
query relaxation system for the empty-answer
problem. In Proc. SIGMOD, pages 1095–1098. ACM,
2014.

[14] D. Mottin, A. Marascu, S. B. Roy, G. Das,
T. Palpanas, and Y. Velegrakis. A probabilistic
optimization framework for the empty-answer
problem. Proc. VLDB Endow., pages 1762–1773, 2013.

[15] R. Myers, R. Wison, and E. R. Hancock. Bayesian
graph edit distance. IEEE Trans. Pattern Anal. Mach.
Intell., pages 628–635, 2000.

[16] M. Neuhaus and H. Bunke. A probabilistic approach
to learning costs for graph edit distance. In Proc.
ICPR, pages 389–393. IEEE, 2004.

[17] M. Neuhaus and H. Bunke. Self-organizing maps for
learning the edit costs in graph matching. Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, pages 503–514, 2005.

[18] M. Paradies, M. Rudolf, C. Bornhövd, and W. Lehner.
GRATIN: Accelerating graph traversals in
main-memory column stores. In GRADES, pages
9:1–9:6. ACM, 2014.

[19] M. A. Rodriguez and P. Neubauer. Constructions from
dots and lines. Bulletin of the American Society for
Inf. Science and Technology, pages 35–41, 2010.

[20] M. Rudolf, M. Paradies, C. Bornhövd, and W. Lehner.
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