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Introduction

Nowadays, in research as well as in industrial product development, costly experiments are
more and more replaced by numerical simulations. For this purpose, many of the often time-
dependent processes in science and engineering are first modeled by differential equations.
Since these differential equations can rarely be solved exactly with reasonable effort, their
solutions have to be approximated using appropriate numerical methods. Thereby, it is
common to use different methods for approximation with respect to space variables and with
respect to time. The reason for this is that the requirements on the schemes are usually quite
different. Difficulties in spatial approximation often originate from complicated domains, the
occurrence of layers, or the need to apply stabilization methods. In temporal approximation,
however, stability or conservation properties of the methods are more relevant.

To illustrate the latter, we consider an example. Using the method of lines to treat a
parabolic partial differential equation, semi-discretization in space results in a huge system of
ordinary differential equations. This system becomes stiffer with finer spatial discretization.
Hence, implicit methods are preferable in order to avoid upper bounds for the time step
length. Moreover, the used time discretization should be at least A-stable to ensure suitable
stability properties. So, implicit Runge-Kutta methods, as the first-order implicit FEuler
method or the second-order implicit trapezoidal rule, may first come to mind. However,
if one is additionally interested in higher order temporal approximations, discontinuous
Galerkin or continuous Galerkin—Petrov schemes are particularly popular.

In this thesis, we consider a family of variational time discretizations that generalizes
discontinuous Galerkin (dG) and continuous Galerkin-Petrov (¢cGP) methods. The origins
of these discretizations lie in a preprint of Matthies and Schieweck [46] in which, after
applying a postprocessing to dG and ¢cGP schemes, new methods were found that in addition
to variational conditions also contain collocation conditions in the time mesh points. Taking
this idea, the considered family of methods was introduced by Matthies and the author.
It was first published in a joint work with Wenzel [17] and then studied in more detail
in [14, 16]. The methods of the family are characterized by two parameters that represent
the local polynomial ansatz order and the number of non-variational conditions, which is
also related to the global temporal regularity of the numerical solution. Moreover, with
respect to Dahlquist’s stability problem the variational time discretization (VTD) methods
either share their stability properties with the dG or the ¢cGP method and, hence, are at
least A-stable.

With every new method, however, the question naturally arises as to what advantages it
has. Besides the potentially high convergence order and the stability properties, which both
are also provided by dG and ¢GP methods, key feature of the new methods is that a high
smoothness of the discrete solution with respect to time can be ensured. Moreover, we will
see that under certain conditions superconvergence behavior in the time mesh points can be
observed not only for the function values but also for the derivatives. Therefore, in appli-




Introduction

cations where temporal smoothness is of interest or important target values are connected
to derivatives, these new variational time discretizations could be quite advantageous.

But even from a purely theoretical point of view, it is worth looking at the whole family
of VI'D methods. The more general view on the variational time discretizations provides
deeper insight into certain specifics of the well-known dG and ¢GP schemes. So, similarities
and differences in the analysis of those methods become more apparent and, partly, even
a unified analysis is possible. Furthermore, it reveals an approach to treat the break down
of superconvergence for stiff problems that is observed for dG and c¢cGP methods. This
approach may also be used to avoid the order reduction phenomenon in the setting of
initial-boundary value problems.

The overall goal of this thesis, addressed in Part II, is to investigate the family of VTD
methods in combination with a finite element method for spatial approximation for problems
in time and space. More specifically, for parabolic partial differential equations we want to
prove optimal error estimates with respect to space and time under appropriate conditions.
In preparation for this, extensive preliminary investigations are made. Especially, we first
consider, in Part I, the methods in the context of initial value problems.

Therefore, this thesis may be seen as an overview of the state of knowledge about the
considered family of variational time discretization methods. Here we mainly focus on
theoretical studies and error analysis. In this sense, the numerical experiments included
also are intended to highlight various properties of the methods using simple academic test
examples, rather than presenting realistic application situations.

In Chapter 1 the VTD methods are formulated for systems of ordinary differential equa-
tions (odes). Moreover, under quite general, abstract assumptions an error analysis for
non-stiff ode systems is presented. The obtained results especially clarify the influence of
approximate integration and approximation of the right-hand side on the order of conver-
gence. In addition, we discuss some key properties of the methods, which will often be of
great importance later on. These include, in particular, the associated quadrature formulas,
the postprocessing techniques, the connections to collocation methods with multiple nodes,
the idea of cascadic interpolation, and the nestedness of conditions for the derivatives of the
discrete solution. However, since most of the results have already been published in 14, 16],
for brevity, we skip most of the proofs. New findings are given for methods with a modi-
fied right-hand side. In this context more general investigations of the postprocessing, the
interpolation cascade, and the properties of derivatives of solutions are made. The different
results are illustrated by numerical experiments.

Chapter 2 is devoted to the study of variational time discretizations for stiff systems of
odes, where the considerations are restricted to affine linear problems with time-independent
coefficients. To this end, we first introduce a new framework of Runge-Kutta-like schemes
and study sufficient conditions for their unique solvability and some stability properties.
Furthermore, we show that important representatives of the variational time discretizations
can be written as Runge-Kutta-like methods and, in addition, provide solvability and sta-
bility under appropriate assumptions. This then allows us, by adapting and generalizing
several techniques known from the (stiff) error analysis for Runge-Kutta methods, to derive
error estimates for VI'D methods also for the considered class of affine linear, stiff problems
with time-independent coefficients. Computational results for a stiff example problem are




presented.

In Chapter 3, which begins Part II of the thesis, we give a brief introduction to parabolic
problems. Since most of the findings are standard results, the presentation is kept rather
short. After discussing the weak formulation and introducing a model problem for our
numerical analysis, we have a look at existence, uniqueness, and regularity of solutions.
Further, following the method of lines, we first consider the semi-discretization in space. A
reformulation of the semi-discrete problem as ode system shows the similarity to the stiff
problems studied in Chapter 2. Moreover, stability estimates and the differentiability with
respect to time are investigated for the semi-discrete solution, and abstract error estimates
for the spatial semi-discretization are presented. Finally, we obtain full discretizations in
space and time by applying the VTD schemes to the spatial semi-discrete problem.

An error analysis for the fully discrete method is developed in Chapter 4. To this end,
results from all three previous chapters are reused and combined. First, estimates in various
integral-based norms as well as pointwise estimates are proven for a certain time derivative
of the error. Here, we take advantage of the nestedness of conditions for the derivatives of
the discrete solution such that known approaches from the analysis of dG and ¢GP methods
can be applied. Nevertheless, our way of presenting the error analysis is quite unusual since
dG and c¢GP schemes are studied in parallel. This nicely reveals the great similarities but
also the differences in the analysis of the two methods. Moreover, supercloseness results
are obtained. Second, we address error estimates in the time (mesh) points also for lower
derivatives. For this, we draw on the results from the (stiff) error analysis and the findings
on the semi-discretization in space. In conclusion, combining all these observations, we
obtain error estimates for the full discretization that are of optimal order with respect to
space and time. Further, illustrating numerical results are given.

We close the main part of the thesis with a brief summary of the results. Moreover, we
provide an outlook on how the findings could be used further and raise some open questions
on variational time discretizations that may be answered in future work.

This thesis also contains an appendix. In it, some mathematical basics are compiled,
but also several results are proven that are very important for our analysis in Chapter 4.
Therefore, we also want to briefly outline its contents.

In Appendix A miscellaneous results are collected. A less common variant of the discrete
Gronwall lemma is proven, which we need in our analysis, and some information on Jacobi-
polynomials are given. Abstract projection operators for Banach space-valued functions are
studied in Appendix B. We give an abstract definition for polynomial projection operators
and investigate some commutation properties. Furthermore, some main results of standard
finite element interpolation theory, in particular projection error estimates, are generalized
to the univariate, Banach space-valued case. In Appendix C, we then give a compilation
of the concrete temporal interpolation and projection operators that are used especially in
Part II. We investigate their well-definedness and take a look at some of their properties.
Finally, in Appendix D, we show for two examples how norm equivalences for real-valued
polynomials can be generalized to norm equivalences for Hilbert space-valued polynomials.







Part 1

Variational Time Discretization
Methods for Initial Value Problems







1 Formulation, Analysis for Non-Stiff Systems,
and Further Properties

We consider the initial value problem
Mu'(t) = F(t,u(t)), u(ty) = ug € RY, (1.1)

where M € R%*4 is a regular matrix and F, sufficiently smooth, satisfies a Lipschitz condition
with respect to the second variable. Furthermore, let I = (¢y,to + 7T'] be an arbitrary but
fixed time interval with positive length 7. The value ug at ¢t = ¢y will be called the initial
value in the following.

If the ode system (1.1) originates from a finite element semi-discretization in space of a
parabolic partial differential equation, then M is the time-constant mass matrix. Since in
this context the computation of M ! is costly, usually a linear system with M is solved
instead. By the explicit occurrence of M we can investigate where this is necessary.

To describe the vector-valued case (d > 1) in an easy way, let (-, ) be the standard inner
product and | - | the Euclidean norm on R?, d € N. Besides, let ¢; be the jth standard unit
vector in RY, 1 < j < d.

For an arbitrary interval J and ¢ € N, the spaces of continuous and m-times continu-
ously differentiable R%-valued functions on J are written as C'(J,R?) and C™(J,RY), respec-
tively. Furthermore, the space of square-integrable R?-valued functions shall be denoted by
L?(J,R%) or, for convenience, sometimes also by C~!(J,R?). For non-negative integers s,
we write Ps(J,R?) for the space of R%-valued polynomials on J of degree less than or equal
to s. Moreover, P_;(J,R?) := {0}. For ¢ = 1, we sometimes omit R?. Further notation is
introduced later at the beginning of the sections where it is needed.

In order to describe the methods, we need a time mesh. Therefore, the interval I is
decomposed by

to<thi < - <ty_1<ty=ty+T

into N disjoint subintervals I,, := (¢,_1,t,], n = 1,..., N. Furthermore, we set
Tn = Tn — tn_1, T := max T,.
1<n<N

For convenience and to simplify the notation, we assume 7 < 1, which is not really a
restriction since we are interested in the asymptotic error behavior for 7 — 0. For any
piecewise continuous function v, we define by

+Y .o T -\ .o T (Y (4
o) = dm o), ()= D o), [ol=o(t) - olt;)
the one-sided limits and the jump of v at t,,. Moreover, with |-| the standard notation for
the floor function is used.

Hereinafter C' denotes a generic positive constant independent of the mesh parameter(s),

especially 7, and the function(s) under consideration, unless specified otherwise.




1 Formulation, Analysis for Non-Stiff Systems, and Further Properties

1.1 Formulation of the methods

We now present some general formulation of the variational time discretization methods
VTD; investigated in [14, 16]. Let r,k € Z, 0 < k < r. Then, the local version of the
numerical method (I,-problem) reads as follows

Given U(t,_;) € RY, find U € P,(I,,R?) such that

D) = — ; — k| _
MU () = (F(t,U(t))) - ifh>2i=0. [ -1, (1.2b)

)

MU () = %(F(t, vw))| . itk=si=0 L[5 -1 (120)

t=t"

n—1

and

| (M0, 0) | + b0 (M[U],_, 0t0)) = S (TF(UO)w) | Voo Pl RY),
(1.2d)
where U(t;) = up and §; ; is the Kronecker symbol.

Here, .¢, denotes an integrator that typically represents either the integral over I,, or the
application of a quadrature formula for approximate integration. Details will be described
later on. Moreover, Z,, could be used to model some projection/interpolation of f or the
usage of some special quadrature rules even if .§, is just the integral.

We agree that both .#, and Z, are local versions (obtained by transformation) of appro-
priate linear operators ﬁ and 7 given on the reference interval [—1, 1]. Both operators work
component-wise when applied to vector-valued functions.

Note that the formulation can be easily extended to the case k = r + 1. Then, the varia-
tional condition (1.2d) must formally hold for all p € P_;(I,,, R?). This can be interpreted
as “there is no variational condition”. Hence, only conditions at both ends of the interval I,

are used.
The VTD;, framework can shortly be described by

trial space: P,, if k> 1 : initial condition,
test space: Pr_y, if k> 2:0DE® in t,, 1=0,..., [§J -1,
if k>3:0DEW int; ,, i=0,...[5] -1

The notation ODE®” means that the discrete solution fulfills the ith derivative of the system

of ordinary differential equations. Obviously, the reduction of the test space for k > 1 is

compensated by other conditions. For a somewhat related approach see [22, (3.3)].
Counting the number of conditions leads for £ > 1 to

dimP_p+1+ 5]+ |5 =r—k+1+14+54+ 58 lap k424 k—1=r+1

while we have also dim P. = r + 1 conditions if £ = 0. The number of degrees of freedom
equals for all £ to dim P, = r + 1. Hence, in any case the number of conditions coincides
with the number of degrees of freedom.




1.1 Formulation of the methods

In order to indicate the dependence of the discretization on .$, and Z,, we shall refer to
the concrete method defined by (1.2) as .%,-VTD}(Z,). However, we agree that for ., = §,
and Z,, = Id, respectively, this specification is omitted.

Remark 1.1

The VTD), framework generalizes two well-known types of variational time discretization
methods. The method VTDJ is the discontinuous Galerkin method dG(r), whereas the
method VTD] equates to the continuous Galerkin—Petrov method cGP(r).

On closer considerations we see that methods VTD;, with even £k are dG-like since there
are point conditions on the [thh derivative of the discrete solution, but this derivative
might be discontinuous. The methods VTD] with odd k are cGP-like since there are point
conditions up to the [thh derivative of the discrete solution and this derivative is continuous
if I is sufficiently smooth. We have in detail

dG(r), k=0,
cGP(r), k=1,
dG—C[%J(T), k=2, k even,
cap-cl'= (), k=3, & odd,

VTD] 2

where we use and generalize the definitions and notation of [46]. Note that there is also
another reason to name the methods this way. All methods with odd k share their A-
stability with the ¢cGP method while methods with even k are strongly A-stable as the dG
method. For details see [14, 17] or Remark 1.39 below. &

1.1.1 Global formulation

For s € Z, s = 0, we define the space Y, of R%valued piecewise polynomials of maximal
degree s by

Y, :={pe L*(I,LRY) : ¢|, € P([,,R"), n=1,...,N}.
Studying the conditions (1.2a), (1.2b), and (1.2c), we easily see that the solution U of

$,-VID,(Z,) is [k 1J -times continuously differentiable on I if F' is globally ([ J 1)

times continuously differentiable. Furthermore, the condition (1.2b) for U € C [z J(] R%)
then already implies (1.2¢) for n = 2. Consequently, the method could be reformulated as
follows

Find U € Y, n CL*7"](1, R?) such that

UO(ty) = U9(tg), ifk>1,i=0,... |5, (1.3a)
i)y _ @
MU () = = (F(t.U()) - if & — 0, 5] -1, (1.3b)

foralln=1,..., N, and

Z{ (MU' = Z,F(-,U(-)), )] + d0x (M[U]. _,, 0(t ))}:o Vo e Y g (1.3c)
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where U@ (ty5) = u®(t < i < |%|, which includes the initial value uy in the problem
formulation. We agree on deﬁnln u)(ty) recursively using the differential equation, i.e.,
u® (to) = uo, Mu®(ty) = OrF (to, u(to)) + OuF (to, u(to))u M (ty),
qi-t (1.4)

Mu(l)(to) — F(to,u(to)), Mu(j)(to) —

S F ()], 0 >3

The term %F(t u(t))’t:to depends only on u(ty),...,uY "1 (ty) and can be calculated
using some generalization of Faa di Bruno’s formula, see e.g. [24, 47]. If F is affine linear in
u, i.e., F(t,u(t)) = f(t) — A(t)u(t), then we simply have

I
—

Qi1 - = _
FF(tau(t))‘t:to = fU(ty) — (jll)A(j (o) ul(ty), j=1,
=0

by Leibniz’ rule for the (7 — 1)th derivative.

Note that, since the test space Y,_j in (1.3c) allows discontinuities at the boundaries of
subintervals, the problem can be decoupled by choosing test functions ¢ supported on a
single time interval I,, only. Moreover, exploiting for k£ > 1 that U € C ey J(I R?) as well
as (1.3a) and (1.3b), we also obtain (1.2a) and (1.2c). Therefore, the global problem (1.3)
can be converted back into a sequence of local problems (1.2) in time on the subintervals
I,,n=1,...,N.

1.1.2 Another formulation

In [6] a unified formulation for various time discretization schemes was investigated. Also
the dG method (k = 0) and the ¢cGP method (k = 1) with exact integration and Z,, = Id
were fitted and studied in this framework there. We shall show below, see (1.6), that for
1 < k < r also the .%,-VTD} (Z,,) methods (1.2) could be analyzed in the framework of [6].

Let r,k e Z, 0 < k < r. For sufficiently smooth v and under certain assumptions on .%,,
we uniquely define an approximation P7%v € P,_;(I,,R%) of v by the conditions

(PIT0) (1) = v(ty), ifh>2i=0,. [§]-1 (1.52)

(RIF0)O (1) = v(t), itk >30=0... 55 -1, (1.5b)

n 2

| (PIFo(t) o) | = F[(@ao(t), ()] Vo € Prpl(Ln RY) with dopp(ta1) = 0, (15¢)

for details see [16, Lemma 17] or Remark 1.2 below.
Using this approximation operator, an equivalent formulation of (1.2) with 1 < k < r
reads

Given U(t, ,) e R, find U € P,(I,,R%) such that U(t) ) = U(t,

n—1

) and
MU'(t) = PIEF(t,U(t) Ve l,, (1.6)

where U(ty) = up.

10
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Indeed, if U solves (1.2), then MU' € P._1(I,,, R?) obviously satisfies all conditions of (1.5)
with v = F(-,U(")). Hence, whenever P;7v is uniquely defined we directly get (1.6).

Otherwise let U solve (1.6). Since there are polynomials on both sides, we can differentiate
the equation by any order. With (1.5a) and (1.5b) we have

%

- S(Feuw)

fort=t, andi=0,...,|5|—1,ifk>2 aswellasfort = ¢ ;and i =0,...,| 52| -1, if
k = 3, respectively. Hence, the conditions (1.2b) and (1.2¢) hold. Taking the inner product
of (1.6) with an arbitrary ¢ € P._;(I,,R?%) and applying .%, on both sides yield together
with (1.5¢)

MUTD (@) = — (PWF(t U())

t=t t=t

5[(001.)] - ] (7775 .00).)] - [ (5005

which is (1.2d). Hence, a solution of (1.6) also satisfies (1.2).

1.2 Existence, uniqueness, and error estimates

The existence and uniqueness of solutions to (1.2) as well as their error behavior are exten-
sively studied in [16] for non-stiff problems. For the sake of brevity we shall only present
the main results here. In order to formulate these results, some more notation and several
assumptions need to be introduced.

First of all, recall that .¢, as well as Z,, are supposed to be local versions (obtained by
transformation) of appropriate linear operators j and T given on the reference interval
[—1,1]. However, .%, is an approximation of the integral operator while Z,, approximates
the identity operator. Thus, the operations scale quite differently under transformation.
More precisely, let

T,:[-1,1] -1, t—t:=""T"4+ "¢ (1.7)

denote the affine transformation that maps the reference interval [—1, 1] on the closure of
an arbitrary mesh interval I, = (¢,_1,t,]. Furthermore, let kg and kz be the smallest
non-negative integers such that . and Z are well-defined for functions in C*s ([-1,1]) and
C*z([—1,1]), respectively. Then, we have for all ¢ € C*#(I,,, R?) and for all 1) € C*z(I,, R?)
that

~

Gl = FlooTI(T) = ZF[pe ] and Lo = (FwoT,)oT;"

Moreover, we suppose that for all non-negative integers [ and ¢ € ™zl ([~1,1]) it holds
Tie CY[-1,1]), i.e., Zo is at least as smooth as 9.

As before let r, k € Z, 0 < k < r. The study of existence and uniqueness of solutions
to (1.2) as well as the error analysis is strongly connected with the following operator.

11
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Let TS CRo (T, RY) — Py(T,,RY), 1 <n < N, with ky := max {|5] = 1, ks, kz} be
defined by

(TTT) Dt ) = oD (), ifk>1,4i=0,...,[5], (L8)
(TPE0)D (1) = D (), ifk>2i=1..,]%, (1.8b)

I (T 0,00) | + 00w T ot ) (ti)
= . [(Zo(v)(0), (1)) ] + dosv(ti_1) ety y) Vo € P (I, RY). (1.8¢)

In [16, cf. (4.1) and Lemma 1] it was shown that J77 is well-defined and that the condi-
tions (1.8) uniquely determine an approximation J>%v € P.(I,,R%) of v e C*+1(T,,R?) if
the following assumption is fulfilled.

Assumption 1.1
Let r,k € Z, 0 < k < r, be the parameters of the method. We assume that the reference
integrator § is such that v € P,_paxq1ey([—1,1]) and

Fla-pBlarpl=hig) — 0 vpe P11

imply 221\ = 0. Note that the absolute value in the exponent is needed only for k = 0.

Remark 1.2
The approximation operator \Zf 1 is somewhat connected to 737'156 Z introduced in (1.5). In
fact it holds (J7%v)" = PIL(v') for all v e Cks+1(T,, RY).

Accordingly, P77 is well-defined for functions in C*7(T,,, R?) and uniquely determines
an approximation PY%v e P,_i(I,,,R?) of v e C*7(I,,,R?) if Assumption 1.1 holds, cf. [16,
Lemma 17]. &

1.2.1 Unique solvability

First, we have a look on the unique solvability of the local problems (1.2) characterizing the
$,-VTDj (I,,) method.

Assumption 1.2 R
We assume that the reference integrator .§ is a bounded linear operator between C*7 ([—1,1])
and R. So, it satisfies

- k?y RN
Fel|<ed sw g0 vaect(-1,1),
j=0te[-1,1]

where, as before, kg = 0 is the smallest non-negative integer such that g is well-defined on

Cks ([-1,1]).

12



1.2 Existence, uniqueness, and error estimates

Assumption 1.3 R
We assume that for all 0 < | < kg the reference approzimation operator I is a bounded
linear operator between C™>¥*l([—1/1]) and C'([~1,1]). So, for 0 <1 < kg it satisfies

max{kz,l}
swp |(Z9)V(@)| <@ ) swp V@) vpe ometEi([—1,1)),
fe[-1,1] j=0 te[-1,1]

where, as before, kz = 0 is the smallest non-negative integer such that 7 is well-defined on

(-1, 1)),

Assumption 1.4
We assume that for 0 <@ < ks = max{[gj —1,kg, kz} the condition

[ () - o)

<& |w—w)Vs)|  forae.sel={ty,to+T]
1=0

t=s

holds for sufficiently smooth functions v,w. Here € depends on k7 and F.

Remark 1.3
Sufficient conditions for Assumption 1.4 would be

(i) for k7 = 0: F satisfies a Lipschitz condition on the second variable with constant
L >0,

(ii) for ky = 1: Fis affine linear in u, i.e., F(t,u(t)) = A(t)u(t)+ f(t), and |A(-)|| o, < 0.
Then, the inequality follows from Leibniz’ rule for the ith derivative.

(iii) In the literature, see |39, p. 74|, there also appear conditions of the form

TR0 ,y)

sup 3

tel,yeRd

< 00, O<Z</€j,

where F( denotes the ith total derivatives of F' with respect to ¢ in the sense of [39,
p. 65]. These conditions may be weaker in some cases.

Since in general the constant €, is somewhat connected to the Lipschitz constant and, thus,
to the stiffness of the ode system, the dependence of the results on this constant shall be
particularly highlighted. [

Now, we are ready to state a result on the solvability of the local problem (1.2).

Theorem 1.4 (Existence and uniqueness, cf. [16, Theorem 5])

Letr,k e Z, 0 < k < r. We suppose that Assumptions 1.1, 1.2, 1.3, and 1.4 hold. Then,
there is a constant v, > 0, multiplicatively depending on ¢, but independent of n, such
that problem (1.2) has a unique solution for all1 < n < N when 7, < Y.

13
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1.2.2 Pointwise error estimates

In order to derive error estimates along the lines of [16, Section 4|, the assumptions need to
be strengthened. In detail, compared to Theorem 1.4 we replace Assumption 1.3 by Assump-
tion 1.5a or 1.5b (following below). This is necessary since in the proof derivatives can be
handled if they are given in certain points but not their supremum. Furthermore, the error
analysis exploits an auxiliary interpolation operator Z?PP defined below, see Definition 1.6,
which amongst others is based on these assumptions.

Assumption 1.5a R
For 0 < 1 < kg we assume that 2 € CY([~1,1]) and that there are disjoint points X,

m=0,..., K%, in the reference interval [—1, 1] such that
KT KZ,
s [(ER)OB] <@ 3 Y B+ €rn sup [3()] V@ e Cr(-1,1]).
te[—1,1] m=0 j=0 te[—1,1]

Note that then typically kr = max{[w(,ln tm=0,...,K}.

Assumption 1.5b

We assume that there are disjoint points fﬁb, m=0,..., K7, in the reference interval [—1,1]
such that
~ K? K,
P18l < X D BDE)] + Eon sup [8B)] VP e CR((-1,1)
m=0 ;=0 te[-1,1]
Note that then typically kg = maux{K“g ¢}
Moreover, we assume that there are dzsyomt pomts fﬁb, m = 0,...,K%, in the reference
interval [—1,1] such that
K? KJ,
ZZ‘I@@ YO (¢ Ay)h— sup |I<,0f
m=0 =0 te[-1,1]
KT K7,
<C DY EVE)| + € sup [B(F)] @ e omexthe ka1 1]).
m=0 j=0 te[-1,1]
Remark 1.5

Assumption 1.5a is satisfied if 7is a polynomial approximation operator whose defining
degrees of freedom only use derivatives in certain points, as, for example, Hermite interpo-
lation operators. Together with Assumption 1.2, then }J [Igo]‘ could be estimated by the
supremum of |@| in [—1, 1] and certain point Values of derivatives of @.

However, Assumption 1.5a is not satisfied if 7 = 1d and k ¢ > 0. In order to enable
a similar estimate for ]ﬂ [Igo]‘ also in this case, Assumption 1.5b is formulated. Here,

the requirements on the integrator $ are increased. Of course, the defining degrees of
freedom for the integrator now should use derivatives in certain points only. In return, the
requirements for Z can be weakened such that they are met for example also by Z = Id. &

14



1.2 Existence, uniqueness, and error estimates

Definition 1.6 (Auxiliary interpolation operator)
For the error estimation we introduce a special Hermite interpolation operator Z2*?. Con-
cretely, the operator should satisfy the following conditions Igpp preserves derivatives up

to order [gJ —1in ¢, and up to order [k—;lJ lint! | i
(Ze) O (t,) = " (t) for0<l<[3]-1, (19)
(Tee) Oty = V(L) for 0<i<[55H] -1 |
Moreover, we suppose that
(ZePP) O (tF ) = Ot ) for 0<m < K" 0<I< K}, (1.10a)
with ¢, = % Z{Z . where the points tZ, are those of Assumption 1.5a or 1.5b,

respectively. If (1.9) and (1.10a) provide r*"P independent interpolation conditions and
7P < 4 1, then we choose r 4+ 1 — PP further points £, € (—1, 1)\{2?]1 15 =0,...,K%},
m=Kr+1,...,KF +r+1—1r*P and suppose

(T )(t2,,) = (1L ) for K7 +1<m <K' +7+1 -7 (1.10b)

where again tﬁm = % + %ffz We agree that Z2PP is applied component-wise to
vector-valued functions. Overall, conditions (1.9) and (1.10) uniquely define a Hermite-type

interpolation operator of ansatz order max{r®® — 1, r}. )
Now, we are able to provide an abstract error estimate.

Theorem 1.7 (Cf. [16, Theorem 8|)

Letr ke Z,0< k <r. We suppose that Assumptions 1.1, 1.2, and 1.4 hold. Moreover, let
Assumption 1.5a or 1.5b be satisfied. Denote by u and U the solutions of (1.1) and (1.2),
respectively. Then, we have for 1 < n < N, sufficiently small 7, and | = 0,1 that

sup H(u — U)(l) (t)H < C max <§;1[p H (Id — If}pp)u(t)H + Z iup H (u — jf’zu) m(t)”)

teln Isvsn

—I—C' max T, IH( jf’lu)(t;)

1<v<n—1

Y

where the constants C' in general exponentially depend on the product of T and €.

Remark 1.8 (Cf. [16, Remark 9])
Based on Theorem 1.7 we can also prove abstract estimates for higher order derivatives of
the error. Of course, we obtain that

sup | (u — U)W ()] < sup||(u— J,f’IU)(l)(t)H + f;p H(Jf’zu — U)(l)(t)H

teln tel,

< sup | (u — 7,/ u) O( H+Cmv(f)_lfulpH(Jf’Zu—U)(f)H

< sup |(w = TFw) D @) + Chaw (Z) <§;11p |(7:5u = w)(t)] + sup | (u - U)(t)H),

tel,

15



1 Formulation, Analysis for Non-Stiff Systems, and Further Properties

where an inverse inequality was used. However, since we only have a non-local error estimate
for sup,e;, [(u— U)(t)|, we cannot expect that the inverse of the local time step length can
be compensated in general. So, usually we additionally need to assume that 7, < 7,4 for
all v or alternatively that the mesh is quasi-uniform (7/7, < C for all v) to get a proper
estimate. &

Remark 1.9

Note that the estimate of Theorem 1.7 is appropriate for non-stiff problems only. Indeed,
since the error constant C' exponentially depends on the Lipschitz constant of the problem
(hidden in €@,), this constant would be excessively large in the case of stiffness such that
then the error bound would be useless.

Moreover, for the proof of Theorem 1.7 it is needed that 7, is smaller than a certain
bound which is inversely dependent on the Lipschitz constant. Therefore, stiff problems
would force very small time step lengths. For semi-discretizations in space of parabolic
time-space problems on shape-regular, quasi-uniform meshes, where the Lipschitz constant
is typically proportional to h=2 with h denoting the spatial mesh parameter, this would
cause upper bounds on the time step length with respect to h similar to CFL conditions. &

Of course, Theorem 1.7 provides an abstract bound for the error of the variational time
discretization method. However, the order of convergence still is not clear. Since Z3P is a
Hermite-type interpolator of polynomial ansatz order larger than or equal to r, its approx-
imation order (at least r + 1) is known. Suitable bounds on the error of the approximation
operator J.>*F shall be stated below. For their proof we refer to [16, Section 4].

Definition 1.10 (Approximation orders of .4, and Z,,)

Let 77, rZ , r7, and 7’%@' € Ng u {—1,00} denote the largest numbers such that
f p(t)dt = F[¢] Ve Py(l), J p(t) dt = J Zop(t)dt Ve e Pz (1),
p=Tp Vo€ Py(l), Folovi] = G [(Zap)i] Ve Py (1), € Pi(Ln).
Here, P_1(I,) is interpreted as {0}, in which case the respective operator does not provide
the corresponding approximation property. For convenience, set 77 := T§7T_k. Moreover,
simply write r;i instead of 7“%@» if %, represents the (exact) integral over I,,. Note that
rl > r%l- > rz and rfi > rz hold by definition. L3

Lemma 1.11 (Cf. [16, Lemma 12])
Letr,keZ, 0 <k <r, and suppose that Assumptions 1.1, 1.2, and 1.3 hold. Furthermore,
let 1,7 € Ny and define

ming 1= min{7F, 7 + 1,77 + 2}, e i= max{ks + 1,1, juins }-
Then, provided that v e Cmaxr (I, R?), the error estimate

jmax,f‘ ) '
(0= 7770 0 <€ Y (5) sl
e J=Jmin teln

holds with a constant C' independent of 7,,.
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1.2 Existence, uniqueness, and error estimates

Compared to the pointwise estimate of Lemma 1.11, the estimate for the approximation
error of j;f 7 in the mesh points ¢, can even be improved in some cases. In fact, the following
statement holds.

Lemma 1.12 (Cf. [16, Lemma 14])
Letr,ke Z, 0 < k < 7“ Suppose that the Assumptions 1.1, 1.2, and 1.8 hold. Moreover,
assume that max{rex, Ty + 1} r—1. Let 7 € Ny and define

Joims i= min{7, max{r + 1, min{r, r + 1}}+1, 7"10 +2},
j;;axf = max{kj + 1,]min7f}.

Then, provided that v e C’maxr(T,, RY), the error estimate

jmdx’l‘
[(o= g el <c X (3) swle? )
J=J i, "

holds for 1 < n < N, where the constant C' is independent of 7,.

Finally, summarizing the above results, the guaranteed orders of convergence can now be
listed clearly.

Corollary 1.13 (Cf. [16, Corollary 15])

Letr,k € Z, 0 < k < r, and | € {0,1}. Suppose that Assumptions 1.1, 1.2, 1.3, and 1.4
hold. Moreover, let Assumption 1.5a or 1.5b be satisfied. Denote by u and U the solutions
of (1.1) and (1.2), respectively. Then, we have for 1 <n < N

sup |[(u — U)O (1) < C(F,u) 7241}, (1.11)

tely,

with v as defined in Definition 1.10. If in addition max{rfx, rd + 1} > r—1, then we even
have

sup H(u o U)(t)H < C(F7 U) Tmin{r+1,rf-‘,—Q,r%O—&-l,max{rfx—&-l,min{r, rf-}-l}}}

tel,
as an improved error estimate.

If max{rex, rf +1} = r — 1 is satisfied, we obtain formally

sup H(U - U)/(t)H < C(F’ U) mm{r r7 +1, r10+1 max{r +1, mm{r s +1}}}

tel,

for the error of the first derivative. However, this gives the same convergence order as (1.11)
for I = 1.

Remark 1.14
g

Since the quantity rg = r7,_; used in the lemmas and the corollary above is quite abstract,
z

ex)’

we want to provide lower bounds for 77, based on the more familiar quantities rz, r

17
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and rfx. For the sake of simplicity, we shall impose somewhat stronger requirements on
7, than actually necessary. For a proof in a slightly more general setting we refer to |13,
Lemma 4.13].

Let ryk € Z, 0 < k < r, and ¢ € Ny. Then, r%i > rz. So, for rz = o the bound
cannot be improved further. Otherwise, supposing that Z, is a projection onto the space of

polynomials of maximal degree r; < o, ie., Z, : C*(I,,) — P._(I,) and Z,p = ¢ for all

pe P._(I,), we even get

Tf}i > max{rz, min{rfx — 1, 7“%2}}

Of course, it holds 7"%0 = rZ . In order to simplify the term on the right-hand side for i > 1,
we additionally could assume that Z,, is a Hermite-type interpolation operator. Then, we
simply have

g TN NS . :
TTi = max{rz, mln{rex,rex - z}

. | I
since then rz; > max{rz, ro — z}.
Furthermore, under the weaker assumption that Z = Z' o ... o Z' is a composition of

several Hermite-type interpolation operators Z7, 1 < j < [, we still find

7“%1- > je/\rftljg{z} { max{rﬂ, reI; — z}},

where M, := {j € N}l <j<l-—-1, max{rzj,rg — z} < minj+1<m<l{rzm}}. ' )

1.2.3 Superconvergence in time mesh points

The .%,-VTD; (1,,) methods described by (1.2) show some superconvergence behavior in the
time mesh points. More concretely, in many cases the convergence order of the error in the
time mesh points is considerably larger than the convergence order for the pointwise error.
The following statement can be proven.

Theorem 1.15 (Superconvergence estimate, cf. [16, Theorem 18])

Letr ke Z,0 < k < r. Suppose that the Assumptions 1.1, 1.2, and 1.3 hold. Moreover,
denote by u and U the solutions of (1.1) and (1.2), respectively. Suppose that (for T suf-
ficiently small) the global error sup,; | (u — U)(t)|, as well as U and all of its derivatives,
can be bounded independent of the mesh parameter. Then, we have for 1 <n < N

H(U . U) (tT_L)H < O(F, u) ( sup H(u . U)(t)HQ + Tmin{?rk+1,r;,9a%+1,max{r‘ch+l,min{r,rngl}}}) 7

t€fto,tn]

where T\‘Zf = minogi@_k{r%i + z}
Remark 1.16 ,
The term supsep, .1 |(w—U)(t)|" in the estimate of Theorem 1.15 may be dropped under
certain conditions. For more details on this, see [16, Remark 19]. [
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1.2 Existence, uniqueness, and error estimates

Remark 1.17

While a bound for the global error sup,; |[(u — U)(t)| could be derived from Theorem 1.7,
also see Corollary 1.13, it is not directly clear how to guarantee in Theorem 1.15 that U
and all of its derivatives can be bounded independent of the mesh parameter. However,
provided that Assumption 1.1 holds and a uniform bound for the global error is known, it
is shown in [16, Lemma 20| that sup,.; [UP(t)| < C(F,u) forall I > 0ifrf >r—2. &

Remark 1.18 (Superconconvergence of derivative(s) in time mesh points, cf. [14, Re-
mark 4.10])
From the point conditions (1.2b) and the bound of Theorem 1.15 we also gain superconver-
gence estimates up to the | £ |th derivative of the solution U of .%,-VTD}(Z,) in t,,, provided
that F' satisfies Assumption 1.4. Indeed, we find for 1 <n < N

d’L

Jou -2l - |

= (ME () - MTF(LU))

t=t,

<Y |w-v)u)] <. < Clw-);)

by iteration over i =0, ..., [gJ — 1. )

Summarizing the above observations, the following estimates in the time mesh points can
be stated.

Corollary 1.19 (Cf. [16, Corollary 21|)

Letr ke Z,0 < k <r. Suppose that Assumptions 1.1, 1.2, 1.3, and 1.4 hold. Moreover, let
Assumption 1.5a or 1. 5b be satisfied. Denote by u and U the solutions of (1.1) and (1.2),
respectively. Then, if ’I“I r—2, we have for1 <n < N

H(u o U)(t_)H < C(F, U)( m1n{2r k+1, rvar+l max{r +1, mln{r ry +1}}} + 5 TQTZ +4> (112)

n

with rvar 1= minogig,k{rfi +i}, rd = r{,_k, and ngi as defined in Definition 1.10.
If TZ r — 2, the uniform boundedness of U and all its derivatives cannot be ensured in
general. Then, we only have

[(w =)&) < sup(w = D)D),

tel,

where we refer to Corollary 1.13 for bounds on the right-hand side term.

1.2.4 Numerical results

In this subsection, we want to show that the estimates of Corollary 1.13 and Corollary 1.19
are sharp. To this end, the error in the norms

; HUHZOO = max HU H

] g = eSlSIup Hv(t) 1<n<N

ol = = max esiesup Hv

should be investigated numerically. Appropriate numerical studies have been already made
in |16, Section 6]. However, for completeness we give a short summary of the obtained
numerical results here.
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Example
We consider the initial value problem

(Z%):(ul_(g%(—t)u:<g2$2t>)> e (0.32) u<0>=<162), (1.13)

of a system of nonlinear ordinary differential equations that has

cost ) sint
—_—, U = —
2 +sint 2 2 +sint

Ui (t) =

as solution.

The appearing nonlinear systems within each time step were solved by Newton’s method
where a Taylor expansion of the inherited data from the previous time interval was applied to
calculate an initial guess for all unknowns on the current interval. If higher order derivatives
were needed at initial time ¢ = 0, the ode system and its temporal derivatives were used,
see (1.4).

According to Corollary 1.13 and Corollary 1.19, we expect the following orders of conver-
gence

“Wh*-order” = min{r, e+ 1}, (1.14a)
“L*-order” = min{r + 1, 42, rfo + 1, max{r‘g + 1, min{r, ry + 114}, (1.14b)

“(*-order” = min{2r — k + 1, rIT 41, max{r + 1, min{r, e+ 1}}} (1.14c)
for the error in the Wh®-norm, the L*- norm and the ¢*-norm. However, recall that there
are the additional conditions max{rex, Ty + 1} r — 1 for the L*-estimate and 7 > r — 2
for the (*-estimate, respectively.

In order to verify these theoretical results, a wide variety of integrators and interpolators
needs to be studied. Here we always consider .%,-VTDS(Z,,) methods, which are variants of
cGP-C'(6 ), as discretization of (1.13) where ¢, and Z,, are obtained from given reference
operators .$ and 7 via transformation. Each integrator ¢ and each interpolation operator
7 that is studied is based on Lagrangian interpolation with respect to a specific node set P
and P;, respectively. Hence, we have kg = k7 = 0. Both node sets are given for each of the
test cases. Since often nodes of quadrature formulas are used, we also write for instance “left
Gauss—Radau(k)” to indicate that the nodes of the left-sided Gauss—-Radau formula with &
points have been used. All upcoming settings fulfill Assumption 1.1.

The different test cases are listed in Table 1.1. Beyond the node sets for integrator and in-
terpolation operator also the associated theoretical expressions for the orders of convergence
are presented. Note that the limiting terms are always indicated in boldface. The expres—
sions for the L*-order or the /*-order are struck out if the conditions max{rex, Ty —I—l}
or rf > r — 2, respectively, are not fulfilled.

In the first test case both conditions are violated such that only the W1 ®-estimate holds
and gives order 3 while the L®- and (*-estimates would yield order 4. The case group 2
provides choices for P; and P; that show that the L*-convergence order can be limited
by each of the three terms occurring in the maximum expression inside the outer minimum
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Table 1.2: Error of .%,-VTDS(Z,) in different (semi-)norms and associated (experimental)
convergence orders

case |u—U|;» eoc |(w—=U)|,» eoc |lu— Ul eoc

(theo) (theo) (theo)

1 1.615¢:06 3.04  2.369¢-05  3.00  1.559¢-06 3.01
1.961e-07  (3)  2.965¢-06  (3)  1.937e-07 (3)

2a  3.799%-11  6.00 3.863e-09 5.00 7.003e-12  6.00
5.862e-13  (5) 1.208e-10 (5) 1.096e-13  (5)

2a*  9.412¢-11 5.08  4.048¢-09 500  8.666e-11 5.00
2.775¢-12  (5)  1.266e-10 (5)  2.699¢-12  (5)

2b  1.465¢-12  6.07  6.84le-11 6.00  1.354e-12  6.00
2.175¢-14  (6) 1.072¢-12 (6) 212214 (6)

2c  6.60de-12  6.00  1.130e-10 599  6.60le-12  6.00
1.034e-13  (6)  1.773e-12 (6) 1.034e-13  (6)

3a 1.716e-10  5.19 1.072e-08 5.00 1.459e-10  5.02
4.688e-12  (5) 3.353e-10 (5) 4.500e-12  (5)

3b  3.069¢-07 4.02  3.581e-05 3.00  6.011e-08 4.12
1.886e-08 (4)  4.479¢-06 (3)  3.455e-09 (4)

3¢ 4.068¢-13  7.00  7.155e-11 6.00  6.689¢-19  10.00
3.181e-15  (7) 1.119¢-12 (6)  6.529¢-22 (10)

da 4.464e-11  6.00  5.648¢-09 500  5.120e-15 8.00
6.981e-13  (6)  1.766e-10  (5)  2.005e-17  (8)

4b  4.068¢-13  7.00  7.155e-11 6.00  5.318e-19 10.00
3.181e-15  (7)  1.119¢-12 (6)  5.192¢-22 (10)

de 8.654e-13  7.00  1.288¢-10 6.00  2.565¢-15  8.00
6.759%-15 (7)  2.014e-12 (6) 1.002e-17  (8)

4d - 2.028e-07 4.00  2.111e-05 3.00  4.377e-08  4.00
1.268¢-08  (4)  2.641¢-06 (3)  2.735e-09 (4)

in (1.14b). Hereby, note that it is not possible that 77 4 1 is the only limiting term since the
structure of (1.14b) implies that min{r + 1,77 +2} > rJ +1 > min{r,r + 1} if rJ + 1is
limiting. Hence, the integer r;fx +1 coincides either with min{r—I— 1, r’lg- + 2} or min{r, rf— + 1}.
Case group 3 shows that each of the first three expressions in the outer minimum in (1.14b)
can bound the L®-order and that the W' ®-order can be limited by both occurring terms
in (1.14a). With case group 4 we consider settings where the convergence order in the
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(®-norm suggested by (1.14c) is strictly greater than the L*-order given by (1.14b). It is
shown that the first two arguments in the minimum in (1.14¢) and the first argument inside
the maximum there can limit the /*-convergence order. Moreover, we consider a case where

the higher superconvergence order cannot be expected since Tf- <r-—2.

Computational results for all the different test cases are given in Table 1.2. All calculations
were carried out with the software Julia [18| using the floating point data type BigFloat
with 512 bits. We present the errors in different (semi-)norms obtained for 256 and 512
time steps and also give the experimental orders of convergence (eoc) calculated from these
two errors. For comparison, in addition the theoretically predicted convergence orders are
given in brackets.

The numerical results confirm the expected convergence behavior. The only exception is
case 2a, where we see an experimental order of convergence of 6, which is one order higher
than expected. This discrepancy can be explained by a closer look to Lemma 1.12. For
its proof a splitting is used whose single terms only vanish for all v € P5(I,). However, in
case 2a, due to symmetry reasons, it holds Sln (v— j;f’Iv)/(t) dt = 0 for all v € P({,,) and
so (v— JTv)(t;) = 0 for all v € Py(1,). Thus, the convergence order of the limiting term
is actually better than predicted. For a more detailed discussion of this and all other cases,
we refer to [16, Section 6].

1.3 Associated quadrature formulas and their advantages

In order to obtain a fully computable discrete problem, usually a quadrature formula @, is
chosen as integrator, i.e., .%, = Q,. To indicate this choice, we simply write @Q,,-VTD}.(Z,).
Moreover, recall that integration over I, is used if no quadrature rule is specified and that
the specification of Z,, is omitted if Z,, = Id. We shall mostly use quadrature rules that are
exact for polynomials of degree up to 2r — k. This ensures in the case of an affine linear
right-hand side F'(t,u) = f(t) — Au with time-independent A that at least all u depending
terms in (1.2d) are integrated exactly.

1.3.1 Special quadrature formulas

The special structure of the method (1.2) motivates to use an assigned interpolation operator
that conserves derivatives at the end points of the interval up to a certain order. In detail,

we define on [—1,1] the reference interpolation operator i’g : Cng([—l, 1]) —» P.([-1,1])
that uses the interpolation points

at the left end: derivatives up to order |%5!]| in —17%,
|in17,
in the interior:  zeros t; € (—1,1) of the (r — k)th Jacobi-polynomial

N

at the right end: derivatives up to order [ ( )
1.15

—1

with respect to the weight (1 + f)lkTJH(l — f)ngH.
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Note that there is no point evaluation at the left end for £ = 0. In any case, the number of
interpolation conditions is

r—k+ 5 +1+ |5 | +1=r—k+k—-14+2=r+1

and, thus, coincides with the dimension of P,. The interpolation operator f,’; is of Hermite-
type and provides the standard error estimates for Hermite interpolation, see e.g. [51,
(2.1.5.9) Theorem, p. 57|.

In addition, we define by
1
Q)= | (@2)ai

a quadrature rule on [—1,1] that is in a natural way assigned to the method VTD}. The
quadrature rules @2 are known in the literature as generalized Gauss-Radau or Gauss—
Lobatto formulas, respectively, see e.g. [32, 44]. The weights of the quadrature rule @’,; could
be calculated by integrating the appropriate Hermite basis functions on [—1,1]. Finally, we
obtain

1 1 r—k I_gJ
J P(i) di ~ Qi3] = f (Zrp) (B dt = wfED(=1%) + Y wl(E:) + > wf e (+17).
-1 -1 i=1 i=0

=0

The quadrature rule @2 is exact for polynomials up to degree 2r — k. It can be shown that
all quadrature weights are different from zero, see [44|. More precisely, we have

wi >0, wi>0, (=1)wl>0, (1.16)

so even the sign of the weights is known. Note that in general (for & > 2) not all weights are
positive. Semi-explicit or recursive formulas for the weights of these methods can be found
in [48].

