Dieses Dokument ist eine Zweitveroffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Dirk Habich, Patrick Damme, Annett Ungethiim, Johannes Pietrzyk, Alexander Krause,
Juliana Hildebrandt, Wolfgang Lehner

MorphStore - In-Memory Query Processing based on Morphing
Compressed Intermediates LIVE

Erstveréffentlichung in / First published in:
SIGMOD/PODS '19: International Conference on Management of Data, Amsterdam 30.06. -
05.07.2019. ACM Digital Library, S. 1917-1920. ISBN 978-1-4503-5643-5

DOI: https://doi.org/10.1145/3299869.3320234

Diese Version ist verfiigbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806340

TECHNISCHE
il SLUB UNIVERSITAT Oucosa

Wir fiihren Wissen. DRESDEN Quality Content of Saxony

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-806340
https://doi.org/10.1145/3299869.3320234

Final edited form was published in "SIGMOD/PODS '19: International Conference on Management of Data. Amsterdam 2019", S.1917-1920, ISBN 978-1-4503-5643-5

https://doi.org/10.1145/3299869.3320234

MorphStore — In-Memory Query Processing based on
Morphing Compressed Intermediates LIVE

Dirk Habich, Patrick Damme, Annett Ungethiim, Johannes Pietrzyk,

Alexander Krause, Juliana Hildebrandt, Wolfgang Lehner
Database Systems Group
Technische Universitit Dresden, Germany
firstname.lastname@tu-dresden.de

ABSTRACT

In this demo, we present MorphStore, an in-memory col-
umn store with a novel compression-aware query processing
concept. Basically, compression using lightweight integer
compression algorithms already plays an important role in
existing in-memory column stores, but mainly for base data.
The continuous handling of compression from the base data
to the intermediate results during query processing has al-
ready been discussed, but not investigated in detail since the
computational effort for compression as well as decompres-
sion is often assumed to exceed the benefits of a reduced
transfer cost between CPU and main memory. However, this
argument increasingly loses its validity as we are going to
show in our demo. Generally, our novel compression-aware
query processing concept is characterized by the fact that
we are able to speed up the query execution by morphing
compressed intermediate results from one scheme to another
scheme to dynamically adapt to the changing data charac-
teristics during query processing. Our morphing decisions
are made using a cost-based approach.

CCS CONCEPTS

+ Information systems — DBMS engine architectures;
Query optimization; Query operators; Main memory
engines; Query planning.

This work was partly funded (1) by the German Research Foundation (DFG)
within the CRC 912 (HAEC), RTG 1907 (RoSI) as well as by an individual
project LE-1416/26-1, (2) by the German Federal Ministry of Education and
Research (BMBF) with the EXPLOIDS project (16KIS0523), and (3) by NEC.

©2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
https://doi.org/10.1145/3299869.3320234

1

KEYWORDS

in-memory column store; lightweight integer compression;
query processing; vectorization

ACM Reference Format:

Dirk Habich, Patrick Damme, Annett Ungethiim, Johannes Pietrzyk,
Alexander Krause, Juliana Hildebrandt, Wolfgang Lehner. 2019.
MorphStore — In-Memory Query Processing based on Morphing
Compressed Intermediates LIVE. In 2019 International Conference on
Management of Data (SIGMOD °19), June 30-July 5, 2019, Amsterdam,
Netherlands. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3299869.3320234

1 INTRODUCTION

In-memory database systems pursue a main memory-centric
architecture approach and assume that all relevant data (base
data as well as intermediates) can be fully kept in the main
memory of a computer or of a computer network [8]. For
OLAP workloads, in-memory column store systems are per-
fectly suited, because relational tables are organized by col-
umn rather than by row and based on that, queries only
need to read relevant data columns [1, 8]. In these systems,
lightweight integer compression algorithms play an impor-
tant role [1, 13]. Aside from reducing the amount of data,
compressed data offers several advantages such as less time
spent on load and store instructions and a better utiliza-
tion of the cache hierarchy. Moreover, a direct processing of
the compressed data is possible in many cases. As we have
shown in [6, 7], there is a large variety of lightweight integer
compression schemes available and there is no single-best
algorithm, but the decision depends on data as well as on
hardware properties. However, existing systems only pro-
vide a very limited set of compression algorithms for base
data [1, 8, 13]. Furthermore, during query processing, these
systems only keep the data compressed until an operator
cannot process the compressed data directly, whereupon the
data is decompressed, but not recompressed. Thus, the full
optimization potential is not exploited.

