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Introduction

Nowadays, in research as well as in industrial product development, costly experiments are
more and more replaced by numerical simulations. For this purpose, many of the often time-
dependent processes in science and engineering are first modeled by differential equations.
Since these differential equations can rarely be solved exactly with reasonable effort, their
solutions have to be approximated using appropriate numerical methods. Thereby, it is
common to use different methods for approximation with respect to space variables and with
respect to time. The reason for this is that the requirements on the schemes are usually quite
different. Difficulties in spatial approximation often originate from complicated domains, the
occurrence of layers, or the need to apply stabilization methods. In temporal approximation,
however, stability or conservation properties of the methods are more relevant.

To illustrate the latter, we consider an example. Using the method of lines to treat a
parabolic partial differential equation, semi-discretization in space results in a huge system of
ordinary differential equations. This system becomes stiffer with finer spatial discretization.
Hence, implicit methods are preferable in order to avoid upper bounds for the time step
length. Moreover, the used time discretization should be at least 𝐴-stable to ensure suitable
stability properties. So, implicit Runge–Kutta methods, as the first-order implicit Euler
method or the second-order implicit trapezoidal rule, may first come to mind. However,
if one is additionally interested in higher order temporal approximations, discontinuous
Galerkin or continuous Galerkin–Petrov schemes are particularly popular.

In this thesis, we consider a family of variational time discretizations that generalizes
discontinuous Galerkin (dG) and continuous Galerkin–Petrov (cGP) methods. The origins
of these discretizations lie in a preprint of Matthies and Schieweck [46] in which, after
applying a postprocessing to dG and cGP schemes, new methods were found that in addition
to variational conditions also contain collocation conditions in the time mesh points. Taking
this idea, the considered family of methods was introduced by Matthies and the author.
It was first published in a joint work with Wenzel [17] and then studied in more detail
in [14, 16]. The methods of the family are characterized by two parameters that represent
the local polynomial ansatz order and the number of non-variational conditions, which is
also related to the global temporal regularity of the numerical solution. Moreover, with
respect to Dahlquist’s stability problem the variational time discretization (VTD) methods
either share their stability properties with the dG or the cGP method and, hence, are at
least 𝐴-stable.

With every new method, however, the question naturally arises as to what advantages it
has. Besides the potentially high convergence order and the stability properties, which both
are also provided by dG and cGP methods, key feature of the new methods is that a high
smoothness of the discrete solution with respect to time can be ensured. Moreover, we will
see that under certain conditions superconvergence behavior in the time mesh points can be
observed not only for the function values but also for the derivatives. Therefore, in appli-
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Introduction

cations where temporal smoothness is of interest or important target values are connected
to derivatives, these new variational time discretizations could be quite advantageous.

But even from a purely theoretical point of view, it is worth looking at the whole family
of VTD methods. The more general view on the variational time discretizations provides
deeper insight into certain specifics of the well-known dG and cGP schemes. So, similarities
and differences in the analysis of those methods become more apparent and, partly, even
a unified analysis is possible. Furthermore, it reveals an approach to treat the break down
of superconvergence for stiff problems that is observed for dG and cGP methods. This
approach may also be used to avoid the order reduction phenomenon in the setting of
initial-boundary value problems.

The overall goal of this thesis, addressed in Part II, is to investigate the family of VTD
methods in combination with a finite element method for spatial approximation for problems
in time and space. More specifically, for parabolic partial differential equations we want to
prove optimal error estimates with respect to space and time under appropriate conditions.
In preparation for this, extensive preliminary investigations are made. Especially, we first
consider, in Part I, the methods in the context of initial value problems.

Therefore, this thesis may be seen as an overview of the state of knowledge about the
considered family of variational time discretization methods. Here we mainly focus on
theoretical studies and error analysis. In this sense, the numerical experiments included
also are intended to highlight various properties of the methods using simple academic test
examples, rather than presenting realistic application situations.