Transferring the quadrature rule @Z and the interpolation operator f}; from [—1,1] to the
interval I,,, we obtain Q% and I . We usually skip n in the notation since the relation to
I,, will mostly be clear from context. Hence, we have

l%J ) r—k l%J ]
[ pwar~ @ilel =T X w (3 000 + X utettn) + S0l (3) 000 |

n i=0 i=1 i=0

tn+ttn—1

el Ife L, i=1,...,r — k.

where ¢, ; =

Remark 1.20

The quadrature rule @) is the well-known right-sided Gauss-Radau quadrature formula with
r 4+ 1 points, which is typically used for the discontinuous Galerkin method dG(r). @7 is
the Gauss—Lobatto quadrature rule with r + 1 points, which is often used together with the

continuous Galerkin—Petrov method cGP(r). [
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1.3.2 Postprocessing

The quadrature formulas defined by the quadrature points (1.15) enable a simple postpro-
cessing, which shall be presented in this subsection. Postprocessing techniques for dG and
c¢GP methods have been introduced in [46] and were generalized to the whole family of
variational time discretizations in [14]. The postprocessing creates an improved solution
where the global smoothness is increased by one differentiation order if F' is [%J—times
continuously differentiable on I. Moreover, the postprocessing lifts the originally obtained
numerical solution on each time subinterval to the polynomial space with one degree higher.
This results in an increased accuracy and mostly an improved convergence by one order for
the pointwise error.

The postprocessing can be formulated as follows. For the proofs we refer to [14, Section 3].

Theorem 1.21 (Postprocessing Q;-VTD], ~ Q;-VTD} 1}, cf. [14, Theorem 3.1])
Let r,k e Z, 0 < k <r, and suppose that U € Y, solves Q;-VTD;.. For everyn =1,...,N
set
U], =Ul, +ad, o€ Pya(ln,R),
. ‘ , : (|5]+1),,_ .
where 9, vanishes in the (r+ 1) quadrature points of Q. and satisfies U, (t.)) = 1 while

the vector a, € R? is defined by

a, = M~ (dlz] F(tU)]

h —mullEl) gy ). (1.17)
ael]

t=t,

Moreover, let ﬁ(ta) =U(ty). Then, Ue Y, solves Q-VTD1;.

From the definition (1.17), it seems that a linear system with the mass matrix M has
to be solved in every time step in order to obtain the correction vector a,. However, the
computational costs for calculating a,, can be reduced significantly if F' is sufficiently smooth
as shown in the following proposition.

Proposition 1.22 (Cf. [14, Proposition 3.2])

Suppose that F' is [%J—times continuously differentiable on I. Then, the correction vec-
tors a, € R defined in (1.17) for the postprocessing presented in Theorem 1.21 can be
alternatively calculated by

a, = -1 (U([%IJ“)(zf+ ) — [Nj(l%JH)(t;_l)) form >1,

and

E—1

where u(l*2 JH)(tO) is defined in (1.4).
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Note that a, can be calculated in this way without solving a system of linear equations
and, thus, with almost no computational costs. From the structure of a, we see that the
postprocessing can be interpreted as a correction of the jump in the lowest order derivative
of the discrete solution that is not continuous by construction.

k=1
Since the division by 19,(7,[ : JH)(t:{_l) changes the normalization of 9, only, we gain the
following.

Corollary 1.23 (Alternative postprocessing Q;-VTD} ~ Q;—VTDH%, cf. [14, Corol-
lary 3.3])

Let r,k e Z, 0 < k < r, and suppose that U €'Y, solves Q;-VTDj.. For everyn =1,...,N
set

U, =U|, =@, o€ Pa(lnR),

where G, (t) = 9, (6)08 T 1) (e

n—1

(r + 1) quadrature points of Q}, and satisfies ﬁ(l JH)(t:{_l) = 1. The vector a, € R? is
defined by

) with 9, from Theorem 1.21, i.e., U, vanishes in all

| N

) {U([‘IJH)(tg) a2 ) @), n=1,

R LA R T R e A TS |

v ‘

where w7+ )(to) is given by (1.42. Moreover, letNﬁ(ta) = Ul(ty). Then, if F is |5 |-
times continuously differentiable on I, we have that U € Y, solves QZ—VTDZE

1.3.3 Connections to collocation methods

In this subsection, we see that the (local) solution of Q;-VTD;™ with 1 <1 < k + 2,
which obviously includes Q}-VTDj !}, can be characterized as the solution of the (local)
collocation problem with multiple nodes, as known e.g. from [37, p. 275], with respect to
the quadrature points of @}, i.e.,

Given U(t;_,) € R%, find U € P,,(I,,R?) such that U(t_,) = U(t,_,) and
MU () = d (F(t Ut ))) i=0,...]% (1.18a)
n dtl t:tT_L’ ) s Lol
~ . d
(i4+1) 4+ _ : P k—1
MO, = = ( (t, Ut ))) e HEELi=0 L (Lsh)
MU' (t;) = F(tni, Utns)), i=1,...,r—k (1.18¢)

where (7(t5) = ug. Here, t,; = % T"fl, where #; denote the zeros of the (r — k)th

Jacobi-polynomial with respect to the weight (1 + t)l JH(l - f)ng“, see also (1.15).
The following connection was found and proven in [14].
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Theorem 1.24 (Equivalence to collocation methods, cf. [14, Theorem 4.1))
Letr ke Z,0<k<r, and1 <l <k+2 Then, Ue P.yi(I,,R?) solves Q,-VTD;
if and only if U solves the collocation method (1.18) with respect to the quadrature points of
Q-

Summarizing, we have that every solution of Q7-VTDj !} also solves Q;-VTD]*! with

1 <1 <k+2as well as a collocation with respect to the quadrature points of ()}, and vice
versa. This can be shortly described as

Q;-VID;, 2 @Q;-VID;™' with 1<I<k+2

= collocation with respect to the quadrature points of Q.

Remark 1.25

Independent of the above findings, the connection between collocation methods and (post-
processed) numerically integrated discontinuous Galerkin methods (using the right-sided
Gauss—Radau quadrature), i.e., Theorem 1.24 for k = 0 < r and [ = 2, was already ob-
served in [53]. Moreover, connections between collocation methods and the numerically inte-
grated continuous Galerkin—Petrov methods (using interpolatory quadrature formulas with
as many quadrature points as number of independent variational conditions) were shown
in [40, 41]. Certain equivalences between collocation methods and dG or ¢GP methods have
also been discussed in |26, Proposition 70.7]. [

1.3.4 Shortcut to error estimates

Error estimates for collocation methods with multiple nodes, as defined e.g. in [37, p. 275],
are well-known provided that F' and u satisfy certain (regularity) assumptions. Unfortu-
nately, these conditions on F' and u are often not explicitly given in the literature. Never-
theless, according to [37, p. 276, pp. 212-214|, we shall state various error bounds for the
solution of (1.18) without specifying these assumptions. Moreover, global error estimates
can be derived by adapting techniques presented in [40, Theorem 2.

Proposition 1.26
Let U denote the solution of the collocation method (1.18) and u the exact solution of (1.1).
Then, assuming that F' and u satisfy certain (regularity) assumptions, we have

I\ (4~ 2r—k+1
max_|(u—=0)(t,)| < C(F,u)r (1.19)
and
sup H<u _ ﬁ)(l)@)H < C(R u>7_min{2r—k+1,(r+1)+1—l}, 0<l<r+1, (1'20)

tel,,
forall1<n<N.

The term 2r — k + 1 inside the minimum is due to the fact that the convergence order of
the collocation method is limited by the accuracy of the underlying quadrature formula )},
that is exactly 2r — k + 1. Note that the limitation is active for » = k£ and [ = 0 only.
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Exploiting the equivalence of Q};—VTDH% and the collocation method (1.18) as well as
the connection between Q;-VTDj, and Q;-VTD} '} through the postprocessing and its re-
version by interpolation in the quadrature points of Q. (for details see [14, Proposition 4.5]),
we immediately also gain various results for the Q};-VTD) method.

Corollary 1.27 (Existence and uniqueness, cf. [14, Corollary 4.6])

If there is a solution Ue PTH(In,Rd) of the collocation method with multiple nodes defined
by (1.18), then U = I’"U € P.(I,,RY) solves Q7-VTDj. Furthermore, if U is uniquely
defined as solution of (1.18), then so is U as solution of Q;.-VTDy.

Corollary 1.28 (Global error estimates, cf. [14, Corollary 4.7])
Let (1.20) hold for the solution U of (1.18) and the exact solution u of (1.1). Then, we
have for the solution U of Q.-VTD} and 0 <1 < r that

sup | (u — U>(l)(t>H < sup |(u — ﬁ)(l)(t)H + sup H(ﬁ — 70" (t)] < C(F, )7+
tel,,

tely, teln
foralll <n<N.

Corollary 1.29 (Superconvergence in time mesh points, cf. [14, Corollary 4.8|)

Let (1.19) hold for the solution U of (1.18) and the exact solution u of (1.1). Then, we
have

~

max, [|(u—U)(t,)] = max (u-U)E)] < C(Fw)r ™

1<n<N 1<n<N
for the solution U of Q;-VTD;,.

Remark 1.30 (Superconvergence in quadrature points, cf. [14, Remark 4.9])

We obtain under the assumptions of Corollary 1.28 also a (lower order) superconvergence
estimate for the solution U of Q}-VTDj, in the quadrature points of Q} if 0 < k < r. In
fact, let ¢, ;, 7 = 1,...,7 — k, denote the local quadrature points of )}, in the interior of I,.
Then, we have for 1 <n < N

[(u = U)(tn)]| = [ (w = O)(tn)| < CF,u)r 0+,
In addition, we obtain
(=)0 = |(uw— D)) < C(Fu)yrrDH=10 o<1 < 5],
and

H(u (l) t+ H _ H (l) t+ H < C’ F, u) (r+1)+1—l7 0<I< [kz—lJ’

provided £ > 1
These superconvergence estimates especially imply

N 1/2 N 1/2
(2 Q[ 1u - U”ﬂ) - (Z Qs I - W]) < (ty — to)PC(F, w0+,
n=1 n=1
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which compared to

N 1/2
<Z L H(u - U)(t)Hth) < (ty — t0)1/2C(F7 U)TT+1

gives an extra order of convergence. &

1.3.5 Numerical results

In this subsection, we want to illustrate the effects of postprocessing by some computational
results. Hereby, we draw on the numerical data of [15, Section 7]. As in Subsection 1.2.4 we
consider the initial value problem (1.13) as test example. Moreover, for the calculations the
software Julia [18] have been used with floating point data type BigFloat with 512 bits.

We are interested in the error of the discrete solution U and the error of the postprocessed
solution U where the postprocessing is determined using the jumps of the derivatives, as
given in Corollary 1.23. The errors are measured in the norms

1/2

|vL2=(£:N\\v<t>)2dt) C Jole = max [ol)

1<n<N

with | - | denoting the Euclidean norm in R¢.

Numerical results for Qz—VTDg with £ = 0,5,6 are presented in Table 1.3. The given
errors are those obtained for 256 and 512 time steps. In addition, the associated experimental
orders of convergence (eoc) and the theoretically predicted convergence orders (theo) are
listed.

Overall, our theoretical findings are well confirmed by the numerical data. The error of
the discrete solution as well as the error of the postprocessed solution show the expected
(super-)convergence orders. Moreover, the postprocessing yields the predicted improve-
ments.

Especially note that, as expected from Remark 1.18, for QS-VTD} we have a supercon-
vergence behavior of the derivative in the time mesh points only after postprocessing since
only the postprocessed solution satisfies appropriate collocation conditions. On the other
hand, for Q¢-VTDS, k = 5,6, we see that |(u — U)'||= = |(u — U)'| ¢, which is clear by
construction of the postprocessing. Nevertheless, the expected (super-)convergence orders
are obtained since collocation conditions are fulfilled already by the discrete solution U in
these cases. Furthermore, note that for Qg—VTDg the postprocessing does not lead to an
improvement of the error itself, whereas the L?-norm of the time derivative of the error is
improved. This also is in agreement with our theory, cf. Corollary 1.28 and (1.20).

For further numerical results and a more detailed discussion we refer to [15, Section 7].
Also note that in [14, Section 6] similar investigations and findings were made for another
test problem.
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Table 1.3: Error of Q$-VTDS, k = 0, 5,6, in different (semi-)norms and associated (experi-
mental) convergence orders before and after postprocessing
QS-VTD{  eoc QS-VTD!  eoc Q3-VTD!  eoc
(theo) (theo) (theo)

lu—Ul;: 2.607e-11  7.00  2.828¢-10 7.0  2.092e-09 6.98
2.042¢-13  (7)  2.188e-12  (7) 1.653¢-11  (7)

lu—Ulzz 9.898¢-13 7.99  5.008e-11 7.99  1.184e-09 6.9
3.88le-15  (8) 197213 (8)  9.205e-12  (7)

lu—Ulpe 1.385¢-21 13.00 4.552e-12  7.98  7.584e-10 7.01
1.685¢-25  (13)  1.798¢-14 (8)  5.891e-12  (7)

l(w—=U)|2 7.699¢-09 6.00 1.641e-08 6.00 3.871e-08 6.02
1.207e-10  (6)  2.564e-10  (6)  5.954e-10  (6)

(w—=TU)|r 1.531e-10 6.99  1.632e-09 6.99  7.753e-09 6.9
1.201e-12 (7))  1.28le-11  (7)  6.120e-11  (7)

[(u—U)pe 357309 599  6.36le-12  7.99  8.736e-10  6.96
5.605e-11  (6)  2.504e-14 (8)  7.012e-12  (7)

l(w—T)|lpe 1.522e-21 13.01 6.36le-12  7.99  8.735¢-10  6.96
1.851e-25  (13)  2.504e-14  (8) 7.012e-12  (7)

1.4 Results for affine linear problems

The following section is restricted to the study of affine linear problems of the form

Find u : I — R? such that
Mu'(t) = f(t) — Au(t), u(ty) = up € RY, (1.21)

where M, A € R™? are time-independent matrices and M is regular. Thus, in the general
setting we have F(t,u) = f(t) — Au.

1.4.1 A slight modification of the method

In this subsection, we want to introduce a slight modification of the variational time dis-
cretization method for the more structured affine linear problem (1.21). As we will see
later, many schemes of practical relevance can be nicely described in the modified structure.
Moreover, the modification is also quite interesting from a theoretical point of view.

Let 0 < k < r. In order to solve (1.21) numerically, we define the (local) .%,-VTDJ,(g)
problem by
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Given U(t, ;) e RY, find U € P,(I,,R%) such that

Ultyy) = Ult,_), if k> 1, (1.22a)
MU () = g9, — AUD(t,), ifk>2,i=0,...[5 -1 (1.22b)
MU+ (t ):g()( D= AU ( 1) ifk>3,i=0,.. ,[%J_L (1.22¢)

and

G (MU, @) | + 6o (M[U],_ 0t} 1) = F[(9— AU )] Vee P i(l,,RY),
(1.22d)
where U(t;) = up and g is some approximation of f, details will be given later on. As before
$, denotes an integrator, typically the integral over I,, or a quadrature formula.
First of all, we want to point out the main differences between the methods given by (1.2)
and by (1.22). Also note that in the notation .%,-VTDj, (g) the approximation g itself is
indicated instead of an approximation operator.

e Collocation conditions: In (1.2b) and (1.2¢) the “real” right-hand side appears while
in (1.22b) and (1.22¢) usually an approximation of the right-hand side (g instead of
f) is used.

e Variational condition: In case that the operator Z,, does not preserve polynomials up
to degree r, we have Z,,(f — AU) = I,,f — AZ,U # Z,f — AU in general. Thus, the
variational conditions (1.2d) and (1.22d) even differ for the affine linear problem (1.21).

e The approximation g of f usually does not provide global regularity properties. There-
fore, even if f is sufficiently smooth, the solutlon U of (1.22) is (mm{[ J kg + 1})
times continuously differentiable only. Here k; > —1 denotes the largest integer such
that g € C*s(1I).

Remark 1.31
Applied to the affine linear problem (1.21) the methods .%,-VTDj}.(Z,,) defined by (1.2) and
$,-VTID} (Z,f) defined by (1.22) are equivalent if Z, preserves polynomials of degree less
than or equal to r and additionally satisfies that (v —Z,v)?(¢;_;) = 0 for 0 <i < |52 -1
as well as (v — Z,v)D(t;) =0for 0<i < |%| - 1.

Especially, we have for example that

$-VID, = 9-VIDi(f),
$-VID,(Z;) = $-VID,(Z;f) for all 0
$VIDL(Z*)) 2 §-VID(IItLf) for all 0

<k<r,
<k<r-

7

where Z; is the Hermite interpolation operator associated to the quadrature rule @)} deter-
mined by (1.15). Note that for the last equivalence the case r = k needs to be excluded
since otherwise I,:I; f would not be well-defined. &
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1.4.2 Postprocessing for the modified method

Similar to the postprocessing of Subsection 1.3.2 we can also define a postprocessing for
the modified method. Recall that @}, denotes the quadrature rule associated to VITDj
determined by (1.15).

Theorem 1.32 (Postprocessing Q;-VTD],(g) ~ Q5-VTD}5(9))
Let rik,e Z, 0 < k < r, and suppose that U € Y, solves Q};—VTDZ(Q). Form=1,....N
set

fjb = U‘I +dn19n7 ﬁnEPrJrl([naR)v
Do - - (13]+1) - :
where ¥, vanishes in the (r +1) quadrature points of Q}, and satisfies Oy, (t.)) = 1 while
the vector a, € R? is defined by

i = M7 (gUED () — av D) — arv a0 ). (1.23)

Moreover, let (7(155) = U(ty). Then, Ue Y, 11 solves QZ—VTDZié (g)

Proof. The argumentation is quite analog to that of [14, Theorem 3.1]. But for the sake
of completeness and clarity we give it here. Especially, it can be seen that we do not need
global regularity assumptions on g. We have to verify that U satisfies all conditions of
Q;-VTD;}(g) where Q} is the quadrature rule associated to VID}, which is exact for
polynomials up to degree 2r — k.
First of all, we show an identity needed later. The special form of #,,, the exactness of
%, and integration by parts yield

t

Gl = [ et =~ | s, dt+ D)2

= —Qi[9n¢'] = 00 (Vnp) (1) = —Gou(Inp)(ti_1) Vo€ Py(ln,R). (1.24)
=0

Precisely, we used that both ¥/, ¢ and 9,,¢" are polynomials of maximal degree 2r — k and
that ¥, vanishes in all quadrature points, especially in ¢, and for £ > 1 also in ¢} ;.
For k > 1 we have 9,(t)_;) = 9,(t;) = 0. Therefore, the initial condition holds due

to U(t7_,) = U(tF_,) = U(t;_,) = U(t;_,). For k = 0 it is somewhat more complicated
to prove U(t: ;) = U(t,_,), for details see (iii) below. The remaining conditions can be
verified as follows.

(i) Conditions at ¢, for 0 <i < |22 -2 = %] - 1:
We obtain from the definitions of U and U
MUY () = MUY (87) + Ma,05(8,) = g9 (t) — AUO (1)
—_——

n
=0

= g9 (t;) — AUD(t;)

since the derivatives of U and U in t, coincide up to order |£| due to the definition
of 4,,.
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(i)

(iii)

Condition at ¢, for i = [%2] -1 = |£]:

Just like above we get

81 () = a8 (1) + a1 o)

n

I
s
~~
—
MBS
—
SN—
—~
N
SN—
|
s
g
—~
—
e
SN—
—
N
SN—
I
Q
~
—
V)
[
SN—
—
~
S |
SN—
|
o
K
~
—
[SIES
|
N~—
—~
N
SN—

where additionally the definition of a, was used.

Variational condition:
We have to prove that Q[ (MU', ¢)| = Q;[(9— AU, ¢)] for all ¢ € Pty (ps2) (1, RY).
Actually, we can even test with functions ¢ € P,_x(I,, R%).

We first study the case k > 1. By the definitions of U and U , the identity (1.24), and
the fact that U and U coincide at all quadrature points we have

Qi (MU ) | = Q| (MU, 9) | + Q3| (Ma,. ) |
_ Q;;[(g _ AU 90)] + fz’,;[ﬁ;(Man, go)l

~
=0, since
(Mdn 790)6Pr—k (In 7R)

_ Q;[(g _ AU, gp)] Vo e Pry(In, RY).

Now let k = 0. The same arguments as for k > 1 here yield for all ¢ € P,(I,, R?)
Qs (MU', 9)| = Q3| (9 - AT, o) | = (M[U],_,. (7)) = Dnltiy) (Main, o(t7,)

We study the last two terms. Using the definitions of the jump [U ]n and of U , We

find

-1

~

(U], )+ andn(t ) = Ut ) = Ult,_y) = [U] (1.25)

n—1’
where we also exploited that 0,,_1(t,_;) = 0. Hence, we have

~

Q| (MU' )| + (MIT], (1)) = Qi (9 - AT 0) | ¥ e P, R,
(1.26)

Choosing the special test functions ¢; € P.(I,,R?), 1 < j < d, that vanish in the r
inner quadrature points of Qf and satisfy ¢;(t}_;) = e; as well as having in mind (ii),
we find M [(7 ]nil = 0 component by component. Thereby, at once we have proven
the initial condition and verified the needed variational condition since now also the
jump term in (1.26) can be dropped.
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(iv) Conditions at ¢;;_; for 0 < i< |2 | -2 = |52 - 1:

With an argumentation similar to that in (i) we gain

MU @) = MU (EE ) + Ma 08Dt ) = gD () — AUO ()

n n

(v) Condition at ¢, for i = [#2=1| —1 = | 51| if k> 1:
It remains to prove that

MUl )y = g D

k—

) — AT D).

We use the variational condition for U/ , already shown in (iii), with specially chosen
test functions ¢; € Pr_x(I,,R?), 1 < j < d, that vanish in all inner quadrature points

of Q}, i.e.,

0i(tni) =0, i=1...,r—F, and satisfy oi(tr_1) =ej.

Since k > 1 here, we have that

Q};[(M(?',goj)]zQZ[(g—A[?,goj)], j=1,...,d.

The special choices of ¢, the definition of the quadrature rule, and the already known
identities from (i), (ii), and (iv) yield after a short calculation using Leibniz’ rule for

the 7th derivative that

=e;

o i ey = g D) — ar 5 D)),

2

Note that here we also used that wfk_lj # 0, cf. (1.16).

Collecting the above arguments, we see that U solves QZ—VTDZE (g)

]

As we already noticed above, one further issue is that in general g is not globally smooth
and so also the discrete solution does not possess higher regularity properties. Therefore, we
cannot expect that the alternative definition of the postprocessing, based on the correction

of jumps, is equivalent to the postprocessing of Theorem 1.32 anymore.
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Proposition 1.33
The correction vectors G, € R? defined in (1.23) for the postprocessing presented in Theo-
rem 1.32 could be alternatively calculated for n > 1 by

iy = NG <U(t;1) - ﬁ(tnl)), if k=0,

iy = (Uuz—lw)m a0 gy

S iy - f)“?J‘”(tm),

k-1

where u(l™ JH)(to) is defined via (1.4).

The proposition shows that in general the correction vector cannot be determined without
solving a linear equation system with system matrix M if g is not globally smooth. However,

if g is at least [% -times continuously differentiable and preserves f and its derivatives up

to order [%J at tg, then a,, n > 1, can still be easily calculated as jump correction.

Proof. The basic ideas of the proof can be adopted from the proof of [14, Proposition 3.2|.
However, many details have to be adapted since g cannot be assumed to be globally suffi-
ciently smooth.

For k = 0, we get from (1.25) combined with [(7]”71

low (1.26), that a, = _—I[U]n_1 = 19_—1(U(t;[_1) — l?(t;_l)). Taking into account

_ On(ty 1) (tn 1)
that U(t,) = U(ty) = u(to) = up, we are done in this case.
Otherwise, for k£ > 1, using the definition of the postprocessing and (v) of the proof of
Theorem 1.32, we obtain that

= 0, which was shown just be-

o0 ) + a5 = w10 ) o
— g D) — avl= D))
Furthermore, we have 94 (t ) = 0 for i = 0, .. ., | | and therefore

o= Dy = vl= D

n—l)'
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If g is an approximation of f which is not globally smooth, then also the derivatives of U
are not necessarily continuous up to a sufficiently high order anymore. So, we get for n > 1

k-1 k-1

JdU= Dy —avl=Der )

n—1

By 4 [0 av2D]
where also 791@—1(75;—1) = 0fori =0,...,|%| and (i) or (ii), respectively, of the proof of

Theorem 1.32 were used. Altogether, exploiting that M is regular, an easy manipulation of
the identities yields

iy = vl )@ ) — o= )
ﬁ(lTJ+1)(t+ (

nfl)

S [ UFD] earafot= D] ) s

It remains to derive the formula for n = 1. Since U satisfies (1.22c¢) and recalling the
definition (1.4) of u™(ty), we have

(U =)ty =M g = )TV - MTAWU —w) V) fori =1, |55
By recursion and exploiting that U(ts) = U(ty) = ug = u(ty), we obtain
(U - 0)?(t7) = D (=MPAY M g = V) fori=0,.. 5.
j=1

Therefore, the right-hand side of (1.27) can be rewritten for n = 1 as follows

k—1

S D () AT D ) = of
= Mull5 1 ) + (9 - 1)
= a1 + YU (v (g - U ) ),

)=

= Dty — aul*= Dy
(= Dy — A — w21

This results in

1 k1 -1
i = ——— vz ) ) — W2 1) (1)
ol =) (
S oy - ),
which completes the proof. O
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Remark 1.34
Theorem 1.32 also enables us to apply the postprocessing properly to the exactly integrated
variational time discretization method VTDJ (f). However, some trick is necessary.

For f e Cl'='[(T,,R?) define IT f € P,(I,, R%) by
(N (i) = FOt), ith>1,i-0,.. . [5], (1.28a)
(IGHY () = fO), ifk>2i=0.. . |51 (1.28b)
| s pmyac= [ (ranewya vee PR (1.258¢)

Then, it obviously holds
VIDi(f) = VIDi(I;f) = Q-VTD(ILf),

where for the last equivalence we used that all terms in the variational condition are of
maximal polynomial degree 2r — k and, thus, are integrated exactly by ;.
The application of the postprocessing of Theorem 1.32 therefore yields

VIDi(f) = QpVTID(If) ~ @QpVIDL(If) = VTD(IIf)

for all 0 < k < r. For the above argument it is not needed that (1.28a) holds also for
1= [k—;lJ However, this additional feature of IIj, guarantees that the postprocessed solution
always is [gJ—times continuously differentiable if f is globally ([%J — 1)—times continuously

differentiable. &

1.4.3 Interpolation cascade

Recall that Z; is the Hermite interpolation operator associated to the quadrature rule )},
determined by (1.15). Zj is a projection operator onto polynomials of maximal degree r.
The quadrature rule ()}, is exact for polynomials up to degree 2r — k.

The presented postprocessing techniques essentially use that the quadrature formula @)}, is
well-suited to the VT'D;, method. After one postprocessing step, however, we stay with @},
but the basic method has changed to VID} 5. This does not match anymore. Therefore,
we ask whether the quadrature rule can be changed and readjusted.

In a first step, we will consider Q}-VTDj,(Z; 1, f) for 0 < k < r—1. Here the case r = k is
excluded in order to ensure that I,:i% f is well-defined. We observe the following interesting

property.

Theorem 1.35 (Cf. [14, Theorem 5.1])
Let rik € Z, 0 < k < r — 1. Suppose that U € Y, solves Q;-VTD;, (I,:i%f) Determine

Ue Y, .1 by the postprocessing of Theorem 1.32. Then, U solves };ié—VTD’,;i; (f)

Proof. Let U solve Q;-VTDj, (I,:i; f) Then, by Theorem 1.32 the postprocessed solution
U solves QZ-VTDZS (I,’;I%f) It remains to prove that

Qi-VIDLL(Zi1f) = Qe-VIDL(ZLf) = Qul-VIDiL (/).
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Since I,:fr% f e Pyi(I,,R?), all terms of the variational condition are integrated exactly
by quadrature formulas that are exact for polynomials up to degree 2r — k, so especially by
@ and Q;*5. Thus, the first equivalence is shown.

Moreover, on the one hand, I};i; preserves all derivatives of f that occur in the collocation
conditions and so can be dropped there. On the other hand, I,:fr; is not seen by Q’,;ié since
both are defined by the same points. Hence, I,:i% can also be dropped in the variational
condition, which verifies the second equivalence. O

Remark 1.36 (Cf. [14, Remark 5.2])
Within the above argument we proved that the method QZS—VTDZQ ( f) and the method
Q;-VTID} 1, (Z; 1, f) are equivalent for 0 < k < r — 1.

Similarly, one can show that Q};—VTD};E ( f) is equivalent to ZE—VTD};Q (I,’; f) for
0 < k < r—1. Note that also Z; preserves all derivatives that appear in the point conditions
at both ends of the interval. &

Having a closer look at the result of Theorem 1.35, we see that the postprocessed solu-
tion of the modified discrete problem also solves a numerically integrated variational time
discretization method but with the “right” associated quadrature rule. This enables one
further postprocessing step.

For 1 < j < r — k, using an interpolation cascade, we even could enable up to j + 1
postprocessing steps. More concretely, we have (where ~~ denotes the postprocessing steps
as given by Theorem 1.32)

Qi-VID, (Lt oTit2o. . o1 f) ~ Quth-VIDL(Tit2o.. . oI/ H) f)

k+2j k+2j
- r+j—1 r+j—1 +7 v r+j r+j

~ k+]2(j—1)_VTDk+j2(j—1) (Il:—&-%jf) ~ Qk+j2j_VTDk+]2j (f)

- r+j r+7+1

~ Qk+12j'VTDk+]2(j+1) (f)

Note that f itself can be used in each postprocessing step to calculate the correction vector
dn € RY (cf. Theorem 1.32) since in each step the occurring derivative of f at ¢, is preserved
by the respective interpolation cascade.

As abbreviation, we write C;, := 7] oI,:i; o.. .0122::}5 for the longest interpolation cascade
(for which j = r — k) in the following.

Remark 1.37

If g is locally on I,, an approximation of f of maximal polynomial degree r+1, then similar to
the proof of Theorem 1.35 we have that Q}-VTD}*}(g) is equivalent to @} 5-VTD}}(g).
Hence, if g|;, € P,;1(I,,R?), we are always able to perform up to r — k + 1 postprocessing
steps. We find (where ~~ denotes the postprocessing steps as given by Theorem 1.32)

Qi-VTDj ()
S QPF-VTDL L (g) ~ ... % QETEVTDZ F(g) ~ QX F-VTDZ ktl(g).

However, while g|; € P,.1([,,R?) is needed to enable the change of the quadrature rule
after the first postprocessing step, this entails that after several postprocessing steps the
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approximation of f by g is of lower order than the ansatz order of the variational time
discretization method. Therefore, we cannot expect an improvement of the convergence
order after two or more postprocessing steps in general. The interpolation cascade does not
have this issue.

Moreover, from Proposition 1.33 it is obvious that in general (for arbitrary g) the post-
processing by (modified) residuals and the usual postprocessing by jumps do not provide
the same correction anymore.

A more detailed analysis shows that applying two postprocessing steps based on residuals
on the solution of Q}-VTD(f) yields the solution of Q;ﬁ-VTDZﬁ(Z,:g f) where I,:g f
interpolates f in the quadrature points of ()} and additionally preserves its ([gJ + 1)th
derivative in ¢,,. Similarly (at least) for dG-like methods (characterized by even k) it can
be shown that applying two postprocessing steps based on jumps on the solution of ()}-
VTDj(f) gives the solution of Q;73-VTD}}%(Z; %' f) where Z; %' f interpolates f in the

quadrature points of ()}, and additionally preserves its ([%J + 1)th derivative in ¢} ;. &

Remark 1.38
Since the postprocessing does not change the function value in ¢/, 1 < n < N, we have
for 1 < j < r — k that the solutions of Q;-VTD},(Z; 7} 0 Z; 1 o...0Z,75.f) and of Q1

j k+25 k+25"
VTDZT;(F].L) (f) coincide in the end points of the intervals. Hence, the pointwise error
estimates for the latter method immediately imply superconvergence in the time mesh points
for Q4-VTD}(Z; 1y o Iyt 0. .. 0 T 3. f). &

Remark 1.39 (Cf. [14, Remark 5.3|)
For Dahlquist’s stability equation
u'(t) = Au(t), u(to) = ug € R, (1.29)
ie,d=1 M=1, A= - eC, and f =0in (1.21), we easily see that
VTDZ,(f) 2 Q- VIDI,(f) = QU VTP, (T o T o o T

forall j =0,..., [SJ Thus, j postprocessing steps can be applied for this equation. Since
the postprocessing does not change the function value in the end points of the intervals, the
stability function does not change either. Therefore, VI D} as well as Q;-VTDj], provide
the same stability function as VTD;:%J.. With the special choice 7 = [gJ, we immediately
find that VTDj, shares its stability properties with

|~ VTDS_[gJ = dG(r — [gJ) , if k is even,
(| vrp Bl 2 cap(r - [E)), it ks odd,

also cf. Remark 1.1 and [14, 17]. Thus, the VTDj], methods are A-stable for & odd while
they are even strongly A-stable if k is even. )

1.4.4 Derivatives of solutions

In this subsection, the derivatives of solutions to VI Dj, (g) methods are studied. We see
that the conditions of (1.22) are somewhat nested and that the derivatives also are solutions
of certain variational time discretization schemes.
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Theorem 1.40
Letr,keZ,0 <k <r, and suppose that U €Y, solves VTDT( ) Then, it holds

J (MUY + AUY, o) dt = f (99, ) dt

n n

forall0 < j < [%J and p € Pr_j.;(I,,R?). Further, for j = [%J with k even we find that

f (MUY + AU, o) dt + 6oy (M[UD] | p(t 1)) = J (09, ) dt

n n

for all ¢ € PT ki (Lo, RY), if g is globally ([gJ — 1)-times continuously differentiable and,
for i =1, UY(ty) is determined by MUY (t;) + AUV () = gu=V (1),

Proof. The proof of |14, Theorem 5.5| can be directly adopted replacing Zf by g. Since,
however, g does not provide global smoothness, we shortly recapitulate the key arguments
of the proof in order to reveal where smoothness is actually necessary.

Let us start with the case 0 < 7 < [k 1J Integration by parts several times and exploit-
ing (1.22), we find

f (MUY + AUV, o) dt

n

:(_1)fJ (MU' + AU, dt+2 (@' + AU), M) ]

:(_Daf (g,ng))dHZ(—1)l[(g<f—1—l>,gﬂ))]jﬁ :J (09, o) dt
n =0

n—1
n

for all o € P,_j;(I,,R?). Here, we do not need any global smoothness of g.
Now, let j = [—J with k£ > 2 even. With the same arguments as just above we obtain

J (M(UDY + AUD, ) dt
=f (9, @) dt — (MU (tr_)) + AUVt ), 0(th 1) + (9D (1) o(t1)

for all p € Pr_j4;(Ln, ]Rd). Note that there are these extra terms on the right-hand side since
an appropriate collocation condition is missing here. However, by the additional assumption
that ¢ is globally ([gJ — 1)—times continuously differentiable, which thereby also holds for
U, the desired jump term can be derived for n > 1 from (1.22b) and for n = 1 using the

special definition of U (7)), respectively. ]
Remark 1.41

If g preserves f and its derivatives up to order |4| — 1 at ¢J, then UY(tg5) = u\(tg) for
0<j<|5] L)

Using an appropriate initial condition, derivatives of VT'D solutions are themselves solu-
tions of VTD methods.
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Corollary 1.42

Letr ke Z,0 < k <r. Furthermore, suppose that f is globally ([gJ — 1) -times continuously
differentiable and that U €Y, solves VID}(Zf) with T € {1d,11},Z;,Cr}. Then, UY) € Y,_;,
0<j<|%| solves VID; =3 ((Zf)D) if ud(to) is used as initial condition.

Proof. Because of Theorem 1.40, it only remains to prove the needed conditions at ¢;_; and
t.. Since we have by construction that U is [%J—times continuously differentiable, the
desired identities follow from the fact that U is continuous for 0 < j < [%J together

with (1.22a), (1.22b), and (1.22¢) with g = Zf. O

Remark 1.43
For a convenient interpretation of Corollary 1.42 note that for the affine linear problems of
the form (1.21) we have that VIDj}, = VIDj(f) = VTD}(II} f) and

Qi-VID, = Q-VIDi(f) = Q- VIDi(Zif) = VTDi(Z/f)

for all 0 < k < r. Moreover, recall that Cj = Zf o Z; Ty o... 0 I3

Thus, Z = Id and Z = II; model the case of exact integration, Z = 7] models the case
of numerical integration by the )} quadrature formula, and Z = C; models the case where
the interpolation cascade Cj, is used. L]

1.4.5 Numerical results

Our theoretical investigations suggest that the application of cascadic interpolation to the
right-hand side f allows multiple postprocessing steps. This should be illustrated by some
computational results. Besides we want to have a look on the differences between postpro-
cessing based on jumps and postprocessing based on residuals when more than one postpro-
cessing step is applied. Since appropriate numerical studies were made in [14, Section 6],
also see [15, Section 7|, we only give a short summary of the obtained results here.

Example
We consider the affine linear initial value problem

(25 2) () - (%™ - (5 (). ccom. o
with initial condition
w(0) =2,  us(0) = 1. (1.30D)

Then, the solution components are given by
uy(t) = e 10 4 (1 + t)e 1%, us(t) = (1 +t)e 0

Note that test problem (1.30) is a slight modification of |28, Example 7.3]. In particular,
a non-trivial mass matrix was introduced. Furthermore, a non-vanishing right-hand side
function f = (—10e1% O)T was added since otherwise the effects of the interpolation cascade
cannot be studied.
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Again all calculations were carried out with the software Julia [18|, where the floating
point data type BigFloat with 512 bits was used. For clarity, the function obtained after
an application of s postprocessing steps starting from the discrete solution U is denoted by
PP,U in the following.

In Table 1.4 the experimental orders of convergence of |(u — PP,UY||.> for Q3-VTDj,
k=3,...,7, after s =0,...,r+1—k = 10 — k postprocessing steps are presented. Hereby,
the experimental orders of convergence were calculated from the errors obtained for 1024
and 2048 uniform time steps. Results are given for three different settings. In setting (i)
cascadic interpolation is applied to the right-hand side f, i.e., we use g = C} f. In this case
both types of postprocessing are equivalent and, thus, lead to identical results. This changes
substantially if no cascadic interpolation is used, i.e., for ¢ = f. Therefore, for this case,
the postprocessing based on jumps and the postprocessing based on residuals are considered
separately in setting (ii) and (iii), respectively.

Table 1.4: Experimental orders of convergence for ||(u — PP,U)||> using Q}-VTD} with
k=3,...,7, and s postprocessing steps

k s=0 s=1 s=2 s=3 s=4 s=5 s=6 s=17

(i) cascadic interpolation of f

9.000 9.949 10.970 11.977 12980 13.981 14.981 15.979
9.000 9.930 10.954 11.963 12.967 13.969 14.967

9.000 9.949 10970 11.976 12.979 13.977

9.001 9.927 10.952 11.961 12.962

9.001 9.950 10.969 11.972

N O Ot = W

(ii) postprocessing based on jumps
9.000 9.948 9.994 8994 7.994 6.994 5994 4.994
9.000 9.932 10.966 11.059 10.971 10.934 10.905
9.000 9.949 10.981 9981 8.980  7.980
9.000 9.929 10.957 10.954 10.991
9.000 9.949 9.995 8.994

(iii) postprocessing based on residuals

9.000 9.948 10.962 10.966 10.977 10.986 10.982 10.988
9.000 9.932 10.952 10.958 10.968 10.978 10.973

9.000 9.949 10.956 10.958 10.963 10.987

9.000 9.929 10.940 10.945 10.945

9.000 9.949 10.946 10.947

N O Ot W

N O Ot kW

The numerical data are in good agreement with our theoretical expectations. If cascadic
interpolation of the right-hand side f is used, it can be clearly seen that the convergence
order increases by one with each additional postprocessing step. Moreover, if no interpo-
lation cascade is applied, the computational results nicely verify the improvements by the
first postprocessing step independent of the type of postprocessing. However, the situation
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1.4 Results for affine linear problems

changes substantially when at least two postprocessing steps are used. While, independent
of k, two or more postprocessing steps based on residuals always increase the convergence
order by two compared to the results without postprocessing, such improvements can only
be observed for dG-like methods (characterized by even k) if the postprocessing is based
on jumps. In contrast, for cGP-like methods (corresponding to odd k) the second postpro-
cessing step based on jumps leads to an additional improvement only for £ = 1 (mod 4),
whereas for £k = 3 (mod 4) the convergence order is not increased further. Besides, for all
c¢GP-like methods the convergence orders start to decrease if three or more postprocessing
steps based on jumps are applied. Note that in calculations for Q\°-VTD,°, k =0, ..., 10,
the roles of k =1 (mod 4) and k = 3 (mod 4) were switched. For further discussions and
results we refer to [14, Section 6] and [15, Section 7.
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2 Error Analysis for Stiff Systems

The error analysis for numerical methods applied to stiff ordinary differential equations is
strongly connected to the concept of B-convergence introduced in [29]. The main object of
this concept, developed for general nonlinear differential equations satisfying a certain one-
sided Lipschitz condition, is the derivation of error bounds that only depend on the one-sided
Lipschitz constant. A dependence of the error constant on the two-sided Lipschitz constant,
which might be disproportionately large due to the stiffness of the problem, is explicitly
avoided.

It is well-known that Q]-VTD] and Q-VTD{ can be interpreted as (r + 1)-stage Lo-
batto IITA and Radau ITA methods, respectively, as it was exemplarily shown in [46, p. 8,
p. 13|. But Lobatto ITTA methods are not B-convergent for the general class of nonlinear
problems, see [38, p. 231]. Therefore, it cannot be possible to prove a general B-convergence
result for the variational time discretization methods (1.2). However, for certain classes of
semilinear initial value problems, Lobatto IITA methods and others nevertheless can be B-
convergent, as it was shown for example in |20, see Theorem 3.4 and Lemma 2.3|. Thus,
we have the reasonable hope that at least for affine linear problems with time-independent
constants of the form (1.21) the VTD] methods provide an error estimate independent of
the stiffness.

In order to study the variational time discretization methods, we shall write them in a
way similar to Runge-Kutta methods. For this purpose, first of all a Runge-Kutta-like
framework is presented that enables an easy fitting of the VIT'D methods. In the end, the
reformulation allows us to adapt and generalize many ideas and results that are usually
used in the (stiff) error analysis for Runge-Kutta methods. In this context we particularly
refer to [19], where the B-convergence of Runge-Kutta methods was studied for a semilinear
problem which has the stiffness contained in a constant coefficient linear part. This situation
is slightly more general than our setting but still so simple that most technical details can
be avoided.

2.1 Runge—Kutta-like discretization framework

The aim of this section is to establish a Runge-Kutta-like framework that easily allows the
representation of VI'D methods but still enables typical convergence analysis approaches
for Runge—Kutta methods. Here the well-known connection between collocation and Runge—-
Kutta methods can be used as motivation and inspiration. With these insights the Runge-
Kutta formulation is extended in such a way that appropriate characteristics of the VIT'D
methods can nicely be covered.
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2 Error Analysis for Stiff Systems

2.1.1 Connection between collocation and Runge—Kutta methods
and its extension

It is well-known that collocation methods with s points can be easily written as s-stage
Runge-Kutta methods, see e.g. [37, Theorem I1.7.7, p. 212|. The Runge-Kutta coefficients
then are given as certain integrals over the Lagrangian basis functions with respect to
the collocation points. For the proof it is used that, given U(t, ;) € R% the collocation
polynomial U € P,(I,,,R?) is determined by

Ultyy) =Ult, 1), MU'()=RF(,U()) (2.1)

where P, is the polynomial interpolation operator into Ps_1(1,,) with respect to the s collo-
cation points, which is applied component-wise here.

For a first extension, we now assume that 7, is the local (transformed) version of a
more general projection operator P on [—1,1]. More concretely, for sufficiently smooth
functions on [—1,1] let P be a projection operator onto P,_1([—1,1]) uniquely defined by
the s linear functionals Nf“], i = 1,...,s. The upper script (/1 > 0 here denotes the
smallest derivative included in the definition of ﬁf“], so with suitable functionals ﬁ? we
could simply write ]Vf[i] (f)) = ]Vio ("&(M)). Typical examples are, of course, functionals based
on point evaluations of functions or derivatives as ]/\\ff[i] (0) = p (7 (t) for some t € [—1,1]
but also functionals based on integrals as ]v i (A) = Sil M)( )ds. The associated basis
functions B; e P, 4([-1,1]),i=1,...,s, should be chosen such that NM( ) d;,j. Thus,

for sufficiently smooth functions ¢ on [—1, 1] the projection Po can be written as

o (PB)(-) = YN (0) B
i=1
The local versions B, on I,,, n =1,..., N, are then given by

U»—)anz(ﬁ(UOT o Tt ZNZ UOT B-oTn_l)

with 7, from (1.7). For brevity, we set Nﬁf(v) = N (voT,).

We start to review the proof of the connection between collocation and Runge-Kutta
methods step by step and extend the ideas if necessary. For U satisfying (2.1) the funda-
mental theorem of calculus implies for all ¢t € I,, that

MU(t) = MU(t}_, J MU'(3)ds = MU(t, ) + f P.F(5,U(5)) ds.

tn—1

Additionally using the (extended) definition of P,, we find

MU(t) = MU(t;_, ZN“] )))L ) (B; o T;71)(5) d3

]] Tn O A\ 7
Z Nﬁ )))5 f_ 5(8) ds.
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2.1 Runge-Kutta-like discretization framework

Therefore, it follows for i = 1,..., s that
MNEH(U()) = MNS (Ut Z ONNE (1170 By(s) as)
— MN" (Ut ) + —2 U(-))) N (g B;(3)ds ) (2.22)

Here, NZ (U(t,_,)) means the application of foz] to the constant function ¢t — U(t,_;).
Now, in the case of collocation methods we have that

]7”

N (FCU) = N (F (NG U0) (2:20)

since for those methods Nﬁ[;] = Nﬁn is just a function evaluation at a single point. Then,
(2.2) gives a nonlinear equation system for Nfz] (U(-),i=1,...,s, because Nfﬁ] (U(t,_1))
can be calculated from known data. But, if N f[é] for example represents the integral mean
over I, then (2.2b) does not hold in general. Therefore, we will restrict ourselves to affine
linear problems with time-independent coefficients of the form (1.21), i.e., we assume that
F(t,u) = f(t) — Au. Then, for any linear functional N f[:l] it holds

N (FCU) = Njol (F0)) = ANSHU)).

Thus, (2.2b) is not necessary since only terms of the desired form N, f[;] (U(:)) appear on the
right-hand side anyway.
Altogether, for U solving (2.1) with F(t,u) = f(t) — Au we have found that

MNLHU())

- MN® (Ut 52(1\[”” ANfZ%U(-))) (g Bi( ds) (2.3a)

for all e = 1,...,s. Moreover, it easily follows

~

MUG) = MU + 2 35 (N (0) - vl ) [ Bioas. )

7j=1

These equations (2.3) could be seen as some generalization of a Runge-Kutta scheme in
the style of [38, Proposition IV.3.1, p. 40| for the affine linear problem (1.21). Here, the
equations (2.3a) could be interpreted as generalized stage equations for the “internal stages”
NANU()),i=1,...,s

For a second extension, we recall that according to (1.3) not only the function value of U
at t,_1 can be inherited from the previous interval but (depending on k) also evaluations
of derivatives. In the derivation of “stage” and “iteration” equations we thus could afford
also higher derivatives at t,,_;. So, in generalization of (2.1) we suppose that U € P;(I,,, R%)
satisfies

uvOr ) =uY ), o<i<l, MU'(-) = B.F (-, U(-)) (2.4)
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2 Error Analysis for Stiff Systems

for some [ > 0. Then, similar as above, we also gain for 0 < <[ and t € I,, that

MUO ) = MUO (£, J MUV (5)d3

t

:MU<l>(t;_1)+£ (PF(,U))(5) ds

n—1
T, (t)

_ MU ZNM U())) <%>H J_ BY(3)ds.

