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ABSTRACT
Leveraging Storage Class Memory (SCM) as a universal memory–
i.e. as memory and storage at the same time–has deep implications 
on database architectures. It becomes possible to store a single copy 
of the data in SCM and directly operate on it at a fine granularity. 
However, exposing the whole database with direct access to the 
application dramatically increases the risk of data corruption. In this 
paper we propose a lightweight on-line testing framework that helps 
find a nd d ebug S CM-related e rrors t hat c an o ccur u pon software 
or power failures. Our testing framework simulates failures in 
critical code paths and achieves fast code coverage by leveraging 
call stack information to limit duplicate testing. It also partially 
covers the errors that might arise as a result of reordered memory 
operations. We show through an experimental evaluation that our 
testing framework is fast enough to be used with large software 
systems and discuss its use during the development of our in-house 
persistent SCM allocator.

1. INTRODUCTION
The advent of Storage Class Memory (SCM) is disrupting the database 
landscape and driving novel database architectures that store data, 
access it, and modify it directly from SCM at a cache-line gran-
ularity [3, 7, 9]. However, the no free lunch folklore conjecture 
holds more than ever as SCM brings unprecedented challenges. Con-
sistency failure scenarios and recovery strategies of software that 
persists data depend on the underlying storage technology. In the 
traditional case of block-based devices, software has full control 
over when data is made persistent. Basically, software schedules I/O 
to persist modified data at a page g ranularity. The user level has no 
direct access to the primary copy of the data and can only access 
copies of the data that are buffered in main memory. Hence, software 
errors can corrupt data only in main memory which can be reverted 
as long as the corruption was not explicitly propagated to storage. 
In fact, crash-safety for block-based software highly depends on the 
correctness of the underlying file s ystem. In contrast, SCM is byte-
addressable and is accessed via a long volatility chain that includes
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store buffers, CPU caches, and the memory controller buffers, over
all of which software has little control. The SNIA [2] recommends
to manage SCM using an SCM-aware file system that grants the ap-
plication layer direct access to SCM with mmap, enabling load/store
semantics. As a side effect, changes can be speculatively propagated
from the CPU cache to SCM at any time, and compilers and out-
of-order CPU execution can jeopardize consistency by reordering
memory operations. Moreover, changes are made persistent at a
cache line granularity which necessitates the use of CPU persistence
primitives. This adds another level of complexity as enforcing the
order in which changes are made persistent cannot be delayed like
with block-based devices, and must be synchronous. In addition to
data consistency, memory leaks in SCM have a deeper impact than
in DRAM. This is because SCM allocations are persistent, hence, a
memory leak would also be persistent.

Several proposals tackled these challenges following two main ap-
proaches. The first one focuses on providing global software-based
solutions, mainly transactional-memory-like libraries, to make it eas-
ier for developers to write SCM-based software. Examples of these
solutions include Mnemosyne [12], NVHeap [6], and REWIND [4].
The second and more mainstream approach is to rely solely on ex-
isting hardware persistence primitives, such as cache line flushing
instructions and memory barriers to achieve consistency. Several
persistent data structures were proposed following this approach,
such as the CDDS B-Tree [11], the wBTree [5] and the NV-Tree [14].
Nevertheless, all approaches have in common that SCM-related er-
rors may result in data corruption. In contrast to volatile RAM where
data corruption can be cured with a restart of the program, data
corruption in SCM might be irreversible as it is persistent. There-
fore, we argue for the need of testing the correctness of SCM-based
software against software crashes and power failures–which result
in the loss of the content of the CPU cache. We remark that testing is
orthogonal to devising recovery strategies that solve the challenges
introduced by SCM.

In this paper we propose a lightweight automated on-line testing
framework that helps detect and debug a wide range of SCM-related
bugs that can arise upon software or power failures. We particularly
focus on detecting missing cache line flushing instructions. Our
testing framework is based on a suspend-test-resume approach and
is able to simulate different crash scenarios including the loss of the
content of the CPU cache. An important feature of our testing frame-
work is its ability to avoid excessive duplicate testing by tracking the
call stack information of already tested code paths, which leads to
achieving fast code coverage. Additionally, our testing framework
is able to detect errors that might arise due to the compiler or the
CPU speculatively reordering memory operations. An additional
capability of our testing framework is simulating crashes in the
recovery procedure of the tested program, which we argue is very
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important since hidden SCM-related errors in the recovery procedure
may compromise the integrity of the data upon every restart.

