

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806441

Tim Kiefer, Dirk Habich, Wolfgang Lehner

Penalized graph partitioning based allocation strategy for database-
as-a-service systems

Erstveröffentlichung in / First published in:

UCC '16: 9th International Conference on Utility and Cloud Computing, Shanghai 06.12. –
09.12.2016. ACM Digital Library, S. 200–209. ISBN 978-1-4503-4617-7

DOI: https://doi.org/10.1145/3006299.3006300

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806441
https://doi.org/10.1145/3006299.3006300

Penalized Graph Partitioning based Allocation Strategy for
Database-as-a-Service Systems

Tim Kiefer, Dirk Habich, Wolfgang Lehner
Technische Universität Dresden

Database Systems Group
Dresden,Germany

{firstname.lastname}@tu-dresden.de

ABSTRACT
Databases as a service (DBaaS) transfer the advantages of
cloud computing to data management systems, which is im-
portant for the big data era. The allocation in a DBaaS
system, i.e., the mapping from databases to nodes of the
infrastructure, influences performance, utilization, and cost-
effectiveness of the system. Modeling databases and the un-
derlying infrastructure as weighted graphs and using graph
partitioning and mapping algorithms yields an allocation
strategy. However, graph partitioning assumes that individ-
ual vertex weights add up (linearly) to partition weights.
In reality, performance does usually not scale linearly with
the amount of work due to contention on the hardware, on
operating system resources, or on DBMS components. To
overcome this issue, we propose an allocation strategy based
on penalized graph partitioning in this paper. We show how
existing algorithms can be modified for graphs with non-
linear partition weights, i.e., vertex weights that do not sum
up linearly to partition weights. We experimentally evalu-
ate our allocation strategy in a DBaaS system with 1,000
databases on 32 nodes.

Keywords
Load Balancing, Database-as-a-Service, Query Processing,
Allocation

1. INTRODUCTION
In the era of big data, cloud computing and big data are

conjoined, because cloud services have become a powerful
architecture to perform complex large-scale tasks on large
data sets [8, 12]. Offering (relational) databases as a cloud
service (DBaaS) transfers the advantages of cloud comput-
ing to data management systems [8]. All major cloud ser-
vice providers like Amazon, Microsoft, or Oracle offer re-
lational databases as part of their cloud product portfolio.
As shown in [8], database partitioning plays an important
role for DBaaS. On the one hand, data partitioning enables
to scale a single database to multiple back-end nodes of the

©2016 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record
was published in BDCA T’16, December 06-09, 2016, Shanghai, China

DOI: http://dx.doi.org/10.1145/3006299.3006300

cloud infrastructure which is useful when the load exceeds
the capacity of a single machine [8]. On the other hand, it
offers more fine-grained load balancing opportunities on the
back-end nodes compared to placing entire databases [8].
In this context, the allocation in a DBaaS system refers to

the mapping from database (or database partitions) to the
back-end nodes (i.e., servers) of the underlying infrastruc-
ture. Bad allocations cause skew in the load and therefore
suboptimal application performance and infrastructure uti-
lization. Even on a small scale, solving the allocation prob-
lem is hard, given the complex interactions that tasks may
have [1]. Previous approaches to the allocation problem,
which are often based on variations of bin-packing or inte-
ger programming [7, 21, 23], concentrate on balancing the
load and thereby minimizing the cost caused by the number
of machines or penalties defined in service-level agreements
(SLAs). None of these approaches takes the communication
into account. However, communication in DBaaS systems,
in particular for answering complex analytical queries, is a
dominant factor due to the data partitioning which is re-
quired for scalability[8].
To tackle the communication aspect, the databases in a

DBaaS system can be modeled as a weighted graph (work-
load graph), where vertex weights represent resource re-
quirements and edge weights represent communication costs
between (partitions of) databases. The underlying infras-
tructure of the DBaaS can also be modeled as a weighted
graph (infrastructure graph), i.e., back-end servers with re-
source capacities connected by a network. Using these ab-
stractions, graph partitioning and mapping algorithms are
perfectly suited to solve the allocation problem in DBaaS
systems. Graph partitioning, more specifically balanced k-
way min-cut partitioning, is successfully used in other con-
texts to optimize the allocation in, e.g., OLTP systems [9,
26]. The goal of the balanced k-way min-cut problem is to
partition a graph into k parts such that the sum of edges
that is cut is minimized while keeping the sizes of all parts
balanced. Applied to our DBaaS workload graph, a par-
titioning minimizes communication and at the same time
balances load across the nodes.
However, there is a mismatch between classic graph parti-

tioning and many real back-end nodes. Graph partitioning
usually assumes that individual vertex weights add up to
partition weights (here, referred to as linear graph partition-
ing). In the context of DBaaS systems, this implies that the
load induced by all databases (or partitions) that share a
node equals the sum of all individual loads and that therefore
performance scales linearly with the number of databases.

Final edited form was published in "UCC '16: 9th International Conference on Utility and Cloud Computing. Shanghai 2016", S. 200–209, ISBN 978-1-4503-4617-7
https://doi.org/10.1145/3006299.3006300

1

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Pe
na

lty

Partition Cardinality
0 5 10 15 20 25 30 35 40 45 50

0
80

0
16

00

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

(a) Exponential Penalty Function

1 32Nodes (Sorted)

0
0.

5
1

1.
5

2
R

el
at

iv
e

N
od

e
U

til
iz

at
io

n

(b) Skewed Node Utilization
1 32Nodes (Sorted)

0
0.

5
1

1.
5

2

(c) Penalized Node Utilization

Figure 1: Partitioning Experiment (Node Utilization Nor-
malized to the Average Node Utilization)

In reality, performance does usually not scale linearly with
the amount of work due to contention on hardware [4], oper-
ating system [22], or application resources [25]. We address
this mismatch with our novel penalized graph partitioning
approach which offers the advantages of classic graph parti-
tioning and considers the non-linear performance behavior
of real back-end nodes at the same time.

1.1 Motivating Example
To demonstrate the potential of our penalized graph par-

titioning in presence of non-linear resources, we performed a
synthetic partitioning experiment. We generated a workload
graph that contains 1,000 heterogeneous tasks with weights
following a Zipf distribution as found in typical DBaaS sys-
tems [27]. Each task in the workload graph is communi-
cating with 0 to 10 other tasks (again Zipf distributed). To
model a system, we use an exponential penalty function and
assume that the underlying resource can execute 16 paral-
lel tasks before the penalty grows with the square of the
cardinality due to contention (Figure 1a).
The workload in this experiment is partitioned into 32 bal-

anced partitions using a standard graph partitioning library.
Afterwards, to estimate the actual load for each node, the
penalty function is applied to each partition based on the
partition cardinality (Figure 1b). The resulting partition
weights are compared to a second partitioning of the graph
that was generated by our novel penalized graph partition-
ing algorithm (Figure 1c).
The unmodified partitioning algorithm, which is unaware

of the contention, tries to balance the load. The resulting
relative weights show that the node with the highest par-
tition weight receives 3.1 times the load of the node with
the lowest partition weight. In contrast, the penalized parti-
tioning algorithm leads to partition weights, and hence node
utilizations, that are balanced within a tolerance of 3%.