1

Choosing for every i = 1,...,s an {|;] € {O, ..., min{l, g[i]}}’ we therefore have

(2) ™ N (00) = MNg, 0 () (2.50)

- NG e ) + () i} U R (5, B (5)as)
and

MUDE) = MUD(E ) ( )1 lZ U(-)) f BY(3)ds (2.5b)

for 0 <l <.

2.1.2 A Runge—Kutta-like scheme

Let s € N, £ € Ny, and fix for every i = 1,...,s an {; € {0,...,¢}. In addition, let
{]\Afz* | 1=1,..., s} denote a set of linear functionals which are defined for sufficiently smooth
functions on [—1, 1]. Usually, but not necessarily, those functionals are chosen such that a
polynomial v € P;_([—1,1]) is uniquely determined by the s values N, (17) = ]Vl* (ﬁ(f[ﬂ)),
i=1,...,s. Using the transformation T}, of (1.7) with n = 1,..., N, we set for sufficiently
smooth functions v on I,

N7 (v) = Ni(voT,), Nin(v):= Ni, (vi)) = N (v o T,,)
= (T—")_f[i] NZ*((U o Tn>(f[i])) — (T_n)—é[i] ]/\7Z (v e Tn),

2 2

Moreover, let g be an approximation of f which can be used in a local scheme instead of f.
Motivated by (2.5) and in the style of |38, Proposition 1V.3.1, p. 40|, the local version
(on I,,) of an s-stage Runge-Kutta-like formulation for the discretization of (1.21) given an

approximation g of f as well as function value and ¢ derivatives at t,,_,, for short we write
(s,¢)-RK](g), should have the form

S

MgRKl MN:n(U(E[i])<t;_l)) + % Z aZF;Kl (%ym%m <Ngn(9()) _ AgRK1>7 i=1,...,s
j=1

MUO(t7) = MU® Zb?ffll ()7 (Nin(90) = AgH), i=0,..08,
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2.1 Runge-Kutta-like discretization framework

RKI1 and bRKl RKl , _ 1, .

i ., 8, could be interpreted

where all a;; are real coefficients. Here, the g,
as generahzed 1nternal stages”.

The coefficients are compressed in two matrices ARK! € R** and BRK! e RUA1D*s that are
given by (ARK). = a?jKl and (BRK),. = b%Kl, respectively. Moreover, a diagonal scaling
matrix is defined by

SR — diag (7)., (3)™) e R
For brevity, we further set ARK! e R**s and BRKl ¢ RU+D*s a5
ARKL _ (GREKT)~ ARKISEKI and BRK! — diag <17 (%)—1’ L (%)4) BRKIGRIL

Then, the Runge-Kutta-like formulation simply reads

2

MU(t,) MU(t,_,) r
Tn ~
N 2 + 5 (B ®Lua) [ Nia(9() = Agjhy (2.6a)
MUO (&) MUO(t, ) '
where
M | = | M 00007 0) |+ 2490 1) | Fyalo0) — g |- (20)

Here, ® denotes the Kronecker product and I, the identity matrix in R4
Especially, we observe that the iteration equation (2.6a) uses and returns not just point
values but also derivatives at ¢, ; and ¢, respectively. Therefore, in general B! is not a

vector as for Runge-Kutta methods but a matrix.

Remark 2.1 N
Setting Mk = Ny, (9(-)) — AgP¥!, we could rewrite (s, ¢()-RKl(g) as

imn

MER! = N, (9()) — A(]V:H(U(f[iﬂ(tnl)) TN g ()t kﬁ}fl), =1
j=1

MU = MU0 ) + 2 Y0, () s =0,

2 Jm 0
7=1

which nicely shows the similarity to the other frequently used formulation of Runge-Kutta
methods, see e.g. [37, Definition I1.7.1, p. 205]. &

Remark 2.2

The classical Runge-Kutta method for the discretization of (1.21), completely described by
the coefficient matrices (ARK, pRK RK) “is obtained for ¢ = ;) = 0, g = f, ARKI = ARK,
BREL = pRE “and ]\Afz*(@) = (=1 + 2c¢E¥) for all 4. &
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2 Error Analysis for Stiff Systems

Remark 2.3
In order to fit (2.5) for problems of the form (1.21) in the Runge-Kutta-like framework, we
can set

~ il g, ~ N Sl

Rr(e) - R0 and 8i(0) = K (o) - B0 o) - 599,

(2

@>

Note that then

N#.(v) = Nt (voT,) = N, ”w(voT) Nm fw( )
Nin(v) = (3) U Ni(veT,) = (3) T.) = (3) N (v):
Therefore, we have that
g 2 () NG (U0) = R (U).
MISIES el (5, B/ ()as) = Nz (57, B (5) ds),

v

A

i = 1 BY(8) ds,
where B; e P, 4([-1,1]),i =1,...,s, are determined by ]Vj (é,) N o] (é) ;- )

2.1.3 Existence and uniqueness

We now ask under which conditions the Runge-Kutta-like discretization scheme (2.6) has
an appropriate solution. Of course, for a proper description of the solution, the involved
“stage equations” (2.6b) should be uniquely solvable. Rewriting (2.6b), we easily see that
this is guaranteed if the system matrix

(L ®@M) + Z (AT ® A))

is regular.
Since M is regular by assumption, the system matrix also could be split in different ways,
for example, as

(i) (Lss@M)((Lss @ Laa) + (AR @ M1 A)) or
(i) ((Zss @ Laa) + Z(ARK @ AM ™)) (I, @ M).

Another, more symmetric splitting can be carried out if M is not just regular but symmetric
and positive definite. Then, the square root M2 of M is uniquely defined and also sym-
metric and positive definite. So, we have M = MY2M'Y/2. In this case the system matrix
can be rewritten as

(ili) (Ls,s ® M) ((Lss @ 1aq) + 2 (ARKL @ M~V2ZAM~Y2)) (L, ® M'?).

For brevity, we will write

Iyq4,  for splitting (i), M—1A, for (i),
M :=<{ M, for splitting (ii), A= MM 'AM ' = AM™Y for (ii),
M2, for splitting (iii), M=Y2AM=Y2 for (iii).
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2.1 Runge-Kutta-like discretization framework

Then, all three splittings could be written in a unified form as
(Is s ® MM_I) (([s,s ® [d,d) + %(ASKI & Z)) (Is,s ®M) .

Setting gRK1 : MgRKI and left multiplying the equation system (2.6a) by (Ig+175+1®HM71)
and the equation system (2.6b) by (I,, ® MM "), we find

U(t,) U(t,_y) :
- : + (BRI @ 1) | N, (MM~ 1g()) — AghK: (2.72)

: _ 2
) T

U (1)

and

~ —

ZJS}EI = | N7, (T

i\n

(e[i])(t;_l)) +%(A5K1®[d7d) Njﬂn(MM—lg(.)) Aﬁg’{ffl )

(2.7b)

which could be interpreted as the “iteration” and “stage equations” associated to the solution
U= MU of (s,£)-RKI(MM™'g) as approximation to the solution u = Mu of

u'(t) = F(t,u(t)) .= MM7'f(t)— Au(t),  u(to) = Muo. (2.8)
Due to the regularity (or even the symmetry and positive definiteness) of M, both equation
systems (2.6) and (2.7) as well as both problems (1.21) and (2.8) are equivalent. Therefore,
we will concentrate on the discretization of the somewhat more simple problem (2.8).

In the following, let M € R?*? always be regular and M, A matrices in R¥?. For the
study of the existence and uniqueness of solutions to (2.7b), we need more notation.

Definition 2.4
For A € R4 we set

pu[A] == sup {(v, Av) : v e R?, o] = 1},

which is the largest eigenvalue of the symmetric part %(AT + A) of A. Also note that u[A]
is the logarithmic norm of A with respect to the Euclidean inner product, see [42, (2.1. 2)]
or [37, Theorem 1.10.5, p. 61].

Remark 2.5
For > ,u[—m we easily verify that

(—Av,v) = (v,—Av) < pHvHQ Vv e R% (2.9)
Therefore, F' (with F(t,v) = MM~ f(t) — Av) satisfies the one-sided Lipschitz condition
(F(t,f;) —F(t,v),ﬁ—v) < ,uH@—vH Vtel, VYo,velR?

with one-sided Lipschitz constant p € R.

Note that there is no restriction on the sign of u. Indeed, in many situations of practical
relevance 4 is negative. For example, if A is the stiffness matrix of a semi-discretization in
space of a parabolic problem, then y is a negative multiple of the coercivity constant. &
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2 Error Analysis for Stiff Systems

Further, we introduce some notation on functions with matrix arguments following [42,
Subsection 2.2.2, Subsection 2.4.3].

Denote by ¢denom and ¢pum two polynomials without common non-trivial factors and
consider the rational function ¢ given by ¢(2) = (daenom (%)) Gnum(z) for all z € C with
Bdenom(2) # 0. Let A € R4, Then, provided @genom(A) is regular, we say that ¢(A) exists
and is given by ¢(A) = (daenom(A)) ™ doum (A).

Moreover, let ® be a matrix-valued function given by ®(z) = (¢;;(z)) € C*** whenever
z € C and all ¢;;(z) are well-defined where ¢;; are rational functions with real coefficients.
Then, for A € R¥*? we denote by ®(A) the sd x sd matrix with block-entries ¢;;(A) € R4,
Of course, we say that ®(A) exists if all ¢;;(A) exist.

Using [42, Lemma 2.4.6, Lemma 2.2.6| it can be shown that the regularity of the system
matrix ((I,s @ lga) + 2 (AR ® A)) is strongly connected to the properties of the matrix-
valued function given by z € C +— (I, , + A®KIz). In fact, the following lemma holds.

Lemma 2.6 - B
Let 7> 0 and p = p[—A]. Then, the system matriz (s ® Iga) + 2 (ARIQ A)) is regular
for all 7, € (0,7] if

(Lss — ARKlz) is reqular for all z € C with Rez < max {0, 37u}.

Proof. First of all, ARKl = (Sfle)f1 ARKIGREL implies

(([s,s ® [d,d) + %L(ASKI ®Z))
— (SN @ Iy) (I ® Tyg) + 2 (AP @ A)) (ST @ 144).

Hence, it suffices to study the regularity of (s ® Igq) + 2 (A™! ® A)), which we will call
the main part of the system matrix.

For z € C, let V(z) = (vij(2)) = (Is,s — A®2) and W(z) = (wi;(z)) = V(2) 7' if V(2)
is regular. Recalling the notation for matrix-valued functions, the main part of the system
matrix ((Lss ® Igq) + 2 (AR ® A)) can be shortly written as V(—2A). Now, according
to [42, Lemma 2.4.6], we have that V(—2A) is regular if and only if W (—2A4) exists. So,
of course, we shall ask whether all w;;(—2A) exist.

Now, it is well-known that (if existing) the inverse matrix of V(z), z € C, can be written as

V(z)™t = m adj(V (z)) where adj(V'(z)) denotes the adjugate of V'(z). Exploiting this
representation, we find that w;; is a rational function with w;;(z) = %. Obviously,

w;;(2) exists for z € C if det(V(z)) # 0, ie., if V(2) is regular. Moreover, because of

1= pu[—A] (also cf. (2.9)), we obtain from [42, Lemma 2.2.6] that all w;;j(—2A) exist and,

thus, immediately get that ((£;,®Igq)+ %"(ARm@Z))fl =V (-2A)" = W(—24) exists

if det(V(2)) has no zeros in {z € C: Rez < Zu}. This completes the proof. O

Remark 2.7

The statement of Lemma 2.6 is quite interesting in many ways. First of all, we find that
in order to guarantee that (2.7b) (and consequently also (2.6b)) has a unique solution,
I, — A®¥lz) should be regular at least on C~ = {z € C : Re(z) < 0}. Indeed, then
I, — ARKZ) would even be regular on {z € C : Re(z) < w} for some w > 0 and, thus,
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2.1 Runge-Kutta-like discretization framework

also the system matrix is regular for 7,, € (0,7] when 7 < 2w. In general this yields an
upper bound for the time step length. However, we observe that for ;4 < 0 no restrictions
on 7, > 0 are necessary. &

As we shall prove below, the regularity of (I, — ARK2) is strongly connected to the
eigenvalues of AR, Let o(A) denote the spectrum of the matrix A. Moreover, we define
some special regions of the complex plane C by

C™:={zeC:Re(z) <0},
Cy:={2€C:z2=0o0r Re(z) > 0}.
Then, we have the following statements that especially also hold for A = ARK!

Lemma 2.8
Let A € R*** and z € C\{0}. Then, ([S,s - Az) is reqular if and only if 271 ¢ o(A).

Proof. The matrix (I, — Az) with z € C\{0} is singular if and only if
det (Is,s — Az) =0 < det (z’lls,s — A) =0 < zledo(h),
which immediately gives the desired statement. O]

Corollary 2.9 (Cf. [19, Lemma 4.1])
Let A e R***. Then, (1'575 — Az) is reqular on C~ if and only if o(A) = Cy.

Proof. For z = 0 the matrix is always regular. Otherwise, we gain by Lemma 2.8 that

(I;s — Az) isregular on C\{0} <« {z7':2eC\{0}} = C\o(A)
= o(A)cC\{z':2eC\{0}} =C{,

where we also used that {z71: 2 € C7\{0}} = C"\{0} = C\C{. O

2.1.4 Stability properties

In order to enable a proper approximation of the global error, especially for the discretization
of stiff problems, a discretization method needs to fulfill certain stability properties. Since
we consider affine linear problems, we do not need (and in general also do not have) B-
stability for the methods we are particularly interested in. However, we shall have a look
on some similar stability concepts in analogy to [19, Subsection 3.1].

Definition 2.10
The Runge-Kutta-like method (2.7) is called ASI-stable if (I, — A®1z) is regular as well

as (L5 — ARKlz)_l is uniformly bounded for all z € C~. &

Definition 2.11
The Runge-Kutta-like method (2.7) is called AS-stable if (I, — ARK2) is regular as well

as BRKlz(Isvs — ARKlz)fl is uniformly bounded for all z € C~. &
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2 Error Analysis for Stiff Systems

The Definitions 2.10 and 2.11 simply transfer the concepts of ASI- and AS-stability,
respectively, which are typically studied for Runge-Kutta methods, to the Runge-Kutta-
like method (2.7).

Analogously to [19, Lemma 4.3] it can be shown that the ASI-stability is strongly con-
nected to the spectrum of the matrix ARK! In fact, the following lemma holds.

Lemma 2.12
The Runge—Kutta-like method (2.7) is ASI-stable if o(ARKY) = C§ and zero is at most a
simple eigenvalue of ARKL

Proof. First of all, Corollary 2.9 yields that the matrix (Is,s — ARKlz) is regular for all
z € C™ if and only if o(ARK!) = C. Furthermore, according to [19, Lemma 4.3], we have
that (1,5 — ARKlz)_1 is uniformly bounded if o(ARK!) = C{ and zero is at most a simple
eigenvalue of ARK!. This completes the proof. O

Furthermore, under certain conditions it can be shown that for Runge-Kutta-like methods
of the form (2.7) the ASI-stability already implies the AS-stability. This result and its proof
are quite similar to that of [19, Lemma 4.4].

Lemma 2.13
Assume that BRK! = CARK! for some matriz C. Then, any ASI-stable Runge—Kutta-like
method of form (2.7) also is AS-stable.

Proof. Because of BRX! = CARKl we gain that

1

B (I, — AR T = O((AM — 1)) + 1) (I, — ARK2)
= O(I,, — AR ¢

Now, if the method is ASI-stable, we easily verify that this matrix is well-defined and
uniformly bounded for z € C™, and thus AS-stable. O

Since ARK!is not necessarily regular, the condition BRX! = C'ARK! really is an additional

assumption. However, in many cases this assumption is fulfilled, especially also for the
methods of our interest, see Corollary 2.16 below.

2.2 VTD methods as Runge—Kutta-like discretizations

This section aims to give a convenient description for the discrete VI'D solution U in terms
of a Runge—Kutta-like formulation. Here, unlike for collocation methods and their Runge—
Kutta formulation, the internal stages will in general not represent function values of the
discrete solution at intermediate time points but certain (other) degrees of freedom. For
convenience we will consider the somewhat simpler problem representation (2.8) only.

Let r,keZ, 0<k<r Fori=1,...,r+1set { = min{i -1, [gJ} Moreover, define

N@) =o(17), i=1,...,]|%], Niy (@) = 0@), i=1...r—[§]+1 (210)
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2.2 VTD methods as Runge-Kutta-like discretizations

where t; € [-1,1],i=1,...,7 — [gJ + 1, denote the quadrature points of Q;:[;(,fjﬂ, which is

Gauss—Radau for k even or Gauss—Lobatto for k£ odd, respectively. This implies that
M) =o(17)  and  Njy,(0) = 0(-1), it ks odd,
2

Also note that these functionals are such that for a constant function v = ¢ they return c.

It can be easily shown that a function v € P,((—1,1]) can be uniquely described by
the r + 1 degrees of freedom ]VZ('&) = ]\Afl* ('&(Z[i])), i =1,...,7r+ 1. Thus, any function
v € P.((—1,1]) can be written as

~ ~

() = Y Ni(0)By(f)  vie(—1,1],

where the B; e P.((—1,1]),4 = 1,...,r + 1, denote the associated basis functions, i.e., it
holds N;(B;) = Nx(B\"™") = 5, for all i, j = 1,...,r + 1.
Because of the special choice of the degrees of freedom, we have that the basis functions

éj, 1<) < [SJ, which are associated to the function and derivative values at 17, are simply

given by éj(f) = o (1- f)j_l. This implies that for ¢ € P.((—=1,1]) and I = 0,...,|%|

(j—1)! 2
r+1 R N r+1 R R
o0& =Y. Ni@)B(}) = Y Ni(@)BP(f)  vie(-1,1].
=1 1=Il+1

Also note that by construction ﬁl* (EJ(.WQJ)) = 0;; fori,j = [gJ +1,...,r+1, which especially
implies that Ei([k/zj) € Pr_joy((—=1,1]), 4 = |£]+1,...,7+1, are just the nodal basis functions
associated to the set of linear functionals {]VZ* !z = [gJ +1,...,7+ 1}.

For the sake of clarity, we concretize the general operators of Subsection 2.1.2 in our
current setting. We have for sufficiently smooth functions v on I,,

Ni(v) = Nf (voT,) = o(t,), i=1,. 05,
|&]+in T E | n) = n\li)), =1,..., g ,
where the transformation T, is given by (1.7). Moreover, it holds
Nia(v) == N, (010) = ol (1) =00 0(),  i=1,0 4], (2.11b)
N[EJ+'£7L(U) = NFEJ+' (v(lgb) :U(lgj)(Tn({z))’ i=1,...,r— ng ey .
2 ) 3 |+imn
Of course, the [th derivative, 0 < [ < [gJ, of a function v € P.(I,) then is represented by
r+1 ' |~ R
vO(t) = 3 (2) Y Niw) (B o T 1) (1), Vte L, (2.12)
i=l+1

We now are ready to reveal a Runge-Kutta-like formulation of the VIT'D methods. Recall
that, for convenience, we only consider the more simple problem (2.8). Moreover, we need
some assumptions on g.
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2 Error Analysis for Stiff Systems

Assumption 2.1
We assume that g is ([%J — 1)—times continuously differentiable on I. Moreover, we suppose
that g satisfies

Q‘In e P.(I,,R%) foralll<n<N
as well as

99 (ta) = fO(t) Jorall0<n<Nandi=0,...,|% -1
if the right-hand side function f : I — R is sufficiently smooth.

Remark 2.14
Let r,k € Z, 0 < k < r. Typical choices for g that fulfill Assumption 2.1 (for sufficiently
smooth f) are

e g =11} f: Here, I}, is defined in (1.28).
e g =1 f: For a definition of Z; compare (1.15).

e g=Cif: Here, C, =1 o I};fré Iz” ~4 is the interpolation cascade known from
Subsection 1.4.3.

For a convenient interpretation of these choices see Remark 1.43.

Note that, for & > 2, also the situation after a postprocessing of Q; 3-VTD} 3(f) can
be described by a g satisfying Assumption 2.1. Indeed, for this case set g = Iy, . f, where
I} 5, is, in accordance with Remark 1.37, the interpolation operator which interpolates in
the quadrature points of Q}_5 and additionally preserves the [%Jth derivative in ¢ ;. &

Proposition 2.15 R
Let r ke Z, 0 < k < r. Moreover, let {NZ*} be specified by (2.10), lp = min{i -1, [%J},
and { = [%J Furthermore, suppose that f is globally ([gJ — 1) -times continuously differ-

entiable and that U €Y, solves VTD};(MMflg) with g fulfilling Assumption 2.1. Then,

gl = N, U())eRY, i=1,...,r + 1, satisfy
gysD P |+ B 1) | 8 010a0) - AR | 21
with U ) Z[l . Here, we have

AVTD ._ g-14VTDg

where AVTP e RU+DX0+D) s given by

(V) Ne(§, B (5)as), 1<i<r+1, fy+1=minfi, |4 +1} <j<r+1,
“ 0, otherwise,

and S, € ROTVX0+D s the diagonal scaling matriz S, = diag (1, (%
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2.2 VTD methods as Runge—Kutta-like discretizations

Proof. The argument strongly uses various properties of the postprocessed solution and its
connection to the actual solution which therefore shall be summarized at first.
The postprocessing of Theorem 1.32 can be applied to the solution U of VID} (MM ~'g)

with g satisfying Assumption 2.1. This procedure then yields a solution Ue Y,.1 of the
Q’I;—VTDZié(MM*Ig) method that coincides with U in the 7 + 1 quadrature points of ();.
More concrete, there is a vector ¢, € R? such that

(7|In =U‘[n +cn(¢oTn_1)
with () = (1 - )E (1l plEI =0 gy w1y g,

([5]+ul5H]+) . N o
where Pt} denotes the (r—k)th Jacobi-polynomial with respect to the weighting
o | E =
function (1 — t) [5]+1 (1 + t)l 2] in the interval (—1, 1), cf. Appendix A.2. Therefore, as a
—(|® -
consequence of Rodrigues’ formula we further gain that U (Lz1) ’ , and U (15]) ! ;. also coincide

in the quadrature points of QZ:[;[/:/JQJ since

oD = - @+ ploLel pj_l’ll,f_{JJ_*j‘l?J><f> Vie[-1,1]

due to (A.2). Altogether this implies that

~

Nin(U()) = Nop(U())  foralli=1,...,r+1. (2.15a)

Moreover, recalling Theorem 1.24, we could also interpret U as a solution of a _certain
collocation method. Then, in particular, we find that I,:(U’)‘I =1 (MM_lg — AU) ‘1 .

Using that M, M, and A are independent of ¢ as well as that U’ and g are polynomials of
maximal degree r, we thus conclude

U'(t) = Tp(U)(t) = Zp (MM g — AU\ (t) = (MM ‘T;g — AZ;U)(t)

(Mg — AT)(1) (2.15b)

for all ¢ € I,. Last but not least, by construction the solution U of Q;-VTD, L (MM'g)
is at least [gj—times continuously differentiable since f and g are sufficiently smooth by
assumption. Hence, we obtain

—(i) ,,_
~ ~oN U7t ), > 1,
T ) = Tt ) = {_ (),

‘ fori=0,...,|%], 2.15¢
a(t), =1, 2 (215

where, for n > 1, we used that the derivatives of ¢ up to order [%J vanish at 1~ and,

for n = 1, we used the definition of u"(t;), the collocation conditions at tj, and that
gO(tg) = fO®t) for i = 0,..., || - 1.
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2 Error Analysis for Stiff Systems

Now, we are ready to start the actual proof. For any [ = 0, ..., [%J and t € I,, we gain for
U € Y, from the fundamental theorem of calculus and (2.12) that

t
UO) =00 ) + J Ut (3)ds
tn—1

r+1 ¢
000+ Y (3) T N @0) [ (B 1))
=z to
9 :_ l+71«+1 o~ 1Tn_1(t) N
S0+ N ()Y NLO0) [ B9 (@)
j=l+1 B

where the last identity follows from integration by substitution.
Fori=1,...,r + 1 applying N}, to (2.16) with [ = {};; = min{i — 1,| %]}, we obtain

N;n(l?(g[i])<.))

r+1
:N:n((\j@[i])(t:—1>> +%” 2 (?n) 1114 N ( ) m(g_ )B(E )ds).
J=L+1

So, from the definitions and properties of the linear functionals, we further conclude that

r+1

Nm((?(.)):ﬁ(f[i])(t:{_l)Jr% S () TR () )N*(g B (A)d§>

j:Z[i]-‘rl

fori =1,...,7 + 1. Recalling the definition of AVTP, this identity simply reads

r+1
Nm(U()) = U(é[i])(t;r_l) + % Z; (AVTD)ij(%)ém—f[i]ij (U’())
j=

Noting that the scaling matrices S, and S, ! are defined such that
T E[Z] .- . T 7[[7;] e - .
o= s ifi= Tn if1 =
(s.)., =13 B e (s0), 43 =
Y 0, otherwise, K 0, otherwise,
respectively, we gain the equation system

Nin(OO) | = | Ot} y) +%”(§71AVTD§@®IM) N (C) |- @

—_. TD
=AY

Finally, recalling o (ty) =uW(ty) for L =0,. .., [gJ and noting (2.15), we have

Rin(TO) = Non(T(), Tt ) =T (), and
Nin(U'()) = Nju (MM g(-) = AT()) = Nju (MM g(-)) = AN, (U (), (2.18)

where we also used that A is time-independent. From this and (2.17) we easily conclude
that gy, = Nin (U())),i=1,...,7 + 1, solves the equation system (2.13) as desired. ~ [J
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2.2 VTD methods as Runge-Kutta-like discretizations

Corollary 2.16 (Runge-Kutta-like formulation)

Let rik € Z, 0 < k < r. Moreover, let {]Vl*} be specified by (2.10), ) = min{i -1, [gJ},
and { = [gJ Furthermore, suppose that f is globally ([%J — 1) -times continuously differen-
tiable and that U € Y, solves VID(MM~'g) with g fulfilling Assumption 2.1. Then, U
satisfies (2.7) with gy = Gin " = ZVM(U()), i=1,...,7+1, where

ARKI AVTD R(T+1)><(r+1) and BRKI BVTD (I[k/2TJ,r+1 ) AXTD c R(erl)x(rJrl)

€rt1

with AYTP as defined in Proposition 2.15. In this spirit U can be viewed as solution of an
(r+1,|%|)-RKI(MM~'g) scheme.
Pmof The vectors gVTD in Proposition 2.15 represent the evaluation of the linear operators
N; . for U. Therefore, (2.13) could be interpreted as generalized stage equations for the “in-
ternal stages” gion' = Gin " = Nin (U(),i=1,...,r+1,of an (r + 1,|%|)-RKI(MMg)
scheme, cf. (2.7b). Here, also recall that U(e[”)( no1) = N'* (U(e[i])(t; 1)) for all 4.
Additionally notmg that gy, ° = Nin (U()) = U(zm)( fori=1,... |5 andi=7r+1
with £ = mln{z , [QJ}, the first [%J rows and the last row of (2.13) give that

U(t,) Ult, )

2 e’!‘+1

/

"
—.BVTD
=:By

which could be seen as some generalized iteration equation as occurring in Runge-Kutta-like

methods, cf. (2.7a). O
Remark 2.17 . .
For clarity, Ijxp|,4+1 € R+ denotes the generalized identity matrix in leJX(TH), ie.,

([WQJ,TH)U. =0 foralli=1,..., [gJ, j=1,...,r+ 1, and e,,1 is the (r + 1)th standard
unit vector in R™*. So, BY™ only contains the first | £ | rows and the last row of AY™. &

2.2.1 Block structure of AVTDP

Taking a closer look on its definition (2.14), we note that the matrix AVTP e Rr+Dx(r+1)

has a special block structure. Indeed, it holds

Bll BIQ
AVTD — 2.20
5 o) 20
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2 Error Analysis for Stiff Systems

with Byy e RIEXE] By, € RUE(+1-13]) and By, € ROTI-IED<0+1-12]) where By is

an upper triangular matrix. Obviously, sums of matrices with this particular structure also

have this structure. Moreover, if the inverse matrix exists, then it also has this structure.
We shall now investigate the matrix blocks Bj; and Bss in more detail.

Lemma 2.18 »
It holds (AVTD)”, = 2(';__1,21]1)! for 1 < i < j<|&|. This completely determines the upper
left (triangular) matriz block By of AVTP, see (2.20). Especially, note that By, is 2 on the

main diagonal.

Proof. Let 1 <1 <7< [%J throughout the whole proof. Then, we have

(AVTD)  — N (SQ Ej(,i‘l)(g) d§> = 814 §§i_1)(§) ds.

¥

The occurring basis functions éj are those associated to the function and derivative values

at 17. Therefore, as we already noted earlier, it holds éj (t) = ((_jl_)i;!l (1 - f)jfl. From this

it is easy to verify that éj(.i_l)(f) = (717):;_1. (1 — f)j_i. Hence, we find

(G—a)!
—1)i—t 1 . —1)i—t P B! 2. (—92)i—t
(AVTD)”: ( ) J (1_§)J—z ds = ( ) [':'1 (1_§)]—1+1:| - = ( . ) 7
v (=it ) (j—a)t L=t =1 (j—i+1)
which finishes the proof. [
Lemma 2.19

The lower right matriz block By of AVTP, see (2.20), equates to the Runge—Kutta matrix
of the (7“ +1-— [gJ)—stage Radau ITA method if k is even or the (7" +1-— [gJ)—stage Lo-
batto I1IA method if k is odd, respectively. However, note that the Runge—Kutta matrices
are typically defined with respect to the reference interval [0,1], whereas AV is defined
with respect to [—1,1], which causes a transformation factor of 2. Concretely, Bay is twice
the corresponding Runge—Kutta matriz as given e.g. in [38, pp. T4-75].

Proof. The functionals ]Vi*, 1= [gJ +1,...,r+1, are exactly the function evaluations at the
quadrature points of Q;:l;[/ ,f/JZ T which is right-sided Gauss—Radau for k£ even or Gauss—Lobatto
for k£ odd, respectively. The implicit Runge-Kutta methods that are equivalent to the
collocation methods based on these quadrature points are the (7" +1-— [gJ)—stage Radau ITA
method (k even) and the (7’ +1-— [%J)—stage Lobatto IITA method (k odd), respectively,
see [37, Theorem I1.7.7, p. 212| and 38, pp. 72-77|. Since disregarding transformation the

coefficients of the matrix block Byy of AVTP are defined in the same way, we are done. [

Remark 2.20

Lemma 2.19 already indicates some connection between VIT'D methods and Runge-Kutta
methods of type Radau ITA or Lobatto IIIA. In fact, taking a closer look at the derivation of
the Runge-Kutta-like formulation, it can be seen that Qj-VTDY{ is equivalent to the (r+1)-
stage Radau ITA method, whereas Q}-VTDY] is equivalent to the (r + 1)-stage Lobatto ITTA
method. This was already exemplarily shown in [46, p. 8, p. 13].
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2.2 VTD methods as Runge-Kutta-like discretizations

The connection between Radau ITA and numerically integrated dG methods with quadra-
ture at the right-sided Gauss—Radau nodes was earlier proven in [45, Lemma 2.3|, also
see |26, Lemma 69.11|. Moreover, an equivalence of numerically integrated ¢cGP methods
with quadrature at the Gauss-Legendre nodes and certain Kuntzmann-Butcher methods
has been observed in |26, Lemma 70.5]. However, note that we use cGP methods together
with quadrature at the Gauss—Lobatto nodes. &

2.2.2 Eigenvalue structure of AVTP

In Section 2.1 we noticed that for Runge-Kutta-like methods a good knowledge of various
properties of the method matrix AR¥! is needed to answer questions on the solvability and
stability of the discrete method. For this reason and since VTD methods can be viewed as
Runge-Kutta-like methods (as proven in Corollary 2.16), the eigenvalue structure of AVTP
shall be studied in detail in this subsection.

Recalling the special block structure of AV™P, see Subsection 2.2.1, |£| eigenvalues can
be directly read from the first [gJ entries on the main diagonal. Because of Lemma 2.18,
we thus have that A\ = 2 is an eigenvalue of AVTP with algebraic multiplicity greater than
or equal to [gJ

The remaining eigenvalues are those of the lower right matrix block By of AVTP | cf. (2.20),
which can be nicely interpreted due to Lemma 2.19. It is easy to verify that the first row
of By, is zero if k is odd. In this case A = 0 is a simple eigenvalue of AV since all further
eigenvalues have a real part greater than zero as we shall see below. To verify the latter

statement, the following auxiliary lemma is quite useful.

Lemma 2.21
Let A € R**® and D = diag (dl, e ,ds) with d; > 0 for all i = 1,...,s. Then, for every
etgenvalue Ay of A it holds

Re(M\y) = (lmax di>_1)\min(%(DA + ATD)),

i=1,...,8

where Amin(B) denotes the smallest eigenvalue of the symmetric matriz B € R®**.

Proof. Since similar matrices share their eigenvalues, every eigenvalue Ay of A equals to an
eigenvalue Apijz2pp-12 of DY2AD~1/2. Because of [31, Theorem C1], we thus have

Re()\/\) = Re()\D1/2AD—1/2) = )\min(%(DlﬂAD_l/Q + D_1/2ATD1/2)).

Since for symmetric matrices the smallest eigenvalue can be calculated by minimizing the
Rayleigh quotient (see e.g. [31, p. 32]), it follows

T(L(D2AD-1/2 —1/2 AT 1/2
Auin (L(DVAADY2 4 DVRAT DU — gy T (D ADTE + DTENDT))a

2€RS 2£0 Ty
. 2T DYV2AD1/2y . y'DAy
= min = min
z€RS x£0 Ty yeRs w20 yT Dy ’
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2 Error Analysis for Stiff Systems

where y = D~1/22. We further gain
_y'™DAy . Y (3(DA+ATD))y yTy
min = min
yeRey20 yT Dy  yekey20 yTy y" Dy
- ) yT(%(DA + ATD))y ) yly
> min min :
yeRS y#0 yTy yeRS y#0 yTDy

The first minimum on the right-hand side just is )\min(%(DA—i—ATD)). The second minimum
can be bounded from below as follows

T T -1
. . vy < )
min > min = max d;
yeRs w20 yT Dy~ yeRs,y=0 (maxZ 1..sd )yTy i=1,...,8
Combining the above estimates, we easily complete the proof. O
Lemma 2.22

Let Boy € R with s = r+1— | £| denote the lower right matriz block of AVTD, see (2.20).
Moreover, let t; € [~1,1], i = 1,...,s, denote the quadrature points of Qk 5| k/2j and b; the
associated weights. Set D = diag (dl, e ,ds) with

U+ fori=op+ 1,8 and  dy=1 ifkisodd, (2.21)

Q“I

d; =
1, if k is odd,

0, if k is even.

where oy, ==k — 2 [gJ = { Then, it holds

2" (3(DBay + B,D))x >0 for all x € R\{0} with x1 = 0 if k is odd.

Proof. First of all, we note that Q) 2/5/2 is the Gauss-Radau quadrature if k is even or
the Gauss—Lobatto quadrature if £k is odd, respectively. Therefore, for odd k we especially
have that {; = —1, which makes clear why another definition for d; is needed in this case.
Moreover, for these quadrature rules it is well-known that the weights are p081tlve and are
given as integrals over the associated basis functions. So, we have b; = S B ,LZJQ L:(8)ds >0,
which also implies that d; > 0,7 =1,.

Let x € R® be arbitrary and assume that x1 = 0 if k is odd. We define a polynomial

P e Ps_1((—1,1]) by

2 kZQ t) for all £ e (—1,1],

i.e., p' is the Gauss—Radau (k even) or Gauss—Lobatto (k odd) interpolant satisfying

~
A~/

z; = p'(t) = Nf;c/zj+i(15') foralli=1,...,s

Obviously, p'(—=1) = p'(t;) = 21 = 0 if k is odd.
Further, we denote by p the particular antiderivative of p’ satisfying p(—1) = 0. Then,
p € P,((—1,1]) allows the following representations

B = (3 ds = (1+6)7Gd)  with Ge Py, ((=1,1]).
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2.2 VTD methods as Runge-Kutta-like discretizations

Of course, we then have
N NOk Asp orx+1
() = (op + D1+ 84 + 1+ ™G @),

Now, for i = 1,...,s we obtain

s t;
(¥/2]
B22512' Z AVTD g |+i| §J+Jx1 - <J IBW2J2+J( )d8>

t;
(Z B )as= [ peas = oo

-1

—_

J.

.

Sh

Using this, it is easy to verify that
2" (J(DBa + B,D))w = o (DBu)a = Z B)dip(t) = Y, #(E)dip(h),

i=1 =140

where for the last identity we have exploited that p'(¢;) = x; = 0 if k is odd. Recalling the
definition of d; and the alternative representations of p and p’ via ¢, we further conclude

=y @(u@)*f’k*”((aﬁ1)(1+t)2°k“qz(t) (1+8)" Vg (@)
=Zl3(<ak+1>(1+t)”’“a2< D+ (L4 5) @)

Here, for the last step we have used that the summand for ¢ = 1 is zero if k£ is odd since in
this case the factor (1 + fl)ak = (1 + (- 1))1 is vanishing.

The function £ — ((o,+1)(1+%)7"¢*(t) + (1 +17) ot ¢ (1)q(?)) is a polynomial of maximal
degree (2s —2 — o) = (2r — k) and, thus, is exactly integrated by Q" ;/,f/QJ Therefore,
combining the above identities, we gain

~

o (HDBo + BRD)o = [ (w4 D+ + (1497 7(0q(0) o

-] o D) RO ) =0, (222)

where we used integration by parts to rewrite the integral over the second summand. Indeed,

it follows
1

J_l (1 + t)0k+1é/( ) ( )dt _ J;l (1 +t)0k+1;(q2)/(£) df

_ _% fl(ak +1)(1+1)7 (@) dt + ;[(1 i)™ AZ(’F)]A

f=—1
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2 Error Analysis for Stiff Systems

It only remains to prove that the term (2.22) is zero only if z = 0. Now, if the expression
in (2.22) vanishes, then ¢ = 0. But this directly implies p = 0 and therefore also p’ = 0.
Hence, z; = p/(t;) =0 for all i = 1,..., s and we are done. ]

Bringing together the above results, we obtain the following statement.

Corollary 2.23

It holds o(AV™) < Cf. Moreover, A = 0 is an eigenvalue of AV™ if and only if k is
odd. In this case A = 0 is a simple eigenvalue. Thus, for even k all eigenvalues have a
positive real part while for odd k zero is a simple eigenvalue and all further eigenvalues have
a positive real part.

Proof. We have already seen that the first |£| eigenvalues of AV™ are A = 2 and, thus,

obviously have a positive real part. Moreover, we noted that A = 0 is an eigenvalue of AVTP

if k is odd since then the first row of the matrix block B, of AVTP see (2.20), vanishes.
Therefore, bringing to mind the structure of AV™P, the remaining eigenvalues are just

those of Byy = (B22)i,j=1+ak _____ ) where s = r +1 — [gJ and o, = k — 2 [gJ But, setting

D= diag (dakﬂ, . ,ds) with d; > 0 as defined in (2.21), we conclude from Lemma 2.22
that (%(5§22 + Eégﬁ)) is positive definite and, thus, only has positive eigenvalues. Hence,
according to Lemma 2.21, all eigenvalues of EQQ have positive real part. O

2.2.3 Solvability and stability

Knowing the eigenvalue structure of the matrix AVTP, we are now able to assess the solv-

ability of (2.13) and the stability of the Runge-Kutta-like formulation of the VITD method.

Proposition 2.24 R

Let rk € Z, 0 < k < r, and u > ,u[—m. Moreover, let {Nz*} be specified by (2.10),
) = min{i -1, [gJ}, and { = [%J Furthermore, suppose that f is globally ([gJ — 1) -times
continuously differentiable.

Then, the Runge-Kutta-like formulation associated by Corollary 2.16 to VID(MM™'g)
with g fulfilling Assumption 2.1 is uniquely solvable for time step lengths 1, € (0,7] with
T > 0 sufficiently small. If p < 0, the unique solvability holds without restriction on the
(mazimal) mesh interval length. Moreover, in either case the formulation is ASI-stable and
AS-stable.

Proof. From Corollary 2.23 we know that o (AY™P) < C{ and that A = 0 is at most a simple
eigenvalue of AVTP. Therefore, the solvability follows from Lemma 2.6 and Corollary 2.9,
also note Remark 2.7. Furthermore, the AS/I-stability holds due to Lemma 2.12. Since

I
BVTD — ( 1 ?FJ’TH) AVID we also gain AS-stability from Lemma 2.13. O

e7‘+1
We already know that the VI'D methods are A-stable (cf. Remark 1.1 and Remark 1.39).
However, their special construction involving collocation conditions yields in combination

with the special structure of their associated Runge-Kutta-like formulation some more quite
interesting consequences with respect to stability.
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2.2 VTD methods as Runge-Kutta-like discretizations

Lemma 2.25 -
Let r )k € Z, 0 < k < r, and suppose that U € Y, is the VID}(0) approzimation to the
solution of Dahlquist’s stability equation (1.29). Then, there is a (stability) function R
(defined on C a.e.) such that

. D)

U (t,) = R(3FA) T (t0)

foralll =0,...

, [gJ Further, we have that R is just the (r — [%J T — [%J) Padé approx-
imation of exp(2z

), so especially satisfies

|R(z)| <1  forallze C” ={zeC:Re(z) <0}.

Proof. According to Corollary 1.42, we have that U(l), l=0,..., [gJ, solve VTD;~L,(0)
when appropriate initial conditions are used. Because of Remark 1.39, we further know
that all these methods share their stability properties with dG (r — [%J) if k is even or
cGP (r — [gJ) if k is odd, respectively. Hence, they especially have the same stability func-
tion R, which yields the first statement. Moreover, |R(z)| < 1 on C~ immediately follows
from the fact that dG methods as well as cGP methods are A-stable.

Furthermore, because of Remark 2.20, the stability functions of dG(s) (with s > 0) and
cGP(s) (with s = 1) are essentially the same as for the (s+ 1)-stage Radau ITA method and
for the (s + 1)-stage Lobatto IIIA method, respectively, thus certain Padé approximations,
cf. [38, Table IV.5.13, p. 77]. Therefore, we find that R is the (7" — [gJ T — [%J) Padé
approximation of exp(2z). O

As for Runge-Kutta methods it would be nice to have some representation of the (stabil-
ity) function R in terms of the method parameters, i.e., in terms of AVTP. This is provided
by the following lemma.

Lemma 2.26
Let 0 <i < [gJ The (stability) function R of Lemma 2.25 provides the following represen-
tations

r+1
-1 min{j—1,| £V —:
R(z) = eJT[i] ([r+1,r+1 —AVTDZ) ( Z Smin{i-1[ 5} ej>,
j=i+1
where e; denotes the jth standard unit vector in R and o = (i + 1) + 9, %] (r —1). This
L2
also implies that for all i the expressions on the right-hand side are the same.
Proof. Applied to Dahlquist’s stability equation (1.29), i.e., to problem (1.21) with d = 1,

M=1=M,A=-X=A, and f = 0, the “stage” equations (2.13) of VTD}(0) simply
read

@M

_vtp | _ _(Zi)' _ Tn ,vTD | \=vTD
i - U " (tn—l) + ?An )‘gj,n
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2 Error Analysis for Stiff Systems

Rewriting this and recalling that gYr® = N,,(TU(-) = U(ﬁm)( o) for i =1,...,|%5] and
i =71+ 1 with {f; = mln{z -1, [2“, we obtain

U(t;) ; : ; :

N T — T T -1 = ; _

: = () @ = () (g = 5 AN T [T

U(l%J)(f) : :
This identity already looks quite promising. However, for A # 0 the various derivatives of
U at t,_, on the right-hand side are coupled, whereas for the desired statement we need for

each i = 0,...,|%]| an expression that links T (t,,) to 7" (t,_,) only.

But, from the collocation conditions at ¢,,_, for n > 1, c¢f. (1.22b), or the definition of the
discrete initial values by (T (ty) = a9 (t]), respectively, we have that
T ) =20 V) foralll<i< k]

2
Therefore, we find for 0 < i < [%J that

r+1
—( _ ea
U( )(tn) = ez[i] (I'r+1 r+1 = _AVTD/\ (Z U bl )

r+1
Tn -1 (] 1 —1 _(7“) —
= 6,5[1-] (IT’+1,7“+1 - ?AXTD/\) (Z U ( n—1 6]' + Z )\f[]] U (tn—l)ej>'
j=1 Jj=i+1
Further, exploiting that AY™P = S-1AVIDS and taking advantage of the special structure

of AVTD see (2.20), which is transferred to ([r+17r+1 — %AVTD)\)A, we gain

] r+1
U(Z)(t;) B effT[i]S’:l(L"H’wrl — AT . <Z Al ZU() ~1)e )

Jj=i+1
1 r+1 ; ) — )
e - 40 (5] (5 ) 70
j=i+1
From this, we easily complete the proof. O

Remark 2.27

Starting with the generalized iteration equation (2.19) for VI D} (0) applied to Dahlquist’s
stability problem (1.29) and using similar arguments as in the proof of Lemma 2.26, it also
can be shown for 0 <7 < [gJ that

r+1
R( ) =1+ 26 AVTD (Ir+1,r+1 — AVTDZ)il ( Z Zmin{jl,lgj}iej)’
j=i+1
where the notation of Lemma 2.26 is reused.
This representation of the stability function is quite similar to that for Runge-Kutta

I
methods, cf. |38, Proposition IV.3.1, p. 40]. Note that due to BYTP = ( [kﬂTJ‘T“) AVTD we
6'r+1
have that e; ]AVTD = el BY™P is just the (i + 1)th row of BYTP. Moreover, if i = |5| = 0,

then Z;;lﬂ min{i=1| 5]} ‘e; simply is the all-ones vector in R" 1. [ )
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2.3 (Stiff) Error analysis

In this section, we derive error estimates for VI'D methods also in the case of stiff systems
of ordinary differential equations. To be exact, throughout the whole section, we consider
the VID}, (M M~'g) method with g fulfilling Assumption 2.1 where r,k € Z, 0 < k < r, and
where we suppose that f is globally ([gJ — 1)—times continuously differentiable. The scheme
is used as approximation for the initial value problem (2.8). Moreover, we let p > ,u[—ﬂ],
i.e., p is supposed to satisfy (2.9).

The presented error analysis strongly uses that the considered VI'D methods can be
reformulated in a Runge-Kutta-like way as it has been observed in the previous section, see
Corollary 2.16. Therefore, also the notation introduced and specified in Section 2.2 is used
further, especially the linear functionals (2.10) and their local versions (2.11).

Let the operator PVTD : ol (I,) — P.(I,) be defined by
PYTy = N ()W Ny (o) (Bi o T, ).

Since, in view of (2.12), this operator is a projection onto P,(I,,), it provides for 0 <i < r+1
the following approximation error estimates

sup | (v — PTYTDU)(i) )| <cC (%")TH% sup ‘U(TH)(t)‘ Yo e C"(I,). (2.23)
tel, tely

Moreover, it follows that

r+1
(PY™0)" = X (3) M) (B o 1)
1=l+1

forall0 <1 < [%J

2.3.1 Recursion scheme for the global error

According to Corollary 2.16, also see (2.13), the solution U of VID,(MM'g) with g
fulfilling Assumption 2.1 satisfies certain recursion schemes. In preparation for the error
analysis we show now that a similar recursion scheme holds for the error too.

