Dieses Dokument ist eine Zweitveroffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Benjamin Schlegel, Tim Kiefer, Thomas Kissinger, Wolfgang Lehner

pcApriori: scalable apriori for multiprocessor systems

Erstveréffentlichung in / First published in:

SSDBM '13: Conference on Scientific and Statistical Database Management Baltimore
29.07. - 31.07.2013. ACM Digital Library, Art. Nr. 20. ISBN 978-1-4503-1921-8

DOI: https://doi.org/10.1145/2484838.2484879

Diese Version ist verfiigbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806412

TECHNISCHE
Wl SLUB UNIVERSITAT OucosAa

Wir fiihren Wissen. DRESDEN Quality Content of Saxony


https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806412
https://doi.org/10.1145/2484838.2484879

Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8

https://doi.org/10.1145/2484838.2484879

pcApriori: Scalable Apriori for Multiprocessor Systems

Benjamin Schlegel, Tim Kiefer, Thomas Kissinger, Wolfgang Lehner
Database Technology Group
TU Dresden
Dresden, Germany

{firsthame.lasthame}@tu-dresden.de

ABSTRACT

Frequent-itemset mining is an important part of data min-
ing. It is a computational and memory intensive task and
has a large number of scientific and statistical application
areas. In many of them, the datasets can easily grow up
to tens or even several hundred gigabytes of data. Hence,
efficient algorithms are required to process such amounts of
data. In the recent years, there have been proposed many ef-
ficient sequential mining algorithms, which however cannot
exploit current and future systems providing large degrees
of parallelism. Contrary, the number of parallel frequent-
itemset mining algorithms is rather small and most of them
do not scale well as the number of threads is largely in-
creased. In this paper, we present a highly-scalable mining

algorithm that is based on the well-known APRIORI algo-
rithm; it is optimized for processing very large datasets on

multiprocessor systems. The key idea of PCAPRIORI is to
employ a modified producer—consumer processing scheme,
which partitions the data during processing and distributes
it to the available threads. We conduct many experiments

on large datasets. PCAPRIORI scales almost linear on our
test system comprising 32 cores.

General Terms
Data mining, Association rule mining

Keywords

Frequent itemset mining, Parallel Apriori

1. INTRODUCTION

Frequent-itemset mining is a popular part of data mining
with the goal of finding values or items that co-occur fre-
quently in a dataset. It has many application areas like
market-basket analysis, web-mining, gene-expression analy-
sis, mining in astronomy, etc. Frequent-itemset mining is
further the foundation of many other pattern mining vari-
ants; e.g., sequence mining [2], graph mining [26] or rare

©2013 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was

Eublished in SSDBM ’13, July 29 - 31 2013, Baltimore, MD, USA
ttps://doi.org/10.1145/2484838.2484879

1

itemset mining [18]. Thus, optimizations on the base al-
gorithms can often be applied with minor changes to these
extensions.

Frequent-itemset mining can be described as follows: Let
Z={ai,...,am } be a set of items and D = (T1,...,Ty)
be a database of transactions, where each transaction T; C 7
consists of a set of items. The relative support of an itemset
I C 7 denotes the percentage of transactions that contain
the itemset I. The goal of itemset mining is to find all item-
sets that satisfy a certain minimum relative support £. The
chosen £ value thereby influences the effort for mining; it be-
comes more expensive as & decreases because more frequent
itemsets are found.

There exists a large variety of algorithms tackling the chal-
lenge of finding frequent itemsets. Basically,—as discussed
by various authors [25, 12, 15]—mnone of them is superior over
all other algorithms; the dataset being mined and the cho-
sen £ value determine which algorithm performs best. The
most popular frequent-itemset mining algorithms are FP-
GROWTH [14] and EcCLAT [28] for which many optimizations
and variants were proposed. The APRIORI [1] algorithm is of-
ten wrongly considered as inferior compared to these mining
algorithms. This basically stems from the way how APRI-
ORI processes the data. It requires k scans of the base data
to obtain size-k frequent itemsets; clearly this is expensive
if the scans are performed on disks, however, scanning in
main memory is in comparison almost for free. APRIORI
thus works well on currently available multiprocessor sys-
tems because they provide large main memory capacities;
e.g., some systems are equipped with 2TB of main memory.

APRIORI typically performs better than the other mining
algorithms on datasets that have many small transactions
(e.g., datasets from retail business) or when the result set
contains mainly short and only few long frequent itemsets.
There further exist several APRIORI variants, which perform
differently depending on the used datasets and chosen & val-
ues. The original APRIORI algorithm [1], for example, rep-
resents the transaction database using simple lists whereas
other APRIORI variants [6, 5] use prefix trees for that pur-
pose. The former is usually faster for rather large £ values
since no expensive building of prefix trees is required. Con-
trary, the latter benefit from the sorted transactions when
the & values are rather small.

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden



Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8

https://doi.org/10.1145/2484838.2484879

Compared to the large number of sequential APRIORI vari-
ants [1, 6, 5, 20, 27], there exist only few parallel versions of
it that are tailor-made for multiprocessor systems. These al-
gorithms were moreover developed at a time, when the num-
ber of available threads in a single system was rather low so
that scalability was not the major concern. The parallel al-
gorithms [27, 9, 16] rely on either expensive synchronization
primitives (e.g., locks) or replicated data structures. The
former lead to contention and furthermore induce serious
overhead because communication between the cores (e.g.,
bus snooping, request for ownership changes of cachelines)
is required for them. Replicated data structures indeed min-
imize communication between cores, however, they are also
unsuitable because their space usage explodes as the num-
ber of threads is largely increased. This furthermore lead to
large pressure on the shared caches since all threads try to
keep their data within them.

In this paper, we propose PCAPRIORI, which is a highly
scalable version of APRIORI. PCAPRIORI incorporates effi-
cient existing as well as novel components to achieve a high
single-threaded performance as a basis for a fast parallel al-
gorithm. Thereby, we chose a data layout that is simple
and allows a fast parallel dataset conversion and load bal-
ancing during processing. Multi-threaded PCAPRIORI relies
on partitioned data structures, which however require com-
munication between the threads. To minimize communica-
tion costs, we propose a variant of the producer—consumer
processing model [17]. We conduct a large number of exper-
iments on large synthetic datasets. This includes a compar-
ison with highly efficient existing algorithms and scalability
experiments.

In what follows, we assume that the dataset being mined
is already fully available in main memory (e.g., in an in-
memory database or loaded previously from disks or net-
work). In all other cases, loading the datasets can introduce
a large sequential fraction so that most of our optimizations
would be meaningless.

The rest of the paper is organized as follows: In Section 2, we
explain the basic components of PCAPRIORI. This includes
details to the data layout, sequential support counting, and
employed database pruning techniques. We discuss parallel
support counting in Section 3. We start with an overview
about parallel counting techniques and thereafter explain
our variant of the producer—consumer processing scheme in
more detail. Section 4 provides the results of our experimen-
tal evaluation. We compare the single-threaded PCAPRIORI
with existing implementations and evaluate the scalability
of multi-threaded PCAPRIORI. Section 5 gives an overview
about the related work of this paper; we mainly review and
discuss sequential and parallel APRIORI-based algorithms.
Finally, we conclude the paper in Section 6.

