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ABSTRACT
The exploitation of data as well as hardware properties is a core
aspect for efficient data management. This holds in particular for
the field of in-memory data processing. Aside from increasing main
memory capacities, in-memory data processing also benefits from
novel processing concepts based on lightweight compressed data.
To speed up compression as well as decompression, an active re-
search field deals with the specialization of these algorithms to
hardware features such as vectorization using SIMD instructions.
Most of the vectorized implementations have been proposed for
128 bit vector registers. However, hardware vendors still increase
the vector register sizes, whereby a straightforward transforma-
tion to these wider vector sizes is possible in most-cases. Thus,
we systematically investigated the impact of different SIMD in-
struction set extensions with wider vector sizes on the behavior
of straightforward transformed implementations. In this paper, we
will describe our evaluation methodology and present selective
results of our exhaustive evaluation. In particular, we will highlight
some challenges and present first approaches to tackle them.
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1 MOTIVATION
Data compression as well as vectorization are important keystones
in modern state-of-the-art in-memory column store systems [1, 10,

©2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
This is the author’s version of the work. It is posted here for your personal use. Not for 
redistribution. The definitive Version of Record was published in DBTest’18, June 15, 
2018, Houston, TX, USA
DOI: https://doi.org/10.1145/3209950.3209957

14, 21, 22]. On the one hand, data compression is used to tackle the
continuously increasing gap between computing power of CPUs
and main memory bandwidth (also known as memory wall [5]) [1,
10]. On the other hand, vectorization is used to improve the pro-
cessing performance by parallelizing computations over vector
registers [14, 21]. This vectorization is done using SIMD extensions
(Single Instruction Multiple Data) such as Intel’s SSE (Streaming
SIMD Extensions) or AVX (Advanced Vector Extensions) and have
been available in modern processors for several years. SIMD in-
structions apply one operation to multiple elements of so-called
vector registers at once.

State-of-the-art in-memory column stores have more or less a
common compression approach: (i) encode values of each column
as a sequence of integers using some kind of dictionary encod-
ing [1, 4] and (ii) apply lightweight lossless data compression to
each sequence of integers resulting in a sequence of compressed
codes. For the lossless compression of sequences of values (in par-
ticular integer values), a large variety of lightweight algorithms has
been developed [1–3, 8, 11, 15–18, 22]. Each lightweight compres-
sion algorithm employs one or more basic compression techniques
such as frame-of-reference [8, 22] or null suppression [1, 15] allow-
ing the appropriate utilization of contextual knowledge like value
distribution, sorting, or data locality. In recent years, the efficient
vectorized implementation of these lightweight compression algo-
rithms has attracted a lot of attention [6, 11, 13, 16, 18, 20], since
it further reduces the computational effort. M (corresponding to
Intel’s SIMD extension SSE).

However, hardware vendors have introduced new SIMD instruc-
tion set extensions operating on wider vector registers. For instance,
Intel’s Advanced Vector Extensions 2 (AVX2) operates on 256-bit
vector registers1 and Intel’s AVX-512 uses even 512-bit vector regis-
ters. The wider the vector registers, the more data elements can be
stored and processed in one vector. For example, while an SSE 128-
bit vector register can store four uncompressed 32-bit data elements,
an AVX2 256-bit vector can store eight (2x) and an AVX-512 512-bit
vector can store 16 (4x) of such data elements. Consequently, the
SIMD instructions on these wider vector registers can also process
2x respectively 4x the number of data elements in one instruction,
which promises significant speed ups.

Our Contribution. To obtain implementations of lightweight
data compression algorithms for wider vector sizes (AVX2 and AVX-
512), the 128-bit implementation can be used as foundation. In a
straightforward transformation, the 128-bit SIMD operations can
1Note that 256-bit vector registers had already been introduced with Intel’s AVX. How-
ever, most instructions relevant to lightweight data compression were only introduced
with AVX2.
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be substituted by the corresponding operations for 256 or 512-bit 
vectors. This is possible in almost all cases, since many instructions 
offered by SSE are also offered by  AVX2 and AVX-512 on  wider 
vectors. So far, there is no evaluation as to whether this transfor-
mation really exploits the potential of larger vector sizes. Thus, we 
systematically investigate the impact of different SIMD instruction 
set extensions with vector sizes of 128, 256, and 512 bits on the 
behavior of lightweight data compression algorithms. In detail, we 
make the following contributions in this paper:

(1) We start our description with an introduction of our evalua-
tion methodology in Section 2.