To overcome that, we developed MorphStore!, a regular in-
memory column store with a novel compression-aware query

Thttps://morphstore.github.io

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden

https://doi.org/10.1145/3299869.3320234
https://doi.org/10.1145/3299869.3320234
https://doi.org/10.1145/3299869.3320234
https://morphstore.github.io

Final edited form was published in "SIGMOD/PODS '19: International Conference on Management of Data. Amsterdam 2019", S.1917-1920, ISBN 978-1-4503-5643-5

https://doi.org/10.1145/3299869.3320234

Processing
Layer

S

)
~—
)

BitWeaving
Framework
BitWeaving]

Uncompressed BP
Operators Ops.
Binary
Packing
(BP)

Storage
Layer

Uncompressed
Format

A

Figure 1: MorphStore architecture.

processing concept [4]. The unique features of MorphStore
are: (i) support of a large variety of lightweight integer com-
pression algorithms, (ii) a continuous handling of compres-
sion from base data through intermediate results, (iii) a cost-
based decision for the best-suited compression algorithm,
and (iv) morphing intermediates from one to another com-
pression scheme to dynamically adapt the physical represen-
tation to the changing data characteristics at query run-time.

2 ARCHITECTURE

Figure 1 depicts a high-level architecture of MorphStore which
is explained in the following in more detail.

Storage Layer. This layer follows a well-known approach:
(i) encode values of each column as a sequence of integers
using some kind of dictionary encoding [2] and (ii) apply
lightweight lossless integer compression to each sequence
of integers resulting in a sequence of compressed column
codes [1, 4, 6]. As illustrated in Figure 1, MorphStore does
not assume or prefer a specific in-memory storage layout. In-
stead, it aims to support a large variety of lightweight integer
compression algorithms and a variety of specific layouts for
compressed data, e.g. BitWeaving [16]. In principle, these are
two different things, but since some compression algorithms
also specify a storage layout for the compressed data, the
pool of possible layouts becomes even larger. Thus, this layer
focuses on the different layouts for storing uncompressed as
well as compressed sequences of integers in-memory.

We follow this approach, since, as we have shown in [6],
the compression algorithms are always tailored to certain
data characteristics and their behavior in terms of perfor-
mance and compression ratio depends strongly on the data.
There is no single-best compression algorithm [6], thus we
need a large variety to support all possible data characteris-
tics. For the algorithm selection, we introduced a compression-
specific cost model allowing the estimation of the compres-
sion ratio as well as the performance in [7].

2

(d)

0 I:)ABC

(A8

specialized
operator

baseline
operator

wrapper with
(de)compression

wrapper with
transformation

Figure 2: Integration of compression and operators. A
to C are compressed formats; U is uncompressed [4].

Morphing Layer. While the storage layer focuses on pro-
viding different layouts, the morphing layer provides an in-
frastructure for a seamless transition (we call it morphing)
from data in a specific layout into another layout. Thus, the
different (de)compression algorithms, which are responsible
for transforming uncompressed data into the corresponding
compressed layout and vice versa, are major parts of this
layer. Furthermore, we introduced novel transformation al-
gorithms in [5] to directly transform data from a compressed
source layout into a compressed target layout. These trans-
formations are also components of this layer.

For our morphing purposes—applying decompression and
recompression—during query execution, we depend on highly
efficient implementations of these existing algorithms. One
way to achieve these is to use single instruction multiple data
(SIMD) extensions (also called vector extensions) of modern
processors, such as Intel’s SSE and AVX, which allow the
application of one operation to multiple data elements at
once. In fact, the employment of SIMD instructions has been
the major driver of the research in the lightweight integer
compression domain in recent years [6, 9, 15, 21]. To sup-
port the different available vector extensions as well as a
dedicated vector processor provided by NEC [12, 19] with a
low effort, we developed a Vector Library abstracting differ-
ent SIMD extensions, which is comparable to the approach
of [20]. This library is a core component of MorphStore.