2. BASIC ALGORITHM

PCAPRIORI has basically the same core algorithm as APRI-
ORI; it iteratively generates and tests candidate itemsets
to obtain frequent itemsets of increasing cardinality. This
works as follows: The input dataset is parsed to obtain the
frequent items Fj;. Based on these items, the dataset is
transformed into a tailor-made data layout, which represents

2

the dataset’s transactions. Thereby, infrequent items are re-
moved from the transactions, i.e., they are filtered. After the
dataset has been fully converted, the algorithm executes two
phases repeatedly to obtain all frequent itemsets.

Candidate generation and pruning: Generate the can-
didates C within the k-th iteration using the frequent
itemsets Fy_1. For that purpose, merge all itemsets
in Fj_, with all other itemsets in Fx_1 that share the
same first k — 2 items. The number of candidates Cj
is minimized to reduce the costs of the second phase.

Support counting: Scan the transaction database and gen-
erate for each transaction all of its size-k subsets. Search
each of these subsets within the indexed candidates. If
a subset is found, increase the support value of the
respective candidate. After the scan is complete, the
candidates in C} that fulfill £ form the frequent item-
sets Fj of length k. Increase k by one and continue
with the first phase.

The algorithm stops as soon as C is empty. APRIORI thus
requires k iterations (i.e., scans over the converted database)
to obtain frequent itemsets of length k. If £ denotes the size
of the largest found frequent itemset, then the output of the
algorithm is given by Ule F;.

For large datasets, the time required for candidate gener-
ation on APRIORI-suited datasets is negligible, so we use
existing candidate generation and pruning techniques [24].
The support counting step, however, is computational ex-
pensive and forms APRIORI’s performance hotspot.

2.1 Data layout

The internal transaction representation has a large impact
on support counting since all transactions are scanned dur-
ing an iteration. For PCAPRIORI, we employ a page-based
transaction representation, where the filtered transactions
are stored clustered in pages based on their length, i.e., all
filtered transactions that share a page have the same length.
Hence, the length of the transactions within a page must not
be stored multiple times; each page stores the length of its
containing transactions only once. Thus, less memory is re-
quired for storing small transactions because the length field
requires as much memory as a single item. This amounts in
a space reduction of 33% for length-2 transactions and 25%
for length-3 transactions which leads to significant overall
savings since filtered transactions of such lengths occur most
frequently in datasets suitable for APRIORI. Nevertheless, it
is not useful to maintain pages for each transaction length.
Especially for long transactions, there is almost no space
reduction and the pages for certain lengths (e.g., for more
than 20 frequent items) usually contain only few transac-
tions. For this reason, we only partition the transactions up
to a length pye. = 16. All filtered transactions that con-
tain more than p.mq.. items are stored in pages where each of
them has an explicit length information assigned. For min-
ing, we maintain pmaq. lists where each list connects pages
that contain transactions of the same length.

The filtered transactions are represented in the pages with
only as many bytes as required to encode the number of

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden



Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8

https://doi.org/10.1145/2484838.2484879

frequent items. Such an optimization was also applied by
various other authors (e.g., [21]) within their particular rep-
resentations and requires a recoding from the actual item
id I € 7 to an internal id that lies in the range from 0
to n — 1 where n denotes the number of frequent items.
Hence, for 256 or less items, each transaction item is 8-bit
encoded, whereas otherwise the transaction items are 16-bit
encoded. More than 65,536 frequent items are uncommon
for frequent-itemset mining but in such a case, the items
would be encoded using larger data types.

The conversion from a dataset to the page-wise layout is sim-
ple and cheap; pmas pages are maintained in which filtered
transactions are inserted depending their length. Whenever
a page is full, a new page is created and the full page is
enqueued in one global page list. Parallel conversion works
similar, except that each thread maintains ppq. pages and
parses independent parts of the dataset. To reduce synchro-
nization costs of the enqueue operation, we set the page size
to 1MB. Notice that the filtered transactions have a differ-
ent order in the page-based layout, which, however, does not
influence the mining result.

Besides the memory reduction and cheap conversion, the
page-wise layout eases load balancing for multi-threaded sup-
port counting. The pages provide a proper granularity for
work distribution and the load of a page can be predicted
based on the length of the transactions it contains. Pages
with large transactions induce more load because longer
transactions have more subsets that need to be counted.
For this reason, these pages are processed first to avoid load
imbalance at the end of an iteration.

2.2 Memory management

Memory management is an essential part of PCAPRIORI be-
cause large amounts of memory are repeatedly allocated and
deallocated during mining, i.e., PCAPRIORI stores the fil-
tered transactions in large arrays and the indexed candidates
and their support values using many small chunks of mem-
ory. Hence, the sizes of the allocations vary strongly. The
standard memory allocation functions like new and delete
within C++ or malloc and free within C, however, are in-
tended for applications with simple allocation pattern and
thus cause problems. First of all, the functions all maintain
complex data structures (e.g., free-lists), which are updated
whenever memory is allocated or deallocated. This leads to
serious performance degradations when a large number of al-
locations is performed. Memory fragmentation—the second
problem—increases the memory footprint of PCAPRIORI. It
is caused by the varying sizes of the allocations and wors-
ens when multiple threads are used. Lastly, calls to the
allocation functions are internally serialized, which hinders
scalability.

Our tailor-made memory management avoids the problems
of the standard allocators. We use lightweight memory pools,
which provide memory that grows and shrinks like a stack.
The pools provide a simple interface with basically only two
functions. The function grow returns a chunk of memory
from the end of the stack and increases the stack by the
size of the allocated chunk. Contrary, the shrink function
reduces the stack to a certain size. The memory allocation
and deallocation of each of PCAPRIORI’s core data structures

3

is thus realized with this interface. For that purpose, each
thread has multiple own memory pools assigned from which
it allocates memory without any synchronization. For ex-
ample, each thread grows an own page stack by the size of
a page whenever a new page must be created.

Each memory pool is maintained using only a few variables.
The base pointer holds the address of a continuous mem-
ory chunk (i.e., the start of the stack) whereas the stack
pointer refers to the end of the stack. Each pool has a large
chunk of virtual memory assigned, which is provided by a
memory-mapped file. These files are mapped on consecutive
addresses with a large distance between each pair of pools
(e.g., 16GB). The pools are increased or decreased using the
thread-safe linux function mremap. To avoid repeated calls of
it, we internally increase or decrease the stack chunk-wise—
usually using at least 128 MB chunks. Because virtual mem-
ory is not mapped to physical memory until it is touched
(i.e., read or written), this does not increase the physical
memory usage.

2.3 Support counting

Within support counting, all (Z) subsets of a transaction are
created, where n denotes the length of the transaction and
k the number of the current iteration. These subsets are
then searched within the indexed candidates and—for each
that is found—a respective counter is increased. Like other
APRIORI variants do, we employ different data structures for
maintaining the candidates and their counter depending on
the number k of the current iteration.

In the first two iterations (k = 1 and k = 2), PCAPRIORI
employs the direct counting technique [23]; i.e., a single array
is used to represent the candidates. The basic idea is to
transform a subset being counted into an integer value and
use this value as index in the array. For example, if the size-
2 itemset bd from a set of 10 frequent items {a,b,...,j} is
counted, it can be mapped to (b — 1)-10+4 (d — 3) = 13
and whenever it occurs in a transaction, the count value in
the array at position 13 is incremented. The actual hash
function is more elaborate to avoid unused entries for bb or
db, which do not occur as subsets. Direct counting works
well since only a single access per item (k = 1) or 2-itemset
(k = 2) into an array is required.

