

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806366

Alexander Krause, Thomas Kissinger, Dirk Habich, Wolfgang Lehner

NeMeSys - A Showcase of Data Oriented Near Memory Graph
Processing

Erstveröffentlichung in / First published in:

SIGMOD/PODS '19: International Conference on Management of Data, Amsterdam 30.06. –
05.07.2019. ACM Digital Library, S. 1945–1948. ISBN 978-1-4503-5643-5

DOI: https://doi.org/10.1145/3299869.3320226

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806366
https://doi.org/10.1145/3299869.3320226

NeMeSys - A Showcase of Data Oriented Near
Memory Graph Processing

Alexander Krause, Thomas Kissinger, Dirk Habich, Wolfgang Lehner
[firstname.lastname]@tu-dresden.de

Technische Universität Dresden
Dresden, Saxony, Germany

ABSTRACT

NeMeSys is a NUMA-aware graph pattern processing en-
gine, which uses the Near Memory Processing paradigm to
allow for high scalability. With modern server systems in-
corporating an increasing amount of main memory, we can
store graphs and compute analytical graph algorithms like
graph pattern matching completely in-memory. Our system
blends state-of-the-art approaches from the transactional
database world together with graph processing principles.
We demonstrate, that graph pattern processing – standalone
and workloads – can be controlled by leveraging different
partitioning strategies, applying Bloom filter-based messag-
ing optimization and, given performance constraints, can
save energy by applying frequency scaling of CPU cores.

CCS CONCEPTS

• Information systems → Graph-based database mod-

els; Main memory engines; Data scans; Point lookups; Re-
lational parallel and distributed DBMSs.

KEYWORDS

Graph, In-memory, Bloom filter, NUMA

ACM Reference Format:

Alexander Krause, Thomas Kissinger, DirkHabich,Wolfgang Lehner.
2019. NeMeSys - A Showcase of Data Oriented Near Memory
Graph Processing. In 2019 International Conference on Management
of Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam, Nether-
lands. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3299869.3320226

©2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
https://doi.org/10.1145/3299869.3320226

1 INTRODUCTION

Processing the ever-growing data volume demands for con-
tinuously increasing server capacities. These are usually
achieved by implementing several multiprocessor inside one
scale-up system which exhibit a non-uniform memory access
(NUMA), where the processors memory domains are still ac-
cessible through an interconnect network. Modern relational
database systems are capable to exploit such server systems
by employing the state-of-the-art data-oriented architecture
(DORA), which has been proven to show superior scalability.
Another key finding of recent research is the application of
online energy controling mechanisms as described in [5].
Following these findings, relational in-memory database can
achieve energy savings under given performance constraints
by scaling the core- and uncore-frequencies or turning off
cores completely.
A still emerging use case for in-memory databases is the

processing of graphs. Aside many other algorithms, graph
pattern matching is an important application as described in
[6]. Graph pattern matching (GPM) is a declarative, topology-
based querying mechanism [4] with considerable complexity.
Queries are usually entered as a graph itself and the systems
task is to find all combinations of vertices, whichmatch to the
constraints of the query vertices. Computing GPM on NUMA
systems is challenging, due to its inherent random memory
accesses and thus an efficient processing management is
needed to maintain performance.
To overcome these challenges, we present NeMeSys, a

DORA based graph processing engine, which leverages well
known principles from the relational to efficiently process
GPM queries on NUMA systems. In addition to the DORA,
NeMeSys features (I) graph specific partitioning methods, (II)
specifically tailored graph operators such as Vertex-Bound or
Edge-Bound and (III) a fine tunable messaging optimization.

In our demonstration, we want to showcase how different
configurations take effect on the systems performance. We
will not only show isolated effects but the combined influence
of the set of graph specific system characteristics. This way
we aim to underline the importance of careful system tuning,
which is yet still prone to workload changes. Additionally, we
can show that our previously developed energy adaptivity

Final edited form was published in "SIGMOD/PODS '19: International Conference on Management of Data. Amsterdam 2019", S. 1945–1948, ISBN 978-1-4503-5643-5
https://doi.org/10.1145/3299869.3320226

1

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1145/3299869.3320226
https://doi.org/10.1145/3299869.3320226
https://doi.org/10.1145/3299869.3320226

Figure 1: NeMeSys system design

mechanisms for relational in-memory databases from [5] are
general enough to be seamlessly integrated into NeMeSys,
which specifically targets graph processing.