1.2 Contributions and Outline
Our main contribution in this paper is a novel allocation

strategy for DBaaS systems that considers communication
between databases as well as non-linear performance of the
underlying system. In detail, we present: (1) an introduc-
tion to graph partitioning (Section 2), (2) a model for DBaaS
systems, specifically the infrastructure and the workload, us-

ing weighted graphs (Section 3), (3) a method to partition
graphs with non-linear partition weights as foundation for
our allocation strategy (Section 4), (4) an experimental eval-
uation of the scalability of our penalized graph partitioning
in Section 5, (5) an evaluation of our allocation strategy
in a DBaaS System with 32 nodes and 1,000 databases us-
ing an in-memory DBMS and OLAP workloads (Section 6).
Finally, we conclude the paper with related work and a sum-
mary in Sections 7 and 8.

2. GRAPH PARTITIONING
Given an undirected, weighted graph, the balanced k-way

min-cut graph partitioning problem (GPP) refers to finding
a k-way partitioning of the graph such that the total edge cut
is minimized and the partitions are balanced within a given
tolerance [2]. Here, we limit ourselves to graphs with a single
weight per vertex. Balancing graphs with multiple vertex
weights is also well-known and researched in the literature as
the multi-constraint graph partitioning problem (MC-GPP)
[16]. Without restriction, our methods for penalized graph
partitioning work with multiple vertex weights as well (e.g.,
based on [16]).
Let G = (V, E, wV , wE) be an undirected, weighted graph

with vertices V , edges E, and weight functions wV and
wE . Vertex and edge weights are positive real numbers:
wV : V → R>0 and wE : E → R>0. The weight functions
are extended to sets of vertices and edges:

wV (V ′) :=
∑

v∈V ′
wV (v) for V ′ ⊆ V and

wE(E′) :=
∑

e∈E′
wE(e) for E′ ⊆ E.

Let Π = (V1, . . . , Vk) be a partitioning of V into k parti-
tions V1, . . . , Vk such that: V1∪· · ·∪Vk = V and Vi ∩Vj = ∅
for all i �= j. Given a partitioning, an edge that connects
partitions is called a cut edge. Ec is the set of all cut edges
in a graph. The objective of the GPP is to minimize the to-
tal cut wE(Ec), i.e., the aggregated weight of all cut edges.
Furthermore, a balance constraint demands that all parti-
tions have about equal weights. Let μ := wV (V)/k be the
average partition weight. For a partitioning to be balanced
it must hold that ∀i ∈ {1, . . . , k} : wV (Vi) ≤ (1 + ε) · μ,
where ε ∈ R≥0 is an imbalance parameter determined by
the application.
Given a partitioning, the internal degree id(v) of a vertex

v ∈ Vi is the accumulated edge weight of all edges that
connect v to vertices in the same partition. The external
degree edj(v) of a vertex v ∈ Vi with respect to partition
Vj is the accumulated edge weight of all edges that connect
v to vertices in partition Vj . The gain of a vertex v ∈ Vi

with respect to partition Vj is the reduction in cut when v
is moved from Vi to Vj , i.e., gj(v) := edj(v) − id(v). Note
that the gain may be negative, which implies that moving
the vertex increases the cut.

Partitioning Algorithms
Partitioning a graph into k partitions of roughly equal size
such that the total cut is minimized is NP-complete [14].
Heuristics, especially the multilevel partitioning framework,
are used in practice to solve the graph partitioning problem
[15]. This framework consists of three phases: (1) coarsening
the graph, (2) finding an initial partitioning of the coarse

Final edited form was published in "UCC '16: 9th International Conference on Utility and Cloud Computing. Shanghai 2016", S. 200–209, ISBN 978-1-4503-4617-7
https://doi.org/10.1145/3006299.3006300

2

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

graph, and (3) uncoarsening the graph and projecting the
coarse solution to the finer graphs.
In the coarsening phase, a series of smaller graphs is

derived from the input graph. Coarsening is implemented by
contracting a subset of vertices and replacing it with a single
vertex. Parallel edges are replaced by a single edge with
the accumulated weight of the parallel edges. Contracting
vertices like this implies that a balanced partitioning on the
coarse level represents a balanced partitioning on the fine
level with the same total cut. Different strategies exist to
select vertices to be contracted. Finding a matching is a
tradeoff between using heavy edges (and hence reducing the
final cut) and keeping uniform vertex weights (and hence
improving partition balance). The coarsening ends when the
coarsest graph is sufficiently small to be initially partitioned.
Different algorithms exist to find an initial partition-

ing [5]. Methods for the initial partitioning are either based
on direct k-way partitioning or on recursive bisection. A
simple but effective method to find an initial partitioning is
greedy graph growing. A random start vertex is grown using
breadth-first search, adding the vertex that increases the to-
tal cut the least in each step. The search is stopped as soon
as half of the total vertex weight is assigned to the grow-
ing partition. Because the quality of the bisection strongly
depends on the randomly selected start vertex, multiple it-
erations with different starts are used and the best solution
is kept. The k-way extension of graph-growing starts with
k random vertices and grows them in turns.
The initial partitioning is uncoarsened by repeatedly as-

signing previously contracted vertices to the same partition.
Each extraction of vertices is followed by a refinement step
to improve the total cut or the balance of the partitions. Lo-
cal vertex swapping is a refinement metaheuristic that can
be parametrized with different strategies to select vertices
to move. In [17], the authors propose to move the vertex
with the highest value of the gain function, i.e., the vertex
that yields the largest decrease in total cut. Each vertex is
considered only once per round and rounds are repeated un-
til there is no further improvement. The method is known
as Kernighan-Lin (KL) method. KL/FM[11] improved the
KL method with carefully designed data structures.

3. DBAAS ALLOCATION PROBLEM
In this section, we formalize the infrastructure, the work-

load, and the allocation problem for DBaaS systems.

3.1 Infrastructure Model
The infrastructure of a DBaaS system is an undirected

graph of nodes connected by links as shown in Figure 2.
Nodes have bounded and unbounded resources and weight
functions map each node to either an absolute or a relative
capacity per resource. Each unbounded resource addition-
ally has a model for combining loads. Link capacities in the
infrastructure are given by an edge-weight function.
Generally, different kinds of hardware node resources can

be modeled with our infrastructure approach, e.g., process-
ing resources (CPU cycles), memory resources (bandwidth,
capacity), and network resources (link bandwidth). Fur-
thermore, our infrastructure model distinguishes between
bounded resources and unbounded resources. Bounded re-
sources have a hard limit that cannot be exceeded (e.g.,
memory capacity). Overloading a node’s bounded resources
leads to an invalid allocation. Unbounded resources are not

�

�

�

�

����	
����
�������
	
��

�
��

�

�

�

��

�

��

�

����

������������������
������������������
	�

�������������������
�����������������
�	�

����	���	���������

������	�������
	�
���������
�

�����	

��������
	�
�������
����
��������������
����������	�����	
�

Figure 2: Infrastructure Components.

literally unbounded but they can (and usually will) be over-
committed (e.g., memory bandwidth). Overcommitting an
unbounded resource still leads to a valid allocation, even
if the performance degrades. Modeling resources as be-
ing bounded or unbounded depends on the intention of the
model and the availability of resource capacity and work-
load requirement information. The goal of our allocation
strategy will be to respect the upper bounds of bounded
resources and to balance unbounded resources.
Several databases (or partitions) share a single server in