(2) Based on this evaluation methodology, we present selective
results of our evaluation in Section 3.

(3) Then, we summarize our lessons learned and present some
thoughts about our ongoing research activities in this direc-
tion in Section 4.

Finally, we conclude the paper with related work in Section 5 and
a summary in Section 6.

2 EVALUATION METHODOLOGY
The focus of this work is the large corpus of lossless lightweight data
compression algorithms and to investigate the influence of wider vec-
tor registers on the behavior of these algorithms. Generally, the in-
put of every lightweight compression algorithm is a finite sequence
of uncompressed values (usually integer values [1, 22]) and the
output is a compressed representation. The goal is to represent the
input with as few as possible bits. To achieve that, each specific al-
gorithm employs one or more basic compression techniques. There
are currently five basic techniques known and frequently used:
frame-of-reference (FOR) [8, 22], delta coding (DELTA) [11, 15],
dictionary compression (DICT) [1, 22], run-length encoding (RLE)
[1, 15], and null suppression (NS) [1, 15]. While FOR, DELTA, and
DICT consider the mapping to smaller values, the goal of RLE is to
reduce the number of values on the logical level, and NS addresses
the physical level of bits or bytes to reduce the number of bits per
value. This explains why every lightweight data compression algo-
rithm can be usually described as a cascade of one or more of these
basic techniques. In the following, we also denote the techniques
FOR, DELTA, and DICT as preprocessing techniques.

Generally, the NS technique has been studied most extensively.
There is a very large number of specific algorithms showing the
diversity of the implementations for a single technique. The pure
NS algorithms can be divided into the following classes [20]: (i) bit-
aligned, (ii) byte-aligned, and (iii) word-aligned.2 While bit-aligned
NS algorithms try to compress an integer using aminimal number of
bits, byte-alignedNS algorithms compress an integer with aminimal
number of bytes (1:1 mapping). The word-aligned NS algorithms
encode as many integer values as possible into one 32-bit or 64-bit
word (N:1 mapping). The logical-level techniques have not been
considered to such an extent as the NS technique on the algorithm
level. In most cases, the preprocessing steps have been investigated
in connection with the NS technique. For instance, PFOR-based
algorithms implement the FOR technique in combination with a
bit-aligned NS algorithm [22].

2[20] also defines a frame-based class, which we omit, as the representatives we
consider also match the bit-aligned class.

2.1 Considered Implementations
An implementation of a compression algorithm is a hardware-
specific executable code, whereby a vectorized implementation us-
ing SIMD instructions is state-of-the art. Most of the developed
vectorized implementations have been developed for a fixed vector
width of 128 bits (e.g., corresponding to Intel’s SIMD extension SSE).
For these 128-bit vectorized implementations, we already presented
an experimental survey [6]. As we have shown, performance and
compression ratio vary greatly depending on data properties. Even
algorithms that are based in the same technique, show a very dif-
ferent behavior. In this underlying survey [6], we considered all
five basic techniques, whereby we investigated implementations of
a single technique as well as cascades of one preprocessing tech-
nique and one physical compression. In this survey, we decided to
re-implement the logical-level techniques on our own in order to
be able to freely combine them with all considered NS algorithms.

To obtain implementations of lightweight compression algo-
rithms for wider vector register sizes (256-bit for AVX2 and 512-bit
for AVX-512), we did a straightforward re-implementation of most
of the vectorized algorithms used in [6]. By a straightforward re-
implementation, we mean that we tried to stick with the original
source code for 128-bit instructions as much as possible and applied
only intuitive changes. In particular, we mainly substituted the
SSE intrinsics for 128-bit vectors by the corresponding AVX2 or
AVX-512 intrinsics for 256 or 512-bit vectors, respectively. This is
possible in many cases, since many instructions offered by SSE are
also offered by AVX2 and AVX-512 on wider vectors.