Similar to U (cf. (2.16)) the exact solution @ of (2.8) satisfies for 0 < < |%| and t € I,

t t
a®(t) = u (k) ) + f (PY™') " (5) ds + J (@ - PY™a) " (5) ds

th—1 tn—1
z LTl o~ T () <0
— a0+ D () Nj,n(n'p))f B0 (5) ds
j=l+1

t
+ f (@ —PY™w) " (5) ds. (2.24)
tn—1
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Therefore, analogously to (2.17) for U, we find for u

Nin (@) | = @@y [+ %”(AZTD ® lag) | Nja (@ () [+ | 7P (2.25)
where 7Y/ ? € R, i = 1,...,7 + 1, is given by
PP N ( §, (@ —Pymw))(s) d§> . (2.26)

Now, combining (2.17) and (2.25) as well as using that (2.8) and (2.18) hold, we find for

the error € = u — U (and setting € = @ — U) that

Ni,n(é(')) = \é(z[i])(t;_l) + %(AXTD(@Id,d) ]’\7]7”(\6//()) + FXED

= | e () +%(AXTD®Id,d) MM=N;,u ((f = 9)() = AN (BO)) [+ | 7™ |-

Hence, rewriting this, it follows that

~ 1

Nin (E()) = ((Ir+1,r+1 ® Lq) + %"(AXTD ®Z))_ (2.27)

. . L B
e (1) |+ 5 (AN @ Laa) | MM TNy ((f = ) () [+ | 7™

Recalling Remark 2.7, Corollary 2.9, and Corollary 2.23, in order to guarantee the existence
of the inverse matrix on the right-hand side, we only need that 7, is sufficiently small, and
that only if x> 0.

Furthermore, with an argument similar to that in the proof of Corollary 2.16, especially re-
calling that N, , (8(+)) = ‘) (t,,) fori =1,...,|%| and i = r+1 with £;; = min{i — 1, |£]},
we find

— ((1[k/2'TJm+1) ® ]d,d) ((Isrrss ® L) + 2 (AY™P @ A)) !

€r+1

. T o N . _:
el (¢ ) +§(AZTD®Id7d) MM™'N;.((f —9)() | + TP
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2.3 (Stiff) Error analysis

Using that AY™P = S 1AVTPS, | the right-hand side can be rewritten and split as follows

e(t,) Ew),o0 EGi),0 Eii),0
: = S S s (2.28)
k _
ez @) Neoura)  \Eatwz)  \Eailwal )
£ £ D
where, reusing the notation of Lemma 2.26, the block components (l =0,..., [%J) of the

block vectors £g), £y, and Egip) are given by

EGyt = Eoy (%)E[ﬂ’lg(f[i])(tg_l) :

and

with

Eopy 1= (BZ[Z] ®Lag) ((Lrs1,01 @ Lga) + (AP ®Z))_1.

For further progress, we rewrite the term E£;. First of all, from (2.8) and from the
collocation conditions at ¢, ; for n > 1, cf. (1.22b), or the definition of discrete initial
values for n = 1, respectively, we gain that

ety )= MM (f — )" Vit 1) — AVt ) forl1<i<|E]and1<n<N.

Now, because of Assumption 2.1, the occurring differences (f — g)(ifl) (t,—1) always vanish.
So, we actually get

et ) = (<A et ) forall0<i<j<|%|and1<n<N. (2.29)

Hence, adapting the argument used in the proof of Lemma 2.26, we conclude

r+1

Eoa = (b, ® Lua) (Iorra1 ® Taa) + 2(AP @A) ( () e é“[ﬂ)@;l))

j=l+1

r+1
— (0 ® Laa) (Urrr1 ® Laa) — (A ® (—%@))1( 2 ®(—%"Z)Z“]"> et )

j=l+1
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2 Error Analysis for Stiff Systems

for 0 <1 < [%J But this means that

e(tn1)
Eo) = (Iape1 o ® R(=FA4)) : : (2:30)
é([%])(t;hl)

where R is the (stability) function of Lemma 2.25, also cf. Lemma 2.26, associated to the
respective VT D method.

2.3.2 Error estimates

Before the actual error estimate is addressed, we derive some bound on the inverse of
the main part of the system matrix. In the proof the following technical result, know
from [19, 36], is applied.

Lemma 2.28 (Cf. [19, Lemma 3.4] and [36, Theorem 4])

Let w € R and let ¢ be a rational function without poles in {z € C : Re(z) < w}. Suppose
that A € R®*%, s € N, satisfies (v, Av) < wlv|® for all v € R, i.e., u[A] < w. Then, ¢(A)
exists and we have in the corresponding matriz norm, i.e., in the spectral norm, that

[o(A)] < sup {l¢(2)] : 2 € C, Re(z) < w}.

Lemma 2.29
Let p > p|—A], i.e., p is supposed to satisfy (2.9). Then, it holds

H((ITH’TH ®Igq) + (AP ®Z))_1H <C  forallT,e (0,7

with sufficiently small T > 0. Note that T can be chosen arbitrarily large if pn < 0.

Proof. We reuse and slightly adapt the notation of Lemma 2.6, which is shortly recalled
now. For z € C, let V(2) = (vy;(2)) = (L4141 — AV™P2) and W (2) = (wy;(2)) = V()" if
V(z) is regular. Then, according to the notation introduced for matrix-valued functions, the
main part of the system matrix ((Ir41,41 ® laa) + 2 (AVTP ® A)) simply reads V(—2A).
Similarly (141,41 ® Laq) + 2 (AVTP ®Z))_1 then can be shortly written as W (—2-A).

From Proposition 2.24 we have ASI-stability for the considered Runge-Kutta-like for-
mulation and, thus, there exists an w > 0 such that V(z) is regular and all entries w;;(2)
of W (z) are uniformly bounded for Re(z) < w. Therefore, from Lemma 2.6 we know that
W (-2 A) exists if additionally 2y < w. Furthermore, because of (2.9), Lemma 2.28 yields
that

Hwij(—%z)H < sup{|wij(z)\ :2€ C, Re(2) < %"u} <C

if 2 < w. But this implies |W(-2A4)| < C for 7, > 0 sufficiently small, which is the
desired statement. Note that for p < 0 no restriction on 7,, (from above) is necessary. [
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2.3 (Stiff) Error analysis

We now are well prepared for the derivation of error estimates. In the next theorem a
bound for the error in the time mesh points is presented. Afterwards, also the pointwise
error is estimated. For convenience, we here suppose that similar to (2.23) it holds for
O0<i<r+landl<n<N

sup (£ =) (0] < € (3)™" sup |10 o) (2:31)

tel,

when f is sufficiently smooth and its approximation ¢ satisfies Assumption 2.1.

Theorem 2.30

Letr ke Z, 0 <k <r, and p > ,u[—Z]. Moreover, suppose that f is globally ([gJ — 1)-
times continuously differentiable. Denote by T the solution of (2.8) and let U € Y, be the
solution of VID,(MM~'g) with g fulfilling Assumption 2.1 and (2.31) where we assume,
if p >0, that 7, € (0,7] for all n with T sufficiently small. Then, for all 0 < < [gJ and
0<n<N, it holds

H(a_U><l><t,;)H<cw+l—l( sup [MMLFOD @)+ sup Ha<r+2><t>u),
]

te(to,tn] te(to,tn

where C' is independent of T = maxi<,<n T, but exponentially depends on T'. Moreover, C'
and T may depend on i but are independent of the two-sided Lipschitz constant.

Proof. Starting from the splitting (2.28), each term on the right-hand side shall be analyzed
separately.

For the block components of £y we find from Lemma 2.29 for all 7, € (0,7] with 7 > 0
sufficiently small that

-1

((IT+1,T+1 ® Iga) + %”(AVTD ®X))

AN >

leandl < | (8, © 1ua)

~
=1 <C

(T?n i —VTD

for 0 <1 < |%]. Moreover, (2.26) and (2.23) imply

|7y = H (Stn 1 @ pVTD—,)(f (3) d§> H feulp Stn 1 (@ — pVTD—/)(Z[])(g) d§)
< s (- BYT) 0] < € (3) " s a0
tel,, tely,

Combining both estimates, we gain

€l < € (3)™ sup [a+2 1))
tely,

Similarly, again with Lemma 2.29, it follows for the block components of &) that

€4l < S| (A" @ Taa) [ || (z3) "0+ FE - 1Njn((f 9)0))
<1.C <C :
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for all 7, € (0,7] with 7 > 0 sufficiently small. From (2.31) we gain

|

n((f _ g)())H < felf H(f _ g)(é[j])(t)H <C (%l)r—i-l o sup Hf r+1 >H

tely,

Therefore, we get for 0 <[ < [gJ

Hg(ii),lH <C (T )T+2_l fulp HMMﬁlf(rH)(t)H.
el,

7’”
For the block components of £4), we get from (2.30) that

€oal < [R(=3A) |20

for 0 <! < |%]. Further, because of (2.9), Lemma 2.28, and Lemma 2.25, we conclude

1 if p <0,

A5 <o (R0 €€ Rolo) < ) < {1 o 11D

for 7, € (0,7] with 7 > 0 sufficiently small (if 4 > 0, to ensure that R has no poles in the
considered area).
Altogether, the above estimates result in

O] < € !

(14 03) [P0 ] 0 5 (sup (3230 £00) + sup [+ )]
tel,

EGiy

|+

(iii),!

for 0 <l<|%]and 1 <n < Nif7, e (0,7] with 7 > 0 sufficiently small. Again we note

that 7 can be chosen arbitrarily large if ; < 0. A discrete version of Gronwall’s lemma, see
Lemma A.1, then yields

[e® ()] < exp (St — to))

(1206501 + 33087 (sap 05700 - ple =01 )
< exp (%(tn - to)) (CTTHZ( sup HMM L+ (g H + sup Hu (r+2)( ‘) (Zn: 7”))
te v=1

3

(to,tn] te(to,tn]

< C(t, — to) exp (%(tn — to))r’"*ll( sup [MM @)+ sup [a+2 ()] ),

te(to,tn] te(to,tn]

where we also used that &) (¢;) = 0. This is the desired statement. O
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Theorem 2.31

Letr,k e Z, 0 < k <r, and p > ,u[—Z]. Moreover, suppose that f is globally ([gJ — 1)—
times continuously differentiable. Denote by U the solution of (2.8) and let U € Y, be the
solution of VID,(MM~g) with g fulfilling Assumption 2.1 and (2.31) where we assume,
if p >0, that 7, € (0,7] for all n with T sufficiently small. Then, for all1 < n < N, it holds

sup H (w—U)(t) H

tel,

<CTT+1( sup HMM Lpr+b(q H+ sup Hu”“ H—i— sup Hu(”z )”),

te(to,tn] te(to,tn] te(to,tn]

where C' is independent of T = maxi<,<y T, but exponentially depends on T. Moreover, C'
and T may depend on i but are independent of the two-sided Lipschitz constant.

Proof. We start decomposing the error € = @ — U as follows

sup | (7 =) (1)] < sup | (@ = BP0) ()] + sup | (R0 - T) ()]

n €ln

The first term on the right-hand side can be bounded by (2.23) to

sup (@~ BY™w) (1)] < € (3)" sup [a (1)

n

In order to estimate the second term, we use that PY™PU|; = Ul|;,, which holds since
Ul;, € P.(I,,RY), and exploit the definition of PYTP to obtain

sup H (RLVTDﬂ — U) (t)H = sup HRLVTDE(t) H
tel, tel,

+
<2318
2

Thus, it only remains to derive suitable bounds on (T”) g HNM( )H
Now, from the identity (2.27) and using AY™ = S-1AVIPS it follows that
N RN (=
(3)™ [N GO < [l + [€anal + 1€l

for 1 <1 < r + 1 where the vectors g(i),l; &Gy, and 5(111),1 are given by

<C
r+1 ,—/\—ﬁ

()| sup|(Bi o T ()] = 3 ()™ |Nin (20| sup. |B£

teln i=1 te(-1,

(iii),l
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with
1

2= (e ®1ua) ((Lrp111 @ 1ag) + 2(AVTP @ A)) .

Applying similar techniques as used to bound &y, and &), see the proof of Theo-
rem 2.30, we gain

Bl + sl = € ()77 (sup [FE0 1430 + sup a2 1) ).

Further, Lemma 2.29 and Theorem 2.30 yield

-1

((Ir+1,r+1 ® Lgq) + %”(AVTD ®Z))

L. J/ .

[€aall < |(ef' ® Taa)]
—_—— -

=1 <C

<crr+1(t(sup [T 00+ s )aw%)u)
(S

e(t07tn—1

to,tn—1

if 7, € (0,7] for all v with 7 sufficiently small. Of course, also here 7 can be chosen arbitrarily
large if p < 0.
Combining the above estimates, we easily finish the proof. O]

Remark 2.32 . o
Note that, because of e = M € and since M is independent of ¢, we also gain analogous
results for the error e = u — U. To this end, we only need to use that

w00 = |7 @- 7)) < |37 ||@- 70w < Cl@-T)O )

for 0 <1< [gJ andtel,, 1<n<N.

Of course, C' is independent of 7. However, for example for semi-discretizations in space of
time-space problems, M and so C' may depend on the spatial mesh parameter h. Therefore,
closer considerations would be needed to check whether or not we can also conclude h-

uniform estimates for © — U in this case. &

2.3.3 Numerical results

In this subsection, we want to present some computational results in the case of stiff prob-
lems. To this end, we have a look on one of the standard problems in the study of numerical
methods for stiff differential equations — the example of Prothero and Robinson, see [49,
Example 1].

Example
We consider the initial value problem

u(t) =7 () + Mut) —g(t), te(0,10),  u(0) =g(0),

2.32
) =10—(10+t)e™,  AeR. (2:32)

For any A the solution of the problem is given by u(t) = §(¢) = 10 — (10 + ¢)e".
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This example has many advantages. On the one hand, it is quite simple and fits in the
form (1.21). On the other hand, the stiffness is directly controllable via A while the solution
itself does not depend on A. Moreover, there is a non-vanishing right-hand side f = § — A\g
such that the test problem does not automatically force the case of cascadic interpolation.

All computational results given below were carried out with the software Julia [18|, where
we used the floating point data type BigFloat with 512 bits.

We are mainly interested in studying the influence of stiffness on the convergence behavior.
Therefore, in Table 2.1 and Table 2.2 the errors of Q$-VTD} in different norms and semi-
norms are listed for A € {—10,—1000} and A = —100000, respectively. Here, of course,

problem (2.32) can be assessed as non-stiff for A = —10 while it is rather stiff in the case
A = —100000. Error results and associated experimental orders of convergence (eoc) are
given for a wide range of equidistant meshes with N = 2,4 = 5, ..., 13, uniform subintervals.

We note that the pointwise errors ||u — U, are quite similar for all A\. Moreover, we
clearly obtain an associated convergence order of r +1 = 7 as expected from Theorem 2.31.
Hence, the numerical results show that stiffness does not influence the L*-order.

The situation is quite different for |u — U ,». Although the error in the time mesh points
is significantly smaller than the pointwise error for all A, there are substantial differences in
the obtained experimental orders of convergence. In the non-stiff case A = —10, we clearly
see the typical (non-stiff) superconvergence order 2r — k + 1 = 10 over a wide range of
meshes. For A = —1000 we start for the coarse mesh with N = 32 subintervals with an eoc
of about 6 and only reach an order just under 10 for the relatively fine mesh with N = 4096.
For the rather stiff case A = —100000 the experimental convergence orders are about 6 for all
considered meshes, although they show an upward trend. Thus, a classical superconvergence
behavior as in the non-stiff case cannot be expected for stiff problems. However, we again
want to stress that the error in the time mesh points is very much smaller than the pointwise
error also in the stiff case.

Table 2.1: Error of Q$-VTD} in different (semi-)norms and associated experimental con-
vergence orders

A=—-10 A = —1000

N |u—-"Ul|;x eoc |u—=Ulme eoc |u—U|;x eoc |u—Ul,e eoc

32 T7.376e-11  6.92 1.646e-13 9.78 7.409e-11  6.93 6.452¢-15 6.08
64 6.090e-13  6.96 1.870e-16 9.94 6.091e-13  6.97 9.552¢-17 6.24
128 4.884e-15  6.98 1.902e-19 9.98 4.881e-15 6.98 1.262e-18 6.51
256 3.864e-17  6.99 1.877e-22 10.00 3.862¢-17  6.99 1.380e-20 6.99
512 3.038e-19  7.00 1.838e-25 10.00 3.036e-19 7.00 1.087e-22 7.74
1024 2.381e-21  7.00 1.797e-28 10.00 2.380e-21  7.00 5.077e-25 8.68
2048 1.863e-23  7.00 1.755e-31 10.00 1.863e-23  7.00 1.234e-27 9.46
4096 1.456e-25  7.00 1.714e-34 10.00 1.456e-25 7.00 1.754e-30 9.84
8192 1.138e-27 1.674e-37 1.138e-27 1.921e-33

75



2 Error Analysis for Stiff Systems

Table 2.2: Error of Q$-VTD} in different (semi-)norms and associated experimental con-
vergence orders

A = —100000

@D

N u— U||L°0

32 T7.414e-11 693 7.094e-19 594 2.599e-09 2.92  7.094e-14 5.94
64 6.095e-13  6.96 1.154e-20 5.97 4.281e-11 2.96 1.154e-15 5.97
128  4.884e-15 6.98 1.836e-22 5.99 6.867e-13 5.98 1.836e-17 5.99
256  3.864e-17  6.99 2.886e-24 6.00 1.087e-14 2.99 2.886e-19 6.00
512 3.038e-19  7.00 4.497e-26 6.02 1.710e-16 6.00 4.497e-21 6.02
1024 2.381e-21  7.00 6.937e-28 6.04 2.680e-18 6.00 6.937e-23 6.04
2048 1.863e-23  7.00 1.052e-29 6.09 4.195e-20 6.00 1.052e-24 6.09
4096 1.456e-25  7.00 1.548e-31 6.17 6.560e-22 6.00 1.548e-26 6.17
8192 1.138e-27 2.143e-33 1.025e-23 2.143e-28

oc  Ju—-Ulp eoc |(u=-U)|g ecoc [(u=U)|en eoc

The results presented in Table 2.2 show two conspicuous features. Firstly, the exper-
imental ¢(*-order is smaller than the L*-order and, secondly, the errors |u— Ul ,.. and
|(u—=U)|| o only differ by a factor. Therefore, for further examination the results of Q%-
VTDS, k = 0,...,6, for A = —100000 are summarized in Table 2.3. The given errors
are those for N € {256,512} and the experimental convergence orders are calculated from
these values. However, we want to remark that not for all k£ the range of the experimental
(*-orders (when considering meshes with N = 2¢, i =5,...,13) is as narrow as for k = 3.

First of all, all methods show an L*-order of » + 1 = 7 and, thus, also confirm The-
orem 2.31. Moreover, for k > 2 we have that |u — U|,» and [|(u — U)’|,» only differ by
factor |\| = 10°, while this is not the case for k € {0, 1}. This behavior is in full accordance
with (2.29). The unexpectedly lower experimental ¢*-order compared to the L*-order,
which was already seen for k = 3, also shows up for all £ > 2. It seems that an experimental
¢*-order of about r + 1 — [gJ is obtained and, thus, just the order of the maximal deriva-
tive covered by Theorem 2.30. Nevertheless, because of |(u — U)® Hew < |[(w—-0)® ”Lw and
since we gain the expected L®- and W1®-orders of r + 1 = 7 and r = 6, respectively, this

is not really a contradiction to the estimates of Theorem 2.30.
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2.3 (Stiff) Error analysis

Table 2.3: Error of Q$-VTD}, k =

imental convergence orders

o

)

(=}

A = —100000
lu=Ulps eoc  Ju=Ulp eoc [(u=U)|p eoc |(u=U)|m eoc
4.755e-17  6.99 2.744e-22 7.01 5.965e-14 2.99 8.494e-15 5.99
3.738e-19 2.128e-24 9.378e-16 1.337e-16
3.259e-21  7.00 1.259e-24 7.78 1.164e-17 6.00 1.163e-17 6.00
2.551e-23 0.716e-27 1.822e-19 1.821e-19
6.086e-21  7.00 1.129e-27 6.04 2.327e-17 6.00 1.129e-22 6.04
4.764e-23 1.713e-29 3.643e-19 1.713e-24
3.864e-17  6.99 2.886e-24 6.00 1.087e-14 5.99 2.886e-19 6.00
3.038e-19 4.497e-26 1.710e-16 4.497e-21
1.888e-20  7.00 1.783e-29 5.02 1.529e-17 6.00 1.783e-24 5.02
1.478e-22 5.490e-31 2.394e-19 5.490e-26
1.517e-16  6.99 2.980e-25 4.91 3.261le-14 5.99  2.980e-20 4.91
1.193e-18 9.906e-27 9.129e-16 9.906e-22
6.833e-16  6.99 2.731e-29 4.00 6.999¢-14 5.99 2.731e-24 4.00
0.377e-18 1.709e-30 1.101e-15 1.709e-25

0,...,6, in different (semi-)norms and associated exper-
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Part 11

Variational Time Discretization
Methods for Parabolic Problems
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3 Introduction to Parabolic Problems

In the following, we want to study parabolic problems of the form

dru(t) + Au(t) = f(t) inQ, to<t<to+T, (3.1a)
BU(t) =0 on 89, to<t<ty+ T, (3].b)
u(to) = uo in Q, (3.1c)

where Q < R%, d, € N, is a bounded domain with boundary Q2 and 7' > 0 some time
horizon. Here, A is a uniformly elliptic linear differential operator independent of time
t. In addition, B is some linear operator (also independent of ¢) modeling the boundary
conditions. Further assumptions on A and B will be stated later on. As before, we set
I = (to,to + T] for brevity.

Most parts of our analysis will, however, consider parabolic problems in their weak for-
mulation. Therefore, we provide an abstract setting for this generalized formulation at first.
To this end, let (H,(-,-)) and (V,(-,-)y) denote two Hilbert spaces with V' continuously
embedded in H (for brevity, V < H), i.e., V < H and there is a positive constant Cpp, > 0
such that ||[v| < Cemp, vy, for all v € V. Moreover, suppose that V' is dense in H. Then,
identifying H with H’, we have that V <« H = H' < V’'. Thereby the duality pairing
(-, vy can be viewed as extension of (-,-). Furthermore, let a(-,-) : V. xV — R be a
continuous, V-elliptic bilinear form, i.e.,

da>0: a(v,v)
1C, > 0: ‘a(v,w)’

vl YoeV, (3.2a)

=

<Culvly ol VoweV. (3.20)

Here, (3.2a) means the V-ellipticity and (3.2b) the continuity of the bilinear form a(-,-).
The abstract generalized formulation then is given for f € L?(1,V’) and ug € H by

Find u e W(V, V') :={ve L*(I,V) : dwe L*(I,V’)} with u(ty) = ug such that
(Opu(t), vy, +alu(t),v) = {F(t), v>v, v for ae.tel, YveV. (3.3)

Note that it holds W(V, V') < C(I, H). So, the initial condition u(ty) = u is meaningful.
Here, usual notation for Bochner spaces is used, for details see e.g. |25, Subsection 6.1.1].
Especially, the definitions of the function spaces introduced in Part I are extended to Banach
space-valued functions.

It is well known that under certain further assumptions on the data, problem (3.1) can
be rewritten in the form (3.3). Of course, appropriate choices of the spaces H and V' as well
as of the bilinear form a(-,-) then strongly depend on the nature of A and B. Note that
in this way the requirements made on the involved spaces and bilinear form may implicitly
cause (additional) assumptions on A (and B).
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3 Introduction to Parabolic Problems

In addition to the already used notation for (Banach space-valued) square-integrable or
continuously differentiable functions, in the following also standard notation for Sobolev
and Bochner—Sobolev spaces is used. So, for arbitrary p € [1,00] and m € Z, m = 0, let
Wm™P(Q) denote the Sobolev space of LP(2) functions whose weak derivatives up to order
m are also in LP()). The associated norms are given by

1/p 1/p
o= (3 1eltg) = ( 3 [lowiaras) . wneinn

0<|a|<m 0<|al<m

v = max |D% = max esssup |D"‘v x if p = o0.
[olwmenoy = 28 [ D] o) = max esssup|Du(a)],

. (0% do - ..
Here, we use the notation D% = dg! - - - 0, where a = (au, ..., aq,) € Ni? is a multi-index

with |a| = a1 + ... + ag,. Usually, we simply write LP(Q) instead of WP(Q) and H™(Q)
for W™2(Q2). Moreover, we write H(Q) := {u e H'(Q) : u = 0 on dQ} for the subspace of
H'(Q) of functions having zero boundary traces and H~'(Q2) = H}(Q)’ for its dual space.

In analogy to the definition of Sobolev spaces, for an arbitrary interval J and a Banach
space X let WP (J, X) with p € [1,0] and m € Z, m = 0, denote the respective Bochner—
Sobolev space of X-valued functions. Of course, also here WP(J, X) = LP(J, X) and
H™(J,X) =W™%(J, X). We have

1/p 1/p
s = (3 Wtelt) = 3 [l . wnenn

0<j<m 0<j<m
HUHWWOO(J,X) T e, HagUHLOO(J,X) T e es?esJup [6iv®)] - if p = 0.

Moreover, for sufficiently smooth functions we also use the norm HUH cx) = SUPres Hv(t)H X

Model problem
For simplicity in the following we mainly concentrate on the model problem

dru(t) — div(eVu(t)) + b- Vu(t) + cu(t) = f(t) inQ, to<t<ty+T, (3.4a)
u(t) =0 on 09, to<t<ty+T, (3.4b)
u(tp) =up  in Q, (3.4c)

with coefficients ¢, b, and ¢ defined over € and taking values in R% > R and R, respec-
tively, where we additionally assume that there is a constant ¢y > 0 such that

Le(x)z = o2’ 2 for a.e. z € Q and all z € R, (3.4d)
This means that the operators A and B in (3.1) are specified by

Av = —div(eVv) + b- Vo + cv and Bv = v. (3.5a)
Moreover, in this case we have that

a(v,w) = (EVU,VUJ) - (b : Vv,w) + (cv,w) (3.5b)
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3.1 Regularity of solutions

and the two occurring Hilbert spaces then are

H = L*(Q) with the inner product (v, w) = J vw dx and
Q (3.5¢)

V = Hy(Q) with the inner product (v, w)v = (Vo,Vw) + (v,w).

Obviously, it holds V' < H with Ceyy, = 1. Provided that € € [LOO(Q)]dQXdQ satisfies (3.4d),
be [LOC(Q)]dQ, div(b) € L*(R2), as well as c € L*(Q), the V-ellipticity and the continuity of
a(-,-) can be guaranteed if ¢ — 1div(b) > 0. For further details see e.g. [25, Theorem 3.8,
pp. 115-116]. In the following, we assume that (3.2) holds for this model problem.

Note that the stationary problem associated to (3.4), i.e.,

Au=f in €, Bu =0 on 0,

is uniformly elliptic and has homogeneous Dirichlet boundary conditions. We say that the
stationary problem is H2-regular if for all f € L?(2) the adjoint variational problem

Find u € V such that
a(v,u) = (f, v) YoeV
has a unique solution u € V- n H?(Q) that satisfies the estimate HuHHQ(Q) < C’HfHLQ(Q). )

Remark 3.1
As we have already seen for the model problem, the space V' and the bilinear form af(-,-)
are just those arising in the weak formulation of the associated stationary problem

Auzf in €, Bu =0 on 0Q.

For linear elliptic differential equations of second order and the most typical (combinations
of) boundary conditions the weak formulations and conditions for the V-ellipticity of the
associated bilinear form a(-, -) are derived in e.g. |25, Section 3.1]. Also see [25, Remark 6.10]
where the time-dependent versions are broached.

An easily comprehensible overview on elliptic boundary value problems and their weak
formulations that also handles higher order problems is given in [35]. For details, on how the
(system of) boundary differential operator(s) B could look like, especially see [35, Subsec-
tions 5.2.1 and 5.3.2] and the references provided there. For a discussion of some associated
weak formulations especially see [35, Sections 7.2 and 7.4].

For a very detailed and general study of elliptic, parabolic, but also hyperbolic partial
differential equations, we refer to [56]. So, for example, conditions on the equivalence of (3.1)
and (3.3) are discussed in |56, Satz 27.6, pp. 403-404]. However, due to the very general
setup, the notation used there is somewhat more difficult to understand. &

3.1 Regularity of solutions

The existence, uniqueness, and regularity of solutions to (3.1) or (3.3), respectively, have
been studied in detail in the literature, see e.g. [56, Chapter 26 and 27| and references
therein.
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3 Introduction to Parabolic Problems

Theorem 3.2 (Cf. [56, Satz 26.1, p. 384, Satz 27.2, p. 393])
Let j € Z, j =0, and suppose that (3.2) holds. Moreover, let

feH (V)  and  QugeV, i=0,...,5-1, dlug e H. (3.6)
Then, the abstract problem (3.3) has a unique solution u satisfying
uwe H/(1,V), o ue LA(1,V7), dulty) = dug, i=0,...,J.
The quantities dlug occurring in the theorem are recursively defined via

0
0y up = g,

<8§u0, U>V,’V = <f(i*1)(t0), U>V,7V — a(@f*luo, v) YoeV,i=1,...,]. (3.7)

This nicely shows that (3.6) should not be misinterpreted as additional initial conditions
but actually states certain compatibility conditions, i.e., the initial condition ug, f® (to) for
i=0,...,7— 1, and the boundary conditions (given by V') should match at .

Some situations in which (3.6) is guaranteed are discussed in [56, pp. 396-397|. Note that
the notation there is somewhat different since the linear operator from V' to V' representing
the bilinear form a(-,-) is used to define Juy.

If, as in our case, the abstract problem (3.3) originates from a weak formulation of a
parabolic problem of the form (3.1), then also the interaction between time and space as well
as the regularity of the solution with respect to the space variable is of interest. Appropriate
results are given in |56, Subsections 27.2 and 27.3|, especially see [56, Satz 27.5, pp. 402—
403|. So, provided that the problem data satisfies suitable regularity and compatibility
assumptions, then the solution can be guaranteed to be as smooth as desired in time and
space. Note that in the literature often quite strong regularity assumptions on the domain §2
are supposed. However, some results may also hold for domains with nonsmooth boundary,
also see the following remark.

Remark 3.3
For the solution u of the model problem, cf. (3.4), we also have on a convex domain that

we L*(1,Hy(Q) n H*()), drue L*(I, L))

if fe L*(I,L%Q)) and ug € H'(Q), see for example [50, Proposition 11.12, p. 215]. Here
additionally note that the assumptions on 2 stated in [50] can be further weakened since
the elliptic H?-regularity, that was used to prove the H?-regularity, can also be guaranteed
on convex domains, cf. [33, Theorem 3.2.1.2, p. 147] or [35, Theorem 9.24, p. 282].

Note that under certain assumptions the H2-regularity of the solution to the stationary
problem can be proven for even more general domains, see [2| and [30]. &

3.2 Semi-discretization in space

There are several ways to approach the numerical approximation of problem (3.1) and (3.3),
respectively. We shall follow the method of lines and first approximate the solution to (3.3)

84



3.2 Semi-discretization in space

in space only. This approach results in a coupled system of ordinary differential equations
with respect to the time variable ¢. Later, in a second step, for example the methods known
from Part I can be applied to obtain a fully discrete scheme.

We denote by V), a finite dimensional subspace of V. Moreover, in order to keep things
clear and simple, let f € C(I,V’). Then, consider the following semi-discretized problem

Find w, € C*(I,V},) with us(to) = up, o such that
(6tuh(t) ) + a(uh ) <f Uh>V/,V Vte I, Yo, € Vi, (3.8)

where uy, o € V}, is an approximation of the initial value w.

This problem is called the semi-discretization in space of (3.3) and well-known from the
literature, see e.g. |25, Subsection 6.1.4] or |34, Subsection 5.1.2]. If uy € V', then uy € Vj,
may be determined via the projection P, : V' — V}, given by

(Pyv, w>v,,v = (v, w>V,’V Yw € Vj,. (3.9)
Note that in this definition the duality pairing (-, )y+y can be replaced by (-,-) if v € H.
Moreover, P, is stable in [-|, i.e., it holds |Pyv| < |jv| for all v € H, which can be casily

shown using the Cauchy— Schwarz inequality. However, as we shall see later, other choices
for up, o may be more appropriate. The concrete choices, of course, then strongly depend on
the properties of the data and the properties desired from wuy,.

3.2.1 Reformulation as ode system

In order to make the structure of (3.8) more clear, the problem is reformulated. Denoting

dim(V},)

un(t) =, Uni(t)p;

i=1

with Uy, ; € C1(I). Now, testing in (3.8) with w;, j=1,...,dim(V}), we get
(8tuh(t), cpj) + a(uh(t), gaj) = <f(t), 90j>V’,V Vi=1,...,dim(V}).

Then, defining the mass matrix M and the stiffness matrix A as usual by

M;; = (goj, cpl-), A = a(cpj,goi) Vi,j=1,...,dim(V}), (3.10)
the left-hand side can be rewritten as

dim(Vp,) dim(

(atuh(t)a¢j)+@(uh(t>a¢j) = Z th ‘PiaSO] Z Un,i(t SOwSOJ)
= (MUh( ) + AUh(t))j.

Therefore, setting F < f(t) goj>v, v+ the basis representation U, of the solution wy,
of (3.8) satisfies the 1n1t1al value problem

MUL(t) + AUL(t) = F(t) Vtel,  Ux(to) = Unp. (3.11)

Here, Uy € R4m(a) denotes the basis representation of Up0, 1.€., Upo = Zidi:ll(vh) (Uh,O)i‘Pi-
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3 Introduction to Parabolic Problems

Remark 3.4
Looking on P, f(t) € V}, in its basis representation, i.e., P, f(t) = mell(v”) EP (1), we get
from the definition of the orthogonal projection P}, that

( ) < ( LP]>V/ <th(t)’ SOJ>V’,V
dim(Vp, dim(V},)
Z <‘Pz74p]>vl = Z szh(t) (ch’(Pj) = (MFPh(t))]
Hence, it holds F'(t) = MF:(t). [

Since (3.11) is a system of coupled odes, standard ode theory can be applied to answer
questions on solvability and regularity. However, we should know somewhat more about the
involved matrices M and A as well as about the right-hand side F.

Lemma 3.5
The mass matriz M e REDVa)xdmVa) 4o summetric and positive definite.

Proof. The symmetry of M follows easily from its definition due to the symmetry of the
inner product (-, ).

Now, we study the positive definiteness. To this end, let Z € R¥™(2)\{0} and associated
2n = Zdlm(vh Zip; € Vi\{0} be given. Then, it holds

dim(Vh) dlm Vh dim(Vh)
2
ZTMZ = Z Z (goj,gol ( Z iPjs Z ZZQOZ> = (Zh,Zh) = ”ZhH >0
ij=1 i=1
and we are done. O

We now know that M is symmetric and positive definite, which also implies existence,
symmetry, and positive definiteness of M /2. Tt is appropriate to define

b MTVPAMTVR

M:=MY2 and A:=MM'AM"
Then, setting Uy, = MU, = MY?U;, and Upg = MUy g = MY2Uy o, in addition to (3.11) it
also holds

U,(t) + AUL(t) = MM'E(t) Vtel,  TUplty) = Upo. (3.12)

Since this is a finite linear system of ordinary differential equations with constant coefficients
in standard form, we have that

t A — ~
Upt) = e AT, (to) + f e OANIM L (s) ds. (3.13)

to

Thus, the regularity of U}, only depends on the smoothness of the right-hand side E.
In case of the standard application, where V, is a conforming finite element space, it is well-
known that the system gets stiffer if the spatial mesh gets finer. In fact, on shape-regular,
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3.2 Semi-discretization in space

quasi-uniform meshes the two-sided Lipschitz constant associated to the semi-discretization
of model problem (3.4) then is proportional to A2 with h denoting the spatial mesh param-
eter, also see Remark 3.8. Therefore, we ask and check whether at least a uniform one-sided
Lipschitz condition is satisfied for problem (3.12). To this end, we have to verify that (2.9)
holds with p independent of V.

In the following, the notations |-|| and (-, -) are also used for the Euclidean norm and inner
product. From the context, however, it will always be easy to understand what meaning is
meant.

Lemma 3.6
For every Z € RE™(Va) 4t holds

—= = =12
(-A2.2) <[]
with p = aC’emb < 0, where a > 0 is the V -ellipticity constant of a(-,-).

Proof. Let Z € R4™(Va) be arbitrarily chosen and z, = Zdlm(vh) Zip; € Vi,. Then,

dim(Vy) dim(Vy) dim(Vy)
(AZ7 Z) = ZTAZ = Z Z; G(LPJ,CPZ ( 2 (Pja Z Zi Soz> (Z/uzh)
ig=1 i=1

Now, due to the V-ellipticity of a(-,-) and V < H, we have

a(zn, z0) = alanlly = aCo .

Recalling the identity used in the proof of Lemma 3.5, the norm on the right-hand side can
further be rewritten as

th”Q _ ZTMZ _ ZTMl/QMl/ZZ _ (Ml/Zz)T(Ml/Qz) _ HM1/2

where we used that M'/? exists and is symmetric since M is symmetric and positive definite.
Hence, it follows

(AZ,7) = aC2 |[MZ]".

Multiplying this identity by —1, setting Z = M ~'/2Z, and recalling the definition of A, the

desired statement follows easily. Here, also note that M~/2 exists and is symmetric and
positive definite. O
Remark 3.7

Note that within the proof of Lemma 3.6 we have made the following observations. Let
zp, € Vi _be represented by the coefficient vector Z € RI™(Ve) e, z, = Zdlm(vh) Zip,, and
define Z € R1™(Va) by Z = MZ = MY?Z. Then, it holds

1Z| =] and  (AZ,Z) = a( ).

Therefore, stability and error results obtained for the coefficient vectors immediately also
yield results for the represented functions in an appropriate norm and vice versa. Moreover,
this suggests that estimates for ode systems as those of Section 2.3 can nicely be interpreted
if the ode system results from a spatial semi-discretization of a time-space problem. &
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3 Introduction to Parabolic Problems

Remark 3.8
Adapting the arguments used in the proof of Lemma 3.6, we obtain for functions y,, z, € V},

and their associated basis representation vectors Y, Z € RI(Va) je. y, = Z;ﬁﬁ(v’l) Y,

and z, = Z?i:ll(vh) Zip;, that
a(yp, zn) = (AY, Z) = (Z?,Z)

where Y = MY = MY?Y and Z = MZ = M*?Z.
Thus, inspired by the proof of |25, Theorem 9.11, pp. 388-389], we find for the spectral
norm of A that

7l [AY] (AY.2) _ a(yn 2n)
Al = sup —— = el A WYns Zn).
?ERdim(Vh)\{O} ”YH ?77€Rdim(Vh)\{0} HYH HZH Yn,2n€VR\{0} Hth ||Zh H

where we also exploited the observations of Remark 3.7. Using the V-ellipticity and the
continuity of a(-,-), we further conclude

2 2

a sup —HZ}LHV <|A| = sup —a(yh,zh) <C, sup |znllv .
anevin(oy |2l venevi {0} Y ll] zn] znevinfoy [12nll

In the setting of model problem (3.4) with (3.5) and considering a conforming finite ele-

| znllv

EX
proportional to h~! with A denoting the spatial mesh parameter. Here, an upper bound

follows from an inverse inequality and an appropriate lower bound follows from choosing
any non-zero function in Vj, whose support has a diameter of order h, also see [25, (9.12)
and (9.15), pp. 388 and 390]. Hence, |A|| is proportional to A2 then. )

18

ment space Vj,, on a shape-regular, quasi-uniform mesh, we have that sup,, .y, (0

Lemma 3.9
The solution Uy, of (3.12) satisfies the following stability estimate

t
|Tw(t)] < e Com =T, (t0) ]| + J e~ Com (=) MM~ F(s)|| ds.

to

Proof. Scalar multiplying (3.12) by Uj(t), we get
(TL(t),Tn(t)) + (ATL(), Un(t)) = (MM E(t), Ux(t)).

Using the result of Lemma 3.6 and the Cauchy-Schwarz inequality, we therefore gain

ST + a3 T < [FIMF@)|[Ta(0)]
From this, we conclude that
2 Tw(@)] + aC2 [T < [MMME(2)).
Further, multiplying by e®Ceamt, we find that
Or (e2Cemt [T (1)) = €2Comd® | Uy (1) + O3, Comt [T (1) < e2Comtt [RIMTE ()]

So, replacing ¢ by s and integrating over s from ¢y to ¢, we obtain the desired estimate. []
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3.2 Semi-discretization in space

Recalling Remark 3.4 and Remark 3.7, we immediately get from Lemma 3.9 that

t
Juun(e)]| < e Cemt=10) (1) | + f e~ Con T £(5)] ds. (3.14)

to

However, under weaker assumptions on f still the following stability results can be shown.

Lemma 3.10
The solution uy, of (3.8) satisfies the following stability estimates

Jun(0)]? +<xj‘nuh )2 ds < Jun(to)| + j'nf )12, ds

and
t

—aC—2 (1— 1 —aC~2 (t—s
(O < e B (1) + | e IR, ds.
t

0

Proof. Suitably adapt the proof of |25, Theorem 6.7, pp. 283-284]. H

3.2.2 Differentiability with respect to time

Next, we study the differentiability of the semi-discrete solution with respect to time. Obvi-
ously, from (3.13) we have that U}, is (j + 1)-times continuously differentiable, if F'is j-times
continuously differentiable with respect to ¢ on I. The connection to the regularity of the
right-hand side f is shown in the following lemma.

Lemma 3.11 B N B
Let jeZ, j =0, and suppose that f € CI(I,V"). Then, F e C7(I, RYImVA)),

Proof. By definition we have Fj(-) = {(f(-), @)y foralli=1,...,dim(V}). The statement
now is proven for each component separately. So, consider an arbitrary i = 1,... ,dim (V).
Obviously, (-, ¢; )y - defines a linear functional on V’. Therefore, f € CI(I, V") implies that

() = {f(), ‘Pz‘>vf,v e C/(I,R),
also see [57, beginning of the proof of Proposition 3.6, p. 77]. O

Now, if U}, € CI+H(T, R¥™(Va)) "also the differential equation (3.12) can be differentiated
with respect to ¢ and we obtain

TV + ATV () = MMTIFO@) veel,  TV(t) = UV,

for i = 0,...,7, where we used that A and M are independent of time ¢. Analogously, in
function representation, we have that uj, € C7*1(I,V},) with uy(ty) = uno satisfies
(ungl)(t) vh) + a(uh ) <f Uh>V’,V Vte I, Yo, € Vi, (3.15)

%%)—ﬁ%»
fori=0,...,J

Since US) and ug) satisfy quite similar initial value problems as U, and wy, there also
hold analog stability estimates, cf. Lemma 3.9 or Lemma 3.10, respectively.
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3 Introduction to Parabolic Problems

Corollary 3.12 B B
Let j€Z, j =0, and suppose that f € CV(I,V'). Then, the solution Uy, of (3.12) and the
solution uy, of (3.8) satisfy fori =0,...,7 the stability estimates

. . 3 o~
[T )] < e oCam =) [T (1) + j e~ Cans =) [FIM 1 FO) (s) | ds
to
or (in function representation)

2
v ds,

t
[0l (1) < e Comp 1) D (1) | + éf e~ Can=9| O )
to

respectively.

While the latter (integral) terms in the stability estimates can always be bounded by terms
of the given data independent of h, appropriate uniform bounds for the initial value(s) can
only be guaranteed if uo (and so Uh,o) is properly chosen. For more details on this topic
we refer to Subsection 4.2.3.

3.2.3 Error estimates for the semi-discrete approximation

The error analysis for the semi-discretization in space is well understood, see e.g. |25, The-
orem 6.14, pp. 287-288| or [34, pp. 324-326]. Therefore, we shall only sketch the derivation
of error estimates and concentrate on the results.

It is convenient to introduce another spatial projection operator. As before, let V}, ¢ V
be a finite dimensional subspace of V. We define R;, : V' — V), to be the Ritz projection
operator given by

a(th, w) = a(v,w) Yw € V.

Note that R is stable in |-|,,, i.e., it holds HthHV < C'|v| for all v € V. This can be
easily derived from the V-ellipticity and continuity of a(-,-). Indeed, from (3.2) we get

aHRh’UH?/ < a(Ryv, Ryv) = a(v, Ryv) < CaHRhUHVHU}

Vv

which yields | Rpv|,, < = |lv]|,, for all ve V.
The Ritz projection can be extended to functions of space and time in the L2-sense by
setting (Ryv)(t) := Ry (v(t)) for all v e L2(J, V). Then, Ry, : L*(J,V) — L?(J,V}) satisfies

J a(th,w) dt = J a(v,w) dt Yw e L*(J,V},).
J J

Similarly, the projection operator P, : V' — Vj, of (3.9) can also be extended by setting
(Pov)(t) := Py(v(t)) for all v e L2(J, V') such that P, : L*(J, V') — L?(J,V},) then satisfies

J <th, w>V, ydt = f <v,w>v, L dt Yw e L*(J,V3,).
J ’ J ’

These extended projections will be needed in the later error analysis.
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3.2 Semi-discretization in space

Standard spatial discretization
In the setting of model problem (3.4) the discrete space Vj, < V' is often chosen as a finite
element space of continuous piecewise polynomials of a certain order, say x > 1. This
space is based on a triangulation 7, of ), for example in simplices. Here, h is not only
used as abstract parameter for notation purposes but also denotes the maximum among the
diameters of mesh cells contained in the triangulation 7.

Under some standard assumptions on the triangulation it is well-known that R;, has the
following approximation properties, see e.g. |21, Theorem 3.2.2, p. 134, Theorem 3.2.5,
pp. 138-139]. If v e HJ () n HY(Q)), then

Jv— RhUHHl(Q) < Chi™! V] gragey (3.16a)

for 1 < g < k+ 1. If in addition the associated stationary problem is HZ2-regular, we also
have

[v = Ruvl| ) < O [[0] gy (3.16b)
which, compared to (3.16a), provides an improved L*-norm error estimate. ' )
The following (abstract) error estimates can be shown.

Theorem 3.13
Provided that w and f are sufficiently smooth, it holds

[u®t) — u? ()] < [u®(t) — Ruu® ()] + | Ruu® (85) — ufl (1) e Com 11012

1 (" o . A\
b ([ o - ) ol )

and
[u®(t) = ()] < [u(t) — Rpu®@ ()] + | Ruu® () — ul () e Compli=t0)
t
+ J e_ac;fb(t_s)H(?t (u® — Rpu™) (s)| ds.
to

Proof. Since the arguments are quite analog, we give a detailed proof for ¢ = 0 only.
For estimation the error is split as follows u — uy, = (u - Rhu) + (Rhu — uh). Now, using
the definition of Rj, and subtracting (3.8) from (3.3), we find

<8t (Rhu — uh) (1), vh>V,7V + a((Rhu — uh) (1), vh) = —<(3t (u — Rhu) (1), vh>V,7V
Vt e 7, Vvh € Vh.

Therefore, the stability estimates, cf. (3.14) and Lemma 3.10, also give bounds for Ryu — uy,
(in certain norms) when f is replaced by —a; (u — Rhu). Because of

[ (w = un) @) < [[(u = Ru) @) + [ (Rrwe = ) ()

the desired results are proven easily.

If u is sufficiently smooth, similar arguments can also be used to prove the desired state-
ment for i > 1. Here, note that an identity similar to (3.3) also holds for v with f replaced
by f® and, moreover, that (3.15) can be applied instead of (3.8). O

Y
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3 Introduction to Parabolic Problems

3.3 Full discretization in space and time

After semi-discretizing (3.3) in space according to Section 3.2, we are still faced with differ-
ential equations. Therefore, in order to obtain a fully computable discrete scheme, further
discretization of the remaining system of coupled odes is needed. Here, it should be noted
that the system of ordinary differential equations becomes larger and also stiffer if the spa-
tial discretization gets finer. For this reason, careful consideration should be given to the
choice of the temporal discretization.