DBaaS systems. To be able to evaluate a given allocation,
the aggregated load of a node (induced by all tasks) needs to
be estimated. In the simplest case, loads induced by tasks
are combined by summing them up to derive a node’s global
load. This method is referred to as the linear model as it
models an ideal system where performance scales linearly
with the amount of work that needs to be done. However,
performance does usually not scale linearly with the amount
of work due to contention on hardware [3], operating system
[22], or application resources [25]. Therefore, in addition to
the linear model, we use a non-linear model to combine the
individual loads induced by tasks that share a node.
To grasp the behavior of the complex systems, we assume

a simplified penalized resource consumption model reflect-
ing the non-linear performance of the system. Our penalized
resource usage model, which we believe to be applicable in
many real systems, is a combination of the linear model and
a penalty function. Up to a certain load or degree of par-
allelism, the linear usage assumption often holds. However,
contention occurs and the performance does not scale lin-
early when a certain load level is reached. To account for
this contention and the non-linear performance, a penalty
is introduced that adds to the resource usage based on the
number of concurrent tasks.
While we acknowledge that modeling real systems is a

challenging problem in itself, we assume here that the model,
i.e., the penalty function, is given. Depending on the infras-
tructure, low-level and application-level experiments (like
in [21, 23]) may be necessary to find a sufficiently accurate
model.

3.2 Workload Model
The workload in a DBaaS system is also an undirected

graph of database partitions connected by data transfers.
Database partitions and operations executed on them are
bundled in tasks. Tasks consume bounded and unbounded
resources and vertex weight functions map each task to ei-
ther an absolute or a relative load per resource. An edge
weight function quantifies data transfer costs. The workload
graph can, e.g., be derived from a list of SQL queries by us-
ing the query execution plans and cost estimates from the
DBMS. Like any workload-driven approach, we assume that
the workload of the system is known or can be captured and

Final edited form was published in "UCC '16: 9th International Conference on Utility and Cloud Computing. Shanghai 2016", S. 200–209, ISBN 978-1-4503-4617-7
https://doi.org/10.1145/3006299.3006300

3

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

monitored. This assumption seems reasonable, especially in
DBaaS systems where workload characteristics are captured
for billing purposes anyway. Note that we assume an exist-
ing partitioning of databases, i.e., the granularity of tasks in
the workload [8]. Our focus in this paper is the allocation
of these existing partitions to infrastructure nodes.

3.3 Allocation Problem Formulation
An allocation is a mapping from workload tasks to infras-

tructure nodes. The allocation problem can be formulated
differently to optimize them for different objectives. Two
basic formulations are (1) to minimize the number of used
resources without violating performance constraints or (2)
to maximize performance with a given amount of resources.
Our allocation strategy is based on the latter formulation.
To solve this allocation objective, two steps are necessary.
In the first step, the workload graph is partitioned using
a graph partitioning algorithm. The presented balanced k-
way min-cut algorithms can be applied to partition a given
graph into k parts (k nodes are available in the infrastruc-
ture) such that the sum of edges that are cut is minimized
while keeping the sizes of all parts within balance. Then,
the mapping of the determined partitions to infrastructure
nodes is conducted in the second step.
However, there is a mismatch between the classical graph

partitioning approach (GPP or MC-GPP) and the actual
behavior of the infrastructure. A fundamental assumption
in the graph partitioning problem is that vertex weights (in-
dividually) sum up to reflect the weight of a partition. The
implication is that, no matter how many vertices comprise a
partition, the weight of the partition is the sum of all partici-
pating vertices. Translated to the infrastructure, this means
that no matter how many tasks are executed on a node, the
combined load of the node is the sum of all loads caused by
the tasks. As mentioned in our infrastructure model, perfor-
mance on actual hardware resources usually does not scale
linearly with the number of concurrent tasks. Taking this
aspect into account for the allocation in DBaaS systems, we
reformulate the graph partitioning problem as follows:
An allocation is a mapping from workload tasks to in-

frastructure nodes. For each resource, a node’s load is the
combined weight (including non-linear behavior) of all tasks
assigned to that node. An allocation is valid if no load is
greater than the node’s capacity for all bounded resources.
An allocation is balanced if all loads are equal (within a
tolerance) to the average load for all unbounded resources.
An allocation’s communication costs are the sum of all edge
weights of edges between vertices that are assigned to dif-
ferent nodes.

4. ALLOCATION STRATEGY BASED ON
PENALIZED GRAPH PARTITIONING

To solve the DBaaS allocation challenge, we present our
novel penalized graph partitioning approach. To improve
the readability of this paper, we limit ourselves to graphs
with a single weight per vertex—assuming a single (un-
bounded) resource. Nevertheless, our presented methods
also work with multiple vertex weights without restrictions
(e.g., based on [16]). Furthermore, we assume a static work-
load and a homogeneous infrastructure. Later in this sec-
tion, we present extensions of the basic methods to relax
some of these restrictions.

2 1

1

1

1

1

1
1

1

4

3

1
1

1

3
1

31

1

(a)

V1

V2

(b)

V1

V2

(c)

V1

V2

(d)

Figure 3: Example of Graph Partitionings with Different
Penalty Functions; (a) V/E Weights, (b) No Penalty, (c)
Linear Penalty, (d) Square Penalty

4.1 Penalized Graph Partitioning
The idea of our penalized graph partitioning is to intro-

duce a penalized partition weight with respect to our penal-
ized resource usage model and to modify the graph partition-
ing problem accordingly. We define the resulting problem as
the Penalized Graph Partitioning Problem (P-GPP). Fig-
ure 3 shows an example graph with vertex and edge weights
denoted in Figure 3a. Solving the GPP leads to the parti-
tioning with the total cut of 3 shown in Figure 3b. When
the cardinality of a partition is penalized linearly, the so-
lution of the P-GPP having a total cut of 4 is shown in
Figure 3c. However, when the penalty of a partition grows
with the square of the partition cardinality, the partitioning
with the total cut of 4 shown in Figure 3d is the solution
to the P-GPP. The partitioning obviously depends on the
performance model, i.e., the given penalty function.

4.1.1 Prerequisites
Let G = (V, E, wV , wE) be an undirected, weighted graph

as in Section 2. Furthermore, let p be a positive, monoton-
ically increasing penalty function that penalizes a partition
weight based on the partition cardinality:

p : N → R≥0 with p(n1) ≤ p(n2) for n1 ≤ n2.

The vertex weight function is extended to sets V ′ ⊆ V such
that it incorporates the penalty:

wV (V ′) :=
∑

v∈V ′
wV (v) + p(|V ′|).

The example partitioning in Figure 3c uses a linear penalty
function, i.e., p(|V |) := |V |. Accordingly, using the defini-
tion, the partition weights are

wV (V1) =
∑

v∈V1

wV (v) + p(|V1|) = 5 + 5 = 10 and

wV (V2) =
∑

v∈V2

wV (v) + p(|V2|) = 7 + 3 = 10.

The example partitioning in Figure 3d uses a square penalty
function, i.e., p(|V |) := |V |2. Accordingly, the partition
weights are wV (V1) = wV (V2) = 22.
Adding penalties to partition weights invalidates some of

the assumptions made in the GPP and its solution algo-
rithms. Most fundamentally, the combined weight of two
or more partitions is not equal to the weight of a partition
containing all the vertices. Using the definition and two
partitions V1 and V2:

wV (V1 ∪ V2) =
∑

v∈V1∪V2

wV (v) + p(|V1 ∪ V2|)

= wV (V1) + wV (V2) + p(|V1 ∪ V2|) − p(|V1|) − p(|V2|).