For the later iterations (k > 2), PCAPRIORI employs trie-
based counting [6, 5]. Its basic idea is to organize all candi-
dates within a prefix-hash tree [10]. In the simplest variant
of such a trie, each node consists of n pointers where n de-
notes the number of frequent items; the trie’s depth is given
by the length of the candidates. Only the leaf nodes do not
contain pointers; they hold integer values representing the
count values of the candidates. Each candidate (with items
ordered ascending) forms a path within the trie. At the root
node, the first item identifies which pointer of the root node
should be followed; the second item identifies which pointer
of the next node should be followed; and so forth. The can-
didate’s last item identifies its associated count value at the
leaf node. The transactions’ subsets (again ordered ascend-
ing) are counted in a similar fashion. Their items identify a
path within the trie; if the path is available, then the sub-
set’s last item is used to increase a count value within the
leaf node.

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden



Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8

https://doi.org/10.1145/2484838.2484879

Borgelt [6] and Bodon [5] employ the trie for indexing the
candidates and—at the same time—for storing so far found
frequent itemsets. Each node has therefore besides the n
pointers also n count values, which denote the support of a
itemset represented by the path to a count value. In each
iteration, the trie is extended by a new level, which holds
the candidates of this iteration. These new leaf nodes do
not contain pointers until the next level is added in the next
iteration. Borgelt [6] further stores at each node two vari-
ables that denote the first item and last item within a node;
they are used to avoid unused pointers within the nodes.

In PCAPRIORI, we divide the single trie into an itemset trie
for storing so far found frequent itemsets and a count trie,
which holds only the candidates of a single iteration and
has count fields only in the leaf nodes. The former is thus
solely used for candidate generation and gets a new level
whenever new frequent itemsets are obtained whereas the
latter is solely used for support counting. The separation
of the tries greatly reduces the number of unused data el-
ements (i.e., count fields and unused pointers in the inner
nodes) within the caches during counting. Only the count
trie has to be rebuild in each iteration, which however is
negligible compared to the costs for support counting when
large datasets are mined.

- 5-71 [4-5]
4267 |562 |346) (718 |362 |467) (421 |562)

(321 |1562

Figure 1: A count trie used in pcApriori

Figure 1 depicts the count trie that contain three inner nodes
and represents 10 candidates. Each node maintains the
range of items for which there exist pointers or count fields.
The candidate abd, for example, is represented by the path
{a = 1,b = 2,d — 4} and has the count value 1562.

We further speed up counting by reducing the size of the
trie nodes. Almost all of them consist of only pointers to
child nodes. On a 64-bit machine, a single pointer requires
64 bit or 8 bytes and can address 25 bytes of memory. The
count trie, however, is typically much smaller so that 32-bit
pointers or sometimes even 16-bit pointers are sufficient to
address its nodes. We thus adjust the size of the pointers
to the size of the trie. Each pointer holds only an offset to
a base address, which refers to the continuous memory area
provided by the trie’s memory pool. Whenever a pointer
needs to be dereferenced, it is computed by adding the offset
to the base address.

To minimize the effort for subset counting, Borgelt [6] pro-
posed a recursive counting procedure, which ensures that
each node is loaded only once when the subsets of a single
transaction are counted. Basically, the function calls itself
for each non-empty suffix of a passed transaction substring
in a single recursion call and thereby the trie is traversed.

4

All items within transaction substrings that reach leaf nodes,
are counted in the leaf nodes’ counter.

In PCAPRIORI, we employ a loop-based version of the re-
cursive function to avoid its many function calls. For that
purpose, we transform it to multiple loop-based functions;
each of these functions is tailor-made for a certain trie depth
whereby it is sufficient to provide functions for tries with
three (k > 3) up to six levels (k < 6). The remaining iter-
ations often amount to only a small fraction of the overall
runtime on APRIORI-suited datasets so that the recursive
function is sufficient in these iterations. Besides reducing
the number of function calls, the transformation enables the
compiler to apply further optimizations.

2.4 Database pruning

Database pruning techniques can further reduce the time
for support counting. PCAPRIORI scans in each iteration
the converted database completely. Each filtered transac-
tion that is removed using pruning thus reduces the scan
time in the later iterations, i.e., subset counting for removed
transactions is not required.

A simple transaction pruning technique is to remove trans-
actions that are too small during an iteration. For example,
the transactions with only two items are not required for ob-
taining the support of candidates with three and more items.
PCAPRIORI’s page-wise layout eases pruning of such transac-
tions; all lists with pages that contain transactions with in-
sufficient length are simply skipped during support counting.
Since none of the skipped pages (and thus skipped transac-
tions) is physically accessed, there is no overhead for parsing
the transaction’s length, branching, or copying transactions.
Such overhead might occur when pruning is applied to other
data layouts. Notice that the pages with explicit length in-
formation could not simply be skipped, however, the num-
ber of iterations is typically smaller than pm,.z so that these
transactions will not be skipped anyway.

Trimming transactions, i.e., removing items that are not re-
quired in later iterations from the transactions, is often even
more beneficial than database pruning. Even a small de-
crease of the average transaction length has a large impact
on the costs of subset counting, i.e., 120 size-3 subsets have
to be counted for a transaction with 10 items whereas only
56 size-3 subsets have to be counted for a transaction with 8
items. However, reducing a transaction’s length from 5 to 4
items might not be useful so that some trimming techniques
with perfect results but large overhead are rather counter-
productive.

Trimming is already very effective if it is based on the gen-
erated candidates within an iteration. After the candidates
are generated, we exploit that not all frequent items occur
in them. In PCAPRIORI, the ids are assigned to the fre-
quent items based on their frequency; less frequent items
get a larger id. We observed that the largest id of the can-
didate items—in what follows denoted as borderline id—is
often much smaller than the largest id of the frequent items
since the less frequent items have a higher probability to
be removed from all candidates. Length trimming removes
all items with an id larger than the borderline id from the
transactions being counted because these items are not part

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden



Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management

https://doi.org/10.1145/2484838.2484879

thread 1  thread 2 thread 1 thread 2 thread 1 thread 2
1 14 1 8 1.1 14
2 3 2 3 0 2. 3 inc

i

3 53 L 3 23 - 30 3.| 53 partition 1

atomic_inc inc — | |- T
4. 6 - 4. 4 2 4. 6 partition 2
5 117 oo | 5 65 52 - 5 117 -
6 a7 atomic_inc 6 15 12 inc 6. a7 inc

(a) Shared table

(b) Replicated table

(c) Partitioned table

Figure 2: Parallel direct-count approaches

of any of the iteration’s candidates and thus are never be
counted. Dead-item trimming goes even further than length
trimming. It removes all items that are not part in any of
the candidates from the transactions.

3. PARALLEL SUPPORT COUNTING

So far, we have explained how support counting in PCAPRI-
ORI is performed using only a single thread. We will now
discuss how the direct counting and trie-based counting can
be performed in parallel using multiple threads.

3.1 Parallel direct counting

As discussed earlier, direct counting is used for obtaining the
frequent items and frequent 2-itemsets within PCAPRIORI.
In both cases, counting is performed by increasing values
in a large lookup table. If the frequent items should be
obtained, the size of the lookup table depends on the number
of distinct items that are within the dataset being mined.
For market-basket analysis datasets, the number of distinct
items is typically below 100,000. For web-mining datasets,
however, the number of distinct items easily reaches several
millions. Hence, the lookup table used for counting could
require less than a megabyte but also up to hundreds of
megabytes. Similarly, the number of frequent items from
which the frequent 2-itemsets are obtained is typically in
the range from several hundred up to a few ten thousands.
If each ordered pair of frequent items is mapped to a 4-byte
counter, then the respective lookup table varies from several
kilobytes up to a few gigabytes. Thus, the lookup table for
direct counting fits in some cases in the processor’s caches
and is in other cases quite large.

