

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806450

Julian Eberius, Patrick Damme, Katrin Braunschweig, Maik Thiele, Wolfgang Lehner

Publish-time data integration for open data platforms

Erstveröffentlichung in / First published in:

WOD '13: 2nd International Workshop on Open Data, Paris 03.06.2013. ACM Digital Library,
Art. Nr. 1. ISBN 978-1-4503-2020-7

DOI: https://doi.org/10.1145/2500410.2500413

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806450
https://doi.org/10.1145/2500410.2500413

Publish-Time Data Integration for Open Data Platforms

Julian Eberius, Patrick Damme, Katrin Braunschweig, Maik Thiele and Wolfgang
Lehner

Technische Universität Dresden
Faculty of Computer Science, Database Technology Group

01062 Dresden, Germany
firstname.lastname@tu-dresden.de

ABSTRACT
Platforms for publication and collaborative management of
data, such as Data.gov or Google Fusion Tables, are a new
trend on the web. They manage very large corpora of datasets,
but often lack an integrated schema, ontology, or even just
common publication standards. This results in inconsistent
names for attributes of the same meaning, which constrains
the discovery of relationships between datasets as well as
their reusability. Existing data integration techniques focus
on reuse-time, i.e., they are applied when a user wants to
combine a specific s et o f d atasets o r i ntegrate t hem with
an existing database. In contrast, this paper investigates a
novel method of data integration at publish-time, where the
publisher is provided with suggestions on how to integrate
the new dataset with the corpus as a whole, without re-
sorting to a manually created mediated schema or ontology
for the platform. We propose data-driven algorithms that
propose alternative attribute names for a newly published
dataset based on attribute- and instance statistics main-
tained on the corpus. We evaluate the proposed algorithms
using real-world corpora based on the Open Data Platform
opendata.socrata.com and relational data extracted from
Wikipedia. We report on the system’s response time, and on
the results of an extensive crowdsourcing-based evaluation
of the quality of the generated attribute names alternatives.

1. MOTIVATION
Platforms for collaborative collection and reuse of datasets

are a current trend on the web. A prime example for plat-
forms of this kind are Open Data Platforms, such as data.
gov or data.gov.uk, where government agencies publish
datasets of public interest. But this trend is not limited to
governmental efforts: organizations, corporations and citi-
zens have become data publishers and editors too. Another
example for collaborative data management is Wikipedia,
which contains over a million relational-style tables in its
current English version. The free-for-all nature of these data
publishing platforms leads to a strong heterogeneity in the

©2013 Copyright held by the owner/author(s). Publication rights licensed to
ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in WOD ’13, June 03 2013, Paris, France
https://doi.org/10.1145/2500410.2500413

corpora managed by these platforms, which contradicts the
primary goals: data reusability and composability. One spe-
cific problem of this heterogeneity is the schema vocabulary,
i.e., the terms used as attribute names of the datasets on the
platform. Since the data is published by various authors us-
ing different terms for the same concepts, this leads to the
classic data integration problem of finding equivalences be-
tween attributes in different datasets.
While the conventional techniques of schema matching are
in principle applicable to all of these problems, they are usu-
ally designed to be used at reuse-time, i.e., when it is clear
which datasets should be integrated and reused together.
These techniques will not help to prevent the increase of
heterogeneity in repositories, where a growing number of
authors publish a rising number of datasets.
One solution would be to force newly published datasets to
conform to a centralized schema or ontology, in which case
schema matching techniques could be applied. While this
may be a viable approach for some repositories, enforcing or
even just creating an integrated schema will be unfeasible
for multi-domain repositories with authors acting totally in-
dependent of each other. Additionally, this would limit the
number and diversity of published datasets, since the pub-
lishing effort would increase.
So if we assume that the repository in question does not
have an integrated schema or ontology, data publishers are
free to choose arbitrary attribute names, leading to degener-
ated schemata and thus increasing integration effort at reuse
time.
Publish-Time Data Integration (PTDI). The system
presented in this paper is based on the idea that given
the right tool-support, some lightweight integration work
can easily be done at publish-time, to make the the new
dataset fit into the existing repository. When the user pub-
lishes a new dataset the PTDI system augments the schema
by alternative attribute names using statistics it maintains
about the attributes and corresponding instances on the
platform. To illustrate this process consider Figure 1, which
depicts an exemplary corpus C consisting of four datasets
ds1 to ds4 in two different domains. Furthermore, con-
sider the new dataset ds+ that is to be added to the cor-
pus. The system should generate the output {c_name 7−→
(Country, STATE)}, as the latter two attribute names are
used in the existing corpus for country names. Since “Coun-
try” appears two times (first column in ds1 and third column
in ds3) and “STATE” only one time (first column in ds2),
“Country” is ranked before “STATE”. For the second at-
tribute name “c_lang” in ds+ there is no recommendation,