Final edited form was published in "UCC '16: 9th International Conference on Utility and Cloud Computing. Shanghai 2016", S. 200–209, ISBN 978-1-4503-4617-7
https://doi.org/10.1145/3006299.3006300

4

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

For arbitrary penalty functions we must assume that p(|V1∪
V2|) �= p(|V1|) + p(|V2|). It follows that in general wV (V1 ∪
V2) �= wV (V1) + wV (V2). Hence, the total weight of all
vertices is in general not equal to the total weight of all par-
titions. We therefore introduce the following definitions of
the two weights. Given a graph and a partitioning, the total
vertex weight wV is the penalized weight of all vertices, i.e.,

wV :=
∑

v∈V

wV (v) + p(|V |).

The total partition weight wΠ on the other hand is the sum
of the weights of all partitions, i.e.,

wΠ :=
k∑

i=1

wV (Vi).

Consider the example partitioning in Figure 3d; using the
definition, wV = 12 + 64 = 76 and wΠ = 22 + 22 = 44.
It follows that the total partition weight wΠ of the graph

is not constant but depends on the partitioning, specifically
the cardinalities of the partitions. This observation has im-
plications in all steps of the graph partitioning algorithm,
e.g., the balance constraint has to use the average total par-
tition weight μ := wΠ/k instead of the average total vertex
weight.

4.1.2 Algorithm (Static Case)
We propose modifications of the multilevel graph parti-

tioning algorithm to solve the P-GPP. First, we describe
two basic operations that need to reflect partition penalties.
Then, we will detail the necessary modifications to the three
building blocks of the multilevel graph partitioning frame-
work.
During graph partitioning and refinement, it is often nec-

essary to move a vertex between partitions or to merge par-
titions. For the sake of computational efficiency, the weights
of the resulting partitions should be computed incrementally
instead of from scratch.

Operation 1. When a vertex v is moved from partition
V1 to partition V2, the partition weights of the resulting par-
titions V ′

1 := V1 \ v and V ′
2 := V2 ∪ v are as follows:

wV (V ′
1) = wV (V1) − wV (v) − p(|V1|) + p(|V1| − 1),

wV (V ′
2) = wV (V2) + wV (v) − p(|V2|) + p(|V2| + 1).

Operation 2. When two partitions V1 and V2 are com-
bined, the partition weight of the resulting partition V ′ :=
V1 ∪ V2 can be calculated as follows:

wV (V ′) = wV (V1 ∪ V2) =
∑

v∈V1∪V2

wV (v) + p(|V1 ∪ V2|)

= wV (V1) + wV (V2) + p(|V1| + |V2|) − p(|V1|) − p(|V2|).

To coarsen the graph, a matching of vertices has to be
determined and vertices have to be contracted accordingly.
The heuristics introduced in Section 2 can be used to coarsen
a graph with penalized partition weights. However, the ver-
tex weight of the contracted vertex has to correctly incor-
porate the penalty to ensure that a balanced partitioning of
the coarse graph will lead to a balanced partitioning dur-
ing the uncoarsening steps. Therefore, contracted vertices

are treated like partitions themselves and the weight of a
contracted vertex is calculated as in Operation 2.
We use a modified version of recursive bisection and greedy

region growing to find an initial k-way partitioning of
graphs with penalized partition weights. In the region grow-
ing algorithm, moving a vertex between partitions has to
use Operation 1 to calculate the resulting partition weights.
Moreover, the stop condition of the region growing algorithm
has to be modified to account for the new balance constraint.
In the original formulation, the algorithm stopped when the
growing partition reached at least half of the total vertex
weight. To achieve balanced partitions and because the to-
tal vertex weight is in general not equal to the total partition
weight, the latter has to be used in the stop condition. Fur-
thermore, since the total partition weight depends on the
partitioning it repeatedly has to be recalculated after ver-
tices have been moved, again using Operation 1.
The penalties have to be considered during the uncoars-

ening and refinement of the graph. Similar to the mod-
ifications of the region growing algorithm, the local vertex
swapping method has to use Operation 1 whenever a ver-
tex is moved between partitions. Furthermore, when vertex
swapping is used to balance a partitioning, the modified
balance constraint has to be used. This implies that stop
conditions and checks use the total partition weight instead
of the total vertex weight. Since the total partition weight
depends on the partitioning, it has to be recalculated after
a vertex has been moved (Operation 1).

4.1.3 Incrementally Updating the Partitioning (Dy-
namic Case)

With dynamic DBaaS workloads, the partitioning needs
to be periodically re-evaluated to ensure balanced partitions
and an optimal total cut. Updating the partitioning after
changes is a tradeoff between the quality of the new par-
titioning and the migration costs induced by implementing
the new partitioning.
The problem of incrementally updating a partitioning is

known as dynamic load balancing or repartitioning and is
a well studied problem for the original graph partitioning
problem [6, 10]. We are able to adapt existing hybrid up-
date strategies for our penalized graph partitioning. When-
ever the graph changes such that the balance constraint is
violated, balancing and refinement steps based on local ver-
tex swapping try to move vertices such that the partitioning
is balanced again. If no balanced partitioning can be found
using the local search strategy, the graph is partitioned from
scratch and the new partitioning is mapped to the previous
partitioning such that the migration cost is minimized. To
prevent the total cut in the graph from slowly deteriorating,
a new partitioning is computed in the background after a
certain number of local refinement operations (even when
the partitioning is still balanced). The new partitioning re-
places the current one only if the new total cut justifies the
migration overhead.

4.2 DBaaS Allocation Strategy
The presented penalized graph partitioning approach is

the foundation of our DBaaS allocation strategy. Applied
to the workload graph, we are able to determine balanced
partitions when the performance of the back-end nodes does
not scale linearly with the amount of work. The non-linear
behavior is modeled as a penalty function. Furthermore,

Final edited form was published in "UCC '16: 9th International Conference on Utility and Cloud Computing. Shanghai 2016", S. 200–209, ISBN 978-1-4503-4617-7
https://doi.org/10.1145/3006299.3006300

5

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

the communication is also considered in the partitioning.
Then, the determined workload partitions are mapped to
the infrastructure nodes.

4.3 Extensions to Graph Partitioning
Moreover, we propose two extensions to our graph parti-

tioning to relax previously made assumptions.