Processing Layer. The execution model of MorphStore
corresponds to column-at-a-time, where all intermediates are
materialized in main memory. Thus, this layer provides all
physical query operators for MorphStore, thereby different
degrees of integration between these operators and com-
pression are possible. Figure 2 shows these variants and
MorphStore supports all of them. The selection of the best-
suited operator variant within a query execution plan (QEP)
will be done using an appropriate cost model in a subsequent
step to the regular query optimization. Figure 2(a) shows the
baseline variant of processing only uncompressed data. In
the following, we assume we want to support n compressed
formats for one operator.

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden

Final edited form was published in "SIGMOD/PODS '19: International Conference on Management of Data. Amsterdam 2019", S.1917-1920, ISBN 978-1-4503-5643-5

https://doi.org/10.1145/3299869.3320234

MorphStore Demo X ‘

Query Group @ Query Variant
SSB ~ SSB Q1.1 N Custom 3 S
Custom3) Optimized for performance
g |A .-I_.
]
U U "
== ' Runtime =]
213
"? t 92 ms el ® ‘
e N g P
CHANGE OPERATOR Distibution [}
=| o
Uniform . § Q@
- Deviation o @ [J
Bitpacked ()
CHANGE)
e ‘ Mean
Bit width: 9 :
Distinct v.. 10m Runti
@ ||l (Lo ala
e APPLY Optimize for
o = J
] - Performance B
Memory Usage . Memory Usage Optimizer Restrictions
Peak Usage _ Runtime el Peak Usage Runtime v @

Figure 3: The interactive graphical user interface of our demonstration.

A first variant to support compressed intermediates is
shown in Figure 2(b). The original operator for uncompressed
data is surrounded by a wrapper, which temporarily decom-
presses the inputs and recompresses the outputs. This ap-
proach is called transient decompression and was proposed
in [3], but to the best of our knowledge, it has never been
investigated in practice. For efficiency, in MorphStore the
decompression (recompression) does not work on the entire
inputs (outputs), but on small chunks fitting into the L1 cache.
Changing the compressed format of the intermediates is pos-
sible by configuring the wrapper’s input and output formats
accordingly. The advantage of this variant is its simplicity:
It reuses the existing operator and relies only on n already
existing (de)compression algorithms. However, it does not
exploit the benefits of working directly on compressed data.

The second variant is to adapt the operator such that it
can work directly on compressed data (Figure 2(c)). Existing
works such as [14, 16] have already proposed certain oper-
ators on certain compressed formats. We contribute to this
line of research by covering the formats of recent vector-
ized compression algorithms. For this variant, we assume a
common compression format (format B in Figure 2(c)) for
all inputs and outputs of the operator; for arbitrary combi-
nations of formats, the operator is again wrapped. However,
in this case the wrapper utilizes the direct transformation
algorithms we developed. The idea of bringing compressed
inputs into a common format has already been proposed in

1919
3

[14], but only for joins on dictionary encoded data — and
without direct transformations. This approach requires n
variants of the operator and n? — n transformations, whereby
the latter can be reused for all other operators. Nevertheless,
the existence of a wrapper still causes a certain overhead.
The final variant maximizes the efficiency by tailoring the
operator to a specific combination of formats (Figure 2(d)).
Unfortunately, this approach implies the highest implemen-
tation effort, requiring n'*° operator variants.

3 DEMONSTRATION DETAILS

The overall aim is to present MorphStore and its compression-
aware query processing concept. For this, we address two
aspects in our demo: (1) we would like to convey to the at-
tendee an understanding of how changing the compressed
layout of the data during query execution impacts the two
important optimization objectives runtime and memory us-
age, and (2) we introduce our MorphStore design to show
that we are able to select a good compression-aware query
execution plan (QEP) with respect to these two objectives.
We provide an interactive graphical user interface for the
detailed visualization and comparison of multiple compression-
aware QEP configurations as shown in Figure 3. Each QEP
is visualized as a tree whose nodes represent compression-
aware physical operators and whose edges represent com-
pressed base data or intermediates (1) (bracket in Figure 3).
For a first overview, the edges are colored depending on the

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden

Final edited form was published in "SIGMOD/PODS '19: International Conference on Management of Data. Amsterdam 2019", S.1917-1920, ISBN 978-1-4503-5643-5
https://doi.org/10.1145/3299869.3320234

we want to integrate the architecture of MorphStore with the
DORA architecture [18] to efficiently support scale-up hard-
ware systems. Furthermore, we are extending our research
activities to reduce the implementation effort required to
support the large variety of lightweight integer compression
algorithms [10, 11].