We show with an experimental evaluation on a persistent B-Tree
and a persistent SCM allocator that our testing framework exhibits
good performance, even in the case of nested crash simulations,
and is fast enough to be used on fairly large software systems. In
particular, we demonstrate that taking into account the call stack can
improve the testing time by several orders of magnitude.

This paper is organized as follows: Section 2 discusses related
work and elaborates on our system architecture assumptions. Then,
Section 3 presents our testing framework and its different optimiza-
tions. Thereafter, we evaluate our testing framework in Section 4.
Finally, Section 5 concludes this paper and outlines future directions
for a field, we believe, much in need of research.

2. BACKGROUND AND RELATED WORK
Crash-safety for disk-based software has been extensively researched
and several tools that combine experimental testing and model check-
ing have been proposed [10, 13]. Although they share the same
goals, crash-safety testing for disk-based and SCM-based software
are different in that they have to address radically different failure
modes. Consistency and recovery testing of SCM-based software
did not get much attention so far. Lantz et al. [8] proposed Yat,
a hypervisor-based off-line testing framework for SCM-based soft-
ware. Yat is based on a record-and-replay approach. First, it records
all SCM write operations by logging VMM exits that are caused by
writes to SCM. Persistence primitive instructions need to be replaced
in tested software by illegal instructions to make them traceable by
causing a VMM exit. Yat then divides the memory trace into seg-
ments, each of which is delimited by two persistence barriers. It
considers that SCM write operations can be arbitrarily reordered
within a segment, with the exception of writes to the same cache
line which are considered to be of fixed order. Yat replays the trace
until a non-tested segment is encountered, then runs the recovery
procedure of the tested software for every possible reordering com-
bination inside that segment. Since the number of combinations
can grow exponentially, the authors propose to limit the number of
combinations per segment to a certain threshold.

Given a program that covers the whole code base of the tested
software, and given a sanity check program that detects any present
data corruption–both of which are challenging to produce–, Yat
may theoretically achieve comprehensive testing for single-threaded
SCM-based software. In practice however, that may still require
prohibitive testing time. In the case of a multi-threaded program, Yat
records the sequence of operations executed by the various threads,
which can differ between two runs due to the non-determinism
of multi-threading. Hence, comprehensive testing of a recorded
sequence does not imply comprehensive testing of the software.

In contrast to Yat, our testing framework performs on-line testing
and is non-invasive as it does not require software changes in most
cases. While it covers only partially memory-reordering-related
errors, our testing framework achieves fast code coverage by lim-
iting duplicate testing, and is able to automate crash testing inside
the recovery procedure of a program, both of which Yat does not
provide. We explain in Section 3.7 how our testing framework can
be combined with Yat to make up for the limitations of both tools.

We conjecture that providing comprehensive consistency and
recovery testing for large SCM-based software is practically not
feasible. Instead, our focus is on improving the quality of such
software by covering a wide range of SCM-related errors in a reason-
able amount of time. We argue that similarly to concurrent software,
providing theoretical correctness guarantees should be a prerequisite
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Figure 1: Illustration of crash simulation in the testing framework.

for any SCM-based software, and that experimental testing should
not (and cannot) make up for the lack of such theoretical guarantees.

In this work we assume, without loss of generality, an Intel x86
architecture that provides the following persistence primitives:
• mfence: It is a memory barrier that guarantees that all load and

store instructions finish executing before proceeding further.
• clflush: It is an instruction that evicts a cache line from the CPU

cache and writes it back to memory. clflush is asynchronous and
is not guaranteed to take place until an mfence is issued [1].

clflush needs to be wrapped by two memory barriers to be fully
ordered and serialized. In the following we refer to a serialized
clflush by the persist function. Other persistence instructions, such
as clflushopt, clwb, and pcommit, have been announced by Intel.
However, since there is currently no available hardware that supports
them, we do not consider them in this work. Nevertheless, the
flexibility of our testing framework makes it easy to take them into
account in the modeling of SCM persistence in the future.