Heterogeneous Infrastructures. In the presence of a het-
erogeneous infrastructure, finding an optimal mapping from
partitions to infrastructure nodes becomes part of the GPP.
Let I = (N, L, wN , wL) be the undirected, weighted infras-
tructure graph of nodes (N) connected by links (L).
We first consider an infrastructure with heterogeneous

nodes, but a homogeneous communication network. The
balance constraint of the GPP can be modified to account
for different node capacities. The heterogeneous balance con-
straint demands that all partitions have weights propor-
tional to their capacities. Let (c1, . . . , ck) be a vector of
normalized relative partition capacities. Let μ := wΠ/k be
the average partition weight. For a graph partitioning to be
balanced according to the partition capacities it must hold
that ∀i ∈ {1, . . . , k} : wV (Vi) ≤ (1+ ε) · μ · ci, where ε ∈ R≥0
is a given imbalance parameter.
In the second case, we consider infrastructures with ho-

mogeneous nodes but heterogeneous links and sparse net-
works, i.e., networks that are not fully connected graphs. In
this case, the mapping of partitions to nodes influences the
communication costs. The goal of the mapping is to as-
sign high communication volumes between partitions (i.e.,
cut edges with high weights) to wider links and short con-
nection paths, ideally direct connections. Our strategy is
to partition the workload graph without considering the in-
frastructure. We then use a greedy heuristic to repeatedly
map the remaining partition with the highest total commu-
nication cost (wrt. the already mapped partitions) onto the
node with the smallest distance.
The graph partitioning and mapping problem becomes

even more complicated in presence of heterogeneous nodes
and a heterogeneous network. Although the proposed
strategies can be combined, the smaller degree of freedom
makes it hard to find solutions. Given the restrictions in the
fully heterogeneous case, we focus on systems that either
have heterogeneous nodes or have a heterogeneous network.

Capacity Constraints. The infrastructure model distin-
guishes bounded and unbounded resources. To model both
kinds of resources, we propose to add a capacity constraint
to the already existing balance constraint. Partitioning algo-
rithms can use the existing balance constraint with a care-
fully selected imbalance parameter to also enforce capacity
constraints. A capacity constraint demands that all parti-
tion weights are below a given absolute capacity. Let wmax
be a function that maps each partition to its maximum par-
tition weight. For a graph partitioning to fulfill a capacity
constraint it must hold that

∀i ∈ {1, . . . , k} : wV (Vi) ≤ wmax(Vi).

Let the total capacity wmax(V) be the sum of all maximum
partition weights. The total requirement equals the total
partition weight wΠ of the graph.
To enforce the capacity constraint without restricting the

solution space, a flexible imbalance parameter based on the

available resources can be used. The imbalance parame-
ter ε can be large when the total requirement is considerably
smaller than the total capacity and approaches zero as the
requirement approaches the capacity.

Lemma 1. For homogeneous nodes1, i.e, wmax(V1) = · · · =
wmax(Vk), a partitioning that fulfills a balance constraint
with ε = wmax(V)/wΠ−1 also fulfills the capacity constraint.
(The proof is straightforward and omitted due to space con-
straints.)

Partial Allocations. As our last extension of the basic par-
titioning algorithm, we propose partial allocations. Applica-
tion scenarios or service level agreements may require a sub-
set of vertices to be pinned to certain nodes. The allocation
problem then needs to consider this additional constraint.
A special case occurs in presence of replication. Different
replicas of the same object are commonly not allowed to
share a node to ensure availability.
We enable both types of partial allocations, i.e., pinned

vertices and do not co-locate constraints, by modifying the
corresponding parts of the multilevel partitioning frame-
work. Pinned vertices are assigned to their partitions before
the actual partitioning starts. Furthermore, pinned vertices
and vertices that lead to violations of location constraints
when they are moved are not considered in the refinement
methods. Note that partial allocations lead to fewer degrees
of freedom and therefore possibly to suboptimal solutions or
even cases with no valid solution at all.

5. MICRO-BENCHMARKS
For the implementation, we modified METIS (v5.1)2 to

support our penalized graph partitioning methods (we de-
note the resulting tool PenMETIS). METIS is a set of pro-
grams for graph partitioning and related tasks based on mul-
tilevel recursive bisection, multilevel k-way partitioning, and
multi-constraint partitioning. Our modifications are based
on the serial version of METIS but can also be incorporated
in the parallel versions of METIS in the future.
In this section, we evaluate the overhead that penalized

partition weights introduce in the partitioning process. Fur-
thermore, we investigate how penalized graph partitioning
scales with the size of the graph and the number of par-
titions. To analyze penalized graph partitioning, we use a
exponential penalty function as example and graphs from
the Walshaw Benchmark [28] . The corresponding Graph
Partitioning Archive3 contains 34 graphs from applications
such as finite element computation, matrix computation,
and VLSI design. The largest graph (auto) contains 448,695
vertices and 3,314,611 edges and can be considered a large
workload graph.
In the first experiment, we investigate the overhead of

penalized partition weights. Figure 4 shows the absolute
partitioning times for all benchmark graphs using METIS
and PenMETIS4. The figure shows that penalized graph
1A similar result can be obtained for heterogeneous nodes.
2http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
3http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/
4We use a fairly moderate AMD Opteron (Istanbul) CPU
running at 2.6GHz for this experiment. As mentioned be-
fore, METIS and PenMETIS run single-threaded.

Final edited form was published in "UCC '16: 9th International Conference on Utility and Cloud Computing. Shanghai 2016", S. 200–209, ISBN 978-1-4503-4617-7
https://doi.org/10.1145/3006299.3006300

6

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

14
4

3e
lt

4e
lt

59
8a

ad
d2

0
ad

d3
2

au
to

bc
ss

tk
29

bc
ss

tk
30

bc
ss

tk
31

bc
ss

tk
32

bc
ss

tk
33

br
ac

k2
cr

ac
k

cs
4 ct
i

da
ta

fe
_4

el
t2

fe
_b

od
y

fe
_o

ce
an

fe
_p

w
t

fe
_r

ot
or

fe
_s

ph
er

e
fe

_t
oo

th
fin

an
51

2
m

14
b

m
em

pl
us

t6
0k uk

vi
br

ob
ox

w
av

e
w

hi
ta

ke
r3

w
in

g_
no

da
l

w
in

g

0
75

0
15

00

14
4

3e
lt

4e
lt

59
8a

ad
d2

0
ad

d3
2

au
to

bc
ss

tk
29

bc
ss

tk
30

bc
ss

tk
31

bc
ss

tk
32

bc
ss

tk
33

br
ac

k2
cr

ac
k

cs
4 ct
i

da
ta

fe
_4

el
t2

fe
_b

od
y

fe
_o

ce
an

fe
_p

w
t

fe
_r

ot
or

fe
_s

ph
er

e
fe

_t
oo

th
fin

an
51

2
m

14
b

m
em

pl
us

t6
0k uk

vi
br

ob
ox

w
av

e
w

hi
ta

ke
r3

w
in

g_
no

da
l

w
in

g

Pa
rti

tio
ni

ng
 T

im
e

[m
s]

Unmodified Graph Partitioning (METIS) Penalized Graph Partitioning (PenMETIS)

Figure 4: Partitioning Time Comparison (64 Partitions, 3%
Imbalance)

●

●

●
●

●

●
●
●
●

●

●

●
●●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●Pa

rti
tio

ni
ng

 T
im

e
[m

s]

Number of Vertices (in Thousands)
0 100 200 300 400 500

0
50

0
10

00
15

00

●

●

●
●

●

●
●
●
●

●

●

●
●●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

(a) Scalability with |V |

●

●

●

●

●
●

●
●

●

●

●
●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●Pa

rti
tio

ni
ng

 T
im

e
[m

s]

Number of Edges (in Millions)
0 0.5 1 1.5 2 2.5 3 3.5

0
50

0
10

00
15

00

●

●

●

●

●
●

●
●

●

●

●
●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

(b) Scalability with |E|

Figure 5: Execution Times of PenMETIS Charted by the
Number of Vertices and Edges (64 Partitions, 3% Imbalance)

partitioning introduces only a small overhead. More specif-
ically, PenMETIS takes on average 28% (42ms) more time
than METIS.