Final edited form was published in "WOD '13: 2nd International Workshop on Open Data. Paris 2013", Art. Nr. 1, ISBN 978-1-4503-2020-7
https://doi.org/10.1145/2500410.2500413

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Country	 Capital	 Short	

France	 Paris	 F	

Germany	 Berlin	 D	

Italy	 Rome	 I	

STATE	 CURRENCY	

France	 Euro	

UK	 Pound	

USA	 US-‐dollar	

Name	 of	 City	 Region	 Country	 ConBnent	 River	

Dresden	 Saxony	 Germany	 Europe	 Elbe	

London	 England	 UK	 Europe	 Thames	

New	 Orleans	 Louisiana	 USA	 North	 America	 Mississippi	

c_name	 c_lang	

France	 French	

Germany	 German	

USA	 English	

firstName	 lastName	 dateOfBirth	 bornIn	

Theodor	 Fontane	 12/30/1819	 Berlin	

Honore	 Balzac	 05/20/1799	 Tours	

Julius	 Caesar	 Oct	 49	 BC	 	 Rome	

ds1	 ds2	

ds3	

ds4	

ds+	

corpus	 new	 dataset	

domain	 d1	
domain	 d2	

Different	 a^ribute	 names	 with	 the	 same	 meaning	 Different	 meanings	 for	 a^ributes	 with	 similar	 values	

Figure 1: Example corpus C (4 datasets in 2 domains)

because no similar attribute exists in the corpus.
Notice however, that fitting names for an attribute are not
only dependent on its value set, but also on the domain
it stems from. This should be illustrated by an additional
dataset ds4 belonging to a different domain (see Figure 1).
Similar to ds1 it contains an attribute with city names, but
the meaning of the attributes differ (bornIn versus Capital
and Name of City). Therefore, in order to give correct name
alternatives, our system also takes the existing domains on
the platform and the domain of the new dataset into ac-
count. Specifically, it maps new datasets into one of the ex-
isting domains on the platform, before generating attribute
alternatives based on statistics for this distinct domain.
Finally, in contrast to classic data integration techniques,
publish-time data integration has much stronger performance
constraints. The publish-time data integration algorithms
have to be fast enough to allow instant publisher feedback.
The rest of this paper is organized as follows: we will pro-
pose four different algorithms for generating equivalent at-
tribute names based on corpus statistics and discuss our
domain classification method in Section 2. In Section 3
we will report on our crowdsourcing-based evaluation, in
which we measured quantity and quality of the generated
attribute name suggestions using real world corpora from
opendata.socrata.com and Wikipedia. Finally, we will dis-
cuss related and future work in sections 4 and 5 respec-
tively.