While the direct counting technique is straight-forward to
implement for sequential processing, it is more involved for
parallel processing. In general, there are three parallel di-
rect counting approaches that differ in the way how they
deal with parallel increments. Using a single shared table for
all threads is prohibitively expensive because synchroniza-
tion (e.g., locks or atomic increments) is required to avoid
inconsistent results caused by race conditions. Figure 2(a)
illustrates the shared table approach. The replicated table
approach—shown for two threads in Figure 2(b)—maintains
a local table for each thread in which the thread can in-
crement the items’ count values independently from other
threads. Synchronization is only required after the counting
to merge the local tables into a single table that contains

5

the final result. Besides its simplicity, the replicated table
approach has a much higher memory consumption than its
sequential counterpart. Hence, it cannot be used for very
large tables and/or for a very large number of threads. Fur-
thermore, even for small tables with only a few megabytes,
it has a limited scalability because the local tables may not
fit into the caches anymore while a single global table would
fit (at least in the large last-level cache).

The partitioned table approach uses only a single table for
all threads, however, it is partitioned so that each thread
increments the count values for those items that lie within a
certain ranges. In Figure 2(c), for example, the first thread
counts all values from 1 to 3 while the second thread counts
values from 4 to 6. For realistic scenarios, the ranges are
usually much larger and the threads have multiple ranges
assigned for a better load balancing. Furthermore, for 32-
bit count values, the size of the ranges must be a multiple of
16 because otherwise false sharing might occur. The actual
parallel counting of the items can be done in two ways: (1)
all threads scan the complete dataset and count only their
assigned values and (2) each thread has an assigned part of
the dataset and distributes scanned values to the responsible
threads. The former variant is not useful since the threads
perform much redundant work, i.e., each thread checks for
each value whether it is in its range or not. The latter,
however, requires communication between the threads. We
achieve this using a modified producer—consumer scheme,
which we explain below in more detail. Although partition-
ing induces communication overhead, which is not neces-
sary when the lookup table is replicated, it requires only as
much space as the shared approach or sequential process-
ing. Compared to replicated processing, the caches are thus
much better exploited, which pays off for large tables.

There are also hybrid approaches between these base ap-
proaches possible. For example, a replicated table could be
assigned to each processor whereas threads that run on the
same processor share a partitioned table. As soon as the
overhead for partitioning is paid, however, it seems more
efficient to use only a single lookup table for all threads
of a system because then each processor has only to hold
parts of the full table, which improves cache efficiency. Only
when communication between the processors is expensive (in
terms of bandwidth) or too many partitions are required,
then hybrid approaches might beneficial.

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden

. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8



Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8

https://doi.org/10.1145/2484838.2484879

3.2 Processing model

In the following, we describe our multiple-producer /multiple-
consumer processing model, which is derived from the basic
producer—consumer model [17]. It is employed for (1) par-
titioning the subsets being counted and (2) communicating
them to the threads responsible for increasing their respec-
tive count values in the partitioned count table. The ba-
sic idea is that each thread is always in one of two states.
As producer, it partitions the input data based on a cer-
tain partitioning function whereas as consumer, it processes
data in its partition. For parallel direct counting, the trans-
actions from the input dataset (k = 1) or the page-wise
layout (k = 2) form the input data and processing means to
increase the count values in the count table.

producer side consumer side

work i

thread1 m : thread1
L [*~--.__queues: -
Reading Procgssu:jg
i . N assigne
inputdata [ tition || 4 partitions
data LI i
thread2 . i thread2
. .. Processing
Reading PLE T €
input data ‘ asm_g_ned
— partitions
local
buffers full pages
Figure 3: Multiple-producer/multiple-consumer

processing with four partitions and two threads

Synchronized work queues are used to communicate parti-
tioned data between the producers and the consumers. Each
thread has a single work queue assigned that contains the
partitioned data the thread is responsible for, i.e., data that
lies in the thread’s assigned partitions. To avoid excessive
communication overhead that would occur if a producer en-
queues single data elements, the producers collect data in
local buffers and enqueue chunks of data. For that purpose,
the local buffers have pages assigned that float in cycles dur-
ing processing. They are (1) filled by a producer, (2) put
into a work queue, (3) processed by a consumer, (4) put into
an empty-pages queue, and finally (5) obtained by a producer
from the latter queue to start the cycle again. Figure 3 il-
lustrates the components of the processing model (except
for the empty-pages queue) when two threads are employed
that divide the input data into four partitions. Notice that
the work queues are filled by multiple threads but each of
them is read by only a single thread.

For parallel direct counting, each producer calculates the
position of the subsets’ count values and communicates these
positions to the consumers. For k = 1, the item itself is used
as position while for £ = 2, it is calculated from the two
items as discussing by Perego et al. [23]. A consumer thus
only increases the count values using the calculated positions
that are in the pages of its work queue. The full algorithm
works as follows:

Producer A thread that is in the producer mode continu-
ously reads chunks of transactions; as long as a single
chunk contains further transactions, it repeats the fol-
lowing steps:

6

1. Read a transaction from the input chunk.

2. For each size-k subset s of the transaction repeat
the following steps:

a) Obtain the partition id p;q and the count-
table position ¢ for s.

b) If the page of the local buffer assigned for p;q
is full, then enqueue the page into the work
queue assigned for p;q and get a new page
from the empty-pages queue and assign it to
the local buffer.

¢) Insert ¢ into the page of the local buffer as-
signed for p;4.

If the thread’s work queue is not empty, it switches to
consumer mode. Otherwise, it reads the next chunk
from the input data and the cycle starts again.

Consumer A thread in the consumer mode is responsible
for increasing the count values for all subsets that are
in its partition. It repeats the following steps:

1. If the thread’s work queue is empty, switch back
to producer mode.

2. Dequeue the next page p from the assigned work
queue.

3. For each count-table position ¢ in p, increase the
c-th value in the global count table.

4. Enqueue p into the empty-pages queue.

The algorithm finishes, as soon as there are no further trans-
action chunks and all pages in all work queues are processed.
The questions that remain are (1) which partition function
should be employed, (2) how to balance the load and dis-
tribute the partitions, and (3) how many partitions should
be used.

Partitioning the items in the first iteration is performed
based on the items themselves. The count-table position of
an item ¢ is inserted into the partition z using z = (7/256)
mod p where p denotes the number of partitions. The di-
vision is implemented using a shift instruction and is re-
quired to avoid false sharing that occurs when two consec-
utive count values are in different partitions but are in the
same cache line. The item pairs are similarly partitioned in
the second iteration: The count-table position of a pair of
items ¢ and j is inserted into the partition x =4 mod p. By
using only the first item for obtaining the partition id of an
item pair, we reduce the calculation effort during counting
since we only need to calculate the partition id once for a
set of subsets generated from a transaction, e.g., the subsets
ac, ad, and af for a transaction acdf all fall in the same
partition.