2.2 Evaluation Setup
We compiled our C++ source code using g++-7.0.1 with the opti-
mization flag -O3. All experiments have been executed on the same
hardware machine to be able to compare the results. To evaluate
the influence of the vector width on the behavior of lightweight
compression algorithms, an evaluation platform supporting SSE,
AVX2, and AVX-512 is required. This holds only for very recent
Intel processors. We choose a system equipped with an Intel Xeon
Phi 7250 with 68 active cores, each of them running up to 4 hy-
perthreads and with 196GB DDR4 RAM, whereby all experiments
ran single-threaded. The cores support a frequency scaling ranging
from 1 GHz to 1.6 GHz. Each core features a 32kB L1 instruction
cache and a 32kB L1 data cache. These cores are organized on tiles
and each tile contains two cores, two vector processing units, and
a 1MB L2 cache, which is shared between both cores. The tiles are
connected by a 2D mesh cache-coherent interconnect, such that
each row and column forms a half ring. The chip features six DDR4
channels, which operate at a clock speed of 2400 MHz. While earlier
generations of the Intel Xeon Phi were designed as co-processors
only, the model we employ is of the most recent generation at the
time of this writing and is as the main processor of a system.

All experiments happened entirely in main memory. The whole
evaluation is performed using our specific benchmark framework [7]
using synthetic datasets. During the executions, the single-threaded
runtimes—reported in million integers per second (mis)—and the
compression ratio were measured. Furthermore, we emptied the
cache before each algorithm execution. All timemeasurements were
carried out by means of the wallclock-time and were repeated 12
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Figure 1: The variants of SIMD-BP on datasetD0. Row 1 reports absolutemeasurements, while row 2 reports themeasurements
of each algorithm variant relative to the measurement of the classical 128-bit variant.
times to receive stable values, therebywe only report average values.
Aside from timemeasurements for compression and decompression,
we measured also the time for an aggregation (summation).

3 EVALUATION RESULTS
In this section, we present some selective results of our evaluation
with regard to various algorithms and different vector register sizes.
Based on that, we draw lessons learned in the following section.

3.1 NS Compression Techniques
We start with results for a well-known and well-performing bit-
aligned null suppression algorithm called SIMD-BP128 [11], which
is available in the FastPFor-library [12]. The original SIMD-BP128
approach subdivides the data into blocks of 128 integers each. For
each such block, the number of bits required for the largest element
is determined. Then, all 128 integers in the block are stored using
the vertical layout with that many bits for each value. The used bit
width is stored in a single byte, whereby 16 of these bit widths are
followed by 16 compressed blocks.

The original 128-bit implementation is based on SSE shift and
mask operations on 128-bit vector registers, for each of which there
are equivalent operations for 256-bit and 512-bit vectors in AVX2
and AVX-512, respectively. Thus, the SIMD intrinsics are exchanged
in a straightforward way. As a consequence, while SIMD-BP128
determines a common bit width for a block of 128 data elements at
a time, SIMD-BP256 and SIMD-BP512 determine the bit width for a
block of 256 and 512 integers at a time, respectively. SIMD-BP128
uses one byte to store the bit width used for a particular block. In
memory, 16 of these descriptor bytes are stored subsequently and
are followed by 16 compressed blocks. This is necessary, because
SSE’s load and store instructions require an alignment of 16 bytes.
Since this alignment requirement naturally increases to 32 and 64
bytes in AVX2 and AVX-512, respectively, we had to slightly and
intuitively adapt the storage format for our re-implementations. In
the formats of SIMD-BP256 (SIMD-BP512), 32 (64) descriptor bytes
are stored subsequently followed by 32 (64) compressed blocks.