5.1 Scalability with Graph Size
To use graph partitioning with ever growing workload

graphs, it is mandatory that the algorithms scale well with
the size of the graph. Since penalized partition weights
only induce little overhead, the scalability of PenMETIS is
bound to the scalability of the underlying multilevel graph
partitioning algorithms in METIS. Our second experiment
investigates the scalability with the size of the graph.
Figures 5a and 5b show the execution times of PenMETIS
charted by the number of vertices and edges respectively.
Our partitioning algorithm scales linearly with both param-
eters.
Our last scalability experiment investigates how penal-

ized graph partitioning scales with the number of
partitions. In Figure 6, we show partitioning times for
METIS and PenMETIS for the largest benchmark graph
and for various partition counts. Beyond 64 partitions, the
partitioning time scales linearly with the number of parti-
tions.
To summarize, our penalized graph partitioning shows

the same performance and scalability behavior as the classic
graph partitioning. While we presented the evaluation for
an exponential penalty function, the performance is inde-
pendent of the selected function and the same behavior can
be seen for other penalty functions.

6. DBAAS EVALUATION
In this section, we present a full DBaaS system setup and

evaluate our allocation strategy therein. We did experiments
with different system sizes but only report the results for
the largest system. In this case, we generated, deployed,

2 4 8 16 32 64 128 256 512 1024
Partitions

0
1

2
3

4
5

6
Pa

rti
tio

ni
ng

 T
im

e
[s

]

Partitioning Time (METIS) Partitioning Time (PenMETIS)

Figure 6: Scalability of Graph Partitioning with the Number
of Partitions (Graph auto)

and queried 1,000 databases in our DBaaS system. The
overall evaluation is done using our multi-tenancy database
benchmark framework MulTe [18].

6.1 DBaaS System Setup
To evaluate our novel allocation strategy, we implemented

a prototypical DBaaS system called Multi-Tenancy-Middle-
ware (MTM)5, which is similar to commercial DBaaS sys-
tems like Amazon RDS or Microsoft Azure. Databases in
MTM can flexibly be provisioned on demand and the sys-
tem takes transparently care of the physical representation
of the databases. To support the analytical character of
our DBaaS setup, we use the MTM system with a recent
in-memory DBMS called ERIS as backend [19]. Given that
the used in-memory DBMS supports only basic features, the
raw performance is high and influences on the performance
are not obscured along the system stack. Furthermore, with
an in-memory DBMS, we can focus on the main memory as
the primary resource to model.

6.2 Infrastructure Model
We conducted our experiments using Amazon Web Ser-

vices. Multiple EC2 instances are used as back-end nodes.
Additional EC2 instances are used to host the benchmark
application, frontend tools, and the middleware. Our largest
infrastructure setup consists of 32 instances as back-end
nodes (m4.xlarge, 4 cores, 16GiB memory) and 4 instances
to run the benchmark (c4.2xlarge, 8 cores, 16GiB mem-
ory).
Since processing is modeled as an unbounded resource,

only relative capacities are needed in the infrastructure model.
Given that all back-end nodes run on the same instance
type, we assign a capacity of 1 (with respect to processing)
to each node in the infrastructure graph. Additionally, each
node has 16GiB main memory which is added as the sec-
ond (bounded) capacity to each node in the infrastructure
graph. Furthermore, we assume a fully connected infras-
tructure graph with unit capacities on all links.
To investigate the non-linear resource usage of the infras-

tructure nodes, we conducted a number of synthetic exper-
iments. As a result, we decided to model the non-linear re-
source usage with a penalty that is applied when more than
4 workload vertices share a node (note that each backend
node contains 4 vCPUs). The penalty function is carefully
handcrafted for the given setup and is best approximated
with a function that is linear in the size of a small workload
vertex for cardinalities between 5 and 20 before it starts to
grow exponentially. Nevertheless, the determination of the
penalty function is a challenging task and a topic of its own.
5https://goo.gl/zkOhpC

Final edited form was published in "UCC '16: 9th International Conference on Utility and Cloud Computing. Shanghai 2016", S. 200–209, ISBN 978-1-4503-4617-7
https://doi.org/10.1145/3006299.3006300

7

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

6.3 Workload Model
We use the Star Schema Benchmark (SSB) [24] as our

analytical workload setting. Prior to our full DBaaS exper-
iments, we evaluated the processing cost of each of the 13
SSB queries based on a cost model that uses the ERIS ex-
ecution model [19]. Furthermore, databases are generated
in 28 different sizes ranging from 10MiB to 1GiB. This
results in 364 different basic database workloads with differ-
ent workload intensities (28 database sizes times 13 queries
in the benchmark; each database runs only a single query
type). Together with a think time between queries, we are
able to generate databases with any given intensity/cost.
To run our DBaaS experiments, we generate a workload

graph with random vertex weights and random edges. The
graph consists of 1,000 vertices. The vertex weights rep-
resent processing costs and follow a Zipf distribution with
exponent s = 1 ([27] observed similarly distributed tenants
in an actual DBaaS system). Each vertex has a number of
(randomly selected) neighbors. The number of neighbors
also follows a Zipf distribution between 0 and 10. Neighbors
(or edges in the workload graph) can result in distributed
queries depending on the allocation. For each vertex, a
database (i.e., a database size and a query type) is selected
out of our pool that matches the vertex’ weight best. A
think time is added to match the database’s processing cost
exactly to the generated vertex weight.

6.4 Full System Evaluation
We compared three different allocation strategies in our

experiments: First Fit (FF), Unmodified Graph Partitioning
(UGP), and our Penalized Graph Partitioning (PGP). Dis-
tributing the databases (partitions) across all nodes using a
round-robin strategy seems to be a simple approach to get
a baseline. However, round-robin allocation does not con-
sider memory capacities and this strategy might therefore
produce invalid allocations where nodes are not able to keep
all databases in memory. Instead, we use a greedy method
(first fit) as a baseline allocation. This method sorts all
databases by size (descending) and all nodes by utilization
(ascending) and allocates each database to the least utilized
node that is able to accommodate it. Using this strategy
leads (in most cases) to valid allocations. Furthermore, us-
ing the least utilized node in each step tries to balance the
load across all nodes.
The second allocation strategy (UGP) is based on the

unmodified graph partitioning algorithm in METIS. Here,
we partition the workload graph (without penalty) into 32
partitions to get a balanced allocation with minimal com-
munication (32 nodes are available). The third allocation
strategy (PGP) uses our penalized graph partitioning algo-
rithm in PenMETIS. Our above mentioned penalty func-
tion is used to describe the infrastructure behavior in more
detail and to produce better balanced allocation with mini-
mal communication.

Performance Metrics. To evaluate the performance of the
whole DBaaS system, we introduce the Relative Response
Time (RRT). First, each absolute response time is trans-
formed into a relative response time using a previously per-
formed baseline run (i.e., the relative response time is rela-
tive to the best-case execution). Second, the 95% quantile of
all relative response times for a given database is computed
to get a single quality measure for each database. Using the

●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●● ●● ●

●●●●●●●●●

● ●●●●●●●

0 20 40 60 80 100 120 140 160 180 200 220 240 260

FF
U

G
P

Relative Response Time

A
llo

ca
tio

n
S

tra
te

gy

●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●● ●● ●

●●●●●●●●●

● ●●●●●●

(a) RRT Distribution, All Allocation Strategies

●●●●●●●●●●●● ●●●●●●●●●●

●● ●●●● ●●●●●●●●●●

0 5 10 15 20 25 30 35

U
G

P
P

G
P

Relative Response Time

A
llo

ca
tio

n
S

tra
te

gy

●●●●●●●●●●●● ●●●●●●●●●●

●● ●●●● ●●●●●●●●●●

(b) RRT Distribution, Only Graph Partitioning Strategies

Figure 7: Relative Response Time Distribution (Note Dif-
ferent X-Axes)

quantile assumes that the user is interested in acceptable
performance for the majority of executions.