2. PUBLISH-TIME DATA INTEGRATION
Figure 2 gives an overview of the PTDI system’s architec-

ture. The system operates in an offline phase, in which cor-
pus statistics are generated, and an online phase, in which
these statistics are exploited to quickly generate attribute
name equivalences for new datasets being added to the cor-
pus.
In the offline phase, the datasets in the corpus are clustered
into domains, which is necessary to deal with the differ-
ent meanings of terms in different contexts, as explained
in Section 1. Furthermore, the clustering into domains is
leveraged to reduce the effort and time needed to compute
equivalences in the online phase. Collecting domain-specific
statistics allows us to map incoming dataset into one partic-
ular domain which is much smaller in size compared to the
whole corpus. These domain-related processes are described
in Section 2.1.
In the online phase, the attribute name equivalences for the

vs+

s+

Publisher

PTDI-SystemOffline Online

Domain
Clusterer

DI

d1 Domain
Classifier

ds+

Attribute Name
Recommender

Sugges
tions

d+

Input

Output

Corpus

Domains
:

:

DI

d2

DI

d|D|

Figure 2: PTDI System Architecture

incoming dataset are created. This phase consists of two
steps. First, the already mentioned mapping into a specific
domain and second, the comparison between values associ-
ated with the new attribute and the domain statistics. The
specific implementations of this process discussed in Sec-
tion 2.2 differ in the types of statistics they maintain, and
the way the comparison between them and the new dataset
is performed.

2.1 Domains and Domain-Classification
We refer to a domain as a set of datasets that have a

common topic and thus use a common vocabulary. For the
clustering of datasets into domains we follow Mahmoud and
Aboulnaga [5]. Their approach clusters datasets based on
their attribute names by creating feature vectors for each
dataset that represent the vocabulary used in its attribute
names and then performing bottom-up clustering using these
vectors. The output of their algorithm is a set of triples, con-
taining a dataset, a domain, and a probability of the given
dataset belonging to the domain. Note that in our context,
one dataset may belong to more than one domain, so do-
mains may overlap.
To classify an incoming dataset ds+ the same principles are
applied. For ds+ a feature vector must be created that rep-
resents the incoming dataset’s vocabulary. Then, the most
similar schema ssim in the corpus is calculated by compar-
ing the new feature vector to all existing vectors using a
similarity function based on the Jaccard coefficient. If a
schema with non-zero similarity is found, the algorithm re-
turns the domain d+ to which the dataset with the most
similar schema ssim belongs with the highest probability.

2.2 Equivalence Algorithms
Given the domain d+ for a new dataset ds+ we are now

able to generate possible attribute equivalencies. To this
end, we developed four algorithms that differ in the set of
datasets they consider, and in the offline-generated statistics
they use. Their input and output is defined in the same way:
they assume a set of values vs+, of the attribute k of the new
dataset ds+, and a domain d+, and return a list of possible
attribute equivalences to attributes existing on the platform.
Note that all four implementations are only defined for text
columns, i.e., columns that contain mostly string data.

2.2.1 Naive-C and Naive-d+

The baseline approach Naive-C searches the complete cor-
pus (not using d+) for value sets that are similar to vs+ and
all attributes names belonging to these value sets are re-
turned as possible equivalences. The similarity vsSim(vsx, vsy)

Input: Value Set vs+

Output: Possible Equivalences
1 names← empty list

2 foreach vsi ∈ VS(C) do
3 if vsSim(vs+, vsi) ≥ thvsSim then
4 names← names : ai

5 return freqSort(names)