Figure 1 (a,e) show the results for the compression ratio of the
variants of SIMD-BP on dataset D0. Dataset D0 contains 32 un-
sorted generated single datasets, such that all data elements in the
i-th dataset have exactly i effective bits, i.e., the value range is [0, 1]
for i = 1 and [2i−1, 2i ) for i = 2, . . . , 32. That is, we effectively vary
the number of bits required by the values, which is the key factor
involved in NS-algorithms. Within these ranges, the 100 million 32-
bit integer values are uniformly distributed. Thus, all three variants
of SIMD-BP yield nearly the same compression ratio, since each of
them can perfectly adapt to the bit width in the same way. However,
the blocks of SIMD-BP256 and SIMD-BP512 are twice respectively
four times as large as the blocks of SIMD-BP128. At the same time,
all three variants need the same amount of meta data, namely one
byte, per block. Thus, the compression ratios achieved by SIMD-
BP256 and SIMD-BP512 are in fact minimally better than those of
SIMD-BP128. Regarding the performance (Figure 1 (b-d)), we can
make the general observation that the speed increases as the vector
width is increased. Figure 1 (f-h), show the speed ups of each variant
compared to SIMD-BP128. With respect to the (de)compression per-
formance, it becomes visible that the performance gains achieved
through the use of wider vector registers are lower than they could
be expected. In the ideal case, SIMD-BP256 and SIMD-BP512 could
yield speed ups of 2x and 4x compared to SIMD-BP128, respectively.
However, the true speed ups are far less than that for both, the
compression and the decompression. Moreover, it is worth noting
that, while SIMD-BP256 is significantly faster than SIMD-BP128,
SIMD-BP512 can add only little to the speed of SIMD-BP256. The
use of SIMD extensions with wider vector registers enables faster
computations. As a consequence, the algorithms become increas-
ingly memory-bound, which explains the sub-optimal speedups.
However, if we have a look at the aggregation speeds and speedups
in Figure 1 (d, h), we observe that SIMD-BP256 and SIMD-BP512
can indeed reach the expected speedups of about 2x and 4x re-
spectively, at least for small bit widths. Unlike the decompression,
the aggregation does not store the decompressed values to mem-
ory, but adds them to a running sum. Thus, the aggregation is
generally rather compute-bound then memory-bound and can, in
consequence, profit much more from AVX2 and AVX-512. Finally,
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Figure 2: The variants of SIMD-BP on datasetD1. Row 1 reports absolutemeasurements, while row 2 reports themeasurements
of each algorithm variant relative to the measurement of the classical 128-bit variant.

the speedups achieved also depend on the bit width, respectively
the data characteristics in general.

Our experimental survey in [6] has revealed that especially out-
liers in the data play a crucial role for the behavior of lightweight
data compression algorithms. Thus, we now investigate the inter-
play of outliers and vector widths. For this purpose, we introduce
a new synthetic dataset D1. D1 is an unsorted dataset consisting
of 100 million uncompressed 32-bit integers. Each data element is
either a 4-bit value or a 28-bit outlier, whereby we vary the outlier
ratio. Figure 2 display the results of the variants of SIMD-BP on
this dataset D1. Regarding the compression ratio (Figure 2 (a, e)),
the three variants differ significantly subject to the outlier ratio.
More precisely, as the vector width grows, so does the algorithm’s
vulnerability to outliers. In the worst cases, SIMD-BP256 and SIMD-
BP512 might yield approximately 1.5x and 2x of the compressed
data size of SIMD-BP128, respectively. The reason for this is that
these ported variants of the algorithm use blocks of larger sizes.
Even one outlier per block suffices to force the use of the outlier
bit width for all data elements in the entire block. Thus, the larger
the blocks, the more blocks are affected even by low outlier ratios.
Regarding the performance we can make the same observations
as for D0. However, with respect to the outlier ratio, we see that
the (de)compression speed of SIMD-BP512 is even less than that
of SIMD-BP256 for those outlier ratios at which it suffers most
regarding compression ratio.

Generally, similar effects are observable for other NS algorithms
as well. To summarize, when porting NS algorithms in a straight-
forward way to SIMD extensions using wider vector registers, the
performances can generally be increased. However, the algorithms
quickly become memory-bound, resulting in sub-optimal speed
ups compared to the classical 128-bit variants. In terms of com-
pression ratio, the algorithms tend to use larger blocks for larger
vector widths, which results in less meta data to be stored, but also
increases the vulnerability to outliers in the data.

3.2 Preprocessing Techniques
On the preprocessing level, run-length encoding (RLE) is an inter-
esting technique tackling uninterrupted sequences of occurrences

of the same value, so called runs. In its compressed format, each run
is represented by its value and length. Thus, the compressed data is
a sequence of such pairs. To compress a sequence of integers with
RLE, the corresponding runs have to be determined and this can be
done by comparing each element with its predecessor. If they are
equal, a run continues. If they are not equal, a new run starts. These
comparisons can be done for more than one element at once using
SIMD instructions as shown in [6]. In detail, this state-of-the-art
RLE comparison-based 128-bit vectorization works as follows:

(1) One 128-bit vector register v1 is loaded with four copies of
the current input element.

(2) The next four input elements are loaded into a vector register
v2.

(3) The intrinsic _mm_cmpeq_epi32() is employed for a paral-
lel comparison, so that the four elements in v1 and v2 are
pair-wise compared at once. The result is stored in a vector
register.