In Chapter 1 the VTD methods are formulated for systems of ordinary differential equa-
tions (odes). Moreover, under quite general, abstract assumptions an error analysis for
non-stiff ode systems is presented. The obtained results especially clarify the influence of
approximate integration and approximation of the right-hand side on the order of conver-
gence. In addition, we discuss some key properties of the methods, which will often be of
great importance later on. These include, in particular, the associated quadrature formulas,
the postprocessing techniques, the connections to collocation methods with multiple nodes,
the idea of cascadic interpolation, and the nestedness of conditions for the derivatives of the
discrete solution. However, since most of the results have already been published in [14, 16],
for brevity, we skip most of the proofs. New findings are given for methods with a modi-
fied right-hand side. In this context more general investigations of the postprocessing, the
interpolation cascade, and the properties of derivatives of solutions are made. The different
results are illustrated by numerical experiments.

Chapter 2 is devoted to the study of variational time discretizations for stiff systems of
odes, where the considerations are restricted to affine linear problems with time-independent
coefficients. To this end, we first introduce a new framework of Runge–Kutta-like schemes
and study sufficient conditions for their unique solvability and some stability properties.
Furthermore, we show that important representatives of the variational time discretizations
can be written as Runge–Kutta-like methods and, in addition, provide solvability and sta-
bility under appropriate assumptions. This then allows us, by adapting and generalizing
several techniques known from the (stiff) error analysis for Runge–Kutta methods, to derive
error estimates for VTD methods also for the considered class of affine linear, stiff problems
with time-independent coefficients. Computational results for a stiff example problem are

2



presented.
In Chapter 3, which begins Part II of the thesis, we give a brief introduction to parabolic

problems. Since most of the findings are standard results, the presentation is kept rather
short. After discussing the weak formulation and introducing a model problem for our
numerical analysis, we have a look at existence, uniqueness, and regularity of solutions.
Further, following the method of lines, we first consider the semi-discretization in space. A
reformulation of the semi-discrete problem as ode system shows the similarity to the stiff
problems studied in Chapter 2. Moreover, stability estimates and the differentiability with
respect to time are investigated for the semi-discrete solution, and abstract error estimates
for the spatial semi-discretization are presented. Finally, we obtain full discretizations in
space and time by applying the VTD schemes to the spatial semi-discrete problem.

An error analysis for the fully discrete method is developed in Chapter 4. To this end,
results from all three previous chapters are reused and combined. First, estimates in various
integral-based norms as well as pointwise estimates are proven for a certain time derivative
of the error. Here, we take advantage of the nestedness of conditions for the derivatives of
the discrete solution such that known approaches from the analysis of dG and cGP methods
can be applied. Nevertheless, our way of presenting the error analysis is quite unusual since
dG and cGP schemes are studied in parallel. This nicely reveals the great similarities but
also the differences in the analysis of the two methods. Moreover, supercloseness results
are obtained. Second, we address error estimates in the time (mesh) points also for lower
derivatives. For this, we draw on the results from the (stiff) error analysis and the findings
on the semi-discretization in space. In conclusion, combining all these observations, we
obtain error estimates for the full discretization that are of optimal order with respect to
space and time. Further, illustrating numerical results are given.

We close the main part of the thesis with a brief summary of the results. Moreover, we
provide an outlook on how the findings could be used further and raise some open questions
on variational time discretizations that may be answered in future work.

This thesis also contains an appendix. In it, some mathematical basics are compiled,
but also several results are proven that are very important for our analysis in Chapter 4.
Therefore, we also want to briefly outline its contents.

In Appendix A miscellaneous results are collected. A less common variant of the discrete
Gronwall lemma is proven, which we need in our analysis, and some information on Jacobi-
polynomials are given. Abstract projection operators for Banach space-valued functions are
studied in Appendix B. We give an abstract definition for polynomial projection operators
and investigate some commutation properties. Furthermore, some main results of standard
finite element interpolation theory, in particular projection error estimates, are generalized
to the univariate, Banach space-valued case. In Appendix C, we then give a compilation
of the concrete temporal interpolation and projection operators that are used especially in
Part II. We investigate their well-definedness and take a look at some of their properties.
Finally, in Appendix D, we show for two examples how norm equivalences for real-valued
polynomials can be generalized to norm equivalences for Hilbert space-valued polynomials.
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Part I

Variational Time Discretization
Methods for Initial Value Problems
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1 Formulation, Analysis for Non-Stiff Systems,
and Further Properties

We consider the initial value problem

𝑀𝑢1
p𝑡q “ 𝐹

`

𝑡, 𝑢p𝑡q
˘

, 𝑢p𝑡0q “ 𝑢0 P R𝑑, (1.1)

where𝑀 P R𝑑ˆ𝑑 is a regular matrix and 𝐹 , sufficiently smooth, satisfies a Lipschitz condition
with respect to the second variable. Furthermore, let 𝐼 “ p𝑡0, 𝑡0 ` 𝑇 s be an arbitrary but
fixed time interval with positive length 𝑇 . The value 𝑢0 at 𝑡 “ 𝑡0 will be called the initial
value in the following.