The partitions themselves are distributed in a round-robin
manner. This may lead to load imbalance, which, however,
is compensated by our processing model. All threads can
always become producers for which load is always avail-
able. Only a single consumer should not be overloaded since
their work queues would otherwise overflow—Ileading to con-
tention for all threads inserting in such a queue. For this
reason, it is always the thread’s highest priority to process

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden



Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8

https://doi.org/10.1145/2484838.2484879

pages of its work queue because this work cannot be dis-
tributed to other threads (at least as long as the partitions
are not redistributed). It thus switches also to be a consumer
when it is blocked by a full queue. Fortunately, the tasks
of the consumer are cheaper than the tasks of the producer;
this limits the possibility of queue contention.

Finally, the number of partitions, work queue sizes, number
of floating pages, and size of a page influence the efficiency
and overhead of the processing model. If, for example, the
pages are too large and too many partitions are used, then
the size of the local buffers explodes. We empirically found
that 256 partitions, a page size of 32KB, a task queue with at
most 256 entries and 1024 - ¢ floating pages where t denotes
the number of threads works best on our system. These
variables may be different on other systems.

Summing up, the processing model employed for direct count-
ing is well suited for multiprocessor systems. All threads
can hold the parts of the global count table they are re-
sponsible for in the processor’s memory on which they are
running. Only the pages in the work queues need to be
exchanged between the processors for which the intercon-
nects provide sufficient bandwidth. The processing model
thus should scale very well to a large number of processors
and threads. Nevertheless, the model’s major drawback is
the effort required for partitioning the data. Many opera-
tions need to be performed per item whereas basically only
a single memory request is required per item for sequential
direct counting. This might limit its applicability for small
count tables. For large count tables, however, the parti-
tioning weakens this drawback because it increases spatial
and temporal locality, which increases cache line utilization.
This is also suggested by our experiments in this paper.

3.3 Parallel trie-based counting

For counting subsets using tries in parallel, we have basi-
cally the same options as for parallel direct counting. The
shared count-trie approach requires the least changes to the
algorithms. All threads traverse the same trie and increase
the count values within the leaf nodes using atomic incre-
ments or small critical regions. Clearly, this approach has
again high synchronization costs, which strongly limit its
applicability. The replicated count-trie approach is similar
to the full replication employed by [16]. The count trie is
split into a shared upper part and a replicated lower part.
The shared part comprises all the inner nodes, which are
only read by the threads, while the lower part comprises the
leaf nodes, which are updated during counting. As men-
tioned before, the counting without synchronization comes
at the price of a multiple times larger memory consumption
compared to the single-threaded execution. For this reason,
replicated counting is only useful when the number of leaf
nodes is rather low, i.e., for moderate or high £ values or
in the later iterations. The partitioned count-trie has the
same memory footprint as the trie used for single-threaded
counting because only a single trie is used. The count values
in the trie, however, are partitioned. Each thread has an as-
signed number of partitions in which it increases the count
values without synchronization. To avoid that all threads
scan all pages, we use the previously described producer—
consumer scheme to exchange the positions of count values
that need to be increased by another thread. Recall that

7

the producer—consumer scheme incurs overhead but may in-
crease the data locality when the count values in a certain
area are increased.

The implementation of replicated counting in PCAPRIORI
is quite simple. A single memory pool is used to provide
memory for the shared upper part of the count trie. Af-
ter the candidates are inserted, all inner nodes are stored
within the pool’s respective memory area and pointers to
inner nodes contain always the offset to the starting address
of this area. Pointers to leaf nodes, however, contain an off-
set to the address 0x0. Since the leaf nodes are basically only
a large array of integer values, the address of a count value
can be calculated using these offsets and the base address
of a thread’s replicated leaf array. Hence, each thread adds
the leaf offsets to the address of its own memory, which is
obtained from the thread’s memory pool. Clearly, all count
fields within this area have to be set to zero before counting.

Partitioned trie-based counting in PCAPRIORI is performed
similar to partitioned direct counting. Only the partition
criteria is different: All count values of leaf nodes that have
the same value x = ¢ mod p are within the partition, where
i denotes the second last item of a candidate and p denotes
the number of partitions. For example, the candidates acd,
ace, and bed are in the same partition.

4. EXPERIMENTS

This section contains the results of our experimental evalu-
ation of PCAPRIORI. We start with explaining the setup—
including details about our test system and the employed
datasets. Thereafter, we discuss the outcome of the single-
threaded and multi-threaded experiments.

4.1 Setup

In the following experiments, we use a four-socket NUMA
multiprocessor system that consists of four Intel E7-4830
processors, each equipped with eight cores and a 24MB last-
level cache. Each processor has 32GB of main memory as-
signed so that 128GB are available for the complete sys-
tem. The cores run at a frequency of 2.13GHz and sup-
port dynamic frequency scaling. In favour of more consis-
tent results, we turned this feature off and run the cores
always with 2.13GHz. The E7-4830 processor supports Hy-
perthreading so that up to 64 threads can be run in parallel.

We employ a 64-bit linux (Ubuntu server 10.04) as opera-
tion system. PCAPRIORI is implemented in C++ and com-
piled using Intel Parallel Composer 2011; we used -fast as
only optimization flag. OpenMP pragmas were used to en-
able thread-level parallelism. We implemented—similar as
[21]—most of our components using templates and select an
appropriate variant at runtime depending on the number
of frequent items. If, for example, the number of frequent
items is below 257, then all filtered transactions can be rep-
resented using 8-bit arrays and the 8-bit versions of dataset
conversion and support counting functions are selected. We
measure in all experiments the wall clock time by using linux
gettimeofday (within the code of our algorithms) or linux
time (at process level for existing algorithms).

In all experiments, we mine datasets that are well-suited for
APRIORI-based algorithms, i.e., they consist of mainly short

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden



Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8

https://doi.org/10.1145/2484838.2484879

transactions. Unfortunately, available realistic datasets are
all very small. The datasets retail [8], kosarak [11], and
BMS-POS [29], for example, fit together in the cumulated L3-
cache (4 x 24MB) of our test system. Hence, mining these
realistic datasets is not challenging.

To provide larger datasets for our experiments, we generated
synthetic datasets using the IBM Quest Dataset Genera-
tor [3]; it allows to build datasets of arbitrary size. We use
it to build datasets that follow the same characteristics (e.g.,
average cardinality, number of distinct items) of the realistic
datasets while containing more transactions. For example,
the quest-retail dataset has the same average cardinal-
ity and number of distinct items as the retail dataset but
it has about 1000x more transactions, i.e., instead of 4MB
it comprises 4GB. Despite the same characteristics, the syn-
thetic datasets behave differently compared to the real-world
datasets because the Quest generator is based on a simple
model. For this reason, we built a tool that allows us to
combine a realistic with a synthetic dataset. It exchanges
the n most-frequent distinct items of each transaction of
the synthetic dataset by the n most-frequent distinct items
of a randomly chosen transaction from the respective real-
istic dataset. Thereby, n was set to three quarters of the
average transaction cardinality but at most to 25. For ex-
ample, we exchanged the 7 most-frequent distinct items of
each quest-retail’s transactions because this dataset has
an average transaction cardinality of 10. Table 1 gives an
overview about the synthetic datasets used in this paper.
All of these datasets comprise 4GB.

# items avg. card. # transactions
quest-retail 17,000 10 86 million
quest-kosarak 41,000 8 115 million
quest-BMS-POS 2,000 7 128 million

Table 1: Characteristics of the used datasets

To provide a fair starting situation for all competing algo-
rithms, we store the datasets within a RAM disk. We thus
do not need to change their file interfaces—i.e., whether they
use mmap, read, or gets—for employing them to load the
datasets with in-memory speed. In PCAPRIORI, we load the
data using linux mmap because it eases access to a file.