(4) Next, a 4-bit comparison mask is obtained using the intrinsic
_mm_movemask_ps(). Each bit in themask indicates the (non-
)equality of two corresponding vector elements. The number
of trailing one-bits in this mask is the number of elements for
which the run continues. If this number is 4, then a run’s end
has not been reached and the execution continues at step 2
(new iteration). Otherwise, a run’s end is reached that means
that run value and run length are appended to the output.
The execution continues with step 1 at the next element after
the run’s end (new iteration).

We denote this implementation as RLE128. Since only common in-
trinsics are used, this comparison-based implementation can easily
be adapted to 256 and 512 bit-wide registers by loading more ele-
ments in the wider registers and by using the appropriate intrinsics
of AVX2 (256 bit) or AVX-512. Additionally, step 3 and 4 can be
merged into one step in AVX-512, because there is an intrinsic pro-
ducing a bitmask directly from the comparison. The corresponding
implementations are denoted as RLE256 and RLE512.

Figure 3 shows the results for the variants of RLE on dataset
D2. Dataset D2 contains 100 million uncompressed 32-bit integers
whose data elements are uniformly drawn from the range [0, 216−1]
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Figure 3: The compression and decompression performance of the three variants of RLE on datasetD2. (a-b) report the absolute
speeds, while (c-d) report the speeds relative to RLE128.

Figure 4: (a) Loaded integers as percentage of the integers in
the uncompressed data set. (b) A close up of (a).

while varying the average run length. We omit the compression
ratio, since all three variants of RLE always have the same output.
Regarding the compression, RLE256 and RLE512 achieve consid-
erable speed ups of about 1.4x and 3x, respectively. Regarding the
decompression, however, RLE256 performs significantly worse than
RLE128 and yields only about half of the classical variant’s speed
for long runs. As we can see in Figure 3, the speedup of RLE256
and RLE512 is very marginal for short run lengths. The reason is
that some data elements in the input are loaded very frequently
for small run lengths. To analyze the magnitude of this redundant
processing, we counted the load instructions for different average
run lengths and all possible variances for each average run length.
For instance, the maximal variance for an average run length of
5 is ±4 resulting in the interval [1, 9] for the possible run lengths.
Then, we selected the minimal and the maximal number of load
instructions and visualized them in Fig. 4(a) for RLE128, RLE256,
and RLE512. The x-axis shows the average run length and the y-
axis shows the number of loaded elements as a percentage of the
elements in the input sequence, e.g. 200% means that on average
every element is loaded twice. The colored area shows the range
between the maximal and minimal number of load instructions.
Fig. 4(b) shows a close up of Fig. 4(a) with the y-axis ranging only
until 200%. From these experiments, we can conclude:

(1) The comparison-based RLE vectorization uses a significantly
higher number of load operations for sequences with short
runs than for sequences with long runs, which negatively
effects the performance.

(2) The redundant processing dramatically increases with in-
creasing vector widths. For example, RLE512 processes each
element 5 times on average when the average run length is
3. Furthermore, not only the absolute number increases, but
also the size of the covered area grows.

Similar effects are observable for the other preprocessing tech-
niques. Thus, the speedups are below the optimal goals.

3.3 Cascades of Techniques
We also investigated cascades of logical-level (RLE, FOR, DELTA,
and DICT) and pyhsical-level (NS) techniques. Due to space con-
straints, we only sum up our observations. When SIMD extensions
with wider vector registers are employed, the cascades of logical-
level and physical-level algorithms still yield compression ratios
superior to those of stand-alone NS algorithms, if the data charac-
teristics are suitable. Moreover, the cascades become faster than
with SSE (128-bit) in most cases. Finally, we could confirm our ini-
tial idea, at least in several cases: when 256-bit or 512-bit SIMD
operations are used, the cascades perform better compared to the
stand-alone NS algorithm using the same SIMD extension than for
128-bit SIMD operations.

4 LESSONS LEARNED AND NEXT STEPS
As described above, many lightweight compression algorithms can
be ported to newer SIMD extensions in a straightforward way, but
for some algorithms, this is not possible. For instance, 4-WS NS
requires auxiliary permutation masks (stored in a lookup table) for
compression with a total size of 4 KiB. Additionally, the decom-
pression requires the same amount of space for the masks of the
inverse permutations, so 8 KiB are required in total. Note that this
amount of data can easily fit into the L1 data cache of modern pro-
cessors. However, when going to AVX-512, the situation changes
dramatically. Now a vector register fits 16 uncompressed 32-bit
integers, such that the lookup table contains 416 = 4 Gi entries,
each of which is a 512-bit vector, resulting in a size of 256 GiB for
one table and 512 GiB for both tables. It is self-evident that storing
512 GiB of auxiliary information for a compression algorithm in
practically infeasible.