If the ode system (1.1) originates from a finite element semi-discretization in space of a
parabolic partial differential equation, then 𝑀 is the time-constant mass matrix. Since in
this context the computation of 𝑀´1 is costly, usually a linear system with 𝑀 is solved
instead. By the explicit occurrence of 𝑀 we can investigate where this is necessary.

To describe the vector-valued case (𝑑 ą 1) in an easy way, let p¨, ¨q be the standard inner
product and } ¨ } the Euclidean norm on R𝑑, 𝑑 P N. Besides, let 𝑒𝑗 be the 𝑗th standard unit
vector in R𝑑, 1 ď 𝑗 ď 𝑑.

For an arbitrary interval 𝐽 and 𝑞 P N, the spaces of continuous and 𝑚-times continu-
ously differentiable R𝑞-valued functions on 𝐽 are written as 𝐶p𝐽,R𝑞q and 𝐶𝑚p𝐽,R𝑞q, respec-
tively. Furthermore, the space of square-integrable R𝑞-valued functions shall be denoted by
𝐿2p𝐽,R𝑞q or, for convenience, sometimes also by 𝐶´1p𝐽,R𝑞q. For non-negative integers 𝑠,
we write 𝑃𝑠p𝐽,R𝑞q for the space of R𝑞-valued polynomials on 𝐽 of degree less than or equal
to 𝑠. Moreover, 𝑃´1p𝐽,R𝑞q :“ t0u. For 𝑞 “ 1, we sometimes omit R𝑞. Further notation is
introduced later at the beginning of the sections where it is needed.

In order to describe the methods, we need a time mesh. Therefore, the interval 𝐼 is
decomposed by

𝑡0 ă 𝑡1 ă ¨ ¨ ¨ ă 𝑡𝑁´1 ă 𝑡𝑁 “ 𝑡0 ` 𝑇

into 𝑁 disjoint subintervals 𝐼𝑛 :“ p𝑡𝑛´1, 𝑡𝑛s, 𝑛 “ 1, . . . , 𝑁 . Furthermore, we set

𝜏𝑛 :“ 𝑡𝑛 ´ 𝑡𝑛´1, 𝜏 :“ max
1ď𝑛ď𝑁

𝜏𝑛.

For convenience and to simplify the notation, we assume 𝜏 ď 1, which is not really a
restriction since we are interested in the asymptotic error behavior for 𝜏 Ñ 0. For any
piecewise continuous function 𝑣, we define by

𝑣p𝑡`𝑛 q :“ lim
𝑡Ñ𝑡𝑛`0

𝑣p𝑡q, 𝑣p𝑡´𝑛 q :“ lim
𝑡Ñ𝑡𝑛´0

𝑣p𝑡q, r𝑣s𝑛 :“ 𝑣p𝑡`𝑛 q ´ 𝑣p𝑡´𝑛 q

the one-sided limits and the jump of 𝑣 at 𝑡𝑛. Moreover, with t¨u the standard notation for
the floor function is used.

Hereinafter 𝐶 denotes a generic positive constant independent of the mesh parameter(s),
especially 𝜏 , and the function(s) under consideration, unless specified otherwise.
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1 Formulation, Analysis for Non-Stiff Systems, and Further Properties

1.1 Formulation of the methods
We now present some general formulation of the variational time discretization methods
VTD𝑟

𝑘 investigated in [14, 16]. Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Then, the local version of the
numerical method (𝐼𝑛-problem) reads as follows

Given 𝑈p𝑡´𝑛´1q P R𝑑, find 𝑈 P 𝑃𝑟p𝐼𝑛,R𝑑q such that

𝑈p𝑡`𝑛´1q “ 𝑈p𝑡´𝑛´1q, if 𝑘 ě 1, (1.2a)