REFERENCES

[1] D. Abadi et al. The design and implementation of modern column-
oriented database systems. Foundations and Trends in Databases,
5(3):197-280, 2013.

C. Binnig et al. Dictionary-based order-preserving string compression

for main memory column stores. In SIGMOD, pages 283-296, 2009.

Z. Chen et al. Query optimization in compressed database systems. In

SIGMOD, pages 271-282, 2001.

[4] P. Damme. Query processing based on compressed intermediates. In
VLDB PhD Workshop, 2017.

[5] P.Damme et al. Direct transformation techniques for compressed data:
General approach and application scenarios. In ADBIS, pages 151-165,
2015.

[6] P. Damme et al. Lightweight data compression algorithms: An exper-
imental survey (experiments and analyses). In EDBT, pages 72-83,
2017.

[7] P. Damme et al. From a comprehensive experimental survey to a

cost-based selection strategy for lightweight integer compression al-

gorithms. Appears in TODS (accepted), 2019.

F. Faerber et al. Main memory database systems. Foundations and

Trends in Databases, 8(1-2):1-130, 2017.

D. Habich et al. Make larger vector register sizes new challenges?:

Lessons learned from the area of vectorized lightweight compression

algorithms. In DBTest@SIGMOD, pages 8:1-8:6, 2018.

[10] J. Hildebrandt et al. Compression-aware in-memory query processing:
Vision, system design and beyond. In IMDM@VLDB, pages 40-56,
2016.

[11] J. Hildebrandt et al. Metamodeling lightweight data compression
algorithms and its application scenarios. In ER Forum, pages 128-141,
2017.

[12] K. Komatsu et al. Performance evaluation of a vector supercomputer
SX-Aurora TSUBASA. In SC, pages 54:1-54:12, 2018.

[13] H. Lang et al. Data blocks: Hybrid OLTP and OLAP on compressed
storage using both vectorization and compilation. In SIGMOD, pages
311-326, 2016.

[14] J. Lee et al. Joins on encoded and partitioned data. PVLDB, 7(13):1355—
1366, 2014.

[15] D. Lemire et al. Decoding billions of integers per second through
vectorization. Softw., Pract. Exper., 45(1):1-29, 2015.

[16] Y. Li et al. Bitweaving: fast scans for main memory data processing.
In SIGMOD, pages 289-300, 2013.

[17] P. E. O’Neil et al. The star schema benchmark and augmented fact
table indexing. In TPCTC, pages 237-252, 2009.

[18] I Pandis et al. Data-oriented transaction execution. PVLDB, 3(1):928-
939, 2010.

[19] J. Pietrzyk et al. First investigations of the vector supercomputer SX-
Aurora TSUBASA as a co-processor for database systems. In BTW
Workshops, pages 33-50, 2019.

[20] H. Pirk et al. Voodoo - A vector algebra for portable database perfor-
mance on modern hardware. PVLDB, 9(14):1707-1718, 2016.

[21] A. Ungethiim et al. Conflict detection-based run-length encoding
- AVX-512 CD instruction set in action. In ICDE Workshops, pages
96-101, 2018.

[2

—

[3

—

[8

[

[

—

4

Provided by Sachsische Landesb bliothek, Staats- und Universitatsbibliothek Dresden

	Abstract
	1 Introduction
	2 Architecture
	3 Demonstration Details
	4 Summary and Outlook
	References
	ADP5D8F.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Dirk Habich, Patrick Damme, Annett Ungethüm, Johannes Pietrzyk,
	Alexander Krause, Juliana Hildebrandt, Wolfgang Lehner
	MorphStore - In-Memory Query Processing based on Morphing Compressed Intermediates LIVE