In the following, we shall apply and analyze the variational time discretization methods
presented in Part I. Our previous findings suggest that these methods are well-suited in this
context since they provide suitable stability properties (at least A-stability) and enable a
proper error analysis also in the case of stiff problems.

3.3.1 Formulation of the methods

First of all, the variational time discretization (VTD) methods of higher smoothness as
introduced in Chapter 1 are formulated also in the setting of parabolic problems. To this
end, we again use a time mesh

to<ti<- - <ty_1<ty=tyg+T.

Also recall the associated notation, e.g., we write I,, for time mesh intervals and 7, for the
time mesh interval lengths, see p. 7 for details.
Let r,k € Z, 0 < k < r, be given. Then, the local problem on I,,, 1 <n < N, reads:

Find w,p|;, € Pr(I,, V) such that

U (65 _1) = urn(t, 1), if k> 1, (3.17a)
(07 urn(t,), vn) + a(Ourn(ty,), vp) = <g(i)(t;),vh>v,’v Yo, € Vi, (3.17b)
ifk>2i=0,...|% -1,
(6§+1u7h(t+ 1) vh) + a(& U (t ) <g( (¢ ), Uh>V’,V Yoy, € Vi, (3.17¢)
ifk>3,i=0,.... |5 -1,
and
J (aturha U‘rh) + CL(UTh, UTh) dt + do k([urh]n 1, Urn(t f <g7 Urh>v,
I’!L

VUTh € Prfk([ru Vh>7 (317d)

where the initial value u,p(t;) € Vj should be a suitable approximation of u(ty) = uo.
Moreover, g is some approximation of f.

In the following, we mainly consider g € {f, I} f,Z; f,C; f} and, if k > 2, also g = I}, . f.
By these choices we are already able to model the exactly integrated version, the numerically
integrated version (with quadrature rule @},), and the version with cascadic interpolated
right-hand side of the VI'D) method. Moreover, for k > 2 we can consider the situation
after a postprocessing of Q};é—VT D};:é( f). Also cf. Remark 1.43 and Remark 2.14.
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3.3 Full discretization in space and time

Note that the integral on the left-hand side of (3.17d) can always be replaced by any
quadrature formula that is exact for polynomials of maximal degree 2r — k. The same
applies to the integral on the right-hand side if g € P,.(I,,, V).

3.3.2 Reformulation and solvability

The fully discrete method can be rewritten using the same ideas as in Subsection 3.2.1.

So, recalling that {¢;};—1,.. dim(v;,) denotes a basis of V3, for any n = 1,..., N we can write
uTh|In € P’r(]na Vh) as
dim(V},)
urh Z U’T‘h z i Vi e In

with U.p; € P.(I,). Then, the initial condition (3.17a) and the collocation conditions (3.17b)
and (3.17c¢) can be reformulated as

UTh(trtfl) = UTh(t;,l), lf ]{Z = 1,
MUG(8) + AUR) (8) = GO(E), ifk>20=0,...[5 -1,
MUS(65) + AUS (62) = GO, itk =30 =0, |5 -1,

with mass matrix M and stiffness matrix A given by (3.10) and right-hand side term G
determined by G = (g(1) cpj>V, y forallj=1,... dim(Vy).
Similarly, the varlatlonal condition (3.17d) alternatively reads

f (MU, + AU, Vop) dt + S (M [Urp]ne1, Ven (1)) = f (é, Vo) dt

n n

WVon € Progp (1o, REW),

Here, we also used that v,, € P._x(I,,V},) can be represented by V,, € P._ (In,Rdim(Vh))
via

dim(Vy,)

UTh Z VT‘h N

In this reformulated representation, it becomes obvious that the full discretization (3.17)
of (3.3) can be viewed as VTDZ(@) approximation (in the style of (1.22)) to the semi-
discrete problem (3.11). Therefore, especially the findings of Part I on the solvability can
be easily transferred. More concrete, from Proposition 2.24 and due to Lemma 3.6 we have
that the fully discrete problem (3.17) is uniquely solvable, where no restriction on the time
step length 7, is needed.
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4 Error Analysis for VI'D Methods

In this chapter, we want to present an error analysis for variational time discretization
(VTD) methods of higher smoothness as introduced in Chapter 1 in the setting of parabolic
problems. To this end, we combine variational techniques as usually used in the error
analysis of discontinuous Galerkin (dG) and continuous Galerkin—Petrov (cGP) methods
and techniques that are known from the stiff error analysis of Runge-Kutta(-like) methods
(cf. Section 2.3). As byproduct we give a variational error analysis capturing both ¢cGP
and dG time stepping methods. In the following, we assume that u as well as f and ¢ are
smooth enough to guarantee that the occurring terms are well-defined.

Let u,, denote the solution of the VTDj (g) method as given in (3.17) where r,k € Z
with 0 < k& < r. For our analysis we assume that g is at least globally ([gJ — 1)—times
continuously differentiable. Moreover, we choose and include the initial condition in a
very special manner. More detailed, the initial values Olu,,(ty) € Vi, i = [gJ ,...,0, are
determined by

ooy = poalily,
Olurn (tg )EVhW1ch—[§J—1,...,O: (4.1)
a(Ojurn(ty ), vn) = <9(i) (ts), Uh>V/,V — (07 urn(ty), vn) Vo, € Vi,

with ]3}? € {Ry, P,}. Here, Ry, is as before the Ritz projection and P, is the projection
of (3.9), which is some generalization of the (global) L?-projection onto V},. For a definition
of diug, i = 0, see (3.7).
In view of Subsection 1.1.1 the assumptions on the smoothness of g and the choice of the
initial value(s) ensure that (3.17a) and (3.17c) could be replaced by
Ourn(t_y) = Gum(t,_y)  Vi=0,...,|5]. (4.2)
It follows that w,, is globally [ J times continuously differentiable for £ > 1 and, in

general, discontinuous at the tlme (mesh) points for k& = 0. Therefore, we are interested
whether the results of Subsection 1.4.4 can be transferred to the present setting.

Lemma 4.1
Let 0 < 5 < [%J and assume that g s ([gJ — 1) -times continuously differentiable on I.
Moreover, suppose that u,p, satisfies (3.17) with initial value determined by (4.1). Then, it

holds for 1 <n < N

J (0ul), ven) + a(u¥) von) dt + So oy ([uh)], s ven(t f 99 vy d

VU € Pr_psj(In, Vi)
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4 Error Analysis for V'I'D Methods

Proof. For j = 0 the statement is obvious. So we only consider the case 7 > 1, which also
directly implies that k£ > 2 and so there is no jump term in (3.17d).
Let vy, € Pr_gyj(1, Vi). Integrating by parts j times in time, we obtain

f (@u(fg,vm) + a( (T]h,vTh) dt = J (8{+1u7h,1)7h) + a(ag'um,vm) dt

n n

t

- _J (6iu7h,v;h) + a(&,{_lum,v;h) dt + [ (¢} ufh,vTh) + a(&J 1u7h,vm)]’

— (—1)Jf (Ortirn, (j)) + a(um,vi}f) dt
, o _
+ DL e vi) + @@ w18
=0 .

Because of (3.17b), (3.17¢), and (3.17d), we gain

f (0 v) + a(u) )
I,

f oDy dt+z R W [ (43)

+ <g t+ 1), Urn(t n—l >V’,V - (atufh(t 1) UTh(tn 1)) - @(ag_luTh(t;r—l)’Ufh(t;:—l))'

Note that we did not rewrite the term for [ = 0 at ¢! ; but only added the auxiliary
term (gl () ) = gU=D(tr ), vty 1))y, = 0 since (3.17c) does not apply in the case

] = [gJ > [%J Now, again using integration be parts j times, the first line of the

right-hand side of (4.3) can be rewritten as

W’JJ (g9, dt+ 3 (=D 00y, J {9V, vy d
n =0

It remains to study the second line of the right-hand side of (4.3). Since gV~ is globally
continuous, we get from (3.17b) (if n > 1) or the definition of the initial values (4.1) (if
n = 0) that

<g(j_1) (t:fl)7v7'h(t:fl)>vl7v = <g(j_1)( n— :L_ >Vl
= (aguTh(tn—l)7v h(t?; D))+ a(df urn(t, 1), ven(t) ).

Because of (4.2), We have that u,; is globally [ J -times continuously differentiable and,

.

thus, especially uTh is globally continuous. Therefore, we conclude

<g(j71)(tT+L*1)7 UTh(thzr—1>>V/7V o (agum(t;q), UTh(trt—l)) B a(agiluTh(t;fl)v UTh(tzfl))
= _50,k—2j([u7-]2]n_17 Urh(trtq))'

Combining the above identities, we are done. O
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In order to guarantee that Lemma 4.1 is always applicable and that we do not need to
know about g when defining the discrete initial values, cf. (4.1), we suppose that from now
on the following assumption holds true.

Assumption B
We assume that f and g are ([gJ — 1)-times continuously differentiable on I. Moreover, we
suppose that

g(i)(tar) zf(i)(ta“) for allizO,...,[%J — 1.

In the following, we always set ¢ := [gJ Using the preceding lemma and provided

sufficiently smooth data, we see that the fth derivative w,, = ug}z of u,;, solves on I,,
1 <n < N, the local problem:

Find w,|1, € Pr_¢(I,,, V},) such that
wep (B ) = wa(t, ), if k& is odd, (4.4a)

and

L (athhu UTh) + a(w7h7 vrh) dt + 6O,k72€([w7h]n717 UTh(t:{71>) = L <g(£)7 UT]”L>V/7V dt

VUT}L € Pr7k+€([n7 Vh); (44b)
where w.,(t,) is given by
won(ty) = PPolug.

When also u is sufficiently smooth (e.g., u € C**'([to,to + T),V)), then the function
w = u'”) satisfies

w(ty ) = w(t, ),

and

J (6tw, v) + a(w, v) dt = L <f(£), v>v/7v dt Yve L*(I,,V),

n

where w(t, ) is given by
w(ty) = 0lug.
Comparing the initial values for the continuous and the discrete problem, we see that
wa(ty) = Botuo = PYw(ty),

where f’}? € {Rh, Ph}.
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4 Error Analysis for V'I'D Methods

4.1 Error estimates for the £th derivative

Recalling the above observations and that ¢ = [%J, we conclude that w,, = u(f,g is the

solution of a VTDZ:‘;K method with adapted initial value applied to the modified problem

(ct. (3.1))

dw(t) + Aw(t) = fO1t)  nQ, to<t<to+T,
Bw(t) =0 on 09, to<t<ty+T,
w(ty) = dfug in €,

which is solved by w = u®. If k > 1 is odd, it holds k — 2¢ = 1 and so the discrete problem
is that of a ¢cGP method, whereas for £ > 0 even it holds £ — 2¢ = 0, which implies that u(f}z
is solution of a dG method.

Therefore, for the derivation of error estimates for the ¢th derivative of VIT'D; meth-
ods we can build on the broad knowledge for the analysis of dG and ¢GP methods. We,
however, shall present a unified analysis for the global L2-error in the H-norm. Moreover,
global L2-error estimates in the V-norm, pointwise error estimates in the H-norm, and some
supercloseness results are derived. Because of the usage of g as approximation of f on the
right-hand side of (3.17), we can easily study various variants of the method in one. Fur-
thermore, in order to gain even more flexibility, (especially) for the analysis, we consider an
integrator .%, that satisfies the following assumption.

Assumption
We assume that the integrator §, either represents the exact integral over I,,, i.e., .$, = anf

or the application of a quadrature formula based on function values of the integrand in I,
that is exact for polynomials of maximal degree 2r — k and has positive weights only.

Quadrature formulas that fulfill this assumption are, for example, the Gauss—Legendre,
the Gauss—-Radau, or the Gauss—Lobatto quadrature rules with sufficiently high number of
quadrature points. We will typically use .$, = SIn or ., = Z:gﬁ,n'

By assumption the integrator .%, is exact for polynomials up to degree 2r — k, i.e.,

$[v] = f v(t)dt Vv e Py _i(I,,R). (4.5a)
Moreover, because of the positive weights in case of quadrature, we have that

Fv] < .9, [w] Yo,w: I, - R with v(t) <w(t)Vtel,, (4.5b)

which also implies |.%,[v]| < .%,[|v|], and that the Cauchy—Schwarz inequality also holds for
g, ie.,

Flow] < (L[ (L[w ] vow:T, >R (4.5¢)

Here, in (4.5b) and (4.5¢) we tacitly assume that for v and w all occurring expressions are
well-defined.
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4.1 Error estimates for the ¢th derivative

Of course, depending on the concrete choice of .%,, the integrands need to satisfy different
conditions. Therefore, similar to Part I, we set kg = 0 if .%, represents a quadrature formula
based on function values and so requires integrands that are continuous on I,,. For the case
g, = S1n7 which requires integrable integrands only, we set kg = —1.

The integrator .9, also can be well interpreted for Banach space-valued functions. Indeed,
if $, = S1n7 the integral is read in Bochner sense. Otherwise, if .%, is a quadrature formula,
we just have a weighted sum of function values, which also makes sense in Banach spaces.
So, denoting by X a Banach space over R, we have that .%, is a bounded linear operator
from L'(1,,X) to X if kg = —1 or from C(I,, X) to X if kg = 0, respectively.

Note that the integral in (4.4b) can be replaced by an integrator .%, satisfying (4.5a) if
g1, € Po_y(I,, V') for all n = 1,..., N. The latter can always be achieved since in (3.17)
we can use 1I}g, cf. (1.28), instead of ¢ without changing the discrete solution.

For sufficiently smooth functions v and w define a bilinear form by

B (0.10) i= [ (2rv0) + (v 0)] + oo ([vhcr,wlt ).

Then, for all n = 1,..., N we have that ug,z € P._y(I,, V)) satisfies

8

Wit ) =t ) e, if k—20 =1 (< kis odd), (4.6a)
and
B;? (US—l;Za UTh) = L%L[<g(£)’ UTh>v/7vi| vvrh € Pr7k+€(In7 Vh)a (46b)

where uf,f(tg) = ﬁﬁ@fuo with ]3,? € {Rp, P}

4.1.1 Projection operators

To prepare the error analysis, we need to define some projection operators with respect to
time. For generality the projections are defined for X-valued functions where X denotes
some Banach space over R. Note that we directly give the (local) operator definitions on
I, for the concrete polynomial degrees (depending on r and k) that are actually needed in
the later argumentation. For stand-alone definitions of the operators and the study of their
well-definedness see Appendix C.2.

First, for v € L?(1,,, X) let I, ;. v € P41 (I, X) denote the (local) L?-projection onto
polynomials of maximal degree r — k + ¢, i.e.,

J (’U — Hr_k+gv)w dt =0 Vw € Pr_jyo(1),

cf. Definition C.4. The integral here needs to be understood in Bochner sense and the 0 on
the right-hand side should be read as the zero element in X.

For the case where .%, is not just the integral over I,,, we also define an analog projection
with respect to the integrator .%,, i.e., for v € C*s(I,, X) let H;{sz € Prpro(I,, X) be
determined by

jn[(v - H;{Mv)w] —0  Vwe Pyi(l),
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4 Error Analysis for V'I'D Methods

cf. Definition C.9. Here, we use that the integrator .%, can be well interpreted also for
X-valued functions. Recall that C~1(I,,, X) is interpreted as L*(I,,, X).

Finally, there is another projection which is essentially used in the following analysis. For
ve HY(I,, X) n C*s+1(T,, X) we define II._5 v € P,_,(I,, X) by

(v— HZ; é; )(th1)
|20 = TZ570)w | + dosae (v = 25 0) (1wt =

0, ifk—20—1,
0 VYw e Pr_i10(1y),

cf. Definition C.10. Note that from the definition of Hk 215 7 with w = 1, we conclude

(0~ 6 = | 2l =T d+ (o~ B0 )

- J ow dt — P [0,0] + jn[&t (v— I~ ‘;f )] + bop—2e (v — I~ éfv) (tr )

n

— | owdt — . [ow] = wl(v), (4.7)

In

where also the fundamental theorem of calculus and the properties of .%, were used. Thus,

w?(v) is an integrator error. For convenience, we set wg (v) := 0.

Composing the approximations locally defined by ﬁ;:‘;f , we can define a global approx-
imation. For simplicity, the associated global approximation operator is also denoted by
H;:g’f. More concrete, for ve {we H'(I,X) : w|, € C**(I,,X), n=1,...,N} we set

r—0,9 r—0,9 r—0,9
ch 2 V(tg) == v(ty), (Hk 2 )\ _Hk 20 (V]1

), n=1,...,N.

Of course this global approximation operator strongly depends on the time mesh. Note
that Hk o v(to ) needs to be defined as v(t;) in order to be consistent with wg (v) = 0.

Remark 4.2 N
For v e C(T,,, X) a projection 11} _%,v € P,_(I,, X) could also be defined by

(v—I050) () =0, ifk—20=1,
( HZ 26”)( n) =0,
f (v 10 Sev)wdt =0 Vw e Pr_pyo-1(1n),
In

cf. Definition C.6. For k —2¢ = 1 (< k is odd) this is the projection that is typically used
in the analysis of the Galerkin—Petrov time stepping, see for example [4, (4.12)], [11, (2.7)],
and (26, (70.19), p. 202|. If k — 2¢ =0 (< k is even), the projection is the standard one in
the context of the discontinuous Galerkin time stepping method, see for example [5, (3.1)],
[26, (69.26), p. 186], and [52, (12.9), p. 207].

Note that from integration by parts the definition of H; o0 also implies that for functions
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4.1 Error estimates for the ¢th derivative

ve H'(I,,X) c C(I,, X) it holds
J (9,5( HZ %v)w dt + 50’,@_%( HZ %v) (tr Dw(tt ) (4.8)

— _L (v H}; %v)&tw dt + (v H}; %v)w‘g_l + bok—2e (v H’,; 2£U)( Dw(tt )

=0 Vw e Pr_pyo(1).
So, the projection operator Hk ‘;f can be viewed as a generalization of ﬁ’,;:gz for the case
where .$, not simply represents the integration over I,,. &

Since ﬁ;:éf preserves polynomials up to degree r — ¢, by a standard approach, see
Lemma B.9 or also cf. [21, Theorem 3.1.4, p. 121] or [25, Theorem 1.103, p. 59| (where
the special case X = R is handled), we get for all max{0,kg} +2 < ¢ < r— ¢+ 1 and
0 <m < q that

g el

~rr—£,.9
’v =1L, 5 v

<Om o
< Ot Y gar,,

Vv e HY(I,, X),
Yo e Wo2(I,, X).

U}Hm(ln,X) X)

(4.9)

<Cri v

‘WWOO(I”,X) ‘W‘I’OO(IH,X)

In the case of exact integration, i.e., ., = S[ , some of these estimates are already known
from the literature, see e.g. |52, (12.10) . 208] or [26, (69.27), p. 187, (70.20), p. 202].

In the case that k — 20 =1 (< k is odd) we also need some norm equivalence in finite
dimensional spaces for the further analysis. The following lemma is proven later in a more
general setting, see Lemma D.2, where we here use that r — ¢ — 1 = r — k + ¢ if k is odd.
Note that, since Vj, € V' < H is finite dimensional, both (V4,|-|,,) and (V4,|-|) are (finite
dimensional) Hilbert spaces.

Lemma 4.3
Letk —20 =1 (< k is odd) and ||y, € { ||/, || }. Then, the mappings

v (L lo()]?, dt) v and v (L 1T oo (85 At + (%) Iv<tn)|liv>

define equivalent norms on P,_,(I,,V}) where the equivalence constants are independent of

Tn and of Vj.

1/2

4.1.2 Global L2-error in the H-norm

At first, the global L?-error in the H-norm of the ¢th derivative is studied. To this end,
we apply standard variational arguments as they are typically used in and known from the
analysis of cGP and dG methods. What makes it special, however, is that we study both
types of methods in one error analysis. This nicely shows, on the one hand, how similar the
arguments are and, on the other hand, where the differences lie.

Moreover, this subsection provides the basis for the following error analysis in different
norms since many results can and will be reused as well as many techniques that are used
in the proofs can and will be adapted later.
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4 Error Analysis for V'I'D Methods

We start to show a quite useful property of the bilinear form Bf (+,+), which will allow us
to control certain parts of the fully discrete solution and the fully discrete error.

Lemma 4.4
Let v, € Pr_y(1,,V) and v.(t,_,) € H be given. Then,

Bf(vT, HT_k+gUT) + 51,k—2e([Ur]n_1a UT(t:—ﬁ)

= J (atvﬂ Hr—k+€U7) + a(/UT7 Hr—k-‘rﬂ}‘r) dt + ([UT]nfp UT(tr—:—l))

n

1 1 1
> 2 e = 5 ot + 5 [l + o J I, ev 3 dt.
1

n

Proof. First of all, from (4.5a) we have that all integral terms in BY(v,,,_pv,) are
integrated exactly by .%,. Thus, .%, can be replaced by the integral over I,,. Moreover, the
Kronecker delta term in B;f (+,-) only appears if k = 2¢ in which case I, _j, v, = II,_v, = v,
in I,,. This shows the desired identity.
In order to derive the lower bound, we note that dv, € P,_y_1(I,,V) is a feasible test
k—1

function for the L2-projection II, ., due tor —k +¢ = r — [TJ —1>=r—+/¢-—1, also

cf. Corollary C.14. Therefore, we get by the fundamental theorem of calculus that

1 1
J (Orvr, I _pypv,) dt = J (Grvr,v,) dt = EJ o, |ur|? dt = 3 (HUT(t;)HQ B HUT(t:_l)H2>.
In

n n

Further, because of

o ) = Jor(t5_0) = Torlua])” = [o- G = 2([or ]y v (50)) + [[or]ua] s

we find that

1 1 1
) Hvr(t;—l)uz + ([FUT]nfth(t:L_—l)) -5 HUT(t;—l)HQ + B H[v‘f']nfl‘f‘

Finally, using that I, v, € P._py¢(1,, V) is a feasible test function for II,_x.,, again also
cf. Corollary C.14, and involving the V-ellipticity of a(-,-), we obtain

J a(UT7 HT*]{“:’ZUT) dt = J a(HT*kﬁ'[UT’ HT*]{“:’ZUT) dt > Oéf HHrfk+€UTH%/ dt.
In In In

Combining the above identities and estimates, we easily gain the desired statement. O

In order to study the ¢th derivative of the error e(t) = u(t) — u.4(t), we use the following
splitting

(1) = (u(t) = Rl Z5/u (1)) + el (t)  with e, (8) := RaIl =5 u (1) — uf) (1),

The identity of the next lemma shows how in the a priori error analysis we can get rid of
the fully discrete solution. Moreover, we see that the fully discrete error efh , 1s connected
to certain projection and approximation errors.
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4.1 Error estimates for the ¢th derivative

Lemma 4.5
Let 1 <n < N, then for all v, € Pr_gio(In, Vi) it holds

B (2o vm) = = [ (0 = Rpu® D, 0)] = G a(u? = 257, ) |
+ IO = g9 vy, |+ Sora () (Riu®), vea k)
with w? () as defined in (4.7). Moreover, we have that
lede]  =wi (Rpu®),  ifk—20=1 (= kis odd).
Proof. According to (4.6b), it holds
B (1) v, = [<g v7h>v,’v] Yorn € Prpse(In, V).

At the same time, assuming that the exact solution u and the problem data are sufficiently
smooth, especially u¥) globally continuous, we similarly have

B, 0) = 3O vmyyy | Foan e Pl Vi),

Altogether, this implies

B (u —uly) v) = fn[<f(z) — g, UTh>v/7V:| Vorn € Prpye(In, Vi)
and, thus, we get
B2 (€2, vrm) = BY(Ry ﬁT—”u@ —u) v.)
= BY (R, 11, 5 u® —u®,v,) + .9, [<f — g UTh>V/7V] Vurn € Progeie(In, Vi)

We now rewrite the first term on the right-hand side. To this end, we first note that because
of the (assumed) global continuity of u'¥ and (4.7) it holds

[ — RIS u®] = —[RuI 5 u®] | = [Ryu® — R, IG5 u®]
= (Rau® — RyIT,” geﬁu(@)(fﬁl) —wiy (Rpu®).

From this and using that the spatial projection R commutes with the temporal projection
H;:g’f, cf. Corollary B.5 and Remark B.6, we find that

(4.10)

B (u® — RyIT 5 u® v.y)

= [ (00— BTG50 ) 0on) | 4 o ([ = BTG5/ 0O, orn(t1)
+.9,[a(® = RGO, vn) |

= F[(2(u® = Ryu®), ven) | = S0 k20 (wil_y (Rwul), vrn(th1))
+ ﬂn[(at(Rhu“) — T4 Ryu®), vTh)] + o pae (Ryu® — TS Ruu®) (85 )), 0 (t1))
+. 9 [a(w? ~ R, vm)] + I, a( R = Rafl 57, v,) |
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4 Error Analysis for V'I'D Methods

for all vy, € Pr_gye(I, Vi). From the definitions of ﬁ;;:‘;f and Ry, the penultimate line as

well as the second to last term vanish. Furthermore, it holds
9. [a (Rpu®™ — Ry I 570, ’UTh)] =9 [a (u? — I —57u, vTh)].

Hence, collecting and combining the above identities as well as using that the time derivative
commutes with the spatial projection Ry, cf. |26, Lemma 64.34, p. 118], the first statement
is easily shown.

The second statement follows quite analogously to (4.10). Indeed, if k —2¢ =1 (< k is
odd), it follows from (4.6a) and (4.7) that

=0
A
e N

el s = [R50, = (R — R (17,) + ! (Raa®?),

where the first term on the right-hand side vanishes by definition of ﬁZ:g’f. O

Corollary 4.6
Let 1 <n < N, then for all v,y € Pr_gro(In, Vi) it holds

Bf (efh,éa Urh)

< [Cum ([0~ rate=9 )+ ([0~ ot )

+ (%[HHiM (fO—g“) QV,])W] < L [ornl dt>1/2+ Sokao|w? (Rnu )| [omn(ti_y)|
with w? (+) as defined in (4.7). Moreover, if k—2( = 1 (= k is odd), we have for allw € H
([e7he],_ysw) < Jwis (Ri?) | o]

Proof. From Lemma 4.5 and the definition of ITY , , , we get for all v,j, € Pr_g((I,,, V3) that
B (e 0 vm) = I, [(@ ) = R 0) ] =, [a(u® — T57 0, 0,) |
F I o1 = 9). vy | + Bosae(l s (B ()
< [ = B o] + Cudh [ [0 = 5, o] |
+9, :Hﬂffkw(f(e) -9")

where we also used the properties (4.5) of .%,, the Cauchy—Schwarz inequality, the continuity
of a(-,-), and the definition of the norm in V’. Because of V' < H, we furthermore have
vz < Cemp |v7n - So, applying the Cauchy-Schwarz-type inequality for .%,, we conclude

I [0 = R D osn]]] < Conmp i [u? = Ryl™*V orn] ]
< Coms (S| = Rl P]) (o))
) _ Tyr—£.9_ (0 ) _ Tyr—£.9 ()2 1/2 2 T\/2
I [0 = 25760 Joml, | < (G 1 = TG5O ) (S[lonnls])

IS

)

ol ] + Sl (Ria) ot )
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4.1 Error estimates for the ¢th derivative

and

L)) (el )

Summarizing and using that .%, is exact for H%h”%/ = (VUrn, Vrn)y € Por_gsey(1n) due to
2(r—k+0)=2r —k— (k—20) < 2r — k, we easily get the first desired estimate.

Since according to Lemma 4.5 it holds [ el = w)  (Rpul) if k—2¢ =1 (k is odd),

the second estimate of the corollary simply follows from the Cauchy—Schwarz inequality. [

10 (7 = 9)

UThHV] < ( [HH}Q k+€(f(é —g" ))

Vl

Remark 4.7
Note that the projection operator Hf_k +¢ in the above estimate could be dropped. However,
because of Lemma C.15, it holds

2

vl

anyway. But note that the left-hand side term vanishes in some relevant situations where
the right-hand side term does not. &

TIN5 = g 2] < 0 [ 15— 10

Next, an estimate for the fully discrete error efh ¢ 1s derived and presented. For brevity,
we use the notation % ,,[-] = 20 _; % [] in the following.

Lemma 4.8
Foralln=1,...,N it holds

tn
) 3 I, e [ et
0

v=1

< exp (th-1 —to)
[ <Oembj [Hu(€+1) _ Rhu(ul)Hﬂ n Csj[l,n] [Hu(f) _ ﬁ ge U Hv]

n—1

1) + et + T+ el R

v=1

+ S [Hﬂf—mz (FO =g,

with w?(-) as defined in (4.7). The exponential factor can be dropped if w? (Rhu ) =0 for
allv=1,...,n—1.

Remark 4.9
As already noted in the statement of the lemma, the exponential factor exp (¢,_1 — ty) can
be dropped in the above estimate if w; (Rhu 5)) =0 forallv=1,...,n—1. This holds, for

example, if for all v = 1,...,n — 1 the integrator .¢, is the 1ntegral over I,,. Here, recall that
in this section ., is not fixed by the concrete method but was introduced to enable more
flexibility in the error analysis. So, the choice .§, = SIV always is possible. &

Proof. Combining Lemma 4.4 with v, := efh,e and Corollary 4.6 with v, = HT_kMefW and
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4 Error Analysis for V'I'D Methods

w = efhx(tj—ﬂa we gain

1 1 1
e = 5letnetty ) + Gllehd, o + o | eciereflf
< B, ( €rn E?HT—k+€€fh,£) + 51,k—2€([€fh,e]y_17efh,e(tzi ))

< | Com ([0 — o) ([ 57 ]

(=] | ([ st )

+ ol (R ) e o))

;(Cgmb |:Hu(f+1) o Rhu(ZJrl)HQ:| n ijl,[Hu H?]; l;; 6) H ]

+ (%[HH;{M(N) —4®) HQVI] > + %L 1L, eed, | it

oo (Rua?) e o (£-1)

Y

where for the last step Young’s inequality was used. From this it easily follows

le2h et = lednetro)]” + [efh,e]y_lH2 + QL HHr—kM@fh,eHQv dt

<%%@wwumwwp@ﬂw fi; ||

+<¢[HHT k+£( 9())

] ) + 2w,y (Ruu®) e o (1))

Furthermore, the triangle inequality and again Young’s inequality yield for v > 1
oo (Ra®) et} < 2ls (B ] (Jea i)l + 1[0, )
< @+724) |l (Ru®) | + mocaled et + %H [ehal,
So, recalling that wy (Ryu')) = 0 and re-sorting the terms, we obtain (setting 7o = 1)
0+ sl | e
= (cgmbg[ywn — R[] + €29 [Ju® - T27u0)2 )

#1070l - )] )

1+ (=) 7o) Jedha (o) + (U= 010) 2+ 72 s (i)

Applying a discrete version of Gronwall’s lemma, see Lemma A.1, we easily conclude the
desired statement. O
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4.1 Error estimates for the ¢th derivative

We now are ready to give an abstract L?-error estimate in the H-norm in terms of certain
projection and approximation errors.

Lemma 4.10
Let |- |we{l-I.]|-lv}ifk—20=0 (e kiseven) and | - |w = |- | if k =20 =1 (< k is
odd), respectively. Then, for alln =1,..., N it holds

tn
| = o,
0

tn tn
<o [T = ma e [0 B ar [ ed, )
to to to

where

tn
J HeTthW C(l + 51,k—2£(tn — to)) exp (tn—l — to)
to
n—1
(HGfM(ta)Hz N 2(2 n Ty_l)wa(RhU(@)Hz n <¢[1,n]|:Hu(€+1) _ Rhu(e+1)H2]

v=1
# Sl = B ]+ [0 7 - 0]

with w;(+) as defined in (4.7). The exponential factor can be dropped if w;) (Ryu'®) =0 for
allv=1,...,n—1.

Proof. In order to estimate the error, we use the splitting
WO ol = (O~ By 4 (R — RTG0) ey ey, = BTSO —u)

For the second summand the stability of Ry in |||, yields

tn ~
[[ 1 iz,
0

tn ln
< [ maxt1,C) PR - B2 ar < 0 [ - B
0 0

So, the first statement follows easily by the triangle inequality.
It remains to study the third summand efh! = Rhﬂzzg’;u(@ — u(:;z Ifhk—20=0 (e kis
even), it holds efhx = Hr,;ﬁgefh,e and, thus,

tn tn tn
|ttty at = [ de < [ a1, 2 e I .
to to to

Otherwise, if k —2¢ = 1 (< k is odd), we use the norm equivalence of Lemma 4.3 to obtain

HefMHQ dt < C HHr k+£€mz” dt + (7") Hefh,z(t;)H2
I
<C (J 2 b HHr k+£67thv dt + (7”) Hefh,E(t;)|2)
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4 Error Analysis for V'I'D Methods

from which it follows

tn n
[P ledrar= 3 [ Jedd®ar < [Tt dbar e € 3 () el
0 v=1"Y1v

v=1

Therefore, in both cases, from Lemma 4.8 we conclude the desired estimate, where we also
n T _ 2
used that 2 (%) Hefm H (tn — to) max,_ Hefh,é(tu )| O

In conclusion, we have a look on the resulting convergence orders for a concrete setting.
In order to easily consider different variants of the VID; method, we use the short and
clear notation

S1u Sy, “cond.” is fulfilled,
S, otherwise,

Sl Ucond. S2 = {

where S; and S, are sets and “cond.” is a Boolean condition.

Theorem 4.11

Consider the setting of model problem (3.4) with standard spatial discretization satisfy-
ing (3.16) and let g € {f,IILf, 2, f,Ci.f} Virk =2 {I,:_Q’*f}. Then, we have the following
error estimate

tn tn
[
to to

<C(1+ (t, —to)) [hQ(””) [u®] 5, (ot 1410

(r—t+1) (H }

where o = 1 if the associated stationary problem is Hz—regular and o = 0 otherwise.

Hr— l+1( (to,tn), Hl + ||fHHr+l ((to,tn),H™ (Q)) )]7

Proof. Using Lemma 4.10 with choice ., = S[V, we only need to bound the projection errors.
From (3.16) we get

n KRT+0O 2
IO = R at < R o

where ¢ = 1 if the associated stationary problem is H?-regular and ¢ = 0 otherwise.
Similarly it follows

tn
f [u®*D — RV | dt < Ch2e+o) HU@H)Hiz((to,tnLH”“(Q))'
to

Furthermore, the projection error estimate (4.9) gives

tn
L Hu( H;; g; © Hv t< CrPrty Hu ‘HT —LH1((to,tn), H ()"
0

Recalling Remark 4.7 and due to g € {f, 11} f, Z; f,Ci. f } Uitk > 2 {I,Z_Z*f}, standard interpo-
lation/projection error estimates, cf. Lemma B.9, moreover imply

tn -
ft [0 (FO = gD [}, dt < © L 17O — g
0 0

_ 2
At < CT D T 0 -1 (@)
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4.1 Error estimates for the ¢th derivative

Finally, the special choice ug,z (ty) = é?é’fuo of the initial value for the discrete problem
enables

g — rrr—0,.% — £) /,— _ ~ _
e o(t5) = RT3 uO () — a9 (t5) = Ruu®(ty) — BluO(ty),

where we also have exploited that ﬁ;:g’; preserves the point value in ¢;. So, if PY = Ry,
it follows efh,e(ta ) = 0 and we are done. Otherwise, if ﬁ}? = Py, we conclude, using the
definition of the projection Py, that for u'9(t;) e H

[ = (Rl (t5) — Puu®(15), €, ,(5)) = (Ruu®(t5) — u(15), €2, ,(t7))

< |Ruu9(ty) = w9 (t5) edh o (t)]-
Hence, then the projection error estimates for Ry, cf. (3.16), yield
Hthx(ta) H2 < HRhU(@ (ta) _ u(f) (ta) ”2 < ChQ(KJrO') Hu(f) (t[)) ”3—]'€+1(Q)
with o as above, which completes the proof. O

Remark 4.12
By construction ufg is an approximation of u) that locally on I, lies in P._¢(I,,V}). The
convergence orders in time and space, obtained in Theorem 4.11, thus are as expected. &

4.1.3 Global L2?-error in the V-norm

Inspecting the statements of Lemma 4.8 and Lemma 4.10, we see that, if £k — 20 =0 (< k
is even), we even have control over SZ)’ Hefthi dt and Szg Hu(e) — u(f}z Hf/ dt, respectively. This
immediately enables us to derive error estimates for dG-like methods also in the V-norm.
In detail, suitably adapting the proof of Theorem 4.11, we gain the following result.

Corollary 4.13

Let k — 20 = 0 (< k is even). Consider the setting of model problem (3.4) with standard
spatial discretization satisfying (3.16) and let g € {f, 11, f. I, f.Cif}Uirk > 2 {I,Z?z’*f}. Then,
we have the following error estimate

tn tn
| = [ e
0

0

< O (b= ) [ [0 5 e

r—t 02 2
+ 7-2( 1) < Hu( )’H’"—“l((to,tn),Hl(Q)) + Hf”H’"H((to,tn),H—l(Q)) )]

Of course, we now ask whether or not a similar estimate also can be shown for ¢cGP-like
methods, i.e., if k —2¢ = 1 (< k is odd). Inspecting the proof of Lemma 4.10, this could
be done if we would have adequate control on efw(t,j ) also in the V-norm. Therefore, to
gain such control, we suitably adapt the ideas used in Lemma 4.4. For the presented proof,

however, some more assumptions are needed.
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4 Error Analysis for V'I'D Methods

Assumption 4.1
We assume that the bilinear form a(-,-) : V x V' — R can be split such that

a(v,w) = ao(v,w) + ap (v,w)
where ag(-,-) : V. x V. — R is a symmetric, V-elliptic, continuous bilinear form, i.e.,

ao (U,w) = qg (w,v) for allv,weV,

Jag > 0: ao(v,v) = ag vl YoeV,

=
3Cy, > 0: |ao (v, w)| < Cyy [v]y [w]y Yo,weV,
and ai(+,-) : V x H — R is a continuous bilinear form, i.e.,
iC,, > 0: a1 (v, w)| < Cy vy |w] VoeV,we H.
The bilinear forms a(-,-), ao(+,-), and ay(-,-) are all assumed to be independent of time t.

Remark 4.14
In the setting of model problem (3.4) the bilinear form a0(~, ) could be given by

ao(v,w) = (GVU,VUJ) + (Ev,w)
with ¢ > 0 independent of ¢. Then, of course,
aq (U,U)) = a(v,w) - ao(v,w) = (b : Vv,w) + ((c — E)v,w).

In the case that ¢ = 0 one can choose ¢ = c¢. Alternatively, setting ¢ > 1 always guarantees
that ag (v, v) > Hv||2, i.e., control in the H-norm, independent of ¢ and without additional
assumptions on c. &

Lemma 4.15
Let 1<n< N,k—20=1 (e k is odd), and suppose that Assumption 4.1 holds. Then, for
all v, € P._y(I,,, V) we have

o(ors )i+ [ 10w l® dt < 287 (o 00) + €2, [ I vonlf

Proof. First of all, due to k —2¢ = 1 (< k is odd), the jump term in BY(-,-) drops out. So,
exploiting the exactness of .§, for polynomials of maximal degree 2r — k and the splitting of
Assumption 4.1, we note that

Bf(vm 8th) = f (ﬁth, ﬁth) dt + J a(v,, ﬁth) dt

n n

— J H&thH2 dt + f ao (?}7-, 8tUT) dt + J a (UT, 8tv7) dt.
In In

I‘IL

Now, on the one hand, the symmetry of ao(-, ) enables the identity

1 1 =
fn ag (UT, ﬁth) dt = 3 . Orag (UT, UT) dt = §a0 (UT, 1)7-) ‘2111'
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4.1 Error estimates for the ¢th derivative

On the other hand, d,v, is a feasible test function for the L?-projection in time II,_,_;, also
cf. Corollary C.14. Using this together with the continuity of a, (~, -), we obtain

J a; (UT,atUT) dt‘ =

n

f ar (Tl ¢-1vr, Oyvr ) dt‘

n

< Cy f L —p—qv7 |y [ Orv-| dE <
I,

1
T—Z—IUTH%/ dt + §f HatUTH2 dt,
In

where we applied Young’s inequality in the last step.
Altogether the above estimates yield

1
50 (UT, Uy J Hé’tUTH dt = Bg(vT, 6th) J a; (UT, é’th) dt
K% . 2 1 2
< Bn (UT, (9th) HHT—Z—lUTHV dt + 5 HatUT” dt.
I, I,
From this we can easily complete the proof. O

Since, in contrast to Lemma 4.4, in the inequality of Lemma 4.15 the second argument
of BY(-,-) does not appear in the L*(V)-norm on the left-hand side but only in the L?(H)-

norm, we also need to show a variant of Corollary 4.6 where instead of (§, [v-n3, dt)l/ ?

on the right-hand side it only appears (Sln lvrnl? dt)l/ ?. For this purpose, we assume the
following.

Assumption 4.2
We assume that there is a Hilbert space | 1% satisfying V < V < H and a bilinear form
( ) V x H— R such thatfm"allveV w €V it holds
d(uw) = a(v,w).

We furthermore assume that d(-, ) 1 continuous, i.e.,

3C>0:  |a(v,w)| < C; YoeV,we H.

Remark 4.16 N N
In the setting of model problem (3.4) the space V could be chosen as V = H?(Q) n H}(Q)
where the bilinear form EL(-, ) is given by

&(v,w) = (.Av,w) = —(div(eVu),w) + (b . Vv,w) + (cv,w).

As norm in V we then use [l5 = -l 2 - L)

Under the additional Assumption 4.2 we can conclude from Lemma 4.5 the following
statement.
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4 Error Analysis for V'I'D Methods

Corollary 4.17

Let 1 < n < N and suppose that_Assumption 4.2 holds true. Moreover, assume that
Hy z(f( ) — g(g))(t) € H for allte 1. Then, for all v, € Pr_gio(I,, V3) it holds

( €rh0s Urh)

[ H u(z+1) B Rhu(gﬂ)HQ])l/z Lc ( 9 [Huw) — 5O ]>1/2
1/2
([0 =gV ([ Il ae) sl (Rt

with w? | (-) as defined in (4.7).

Proof. Similar to the proof of Corollary 4.6, from Lemma 4.5, the definition of Hr pie» and
Assumption 4.2 we get for all v, € P,_ k+g([n, Vi) that

B (e vm) = =@ = B )] = G |a(u® 7500, 0n) |
I (10 = 99) vy |+ Bosae (s (B o ()
=L Rl )] a0 T )
F I (s (7O = 69), ) | + Goscae (1 (R orn(821)
I = RV fora] + Ca [ [ = T o]

+ I (5 = g ) ol | + Gy (Rrte®) | o (8-

I~

Applying the Cauchy—Schwarz-type inequality (4.5¢) and using the exactness of .%, for poly-
nomials up to degree 2r — k, see (4.5a), we easily finish the proof. O]

We now get another estimate for the fully discrete error efh’e similar to Lemma 4.8.

Lemma 4.18
Let k —2¢ =1 (< k is odd) and suppose that A_ssumptions 4.1 and 4.2 hold. Moreover,
assume that 17, (f® — ¢\9)(t) € H for allt € I. Then, for alln =1,...,N we have

1 (™
colladti)ly + 5 | ol at
0
< exp (2(tn71 - to))

e i R ey

+6C§§[1,n][H“(£) — IG5 H ] +3—0 al [Hu - 25 H ]
e+ ] (1t + B et ()T
v=1
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4.1 Error estimates for the ¢th derivative

with w?(-) as defined in (4.7). The exponential factor can be dropped if w? (Rhu ) =0 for
allv=1,...,n—1.

Proof. Paying heed to k — 2¢ = 1, an application of Lemma 4.15 with v, = efhj and of
Corollary 4.17 with v, = 8te'fh7é yields

a(n el + f ot P dt < 2BY (%, a1t ) + C2. j T re?,, | dt
St

S 2[ (‘%[Hu(ul) _ Rhu““)Hz])l/Q 1 C, <$[Hu(f) 2 éf O H ])
( [HHT k+é(f(€) Z) H ] <J HatefheH dt> +C’§1J HHT—E—lefh7ng/dt
<6 (yy[Hu(m) — Ryu*V| ] 29 [H“ fir=t9, Hv] +.9 [Hﬂr ere (£ _g(e))HQD

by | loed e 2 | el a
201, ’ I, ’

where we also used Young’s inequality. Hence, we have

a0, 4(85), % ot f EEARERT (4.11)
<6 (a%[Hu D — Ryl ] CM[HU — 1,5 HV] +.9, [HHT eee (SO = 9“))\!2])
+C2 L U 1T e ol At + ao (€2, o (851), e o(tiy)).
Recalling the second statement of Lemma 4.5, we get

efh,z(t;ll) = gfh,é(t;fl) + [efh,f],,_l = efh,é(t;ﬁ + Wffl (Rhu“)). (4.12)

Therefore, since ag(-, -) is an inner product on V, it follows for v > 1

CL(J(e hé(t+ 1) fhé(t+ ))
= ao (e oty 1) + wiy (Rwul), ey (8, 0) + wil ) (Rpu®))
= ao (el o(t,-1), fhe(t 1)
+2a0(e The(tu 1), wiy (R ) + aO(”f—1 (Rhu(ﬁ)),wf_l(Rhu(Z)))

< (14 7-1) aO( fh,z(tu—l)a fh,z(tu—ﬂ) + Cag (1 + Ty_—11) wa—1 (Rhu(z)) : g (4.13)

where we applied the Cauchy-Schwarz inequality, Young’s inequality, and the continuity of
ao(+,-). Moreover, for v = 1 we find

ao (€2, (t8), €4, (1)) < gl &5, (4.14)

because of wy(-) = 0.
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4 Error Analysis for V'I'D Methods

Now, combining (4.11) with (4.13) for v > 1 or (4.14) for v = 1 and applying to the
resulting inequalities a discrete version of Gronwall’s lemma, see Lemma A.1, it follows

1t
aO( fhé(t ), fhe(f)) + §£ Hatefh,éuzdt
0
< exp (too1 — to) [656[1,71] [H“(m) — RpuV HQ] +6C; S [H“(Z) — 75 u® HQV}

+ 6500|1000 (50 = 9 ) [*| + Conlleda ot

n—1 n
_ 2 2
+ Cap Y (14 7, Y)Wl (Ryu™)|2, + C2 f I —re o, dt].
v=1 to
Altogether, using the V-ellipticity of ag(-, -), Lemma 4.8 (note that here r —¢—1 = r—k+/),
and taking into account that |w|| < Cemp|w], for all w € V', which also implies the estimate
lw|yr < Cempllw]| for all we H < V', we obtain

1
oledutl} 45 [ okl at
to

< exp (2(t,—1 — to))

(ﬂ«%%%ﬂQ%Mwmw_wawﬂ+$mmmmﬁuw—w»ﬂ)

+ 6CET [0 = 57O 5 | + 3552,y [ — 57
o o n—1
[0+ BE] (Jed )} + D2+ ) () Hi))-
v=1
Thus, we are done. O

Since Lemma 4.18 provides the previously missing control on Hefh E(t;)Hw we obtain an

abstract estimate for the L2-error in the V-norm also for cGP-like methods, i.e., if k—2¢ = 1
(e k is odd).

Lemma 4.19

Let k —20 =1 (< k is odd) and suppose that A_ssumptions 4.1 and 4.2 hold. Moreover,
assume that Hf—mz(f(e) — g(e))(t) € H forallteI. Then, for alln =1,..., N it holds

tn
|1 05
to

tn tn tn
<o [T O are [0 - B s [ fef g )
to to to
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4.1 Error estimates for the ¢th derivative

where

tn
J e P dt < C(1+ (b — o)) exp (2tns — 1))

to
n—1
(Hefh,e(to Wy + @+ )l (ReaO) [} + T | [ = Rl D]

v=1

+ S| = TGO | S [0 =757

Al

with w?(-) as defined in (4.7). The exponential factor can be dropped if wf(Rhu“)) =0 for
allv=1,....,n—1.
Proof. The arguments are quite analog to those used in the proof of Lemma 4.10. We

therefore only consider some of the details for the derivation of the second statement.
The norm equivalence of Lemma 4.3 gives

[t ar <o ([ eyt () el ).