𝑀𝑈 p𝑖`1q
p𝑡´𝑛 q “

d𝑖

d𝑡𝑖

´

𝐹
`

𝑡, 𝑈p𝑡q
˘

¯ˇ

ˇ

ˇ

𝑡“𝑡´
𝑛

, if 𝑘 ě 2, 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1, (1.2b)

𝑀𝑈 p𝑖`1q
p𝑡`𝑛´1q “

d𝑖

d𝑡𝑖

´

𝐹
`

𝑡, 𝑈p𝑡q
˘

¯ˇ

ˇ

ˇ

𝑡“𝑡`
𝑛´1

, if 𝑘 ě 3, 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

´ 1, (1.2c)

and

I𝑛

”´

𝑀𝑈 1, 𝜙
¯ı

` 𝛿0,𝑘

´

𝑀
“

𝑈
‰

𝑛´1
, 𝜙p𝑡`𝑛´1q

¯

“ I𝑛

”´

ℐ𝑛𝐹
`

¨, 𝑈p¨q
˘

, 𝜙
¯ı

@𝜙 P 𝑃𝑟´𝑘p𝐼𝑛,R𝑑
q,

(1.2d)
where 𝑈p𝑡´0 q “ 𝑢0 and 𝛿𝑖,𝑗 is the Kronecker symbol.

Here, I𝑛 denotes an integrator that typically represents either the integral over 𝐼𝑛 or the
application of a quadrature formula for approximate integration. Details will be described
later on. Moreover, ℐ𝑛 could be used to model some projection/interpolation of 𝑓 or the
usage of some special quadrature rules even if I𝑛 is just the integral.

We agree that both I𝑛 and ℐ𝑛 are local versions (obtained by transformation) of appro-
priate linear operators pI and pℐ given on the reference interval r´1, 1s. Both operators work
component-wise when applied to vector-valued functions.

Note that the formulation can be easily extended to the case 𝑘 “ 𝑟 ` 1. Then, the varia-
tional condition (1.2d) must formally hold for all 𝜙 P 𝑃´1p𝐼𝑛,R𝑑q. This can be interpreted
as “there is no variational condition”. Hence, only conditions at both ends of the interval 𝐼𝑛
are used.

The VTD𝑟
𝑘 framework can shortly be described by

trial space: 𝑃𝑟, if 𝑘 ě 1 : initial condition,

test space: 𝑃𝑟´𝑘, if 𝑘 ě 2 : ODEp𝑖q in 𝑡´𝑛 , 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1,

if 𝑘 ě 3 : ODEp𝑖q in 𝑡`𝑛´1, 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

´ 1.

The notation ODEp𝑖q means that the discrete solution fulfills the 𝑖th derivative of the system
of ordinary differential equations. Obviously, the reduction of the test space for 𝑘 ě 1 is
compensated by other conditions. For a somewhat related approach see [22, (3.3)].

Counting the number of conditions leads for 𝑘 ě 1 to

dim𝑃𝑟´𝑘 ` 1 `
X

𝑘
2

\

`
X

𝑘´1
2

\

“ 𝑟 ´ 𝑘 ` 1 ` 1 ` 𝑘
2

` 𝑘´1
2

´ 1
2

“ 𝑟 ´ 𝑘 ` 2 ` 𝑘 ´ 1 “ 𝑟 ` 1

while we have also dim𝑃𝑟 “ 𝑟 ` 1 conditions if 𝑘 “ 0. The number of degrees of freedom
equals for all 𝑘 to dim𝑃𝑟 “ 𝑟 ` 1. Hence, in any case the number of conditions coincides
with the number of degrees of freedom.
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1.1 Formulation of the methods

In order to indicate the dependence of the discretization on I𝑛 and ℐ𝑛, we shall refer to
the concrete method defined by (1.2) as I𝑛-VTD𝑟

𝑘pℐ𝑛q. However, we agree that for I𝑛 “
ş

𝐼𝑛
and ℐ𝑛 “ Id, respectively, this specification is omitted.