Figure 3: The Naive-C approaches to equivalence generation

between two value sets vsx and vsy is calculated by counting
the number of values vx from vsx for which a similar value
vy can be found in vsy and the other way around. The sum
of both is then normalized with the sum of the cardinalities
of the two value sets which leads to similarity score in the
interval [0, 1]. The similarity between two values is calcu-
lated using string distance measures, specifically the average
between the Longest Common Substring-, Levenshtein- and
Ngram-distance. The two values vx and vy are deemed sim-
ilar if the value of this function is greater than a threshold.
Based on this similarity measure the algorithm Naive-C is
constructed as shown in Figure 3. In this approach, the
input value set is globally compared to all value sets in the
corpus, saving all the attribute names of the other value sets
with sufficient similarity (see line 3). The resulting list of
attribute names is ordered by their frequency in the corpus.
As a first improvement to the baseline, instead of consid-
ering the whole corpus (see VS(C) in line 2 of Figure 3)
Naive-d+ only considers the value sets of the domain d+
the incoming dataset was classified into it. Of course this
approach requires a correct classification of the datasets as
described in Section 2.1. Limiting the search for alternative
attribute names to the domain has the obvious advantage
that fewer value sets have to be compared, which increases
performance. On the other hand, it can be argued that
correct equivalences might be lost when considering only a
subset of the whole corpus. However, as illustrated in Fig-
ure 1, similar value sets do not necessarily indicate similar
meaning if they originate from different domains. For this
reason we expect that Naive-d+ will not only outperform
Naive-C in run time, but also in quality of the generated
equivalences.
The common disadvantage of both algorithms presented so
far is that they perform all of their work online which con-
trasts with our requirement that publish-time data inte-
gration calls for fast response times, since data publishers
are unlikely to cooperate if they suffer through long waits.
Therefore, we developed the following two algorithms which
use statistics created offline to improve the response time of
the equivalence generation.

2.2.2 Clustering-d+

The basic idea of the Clustering-d+ algorithm is to add
another clustering step on the domain level. In this offline
step, similar value sets within each domain are clustered,
and a list of possible attribute names for each of these clus-
ters is saved. Using these clusters, the online step can be
reduced to comparing the incoming value set to one rep-
resentative value set of each of these domain level clusters
leading to substantial performance gains. In the following,
we will describe the offline and online phase of Clustering-
d+ in more detail.
Offline. The mentioned clustering of the value sets is per-

Input: Value Set vs+
Input: Domain d+
Output: Possible Equivalences

1 (rvsmax, rmax)← arg max(rvs,r)∈DId+
2 rvsSim(vs+, rvs)
3 if rvsSim(vs+, rvsmax) > 0 then
4 return rmax

5 else
6 return empty list

Figure 4: Online phase of Clustering-d+

formed as bottom-up clustering where initially every value
set VS(d) in a domain is a cluster of it’s own. Then the two
most similar clusters are successively merged until there is
no pair of clusters above a threshold. The similarity be-
tween two value sets is calculated using the function vsSim
from Section 2.2.1. For each of the clusters in the resulting
set C a representative value set rvs is created. This rep-
resentative value set is used in the online phase to reduce
the number of comparison that have to be performed with
the incoming dataset’s values. It uses a dynamic threshold
depending on the most frequent value to decide which val-
ues that appear in the value set cluster to include in the
cluster’s representative set. All the attribute names used
for the value sets that were assigned to the same cluster are
collected, ordered by frequency, and are saved as a list of
possible equivalent attribute names. These representative
value sets plus their respective list of attribute names con-
stitute the domain statistics that are used by Clustering-d+.
Online. Leveraging these statistics the online phase of the
Clustering-d+ (see Figure 4) becomes more easier and more
efficient. Each incoming value set vs+ now has to be as-
signed to the most similar representative value sets rvs,
which is already precomputed. In contrast to the similarity
measure vsSim from Section 2.2.1, we have to use rvsSim
which is only dependent on the number of values from rvs
that have a partner in vs, but not the other way around.
This is due to the construction of rvs which deliberately
omits rare values, while the incoming value set vs may con-
tain values of any frequency. Using the modified measure
rvsSim the most similar representative value set in the do-
main is identified, and the prepared list of possible equiva-
lences is returned.