Results. The experiments are executed with the following
workflow. First, the setup is prepared based on the given
allocation strategy. Once prepared, a baseline run is con-
ducted where each database workload is executed individu-
ally to get best-case response times for each database. After
the baseline run, the actual experiments run for 30 min-
utes. In these runs, the MulTe workload driver executes
all workloads repeatedly and in parallel and collects execu-
tion statistics.
The results of our largest experiment (1,000 databases

on 32 nodes) are summarized as box-whisker plots in Fig-
ure 7. Figure 7b shows the same results as Figure 7a on a
differently scaled x-axis (UGP and PGP only). The plots
in Figure 7a show that the first fit allocation strategy fails
to balance the load, which leads to many outliers and a
maximum Relative Response Time of 252. Comparing the
allocation strategies that are based on graph partitioning,
it can be seen in Figure 7b that Penalized Graph Partition-
ing leads to better overall system performance. PGP causes
fewer outliers than UGP and has better maximum, average,
and median RRTs. As a reference, computing the PGP allo-
cation for the workload graph takes 6ms using PenMETIS.

6.5 Incremental Update Experiment
In this experiment, we evaluate the ability of our alloca-

tion strategies to react to changes in the workload. To sim-
ulate a changing workload, we define two workload graph
modifications. A minor change is implemented by updat-
ing the vertex and edge weights of 1% of all vertices and
all edges. A major change is implemented by updating the
vertex and edge weights of 10% of all vertices and all edges.
The complete experiment consists of 100 workload changes.
After every 20 minor changes, one major change is simu-
lated. The results are shown in Figure 8.
After each workload change, the current partitioning is

evaluated against the new workload graph. The update
mechanism is triggered when the balance constraint is vi-
olated. The update strategy first tries to regain a balanced
partitioning by using local refinement strategies. A com-

Final edited form was published in "UCC '16: 9th International Conference on Utility and Cloud Computing. Shanghai 2016", S. 200–209, ISBN 978-1-4503-4617-7
https://doi.org/10.1145/3006299.3006300

8

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

0
5

10
15

20
m

ba
la

nc
e

(in
 %

)

0 10 20 30 40 50 60 70 80 90 100
Graph Updates

● ● ● ● ● ● ● ●● ● ● ●● ● ●●● ● ● ● ●● ●

● ●Refine Partitioning Repartition

(a) Imbalance of the Graph in Percent (Before and After Refine-
ments/Repartitionings)

0
5

10
To

ta
l C

ut
 (i

n
Th

ou
sa

nd
s)

0 10 20 30 40 50 60 70 80 90 100
Graph Updates

● ● ● ● ● ● ● ●● ● ● ●● ● ●●● ● ● ● ●● ●

(b) Total Cut of the Graph in Thousands (Before and After Re-
finements/Repartitionings)

0
4

8
12

M
ig

. C
os

t (
in

 T
ho

us
an

ds
)

0 10 20 30 40 50 60 70 80 90 100
Graph Updates

● ● ● ● ● ● ● ●● ● ● ●● ● ●●● ● ● ● ●● ●

(c) Migration Cost for the Refinements/Repartitionings

Figure 8: Incremental Update Experiment (32 Partitions,
3% Imbalance)

plete repartitioning is only triggered when the local refine-
ment fails. In addition, the update strategy repartitions the
workload graph in the background after every ten changes.
However, the new partitioning is only implemented when it
leads to a total cut that is better by more than 10% of the
old cut. The evolutions of the graph imbalance and the to-
tal cut are summarized in Figures 8a and 8b. The results
show that minor changes eventually and major changes al-
ways lead to violations of the balance constraint. However,
in many cases (21 out of 23 in the experiment) the local
refinement algorithm is able to regain a balanced partition-
ing. A complete repartitioning is triggered only in two cases,
which in both cases leads to considerably better total cuts.
We report the sum of all vertex weights of vertices that

are moved between partitions as the total migration cost
for an update. The migration costs are shown in Figure 8c.
The figure shows that partitioning the workload graph from
scratch causes considerably higher migration costs than re-
fining an existing partitioning.

7. RELATED WORK
Graph partitioning has been a topic of interest in the

high performance computing community at least since the
late 1990s. Early works on the multilevel graph partitioning
paradigm [15] led to many papers about variations and ex-
tensions of the balanced min-cut partitioning problem, e.g.,
about multi-constraint partitioning [16] or incremental up-
date strategies [13]. A rather recent survey provides an ex-
cellent overview of the results in the field [5]. To the best of
our knowledge, we are the first to consider non-linear graph
partitioning.

Several authors have proposed variations of the allocation
problem. Each formulation uses different objectives and con-
straints as well as different assumptions on workload and
infrastructure. As part of the Relational Cloud Project6,
Curino et al. investigate workload-aware database moni-
toring and consolidation [7]. The presented Kairos system
consolidates databases based on the predicted combined re-
source utilization. In the Kairos system, CPU, memory, and
I/O load are modeled and non-linear behavior is captured
in a combined load predictor that is used for combining I/O
load. A linear combination of the three resources, possibly
weighted to indicate the relative importance, is used in the
objective function of the consolidation problem. Kairos does
not consider distributed databases and hence completely
omits communication costs. A second major difference is
that Kairos tries to minimize the number of nodes with the
constraint of not overcommitting any node.
Schism [9] by Curino et al. is also part of the Relational

Cloud Project. Schism and our work share the idea of using
graph partitioning methods for the allocation problem. Both
works model the workload as a weighted graph and seek
balanced partitions that minimize the communication. The
infrastructure model in Schism is simpler compared to ours,
non-linear hardware is not considered. The authors discuss
balancing data size or data accesses. However, the presented
solution has no notion of bounded or unbounded resources
and all balanced partitionings are considered valid. Schism
assumes a static workload and does not provide means to
incrementally update a partitioning.
Quamar et al. picked up the idea of Schism and present a

project called SWORD [26]. The authors propose a number
of techniques to achieve higher scalability and to increase
tolerance in presence failures and workload changes. In a
follow-up [20], the authors introduce the notion of the query
span, i.e., the average number of machines involved in the
execution of a query. SWORD does not consider non-linear
hardware.
Schaffner et al. introduced the Robust Tenant Placement

and Migration Problem (RTP) [27]. Unlike our allocation
problem, the RTP tries to minimize the number of servers
required by consolidating in-memory databases. The au-
thors make the case for incremental tenant placement. Mi-
gration costs are modeled and quantified in the RTP and
performance is guaranteed even while a database is being
migrated. Distributed databases are intentionally not con-
sidered in the RTP and communication costs are omitted
with the exception of migration costs.
Lang et al. [21] investigate Service Level Objectives (SLO)

in the context of multi-tenant DBaaS systems. Their goal
is to minimize the operational cost while being SLO com-
pliant. The authors investigate a small number of classes of
SLOs and constant workload. Thereby, the authors exper-
imentally determine a non-linear performance behavior in
the heterogeneous case (comparable to our idea of a penalty
function) and propose a brute-force solver for the non-linear
integer programming problem. However, it is not obvious
how the approach translates to an arbitrary number of differ-
ent workloads. Furthermore, communication between ten-
ants is not considered in [21].
Liu et al. [23] propose approximation algorithms for the

tenant placement problem with the goal to maximize profit

6http://relationalcloud.com/

Final edited form was published in "UCC '16: 9th International Conference on Utility and Cloud Computing. Shanghai 2016", S. 200–209, ISBN 978-1-4503-4617-7
https://doi.org/10.1145/3006299.3006300