If a straightforward transformation is possible, two effects are
observable. First, the larger block sizes of NS algorithms resulting
from straightforward re-implementations increase the vulnerability
of these algorithms to outliers in the data, which can affect both, the
compression ratio as well as the performance negatively. Second,
both, logical-level and physical-level algorithms become the faster
the wider the employed vector registers are. However, the speed
ups are sub-optimal in most cases, since the algorithms quickly
become memory-bound when the computations are accelerated
through wider vectors registers processing more data elements at
once. This has two implications when employing AVX2 and AVX-
512: Firstly, accessing uncompressed data in main memory should
be avoided even more strictly then with SSE, which we showed with
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our aggregation of compressed data. Secondly, cascades of logical-
level and physical-level algorithms become even more promising 
alternatives to stand-alone NS algorithms, since they still yield 
superb compression ratios, but perform much more competitive to 
stand-alone NS algorithms when implemented with wider vector 
registers. We have conducted our evaluation using 128, 256, and 
512-bit SIMD extensions, which are the ones currently available in 
general-purpose processors. However, the increase of the vector 
width is an obvious trend in processor evolution. Thus, we will likely 
see SIMD extensions with even wider vector registers in the future. 
We expect the effects we observed in our evaluation be become 
even more important then. Finally, we would like to highlight that 
the vector width of the employed SIMD extension has an impact 
on the relative ranking of the lightweight compression algorithms 
regarding compression ratio, performance, and any trade-off of 
these two. Therefore, a strategy for selecting the best lightweight 
compression algorithm should also be aware of the employed SIMD 
extension in order to make a wise decision.

Thus, a open challenge is still the development of appropriate 
approaches which better exploits the capabilities of newer SIMD 
extensions to a the maximum extent. For example, Intel’s latest 
version of their vectorization extension is AVX-512. In addition to 
an increased vector width of 512-bit (16 x 32-bit), AVX-512 also 
offers a  variety of new instructions. One of the new instruction 
feature sets is called Conflict Detection (AVX-512 CD) which allows 
the vectorization of loops with possible address conflicts. Some 
key features of AVX-512 CD are (i) the generation of conflict free 
subsets, i.e. subsets which contain no equal elements, and (ii) the 
count of leading zeros of the elements in a vector. In [19], we de-
scribed the application of these CD instructions for RLE encoding. 
In particular, we have clearly shown that the CD-based implemen-
tation is up to 3.2 times faster for sequences of integers with short 
run lengths. That means, researchers should still adapt algorithm 
implementations to new available SIMD instructions.

5 RELATED WORK
The efficient utilization of SIMD (Single Instruction Multiple Data) 
instructions in database systems is a very active research field [14, 
21]. On the one hand, these instructions are frequently applied 
in lightweight data compression algorithms [20]. In this domain, 
null suppression (NS) is the most studied lightweight compression 
approach, whereby the basic idea is the omission of leading ze-
ros in the bit representation of integers [11]. On the other hand, 
SIMD instructions are also used in other database operations like 
scans, aggregations or joins [14, 21]. However, in spite of their great 
potential, the newer SIMD extensions of AVX2 or AVX-512 have 
received only little attention in the literature on lightweight data 
compression. Some papers [16, 20] propose approaches to vectorize 
lightweight compression algorithms, which essentially treat the 
vector width as an adjustable parameter. However, non of these 
has actually discussed wider vectors in detail nor evaluated their 
proposed algorithms using SIMD extensions beyond 128 bits. While 
there are papers [9] which employ 256-bit SIMD in their evaluation, 
to the best of our knowledge, a systematic investigation of 256-bit 
and 512-bit SIMD extensions for lightweight data compression has 
never been published.

6 CONCLUSION
Data compression as well as vectorization are important keystones
in modern state-of-the-art in-memory column store systems. In
particular, the efficient vectorized implementation of lightweight
compression algorithms has attracted a lot of attention. Most of
the developed vectorized implementations have been developed
for a fixed vector width of 128 bits In this paper, we investigated
the influence of wider vector registers on the behavior of these
algorithms and highlighted some challenges.
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