A summation over v = 1,...,n yields

tn n tn n
| letnliae = 32 | ety at < [ el a4 0 3 () el
0 v=1Y1v 0

v=1

Then, an application of Lemma 4.8 and Lemma 4.18 gives the desired second estimate. [

Concrete convergence orders for the model problem are given in the next theorem.

Theorem 4.20

Let k — 20 =1 (< k is odd). Consider the setting of model problem (3.4) with standard
spatial discretization satisfying (3.16) and let g € {f, 11} f,. T, f.Cif}Uirk > 2 {I,:_Qy*f}. Then,
we have the following error estimate

tn in
| = ae |l at
0

0

< (J(l + (t, — to)) [hzn Hu(e)Hzl((to,tn)yH“H(Q))
4 2=t ( Hu(é)‘ 2

Hr =41 ((to,tn),H2(Q)) + Hf“?{“’l((to,tn),LQ(Q)) >]
Proof. First of all, note that in the setting of model problem (3.4) the Assumptions 4.1
and 4.2 usually are fulfilled when the problem data is sufficiently smooth, see Remarks 4.14
and 4.16, respectively.
So, because of Lemma 4.19, used with .§, = S 7,0 it only remains to bound certain projection
errors. These error terms can be estimated similar to the terms in the proof of Theorem 4.11.
From (3.16a) we gain

tn I{ 2
J;O Hu(é) _ Rhu(f)H?/ dt < Ch? Huw)HLQ((toin):H'ﬁl(Q))

115



4 Error Analysis for V'I'D Methods

and

tn
f Hu(ﬂ-i-l) R U K—‘rl)H dt < Cth‘
to

[
L2((to,tn),HL(Q))"

The error estimate (4.9) for Hk o 7 vields

2

t N tn
[0 = B e [~ B e < O O s
0 0

and, since g € {f,IIL.f,Z, f,Cif} Uitk > 2 {Il’;fz*f}, standard interpolation/projection error
estimates, cf. Lemma B.9, give

to

tn tn
J [0 (FO = gt < © f 79 = gO dt < OT D F s 10 22000
to

Moreover, as seen in the proof of Theorem 4.11, we have efh’g(tg) = Ru(ty) — ﬁgu“) (ty)-

Thus, e, (t5)], = 0 if PY — Ry,. Otherwise, for P! = P, we conclude from the V-
ellipticity and the continuity of a(-,-) as well as the definition of R; that

aHerhé ty HV (Rh“(g)( 0) — Pyu ( 0)s rhz(to )) :a(u(@(to) Pyu (to>7 ‘rh@(tO ))
< Ca Hu to) — Phu( (to HVHeTh,E to HV

Using standard arguments to bound the error of P,, we gain

g —\ 12 — - —\ 12 K
He-rh,é(to )HV S o 2002LHU(6)(250 ) - Phu(f) (tO >HV h’2 Hu(é tO )‘ HHJrl(Q)
Summarizing the above estimates gives the desired statement. O]

Remark 4.21

In this subsection we have looked at the stronger V-norm in space and not the H-norm
anymore. This is also the reason why Corollary 4.13 and Theorem 4.20 show a slightly
lower spatial order of convergence than Theorem 4.11. The proven convergence orders
exactly match our expectations. &

Remark 4.22

Similar estimates to those of Corollary 4.13 and Theorem 4.20 are well known from the
literature for the discontinuous Galerkin method (k = 0), even in a more general setting,
see e.g. [26, Theorem 69.18, p. 188]. However, for the continuous Galerkin-Petrov method
(k = 1) typically only certain components of the error are estimated in the L?(V)-norm,
see e.g. [26, Theorem 70.11, p. 203, note (70.17), p. 201|. This is since, in contrast to the
dG methods, estimates in L?(V) are not directly obtained for ¢cGP methods, also cf. [5,
Remark 5.1]. Thus, for odd k such estimates may be new. &
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4.1 Error estimates for the ¢th derivative

4.1.4 Global (locally weighted) L?-error of the time derivative in

the H-norm
For k —2¢ =1 (< k is odd) Lemma 4.18 provides a bound for S: H(Jte M‘ dt. This gives
rise to error estimates for the L?(H)-norm of the time derivative of u() — T,Z for cGP-like
methods.
Lemma 4.23

Let k —2¢ =1 (< k is odd) and suppose that A_ssumptions 4.1 and 4.2 hold. Moreover,
assume that 117, (f© — g\9)(t) € H for allt € I. Then, for alln =1,...,N it holds

tn
f ot — 0| at
to

tn tn tn
<C(f Hu(“l)Rhu(ﬁﬂ)}th+J 0 (ul® — I~ M f))Hth+f HatefWHth)
to

to to

where
tn

J H&tefh7gHQ dt < Cexp (2(t,—1 — to))
to

n—1
(1)l + 32+ (RO + Sy [~ R[]

v=1

o [0® = TGOS | + S| [0 = 50O
# S (I 07 = 5]

with w?(-) as defined in (4.7). The exponential factor can be dropped if w? (Rhu ) =0 for
allv=1,...,n—1.

Proof. A similar splitting as in the proof of Lemma 4.10 gives

atu(é) — é}ug,z
= (W = Ry ) + (Ra(e®) — Bale500) + (0RO — ),
where we used that the time derivative commutes with the spatial operator Ry, see also |26,

Lemma 64.34, p. 118]. The second summand can be estimated exploiting the stability of
R;, in the V-norm as follows

tn t N
J, V@) — Ru(@=G O at < [ 7 Clnu (0~ T
to o

tn
€ [ ou(ul® - T ) .
to

A bound for the third summand ¢, R,I1 Z éfu @ — 8tu(f,2 = 8tefh7é was already presented in
Lemma 4.18. So, summarizing the above ideas and bounds, the proof is easily completed. []
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4 Error Analysis for V'I'D Methods

Theorem 4.24

Let k —20 = 1 (& k is odd). Consider the setting of model problem (3.4) with standard
spatial discretization satisfying (3.16) and let g € {f, 11} f, Z; f,Ci.f } Uik > 2 {I,’C;Z’*f}. Then,
we have the following error estimate

2

SR ) RSTARS

tn o 2
LO Hatu(f) _ atug;zHth < C[h2( +5) Hu(f)HHl((tO’tn%Hﬁl(Q))

2 2
Hr =41 ((to,tn), H2(Q)) + HfHHHl((to,tn),LQ(Q)) >]7

42—t ( Hu(e)‘

where & = 1 if the associated stationary problem is H?-reqular as well as PY = Ry andc =0
otherwise.

Proof. Analogously to the proof of Theorem 4.20 we (can) suppose that Assumptions 4.1
and 4.2 hold.

We bound the terms on the right-hand side of the estimate in Lemma 4.23 with .$, = SIV.
By (3.16a) and (3.16b) we gain

tn
J HU(HU . Rhu(ZJrl)HQ dt < Ch2(l-€+cr) Hu(ul)HiZ((to,tn)’Hﬁ+l(Q))7
to

where o0 = 1 if the associated stationary problem is H?-regular and o = 0 otherwise.
Moreover, on the basis of (4.9) we get

2
Hr= 1 ((to,tn), HH(Q))”

tn -
| o = T d < €200 )
to

The remaining terms have already been estimated in the proof of Theorem 4.20. Especially,
recall that

0 PO=R

g _\12 ) h hs

ene(to)|y < . 2 ~

H 0 HV Oh2 Hu(é) (to )‘ () P}(L) — P}”

which must be reflected in the definition of &. O

Remark 4.25
Compared to Theorem 4.11, we consider in Theorem 4.24 a time derivative of the error
increased by one. Therefore, as expected, the temporal order of convergence is decreased

by one. However, having a closer look at Lemma 4.23 and the proof of Theorem 4.24, we
observe that for £ — 20 =1 (< k is odd)

tn
ates ‘dt<C fou) (RAEHO) 4 2=ty
H Th,{ ( )

to
So, the decrease does not occur for the fully discrete error with .%, = Sm which means that
8tRhﬁ7,;ig’fu@) is superclose to 6tu(f,2.
Note that the spatial convergence order in Theorem 4.24 depends on the concrete choice
of the projection operator Py used for the spatial approximation of the initial value. Tt

is not yet clear whether this dependence is only due to the proof technique or whether it
actually exists. &
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4.1 Error estimates for the ¢th derivative

A similar estimate, but in a locally weighted norm, shall now also be derived for k—2¢ = 0
(< k is even). We start with showing one further property of the bilinear form B(-,-) that
can be used to provide another kind of control on the fully discrete error.

Lemma 4.26
Let 1<n <N, k—20=0 (< k is even), and suppose that Assumption 4.1 holds. Then,
for all v, € P,_y(1,,V) we have

ity (0r (6 ), 00 (£)) + f B2 (¢ — ty) dt
Iy
< QBf(UT, (t— tn_l)ﬁtvf) C’aO + 7,,C J H’UTHV dt.

Proof. Since the test function (t—t,_,)d,v, is zero at ¢,_;, the jump term in BY(, ) vanishes.
So, under Assumption 4.1 and using the exactness of .¢, for polynomials of maximal degree
2r — k, we get that (only here k — 2¢ = 0 is needed)

B;f(/UT7 (t - tn71>atvﬂ')
= J (Grvr, (t = tno1)dpv,) dE + J a(vr, (t = tn_1)0v,) dt

n

- H&th\Q(t—tnl)dtJrJ ao (vr, (t — tn—1)0sv;) dt+J a1 (vr, (t — to_1)0v,) dt.

I’n n n
Because of the symmetry of ao(-, '), it follows

Tn 1

an(vT(t ), UT(t_)) = §f O (ao(vT,vT) (t —tn_l)) dt

n

= J ao (UT, (t — tn,l)ﬁtw) dt + E f ag (UT, UT) dt.
In 2r,

Therefore, we obtain
Tn _ _
| 10wl =t dt o+ Zao(or ), 00 67))
I,
1
— B;f(vﬂ (t — tn71)@tvr) + 3 Jn ag (’UT, ’UT) dt — Jn a (’UT, (t— tn,l)ath) dt.

The continuity of ao(-, ) and a; (-, ) as well as Young’s inequality yield
1

3 J ao (UT, ’UT) dt +

S| et g e [ ey - toae ) a

J a1 (vr, (t = tp_1)0pvy) dt‘

* (Cog 72 f Jor]2 dt + & f 000, (¢ — tay) dt

Combining this estimate with the above identity and re-sorting the terms, we easily finish
the proof. O
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4 Error Analysis for V'I'D Methods

On the basis of Lemma 4.26 and using other already known estimates for the fully discrete
error efh’é, we can bound (3tefh¢, in a locally weighted norm.

Lemma 4.27
Let k —20 = 0 (< k is even) and suppose that 4ssumptz'0ns 4.1 and 4.2 hold. Moreover,
assume that 117, (f© — g¥)(t) € H for allt € I. Then, for alln =1,...,N we have

n

1 n
g 2 TyHefM(t;)Hf/ + 5 2 L ]}8tefh’2”2(t —t, 1) dt
v=1 v=1 v

< exp (tnfl - tO)

<6 [ 4 CorrCiaCin] (g T Ry DP] 4 o[04 (0 - 99 )

~ T 3 2 r
+ 6C§T‘¢[1,n] [HU@) - HZ:g’f“(Z)H%/] + 3M§[Ln] [H“( Hk ézg“(Z)H?/]

a?

n—1
0t (s, )] + Y2+ 7! <Rh““’>”2>>

v=1

with w?(-) as defined in (4.7). The exponential factor can be dropped if w? (Rhu(Z ) =0 for
allv=1,....,n—1.

Proof. From Lemma 4.26 with v, = efh,g and Corollary 4.17 with v, = (¢t — t,,_1) &tefh,g we
gain (noting that v, (¢} ;) = 0 by choice of v,,)

T,a0(e fhé(t ) The f HateTMH

QBy( € (t— tl/*l)aterh,f) Cao +7.C, f ”erh eHV de
< 2[({9)}[‘@(6-&—1) _ Rhu(£+1)H2]> 4, (jy[Hu(z) _ Hziz;,;u(g)ué] )1/2
1/2
e (I =) | (] Vot =rrar)

+ (Cop + .05 f el
e s e A e
# I a1 =5 ) + 5 [ ot (et

T (Coy +1,C f e, at,

where Young’s inequality was used. Therefore, also considering the V-ellipticity of ao(-, -),
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4.1 Error estimates for the ¢th derivative

a summation over v = 1,...,n yields

n

1 n
a0 el + 5 3 | ot toar
v=1v4v

v=1

< or (S [~ RO -y -

tn
# S [0 =) ] ) + (Coot 72 [ el .

to

Estimating the last term according to Lemma 4.8 and noting that Hw” < CemwaHV for all
w € V, which also implies v S C’emwaH for all w € H < V’, the desired statement
follows easily. O

The previous lemma leads to the following abstract and concrete estimates on the (¢+1)th
derivative of the error u — u,;, for dG-like methods.

Lemma 4.28
Let k — 20 = 0 (< k is even) and suppose that 453umptz’0ns 4.1 and 4.2 hold. Moreover,
assume that 117, , (f9—g®9)(t)e H forallt e I. Then, for alln =1,...,N it holds

> f |0u® — oG] (t — to—1) dt
v=1Y1

< C(1+7)exp (tao1 — to)

n—1
(Hefw(ta)}Q + 2@+ )l (R + Iy [ I (1O = 9O)

v=1
tn
[ = R Sy [ = R O] [ = F
to

tn ~
[ - 5O |+ [ o - ) ar)
0

with w;)(+) as defined in (4.7). The exponential factor can be dropped if w;) (Ryul®) =0 for
allv=1,...,n—1.

Proof. We suitably adapt the proof of Lemma 4.23. Especially, we use the same splitting
and obtain for the occurring middle summand that

ZJ | R (@) — Ry (2,11, _5 u®) H t—t,q)dt

tn ~
CZJ 0 (u® =TG5 uO) |2t —t,-0) dt < CTL 0 (u® — T =57 )7, at

Moreover, we use Lemma 4.27 to bound the term that includes 5tefh o O
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4 Error Analysis for V'I'D Methods

Theorem 4.29

Let k — 20 = 0 (< k is even). Consider the setting of model problem (3.4) with standard
spatial discretization satisfying (3.16) and let g € {f, 11} f,Z; f,Ci. f } Uik > 2 {I,’C;Z’*f}. Then,
we have the following error estimate

3 f o — ot — t,_) dt
v=1Y1L

RT0O 2
< C(l + T) |:h2< + ) Hu(z)HHl((to,tn),Herl(Q))

2(r—t41 02 :
+ 72t )<T Hu( )‘ Hr =041 ((to ), H2()) T ”fHHHl((toin)vLQ(Q)) )]’

2

+ 7O 9] Hr =41 ((t0,t0), HY(Q))

where o = 1 if the associated stationary problem is H?-reqular and o = 0 otherwise.

Proof. Again, we (can) suppose that Assumptions 4.1 and 4.2 are fulfilled. It then only
remains to bound the right-hand side of Lemma 4.28 for the choice .%, = SIU. The estimates
for the occurring terms are clear, cf. the proofs of Theorems 4.11, 4.20, and 4.24.

However, we want to point out that, in contrast to the proof of Theorem 4.24, for efh’é(ta )
only a bound in the H-norm is needed here. For this it holds (see proof of Theorem 4.11)

0 P° = Ry,

RPN )
lezne(t)]” < {ChZ(n+o) Ju® (ta)‘;ﬂ(m’ P = P,

where o = 1 if the associated stationary problem is H2-regular and o = 0 otherwise. This
justifies the slightly better spatial order. O]

Remark 4.30
Comparing the estimates of Theorem 4.24 and Theorem 4.29, one may briefly wonder about
the additional power of 7. However, this results from the weighting functions ¢ — (t —¢,_1)
used locally on 1,,.

Moreover, note that from Lemma 4.27 and usual estimates for the occurring projection
error terms, we have for the fully discrete error with .¢, = SIV and if kK —20 =0 (< k is
even) that

ZJ H@teEWHQ(t o ty—l) dt < C(f, U) (h2(n+cr) + 7_2(7’—(-"-1))7
v=1Y1

which shows an improved convergence behavior with respect to time approximation com-
pared to the respective estimate for the error. Thus, also in the dG-like case (9tRhH2:€’f ul®

is superclose to (%u(ﬁz. &

4.1.5 Pointwise error in the H-norm

For both, cGP-like and dG-like methods, we have control over the time derivative of the
discrete error term efh ,in a (locally weighted) L?-norm. This can be used to derive pointwise
error estimates.
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4.1 Error estimates for the ¢th derivative

Lemma 4.31
Suppose that Assumptions 4.1 and 4.2 hold. Moreover, assume that Hf—k+€ (f(g)—g“)) (t)e H
for allt e I. Then, for alln =1,...,N it holds

sup | (u® — w5 (1)

te[to,tn]
<C’( sup [[u(t) — Rpuld( H + sup [uld( — 11 5‘9 ul( )HV—I— sup Heme !)
te[to,tn] te[totn] telto,tn]
where

sup Hefu(t)Hz < C<1 + T) exp ((1 + 61 p—2) (tn—1 — t0))

te(to,tn]

n—1
(Hefh,e(ta)}z " 2(2 i Tll_l)wa(Rhu(E))Hf/ + ‘9[1,n][HU(€+1) _ Rhu(£+1)Hz]

v=1

# [l = O]+ S = B

+ ﬂ[m] [an—w(f“) — g H + T617k_2g|‘€fh’e(ta)‘ﬁ/>

with w?(-) as defined in (4.7). The exponential factor can be dropped if w;’ (Rhu ) =0 for
allv=1,....,n—1.

Proof. We decompose the error as usual in the three terms
WO ol = (O~ By 4 (R — RTG0) 5 s ey, = BUTSO —l)
The stability of R;, is used to estimate the second term by

sup |Ryu®(t) — RuIL 5 uO(t)|" < C2 sup | Ry (u® (1) — T 25 uO 1) |5,

te(to,tn] telto,tn]

<C sup [[u(t) - I~ gf @

te[to,tn] HV

Hence, using the triangle inequality, the first desired statement follows easily.
We now analyze the third summand efm = RhHZ g; @ — u( Let s € [to, t,] be fixed,
then it holds s € [t,_1,%,] for some 1 < v < n and

ty

k7 g - g
erh,é(s) = eTh,K@V) - J a7567'h,€ dt.

S

From this we derive by the triangle inequality and the Cauchy—Schwarz inequality

ty ty >
[ ectea <slesutenf+2 ([ lacha)

ty
<2 b)) 200 | ach, I o

2
lef o) < 2l )] +2
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4 Error Analysis for V'I'D Methods

Hence, we obtain

sm)kﬂﬁMngggx(kﬁﬂ@ﬂ?+nJH@éwW&)
t€[to,tn] V=Dt I
If k—2¢ =1 (< kis odd), the right-hand side then can be bounded by Lemma 4.18 (and
Lemma 4.8). Hence, in this case the second desired estimate follows easily.

If k—20 =0 (< k is even), we further use a norm equivalence in the finite dimensional
polynomial space, cf. [52, (12.18), p. 210], that gives

n [ loehlat<C | ot P
I, L,

for some constant C' > 0 independent of v (and 7,). Thus, it holds

sup Hefhﬁz(t)H <C max (!eTH H +J HﬁteTMH t—t,_ 1)dt)

te[to,tn) v=1

Then, in order to bound the right-hand side, Lemma 4.8 and Lemma 4.27 can be applied. To
simplify the terms, note that due |w| < Cemp |w|, for all w € V' it also holds the estimate
lw|yr < Cemp |w| for allwe H < V. O

Theorem 4.32
Consider the setting of model problem (3.4) with standard spatial discretization satisfy-
ing (3.16) and let g € {f,1ILf, 2, f,Ci.f} Virk =2 {I,:_Q’*f}. Then, we have the following
error estimate
2
sup | (u — ) (1)]

te[to,tn]
< C[h%‘”) <Hu( + Hu

0) >
HC ([to tn], H5+1( Q) HHl((tmtn),H”“(Q)))

+ 51k 240’7’]12 HU(Z to)‘

He+1 (Q)

Lt (O, e

([tostn],HL(D2 Hr—4+1((to,tn),H1(2))

+ 7 |ut \

2
ooy ey s s ) |

where o = 1 if the associaled stationary problem is H?-regular and o = 0 otherwise. More-
over, O'—OZfP =R, and 5 =1 szO—Ph

Proof. Starting with Lemma 4.31 for the case ., = § 1, the statement follows from projection
error estimates. Most terms have been already bounded earlier. The remaining terms can
be bounded using quite similar arguments. O]

Remark 4.33

The convergence behavior with respect to time shown in Theorem 4.32 is of the expected
order r — ¢ + 1. With respect to space, we find order k + o in the dG-like case. For ¢cGP-
like methods this spatial order is only obtained if the Ritz projection Ry, is chosen for the
approximation of the initial value. However, it is not yet clear whether this choice is really
necessary to gain spatial order x + o instead of x or whether we only need it due to our
proof technique. &
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4.1 Error estimates for the ¢th derivative

4.1.6 Supercloseness and its consequences

Supercloseness phenomena occur for many different discretizations of various differential
problems. Supercloseness here means that the numerical solution is somewhat closer to a
certain projection of the exact solution than to the exact solution itself. Often this property
can be used to improve the method or the estimates.

Usually, supercloseness is strongly connected to specific properties of the involved projec-
tion operator Therefore we have a look on an interesting feature of the temporal projection
operator H; o7 7 at first. The result then will be exploited later.

Lemma 4.34
Letr,keZ,0< k<r, and { = [EJ Denote by X a Banach space over R. Then, it holds

05 = =T 50 Voe Py(l, X).

Proof. Taking a closer look at the definition of ﬁ;:gf, we see that for v e P,_;1([,, X) the

integrator ., can be replaced by the integral over I,, due to our assumption (4.5a) that .%,
integrates polynomials of maximal degree 2r — k exactly. Together with the observations of
Remark 4.2, the first identity is shown.

It remains to prove the second identity. Recalling the definitions of H r and 7, ~ gg, we
immediately get that

HZ 2@”( 1) = ( )= 7.~ 2@”( 1) ifk—20=1,
and
HZ 2@”( 2) =u(t,) = 7.~ 2@”( n)

for any v € C(I,,X). Moreover, using the exactness of the quadrature rule Qi g up to
polynomial degree 2r — k, we gain for v € P,_y,1([,, X) that

J H’,; 2evwdt—f vwdt = Z:ég[vw] =Q_ 2@[112 2va] :J 7~ 2vadt
In In
Vw € Pr—k-‘rﬁ—l([n)'

Since both ﬁzfégv and I,’;gfv are X-valued polynomials of degree r — £, which are uniquely

determined by these r — ¢ + 1 conditions, it follows that HZ oV = I,::gév holds for all
veE P pi1(l, X). ]

The result of Lemma 4.34 suggests that HZ 5 provides improved approx1rnat10n prop-
erties in the quadrature points of Qk o0~ Now, inspecting the estimates for eTh , derived
above, see Lemma 4.10, we note that the term

Tl = W57 |

is occurring. So, from our observations it seems that %, = Qk % is an appropriate choice
to gain improved estimates. This choice or change of the integrator, however, is possible
under certain assumptions on g only, for example, if ¢ is a polynomial in time of maximal
degree r —fon every I,, v=1,...,n.
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4 Error Analysis for V'I'D Methods

Lemma 4.35
Letr,keZ, 0 < k <r, { = [gJ, and set .§, = z:gﬁ,v' Then, in the setting of model
problem (3.4) with standard spatial discretization satisfying (3.16) it holds

T I~ 57O | = >lor | Ju® = 57O

v=1

< CT r—{0+2) Hu(f ’

HT=42((to,tn), HH(Q)

Proof. Let X denote some Banach space over R. We start defining another operator
5 H (L, X) 0 C* (1, X) — Pr_gar (I, X) by

(v =TI 50 o) (85 y)

Ful oo =TG50 0 w] + Goeae (v = T 0) (5 Jw(ty)

| oo = By o) wde + ducano = TG0 (5wl )
In

. ifk—20=1,

0
0 Vw e Pr—k-‘rf(ln)a

0 Vwe P ()

where ﬁr—kz—&-f—‘rl(jn) = Pr_pros1(L)\Pr_e(I,). One easily verifies that HZ gﬁy is a well-

defined projection operator onto X-valued polynomials of degree r—/¢+1, cf. Definition C.11.
Moreover, with the findings of Lemma 4.34 it follows

réﬂ _ Tr—4.9 1y TZ+19 _ gr—f Tyr—0+1,9 max{0,kg}+1/T
gy v =10 5 I 9y "0 = Ly 7o 1 9y "0 forallve O Ok (T, X).
Thus, we obtain that
rr—¢.9 2 _ =t @) r—_ r[+19(£
[ 241/[““ — 1L~ 25“ HV] = k—%,u[”u — L o 10— 20, % HV

— Qb | [u® = T5 O .

Then, local projection error estimates, see Lemma B.9 or also cf. [21, Theorem 3.1.4, p. 121]
or [25, Remark 1.112, p. 62| (where the real-valued case is handled), yield for the term on
the right-hand side that

HC(I,,,HI(Q))
2
HT_Z+2(L,,H1(Q)) )

oo | [0 = TG5O | < O Jul® = TG )

< O, (Cr e [u)]

< CTVQ(T—€+2) Hu(ﬂ)}

HT‘“Q(IV,Hl(Q)))

which, after summation over v = 1,... n, gives the desired bound. O

In previous subsections, we have always chosen .%, = SI when concrete convergence orders
4
were shown. In this case, of course no integrator error occurs. Since for the supercloseness
studies we choose .4, = Q) 20,» Al examination of w(Ru®), v = 1,...,n, becomes
necessary.
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4.1 Error estimates for the ¢th derivative

Lemma 4.36
Let rik € Z, 0 < k < r, { = [gJ, and set §, = Qk o0, Moreover, let j € Z with
1<j<2r—k+1 andw’() be defined by (4.7). Then, in the setting of model problem (3.4)

with standard spatial discretization satisfying (3.16) it holds

n—1
M@+ W (Ruu®)|* < € (1 +27) 77 [[ul

v=1

l+1
HHJ.((to,t7L,1),H1(Q)).
Proof. First of all, by definition we have that

w!(Ryu?) = f Ryul“tV dt — Q- 2Izy[Rhu ZH)}.

v

Furthermore, let Z,: % denote the local version of an interpolation operator such that

Z,: ;Qw € Py, _1(I,, X) interpolates w € C(I,, X) in the r— ¢+ 1 quadrature points of Q5 2w
and in r — k + ¢ additional points. The exactness of the quadrature rule for polynomials up
to degree 2r — k yields

Zige,u[Rhu(Hl)] = Q) 2zu[jl: 2Q (Rhu(ﬁl))] :J Z::ng(Rhu(ZH)) dt

v

:J RyZEulD qt.

So, using the Cauchy—Schwarz inequality and the stability of R, in the V-norm, it follows

o (R )| =

Therefore, (standard) error estimates for the interpolation operator IT e Q imply

R T dt — Q- 2M[Rhu f“ H (4.15)

<t

J Rhu(ﬁ-i-l) o Rh:\z/'—;:g’gQu(g-i_l) dt

v

< CembTVf HRh (6+1) k—géQu (6+1) )

< On [ u) ~FRu e,

n—1

2 (2 + Tlfl)wa(Rhu(e))HZ

v=1

o
<C(1+ 27’)] 1 Hu(”l) IT_SZQU (€+1) Hv <CO(1+27)7% Hu(

{+1
t HHJ‘((to,tnfl)yHl(Q))’
0

which completes the proof. 0

Remark 4.37

If u is sufficiently smooth (especially 'tV e H'((to,t,), HE(2)) n H>~*+1((tg, t,), Hl(Q)))

the estimate of Lemma 4.36 ensures a behavior of the quadrature error term of O (722 —k+1)),
Note that this is in line with the superconvergence order in the time (mesh) points of 2r—k+1
seen in Subsection 1.2.3 in the case of non-stiff initial value problems. &
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4 Error Analysis for V'I'D Methods

It seems that supercloseness only can be proven if the right-hand side g of the discrete
method fulfills certain conditions.

Assumption 4.3
LetrkeZ, 0 <k <r (= [gJ We assume that there is an approrimation operator A
satisfying

I;::ge((ﬂf)(f) _g(f)) =0 and H(f ,qf Hc v < Ot I/QHf‘

with C independent of 7,, and 1 <n < N.

H™2(1,,V") (416)

Remark 4.38
We want to give some relevant examples for g where (4.16) can be satisfied.

(i) For g = Z; f: Similar to f}; let thAe operator f,:gl : Clgj([—l, 1]) = Py ([—1,1]) use
the same interpolation points as Zj, cf. (1.15), and one additional interpolation point

€ (—1,1). By transformation with 7,, from (1.7) we also get interpolation operators
1'7”61 onl, n=1,...,N.

We now choose 4f = Z; 1! f. Since, obviously, g = Z; f = I”I"“ f, we have on I,, that
af —g=(Id —I,:)I,Zfolf =co, for some ce R, ¢, € Pri1(1,),

where ¢,, vanishes in all interpolation points of Z;.

Because of ¢ = [gJ and k — 0 —1= [%J as well as due to the construction of 7}, it

holds that ¢, = ¢ o T,; ! is the local version of the function ¢ € P,,1([—1,1]) given by

o(f) = (1= (140" PUFI ), (4.17)

T

Here, P,,(il’kfg) denotes the (r — k)th Jacobi-polynomial with respect to the weight
(1 =11 (1 4+1)**, see Appendix A.2 for details. An easy conclusion from Rodrigues’
formula, see (A.2), furthermore gives that

$O®) = & (1—1) (1+0) P29
and so ¢¥) vanishes in the interpolation points of fg’gé.

We therefore conclude Z;~5,((af) — ¢¥) = I}, ) = 0. Furthermore, since
af = I,’:g; is a Hermite interpolation of f of polynomial degree r + 1, the error
estimates are clear.

(ii) For g = Cj f: Here, we choose 4f = C;i%f Since, obviously, g = C, f = I,’;C,:i;f, we
again have on [,, that

af —g=(1d=Z))C; 15 f = con for some ce R, ¢, € Pri1(1,),

where ¢,, vanishes in all interpolation points of Z;. Therefore, we can conclude as

in (i). &
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4.1 Error estimates for the ¢th derivative

Lemma 4.39

Letrk e Z, 0 < k <r, { = [%J, and set §, = Qk o0, Moreover, assume that there
is an approximation operator A satisfying Assumption 4.3. Then, in the setting of model
problem (3.4) with standard spatial discretization satisfying (3.16) it holds

] ZQk sz[ r— k+€(f(€ _g@)‘vl

— 2
< Ot 152 (0,0 11100

Fiva| T ke (59 = g

Proof. Because of Remark 4.7, .9, = Q4 50, and I,::gg((ﬁlf)(f) —g®) =0, we get

T 41O - )] < CQict[I£0 - 90 o

With similar arguments as used in the proof of Lemma 4.35 but here applying the assump-
tions on the error of 4, we further conclude

e[ 1F9 = (AN ] < OnlFO = DO v

2
r—f4+2— r— 2
<Cr, (CTU 2172 HfHHT+2(L,,H*1(Q))> < Orr=t?) | rrs2r, -1y

| = cQizt | 170 - @an©l;

The desired statement follows easily by summation over v = 1,...,n. O

Summarizing, we get supercloseness results for e, The With g, = Qk 50, under certain
assumptions on ¢g. This also implies a lower order superconvergence result for the (th
derivative of the error in the time mesh points and an improved convergence order with
respect to the quadrature formula Q}—%,. Hereby, recall that the choice .%, = Q7 o0m |

possible only if ¢¥|; € P,_,(I,,V') foralln=1,...,N.

Theorem 4.40 (Supercloseness result)

Let r,k € Z, 0 < k < r, { = |£|, and set .9, = Qi 50, Moreover, assume that there
is an approximation operator A satisfying Assumption 4.3. Then, in the setting of model
problem (3.4) with standard spatial discretization satisfying (3.16) it holds

tn tn
max [, (¢, )P+ L Jefhel dt + 50,162/2[ el dt
)

V= t()
< C(l + 51,k—2€<tn - to)) €exXp (tn—l — to)
o 2 2
[h2( ! )<(tn — o) HuwH)HC((to,tn),H~+1(Q)) + Hu(g) (to)‘ HH+1(Q)>
4 p2r—e42) < Hu }

+ (1 + 7_) 7_2 min{r—¢+2,2r—k+1} Hu

2
-ty + s o 1)
(+1
)HHmin{r—[+2,27‘—k+1}((to,tnfl),Hl(Q)) ]7

where o = 1 if the associated stationary problem is H?-reqular and o = 0 otherwise.
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4 Error Analysis for V'I'D Methods

Proof. Combining Lemma 4.8 and the second estimate of Lemma 4.10, we find
tn
e+ [Nl at s [ el
0
< O(1 + 61 p—20(tn — to)) exp (tn1 — to)

n—1
<H€fh,ﬁ(t0)H2 n 2(2 i szl)wa(Rhu(@)HQ 4 (9[17n][“u(£+1) _ Rhu(ul)uz]

2 0

with w?(-) as defined in (4.7). Merging this with the Lemmas 4.35, 4.36, and 4.39 as well
as estimating the remaining spatial error terms by (3.16a) and (3.16b), we are done. O

+ I [0 = 50O ] + S [ 107 (7 = 99)

Corollary 4.41 (Consequences of the supercloseness result)

Letrik e Z, 0 < k <r, { = [%J, and set .§, = Qk a0,- Moreover, assume that there
is an approximation operator A satisfying Assumption 4.3. Then, in the setting of model
problem (3.4) with standard spatial discretization satisfying (3.16) it holds

max (= ) )" + 2 e Ju® = 3|

-----

< O(1+ 0y p—2e(tn — o)) exp (tn—1 — to)
KR+0 2 2
[h2( + )((tn ) H“(M)Hc (ot + (LT (B = 10) H“w)Ho((to,tn),mﬂ(m))
4 p2r—t+2) (H e)‘

+ (1 + 7_) 7_2min{r—€+2,27‘—k+1} Hu

Hr=42((tg,tn),HL(Q)) - Hf‘H7+2((1to tn),H™ 1&)))

D mntr—esnar o 1000 ]

where o = 1 if the associated stationary problem is H?-reqular and o = 0 otherwise.
Proof. Using the error decomposition

WO ) = (0~ B®) + (R — R0 4 ey ety = R0 — o),
we find together with (4.7) that

[ =) ()] < 0 = Bi®) ()] + o (R + [ 65)].

These terms can be estimated by (3.16), Lemma 4.36, and Theorem 4.40.
Moreover, we obtain

[ 2zu[Hu _“ThH ]
< 3< k— zzu[H“ — Ry H ] Q@ zeu[HRhU Rth éfu H ] + Q) QZV[Hefh,ZQ]>

< C<TVHU(€) —Rhu(z)”éuwy + Q) 2eu[HU( Z gfu Hv J HeThZH dt)
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4.2 Error estimates in the time (mesh) points

Here, we used V' — H and the stability of R;, with respect to the norm in V' to bound the
second term. Moreover, we exploited

o[l < sl < € | el

where the last step follows from a norm equivalence since the function ¢ — Hefw(t)H2 is in
Psr—¢)(1,). Summing over v = 1,...,n and applying (3.16), Lemma 4.35, and Theorem 4.40,

we easily complete the proof. O
Remark 4.42

Theorem 4.40 shows that under certain assumptions the temporal convergence order r—{+2
can be obtained for the fully discrete error efhx with ., = Q) _ 2@ - This is one order higher

than in the respective results for the error, c¢f. Theorem 4.11 and Corollary 4.13.
In Corollary 4.41 we then see an improved temporal convergence behavior for the /th
derivative of the error in the time (mesh) points compared to the pointwise error estimate

of Theorem 4.32. Moreover, we also obtain an improved estimate if we consider not the

exactly integrated, squared H-norm of u(® — u(f}z, as in Theorem 4.11, but the numerically

integrated using quadrature formula Qk o0 &

4.2 Error estimates in the time (mesh) points

We now have estimates for the (th derivative of the error. However, for k > 2 (< £ > 1)
bounds for the error u — wu,, itself still are missing. In this section, we want to derive such
bounds at least in the time (mesh) points.

4.2.1 Exploiting the collocation conditions

Recall that ¢ = [—J, which is the highest derivative order that appears in the collocation
conditions on the right interval end. Set vj; := (Rhu — uTh) for 0 <7 < ¢—1. The

V-ellipticity of a(-,-) and the definition of R}, yield
olloni ()]l < a(Bnu (8) = ufi(£), vh,xt-)) =a(u? <t;> = (), vna(t)
[ — i+1 7 — _
— (D () = w1, vnaltn)) + FO) = 99, vnaltn) Dy
where we also used that u(? solves the ith (temporal) derivative of the differential equation

and that u,, satisfies (3.17b). Hence, by Cauchy—Schwarz’ inequality, the definition of the
V'-norm, and because of V < H, we obtain

©) - C1em i i i) (p—
[(Bae = ) (1), < C2 0 57) — D)+ 25O - 0O >!
forall 0 <i<l—1. (4.18)
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4 Error Analysis for V'I'D Methods

By the triangle inequality we recursively conclude for all 0 < i < ¢ — 1 that

(@) - (@) ,— (@) /,—
(= urt) )] = = Ra) )] + | (o = ) (6] (4.19)
2\ 0
\ em _ . t_
(S ) (0= ) 6]
czuY G) | o Comb () (4
+Z | (w = Bou) ()] + == 1(F = 9) " (D] )-
Accordingly, to get estimates for the error in the time (mesh) points, it is sufficient to
have a suitable bound for the norm of the /th derivative of the error there. Such bounds
can be derived quite similar to those of Lemma 4.10. Therefore, as consequence we get the
following result.
Lemma 4.43
Let 0 <v < /. Then, for alln=1,..., N it holds

(0= 0e) V07
<O () )+ 0 (- 0) 0,

+ Coxp (ta1 — o)

(lefua@ + X2+ 7 RO+ Sy [ = R[]
v=1

')

Proof. Because of (4.19), it remains to derive a suitable bound for the norm of the (th
derivative of the error in the time (mesh) points. To this end, we split the error as

+ jln [Hu 7l:: é; “ H ] + jln [HHT k+€(f(£) - g(é))

with w? () as defined in (4.7).

ut? — ugﬁ = (u - Rh“(e)) + (Rh“(e) - Rhﬁiié’fum) + efh,fﬂ fhf = Rth l;;“(e) ug}i
From (4.7) we get for the second summand
(Ryu'® — RyIT—57u®) () = (Rpu® — 11525 Ry @) (1) = w? (Ryu®).

Hence, we conclude that

i C2 b .- l) ,,— ¢ . —
(=) (6] < (—m) (I = Fo) Ot + e (Rue®) | + e8]

«

v Y (1w Bt @ Comb o p @
2 (%] (10 o Yl + 210

)

The desired statement now follows from Lemma 4.8. OJ
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4.2 Error estimates in the time (mesh) points

Proposition 4.44
Let 1 <n < N and 0 < i < (. Consider the setting of model problem (3.4) with standard
spatial dzscretzzatwn satzsfymg (3.16) and let g € {f, 11} f, I, f,Cp f Y Uig i = 2 T5 s *f} Then,
we have the following error estimate

Hrﬁ»l Q) >

Hr—41((to,tn), HN (@) T HfHHT“ ((tostn),H 1 (Q)))’

= ) e < 1% (o e * 2 9

4 OF2r—t+) <Hu4)‘

where o = 1 if the associated stationary problem is H?-reqular and o = 0 otherwise.

Proof. Applying Lemma 4.43, used with .¢, = SIV, we need to bound certain projection
errors only. Most of them have already been estimated in the proof of Theorem 4.11. The

remaining terms can be bounded using (3.16). O
Remark 4.45

For 0 < ¢ < ¢ we would expect convergence of order r — 7 + 1 with respect to time from
the 7th derlvatlve of the error u — u,,. But Proposition 4.44 only gives the order r — ¢ + 1,
which is suboptimal for 0 < i < /. &

4.2.2 What about superconvergence!?

For 0 < ¢ < / the estimates of Proposition 4.44 do not show the convergence orders that we
would expect from the ith derivative of the error u — u,,. Hence, we are not satisfied by
these estimates.

An obvious approach therefore would be to use superconvergence results in the time
(mesh) points to derive more appropriate convergence orders. Exploiting the supercloseness
result of Subsection 4.1.6, we can derive a low order superconvergence result for the fth
derivative of the error in the time (mesh) points at least for g € {Z; f,C; f}. We, thus, gain
the following result.

Proposition 4.46

Let 1 <n < N and 0 < i < (. Consider the setting of model problem (3.4) with standard
spatial dzscretzzatzon satzsfymg (3.16) and let g € {Z; f,C.f}. Then, we have the following
error estimate

(= un) ()]

< C(1 4 01 p—20(tn — to)) exp (tn_1 — to)

4
[hz(ma) ((tn ) ”u(é+1)“z'((to,tn),H“+1 + [ut (2o ‘Hn+1(9) + Z Ju( \Zm(m)

j=i
4 p2r—t+2) (H e)‘

Hr=42((tg,tn),HL(Q)) + HfHHT+2 ((to,tn),H™ 1(Q))>

(147 ~2min{r—(+2,2r—k+1} Hu(€+1 HHmin{FHz%kH}((to,tnLHl(Q)) }a

where o = 1 if the associated stationary problem is H?-reqular and o = 0 otherwise.
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4 Error Analysis for V'I'D Methods

Proof. Recalling the arguments in the proof of Lemma 4.43, we find for 0 < ¢ < /¢
[ =) D] < € (| (= Bi) (1) + e (Rau®)| + e,,6)])

+ O3 (1= R 6] 1 - 97w,

=i
where we choose .9, = Q) 50> Which is possibly due to g € {Z] f,C} f}. Moreover, note that
there is an approximation operator 4 satisfying (4.16) because of Remark 4.38.

The desired statement then follows from (3.16), Lemma 4.36, and Theorem 4.40. Here,

also note that (f — g) )( .) =0for 0 <j</{since ge{Z,f Cif}. O

In view of Subsection 1.2.3, we could hope for superconvergence results of the high order
2r —k+ 1 in the time (mesh) points also in the case of parabolic problems. However, known
results from the literature, see e.g. [11, Theorem 4.2|, [52, p. 211], or also [6, Section 6],
suggest that, in order to obtain such higher order superconvergence for dG or cGP methods,
certain compatibility conditions are needed. So, inconvenient assumptions on the data would
be required and some artificial boundary conditions would have to be imposed that often
are quite unrealistic. We therefore look for an alternative approach.

4.2.3 Satisfactory order convergence avoiding superconvergence

As we have seen in the previous subsection, superconvergence estimates are only suitable
to a limited extent to derive convergence of satisfactory order. Therefore, we need to find a
technique of proof avoiding superconvergence.

In view of Subsection 3.3.2, the fully discrete problem can be interpreted as approximation
to the semi-discrete problem (3.11). So, we may transfer the ideas of the (stiff) error analysis
of Section 2.3, especially the results of Theorem 2.30. However, to derive appropriate
estimates, we then need uniform bounds on the derivatives of the solution wu, to the semi-
discrete problem.

Semi-discretization in space revisited

Recalling the Stability estimate of Corollary 3.12, it remains to derive uniform bounds for
Huh to H or HU n (to)||, respectively. This, however, is only possible if the initial value
for the semi-discretization in space is suitably chosen.

To this end, let f and, thus, F be at least (r + 1)-times continuously differentiable with
respect to time on I. Then, by (3.15) we have for i = 0,...,7r + 1 the following iterative
connection

(uEfJrl (t5), ) <f (td), Uh>v',v — a(ug) (td), vh) Yoy, € V3,
or in basis representation

TV () = MM PO () — ATV (#),
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4.2 Error estimates in the time (mesh) points

where U, (t) = MU (1) = MU (t7) and uf) (£) = S35 (U (8)) ¢p;. Adapting

7=1
the idea used in (4.1) to define the initial value of the discrete problem, we choose

up o2 = Pl g, (4.20)
u%’]o eVp,i=r+1,...,0: (uho,vh) <f (td), Uh>V’,V - (UEBH, vh) Yo, € Vy,
where 0} "%y is generated from ug via (3.7). We then set uyg := ug%. Obviously, by
construction it holds that u(” (t7) = u,[go fori=0,...,7r+2.

Note that a similar approach for the choice of the initial values can be found in [52, pp. 74—
75]. There these initial values were needed to guarantee uniform estimates in negative norms
for the derivative of the error of the semi-discrete problem down to the initial time ¢ = ¢,.

Lemma 4.47 '
Let f € C™2(1,V') and suppose that uyg = ugﬂ) with u%}o according to (4.20). Then, for
1=0,...,7+ 2 it holds

r+1
2 = [0 )] < € (Jor ol + 3196301, )
j=i

Proof. The argument is quite similar to that used at the beginning of Subsection 4.2.1.
Indeed, using the V-ellipticity of a(-, -), the definition of the norm in V}/, the Cauchy—Schwarz
inequality, and V' <— H, it follows for + = 0,..., 7+ 1

O‘H“/E}OH?/ < a(“i[z]m Uy, 0) = <f( )( “%]o>v/ - (“%gl]v ug]o)

< <Hf(Z (t(—]i_ ‘ + C’embHU’ e H) H hOHV

Therefore, we have

C1emb
(6]

(RG]

Huh,oH < CembHUEf’]O”V < vt CeranU [i41] H)

So, by recursion we conclude

; Cgm r+2—1 . Oem r+1 Cgm j—1 .
bl < (S) k) Sy (S ) o),

j=i
fori =0,...,r+ 2. Because of UE:SFQ] = P07 "%uy, the desired statement follows easily using
the stability of P, in | - || and the fact that ug) (t5) = UE,](J- O

We see that the special choice of uy, o guarantees that the norm of Hug) (to)| = HUS) (to) |

with ¢ = 0,...,7 4+ 2 can be estimated with respect to the given data and independent of A.
Therefore, together with Corollary 3.12, we obtain the following stability result.
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Corollary 4.48
Let f € C™2(I,V') and let the initial value of the semi-discrete problem be chosen as

Up,o i= ugﬂ) with u,[i]o according to (4.20). Then, for i =0,...,r + 2 it holds

r+1
sup 0] =sup [0 1] = € (10520 + 7Oy + 210, )
€ =3

tel

Remark 4.49

For 0 < i < r + 1 the estimates of Lemma 4.47 and Corollary 4.48 stay true if H&[”ud‘ is

replaced by H(?{ 2 vs+ Moreover, we only need f € C™1(I, V") then. &
h

Having the initial values properly defined, we can concretize the error estimates for the
semi-discrete approximation. The convergence rates obtained for the model problem are
given in the next proposition.

Proposition 4.50

Consider the setting of model problem (3.4) with standard spatial discretization satisfy-

ing (3.16). Moreover, suppose that f be (r+1)-times continuously differentiable with respect
[0]

to time on I and let the initial value of the semi-discrete problem be chosen as upg := Uy, o

with “g,]o according to (4.20). Then, for i = 0,...,r + 1 and t > to we have the following
error estimate
Hm+1(Q) ) )

where o = 1 if the associated stationary problem is H?-reqular and o = 0 otherwise.