3. TESTING OF SCM-BASED SOFTWARE
We propose a lightweight on-line testing framework that is able to
simulate software crashes and power failures that cover a wide range
of consistency and recovery bugs. As an implementation example,
we integrate the framework with our own persistent SCM allocator.
The persistent allocator creates large files, referred to as segments,
and then logically divides them into smaller blocks for allocation.

3.1 Crash simulation
In this section we explain how our testing framework is able to simu-
late software and power failures. The main challenge in simulating a
power failure is to simulate the loss of the content of the CPU caches.
To achieve this, we devise the following strategy that is based on a
suspend-test-resume approach:
• For every segment created by the persistent allocator, a corre-

sponding mirror segment is created.
• When a cache line is explicitly flushed, its content is copied from

the original segment to the same offset in its corresponding mirror
segment. Therefore, only explicitly flushed data is present in the
mirror segments.
• Malfunctions that simulate a crash are randomly triggered when

calling persistent primitive functions. These simulated crashes
proceed as follows, as illustrated in Figure 1: (1) Suspend (pause)
the main process by forking a test process and waiting on it; (2)
the test process creates a copy of each mirror segment; and (3) the
test process executes the binary of the test program which recovers
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using the created copies of the mirror segments. The test process
starts then the recovery procedure the same way as would have
done the main process if it crashed where it was suspended. After
recovery, the test process executes a user-defined consistency
check procedure (step (4) in Figure 1).
• Once the test process exits, the copies of the mirror segments

are deleted and the main program resumes execution (step (5) in
Figure 1) until the next crash simulation.
This strategy is fully automated and the state of the main process

is never changed during the crash simulation phase. More specifi-
cally, the state of the original segments and the mirror segments is
never changed during the crash simulation phase. Capturing explicit
flushes and replicating them in the mirror segments allows to simu-
late the loss of the CPU cache. In fact, this corresponds to the case
where no cache lines are evicted from the CPU cache without being
explicitly flushed. In a real scenario, some of the content of the CPU
cache might have been speculatively written back. Nevertheless, we
argue that by capturing only explicitly flushed data, we can more
reliably detect missing flushes in the tested code.

Crash simulations are triggered inside the Flush function, as
shows in Algorithm 1, because it is the only function that modifies
the state of the mirror segments. In the case of a detected error or
a crash in the recovery procedure or in the user-defined checking
procedure, the test process is suspended and a debugger can be
attached to both the main process and the test process. This greatly
helps in finding the reason of the crash, since both the simulated
crash scenario in the main process and the recovery crash in the test
process can be fully traced and the content of their corresponding
data structures examined. To help reproduce errors, a seeded random
number generator is used to generate crash probabilities. Hence,
in single-threaded execution, a bug is always reproducible as long
as the same seed is used. Besides, it is possible to allow crash
simulations for only a specific code region.

Algorithm 1 Random crash simulation

1: procedure FLUSH(PPtr PAddr, Char Content[CaheLineSize])
2: crashProb← rand(0, 1) . Get a random crash probability
3: if crashProb < 0.5 then . Crash with a probability of 0.5
4: SimulateCrash()
5: copyToMirror(PAddr, Content)
6: crashProb← rand(0, 1)
7: if crashProb < 0.5 then
8: SimulateCrash()

To illustrate different classes of errors that our testing framework
can detect, we consider in the following the case of a simplified
array append operation. The correct code is:

1 array[size] = val;
2 persist(&array[size]);
3 size++;
4 persist(&size);

The newly appended value must be persisted before size is incre-
mented and persisted. Consider the following code:

1 array[size] = val;
2 size++;
3 persist(&size);

In this case there is no guarantee that size will refer to only valid
entries in the array after a failure, because appended values are never
explicitly persisted. Our testing framework successfully detects such
errors since array will never be updated in the mirror segments and
a simple check of the content of array during a simulated crash
will detect this issue.