2 SYSTEM

From a hardware perspective, the scale-up approach ismainly
characterized by the separate memory domains and the re-
sulting NUMA behavior. NeMeSys is built upon the well-
known DORA and leverages near-memory computing (NMC)
principles with its basic architecture being portrayed in Fig-
ure 1. NMC means, that we limit the scope of each worker
to memory domains, which are directly connected to their
socket (local instead of remote accesses).

2.1 NeMeSys Storage Layer

Generally, we store a directed edge-labeled multigraph in
NeMeSys as a set of triples containing only the source ver-
tex, the target vertex and the label of the edge between these
two vertices1. This layout can be efficiently stored in a rela-
tional table with exactly these three columns. Considering
only outgoing edges is quite sufficient to fully represent the
topology of the graph on the storage layer, thus leading to
the naming of our data container: the outgoing edge table.

The core concept of DORA is that all data objects are im-
plicitly partitioned and partitions are exclusively accessed
by the assigned worker thread. That means, we have to parti-
tion our outgoing edge table and we decided to partition this
table based on the source vertices, wherefore we apply our
guidelines from [6]. On the one hand, the advantage is that a
1Property graphs can also be expressed as directed edge-labeled multigraphs
by introducing additional vertices and edges for every property and its value.

worker thread is able to exclusively process several vertices
with all of its outgoing edges within a partition without us-
ing latches or locks for synchronization. On the other hand,
a disadvantage is that we implicitly replicate vertices, but
the overhead is negligible due to dictionary encoded vertices.
Of course, in addition to our outgoing edge table, we also
need to store the partitioning information as presented in
Section 2.3.

2.2 NeMeSys Processing Layer

Conjunctive queries (CQ) are a well-studied mechanism for
expressing graph patterns [7] and NeMeSys uses this mech-
anism. A CQ decomposes the pattern into a set of edge pred-
icates each consisting of a pair of vertices and an edge label.
An easy example for a CQ would be a query containing three
vertices and two edges: (A) →knows (B) →livesIn (C). This
query wants to find all combinations of vertices, where A
knows B and B lives in a place C.
NeMeSys accepts a query string of multiple triples as

CQ, where each triple represents an edge predicate. Each
triple contains a comma delimited list of source vertex, target
vertex and an edge label and all three positions can be either a
variable as placeholder or a previously known id, if a specific
vertex or label shall be part of the query pattern.

We identified three graph specific operators, which are
necessary to execute conjunctive queries:

Scan Operator. The Scan operator performs a parallel
vertex scan over all partitions in the case that the starting
as well as the target vertex of a CQ triple are unknown.
By specifying a certain edge label predicate, the operator

Final edited form was published in "SIGMOD/PODS '19: International Conference on Management of Data. Amsterdam 2019", S. 1945–1948, ISBN 978-1-4503-5643-5
https://doi.org/10.1145/3299869.3320226

2

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

returns only edges with the specific label. The Scan operator
is always the first operator in the pattern matching process.

Vertex-Bound (VB) Operator. The VB operator takes an
intermediate GPM result as input and tries to match new
vertices in the query pattern according to the following CQ
triple. The operator has to be only applied when either the
source vertex or target vertex is known and thus bound.

Edge-Bound (EB) Operator. This operator ensures the
existence of additional edge predicates between known ver-
tex matching candidates of the CQ. It performs a data lookup
with a given source and target vertex as well as a given edge
label. If the lookup fails, both vertices are eliminated from
the matching candidates. Otherwise the matching state is
passed to the next operator or is returned as final result.
During query processing, workers will continuously pro-
cess all of their partitions incoming messages with the ap-
plicable operator. Moreover, each operator in NeMeSys is
asynchronously processed in parallel and generates new
intermediate results that invoke the next operator in the pat-
tern matching query. Hence, NeMeSys allows for intra- and
inter-query parallelism as well as pipelining to fully exploit
the high number of cores in scale-up systems.