4.2 Single-threaded

In the first set of experiments, we evaluate PCAPRIORI’s
single-threaded performance. The purpose of these exper-
iments is to show that PCAPRIORI is competitive with ex-
isting mining algorithms. This is a precondition for multi-
threaded PCAPRIORI because running an algorithm with mul-
tiple threads is not reasonable when its single-threaded ver-
sion is several orders of magnitude slower than an other
single-threaded algorithm that solves the same task.

As competitors, we use two highly optimized sequential APRI-
ORI implementations from Bodon [4] and Borgelt [7]. The
former (APRIORI-BODON) relies on C++ standard data struc-
tures, uses the standard allocators for memory allocation,
and stores all transactions in a tree in which duplicate trans-
actions are stored only once. APRIORI-BORGELT is imple-
mented in C and also uses the standard memory allocators.

Apriori-Bodon

Apriori-Borgelt

A O ®
o © o
S o© o
| I

pcApriori

n

o

s}
!

o

| | |
0.050 0.020 0.010 0.005

minimum support & (in %)

(a) quest-retail

Apriori-Bodon

Apriori-Borgelt

pcApriori

0 | | | |
0.020 0.015 0.010 0.005

minimum support & (in %)

(b) quest-kosarak
1400 - Apriori-Bodon
» 1200 -
2 Apriori-Borgelt

(0]

£

ng: 400 —
200 — pcApriori

0 T T T T T T
0.050 0.020 0.010 0.005 0.002 0.001

minimum support & (in %)

(¢c) quest-BMS-POS

Figure 4: Single-threaded performance on various
datasets and varying £ values

It requires only a single run over the dataset because it con-
verts the complete dataset into an internal representation.
Thereby, however, the transactions are not filtered because
the frequent items are first obtained after the conversion.
APRIORI-BORGELT also builds a trie-based representation
from the filtered transactions. Subset counting is solely per-
formed on this trie, which greatly reduces the time for count-
ing. We further tried Goethal’s APRIORI implementation,
an FP-GROWTH implementation [13], and Borgelt’s ECLAT
implementation [6]. All three showed a poor performance
on the used datasets so we do not provide results for them.
The latter two algorithms, however, are superior on datasets
with larger transactions (cf. the discussion in Section 5).

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden



Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8

https://doi.org/10.1145/2484838.2484879

replicated
(32 threads)

replicated /
(64 threads) ,
g partitioned

(32 hreads)

Runtime (in seconds)
S
1

0 frequency counting + conversion
T T T T T T T

0.07 0.06 0.05 003

0.04
minimum support & (in %)

(a) Runtime

o 12 replicated -
o (64 hreads) o’
£ 10+ ;
g .
3 8 ! ,
€ ! replicated
é 6 - X (32 threads)
Q
S 4 - partitioned ’
S (32 threads) '
e 2
= L _.a LQ_J

0 == T T T T T

009 0.07 0.06 0.05 0.04 0.03

minimum support & (in %)

(b) Memory footprint

Figure 5: Parallel direct 2-counting on quest-retail for varying ¢ values

Figure 4(a) illustrates the execution time of the algorithms
under test on quest-retail. As can be seen, PCAPRIORI
is always the fastest of the three algorithms for rather large
& values. For & = 0.042%, it requires only 68s to finish
whereas the better of both other algorithms requires 687s;
this amounts to a speedup of 10x. Compared to the other
algorithms, PCAPRIORI’s strengths are its phases before the
actual mining, i.e., the tasks before the expensive subset
counting. Obtaining the frequent items and the dataset
conversion takes only 30s. Contrary, APRIORI-BORGELT re-
quires 460s before it starts mining the frequent itemsets.
This time includes, however, all the steps to build the trie-
based transaction representation, which greatly speeds up
subset counting and leads to an almost constant total exe-
cution time until very small £ values are used. The execu-
tion time even decreases on this dataset for £ < 0.024%—
caused by caching effects—until it increases again to 1100s
for £ = 0.001% (not shown). APRIORI-BORGELT’s efficient
subset counting is also the reason that it is faster than
PCAPRIORI for ¢ < 0.003%. APRIORI-BODON is always
slower than PCAPRIORI but performs better than APRIORI-
BORGELT for £ > 0.04%. It has high costs during subset
counting because it does not apply any pruning technique
and has a rather inefficient recursive subset counting proce-
dure. Furthermore, the initial parsing and conversion of the
dataset is also much slower than for PCAPRIORI because it
uses the standard C++ allocators.

We observe similar results on the datasets quest-kosarak
(Figure 4(b)) and quest-BMS-POS (Figure 4(c)). On these
two datasets, PCAPRIORI performs best for rather larger
& values. It achieves speedups of up to 16x within the
measured £ value range. APRIORI-BORGELT is faster than

PCAPRIORI on quest-kosarak as £ gets smaller than 0.0035%.

4.3 Multi-threaded

In the next set of experiments, we evaluate the performance
of multi-threaded PCAPRIORI. We first provide results for
parallel direct counting. For that purpose, we implemented
the shared (SHARED), replicated (REPLICATED), and parti-
tioned (PARTITIONED) count table approach for it.

We observed that REPLICATED performs best within the first
scan of PCAPRIORI, i.e., when the frequent item are obtained

9

(not shown). For all three datasets, the number of distinct
items is smaller than 41,000 so that each of the replicated
count arrays requires at most 200KB and thus fits always
in the L2-cache of each core. Therefore, REPLICATED scales
almost linear as the number of threads is increased. PAR-
TITIONED scales also well, but has much higher costs since
the data must be partitioned and transfered to the threads.
For web-mining datasets with many distinct items, how-
ever, PARTITIONED might be faster than REPLICATED. The
SHARED count approach does not scale at all. It is already
for a single thread much slower than both other counter and
the performance even decreases as the number of threads is
increased. For this reason, we do not consider this approach
in the following experiments.

The results are different when the frequent 2-itemsets are ob-
tained in the second iteration. Figure 5(a) illustrates the re-
spective runtime on quest-retail with £ in the range from
0.10% to 0.02% and 32 threads. We further plot the run-
time of REPLICATED for 64 threads and time required for
obtaining the frequent items and the dataset conversion. As
can be seen, REPLICATED is only faster than PARTITIONED
for £ > 0.05%. For such & values, the number of frequent
items is below 1300, which limits the number of size-2 candi-
dates to 844,350; a single count table thus requires less than
3MB so that the size of the replicated count tables remains
acceptable. In this £ range, however, counting the size-2
candidates accounts for only a small fraction of the over-
all runtime. As £ further decreases, more frequent items
are obtained and, with that, the count tables holding the
size-2 candidates grow considerably. PARTITIONED is then
much more efficient than REPLICATED because more candi-
dates remain in the caches during counting. Interestingly,
both counting approaches do not benefit from Hyperthread-
ing for any of the measuring points; the overhead for the
additional replicated tables or the queues is not offset by
the SMT threads.