3.2 Faster testing with copy-on-write
In practice, the cost of making copies of the mirror segments for
every simulated crash is proportional to the size and number of
segments. Therefore, this step can be prohibitively expensive for
programs with a large memory footprint. To remedy this issue, we
use copy-on-write memory mapping1. Copy-on-write enables to
read data directly from the mirror segments while copying only the
memory pages that are modified by the test process. When the test
program terminates, the memory pages that hold the changes that
were made to the mirror segments are discarded. Hence, both the
original segments and the mirror segments remain unchanged during
the crash simulation phase, but at a much lower cost than that of
making copies of the mirror segments.

3.3 Towards faster code coverage
Triggering crash simulations purely randomly gives no code cov-
erage guarantees as some critical paths might not be tested while
others might be tested multiple times. An alternative to the purely
random approach is systematic crash simulation, similar to the one
followed by Yat. This approach has the disadvantage of testing the
same critical path as many times as it is executed. For instance, if a
program appends one thousand values to a persistent array, system-
atic crash simulation will test the append function of the persistent
array one thousand times, leading to prohibitive testing times.

Algorithm 2 Trigger crash based on the probability of a call stack

1: procedure GETCRASHPROBABILITY(CallStack S)
2: (prob, found)← CallStackMap.find(S)
3: if found then
4: return prob
5: else . First time visiting this call stack
6: CallStackMap.insert(S, 1)
7: return 1 . Simulate crash
8: procedure RUSSIANROULETTE(CallStack S)
9: prob← GetCrashProbability(S)

10: crashProb← rand(0,1)
11: if crashProb < prob then
12: SimulateCrash()
13: CallStackMap.update(S, prob/2)

To solve this issue, we propose to capture the program call stack
when a crash is simulated as a means to limit duplicate testing.
Basically, we cache the call stacks of the scenarios that were already
tested and avoid triggering a crash simulation when the same call
stack is visited again. However, the same call stack does not mean
the exact same scenario. We argue that testing the same call stack
several times is beneficial in the sense that corner cases are more
likely to be covered. Consider the following code for the previous
example of an array append operation:

1 array[size] = val;
2 persist(array);
3 size++;
4 persist(&size);

The error is that it is always the first cache-line-sized piece of
array that is flushed instead of the cache line that holds the newly
appended value. If a crash is simulated only once in the append
operation, this error might remain unnoticed since the first appended
value will be located in the first cache-line-sized piece of array.
Therefore, we propose to exponentially decrease the probability of
1See the MAP_PRIVATE flag of mmap: http://man7.org/linux/
man-pages/man2/mmap.2.html
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simulating a crash with the same call stack. Algorithm 2 illustrates
the different steps of this process. Basically, we map tested call
stacks to a corresponding probability. If the call stack has never
been visited before, we insert the new call stack in the map together
with a corresponding probability of 1. This probability is divided
by two whenever a crash is simulated at the same call stack. We
use our own call stack unwinder that fetches the whole call stack to
avoid any ambiguity.

3.4 Memory reordering
Although it is advised to always protect a flushing instruction with
two memory barriers, it can sometimes be useful to group several
flushing instructions together for optimization purposes–e.g., when
the order of writes is not important. However, such optimizations
may stem from wrong ordering assumptions, hence leading to errors.
Consider again the previous example of an array append operation:

1 array[size] = val;
2 barrier();
3 flush(&array[size]);
4 /* Missing memory barrier */
5 size++;
6 persist(&size);

The code above tries to optimize by skipping one memory barrier
that should be at line 4. As a result, lines 3 and 5 might be reordered
by the CPU and the new value of size might be made persistent
before the newly appended value.