2.3 NeMeSys Infrastructure Layer

To efficiently support the above described pattern matching
processing, NeMeSys provides two important components
at the infrastructure layer:

Partition Manager: The partition manager keeps track
of the edge-to-partition assignments and exploits, that all
outgoing edges of one vertex are always stored in the same
partition. Basically, the partition manager is maintaining a
one dimensional index, which contains all vertex ids as keys
and the target partitions as values. This allows NeMeSys
to easily identify the correct partitions, on which a worker
needs to apply the next query operator. Because of very
frequent index requests, its size should fit in the CPU cache.

Message Interface: Because of the enforced locality and
the asynchronous execution, workers need to communicate
the query pattern matching state (intermediate results) via
messages instead of directly enqueuing it at target partitions.
In NeMeSys, every partition has an incoming and outgoing
message queue. A coordinator is continuously performing
cross socket copy operations, to move the messages of one
worker to all corresponding target partitions. The messaging
itself can also become a performance bottleneck, because not
all CQs contain only forward oriented edges. Since we only
index the source vertex of an edge, targets of backward ori-
ented edge predicate requests can not be answered through
an index lookup. In such cases, we need to send a broad-
cast targeting all data partitions to scan through their target
column and search for the requested vertex.

Bloom filter optimization. Since NeMeSys is an asyn-
chronous system, communication is performed via messages
through the aforementioned Messaging Interface. Generally
speaking, avoiding communication, such as the previously
mentioned broadcasts, as much as possible can only increase
the performance. Hence, we employ a Bloom filter-based
message optimization, which serves as a secondary index to
prevent unnecessary messages, like vertex- or edge-requests
targeting partitions, which do not actually contain them.
Since we use dictionary encoded integer keys for our par-
titioning, we can employ a fast and simple hash function
inside the Bloom filter. Usually, a modulo operator is used
to hash integer ids to a bucket. However, the modulo opera-
tor is very costly [1]. Thus we exploit the residue class ring
property, where:

(x)base (mod basek) = last k digits of (x)base . (1)

For 64 bit unsigned integer vertex ids, which are of base 2,
the last k digits of (x)2 are given by applying a bitmask, or
bitwise and, of (2k − 1) to (x)2.
Following this approach, we can replace the modulo op-

erator by bitwise and while selecting prime numbers for ai ,
since they yield best uniformity results [2], and use (2) as
our Bloom filter hash function.

H ′
i (x) = y = (ai · x) ∧ (M − 1) . (2)

2.4 Energy adaptivity

As stated in Section 1, we integrate the energy management
from [5]. For this purpose, NeMeSys implements software
sensors, which measure the time spent performing differ-
ent tasks, e.g. actual computing time or query latency and
the energy consumption is measured through the processor
integrated RAPL counters [3]. We are able to specify a per-
formance constraint, i.e. a maximum query latency and allow
NeMeSys to set the frequencies of all cores accordingly. Turn-
ing off cores, when there is just not enough computational
demand, is allowed by the loosely coupled DORA approach,
which was introduced in [5]. In a strict DORA, workers are
only allowed to touch their very own data partition, but we
allow them to process any data partition, which is currently
not being processed.

3 DEMONSTRATION SETUP

With our demo, we will showcase our DORA based graph
processing system NeMeSys. The demo itself is split into
two parts. First, we want to show the influence of graph
partitioning and the resulting data allocation on the intra-
query parallelism of graph pattern matching insideNeMeSys.
We will explain the query generation and justify the graph
specific operators by showcasing applicable scenarios. Fol-
lowing the basics, we will highlight the importance of the

Final edited form was published in "SIGMOD/PODS '19: International Conference on Management of Data. Amsterdam 2019", S. 1945–1948, ISBN 978-1-4503-5643-5
https://doi.org/10.1145/3299869.3320226

3

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

Figure 2: Demo UI with benchmark tuning knobs

messaging interface and the performance impact of unnec-
essary messages. Demo visitors can play with all knobs and
observe the corresponding system behavior (cf. Fig 2).