(2) K+o i C j
| (u—un)™ ()] < Ch™* (HU( Nitroyirrrcay + 25 149+ (ko)

Jj=t

Proof. Recalling the estimates of Theorem 3.13, we already have

[ (=) (1)

<169~ R0 + [ — )]+ € ([[ 60 - maon
to

1/2
2
v ds) )

Approximation results for Rj, are known, cf. (3.16). So, bounds on |(R,u® — u,(f))(tf{)H
are needed only For this we can adapt the argumentation of the proof of Lemma 4.47 and
obtain for Uho (Rpul — ul ))(ta’) € Vj, that

allvib ]y < a((Ryu® - )<to+>,v,£“o) = a(u(tg), v1h) — a(w) (1), i)
= (fO(t) = o (1), vhh vy — (FOMT) = du) (1), v )y
= (D =) E), oYy < | (D ”“wwwvmm
< (I = R )6y, + ol (Rt — D) )]) ol
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4.2 Error estimates in the time (mesh) points

Thus, it follows

7 7 7 C’em
[(Rot® = uf?) ()] < Com | (Rt = ufl) 1), < =22

Cem 7 )
(] (D = Ry (1)

(u = (’“)) ()],

<

4 Com| (R o )<tg>u)
and consequently
(i — ) 1)

C r+1—1 . Cem T CQ j—i . .
\(e“) [(Rua* — iy ™) 5] + &b2<*ﬂﬁ 9%~ Bt D)),

« — «
j=t
V}’L)

2 r+1—1 2 j—t
v = 0, we overall conclude from (3.16)
h

(6] (0% (6]

for i = 0,...,7 + 1. Because of |[(Id — P,)d;
that

0 wto
[ (w = wn) " ()] < CR (H“ MNers o, H“+1(Q))+2Hu]+1)(t0)H"“(Q))
j=i

where o = 1 if the associated stationary problem is H?-regular and o = 0 otherwise. So, we
are done. []

Transferring the (stiff) error analysis

We now are ready to give estimates in the time (mesh) points of a satisfactory order.

Theorem 4.51

Let1<n<Nand 0 <i </ = [gJ Consider the setting of model problem (3.4) with
standard spatzal dzscretzzatzon satisfying (3.16) and let g € {1}, f,Z7 f,Ch fY Ui = 2{Z5_, *f}
Moreover, suppose that f is (r + 2)-times continuously differentiable with respect to time on
1. Then, we have the following error estimate

(=) (60) + | (Rrs = ) 8)

< On ( L PR Z 20 s )
j=i

=7 (108 2]+ 1P+ o0 1500,

€(to n)

where o = 1 if the associated stationary problem is H?-reqular and o = 0 otherwise.

Proof. Unlike in the proof of Lemma 4.43, we here use a splitting of the error of the form

(u— uTh)(i) (t,) = (u— uh)(i) (t,) + (un — uTh)(i) (t,) (4.21)
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4 Error Analysis for V'I'D Methods

where wy, is the solution of the semi-discrete problem (3.8) to the initial value upo = uﬁ%

with u,[i]O defined according to (4.20).
The first term on the right-hand side of (4.21) can be estimated by Proposition 4.50. For
the second term we have due to Remark 3.7 that

[ (an =) )| = [ (@ = Ton) V00

So, we are almost in the same setting as in Section 2.3. We let Uy, take the role of u in
Chapter 2 where F' replaces f. Similarly, U, takes the part of U where G replaces g, but
the initial value is chosen slightly different. Of course, in contrast to Chapter 2, we do not
have U, 1,(to) = Un(t) in general.

Now, revising the arguments of Section 2.3, we see that the concrete choice of the initial
value is only needed and used at the end of Theorem 2.30. Therefore, we gain (also noting

that C' = 0 since p = —aC 2 < 0) that
|Can = ) H = [@h = T)? ()]

<H<m—v )]+ 30 () ’“*“(supuMM )]+ sup 0]
tel,

v=1

< H(uh - ufh)(i)(ta)H Z C 7,, T+2—i (f’;llp ”f(r+1 H + sup Hu r+2 )H)

for 0 < i < [%J and 1 < n < N. Because of Corollary 4.48, the latter term is uniformly
bounded. But we need to study the initial value term. For this, we use the splitting

| Cun = wen) D ()| < [ (0 = Ry (15)] + | (Rau® — D) ()]

Estimates for the first term on the right-hand side have already been derived in the proof of
Proposition 4.50. Since the initial values of the fully discrete problem and the semi-discrete
problem are defined very similar, cf. (4.1) and (4.20), the second term can be estimated
quite analog. Here, also note that due to g € {II},f,Z; f,Cif} Uitk > 2 {I};_Z*f} we have
g (t3) = fO(tg),i=0,...,|%] — 1. Thus, in (4.1) we could use f instead of g. Therefore,
we obtain

| (un — trp)? ()|

< C|(1d~ P uol, + O (Ry — B ol + ¢ Z () — R+ (1),

] [

Noting that |(Id — P,)d;*? = 0 as well as H Ry, — P0 [ u| = 0 if P}? = R;, and

,_
MES

H(Rh — Po)ﬁl JUQH H (R, — Id JuoH if P}? = P,, we thus get from (3.16) that

r+1
| (= urn) D (85| < CR7Fe Z [ut (ko HH“H(Q
j=min{i+1,[§J}
for 0 <i<|%].

2
Combining the above observations, we easily conclude the desired statement. O
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4.3 Final error estimate

Because of Theorem 4.51, which for 0 < ¢ < £ shows the expected temporal convergence
order r —i+1 for the ith derivative of the error u—wu,, at least in the time (mesh) points, we
do not need superconvergence estimates for error estimates of a satisfactory order anymore.

4.3 Final error estimate

We now have estimates for the fth derivative of the error as well as for the error in the
time (mesh) points. For discrete functions (in P.(I,,V})) these information suffice to bound
the L?(H)-norm. Therefore, we split the error in a discrete error part and a remaining
projection error part where a suitable projection operator has to be used.

The further error analysis is based on a norm equivalence in the finite dimensional space
P,.(I,,, V) where V}, is equipped with the norm |-||. The following statement is proven in
Appendix D, see Lemma D.4, in a more general setting.

Lemma 4.52
Let 0 <1 <71 and let ||-|,,, denote some norm on Vj,. Then, the mappings

1/2 ” , -1 - , 1/2
2 Tn ™ ) 2t i) (41—
v ( L v(t)]wdt> and v ((7) L [O@, dt+ Y (2)** o )(tn)}w>
n n =0
define equivalent norms on P,(1,,V}) where the equivalence constants are independent of T,
and of Vj,.

As before, let r,k € Z, 0 < k < r, and { = [gJ We generalize the projection operator

ﬁ;:‘;f introduced in Subsection 4.1.1. So, let X denote some Banach space over R. For

ve H*Y(I,, X) A CRs 4 (T, X) let ﬁ;’yv € P.(I,, X) be determined by
(ﬁzv%)@(t;) —00)(t), for j=0,...,0—1,
(") () = 25 (o) (o) for all ¢ < I,

cf. Definition C.12. Note that the second condition is just an identity of two polynomials
of (maximal) degree r — /.

. . =9
In order to derive error estimates for II,”, we first of all note that for £ > 1 we have

T

[(v—T70) ()]

_ ‘ (v~ T170) () - Jt " (o= (s) ds

.. =9 .
where we used the fundamental theorem of calculus, the definition of H; , and properties
of the Bochner integral. By iteration we then obtain for ¢ € I,, that

o~ T0) O, < [ 1T @) as =7 [ (00 - T-200) )] as

n n

< J I T ()| ds VeI,
I,

Y

=0
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4 Error Analysis for V'I'D Methods

Hence, it follows

[ =M ola < [ 100 - T eia a2

n

where also the Cauchy—Schwarz inequality was used. Bounds on the approximation error of

H}; gf , which is on the right-hand side, are already known from (4.9).

Now, we are well prepared to start the proof of the error estimate for general variational
time discretization methods.

Theorem 4.53

Letr,keZ, 0 < k<r,andl = [%J Moreover, suppose that f is (r+ 2)-times continuously
differentiable with respect to time on I. Consider the setting of model problem (3.4) with
standard spatial discretization satisfying (3.16) and let g € {11, f,Z; f,C. f Y Uik > Q{Ik 9 *f}
Then, we have the following error estimate

tn
[N
to

<O (-t < el e o oy ey + 2 Hu(j+1)(to>H2n+l<m)
=0
+ O(1+ (t, —tp)*)r2+Y)

(“@wl((tmtn),m(mﬁ ATy R i PR T E)‘f(m)(t)HQ)’
05ln

where o = 1 if the associated stationary problem is H?-reqular and o = 0 otherwise.

Proof. For the proof we choose .%, = S ;. and decompose the error u — uy, as follows

=, =,
U— Upp, = (u — Rhu) + (Rhu — RpII, u) + (Rhﬂk’ U — uTh).
Because of the stability of Ry, in |-[|,, the second summand can be bounded as

tn =9 —rﬂ 2 tn —rﬂ
Jt [Ryu — Rl dt < J 2[R — T2t < © f Ju— T at.
0 0

Thus, the projection error parts can be estimated using the known error bounds for the
. . =9
projection operators Ry, see (3.16), and II,”, see (4.9) and (4.22), by

128
2 Kk+o 2
f Hu - RhuH dt < Chz( +o) HU/HLQ((tO’tn)’HN-%—l(Q))7
to
tn _rv'g 2 7‘+1
| Rrw = RaIL " dt < CT20 Y Jul Gy 4 ) 110 )
to

where o = 1 if the associated stationary problem is H?-regular and ¢ = 0 otherwise.
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4.3 Final error estimate

It remains to study the fully discrete error part (Rhﬁ;yu — uTh) € P.(I,,,V,). The norm
equivalence of Lemma 4.52 with [ = ¢ gives

J [RATT =
I
< C( %/ QZJ H Rth U—uTh) Z)H dt+2 71/ 21+1 H (Rhﬁ;,gu_uﬁl)(l)(t;)”Q)

=) [ I - a3 (5 - 0) )

where for the second step the definition of Hk’ was used. Recalling the notation of the two
previous sections, especially

r—0,9 l
The Rth ge ul — U(szv

a summation over v = 1,...,n yields
tn g 9 n {—1 2 ) ] )
L IR0 — u*dt < 07 J e Pt + 0SS () | (R — ) V(65)]
0 v=11i=0

-1 .
<CT2EJ HerheH dt + C (t, — to) ZTQZVEHaX H(Rhu_ufh)()<t;)H2'

77777

All apparent terms can be estimated by Theorems 4.11 and 4.51. In detail, we have

tn
J HefthQ dt < C(l + (tn — t())) [hQ(H—i-O') ||u||?12+1((to,tn),H”+1(Q))

to
r—£ 2 2
+7ED (ul s oaminiay + 1 st ot ) |
and for0 << /(-1

max H (Rhu — uTh) ) (t;) H

v=1,...,

< ChEte ( HUHH‘Z((to,tn),H”H(Q)) + Z ”u(j-i‘l) (to) Hm+1(Q)>
=0

+Clt, — t0>7_r+1—i (}5{+2u0} + Hf<r+2)HL2((to,tn),V,:) + sup Hf(r+1)(t)‘)
te(to,tn)

with o as above. Hence, it follows

tn —=r.9 2
f [RATTL 0 — |
to

K+o 2 S j 2
< C(1+ (ta —to))h* )<IuHe+1(<to,tn>7Hn+1<m> + 2 [ub (ko) Hm(m)
j=0
+C(1+ (tn — to)?) 2V

(’“@M((to,tn),m(mﬁ 25200l + 1 Ve sty 110 R, It)>}JC(T+1)(ﬁ>H2)'
05ln
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4 Error Analysis for V'I'D Methods

Summarizing, we get the desired statement and the proof is completed. O]

Remark 4.54

The estimate of Theorem 4.53 is of optimal order with respect to space and time. In the case
that k£ € {0, 1} a similar estimate was already proven in Theorem 4.11. Otherwise, for k > 2,
in the proof of Theorem 4.53 the results of Theorem 4.51 and, thus, the (stiff) error analysis

were reused to gain estimates for H (Rpu — uTh)(l) (t, )H2 of sufficiently high order. However,
note that for k € {2,3} and g € {Z}. f, C}. f} we could alternatively use Proposition 4.46, which
was derived from the supercloseness result of Subsection 4.1.6, to get final error estimates
of optimal order.

Still another way to prove optimal order L?( H)-estimates for VTD},(g) with k € {2, 3} and
specially chosen g is presented in |9, 12] in the context of the parabolic wave equations and
in [27] for linear first order partial differential equations. The approach strongly exploits
the connection between VTDj, and postprocessed VID}; "5 methods. Moreover, for the
argument it is quite crucial that the difference between the dimensions of trial space and
test space in the variational condition and, thus, k is not to large. Therefore, this approach
seems to be limited to small k. &

Remark 4.55 (Comments on the choice of the discrete initial condition)

By (4.1) the discrete initial condition is determined in a very special way. First the initial
value of the ¢th derivative is projected by a spatial approximation operator and then the
discrete initial values for lower derivatives are determined via the differential equation. This
special choice is exploited at several points in the analysis.

On the one hand, it guarantees that the collocation conditions also hold at t;. This
is used in the proof of Lemma 4.1 and in the argumentation of Section 4.2, especially in
Theorem 4.51. On the other hand, directly projecting the initial value of the fth derivative
makes the estimation of the initial error in Section 4.1 quite straightforward. Furthermore,
estimates for the initial error of higher derivatives in the H-norm give respective estimates for
lower derivatives in the V-norm, which can be easily seen by adapting the argumentation of
Subsection 4.2.1. Suitable error estimates for the initial error of the ¢th derivative therefore
also yield appropriate estimates for all lower derivatives.

In contrast, the latter argumentation does not work in the other direction since control
on the stronger V-norm of the initial error of the ith derivative is necessary to bound the
H-norm of the initial error of the (i + 1)th derivative. Actually, this is also apparent in
numerical experiments, cf. Tables 4.1 and 4.2. Especially for large k, considerably larger
errors and reduced convergence orders are observed if, instead of by (4.1), the initial values
Oiurn(ty) € Vi, i =0,..., [gJ, are determined by

ﬁgum(ta) = Phu(),

é’zum(t(}) eV, withi=1,..., [%J : (4.23)

(aium(ta), vh) = <g(i_1)(ta’), Uh>v',v — a(é’i_lum(tg), vh) Yoy, € V.

With this in mind, further research to allow a more flexible or easily implemented choice of
initial conditions would be appropriate. s
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4.3 Final error estimate

Remark 4.56 (Comments on postprocessing)

Note that, due to the findings of Subsection 3.3.2, the postprocessing according to Theo-
rem 1.32 can be applied also in the considered parabolic setting. Especially, for the solution
urp, of VIDL(Z] f) or VID(Cif), 0 < k < r, postprocessing yields the solution @, of
VTD; L, (Z; ) or VTDZE (Citsf), respectively. In order to estimate the L?*(H)-norm
of the error u — ., then Theorem 4.53 can be used. However, a careful inspection of the
influences of the discrete initial condition may be required. &

Remark 4.57 (Comments on estimates in the L?(V)-norm)
Adapting the arguments in the proof of Theorem 4.53, also estimates in the V-norm can be
proven. Of course, we then build on the results of Subsection 4.1.3 to bound S:: Hefthi dt.
Moreover, note that by (4.18) in the time (mesh) points error control in the H-norm implies
certain error control in the V-norm. Therefore, for 0 < ¢ < ¢ — 1 the estimates of Theo-
rem 4.51 for H (u — uTh)(Hl t, H enable upper bounds for H (Rhu — uTh)( t, Hv However,
since results for the (i + 1)th derivative are used to bound the ith derivative, we loose one
convergence order in 7 and, thus, obtain a suboptimal estimate only.

With a more involved proof, this loss of order in the L?(V)-estimate can be avoided for
VTDj (g) with 0 < k < r and g € {Z] f,C}. f} such that we then find

tn 1/2
(J Hu—um}idt> <C(f,u)(h”+7r+1).

Furthermore, we can drop Assumptions 4.1 and 4.2, which are otherwise needed if k—2¢ = 1
(< k is odd). For brevity, we shortly sketch the main ideas only.

Adapting and combining some of the arguments used in the proofs of Lemma 4.19 and
Theorem 4.53, we get (also using (4.7) if k —2¢ =1 (< k is odd))

tn —=r,F 2
L IR — o dt
0

-----

<Cor* J e k+éerh€HV dt + C (t, — to) Z s H (B~ umn) HV
to

+ OOy 20T Z %) wa(Rhu(g))Hf/-

We already showed how to suitably estimate the first and the third term on the right-hand
side, so we focus on the second term. Applying the postprocessing to the solution wu,;, of
VTDj,(Z; f) or VID}(C;f), 0 < k < r, we obtain the solution @, of VTD}15(Z; L' f) or
VTDZ% (C;ié f ), respectively. Then, from Theorem 4.51 (and with a suitable choice of the
discrete initial condition) we find

| (u =) V()| < O u) (547 + 70D for 0 << £+ 1,

which, by (4.18), gives | (Rhu—ﬂm)(i) ()], < C(f,u)(R+o +777177) for 0 < i < £. Hence,
since by construction of the postprocessing ﬂf})l(t;) = ug})b( ) holds true for 0 < i < ¢, we
also gain a suitable bound for the remaining terms. &
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4 Error Analysis for V'I'D Methods

Remark 4.58 (Comments on estimates for the time derivative(s) of the error)

Suitably adapting the arguments of Theorem 4.53 and Remark 4.57, also estimates for the
ith time derivative, 0 < i < ¢, of the error in the L?(H)- and the L?*(V)-norm are possible.
The respective convergence order in 7 then is reduced by 1. &

Remark 4.59 (Comments on pointwise estimates in the H-norm)
If u|;, € C(1,, H), we easily find that

-1 )
sup | (w — ) (1) < 27 (1 = 0ra) )] + 70 sup | = ) 0]
v i=0 v

where amongst others the fundamental theorem of calculus and properties of the Bochner
integral are used to show this. Therefore, Theorem 4.32 and Theorem 4.51 imply appropriate
bounds for the pointwise error of u — u,;, in the H-norm. &

Remark 4.60 (Superconvergence in time (mesh) points for cascadic interpolation)
Recalling the observations of Subsection 1.4.3, especially Remark 1.38, we have that the
solutions u,;, of VID}(Cyf) and @, of VID2 —}(Z37~F f) coincide in the time (mesh)
points t;. Therefore, with a suitably chosen discrete initial condition, from Theorem 4.51
it follows

[(u— ) ()] = | (u = @) (&) < C(f,w) (R 4 727450,

Hence, by using cascadic interpolation of the right-hand side f, we can recover the high
superconvergence order in the time (mesh) points of 2r — k + 1 as known for non-stiff initial
value problems, cf. Subsection 1.2.3. &

4.4 Numerical results

In this section, we want to illustrate our theoretical findings and error estimates by some
numerical results. For simplicity, we only consider test problems that are one-dimensional
with respect to space, even more concrete, we always consider 2 = (0, 1).

To this end, for different test situations, the error in the (semi-)norms

1/2 /2
ol ez = (j | }vu,x)fdxdt) N U f 20(t, o) dxdt) |
1Ja
) 1/2 ) 1/2
|U|H1(L2) = (JJ }&v(t,m)} dlL‘dt) 3 ‘U|H1(H1) = (JJ |6’t6xv(t,x)‘ dl’dt) R
1Ja 1Ja
) 1/2
Hngoc(Lz) = 1I£La<XN <L \v(t;,x)‘ dx)

is investigated numerically. The numerical experiments were performed with the software
Julia [18], where the floating point data type BigFloat with 512 bits was used for all
calculations.

We start with the following test problem known from [11, Section 5|. Note that the
right-hand side given in the reference had to be corrected.
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4.4 Numerical results

Example (cf. [11, Section 5|)
We consider the one-dimensional heat equation

u(t, ) — uge(t,x) = f(t,z) for (t,z) € (0,3) x (0, 1),
u(t,0) =u(t,1) =0 for t € (0, 3), (4.24a)
u(0,2) =0 for x € (0,1)

with

f(t,z) = 3z cos () cos(3t) + (37r sin (22z) + (37“)2 T COS (%’%)) sin(3t), (4.24D)
which results in
u(t, ) = z cos () sin(3t)

as exact solution.

The errors in different (semi-)norms of the Q%-VTD$ method, k € {3,4}, in time and
continuous finite elements of piecewise polynomial degree k € {5, 6,7} in space are considered
for problem (4.24). Hereby, the discrete initial values are determined according to (4.1) with
PO = P,,. The same number of mesh intervals in ¢ and in z direction is used such that we
have 7 = 3h. Therefore, we expect that the minimum of temporal and spatial convergence
order can be seen, which, according to Theorem 4.53, in the L?*(L?)-norm is min{r+1, k+1}.
Moreover, according to Remark 4.57 and Remark 4.58, we expect that the temporal order is
reduced by one when the error of the derivative in time is considered and analogously that
the spatial order reduces by one if the derivative in space occurs.

The numerical results of Figure 4.1 nicely support all these expectations. Firstly, the
orders of convergence turn out to be independent of k. Secondly, for k = 6, we see L*(L?)-
order min{6 + 1,6 + 1} = 7 while the L*(H')-, H'(L?)-, and H'(H")-order only is 6, which
exactly meets our prediction since these (semi-)norms contain at least a derivative in time
or space. Thirdly, for K = 5, the spatial order is less than the temporal order and, as
predicted, we also see maximal order 6 which reduces to 5 if the first derivative with respect
to space is contained in the respective (semi-)norm. Fourthly, for k = 7, the behavior is
just the other way around. In this setting the spatial order is greater than the temporal
order, thus, the temporal order is the restricting one. So, we have and also see order 7 if no
temporal derivative is involved and order 6 if the respective (semi-)norm includes the first
time derivative.

Next, we want to numerically investigate the consequences of different choices for the
discrete initial condition. To this end, we consider selected Q);-VTD;, methods in time
in combination with continuous finite elements of piecewise polynomial degree x = r for
problem (4.24) where once the discrete initial values are determined in “downward direction”
according to (4.1) with ]3}? = P, and once in “upward direction” by (4.23). We again use
meshes with the same number N of uniform subintervals in space and time where N = 2¢,
i =3,...,8. The errors in the L*(L?)-norm as well as the associated experimental orders of
convergence for r € {12,13} and k € {10, 11} are given in Tables 4.1 and 4.2.

If the discrete initial values are defined “downward” via (4.1), we obtain L?(L?)-order r+1
for all considered methods, which exactly meets our theoretical prediction. In comparison,
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QS-VTDS method Q5-VTDE method
3 3 4 4
T T T T T T
B 1105 _ ---order 5 |
----order 6
- 11078 :
Yo
| _
e | 1107 | |
[ | 10714 [ |
+L2(L2) +L2(H1)
7+H1(L2) %Hl(]_-ﬂ) 1 1g-17) |
| | | | |
n = = 10—4 = T —
% ----order 6
= B 11071 -~ order 7 |
E
L o [ 110719 1 :
g I
&E 2 | n 10—13 - .
=
A= | ——L[*(L*) = [*H') ~ 11076 .
§ %Hl(LQ) %Hl([—jl) | _
5) C_ ! ! ! ! 110719 1 N
— | 10—4 — T —
----order 6
B 1107 --order 7 |
~ | 110710 | -
|
N N 10—13 | |
e 12(17) e L2(HY) SN, 1070 ]
+H1(L2) %Hl(Hl) - .
C_1 ! ! ! ! 107 P L ! ! ! ! L
8 16 32 64 128 256 8 16 32 64 128 256

number of mesh intervals in ¢ and in x direction

Figure 4.1: Errors in different (semi-)norms of the Q$-VTD{ method, k € {3,4}, in time
and continuous P,-finite elements, x € {5,6, 7}, in space for problem (4.24)
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4.4 Numerical results

Table 4.1: Errors in L?(L?)-norm and experimental orders of convergence for Q}>-VTD,?,
k e {10,11}, in time with discrete initial values determined “down-/upward”
via (4.1)/(4.23) and continuous Pjo-finite elements in space for problem (4.24)

discrete initial values via (4.1) discrete initial values via (4.23)
12 12 12 12 12 12 12 12
10-VTDyg 11-VTDy; 10-VTDyg 11-VTDy;

N error eoc error eoc error eoc error eoc

8 1.384e-15 12987 4.053e-15 12.986 5.798e-11 12.307 7.661e-06 10.768
16 1.705e-19 12997 4.995e-19 12.996 1.144e-14 12.429 4.393e-09 10.920
32 2.086e-23 12.999 6.113e-23 12.999 2.075e-18 12.460 2.268e-12 10.969
64 2.548e-27 13.000 7.468e-27 13.000 3.684e-22 12.435 1.131e-15 10.986

128  3.111e-31 13.000 9.119e-31 13.000 6.652¢-26 12.313 5.579¢-19 10.986
256 3.797e-35 1.113e-34 1.307e-29 2.750e-22

Table 4.2: Errors in L?(L?)-norm and experimental orders of convergence for Q13-VTD;?,
k e {10,11}, in time with discrete initial values determined “down-/upward”
via (4.1)/(4.23) and continuous P3-finite elements in space for problem (4.24)

discrete initial values via (4.1) discrete initial values via (4.23)
Qi-VTDy Qii-VTDy, QI-VTD} Qii-VTDy;
N error eoc error eoc error eoc error eoc

8 2.128e-17 14.000 5.166e-17 14.000 1.488e-12 12.526 1.729e-07 11.077
16 1.299e-21 14.000 3.153e-21 14.000 2.522¢-16 12.510 8.007e-11 11.029
32 7.931e-26 14.000 1.924e-25 14.000 4.324e-20 12.503 3.832e-14 11.011
64 4.840e-30 14.000 1.174e-29 14.000 7.449e-24 12501 1.857e-17 11.004

128  2.954e-34 14.000 7.168e-34 14.000 1.285e-27 12.500 9.041e-21 11.002
256 1.803e-38 4.375e-38 2.218e-31 4.409e-24

the computed errors are considerably larger and the associated experimental convergence
orders are clearly reduced if the discrete initial values are defined “upward” via (4.23). This
suggests that the rather complicated construction (4.1) for the discrete initial value is really
necessary.

A closer look at the computational results of Tables 4.1 and 4.2 moreover shows that,
depending on whether r and k are even or odd, there are significant differences in the gap
between the L?(L?)-convergence order r + 1 expected for “downward” initial values and the
experimental order of convergence obtained for “upward” initial values. Therefore, for closer
examinations, the deficit compared to r + 1 of the L?(L?)-convergence orders obtained for
discrete initial values determined via (4.23) are given in Table 4.3 for Q}-VTDj, methods
with 5 < k < r < 13. Here, the deficits are calculated using the experimental orders of
convergence computed from the L?(L?)-errors for N € {128,256}.

First of all, from our computational results we see no deficit in the L?(L?)-convergence
order for kK < 6. However, for k > 7 the situation is quite different. For odd r, we see a
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Table 4.3: Deficit compared to r + 1 of the experimental L?(L?)-orders of convergence for
Q-VTD, 5 < k < r < 13, in time with discrete initial values determined
“upward” via (4.23) and continuous P,-finite elements in space for problem (4.24)

k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13
0.000
0.000  0.000

0.000 0.000 0.999
0.000 0.000 0.735 0.228
9 0.000 0.000 1.000 0.500 1.998
10 0.000 0.000 0.808 0.302 1.138  0.640
11 0.000 0.000 1.001 0.501 1.999 1.499  2.997
12 0.000 0.000 0.847 0.329 1.184 0.687 2.014 1.514
13 0.000 0.000 1.000 0.501 2.000 1.500 2998  2.498  3.996

o N O Ot 3

deficit of 1 for £k = 7 and of 0.5 for £k = 8. Further, incrementing k > 7 by two, increments
the observed deficit by one. For even r, we also see an enlargement of the gap between
r + 1 and the obtained experimental L?(L?)-order when k > 7 is incremented by two. But
the increase of the deficit is lower as for odd r and we do not observe clear full or half
convergence orders. While the differences between even and odd k£ may be explained by
the different stability properties or differences in the construction of dG-like and c¢GP-like
methods, the observed differences between even and odd r here at the example are rather
surprising and we have no direct explanation for them.

In order to examine certain specific features of the variational time discretizations more
easily, we in addition study a problem with a solution that is polynomial in space and, thus,
allows to almost exclude the spatial error.

Example
We consider the instationary convection-diffusion-reaction problem

up(t, ) — Ugs (t, ) + (1 + 2%)ug(t, 2) + (1 + 22)u(t, z) (4.25a)
= f(t,x) for (t,z) € (0,2) x (0,1),
u(t,0) =u(t,1) =0 for t € (0,2),

u(0,2) = 2*(1 —x) for z e (0,1)
with f chosen such that
u(t,z) = x(1 — z)(x cos(t) — sin(2t)) (4.25b)
is the exact solution.

For approximation in space we use continuous, piecewise cubic finite elements where the
spatial interval (0,1) is decomposed into 10 uniform subintervals. Note that this proper
choice of the trial space for the spatial discretization ensures that the error in space is
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negligible. So, the numerical results for problem (4.25) reflect the error behavior of the
variational time discretization method.

At first, we have a look at the superconvergence behavior in the time mesh points. How-
ever, according to Subsection 4.2.2, in this parabolic setting for Q}-VTDj] methods we
only can expect a low order superconvergence and not the high superconvergence order of
2r — k + 1 as known from the analysis of non-stiff ode systems. This can also be seen in
the results presented in Table 4.4 where errors in the L?(L?)- and the ¢ (L?)-norm as well
as their associated experimental orders of convergence are given for the Q3-VTD{ method
on time meshes with N uniform subintervals where N = 2! ¢ = 5,...,13. While the
L?(L?)-order is 7 + 1 = 7 as predicted by theory, the high superconvergence order, which is
2r — k + 1 = 13, is clearly not obtained, even for quite small time steps. This suggests that
in general additional compatibility conditions, as those in [52; p. 211], really are needed for
higher order superconvergence.

The situation is quite different if we apply cascadic interpolation to the function f on
the right-hand side. Corresponding computational results for QS-VTDS(CS f) are also given
in Table 4.4. We observe that the error in the L?(L?)-norm is almost the same as for the
standard method without cascade, but the ¢*(L?)-norm is considerably smaller. Moreover,
now the desired high superconvergence order of 13 is achieved even for quite large time
steps, which is in accordance with the theoretical result of Remark 4.60. This suggests that
the application of cascadic interpolation can be quite advantageous.

Table 4.4: Errors and experimental orders of convergence for QS-VTD{ without and with
interpolation cascade of the right-hand side for problem (4.25)

without cascade with cascade
|lu — wrn L2 (r2) |u — oo (r2) lu — wrn L2 (re) [ — v g0 (12
N error eoc error eoc error eoc error eoc

32 2.016e-15 7.000 4.595e-20  9.263 2.016e-15 7.000 3.598e-28 12.963
64 1.575e-17 7.000 7.477e-23  9.236 1.575e-17 7.000 4.506e-32 12.986
128 1.231e-19 7.000 1.240e-25 9.261 1.231e-19 7.000 5.554e-36 12.994
256  9.616e-22 7.000 2.022e-28  9.517 9.616e-22 7.000 6.809e-40 12.997
512 7.513e-24 7.000 2.761e-31  9.796 7.513e-24 7.000 8.328e-44 12.999
1024 5.869e-26  7.000 3.105e-34  9.963 5.869e-26 7.000 1.018e-47 12.999
2048 4.586e-28 7.000 3.112e-37 10.828 4.586e-28 7.000 1.243e-51 13.000
4096 3.582e-30 7.000 1.712e-40 11.866 3.582e-30 7.000 1.517e-55 13.000
8192  2.799e-32 4.586e-44 2.799e-32 1.852e-59

In Table 4.5 computational results for the Qg—VTDg method without and with interpo-
lation cascade are presented. The behavior is quite similar as for Q3-VTD{. While the
errors in the L?(L?)-norm are almost equal for the standard method and the method with
cascadic interpolation and show the predicted convergence order r + 1 = 7, the errors in
the time mesh points reveal considerable differences between both methods. So, with cas-
cade the high superconvergence order 2r — k + 1 = 10 is obtained already for coarse grids,
whereas without cascade this order is clearly underachieved. Though, the differences are
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not as prominent as for Q3-VTD, which is certainly due to the smaller difference between
L*(L*)-order 7 and high superconvergence order 10.

Table 4.5: Errors and experimental orders of convergence for QS-VTD$ without and with
interpolation cascade of the right-hand side for problem (4.25)

without cascade with cascade
lw—wrnlr2@zy  fu—wmnleozy  luw—wmmlrz@z)  llu— wenfeere
N error eoc error eoc error eoc error eoc

32 5.07le-15 7.000 1.315e-18 9.331 5.072e-15 7.000 2.817e-21  9.983
64 3.962e-17 7.000 2.042e-21 9.290 3.962e-17 7.000 2.784e-24  9.996
128 3.095e-19 7.000 3.263e-24 9.267 3.095e-19 7.000 2.726e-27  9.999
256 2.418e-21 7.000 5.295e-27 9.242 2.418e-21 7.000 2.663e-30 10.000
012 1.889e-23 7.000 8.746e-30 9.255 1.889e-23 7.000 2.601e-33 10.000
1024 1.476e-25 7.000 1.431e-32 9.414 1.476e-25 7.000 2.541e-36 10.000
2048 1.153e-27 7.000 2.099e-35 9.572 1.153e-27 7.000 2.481e-39 10.000
4096 9.008e-30 7.000 2.758e-38 9.719 9.008e-30 7.000 2.423e-42 10.000
8192 7.038e-32 3.273e-41 7.038e-32 2.366e-45

In order to enable also an easy comparison of the variational time discretization methods
for different choices of the method parameter k, we present in Table 4.6 the computational
results for different versions of Q$-VTD? with k = 0,...,6 for problem (4.25). In addition
to the standard method and the method with cascadic interpolation, we now also consider
the postprocessing of the methods without and with cascade. Note that the errors, given
in various (semi-)norms, are those obtained for a time mesh consisting of N = 256 uni-
form subintervals. Moreover, the listed associated experimental orders of convergence were
calculated from the errors for NV € {256, 512}.

The numerical results of Table 4.6 once again reflect many features of the variational
time discretization methods that we have observed and discussed earlier. We will therefore
highlight only a few aspects.

For r = k = 6 using the interpolation cascade has no effect on the computational results.
This is because the methods QS-VTD¢ and QS-VTDS(CEf) are equivalent. Moreover,
postprocessing has no effect on the ¢*(L?)-norm of the error if 0 < k < r = 6 and on the
(*(L*)-norm of the first time derivative of the error if 2 < k& < r = 6. This is because
postprocessing, by construction, preserves function and derivative values up to derivative
order [%J in the time mesh points.

The errors in the L?(L?)-norm and the H'(L?)-semi-norm are hardly influenced by the
usage of cascadic interpolation. Without postprocessing we see, as expected, L?*(L?)-order
r+1=7and H'(L*)-order r = 6. Moreover, postprocessing increases the L*(L?)-order if
0<k<r—1=5and the H'(L?)-order if 0 < k < r = 6 by one. This is in accordance
with our theoretical and numerical results from Sections 1.3 and 1.4, also see Remark 4.56.

When using the interpolation cascade for the right-hand side, we observe the high super-
convergence order 2r — k + 1 = 13 — k for the error in the ¢*(L?)-norm. For 2< k <r =6
before postprocessing and 0 < k < r = 6 after postprocessing, respectively, this supercon-
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vergence order is also obtained for the first time derivative of the error in the time mesh
points. Without cascadic interpolation the convergence orders for the errors in the time
mesh points are partly considerably smaller. However, a low order superconvergence behav-
ior can be observed for all 0 < k < r — 1 = 5, which is in accordance with our theoretical
findings.

Summarizing, the numerical results nicely show the properties of the considered varia-
tional time discretization methods. The convergence behavior expected from our theoretical
error estimates is met and well illustrated.
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Table 4.6: Errors and experimental orders of convergence for different versions of Q$-VTDS,
k=0,...,6, for problem (4.25)

lu—wrnlr2ey  Ju— wrnlar e lu—vurplemrzy  [0c(u — wrn) [ (22)
k  error eoc error eoc error eoc error eoc

(i) standard method

9.616e-22 7.000 4.548e-18 6.000 2.022e-28  9.517 4.301e-18  6.000
1.007e-21  7.000 2.342e-18 6.000 6.102e-28  9.404 7.987e-18  6.000
1.645e-21 7.000 3.460e-18 6.000 9.839e-28  9.225 1.236e-24  8.339
2.418e-21 7.000 3.662e-18 6.000 5.295e-27  9.242 3.989%e-24  8.257
4.836e-21 7.000 6.190e-18 6.000 1.665e-25  8.983 1.136e-23  8.248
1.026e-20  7.000 9.650e-18 6.000 2.828e-23  8.000 3.496e-22  7.989
4.139e-20 7.000 2.228e-17 6.000 4.939e-21  6.995 5.754e-20  6.995

[ O Tt W N~ O

(i) with cascadic interpolation

9.616e-22 7.000 4.548e-18 6.000 6.809e-40 12.997 4.301e-18  6.000
1.007e-21 7.000 2.342¢-18 6.000 1.137e-36 12.000 7.987e-18  6.000
1.645e-21  7.000 3.460e-18 6.000 1.884e-33 10.997 2.195e-32 10.997
2.418e-21 7.000 3.662e-18 6.000 2.663e-30 10.000 3.103e-29  10.000
4.836e-21 7.000 6.190e-18 6.000 3.731e-27  8.996 4.346e-26  8.996
1.026e-20  7.000 9.650e-18 6.000 4.317e-24  8.000 5.029e-23  8.000
4.139e-20  7.000 2.228e-17 6.000 4.939e-21  6.995 5.754e-20  6.995

UL W N~ O

lw —trnlr2ey |l — Urnlmre lw = trplleorey 10w = Trn)lee (22

k error eoc error eoc error eoc error eoc
(iii) with postprocessing

0 6.855e-25 7.999 1.694e-21 6.998 2.022¢-28  9.517 6.056e-25  8.777
1 9.741e-25 8.000 1.781e-21 7.000 6.102e-28  9.404 1.657e-24  8.746
2 1.801e-24 7.999 2.903e-21 6.999 9.839e-28  9.225 1.236e-24  8.339
3 3.307e-24 8.000 4.275e-21 7.000 5.295e-27  9.242 3.989e-24  8.257
4 8.527e-24 7.999 8.537e-21 6.999 1.665e-25 8983 1.136e-23  8.248
5 2.201e-23 8.000 1.813e-20 7.000 2.828e-23  8.000 3.496e-22  7.989
6 4.543e-21 6.999 4.833e-20 6.999 4.939e-21  6.995 5.754e-20  6.995

(iv) with cascadic interpolation and postprocessing

6.868e-25 8.000 1.700e-21 7.000 6.809e-40 12.997 7.932¢-39 12.997
9.741e-25 8.000 1.781e-21 7.000 1.137e-36 12.000 1.324e-35 12.000
1.804e-24 8.000 2.908e-21 7.000 1.884e-33 10.997 2.195e-32 10.997
3.307e-24  8.000 4.275e-21 7.000 2.663e-30 10.000 3.103e-29 10.000
8.539%-24 8.000 8.551e-21 7.000 3.731e-27  8.996 4.346e-26  8.996
3.336e-23  8.000 1.814e-20 7.000 4.317e-24  8.000 5.029e-23  8.000
4.543e-21  6.999 4.833e-20 6.999 4.939e-21  6.995 5.754e-20  6.995

TR W N~ O
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Summary and Outlook

We have considered a family of variational time discretization schemes VTD; with param-
eters r,k € Z, 0 < k < r, that generalizes the well-known discontinuous Galerkin (dG)
method and continuous Galerkin—Petrov (¢cGP) method. Generalizing the methods and
studying the entire family was interesting for several reasons.

On the one hand, the new schemes have useful properties. So, for example, a higher
regularity of the discrete solution can be provided. Indeed, in dependence of k& we ob-
tain discrete solutions that are [%J—times continuously differentiable with respect to time.
Further, holding the local polynomial ansatz degree r constant, the number of unknowns
decreases with increasing k. In the extreme case r = k the number of unknowns is (al-
most) halved. Moreover, under appropriate conditions superconvergence behavior in the
time mesh points can be observed also for derivatives up to order [gJ

On the other hand, the unified analysis as well as the observed connections to other
discretization schemes, as collocation methods with multiple nodes or Runge-Kutta-like
methods, and the observed connections between different variational time discretization
methods via postprocessing provide interesting insights and lead to alternative proof tech-
niques. So, for example, in the case of cascadic interpolation we now have a nice and short

justification of superconvergence in the time mesh points.

Finally, we want to summarize briefly some of the important results and raise further
questions that came up during the extensive investigations.

In Part I, the VI'D; methods, 0 < k£ < r, were studied for initial value problems. For non-
stiff ode systems, in Section 1.2, a unified error analysis was established that can be applied
in a rather abstract setting which also allows numerical integration and approximation of
the “right-hand side”. Beyond pointwise error estimates also superconvergence in time mesh
points was shown. However, especially for k > 4 Assumption 1.4 almost precluded to study
nonlinear problems. Therefore, we should ask whether or not similar results can also be
proven under weaker assumptions that allow nonlinear problems also for large k. Moreover,
it would be quite interesting to investigate the variational time discretization methods in
the context of integral equations.

In Section 1.3 a postprocessing technique was provided that under suitable assumptions
can be used to improve the discrete solution. In this context we also found out that some
of the variational time discretization methods are connected to collocation methods with
multiple nodes. Here, we could ask whether for all considered variational time discretization
methods the postprocessing can be used to drive an adaptive time step control as it is known
from 3] for dG and ¢GP methods.

Further, in Section 1.4 we considered affine linear problems with time-independent coef-
ficients. We introduced the idea of cascadic interpolation of the right-hand side function
in order to enable multiple postprocessing steps. As easy consequence we got a nice proof
of superconvergence in the case that the interpolation cascade is used. However, it is open
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whether or not the idea of cascadic interpolation can be generalized to more general problems
with coefficients that depend on time. Moreover, it would be nice to find a mathematical
explanation for the computational results of Table 1.4 which showed that postprocessing
based on jumps and postprocessing based on residuals behave very different if multiple
postprocessing steps are applied.

In Chapter 2 we derived error estimates also for stiff ode systems. To this end, we fitted the
variational time discretization methods into a Runge-Kutta-like framework, see Sections 2.1
and 2.2. Then, in Section 2.3 we transferred the techniques that are usually used to prove
the B-convergence of Runge-Kutta methods in order to derive stiff error estimates for the
VTD;, methods. However, also here we have restricted the investigations to affine linear
problems with time-independent coefficients. Thus, it is still an open question whether for
the whole family of methods similar estimates can be shown also for more general problem
classes, e.g., for affine linear problems with time-dependent coefficients or certain semilinear
problems.

Part IT was devoted to the study of variational time discretization methods in the context
of parabolic problems with time-independent spatial differential operators and homogeneous
boundary conditions. At first, in Chapter 3, we collected some well-known results on the
regularity of solutions and the semi-discretization in space that were needed later. More-
over, we presented a full discretization in space and time that was obtained by applying a
variational time discretization scheme to the semi-discretization in space.

Then, in Chapter 4 the findings from Part I were combined and transferred to prove error
estimates for VIDj(g) also in the parabolic setting. Using that the |%|th derivative of
the solution of VTDj (g) actually solves a dG or ¢GP scheme, respectively, we started in
Section 4.1 by showing error estimates for this derivative. Although most estimates were
already known from the analysis of dG and ¢GP methods, this section was very interesting
since, firstly, also the application of quadrature rules for approximate integration in time
was allowed and, secondly, dG and c¢GP were studied at once, which nicely showed the
similarities and differences in the analysis of the two methods.

Next, in Section 4.2, we had a look on the error in the time (mesh) points. Since in general
a superconvergence behavior cannot be observed or at least does not provide sufficiently
high orders of convergence, we had to reuse the (stiff) error estimates of Section 2.3 to prove
satisfactory error estimates. This, however, also shows that a very detailed investigation
of superconvergence could be quite worthwhile since proper adjustments of the methods
may be possible if the crucial reason for the lack of high superconvergence is found. In this
regard note that we already showed that the high superconvergence order is obtained when
cascadic interpolation is used.

Finally, combining all these results, we concluded in Section 4.3 optimal error estimates
for full discretizations in space and time that use variational time discretization schemes for
approximation in time. Now, an obvious next step would be to allow also inhomogeneous
boundary conditions. Here, using the interpolation cascade may also help to treat the issue
of order-reduction known in this context. Other approaches that tackle this problem and
may be generalized are presented for the dG method in [54, Chapter 3| and for Runge-Kutta
methods in |7, 8]. Moreover, in further research, the variational time discretizations may be
analyzed also for other problems as, for example, the wave equation or the transient Stokes
problem. For wave equations a first step in this direction has been already gone in [9, 12].
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A Miscellaneous Results

In this section, we want to collect and partly prove miscellaneous results that are needed in
this thesis.

A.1 Discrete Gronwall inequality

Discrete versions of the Gronwall lemma are well-known from the literature, see e.g. [52,
Lemma 10.5, p. 175|, [26, Exercise 67.1, p. 159, Exercise 68.3, pp. 174-175|, or [23]. We
here prove one further, less common variant.

Lemma A.1 (Discrete Gronwall lemma)
Let (an)nengs (An)nen, (Bn)nen, and (wy)nen be sequences of real numbers satisfying

w, >0 and a, + A, < B, + wpa,—1, n=1.

Then, for allmn =1 it holds

an+2 ( H )Augao (ﬁwk> ( wk) B,.
k=v+1 k=1 k=v+1
=

If additionally ag, A,, B, =0 and w, =1 for all n = 1, then it follows

e $n (S 0) (w £

foralln > 1.

Proof. We define some auxiliary variables by a,, := a, (Hk LWy ), n = 0. Then, from the
presumed inequality we gain

ay — Ay = <H wk1> (a, —wya,_1) < (H wk1> (B, —A,).
k=1 k=1

A summation over v = 1,...,n yields

i < o + Zn] <]_[ wkl) (B, — A,).
v=1 \k=1

Recalling the definition of a, and rearranging the terms, we obtain

B (L) (fle) £ (L)

H::
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which is the first estimate.
Because of the additional assumption w, > 1 for n > 1, we have

1< H wy, < Hwk Hexp wg — 1) —exp<2(wk—1)>.
k=v+1 k=1 k=1 k=1

For ag, A,, B, = 0 this enables to bound the left-hand side of the first estimate from below
and the right-hand side from above in the desired way. O]

A.2 Something about Jacobi-polynomials

The Jacobi-polynomials, denoted by pled (t) for n € Ny, a, f > —1, form an orthogonal
system with respect to the weighting function w(t) = (1 —t)*(1+1t)? in the interval (—1, 1),
see [1, 22.2.1, p. 774]. They are normalized by setting

P = (1) (A)

n
and satisfy

2000t Pln+a+1)I(n+B+1)
2n+a+p0+1 nll'n+a+pG+1)

1
f PO PR ()(1 —)*(1 + t)Pdt = Om,n-
-1

Hereby, I'(t) is the gamma function and 6,,, the Kronecker symbol. Note that for n € Ny
the identity I'(n + 1) = n! holds.
Furthermore, the Jacobi-polynomials satisfy the Rodrigues’ formula

Pld(t) = (Gl (1=t (1+t) 51; [(1 — )" (1 + t)”*ﬁ] )

see [1, 22.11.1, p. 785|. From this identity we easily conclude for 0 < k < n that

dk
dt*

(1= 0" (14 )7 PR )| - —(n -

(1 — )" (1+t)° PP(t).  (A2)
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B Abstract Projection Operators for Banach
Space-Valued Functions

Piecewise polynomial projection operators of real-valued or vector-valued functions are well
studied as this is part of the standard finite element interpolation theory, see e.g. |21,
Section 3.1] or [25, Chapter 1]. However, to the best of our knowledge for Banach space-
valued functions, apart from results on special projection operators, there are no general
studies in the literature. Therefore, in this section, a rather abstract definition and rigorous
error analysis is presented at least for the univariate, Banach space-valued case.

Here, standard notation for the occurring function spaces is used. For details, especially
on the definitions of the norms in Sobolev and Bochner—Sobolev spaces, see page 82. In
addition, we list some literature on the basics of Banach space-valued functions and Bochner
integration at the end of this section, see Appendix B.3, for easy reference.