Algorithm 3 Stashing persistent writes

1: procedure RUSSIANROULETTE(CallStack S, Map Stash)
2: prob← GetCrashProbability(S)
3: crashProb← rand(0,1)
4: if crashProb < prob then
5: for each subset of Stash do
6: Copy subset to mirror segments
7: SimulateCrash()
8: Undo subset
9: CallStackMap.update(S, prob/2)

10: procedure FLUSH(PPtr PAddr, Char Content[CaheLineSize])
11: found← Stash.find(PAddr)
12: if found then
13: Stash.update(PAddr, Content)
14: else
15: Stash.insert(PAddr, Content)
16: procedure BARRIER
17: if Stash is not empty then
18: S← getCallStack()
19: RussianRoulette(S, Stash)
20: for (PAddr, Content) in Stash do
21: copyToMirror(PAddr, Content)

Errors caused by memory reordering are one of the most challeng-
ing situations for SCM-based software. We propose an extension
to our testing framework that enables us to partially take them into
account during testing. Instead of directly copying flushed cache
lines into the mirror segments, we propose to stash them first in a
map where the key is the persistent address of the cache-line-sized
piece of data, and the value the content of that piece of data. This
stash is emptied whenever a memory barrier is issued. Basically, we
take into account the reordering of consecutive flushes that were not
ordered by memory barriers. Algorithm 3 shows the pseudo-code of
the overloaded Flush and Barrier functions, as well as the procedure
RussianRoulette whose purpose is to trigger crash simulations. The

latter function is systematically called inside the Barrier function,
because it replaces the Flush function as the only one that changes
the state of the mirror segments. Section 3.7 elaborates on the
memory reordering cases that are not covered by our framework.

3.5 Crash simulation during recovery
Contrary to Yat, our testing framework is able to automatically
simulate crashes during the recovery procedure. To achieve this,
we allow crash simulation in both the main process and the test
process. To be able to simulate crashes in the test process, we need
new segment copies in which we replicate the data that is explicitly
flushed by the test process. Therefore, we need to first make copies
of the mirror segments before the test process starts executing. When
a crash simulation is triggered in the test process, a third process
which we denote as recovery test process, is forked and will perform
recovery using the copies of the mirror segments with copy-on-write.
We keep these copies until the test process finishes executing, upon
which we delete them. Hence, only one copy of the mirror segments
is needed during the lifetime of the test process regardless of the
number of crash simulations that are triggered in it.

To limit the higher cost of nested testing, we propose to (1) test
the software without allowing crashes in the test process; (2) devise
a minimalistic test program whose crash scenarios cover the whole
recovery procedure; (3) test the latter program while allowing crash
simulation in the test process. The goal of the minimalistic test pro-
gram is to mitigate the higher cost of nested crash simulation which
requires the additional step of making copies of the mirror segments.
If a crash occurs during testing, a debugger can be attached to the
three processes, namely the main process, the test process, and
the recovery test process. Figure 2 gives a global overview of the
complete testing framwork, with all the optimizations and features
discussed so far.

3.6 Testing of multi-threaded programs
Single-threaded consistency and recovery correctness in addition to
concurrency correctness (e.g., no race conditions) is a good indicator
of multi-threaded consistency and recovery correctness. However,
there are programming errors that cannot be detected in single-
threaded execution. These errors typically concern code paths that
execute only in multi-threaded mode. Consider the following ex-
ample where two threads try to increment one of two persistent
counters, ctr1 and ctr2:

1 mutex m1, m2;
2 if(m1.try_lock()){
3 ctr1++;
4 persist(&ctr1);
5 m1.unlock();
6 }else if(m2.try_lock()){
7 ctr2++;
8 persist(&ctr1) /* Should be ctr2 */
9 m2.unlock();

10 }

The error in the code above is at line 8 where ctr1 is persisted
instead of ctr2. In the case of single-threaded execution, lock m1
will always be successfully acquired, hence, lines 7 to 9 will never
be executed and the error will not be detected.

Our testing framework is capable of testing multi-threaded pro-
grams. Indeed, it is possible to suspend all the threads of a process
as long as the process keeps references of all its threads. Only when
this is not the case (e.g. if some threads are detached) the program
needs to be changed to provide a procedure that halts all its threads.
Additionally, the call stack map and the stash of pending writes need
to be made thread-safe using global locks so that only one thread
is allowed to try and trigger a crash simulation at a time. Avoiding
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Figure 2: Global overview of the testing framework including copy-on-write optimizations, memory reordering, and nested crash simulation.

duplicate testing by caching the call stack of the thread that triggered
the crash simulation becomes less effective in a multi-threaded en-
vironment. This is because the crash scenario depends on the state
of all threads and not only the thread that triggered the crash simu-
lation. Nevertheless, as discussed in Section 2, exhaustive testing
for multi-threaded programs is infeasible because thread scheduling
is non-deterministic, hence, two runs of the same multi-threaded
program may produce different scenarios.