Remark 1.1
The VTD𝑟

𝑘 framework generalizes two well-known types of variational time discretization
methods. The method VTD𝑟

0 is the discontinuous Galerkin method dGp𝑟q, whereas the
method VTD𝑟

1 equates to the continuous Galerkin–Petrov method cGPp𝑟q.
On closer considerations we see that methods VTD𝑟

𝑘 with even 𝑘 are dG-like since there
are point conditions on the

X

𝑘
2

\

th derivative of the discrete solution, but this derivative
might be discontinuous. The methods VTD𝑟

𝑘 with odd 𝑘 are cGP-like since there are point
conditions up to the

X

𝑘
2

\

th derivative of the discrete solution and this derivative is continuous
if 𝐹 is sufficiently smooth. We have in detail

VTD𝑟
𝑘 p“

$

’

’

’

’

&

’

’

’

’

%

dGp𝑟q, 𝑘 “ 0,

cGPp𝑟q, 𝑘 “ 1,

dG-𝐶t 𝑘´1
2 up𝑟q, 𝑘 ě 2, 𝑘 even,

cGP-𝐶t 𝑘´1
2 up𝑟q, 𝑘 ě 3, 𝑘 odd,

where we use and generalize the definitions and notation of [46]. Note that there is also
another reason to name the methods this way. All methods with odd 𝑘 share their A-
stability with the cGP method while methods with even 𝑘 are strongly A-stable as the dG
method. For details see [14, 17] or Remark 1.39 below. ♣

1.1.1 Global formulation

For 𝑠 P Z, 𝑠 ě 0, we define the space 𝑌𝑠 of R𝑑-valued piecewise polynomials of maximal
degree 𝑠 by

𝑌𝑠 :“
␣

𝜙 P 𝐿2
p𝐼,R𝑑

q : 𝜙|𝐼𝑛 P 𝑃𝑠p𝐼𝑛,R𝑑
q, 𝑛 “ 1, . . . , 𝑁

(

.

Studying the conditions (1.2a), (1.2b), and (1.2c), we easily see that the solution 𝑈 of
I𝑛-VTD𝑟

𝑘pℐ𝑛q is
X

𝑘´1
2

\

-times continuously differentiable on 𝐼 if 𝐹 is globally
`X

𝑘´1
2

\

´ 1
˘

-
times continuously differentiable. Furthermore, the condition (1.2b) for 𝑈 P 𝐶t 𝑘´1

2 up𝐼,R𝑑q

then already implies (1.2c) for 𝑛 ě 2. Consequently, the method could be reformulated as
follows

Find 𝑈 P 𝑌𝑟 X 𝐶t 𝑘´1
2 up𝐼,R𝑑q such that

𝑈 p𝑖q
p𝑡`0 q “ 𝑈 p𝑖q

p𝑡´0 q, if 𝑘 ě 1, 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

, (1.3a)

𝑀𝑈 p𝑖`1q
p𝑡´𝑛 q “

d𝑖

d𝑡𝑖

´

𝐹
`

𝑡, 𝑈p𝑡q
˘

¯ˇ

ˇ

ˇ

𝑡“𝑡´
𝑛

, if 𝑘 ě 2, 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1, (1.3b)

for all 𝑛 “ 1, . . . , 𝑁 , and

𝑁
ÿ

𝑛“1

!

I𝑛

“`

𝑀𝑈 1
´ ℐ𝑛𝐹 p¨, 𝑈p¨qq, 𝜙

˘‰

` 𝛿0,𝑘
`

𝑀
“

𝑈
‰

𝑛´1
, 𝜙p𝑡`𝑛´1q

˘

)

“ 0 @𝜙 P 𝑌𝑟´𝑘, (1.3c)
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1 Formulation, Analysis for Non-Stiff Systems, and Further Properties

where 𝑈 p𝑖qp𝑡´0 q “ 𝑢p𝑖qp𝑡0q, 0 ď 𝑖 ď
X

𝑘
2

\

, which includes the initial value 𝑢0 in the problem
formulation. We agree on defining 𝑢p𝑗qp𝑡0q recursively using the differential equation, i.e.,

𝑢p0q
p𝑡0q :“ 𝑢0, 𝑀𝑢p2q

p𝑡0q :“ B𝑡𝐹
`

𝑡0, 𝑢p𝑡0q
˘

` B𝑢𝐹
`

𝑡0, 𝑢p𝑡0q
˘

𝑢p1q
p𝑡0q,

𝑀𝑢p1q
p𝑡0q :“ 𝐹

`

𝑡0, 𝑢p𝑡0q
˘

, 𝑀𝑢p𝑗q
p𝑡0q :“

d𝑗´1

d𝑡𝑗´1
𝐹
`

𝑡, 𝑢p𝑡q
˘
ˇ

ˇ

𝑡“𝑡0
, 𝑗 ě 3.