2.2.3 Analysis-d+

The final algorithm, Analysis-d+, creates different domain
statistics compared to Clustering-d+. Instead of clustering
value sets and saving attribute names that belong to them,
this algorithm groups value sets with the same attribute
name. This leads to differences both in the form of the do-
main statistics and the way in which the online phase gen-
erates equivalences for the incoming dataset.
Offline. The offline phase of the algorithm is actually sim-
pler than Clustering-d+. Instead of clustering value sets, it
simply groups value sets by their attribute names, and then
creates a representative value set for each group. In contrast
to the domain statistics of Clustering-d+, which consist of
tuples of representative value set with a corresponding list
of attribute names, Analysis-d+ creates triples consisting of
representative value set, a single attribute name, and the
frequency of this attribute name. Saving this frequency is
necessary as the list of equivalences and its ranking is gen-
erated in the online phase of the algorithm, as opposed to

Final edited form was published in "WOD '13: 2nd International Workshop on Open Data. Paris 2013", Art. Nr. 1, ISBN 978-1-4503-2020-7
https://doi.org/10.1145/2500410.2500413

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Input: Value Set vs+
Input: Domain d+
Output: Possible Equivalences

1 names← empty list
2 foreach (rvs, a, z) ∈ DId+ do
3 if rvsSim(vs+, rvs) ≥ thrvsSim then
4 names← names : a : · · · : a︸ ︷︷ ︸

z−times

5 return freqSort(names)

Figure 5: Analysis-d+

offline with Clustering-d+.
Online. In the online phase of Analysis-d+, the incoming
value set can again be compared to the representative value
sets saved in the offline phase, instead of comparing it to all
other value sets in the domain. In contrast to Clustering-d+
however, each of these representative sets is only associated
with one attribute name, not with a complete list of equiv-
alences. For this reason, it is not enough to find the most
similar triple in the domain statistics. Instead all triples
where the similarity between rvs and the incoming vs is
above a threshold have to be collected. The gathered triples
can then be sorted by their frequency value, so that the
attribute names that are most commonly used are ranked
higher.

3. EXPERIMENTAL EVALUATION
We conducted an extensive experimental study to evalu-

ate 1) the runtime behavior of the domain clustering and
the equivalence algorithms, 2) the result quality for the four
different approaches, and 3) the impact of the existing cor-
pus size on the number and quality of generated attribute
name alternatives.

3.1 Experimental Setup
For our evaluation we conducted various experiments on

real-world data. First, we used opendata.socrata.com, an
Open Data platform, which encompassed 16, 591 datasets
when we extracted our test corpus. From the complete list
of datasets, we discarded all tables with less than 3 columns
or 2 rows, as well as all tables with a size of more than
100MB. For our second corpus, we extracted tables from
English Wikipedia pages, using techniques similar to the
ones presented in [1]. We extracted a set of 1.7m relational
tables from Wikipedia’s HTML and, again, discarded tables
that were either too small or too large. From the remain-
ing tables we randomly selected three sets of different sizes:
a set of 5, 000 tables (W iki5k), of 10, 000 tables (W iki10k)
and of 20, 000 tables (W iki20k), with W iki5k ⊂W iki10k ⊂
W iki20k. These sets of different sizes enabled us to analyze
the impact of the corpus size on the recommendation qual-
ity.
In addition to the corpora, we also extracted different classes
of test data from both sources as input tables for the algo-
rithms. For each potential test table, we counted the fre-
quency with which the column name of each text attribute
appeared in the respective corpus. We then used the highest
encountered frequency to normalize the values and divided
the resulting frequency range into six classes. The first class
f0 contains all attributes that appear in the test data, but
not in the corpus (i.e. the frequency equals 0). Classes
f1 − f5 are equal to the quintiles of the frequency distribu-
tion. Finally, we selected the tables so that the overall test

Socrata6k Wiki5k Wiki10k Wiki20k
0

1,000

2,000

3,000

390

31 85
240

585

105

564

3,104

40 59 100

599

tim
e
in

se
co
nd

s

Feature Vectors
Schema Similarity
Schema Clustering

Figure 6: Runtime for individual processing steps and com-
plete clustering process.