3.7 Limitations and complementarity with Yat
While our testing framework is able to detect a wide range of
consistency-related errors, it is unable to find errors that stem from
the reordering of consecutive SCM writes whose persistence is de-
layed but still enforced in the right order. Consider the following
code snippet of an array append operation:

1 array[size] = val;
2 size++;
3 persist(&array[size]);
4 persist(&size);

The issue in the code above is that the new value of size can be
speculatively evicted from the CPU cache and become persistent
before the newly appended value. A power failure at this same
instant would leave the array in an inconsistent state. Our testing
framework cannot detect this issue because it captures only per-
sistence primitives and not individual SCM writes. If lines 3 and
4 are swapped, our testing framework would detect it as a wrong
persistence order. In contrast, Yat is able to detect such errors since
it captures all SCM writes.

We advocate coupling our testing framework with Yat. Our test-
ing framework can quickly test several classes of SCM-related errors,
leaving out only the class of errors described above, for which Yat
can be used. Yat can eliminate the scenarios that were tested using
our testing framework and focus instead only on SCM write reorder-
ing between two cache line flushing instructions. This significantly
decreases the amount of combinations that Yat needs to test.

Unfortunately, there is another class of errors that neither our
testing framework nor Yat can detect. Consider the example of
Section 3.3:

1 array[size] = val;
2 persist(&array);
3 size++;
4 persist(&size);

The error in this case is in line 2 where we persist the first cache-
line-sized piece of array instead of the appended value. If the test
program appends only a few values which fit in a single cache line,
line 2 will still persist the newly appended value. Hence, the error
will remain unnoticed both in our testing framework and in Yat. If
in the release version of the software the array spans more than one
cache line, data consistency will not be guaranteed.

4. EVALUATION
We evaluated our testing framework on a persistent B-Tree and on
a persistent SCM allocator. The allocator code base is around 7000
lines of code (excluding blank lines and comments), which is fairly
large for an evaluation. We use tempfs to simulate SCM. We consider
the following test scenarios:
• PTree-N: The main program consists of inserting N key-value

pairs in the persistent B-Tree, then erasing them. The test pro-
gram that is executed upon crash simulation consists in executing
recovery and checking that the tree is in a consistent state.
• PAlloc-N: The main program consists of interleaving N alloca-

tion and N deallocation of blocks of sizes between 128 Bytes and
1 KB. The test program consists in executing recovery, deallocat-
ing all currently allocated blocks, then inspecting the allocator
against memory leaks.

In the case of PTree-N, the persistent tree uses the persistent SCM
allocator. Hence, some of the simulated crashes will be triggered
inside the allocator code. This is useful because it will stress the
scenarios where a memory leak might happen because the persistent
tree did not properly track its own allocations or deallocations.

First, we execute the test scenarios without allowing crash simu-
lation in the test process (i.e. no nested crash simulation). Table 1
illustrates the number of persistence primitives, the number of crash
scenarios, and the total testing time with and without taking into
account the call stack. We observe that when not taking into account
the call stack, the number of crash scenarios grows linearly with the
number of operations. When taking into account the call stack how-
ever, the number of crash scenarios grows very slowly, which allows
speedups of 41.7x and 30.5x for PTree-10000 and PAlloc-10000,
respectively, compared with not taking into account the call stack.

We depict in Figure 3 the frequency of simulated crashes in
visited call stacks for PTree-10000 and PAlloc-10000. We observe
that when taking into account the call stack, the highest number of
simulated crashes with the same call stack is limited to 16. When
not taking into the account the call stack, this number increases up to
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Test Main program stats #Crash simulation Time
#Flush #Barrier w/o CS w/ CS w/o CS w/ CS

PTree-100 747 1238 966 234 20.5 s 5 s
PTree-1000 4488 8440 8524 390 179 s 8 s

PTree-10000 42494 81436 84392 834 1795 s 20 s
PAlloc-100 2254 4346 4034 322 84 s 7 s
PAlloc-1000 17643 38730 34902 452 730 s 10 s

PAlloc-10000 173479 384046 346580 702 7199 s 23 s

Table 1: Performance of the testing framework with nested crash simulation
disabled. Call stack is abbreviated as CS.