The memory usage of the two counting approaches (exclud-
ing the size of the converted dataset) is depicted in Fig-
ure 5(b). PARTITIONED has higher memory requirements
than REPLICATED for high £ values because it has to main-
tain the pages (i.e., that are within the queues and free
page queue) required by the producer—consumer processing

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden



Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8

https://doi.org/10.1145/2484838.2484879

20
O replicated
- B partitioned
T 15
Q
o
&
£ 10
[0}
£
- EI
i EI i
. o
1 2 4 8 16 32 64
# hreads
(a) € = 0.06%

80 —
O replicated
- B partitioned
T 60
Q
o
@
£ 40
[0}
£
S 20 EI
i 0
= - - - - _ _
1 2 4 8 16 32 64
# threads
(b) € =0.03%

Figure 6: Parallel direct 2-counting on quest-retail for various ¢ values and a varying number of threads

scheme. This memory, however, remains constant as £ de-
creases. Only the single count table grows by about 300MB
from ¢ = 0.09% to & = 0.02%. Contrary, the memory foot-
print of REPLICATED grows from 74MB to 5.75GB in the
same range. If 64 threads are used, then even twice as much
memory is required. Notice that both approaches require
roughly the same amount of memory for & = 0.043%, but
PARTITIONED is at this point already much more efficient
than REPLICATED because of its better cache utilization.

To evaluate the scalability of both count table approaches,
we varied the number of threads for certain & values from 1
to 64. Figure 6(a) illustrates the time required for obtaining
the frequent 2-itemsets on quest-retail with £ = 0.06%.
We include the time for the earlier phases—illustrated us-
ing a dashed line—, which are still run using 32 threads.
As can be observed, REPLICATED performs best; it is more
than four times as fast as PARTITIONED when only a sin-
gle thread is used because the count table is quite small
so that the partitioning overhead does not pay off, i.e., a
single table contains count values for “only” 818,560 candi-
dates on this dataset when & = 0.06%. Nevertheless, PAR-
TITIONED scales well up to 32 threads whereas REPLICATED
scales only up to 16 threads. This effect is increased when &
decreases to 0.03% (Figure 6(b)). The count table then con-
tains 51,974,110 candidates generated from 10,196 frequent
items. REPLICATED scales only up to 8 threads; if more
threads are employed, the runtime even increases until it is
almost as high as for a single thread. Again, PARTITIONED
scales well up to 32 threads and is with 8 threads already
faster than REPLICATED.

We obtain similar results for the dataset quest-kosarak. If
the size-2 candidates for more than 2220 (¢ =~ 0.02%) fre-
quent items are counted, then PARTITIONED is more efficient
than REPLICATED. On quest-BMSPOS, however, REPLICATED
performs always best since this dataset contains only 2000
distinct items.

Summing up, REPLICATED is more efficient for high £ val-
ues where the count tables are rather small and candidate
counting typically is not expensive. As soon as the count ta-
bles grow considerably, the pressure on the shared caches in-
creases, which limits REPLICATED’s scalability. PARTITIONED

10

is then more efficient; it scales well with an increasing num-
ber of threads. Nevertheless, it has higher initial mem-
ory requirements for the producer—consumer scheme, so one
should switch from REPLICATED to PARTITIONED depending
on the number of frequent items. The threshold for switch-
ing should be set to 2200 frequent items on our test sys-
tem, but may be different on other systems that have larger
caches or allow more threads to run in parallel.

We obtain similar results for the overall mining procedure.
The runtime for a varying number of threads is illustrated
in Figure 7(a). REPLICATED scales only well up to 4 threads
whereas PARTITIONED scales well up to 32 threads. For this
reason, PARTITIONED is multiple times faster than REPLI-
CATED when a large number of threads is used. The overall
memory consumption is illustrated in Figure 7(b). As can be
seen, the PARTITIONED’s memory footprint grows strongly
as the number of threads is increased. For 64 threads, it
requires more than 25GB while the converted dataset com-
prises only about one GB. PARTITIONED’s memory footprint
increases too—caused by the floating pages—but remains
acceptable even for 64 threads. If necessary, it could further
be decreased if the floating page size is reduced at the cost
of a slightly worse runtime.

The overall runtime of PCAPRIORI on quest-kosarak and
quest-BMS-POS is similar (not shown). REPLICATED per-
forms worse than PARTITIONED as soon as the count trie ex-
ceeds about 15-25MB. Moreover, REPLICATED is unusable
when the count trie is larger than 300MB. Hence, only PAR-
TITIONED can be employed if a large number of threads is
used and the count trie reaches a certain size; REPLICATED
is thus only useful for very small count tries.

S. FURTHER RELATED WORK

We will now review related work that is not already covered
in this paper so far. We organize it in three parts: We
review (1) sequential APRIORI versions, (2) parallel APRIORI
versions, and (3) other frequent-itemset mining algorithms.

Optimizations for sequential APRIORI mostly target the sup-
port counting step or the transaction representation. Zaki
et al. [27], for example, improve the original hash tree used
for counting. Other APRIORI variants [20, 6, 5] employ prefix

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden



Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8

https://doi.org/10.1145/2484838.2484879

O replicated
< 150 7 @ partitioned
el
c
[}

o

Q

@ 100 H

£

Q

£

- |:I |:L
o

N W s
1 2 4 8 16 32 64

# threads
(a) Execution time

25 -
R O replicated
g o0 B partitioned
£
E 154
S
5]
L 10 4
>
g
o) 5 -
) [ [L 1
, m (m [
1 2 4 8 16 32 64

# threads
(b) Memory footprint

Figure 7: Overall performance on quest-retail and £ = 0.03%

trees for this purpose, which typically are superior over the
employed hash trees. Perego et al. [23] proposed the direct
count technique, which—as discussed earlier—uses an array
for counting the frequency of the distinct items or candidate
2-itemsets. They further use direct counting in combina-
tions with a prefix tree to obtain the frequent items in the
later iterations (k > 2). Finally, Lucchese et al. [19] uses the
direct count technique directly in the third iteration (k = 3).
Clearly, this works only when the number of frequent items
is rather small.

Optimizations for the transaction representation mainly tar-
get at improving support counting. Some algorithms [22, 23]
employ pruning techniques that remove unnecessary trans-
actions and items in the database to reduce the effort of
later scans. Orlando et al. [21] use dynamic data type se-
lection to reduce the size of the physical representation of
the database. If the database consists of only 256 different
frequent items, a single byte is sufficient to store an item.
Hence, storing a transaction with five items requires only 6
bytes; one byte for the length information and 5 bytes for
the items. Finally, Borgelt [6] and Bodon [5] represent the
transaction database using prefix trees. These trees summa-
rize all database transactions. Mining is employed directly
on the tree by counting the subsets in all tree paths. De-
pending on the dataset, the tree might be smaller than the
transaction database, however, building the tree is more ex-
pensive than converting the dataset into the regular array-
based representation.

The number of parallel APRIORI version for multiprocessor
systems is rather low. Zaki et al. [27] discussed several par-
allel versions. The algorithm CCPD uses a shared can-
didate hash tree, which is synchronized using locks at the
leaf nodes, and partitions the dataset in equal-sized chunks.
Clearly, the lock-based shared hash tree does not scale to
a large number of threads. The algorithm PCCD parti-
tions the candidates as in PCAPRIORI, however, each thread
scans the full transaction database. Hence, much redundant
work is performed by each thread so that Zaki et al. did not
consider this variant as useful. Cheung et al. [9] proposed
APM, which uses a shared prefix tree for all threads. As for
CCPD, synchronization is required for this tree and thus
hinders scalability. Finally, Jin et al. [16] examined differ-

11

ent variants for parallel support counting. They proposed
four different lock-based tree methods, which however all
scale worse than the replicated tree counting method used
in this paper for comparison. Hence, none of the existing
parallel APRIORI implementations scales to a large number
of threads.