9

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

under given SLA penalties. The authors use a server load
that is a combination of a base load and a factor that ac-
counts for the increase of execution time when a set of ten-
ants is packed on the server (comparable to our penalty).
In their experiments, the authors determine this factor for
a single workload type. Like previous approaches, Liu et al.
do not consider communication costs or dynamic placement
of tenants.

8. CONCLUSION
In this paper, we used weighted graphs to model DBaaS

systems and formulated the allocation problem based on a
generalized workload and infrastructure. Furthermore, we
presented our penalized graph partitioning as an allocation
strategy for DBaaS systems. Thereby, we relaxed limitations
of the basic method and enabled incremental updates. An
extensive experimental evaluation showed the applicability
and scalability of our penalized graph partitioning as well
as the performance benefit in an actual DBaaS system. We
believe that our penalized graph partitioning is a versatile
method that can be applied to many other domains.
We are aware of the many challenges to overcome in the

process of finding good performance models, i.e., penalty
functions. Here, we presented a solution that solves the
allocation problem under the assumption of the penalized
performance model. A systematic evaluation of experimen-
tal and incremental methods to find penalty functions is
subject to future work.

9. REFERENCES
[1] M. Ahmad and I. T. Bowman. Predicting System

Performance for Multi-Tenant Database Workloads. In
DBTest, 2011.

[2] K. Andreev and H. Räcke. Balanced graph
partitioning. In SPAA, pages 120–124, 2004.

[3] S. Blagodurov, S. Zhuravlev, and A. Fedorova.
Contention-Aware Scheduling on Multicore Systems.
ACM Transactions on Computer Systems, 28(4), 2010.

[4] S. Blagodurov, S. Zhuravlev, A. Fedorova, and
M. Dashti. A Case for NUMA-Aware Contention
Management on Multicore Systems. In PACT, 2010.

[5] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent Advances in Graph Partitioning.
preprint: Computing Research Repository, 2013.

[6] U. V. Catalyurek, E. G. Boman, K. D. Devine,
D. Bozda, R. Heaphy, and L. A. Riesen.
Hypergraph-based Dynamic Load Balancing for
Adaptive Scientific Computations. In IPDPS, 2007.

[7] C. Curino, E. P. C. Jones, S. Madden, and
H. Balakrishnan. Workload-Aware Database
Monitoring and Consolidation. In SIGMOD, 2011.

[8] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya,
E. Wu, S. Madden, H. Balakrishnan, and
N. Zeldovich. Relational Cloud: A
Database-as-a-Service for the Cloud. In CIDR, 2011.

[9] C. Curino, E. P. C. Jones, Y. Zhang, and S. Madden.
Schism: a Workload-Driven Approach to Database
Replication and Partitioning. In VLDB, 2010.

[10] K. D. Devine, E. G. Boman, R. T. Heaphy, and B. A.
Hendrickson. New Challenges in Dynamic Load
Balancing. Applied Numerical Mathematics, 52, 2005.

[11] C. M. Fiduccia and R. M. Mattheyses. A Linear-Time
Heuristic for Improving Network Partitions. In DAC,
1982.

[12] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar,
A. Gani, and S. U. Khan. The rise of "big data" on
cloud computing: Review and open research issues.
Inf. Syst., 47:98–115, 2015.

[13] B. Hendrickson, R. Leland, and R. Van Driessche.
Enhancing Data Locality by Using Terminal
Propagation. In HICSS, 1996.

[14] L. Hyafil and R. L. Rivest. Graph Partitioning and
Constructing Optimal Decision Trees are Polynomial
Complete Problems. Technical report, IRIA, 1973.

[15] G. Karypis and V. Kumar. Analysis of Multilevel
Graph Partitioning. In SC, 1995.

[16] G. Karypis and V. Kumar. Multilevel Algorithms for
Multi-Constraint Graph Partitioning. Technical
report, University of Minnesota, Department of
Computer Science, 1998.

[17] B. W. Kernighan and S. Lin. An Efficient Heuristic
Procedure for Partitioning Graphs. Bell System
Technical Journal, 49(2), 1970.

[18] T. Kiefer, B. Schlegel, and W. Lehner. MulTe: A
Multi-Tenancy Database Benchmark Framework. In
TPCTC, 2012.

[19] T. Kissinger, T. Kiefer, B. Schlegel, D. Habich,
D. Molka, and W. Lehner. ERIS: A NUMA-Aware
In-Memory Storage Engine for Analytical Workloads.
In ADMS, 2014.

[20] K. A. Kumar, A. Quamar, A. Deshpande, and
S. Khuller. SWORD: Workload-Aware Data Placement
and Replica Selection for Cloud Data Management
Systems. The VLDB Journal - The International
Journal on Very Large Data Bases, 23(6), jun 2014.

[21] W. Lang, S. Shankar, J. M. Patel, and A. Kalhan.
Towards Multi-Tenant Performance SLOs. In ICDE,
2012.

[22] C. Li, C. Ding, and K. Shen. Quantifying the Cost of
Context Switch. In ExpCS, 2007.

[23] Z. Liu, H. Hacigümüs, H. J. Moon, Y. Chi, and W.-P.
Hsiung. PMAX : Tenant Placement in Multitenant
Databases for Profit Maximization. In EDBT, 2013.

[24] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak. The
Star Schema Benchmark and Augmented Fact Table
Indexing. In TPCTC, 2009.

[25] I. Pandis, R. Johnson, N. Hardavellas, and
A. Ailamaki. Data-Oriented Transaction Execution. In
VLDB, 2010.

[26] A. Quamar, K. A. Kumar, and A. Deshpande.
SWORD: Scalable Workload-Aware Data Placement
for Transactional Workloads. In EDBT, 2013.

[27] J. Schaffner, T. Januschowski, M. Kercher, T. Kraska,
H. Plattner, M. J. Franklin, and D. Jacobs. RTP:
Robust Tenant Placement for Elastic In-Memory
Database Clusters. In SIGMOD, 2013.

[28] A. J. Soper, C. Walshaw, and M. Cross. A Combined
Evolutionary Search and Multilevel Optimisation
Approach to Graph-Partitioning. Journal of Global
Optimization, 29(2), 2004.

Final edited form was published in "UCC '16: 9th International Conference on Utility and Cloud Computing. Shanghai 2016", S. 200–209, ISBN 978-1-4503-4617-7
https://doi.org/10.1145/3006299.3006300

10

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

	ADPA9C3.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Tim Kiefer, Dirk Habich, Wolfgang Lehner
	Penalized graph partitioning based allocation strategy for database-as-a-service systems