Socrata6k Wiki5k Wiki10k Wiki20k
0

500

1,000

1,500

2,000

560
452

1,104

1,954

7 17 24 3545 58 77 104
si
ze

in
#

of
do

cu
m
en
ts

Max
Avg.
Avg.(Large Domains)

Figure 7: Max. and avg. # of documents in clustered do-
mains (domains with a size > 10 count as large domains).

set contained at least 100 attributes for each frequency class.
For all runtime experiments, we used a 64-bit Linux (Ubuntu
11.10) system with 8GB RAM and 2 Intel Xeon CPUs(each
2.4GHz). Additionally, we performed several experiments
to evaluate the quality of the recommendations produced by
the system. In general, an impartial quality assessment re-
quires the evaluation of the results by actual users of the sys-
tem. However, such an evaluation can be very extensive and
time consuming when performed on a large scale. Therefore,
we utilized the functionality and services provided by crowd-
sourcing platforms for the quality assessment.

3.2 Domain Clustering
At first, we performed the domain clustering as described

in Section 2.1 for all test corpora.
Runtime Requirements Figure 6 shows the runtime re-
quired for all the individual processing steps performed dur-
ing the domain clustering. The results show that compu-
tation of the similarities between the document schemas is
the most expensive step dominating the other processing
stages. This is due to the quadratic complexity of the pair-
wise schema matching performed in this step. Since the
domain clustering is performed once offline before perform-
ing the equivalence algorithms a longer runtime for this step
is not an immediate issue.
Concerning the extraction of the additional domain informa-
tion required for Clustering-d+ and Analysis-d+, we found
that this step requires significantly less time in Analysis-
d+ then with Clustering-d+, where pairwise comparison of
value set are necessary.
Domain Size For each corpus the domain clustering al-

gorithm generates a large number of domains of different
sizes. The maximum and average domain sizes are presented

Final edited form was published in "WOD '13: 2nd International Workshop on Open Data. Paris 2013", Art. Nr. 1, ISBN 978-1-4503-2020-7
https://doi.org/10.1145/2500410.2500413

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Socrata6k Wiki5k Wiki10k Wiki20k

101

102

103

104

105

tim
e
in

m
s

Naive-C Dom.Class. Naive-d+

Clust.-d+ Analysis-d+

Figure 8: Average runtime for domain classification and at-
tribute name recommendation (log scale).

0 1 2 3 4 50

2

4

6

8

10

12

Frequency classes

Av
g.

#
of

eq
ui
va
le
nc
e
ca
nd

id
at
es

Naive-C
Naive-d+

Clustering-d+

Analysis-d+

Figure 9: Avg. # of equivalence candidates found for input
attributes using corpus W iki20k, by frequency class.

in Figure 7. As expected, the average domain size increases
with the corpus size, e.g., from 17 for the Wiki5k corpus to
35 for the Wiki20k corpus. The reason is that the number
of domains is naturally bounded while the number of docu-
ments continuously increases with the corpus size. We fur-
ther see that there are a few very large domains containing
up to 1,954 documents for the Wiki20k corpus. However,
there is also a long tail of domains which contain only a
single document.

3.3 Equivalence Algorithms
Based on the domain clusters and domain information

generated during the offline phase, we evaluated the differ-
ent name equivalence approaches described in Section 2. For
each test set (i.e. Socrata and W ikipedia) we tested all four
algorithms. For W ikipedia, we also varied the corpus size
as described earlier. Figure 8 shows the average runtime
per table. The time required for domain classification must
be added to the runtime of all ∗ − d+ algorithms. While
the W ikipedia set shows acceptable runtime behaviour, the
Socrata set requires considerably more time for the recom-
mendations. This is caused by the fact that Socrata does
contain some exceptionally large tables in the corpus. For
two of our approaches, we even canceled the experiments due
to these runtime issues. Overall, Analysis-d+ is the fastest
of the four algorithms, achieving a response time less than
100ms in most cases.
Figure 9 shows how many different equivalence candidates
the respective algorithms were able to propose. As expected
Naive-C generates much more diverse equivalences as it con-
siders the whole corpus for each input set, while the other
three algorithms just consider the one domain the input
dataset is mapped into, which will contain a much smaller

Naive-C Naive-d+ Cluster.-d+ Analys.-d+

0

200

400

600

800

570

465

703

302
366

172 184 177
257

117 105 123

#
of

A
tt
rib

ut
es

Found New Correct

Figure 10: Overall, new and correct number of recommended
attributes.