Test Time
w/o CS w/ CS

PTree-100 218 s 98 s
PTree-1000 710 s 126 s
PTree-10000 6120 s 273 s
PAlloc-100 DNF (≈ 1.3 d) 227 s

PAlloc-1000 DNF (≈ 11.5 d) 414 s
PAlloc-10000 DNF (≈ 114.8 d) 1349 s

Table 2: Performance of the testing framework
with nested crash simulation enabled.

PTree-10000 PAlloc-10000

0 15 30 45 60

1

2-10

11-100

101-1000

1001-10000

Frequency

(a) w/o call stack

0 30 60 90 120

1

2-4

5-8

9-12

12-16

Frequency

(b) w/ call stack

Figure 3: Frequency distribution of the the number of simulated
crashes per call stack. The y axis represents the considered range
groups of the number of crash simulations per call stack, while the
x axis represents the cardinality of these groups.

10000 (as expected). Hence, our approach efficiently limits duplicate
testing. We argue again that removing all duplicate testing is not
necessarily a good option: while testing the persistent allocator and
the persistent B-Tree, duplicate testing allowed us to detect errors
that were the result of corner cases in already visited call stacks.

As a second step, we allow nested crash simulation in order to test
the crash-safety of recovery procedures. We set a limit of one day
per run. We report the results in Table 2. As expected, the testing
time is higher than without nested crash simulation. Still, taking
into account the call stack keeps the testing cost reasonable and
yields significant speedups: 22.4x and 7352.6x for PTree-10000 and
PAlloc-10000, respectively, compared with not taking into account
the call stack. The three call-stack-oblivious PAlloc test scenarios
exceeded the one-day threshold and we report an estimation of
their running time. This is explained by the fact that the recovery
procedure of the persistent allocator is larger and more complex
than that of the persistent tree. Hence, the number of nested crash
simulations is much higher for PAlloc than for PTree.

The testing framework detected many errors, such as missing
flushes, in the persistent allocator and the persistent B-Tree. Some
errors however were non-trivial such as errors in the logic of recov-
ery procedures. These errors would not have been detected without
nested crash simulation. Interestingly, the call-stack-oblivious ver-
sion of the framework did not detect any errors that were not detected
by the call-stack-aware version. We conclude that thanks to its call
stack awareness, our testing framework enables fast crash-safety
testing, even with nested crash simulation, without compromising
the quality of testing.

5. CONCLUSION
In this paper we presented a lightweight automated testing frame-
work for software that uses SCM as a universal memory, especially
modern database systems. Our testing framework can simulate soft-

ware crashes and power failures following a suspend-test-resume
approach. It makes efficient usage of copy-on-write memory map-
ping to speedup the testing process. Additionally, it achieves fast
code coverage by caching the call stacks of the already tested crash
scenarios. Our testing framework is also able to simulate nested
crashes in a fully automated way, that is, crashes that occur during
the recovery procedure of a test program executing in an ongoing
crash simulation. Our experimental evaluation shows that our test-
ing framework successfully finds a wide range of consistency and
recovery errors, and is fast enough to be used continuously during
development of fairly large software systems.

The focus of our testing framework is to improve the quality of
SCM-based software rather than to achieve comprehensive crash-
safety testing, which we argue is infeasible. For future work, we
plan to extend our testing framework to take into account data that
is speculatively evicted from the CPU cache. We also plan to refine
our memory model to take into account new persistence primitives,
such as clwb and pcommit. Moreover, we plan to investigate new
development life cycles that are fit for SCM-based software and that
involve model-based verification. Indeed, we argue that theoretical
consistency and recovery guarantees must precede experimental
verification. Finally, we believe that testing of SCM-based software
will receive increasing attention in the near future as real SCM-based
systems start to emerge.
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