Adjusting the control knobs. The performance of graph
processing is influenced by the underlying partitioning, as
shown in [6]. Thus, we allow the user to apply different graph
partitionings like e.g. Hash or Multilevel k-Way. In addition,
we provide multiple datasets based on bibliographic, social
or protein network characteristics. We will present alloca-
tion mappings, which underline and explain the differences
between certain partitioning strategies. For optimizing the
messaging, we consider Bloom filters. Their false positive
rate is tightly bound to the size of the internal bitfield. Users
can change the number of available bits to trade off memory
consumption for messaging efficiency.

Controling Energy.Within this second part of our demo,
we allow the user to play around with the aforementioned
control knobs and view their influence on the energy con-
sumption of the system. This includes starting different work-
load scenarios for a given configuration while allowing for
online adaption for energy efficiency, as introduced in [5].
After selecting the desired configuration including the

workload pattern, the benchmark can be executed and its
results will be presented below. We visualize inter-socket
communication as well as computational demand of the sock-
ets themselves for better comparability. Furthermore, key
characteristics like energy demand or average query latency

Figure 3: Demo UI for energy efficiency

are displayed. This allows the user to run a plethora of dif-
ferent benchmark workloads and compare the impact of the
applied optimization strategies.

4 CONCLUSION AND FUTURE WORK

With our demo, we present NeMeSys, which allows for
NUMA-aware, energy-adaptive graph processing on mod-
ern multiprocessor systems. Furthermore, we underline the
importance of a careful yet workload dependent parameter
selection. Our vision is to build an adaptive system, which
can decide the optimal data partitioning as well as Bloom
filter sizes for a given graph and workload and adapt to it
on the fly. However, graph partitioning is a hard problem.
Thus, we need to identify suitable heuristics and transforma-
tion methods, to change one partitioning layout to another,
which requires intensive future research.

5 ACKNOWLEDGEMENTS

This work is partly funded within the CRC 912 (HAEC).

REFERENCES

[1] T. Granlund. 2017. Instruction latencies and throughput for AMD and
Intel x86 processors. https://gmplib.org/~tege/x86-timing.pdf.

[2] T. E. Hull and A. R. Dobell. 1962. Random Number Generators. SIAM
Rev. 4 (1962).

[3] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s
Guide. http://www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-software-developer-vol-
3b-part-2-manual.pdf. (2016).

[4] M. Junghanns, M. Kießling, A. Averbuch, A. Petermann, and E. Rahm.
2017. Cypher-based Graph Pattern Matching in Gradoop. In Proceed-
ings of the Fifth International Workshop on Graph Data-management
Experiences & Systems, GRADES@SIGMOD/PODS. 3:1–3:8.

[5] T. Kissinger, D. Habich, and W. Lehner. 2018. Adaptive Energy-Control
for In-Memory Database Systems. In SIGMOD.

[6] A. Krause, T. Kissinger, D. Habich, H. Voigt, and W. Lehner. 2017. Parti-
tioning Strategy Selection for In-Memory Graph Pattern Matching on
Multiprocessor Systems. In Euro-Par.

[7] P. T. Wood. 2012. Query Languages for Graph Databases. SIGMOD Rec.
41, 1 (April 2012). https://doi.org/10.1145/2206869.2206879

Final edited form was published in "SIGMOD/PODS '19: International Conference on Management of Data. Amsterdam 2019", S. 1945–1948, ISBN 978-1-4503-5643-5
https://doi.org/10.1145/3299869.3320226

4

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://doi.org/10.1145/2206869.2206879

	Abstract
	1 Introduction
	2 System
	2.1 NeMeSys Storage Layer
	2.2 NeMeSys Processing Layer
	2.3 NeMeSys Infrastructure Layer
	2.4 Energy adaptivity

	3 Demonstration Setup
	4 Conclusion and Future Work
	5 Acknowledgements
	References
	ADP93FC.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Alexander Krause, Thomas Kissinger, Dirk Habich, Wolfgang Lehner
	NeMeSys - A Showcase of Data Oriented Near Memory Graph Processing

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 16
 Mask co-ordinates: Horizontal, vertical offset 36.47, 719.05 Width 554.92 Height 27.79 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 16

 CurrentAVDoc

 36.4735 719.0529 554.9188 27.7894

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 4
 3
 3

 1

 HistoryList_V1
 qi2base