Mining algorithms that are not based on APRIORI employ
different core data structures and strategies for obtaining
the frequent items. As HooshSadat et al. [15] observed, all
mining algorithms have their sweet spot in which they are
usually superior over other mining algorithms.

EcCLAT [28] converts the transaction database into the ver-
tical layout where each frequent item has an assigned set
of transactions ids that denotes in which transactions the
item occurs. Intersecting two of such sets results in a new
set, which contains all transactions in which both items oc-
cur. Hence, frequent itemsets are obtained by intersecting
the sets of items or itemsets. Unlike APRIORI, ECLAT works
well for mining long transactions or when the result set con-
tains very long frequent itemsets. For short transactions,
however, APRIORI performs much better than ECLAT.

FP-GROWTH [14] represents the transaction database using
frequent-pattern trees. Such trees resemble prefix trees and
are often smaller than the transaction database. During
mining, the frequent-pattern trees are repeatedly traversed
to build smaller ones of them and thereby obtaining the fre-
quent itemsets. FP-GROWTH usually outperforms APRIORI
when many long itemsets are found. In the remaining cases,
APRIORI performs better because building the prefix trees
then does not payoff.

6. CONCLUSIONS

Frequent-itemset mining has many application areas and is
often performed on very large datasets. To cope with such
datasets, (1) the right algorithm has to be chosen for min-
ing and (2) it must exploit the large degree of parallelism
provided by current systems. APRIORI is usually the algo-
rithm of choice for datasets that have many short trans-
actions. Existing parallel versions of it, however, do not
scale to a large number of threads because they rely on ei-
ther expensive synchronization primitives or replicated data

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden



Final edited form was published in "SSDBM '13: Conference on Scientific and Statistical Database Management. Baltimore 2013", Art. Nr. 20, ISBN 978-1-4503-1921-8

https://doi.org/10.1145/2484838.2484879

structures. In this paper, we introduce PCAPRIORI, which is
a highly scalable version of APRIORI. It incorporates an effi-
cient data layout, fast subset counting, and efficient but sim-
ple database pruning techniques. Parallel subset counting is
performed using partitioned candidates. The communica-
tion between the threads required for it is performed using
a variant of the producer—consumer processing model where
each thread is both, producer and consumer. The candidate
partitioning and employed processing model allow a scal-
ing to a large number of threads. In various experiments
with large datasets, we achieve a near-linear scaling on our
test system that has 32 cores. We believe that our process-
ing model can also be employed to obtain highly scalable
versions of algorithms [2, 26, 18] that mine other popular
pattern types (e.g., rare itemsets, sequences) and are based
on APRIORI.

Acknowledgements

This work is partly funded by the European Regional Devel-
opment Fund (EFRE) and the Free State of Saxony under
the grant 100067363 (“cool iBit computing”) and the Ger-
man Research Foundation (DFG) in the Collaborative Re-
search Center 912 “Highly Adaptive Energy-Efficient Com-
puting’ and the grant LE 1416/22-1.

References
[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In VLDB, pages
487-499, 1994.

. Agrawal an . orikant. Mining sequential patterns.
2] R. A 1 and R. Srik Mini ial
In ICDE, pages 3-14, 1995.

[3] R. Agrawal and R. Srikant. Quest synthetic data gen-
erator, 1997.

[4] F. Bodon. A fast apriori implementation. In FIMI,
2003.
[5] F. Bodon. Surprising results of trie-based fim algo-

rithms. In FIMI, 2004.

[6] C. Borgelt. Efficient implementations of apriori and
eclat. In FIMI, 2003.

[7] C.Borgelt. Recursion pruning for the apriori algorithm.
In FIMI, 2004.

[8] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets. Using
association rules for product assortment decisions: A
case study. In Knowledge Discovery and Data Mining,
pages 254-260, 1999.

[9] D. Cheung, K. Hu, and S. Xia. Asynchronous paral-
lel algorithm for mining association rules on a shared-
memory multi-processors. In In 10th ACM Symp.
Parallel Algorithms and Architectures, pages 279-288,
1998.

E. G. Coffman, Jr. and J. Eve. File structures using
hashing functions. Commun. ACM, 13:427-432, July
1970.

FIMI. Frequent itemset mining implementations repos-
itory. http://fimi.cs.helsinki.fi/, November 2004.

12

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

24]

(25]

(26]

27]

28]

29]

B. Goethals and M. J. Zaki. Advances in frequent
itemset mining implementations: report on fimi’03.
SIGKDD Ezplorations, 6(1):109-117, 2004.

G. Grahne and J. Zhu. Efficiently using prefix-trees in
mining frequent itemsets. In FIMI, 2003.

J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In SIGMOD, 2000.

M. HooshSadat, H. W. Samuel, S. Patel, and O. R.
Zaiane. Fastest association rule mining algorithm pre-
dictor (farm-ap). In C8S2E, pages 43-50, 2011.

R. Jin, G. Yang, and G. Agrawal. Shared memory par-
allelization of data mining algorithms: techniques, pro-
gramming interface, and performance. Knowledge and
Data Engineering, 17(1):71 — 89, 2005.

V. Kumar. Introduction to Parallel Computing.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

B. Liu, W. Hsu, and Y. Ma. Mining association rules
with multiple minimum supports. In SIGKDD, pages
337-341, 1999.

C. Lucchese, S. Orlando, and R. Perego. kdci: on using
direct count up to the third iteration. In FIMI, 2004.

A. Mueller. Fast sequential and parallel algorithms for
association rule mining: a comparison. Technical re-
port, 1995.

S. Orlando, C. Lucchese, P. Palmerini, R. Perego, and
F. Silvestri. kdci: a multi-strategy algorithm for mining
frequent sets. In FIMI, 2003.

J. S. Park, M.-S. Chen, and P. S. Yu. An effective
hash-based algorithm for mining association rules. In
SIGMOD, pages 175-186, 1995.

R. Perego, S. Orlando, and P. Palmerini. Enhancing the
apriori algorithm for frequent set counting. In DaWakK,
pages 71-82. 2001.

P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining, (First Edition). Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2005.

A. Veloso, B. Rocha, M. d. Carvalho, and W. Meira, Jr.
Real world association rule mining. In BNCOD, pages
77-89, 2002.

T. Washio and H. Motoda. State of the art of graph-
based data mining. SIGKDD Explor. Newsl., 5(1):59—
68, July 2003.

M. J. Zaki, M. Ogihara, S. Parthasarathy, and W. Li.
Parallel data mining for association rules on shared-
memory multi-processors. In Supercomputing, 1996.

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules.
Technical report, 1997.

Z. Zheng, R. Kohavi, and L. Mason. Real world per-
formance of association rule algorithms. In SIGKDD,
pages 401-406, 2001.

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden


http://fimi.cs.helsinki.fi/

	Introduction
	Basic algorithm
	Data layout
	Memory management
	Support counting
	Database pruning

	Parallel support counting
	Parallel direct counting
	Processing model
	Parallel trie-based counting

	Experiments
	Setup
	Single-threaded
	Multi-threaded

	Further related work
	Conclusions
	ADP820B.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Benjamin Schlegel, Tim Kiefer, Thomas Kissinger, Wolfgang Lehner
	pcApriori: scalable apriori for multiprocessor systems