B.1 Abstract definition and commutation properties

We start considering assumptions that enable the definition of an abstract polynomial pro-
jection operator.

Lemma B.1
Let X denote a Banach space over R, let r € Z, r = 0, and a, b e R, a < b. Assume that
there is a Banach space V((a,b), X) with P.((a,b),X) < V((a, X) c L'((a,b),X) and
that there are r + 1 bounded linear operators MX V((a,b),X) — =0,...,r, such that
the mapping

P.((a,b),X)2v— (./\/'JX(U)) A e X"t is an isomorphism. (B.1)

7=0,...,7

Moreover, suppose that there exist functions ¢; € P.((a,b)), i =0,...,r, such that

N¥(wey) = 6w Vi, j=0,...,r, Ywe X. (B.2)

J

Then, the projection operator
¥ : V((a,b), X) — Po((a,b), X), v > N5 (v) i,
i=0

is well-defined and preserves X -valued polynomials of mazximal degree r.

If furthermore k,m € Z, k,m = 0, and p,q € [1,0] are chosen such that the embedding
WHrLP((a,b), X) — V((a,b),X) holds true, then II* is a bounded linear operator from
WkHLP((a,b), X) to W™4((a,b), X).
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Proof. Obviously, since N7X : V((a,b),X) — X,i=0,...,r, are bounded linear operators,
for every function in v € V((a b), X) we have that HXU = ZZ N (v)g; € P, ((a b), X) is
well-defined. Because of P,((a,b), X) € V((a,b), X), we can also apply IT* to [1¥v.

We further need to show that II* preserves X-valued polynomials of maximal degree
r and, thus, also II*(IT1*v) = ¥ for all v € V((a,b),X). So, let v € P.((a,b), X) be
arbitrarily chosen. Since v is uniquely described by (./\/]X (v))j: _» 1t suffices to verify that

NX(IT*v) = N¥(v) for all j = 0,...,7. But this follows easily from (B.2)

N (T ZNX (N (v)6) Z@JNX v) = N¥(v).
=0 1=0
Therefore, [1¥ is a projection operator onto P.((a,b), X).

Now, it only remains to prove the boundedness of I1*. Let v € W t1P((a,b), X). Then,
due to W**HP((a,b), X) < V((a,b), X), it also holds v € V((a,b), X) and NX, i =0,...,r,
are bounded linear operators from W**1?((a,b), X) to X. Moreover, obviously we have
[*v e P.((a,b), X) € W™4((a,b), X). Therefore,

0 o, ZHNX J6ilwmaan.) = 22 W O 19ilmaan 2y

=0

H@vaﬂq(ab) R) CHUHWHLP((Q,b),X)

=0
with C' =3 OCNX“¢Z“qu ((a,b),R)" 0
Remark B.2
Note that the existence of suitable ¢; € P,.((a,b)),i =0,...,r, fulfilling (B.2) already follows
from the assumptions (B.1) on N;X, i = 0,...,r, if there are associated linear operators
NE: P.((a,b)) > R, i=0,...,r, that satisfy
NR(<g,v>X/X) = <g,NX(v)>X, Vge X', Yve P.((a,b), X). (B.3)
Indeed, let @ € X with |@]x = 1. Then, since P.((a,b), X) 30— (N¥(v)),_, e X"
is an isomorphism, there exist functions ¢¥ € P.((a,b), X), i = 0,...,r, such that
/\/}X(gb;”) = 0; ;0 Vi,j=0,...,r.
Now, by Hahn-Banach’s theorem there is a gy € X' satisfying (gz, W)x' x = |W[|x = 1.

Using this, we define ¢; € P,((a,b)),i=0,...,r, by

¢Z = <g@7 ¢;D>X/,X
It remains to prove that ¢;, ¢ = 0,...,r, fulfill (B.2). So, let w € X and g € X’ be
arbitrarily chosen. Then, using the properties of ./\/jR and of the duality pairing, we obtain

<97AGX(W¢¢)>X,7X = -/\[j]‘R (<9, w¢i>X',X) = -/\GR (<97 w>X',X¢z‘) = (g, w>X',X/\/;R (@)
= <97 w>X'7X'/\/’]R (<g'tTM ¢?>X'7X) = <ga w>X’,X<gﬁ7~/\/’jX<¢?)>X/,X
= {g, wyx x{9ga, 5¢,ﬂb>X,,X = {9, wyx' x0; j{ga, 115>X,’X

= (g, 0ijw)x’ x
for i,j = 0,...,7. Since this holds for arbitrary g € X, it follows N;¥ (w¢;) = d; jw. ' 3
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Remark B.3
Often the linear operators that are used to define projection operators by the approach of
Lemma B.1 have the basic form

b
NX W ((a,b), X) — X, v — J vO() P dt, withl,jeZ, 1>0,j>0, (B.4a)

where the integral is interpreted in Bochner sense,
NX - CY[a,b], X) = X, v — vD(t%), with [ € Z, 1 > 0, and t* € [a,b], (B.4b)

or are linear combinations of those operators. Of course, these operators are bounded.
The properties of the Bochner integral, see [26, Example 64.15, p. 114] or [50, (10.11),
p. 182], and of (derivatives of) Banach space-valued functions, see [26, Corollary 64.32 and
Lemma 64.34, p. 118] and [57, beginning of the proof of Proposition 3.6, p. 77|, also guarantee
that (B.3) is satisfied by the linear operators in (B.4) and their linear combinations. &

The next lemma shows that under certain conditions the well-definedness of the Banach
space-valued projection operator already follows from that of its real-valued analogon.

Lemma B.4

Let X be a Banach space over R, let r € Z, r = 0, and a,b € R, a < b. Suppose that
NX : P.((a,b),X) > X, i=0,...,r, are linear operators and that N* : P.((a,b)) — R,
i=0,...,r, are associated linear operators that fulfill (B.3). Furthermore, assume that the
mapping P,((a,b)) 3 v — (/\/}R(v))j: S R is an isomorphism. Then, the functions
¢; € P.((a,b)), i = 0,...,r, that are well-defined by ./\GR((b,») = 9,4, 1,7 = 0,...,7, also
satisfy (B.2). Moreover, it holds (B.1).

Proof. Let we X and g € X’ be arbitrarily chosen. Then,

<g,f\/}X(w¢i)>X,7X = -/\[}R (<9, w¢z‘>X',X) = -/\[]R (<97 w>X',X¢z‘) = <97 w>X’,X/\/}R(¢i)
= <9a w>X/,X5i,j = (g, 5z‘,jw>X/,X

and, thus, N7* (w¢;) = 6; jw, which is (B.2).
To show (B.1), we first of all note that the mapping P,((a,b),X) 3 v — (./\/'J.X(v))j=0 o
obviously preserves the vector space structure, so it remains to show bijectivity. The surjec-

N¥(v) = 20 N¥ (vighi) = wj for allj =0,...,r due to (B.2). In order to prove injectivity,
let v,w € P,((a,b),X) satisty N;¥(v) = N;¥(w) for all j = 0,...,7. Then, for arbitrary
g € X' we also have N¥({g,v)x/ x) = N} ({g,w)xx) for all j = 0,...,r. Since {g,v)x' x

and (g, wyx x are in P,((a,b)) and, thus, are uniquely determined by (./\/JR())J,:O“_T, it
follows (g,v)x x = {g,w)xs x. This, of course, holds pointwise in (a,b) and for arbitrary
g€ X'. Hence, v = w. Therefore, also (B.1) is verified. O

An important commutation property of the projection operator is presented in the fol-
lowing corollary. We mainly use it in Chapter 4 to guarantee that the projections in time
commute with bounded linear operators in space.
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Corollary B.5
Let XY be Banach spaces over R, letr € Z, r = 0, and a,b € R, a < b. Suppose that for
Z € {X,Y,R} there are Banach spaces V ((a,b),Z) with

Po((@,), 2) < V((a.h), 2) < L}((a,}), Z)
and bounded linear operators N7 : V((a,b),Z) — Z,i=0,...,r, satisfying
-/\/;R(<97U>Z’,Z) = <97MZ<U>>Z/7Z v.g € Z/a Vo e V((CL, b)> Z)?

where we tacitly assume that the term on the left-hand side is well-defined, i.e., we assume
that {g,vyz 7 € V((a,b),R) for all g € Z', v € V((a,b),Z). Moreover, presume that the
mapping P.((a,b)) 3 v — (,/\/'JR(U))J,: € R is an isomorphism and let ¢; € P((a,b)),
i=0,...,r, satisfy ./\fj]R((bi) =04, 0,5=0,...,r.

Then, for Z € {X,Y,R} the projection operators

7 : V((a,b), Z) — Py((a,b), Z), v — ZNZ-Z('U)@,

are well-defined and preserve Z-valued polynomials of maximal degree r.

Let, in addition, K : X — Y be a bounded linear operator. For functions v : [a,b] — X
set (Kv)(t) := K (v(t)) forte [a,b]. If, furthermore, K (N (v)) = NY(Kv), i=0,...,r,
for all v € V((a,b),X), where we tacitly assume that the term on the right-hand side is
well-defined, i.e., we assume that Kv € V((a,b),Y") for all v e V((a,b),X), then it holds
K(II*v) = IV (Kv) for allv e V((a,b), X).

Proof. Combining Lemma B.4 and Lemma B.1, the stated assumptions imply the well-
definedness of the projection operators 117, Z € {X,Y,R}.
The commutation property K (HX v) = 11¥ (K v) for all v e V((a,b), X) follows from

(K (IF50)) () = K ((IF0) (1)) — iK(MX(v))gbi(t) _ iA@Y(mw) (0 (Kv)) ()

for all ¢t € (a,b), where especially the linearity of K was used. O

Remark B.6

Let X,Y be Banach spaces over R and let K : X — Y be a bounded linear operator. For
functions v : [a,b] — X set (Kv)(t) := K(v(t)) for t € [a,b]. Then, from [26, Corol-
lary 64.14, p. 114] and |26, Lemma 64.34, also note Corollary 64.32, p. 118] we have that
K(N¥(v)) = NY(Kv) holds for linear operators of the form (B.4), where especially N is
well-defined for Kv if N is well-defined for v.

Consequently, if 11Z, Z € {X,Y}, are projection operators defined by the approach of
Lemma B.1 or Corollary B.5, respectively, where all N7 : V((a,b),Z) — Z,i =0,...,r,
are linear combinations of linear operators of the form (B.4), then K (IIXv) = II" (Kv) for
all ve V((a,b), X). [
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B.2 Projection error estimates

Of course, we are also interested in error estimates for projections of Banach space-valued
functions. But, to prove these, we first have a look on some auxiliary results. Here, for
convenience, we use on W*? ((a,b), X) the semi-norm |v|ye.n((ap),x) := [|050] Lo ((a,0),x)-

Lemma B.7 (Poincaré/Friedrichs’ inequality)
Let p € [1,0] and a,b € R, a < b. Moreover, let X denote some Banach space. Suppose
that ve W ((a,b), X) and v(t*) = 0 for some t* € [a,b]. Then, it holds

<(b-a

HUHLP((a,b),X) ) ‘U‘lel’((mb),X)'

Furthermore, for p € [1,00) we have

< (b _ a)(pfl)/p MWLP

HUHLOO((a,b),X) ((a,b),X)"

Note that v(t*) = 0 is a well-defined condition since embedding results yield that func-
tions in W' ((a,b), X) are continuous on [a,b], see [26, Lemma 64.37(i), p. 120] or [50,
Proposition 10.8, p. 190].

Proof. First of all, using that v(t*) = 0 and applying the fundamental theorem of calculus,
which also hold for functions in WP ((a,b), X), see [50, (10.16), p. 187], also note [50,
Proposition 10.8, p. 190], we gain for ¢ € [a, b
b
< J |0ev(s)]  ds,

|
ol = o0 o) = | [ avteras

where for the last step also properties of the Bochner integral, see [50, Theorem 10.4, p. 182],
were exploited.
For p = o0 we now obtain

b
0 < [ 6] 05 < 0 0) 1] 0

a

Otherwise, for p € (1,0) applying the Holder inequality with p and ¢ = p’ = p%l, it follows

[o®)] < Lb [ (s)]  ds < ( f 19 ds) ( f e des) '

< (0= @) 10] Ly o x

Summarizing, we have already shown

HUH . < (b a)(Hatf)J/HL@((a,b),Xy p = 0,
L% ((a,b),X) (b—a)p pHatUHLP((a,b),X)’ pe [1700)'

So, for p = oo we are done. Further, for p € [1,0) we conclude from this estimate

b
o = [ O < ol [ 10

<(b—a) p ' HathLp( a,b

6 0) = 0= 100l 0

which completes the proof. O
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Next, a Banach space-valued version of Deny—Lions’ lemma is shown for the case of uni-
variate functions. The result of this lemma is then, as in standard finite element interpolation
theory, one of the main arguments in the proof of projection error estimates.

Lemma B.8 (Banach space-valued Deny—Lions lemma: univariate case)
Letpe [l,o|, ke Z, k =0, and a,b € R, a < b. Moreover, let X denote some Banach
space. Suppose that v e WHTLP ((a,b), X). Then, it holds

inf v < (exp(1) + 1) max {1, (b — a) Yt

a€ P ((a,b),X) B qHW’”l’P((a,b),X) }| ’W’H-lp((a b),X)"

Proof. From embedding theorems, which also hold for Banach space-valued functions, cf. [26,
Lemma 64.37(i), p. 120], we have that

WHLP ((a,b), X) < C* ([a,b], X).

Thus, v e C* ([a, b], X) and so we can choose ¢, € Py ((a,b), X) as kth order Taylor polyno-
mial of v at some point t* € (a,b), see also [57, (9) in Chapter 3, p. 77|, i.e.,

gu(t) = ) (1 (t—t*)' > v (t*)  Vte (a,b).

Al

i=0
By construction it furthermore holds for 0 < j < k that q ) e Pk _; ((a,b), X) is the (k—j)th
order Taylor polynomial of v¥) at t*. Then for 0 < j < k — 1 Taylor’s theorem |57,

Proposition 3.6, p. 77| yields for all ¢ € (a,b)
W (1) — (1)

= (w0 - Y <;1!(t_t*)i> v(”j)(t*)> _ﬁ(t_t) o) (£)

= J[ (é__j)__;‘ (t— %) @ (1* + s(t — £*)) ds — ﬁ(t — ) T ® (%)
- [ G ) e s ) = o) s

I Gk (k) (4

_Jt*m(v (s) —o™(t*)) ds

Thus, using Holder’s inequality, it follows for 0 < j <k —1

Hv(k)< ) — U(k) t*)

(t— )k

Hv(j)( ) — Y HX = HLOC ((a,),X)

=8 || 1 ((a

(b— a)k (k)

< (k— ) H” () —wv HLOO((a7b)7X)'

Therefore, we gain for all 0 < j < k that
—_ q\k—J
() _ 40) M k) () — o®)
H” I HLC‘O((a,b),X) S (k— ) HU () — vt )HLOO((a,b),X)
(b — a)k_j (b - CL)"U‘ k+1,00((g.0).X)’ p= 007
R — w (( ) )1 )
(k - j)' (b - a’)(pil)/p|v‘Wk-#l,p((@b),X)7 p € [17 00)7
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where Lemma B.7 is applied for the last inequality.

Altogether, also noting that qikﬂ) = (0, we now obtain for p = o that
. B _ _ )
quk%%gb),X) HU qHWHLw((a,b),X) S HU q*”wkﬂm((a,b),X) ng,ﬁl HU 9 HLOO((a,b),X)

< max {1, (b kH} ‘U‘Wk+1’°°((a,b)7x)'

Additionally using Hoélder’s inequality, we similarly conclude for p € [1,00) that

qukggb),X) HU N qHW’“+1’P((a,b)7X)
1/p
< o= ae b < (Z b9~ o s+ oo X))

)
ngke

Il
=}

1/p
=) = s+ Pl >)

(b— a)k=it1 p
((—> ‘ ‘W’C“P +| ’Wk+1p(ab),X)

1/p
1 p
((k: — j)!> ’ 1) max {1, (b = )"} [Ulypui o) )

J

)
=

0

[
Il

/)
=

§=0
<(exp(1)+1)1/p
This completes the proof. O

We now are well prepared to prove the following (local) projection error estimates, see |21,
Theorem 3.1.4, p. 121] for an analogous result in the case of real-valued functions.

Lemma B.9 R

Let X denote a Banach space and let I1 denote some approximation operator for X-valued
functions on [«, 5] with o, B € R, o < 5. Moreover, let k,m € Z, k,m = 0, and p,q € [1, 0]
be chosen such that

o WHP((a, B),X) — W™((a, B), X),
o 110 =7 for all 5 € Py((a, B), X), and
o I is a bounded linear operator from WkHLe (o, B), X) to W™4((a, 5), X).

Then, for the transformed version 11 ofﬁ on (a b) with a,be R, a <b, that is defined by

[Iv = (ﬁ(v o T(a,b))) o T(;}b) with Ty : (o, B) (t —a) € (a,b), we have

Yo e W ((a,0), X),

b—a k—m+1+4+1/9—1/p
) o

‘v - HU‘Wm,Q((a,b),X) <C (5 — Wk+L.p((a,b),X)

where C' is independent of the interval (a,b).
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Proof. First of all, because of Wk“p((a,ﬁ),X) — W™i((a,5),X) and due to the re-

spective assumption on H we have that (Id — H) also is a bounded linear operator from
WE2((a, B), X) to W™((a, B), X).

Since II preserves polynomials of degree less than or equal to k, we obtain that
0-Mo=1d-T)@ -3  Voe WH((a,B),X), Y€ Pi((a, B), X).
Using the boundedness of (Id — II), we thus conclude

‘@ — ﬁa|W7n q < C 1nf Hi}\

W@)X) = Gep(@s ) Uwrrioas ) < Clolwri o

where Lemma B.8 was applied in the last step.
The desired statement then follows by transformation. Of course, it holds

(U—HU)OTab) (UOT(ab>—ﬁ(UOT(a7b))Zﬁ—ﬁﬁ

with U = v o0 T(, ). Therefore, we gain

b—a """ A
"U - HU‘Wmaq((a,bLX) - <5 _ a) ‘U N HU‘WWI((aﬁ),X)

bh—g\Yem b— g\ (Ma—m)+(kt1-1/p)
<C (5 _ a) |“|Wk+1m((a,ﬁ)7)<) =C (5 — a) ‘U}W’ﬂH»P((a,b),X)'

This completes the proof. O

B.3 Literature references on basics of Banach
space-valued functions

So far, various results on Banach space-valued functions, especially from Bochner—Sobolev
spaces, were used. In order to provide direct references to further details and the context of
these results, we briefly list some literature on the basics of Banach space-valued functions.

For details on continuous and (strong) differentiable functions of one real variable with
values in Banach spaces, we refer to [57, Sections 3.1 and 3.2]. A brief overview of the
Bochner integral theory is given in |26, Section 64.1] and [50, Section 10.1] for univariate
functions. For more general considerations of the Bochner integral and Bochner spaces
see [43, Section 1.2|. Further, for the definition of weak derivatives and associated function
spaces for univariate Banach space-valued functions, we refer to [26, Section 64.2]. A discus-
sion of Banach space-valued Sobolev spaces with arguments in a multidimensional domain
can be found in [43, Section 2.5]. Last but not least, embedding results for Banach space-
valued functions in the univariate case are presented, for example, in [26, Lemma 64.37 and
Theorem 64.39, p. 120]. In addition, in [10, Section 5] it was shown that Sobolev-Gagliardo—
Nirenberg inequalities and Morrey’s embedding theorem carry over from the real-valued to
the Banach space-valued case.
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C Operators for Interpolation and Projection in
Time

In this section, we collect the definitions of the temporal interpolation and projection op-
erators that are used especially in Part II of this thesis. Moreover, we discuss their well-
definedness and some of their properties. Here, we restrict ourselves to the local operators
on an arbitrary mesh interval I, = (t,-1,t,]. Throughout this section, let X denote a
Banach space over R.

C.1 Interpolation operators

We start with important interpolation operators and the associated operator of cascadic
interpolation.

Definition C.1 (Standard VTDj, interpolation)
Let r,k € Z, 0 < k < r. Then, 7} : Cl21(T,, X) — P.(I,, X) is defined by

T (2) ) . —
(Ikv) (tr )=o), fori=0,..., [k—QlJ ,
(Zr0) V() = v (8), fori=0,...,[%],
Tiv(tn,i) = v(tni), fori=1,...,7r—k,
with t,,; = % o fl, where #;, i = 1,...,r — k, denote the zeros of the (r — k)th

Jacobi-polynomial P([ JH %" ]+1) with respect to the weight (1 + t)[ JH(l t)ngH.
The interpolation operator is of Hermite-type and, in any case, the number of linear
independent interpolation conditions is

r—k+ |5 +1+ B +1=r—k+k—-1+2=r+1
Hence, the interpolation operator Z; is well-defined. s

Definition C.2 (Extended VTDj, interpolation)
Let r,k € Z, 0 < k <r. Then, Z, 7' : ol 1@, x) > P1(I,,, X) is defined by

7 () i )
(Zisto) " (try) = 0 (tr ), fori=0,...,[%],
(o) V) = 00, fori=0,.. %]
it vo(tn:) = v(tns), fori=1,...,r —k,
with t,,; = % Tn fz, where t;, i = 1,. — k, denote the zeros of the (r — k)th

Jacobi-polynomial P([,fj L) with respect to the weight (1 + t)[ JH(l — tA)[gJH.
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C Operators for Interpolation and Projection in Time

k+
2

In short, I,Z;lv € P.y1(1,, X) satisfies for v e Clilj(fm X) all r + 1 interpolation condi-
tions of Z; and additionally interpolates the [%Jth derivative at ¢} .

Note that we also used the two other extensions I,:}:Bl : CngH(Tn,X) - Po(1,,X)
and Il:zl ; C’ng(Tn,X) — Poy1(1,, X) of Zj that additionally interpolate the (|£| + 1)th
derivative at ¢, or the function value in one further inner point, respectively.

Definition C.3 (Cascadic interpolation)
Let r,k € Z, 0 < k <r. Then, C : C" 12 1(T,, X) — P,(I,, X) is defined by

C, =1, OI;;I; o... 012277::.
Of course, in general C;, itself is not an interpolation operator. But it is a composition of
interpolation operators. &

C.2 Projection operators

Here, we present the projection operators that are involved in the error analysis. Note
that for all considered projection operators, because of Remark B.3 and Lemma B.5, it is
sufficient to study the well-definedness for the real-valued version of the operators.

Definition C.4 (L2-projection onto polynomials of maximal degree m)
Let m € Z, m = 0. Then, I1,, : L*(I,,, X) — P,(I,, X) is defined by

J (v — Hmv)w dt =0 Yw e Pp(1,),

n

i.e., I,,v € P, (I,, X) denotes the L?-projection of v € L?(I,,, X) onto polynomials of maxi-
mal degree m.

In order to show that II,, is a well-defined projection operator, it suffices to consider the
case X = R. For v € P,,([,) we can choose w = v — II,,v € P,,(I,) as test function, which
then yields an (v — Hmv)2dt = 0. Thus, v = II,,v for all v € P, ([,), which implies the
well-definedness if X = R. &

Definition C.5 o
Let r,keZ, 0 < k <r. Then, II} : C[TJ(],L,X) — P.(I,, X) is defined by

(v— HZ“)(l)(t:{—O =0, ith>1,i=0,... [5,
(v — ) V() — 0, ifh>20=0,... |51,
J (v —Iv)wdt =0 Vw e Pr_i(I,)
I"l

Note that it holds ITjv = II,v for all v € L*(1,,, X).
For v € P.(I,) and using the point conditions at ¢} ; and ¢

n

long division that (v — IIjv)(t) = (¢t — tn_l)l%JH (t, — t)ng w(t) where w € P._j(1,). So,

we get from polynomial
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choosing test function w = w, we gain that Sln (t— tn_l)[k2 I+ (tn, — t)[%J 2(t)dt = 0 from
which we conclude that @ = 0 and, thus, v — IIJv = 0 for v € P.(I,). This implies the
well-definedness of IIj, if X = R. &

Definition C.6 (Standard dG/cGP projection)
Let [ € {0,1} and m € Z, m > [. Then, Hm :C(I,, X) — Pp(I,, X) is defined by

(v—T") () =0, ifl=1, (C.1a)
(v —TI™) (t,) = 0, (C.1b)
f (v— H}”v)w dt =0 Yw e Py_—1(1). (C.1c)

n

Here, note that P_([,, X) is interpreted as {0} so that the variational condition (C.1c)
drops out if m = [. For v € H'(I,,X) < C(I,,X) the projection can be equivalently
defined by

(v—T™)(t) =0, ifl=1, (C.2a)
feuu—ﬁr@wdp+%Av—ﬁ¢@@;gw@;gzq) Vwe Pp_y(I,).  (C.2b)

Furthermore, we formally set (v — Iy )(ty) = 0.

Note that HT (I = 1) is the standard projection used in the analysis of the Galerkin—
Petrov time stepping, see for example [4, Section 4.1] and [11, Sections 2-4|. On the other
hand, the projection ﬁ()” (I = 0) is the standard in the analysis of the discontinuous Galerkin
time stepping method, see for example [52, Chapter 12, esp. Theorem 12.1] and [5, Sec-
tion 3]. For a study of the well-definedness we refer to that of the more general operator in
Definition C.10. &

Remark C.7
In the case [ = 1 we also could use in (C.2a)

(v — ﬁlmv) (tF 1) =0 instead of (v — ﬁlmv) (t,) =0,
which can be easily shown with the fundamental theorem of calculus. )

Lemma C.8
Letl € {0,1} andm € Z, m = l. Then, forve H'(I,,X) the two definitions (C.1) and (C.2)
of Hmv € P (I, X) given in Definition C.6 are equivalent.

Proof. Let ve HY(I,, X).
(C.1) = (C.2): Obviously, (C.1b) implies that (C.2a) holds. It remains to prove (C.2b).
From integration by parts we obtain for arbitrary w € P,,_;([,) that

J 0, (v — T"v)w dt + 6o, (v— o) (5 w(t!_,)

n

:_J(W4W@@Wﬂ+@—ﬁ%ﬁmﬂﬁm—u—%ﬁ@—ﬁﬁwﬁﬂw@q)

n
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C Operators for Interpolation and Projection in Time

Now, the first two terms on the right-hand side vanish due to (C.1c) and (C.1b). The last
term vanishes for [ = 0 because of 1 —dy; = 0 and for [ = 1 because of (C.1a). Thus, (C.2b)
holds.

(C.2) = (C.1): First of all, for [ = 1 we gain from (C.2b) with w = 1, the fundamental
theorem of calculus, and (C.2a) that

0= —J (v — ﬁTU) dt = —(v - ﬁ}"v) ‘zi = (v- ﬁ’lnv) (tr ),
I7l

n—1

which is (C.1a). Furthermore, (C.1b) follows for [ = 1 directly from (C.2a) and for [ = 0
from (C.2b) again tested with w = 1 after applying the fundamental theorem of calculus,
respectively.

We now want to show (C.1c). From (C.2b) we obtain by integration by parts for all
W e Pm—l(]n) that

0= f 0 (v — TI0) @ dt + Goy (v — T ()@t

| Tpeadar+ o= o) (6)(0) - (L 6 (0 - 7o) ) ).

n

The boundary term at ¢, vanishes due to the already proven (C.1b), whereas the boundary
term at ¢, vanishes because of the already proven (C.1a) if [ = 1 or because of 1 —dp; = 0
if [ = 0, respectively. Hence, it remains to verify that for every w € P,,_;_1(l,) we can
choose a w € P,,_;(I,,) such that w = ¢,w. But this holds if @ is an antiderivative of w. [

The following projections generalize the above operators such that also more general
integrators, as e.g. quadrature formulas of sufficiently high degree of exactness, can be
involved. Such projection operators are needed especially in Subsection 4.1.6 where specific
quadrature rules are chosen in order to show supercloseness and superconvergence results.
For simplicity, we restrict ourselves to integrators of the following form.

Assumption C.1
We assume that the integrator §, either represents the exact integral over I,,, i.e., $, = anf
(in which case kg = —1) or the application of a quadrature formula based on function and

derivative values of the integrand in I, (in which case kg = 0 denotes the largest derivative
order that is needed for .%,).

In particular, Assumption C.1 yields that for all g € X’ it holds

(I Dyx = 0| Vet (T, X), (C.3)

where we used properties of the Bochner integral (if kg = —1) or of (derivatives of) Banach
space-valued functions (if kg > 0), also cf. Remark B.3.
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C.2 Projection operators

Definition C.9 B
Let m € Z, m > 0. Furthermore, let .9, : C*#(I,,, X) — X with kg > —1 be an integrator

on I, that satisfies Assumption C.1 and integrates X-valued polynomials of maximal degree
2m exactly. Then, II7 : C*s(I,, X) — P,,(I,, X) is defined by

%[(U—Hiv)w] =0 Yw e Py(1,),

i.e., as a generalization of the L2-projection to integrators beyond the (Bochner) integral
over I,.
Note that for v € P,,(I,,) we have, due to the exactness of .%,, that

Ozﬂn[(v—ﬂﬁv)w] = f (U—Hiv)wdt Yw e P, (I,).

In
So, choosing w = v — Y v € P,,(I,), we find 0 = an (v — 17 v)2dt and, thus, [I7v = v for
v € P, (I,). Hence, I17 is a well-defined projection operator if X = R. &

Definition C.10 (Generalized dG/cGP projection)

Let [ € {0,1} and m € Z, m > [. Furthermore, let ., : C*s(I,,, X) — X with kg > —1 be
an integrator on I, that satisfies Assumption C.1 and integrates X-valued polynomials of
maximal degree 2m — [ — 1 exactly. Then, H;n’] cHY(1,, X)n C** (1, X) — P, (I,, X) is
defined by

(v - ﬁlm’yv)(
Jn[&t (v — ﬁ;n’yv) w] + o, (’U — ﬁ;n’jv) (& )w(

1)
1)
This is a generalization of the standard dG/cGP projection for cases where the integrator is
not simply the (Bochner) integral over I,,. Note that the domain of definition is chosen as
HY(I,, X) n C**(T,, X) in order to guarantee that all expressions are well-defined in the
case of exact integration (kg = —1) as well as in the case of approximate integration using

quadrature formulas that may require function and derivative values in I,, (kg > 0). From
the definition it follows

(v— ﬁ;”’yv) (t,) = J o (v — ﬁ;n’jv) dt + (v — ﬁ;”’yv) (tr )

n

t 0, ifl=1,
t 0

+
n—

Yw € mel([n)

= 8tv dt — %[atv] + <¢n [@t (’U - ﬁ;n’ﬂv)] + 50,[ (U — ﬁ;n’yv) (t;ril)

In

= atU dt — L%L[ﬁtv] s

In

where the fundamental theorem of calculus and the linearity of .¢, were used.
In order to verify that H;n’j is well-defined, it suffices to show that v = H}n’jv for all
v e Py(I,). First of all, using the exactness of .%,, we obtain for v € P,,(I,) that

J (v — ﬁlm’jv)w dt + 8o, (v — ﬁ;n’yv) (tF Dw(t: )
In

-9 [at (v— ﬁ;"’%)w] + 00 (v = T"0) (5 _Dw(ti_ ) =0 Ywe Ppy(I,).
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C Operators for Interpolation and Projection in Time

Therefore, choosing w = (@v — 6tﬁ;n’“¢v) (t —t,1)'"t e Pny(I,), we gain that

J (6tv - é‘tﬁ;”’ﬂv)z(t —tp_) At =0 and, thus, 0w = é‘tﬁ;”"gv.
So, because of (v—ﬁ?”"gv) (t;7_,) = 0, which obviously holds for [ = 1 and follows by choosing
w =1 for [ = 0, we easily conclude that v = ﬁ;n’yv for v e P, (I,). &

Definition C.11 (Extended generalized dG/cGP projection)

Let [ € {0,1} and m € Z, m > [. Furthermore, let ., : C*s(I,,, X) — X with kg > —1 be
an integrator on I, that satisfies Assumption C.1 and integrates X-valued polynomials of
maximal degree 2m — [ exactly. Then, HZL*HJ c HY (L, X) 0 CF (T, X) — Pryi(1n, X)
is defined by

(v -1 ) ) =0, ifl=1,
54 [@ (v— ﬁ;ﬁjl’yv)w] + 8o (v — Herl ) (t =0 VYwe P, (I,
)t

A

0 Ywe Pl

J 8,5(1) — mH 7 )wdt + 5075(1} — Hmﬂj
where IBm,IH(In) = Pp_141(Ln)\Pm—i(I,). Note that in comparison to the definition of ﬁ;"’y
the assumption on the integrator is slightly stronger, an additional condition is added, and
the operator now maps to Py, .1(l,, X). Therefore, it obviously holds Hlm’jv = Hlm’jﬂﬁﬂ’jv
for all v e HY(I,, X) n C*s+1(I,, X) and we have

(v— ﬁﬁ“’yv) t)=| owdt—.%[0w].

In

The operator HmJr1 7 s well-defined, which can be shown similar as for ﬁ;”’y. Especially,
note that we now even get for all v € P,,,1(l,) that

J (v — ﬁﬁfl’yv)w dt + 6o, (v — ﬁZflJv) (it Dwtt ) =0 Yw e Pp_11(1y)

due to the additional condition. Choosing w = (8tv — 01, mH 7 ) (t—tn 1)t e Ppyy1(1L),

we easily complete the argument as for Hl . s

Definition C.12 B
Let ,keZ,0<k<r,and { = [gJ Furthermore, let .9, : C*s(1,,, X) — X with kg > —

be an integrator on I,, that satisfies Assumption C.1 and integrates X-valued polynomials of
maximal degree 2r — k — 1 exactly. Then, ﬁ,:’j c HH Y, X) n CRs YT, X)) — Po(1,, X)
is defined by
(ﬁr,y (j) .
wov) () = W (), forj=0,...,0-1,
(ﬁ,:’jv)(e) — I/~ Qf (v9)(?) for all ¢ € I,,.

Note that by definition of ¢ = |£| > 0 we always have r — ¢ > k — 20 € {0,1}. Hence,

H; éf ( (Z)) is well-defined according to Definition C.10.
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C.3 Some commutation properties

The projection operator ﬁ;’j is a further generalization of the generalized dG/cGP pro-
jection of Definition C.10. Of course, it holds ﬁ,:’j — 1177 for ke {0,1} and r > k. &

C.3 Some commutation properties

We already studied commutation properties for the abstract projection operators in Corol-
lary B.5. Nevertheless, here we consider an important special case and one of its conse-
quences. Also concrete proofs are given.

Lemma C.13
LetmeZ, m >0, and let X be a Banach space. Suppose that %, is an integrator on I, that

satisfies Assumption C.1 and integrates polynomials of maximal degree 2m exactly. Then,
for all g € X' it holds

(g.T0) s, =10 g )y YoeCR(T,,X).

Proof. Let w € P,,(I,) be arbitrarily chosen. From the definition of ITZ it follows

I[1.(Cov0x) w] = i[9 ]

Further, the linearity of the duality pairing, (C.3), and again the definition of IT7 give

fn [<g,v — H‘ZLU>X,’XUJ] = ﬂn [<g, ( Hg w>X, ] <g, [ v — Hfiv)w] >X,7X =0.

Hence, altogether we have shown that

g [Hi((g, ’U>X/,X) w} = ﬂn[<g, Hfzv>X,7Xw] Vw € Py (I,).

Since both I, ({g, V)xr x ) and (g, Hf,bv>X,  are in P, (I,), the integrands on both sides of

this equation are polynomials of maximal degree 2m. Hence, ., can be replaced by an' We
then easily conclude the desired identity.

The proof of the following corollary exemplifies how to handle test functions that, unlike
in the definition of the projection operator, are not real-valued polynomials but Banach
space-valued polynomials.

Corollary C.14

Letme Z, m =0, and let X, Y be Banach spaces as well as B(-,-) : XxY — R a continuous
bilinear form. Suppose that %, is an integrator on I, that satisfies Assumption C.1 and
integrates polynomials of mazimal degree 2m exactly. Then, for v e C*s (1, X) it holds

ﬂn[B (v,w)] -9 [B(Hﬁv, w)] Yw e Po(l, Y).
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C Operators for Interpolation and Projection in Time

Proof. Let w € P, (I,,Y) be arbitrarily chosen. Then, there are w; € Y and p; € Pi(1,),
i =0,...,m, such that w(t) = > p;(t)w;. Here, the p; are typically chosen such that
pi(t) = t'. Using the bilinearity of B(-,-) and the linearity of the integrator, we obtain

%[B(U—Hiv,w)} zi)fn[B(v—HﬁLv,piwl ] Zﬂ [( v, W; —B(Hiv,w,))pi].

Applying Lemma C.13 with g; € X', i = 0,...,m, defined by (gi, 2)x/ x = B(z, wi) for all
z e X, it follows

ﬂn[<B (v,wi) — B(Hiv, wl)> pi] = ﬂn[<B(v,wi) — H'an('U, wl)) pi] =0,

where the definition of II7 is used for the last step. Overall, this easily yields the desired
statement. [

C.4 Some stability results

We want to prove a stability result for the projection operator Hm, which is used in Sec-
tion 4.1, see Remark 4.7, to keep the presentation simple. The assumptions on .%, that occur
in the following lemma are those known from (4.5) with r = m and k = 0.

Lemma C.15

Let m € Z, m = 0, and let V' be a Hilbert space. Suppose that §, is an integrator on
1,, that satisfies Assumption C.1 and integrates polynomials of mazimal degree 2m exactly.
Furthermore, let ., provide the monotonicity property $,[v] < ., [w] if v(t) < w(t) for all
t e I,, as well as the Cauchy-Schwarz-type inequality .9,[vw] < (.9, [1}2])1/2 (ﬂn[wz])m, where
we tacitly assume that for v and w all occurring expressions are well-defined. Then, it holds

(o0 ) < ([ ])

Proof. Since V' is a Hilbert space, also V' is a Hilbert space and its norm | - ||y~ is induced
by an inner product, say (-,-)y,. Hence, we have

IO | = S[0500.100),] = SO e0),] ©)

where in the last step Corollary C.14 was applied with X =Y =V’ and B(,-) = (-, )y
Further, for all ¢ € I,, we get by Cauchy—Schwarz’ inequality that

(v(t),l‘[ﬁv(t))v, < Hv(t) v o (t)

Therefore, using the assumed properties of .%,, we conclude
9| (00, 1 0)) | < o) v] < (%] e

So, combining this with (C.4) and dividing by (yn[unfnv(

for allve C*s (TH, V’).

v

o) (A meof )"

]) we are done. O

17
'l Hm”(’)
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D Norm Equivalences for Hilbert Space-Valued
Polynomials

In the error analysis of Chapter 4 norm equivalences for polynomial spaces are exploited
at several places. However, while for real-valued polynomials of fixed maximal degree the
equivalence of different norms follows immediately since the space is finite dimensional, for
Hilbert space-valued polynomials the situation is not that clear. On the one hand, for
infinite dimensional Hilbert spaces W also the space of W-valued polynomials of maximal
degree, say m € Z, m > 0, is infinite dimensional. On the other hand, norm equivalence
constants should ideally not depend on the specific Hilbert space.

However, for the two sorts of norm equivalences that were needed in our analysis, we show
now that the norm equivalences for Hilbert space-valued polynomials hold with the same
constants as their real-valued analogs.

Let J < R be an interval and X a Banach space. Then,

P.(J,X):= {U eC(J,X):v(t) = itivi with v; € X}

=0

defines the space of X-valued polynomials of maximal degree m.

In the following, let W denote a Hilbert space. Then, W possesses an orthonormal basis
B, say B = {b, : a € A}, see |55, Theorem 3.10(a), p. 44]. Thus, for v € P,,(J, W), we have

o(t) = itivi = it [2 (vi,ba)wba] = [i ¢ @i,ba)W] ba = Y galt)b

acA acA |i=0 acA

where go(t) = (v(t),ba)y = 2ieot" (Vi,ba)y € Prn(J,R) for all & € A. Furthermore, by
Parseval’s identity it follows

lo@®) 5 = D10, ba) [ = D] lga®)]- (D.1)

acA acA

Easily, we also get that

lebo@ly = 2 1@(e).ba)y [ = X [0 (w(0).00) [ = 2P0 (D2)

acA acA acA

for k = 0.
In the following, we restrict ourselves to the study of norm equivalences for polynomials
that are defined on an arbitrary mesh interval I,, = (¢,_1,t,].
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D Norm Equivalences for Hilbert Space-Valued Polynomials

D.1 Norm equivalence used for the cGP-like case

We start considering the norm equivalence used in Section 4.1, cf. Lemma 4.3.

Lemma D.1
Let m e Z, m = 0. The two mappings

1/2
o ( \so(t)\zdt)
In

and

v (Lﬂ 1p(t)* dt + (%) |‘P(tn)|2>l/2

define equivalent norms on Py, (I,,R) where the equivalence constants are independent of
Tn. The involved operator 11,y is the L*-projection onto P,,_1(I,,R), cf. Definition C.J.
Further, we agree that in the case m = 0 we read I1_1p = 0.

Proof. Using the affine transformation T,,, defined in (1.7), and associating to ¢ € P,,(I,,R)
the function @ € P, ((—1,1],R) given by @(#) := ¢(T,,(1)), it suffices to prove that

1 oy 1/2 1 R
& (J 2| dt> and G (J [0 ()
—1 -1

are equivalent norms on P, ((—1,1],R). Here, note that the % factor in the local I,, version
of the second mapping is due to the transformation.

Obviously, the first expression is a norm. Since P,,((—1,1],R) is finite dimensional all
norms on this space are equivalent. So, it remains to prove that also the second expression
is a norm. Obviously, it is a semi-norm. We need to show that for all p € P,,((—1, 1], R)

([ [fs2t0

Here, when the expression on the left-hand side equals zero, also every single (non-negative)
term needs to vanish.

From I1,,_1¢ = 0 it follows that ¢ is orthogonal to all polynomials of degree less than
or equal to m — 1 with respect to the inner product in L?((—1,1]). Thus, because of

) 1/2
n A~ 2
af + 13(1) )

) 1/2
dt + |g5(1)|2> =0  implies that @ =0.

¢ € P((—1,1],R), we have that ¢ is a multiple of the mth Legendre polynomial Pf,?’o), ie.,
there is a ¢ € R such that (f) = cPY (t). Since Rs?’o)(l) # 0, see (A.1), we then conclude
from 0 = (1) = cPr(r?’O)(l) that ¢ = 0. Hence, it holds ¢ = 0 and we are done. O

Lemma D.2
LetmeZ, m =0, and let W be a Hilbert space. Then, the mappings

1/2
2
v ( I |v<t>wdt)
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D.1 Norm equivalence used for the cGP-like case

and

v <J |1 (t)] 5 dt + (%) U(tn)|124,) 1/2

define equivalent norms on Py, (I,,W) where the equivalence constants are independent of
T, and of the space W.

Proof. Let v € P,,(I,,W) be arbitrarily chosen. Then, the polynomial v can by represented
by v(t) = 21", t'v; with v; € W. We define W= span{vg, v1, ..., v} € W. Equipped with
the | - [ly-norm, W is a finite dimensional Hilbert space. It, of course, has a orthonormal
basis {b1,...,bs}, where d < m + 1 is the dimension of W,

By construction it holds v € P, (1, I/IN/) Therefore, by (D.1) it follows

lo(t)[5y dt = Z\ mﬁw=§]|mmwwﬁt
J, J %),

"jl

and similarly

(] 00 () 06050 )

J, Mo des () ety

§<IJE”N“W%Mf&+%%mem@Mf)

Here, in the last step, the projection operator II,,_; can be pulled out of the inner product
due to Lemma C.13 since for every j = 1,...,d the expression (-, b;),, defines a function in
W', ie., there is a g; € W’ such that (g;, w)y, y, = (w, b))y, for all we W.

But for every j = 1,...,d the function ¢ — (v(t),b;),, is in P, (/,,R). Thus, from
Lemma D.1 we have

ClL |(0(t), b;)y |t

|Hm—1( ( W| dt + (Tn) ‘(U(tn)7bj)w‘2 < Oy I ‘(U(t>7bj)W’2dt’

In

where € and C3 do not dependent on 7, and b;. Summing up over j = 1,...,d and
exploiting the identities proven above, we immediately get

f|v V2, dt < JHHmﬂ)|w@+(§HU 2, < ~[vjww

Since the constants are independent of b;, they are also independent of W and v, respectively.
So, since v € P,,(I,, W) was arbitrarily chosen, we are done. O
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D Norm Equivalences for Hilbert Space-Valued Polynomials

D.2 Norm equivalence used for final error estimate

We now study the norm equivalence needed in Section 4.3, cf. Lemma 4.52.

Lemma D.3
Let m,l e Z,0 <1< m. The two mappings

=t n \so(t)th)m

-1 . ‘ 1/2
o ((%)QZL D) at + 3 () !W(tn)\z)
n =0

define equivalent norms on Py, (I,, R) where the equivalence constants are independent of 7,.

and

Proof. Using the affine transformation 77,, defined in (1.7), and associating to ¢ € P, (1o, R)
the function @ € P, ((—1, 1], R) given by @(#) := ¢(T,,(1)), it suffices to prove that

1 ) 1/2 1/2
o ([ ara) - wa o ([ et oo )
-1 —

are equivalent norms on P, ((—1,1],R). Here, note that the (T”)2 and (%) 21 factors in
the local I,, version of the second mapping are due to the transformation.

Obviously, the first expression is a norm. Since P,,((—1,1],R) is finite dimensional all
norms on this space are equivalent. So it remains to prove that also the second expression
is a norm. Obviously, it is a semi-norm. We need to show that for all € P,,((—1, 1], R)

1 -1 1/2
(J BO@) di + ] \@(“(1)\2) —0  implies that @ =0.
-1 i=0

Here, when the expression on the left-hand side equals zero, also every single (non-negative)
term needs to vanish.

Owing to $) = 0, we have that $!~1) is constant. Combining this with $¢=Y(17) = 0,
it follows (1 = 0. Then, because of $)(17) = 0 for all i = 0,...,1 — 1, we recursively
conclude ¢ = 0. O

Lemma D.4
Letm,leZ,0<1<m, and let W be a Hilbert space. Then, the mappings

oee ([ 1ot ) -

' 1/2
o= (@ [ 100l a3 o6

define equivalent norms on Py, (I,,W) where the equivalence constants are independent of
Tn and of the space W.

and
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D.2 Norm equivalence used for final error estimate

Proof. Let v € P,,(I,, W) be arbitrarily chosen. Then, the polynomial v can by represented
by v(t) = 2", t'v; with v; € W. We define W= span{vg, vy, . . ., vy} < W. Equipped with
the | - |w-norm, W is a finite dimensional Hilbert space. It, of course, has a orthonormal
basis {b1,...,bs}, where d < m + 1 is the dimension of w.

Therefore, since by construction v € P,,(1,,, W), we obtain by Parseval’s identity, cf. (D.1),
that

[o(®)ly dt = Z\ )W\th=2d] [(0(1), by)y [ dt
J o= | 2J,

”]1

and similarly, cf. (D.2), that
)" ] 1o uwdt+2 DR FL ]
d
-3 ()", ) O i+ 25 b))

But for every j = 1,...,d the function ¢ — (v(t),b;)y, is in Py(I,,R). Thus, from
Lemma D.3 we have

\(v(t), b))y | dt

-1 '
< %l 2lf ’al (t)‘th—kZ(%")Ml
i=0

where C) and Cy do not dependent on 7, and b;. Summing up over j = 1,...,d and
exploiting the identities proven above, we immediately get

0, ol ar< ()" [ o0l 3@ ol < [ 1ot

3§(Uabj)w(t5)}2 <G ; [(0(t), by |,

Since the constants are independent of b;, they are also independent of W and v, respectively.
So, since v € P,,(I,,, W) was arbitrarily chosen, we are done. ]
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