Naive-C Naive-d+ Cluster.-d+ Analys.-d+

0

20

40

60

80

100

55 58

90

59

25 27

8

2420
15

2

16

%
of

A
tt
r.

w
ith

C
or
re
ct

R
ec
om

m
. 1 correct 2 correct > 2 correct

Figure 11: Percentage of attributes with exactly 1, exactly
2 or > 2 correct recommendations in the top 5.

set of potentially equivalent names.

3.4 Recommendation Quality
In addition to the runtime experiments, we also analyzed

the quality of the recommended equivalent attribute names.
We leveraged the crowd-sourcing platform CrowdF lower in
order to have users evaluate the correctness of the recom-
mendations. Before we ran the tasks on the crowd-sourcing
platform, we took the top 5 recommendations for each at-
tribute, for which the four algorithms generated results. If
less than 5 attribute names were returned by an algorithm,
we only used these. Since we were looking for meaning-
ful alternatives to the original attribute name, we removed
mentions of the original name from the top-5 set. Figure 10
shows the fraction of the recommendations which included
new attribute names (i.e. not only the original attribute
name). For this fraction of recommendations, we gener-
ated crowd-sourcing tasks. For each attribute name, we
displayed the original table and highlighted the column in
question. Below the table we displayed up to five alter-
native names recommended by our algorithms. We asked
the crowd-workers to mark names which they thought were
meaningful alternatives to the original name. Each indi-
vidual task was given to three different crowd-workers and
the answers were accepted if at least two of them agreed on
them.
First of all, we analyzed the number of attributes for which
at least one alternative name was marked as correct by the
crowd. Figure 10 shows the results for all four approaches
using W iki20k as the corpus. The dataseries “Found” de-
scribes the number of attributes for which recommendations
could be found. “New” denotes the number of recommenda-
tions that were different from the original attribute name,

Final edited form was published in "WOD '13: 2nd International Workshop on Open Data. Paris 2013", Art. Nr. 1, ISBN 978-1-4503-2020-7
https://doi.org/10.1145/2500410.2500413

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0 1 2 3 4 50

20

40

60

80

100

Frequency classes

A
tt
r.

w
ith

re
co
m
m
en

da
tio

ns
(in

%
) W iki20k

W iki10k

W iki5k

Figure 12: Fraction of attributes for which Clustering-d+
was able to generate recommendations by frequency class.

whereas “Correct” counts the recommendations which have
been verified positively by the crowd-workers. In most cases,
correct recommendations were found for about 70% (e.g.
257 of 366 attribute names for Naive-C) of the attributes
evaluated through the crowd. Only Clustering-d+ showed a
slightly lower precision. Still, the majority of recommenda-
tions contained at least one meaningful equivalent.
Depending on the datasets available in the corpus, there can
be more than one meaningful alternative in the top 5 rec-
ommendations. Therefore, we analyzed the crowd-sourcing
results to see how many alternative names were found to be
correct. Figure 11 shows the percentage of attribute names
for which exactly one, exactly two or more than two cor-
rect alternatives were found in the top 5 recommendations.
Again, Naive-C, Naive-d+ and Analysis−d+ show very simi-
lar characteristics, with exactly one correct recommendation
in 55− 59% of the cases. Clustering-d+, on the other hand,
has a significantly small fraction of attributes with more
than one correct recommendation. This result is clearly
caused by the fact that this approach generates significantly
less recommendations for each attribute in the first place.
Naive-C produces the largest amount of correct name alter-
natives, which is expected, since it uses the most compre-
hensive matching approach. The optimization techniques of
the other algorithms clearly affect the result quantity.

3.5 Corpus Size
Finally, we also analyzed the impact of the corpus size

on the recommendation quality. It is expected that a larger
corpus is more likely to contain tables that are similar or
related to the test table. Therefore, a larger corpus should
enable more name recommendations. To test this hypothe-
sis, we used the three W ikipedia corpora, which are subsets
of each other. We formed domain clusters for each corpus
and used these to generate recommendations for the same
set of test tables. Figure 12 presents the results only for
Clustering-d+, but the remaining algorithms show a similar
behavior. We can see that with an increasing corpus size for
each frequency class more attribute names are generated.
Using the results from the crowd-based evaluation, we can
also show that a larger corpus does not only result on more
recommendations, but in more correct ones.

4. RELATED WORK
Schema-matching approaches leveraging additional knowl-

edge provided by a corpus share some basic concepts with

our approach. Madhavan et al. [4] applied machine learning
techniques on an existing corpus and known schema map-
pings in order to improve the number of matches. Statisti-
cal schema matching [3] tries to find a hidden probabilistic
model within a set of input schemas. Further, the authors
propose a subclass of their model, that handles the problem
of synonym discovery. Chen et al. proposed the Schemr sys-
tem [2] which is a tool for exploring and locating schemas
or schema fragments in large schema collections in order
to reuse them in another context. Therefore, the user has
to provide an incomplete schema as well as optional search
terms. By combining schema matching and text search tech-
niques with a structurally-aware scoring metric Schemr is
able to return a set of schemata that potentially match the
input schema. Whereas Schemr is more a schema exploring
tool serving different types of applications focus we focus on
the specific problem of proposing single attributes during
data publication.

5. CONCLUSIONS
Collaborative data management platforms such as Open

Data Repositories are a new trend on the Web. As thou-
sands of users continuously publish data to these platforms,
the schema vocabulary steadily increases leading to highly
heterogeneous corpora. In this paper, we therefore proposed
the concept of data integration at publish-time where the
attribute names of new dataset are aligned with the cor-
pus to which the dataset should be added. We showed that
Naive-C produces the largest amount of correct name alter-
natives but at the same time is also orders of magnitudes
slower than the other three approaches. However, publish-
time data integration algorithms must be fast enough to
enable instant user feedback during the publishing process.
Therefore, Clustering-d+ and Analysis-d+ provide a good
mix between result quality and runtime. Using these algo-
rithms we are able to provide attribute name alternatives
during publish-time and thus to tame the growth of hetero-
geneity in collaborative data management platforms.

Acknowledgments.
This work has received funding under project number

ESF-080951805 by means of the European Regional Devel-
opment Fund (ERDF), the European Social Fund (ESF) and
the German Free State of Saxony.

6. REFERENCES
[1] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang,

and E. Wu. Uncovering the relational web. In WebDB,
2008.

[2] K. Chen, A. Kannan, J. Madhavan, and A. Halevy.
Exploring schema repositories with schemr. SIGMOD
Rec., 40(1), July 2011.

[3] B. He and K. C.-C. Chang. Statistical schema matching
across web query interfaces. SIGMOD ’03, New York,
NY, USA, 2003. ACM.

[4] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy.
Corpus-based schema matching. ICDE ’05, 2005.

[5] H. A. Mahmoud and A. Aboulnaga. Schema clustering
and retrieval for multi-domain pay-as-you-go data
integration systems. SIGMOD ’10, New York, NY,
USA, 2010. ACM.

Final edited form was published in "WOD '13: 2nd International Workshop on Open Data. Paris 2013", Art. Nr. 1, ISBN 978-1-4503-2020-7
https://doi.org/10.1145/2500410.2500413

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	ADP6A06.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Julian Eberius, Patrick Damme, Katrin Braunschweig, Maik Thiele, Wolfgang Lehner
	Publish-time data integration for open data platforms