(1.4)

The term d𝑗´1

d𝑡𝑗´1𝐹
`

𝑡, 𝑢p𝑡q
˘
ˇ

ˇ

𝑡“𝑡0
depends only on 𝑢p𝑡0q, . . . , 𝑢

p𝑗´1qp𝑡0q and can be calculated
using some generalization of Faà di Bruno’s formula, see e.g. [24, 47]. If 𝐹 is affine linear in
𝑢, i.e., 𝐹 p𝑡, 𝑢p𝑡qq “ 𝑓p𝑡q ´ 𝐴p𝑡q𝑢p𝑡q, then we simply have

𝑀𝑢p𝑗q
p𝑡0q :“

d𝑗´1

d𝑡𝑗´1
𝐹
`

𝑡, 𝑢p𝑡q
˘ˇ

ˇ

𝑡“𝑡0
“ 𝑓 p𝑗´1q

p𝑡0q ´

𝑗´1
ÿ

𝑙“0

`

𝑗´1
𝑙

˘

𝐴p𝑗´1´𝑙q
p𝑡0q𝑢

p𝑙q
p𝑡0q, 𝑗 ě 1,

by Leibniz’ rule for the p𝑗 ´ 1qth derivative.
Note that, since the test space 𝑌𝑟´𝑘 in (1.3c) allows discontinuities at the boundaries of

subintervals, the problem can be decoupled by choosing test functions 𝜙 supported on a
single time interval 𝐼𝑛 only. Moreover, exploiting for 𝑘 ě 1 that 𝑈 P 𝐶t 𝑘´1

2 up𝐼,R𝑑q as well
as (1.3a) and (1.3b), we also obtain (1.2a) and (1.2c). Therefore, the global problem (1.3)
can be converted back into a sequence of local problems (1.2) in time on the subintervals
𝐼𝑛, 𝑛 “ 1, . . . , 𝑁 .

1.1.2 Another formulation

In [6] a unified formulation for various time discretization schemes was investigated. Also
the dG method (𝑘 “ 0) and the cGP method (𝑘 “ 1) with exact integration and ℐ𝑛 “ Id
were fitted and studied in this framework there. We shall show below, see (1.6), that for
1 ď 𝑘 ď 𝑟 also the I𝑛-VTD𝑟

𝑘pℐ𝑛q methods (1.2) could be analyzed in the framework of [6].
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. For sufficiently smooth 𝑣 and under certain assumptions on I𝑛,

we uniquely define an approximation 𝒫I,ℐ
𝑛 𝑣 P 𝑃𝑟´1p𝐼𝑛,R𝑑q of 𝑣 by the conditions

p𝒫I,ℐ
𝑛 𝑣q

p𝑖q
p𝑡´𝑛 q “ 𝑣p𝑖q

p𝑡´𝑛 q, if 𝑘 ě 2, 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1, (1.5a)

p𝒫I,ℐ
𝑛 𝑣q

p𝑖q
p𝑡`𝑛´1q “ 𝑣p𝑖q

p𝑡`𝑛´1q, if 𝑘 ě 3, 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

´ 1, (1.5b)

I𝑛

”

`

𝒫I,ℐ
𝑛 𝑣p𝑡q, 𝜙p𝑡q

˘

ı

“ I𝑛

“`

ℐ𝑛𝑣p𝑡q, 𝜙p𝑡q
˘‰

@𝜙 P 𝑃𝑟´𝑘p𝐼𝑛,R𝑑
q with 𝛿0,𝑘𝜙p𝑡𝑛´1q “ 0, (1.5c)

for details see [16, Lemma 17] or Remark 1.2 below.
Using this approximation operator, an equivalent formulation of (1.2) with 1 ď 𝑘 ď 𝑟

reads

Given 𝑈p𝑡´𝑛´1q P R𝑑, find 𝑈 P 𝑃𝑟p𝐼𝑛,R𝑑q such that 𝑈p𝑡`𝑛´1q “ 𝑈p𝑡´𝑛´1q and

𝑀𝑈 1
p𝑡q “ 𝒫I,ℐ

𝑛 𝐹
`

𝑡, 𝑈p𝑡q
˘

@𝑡 P 𝐼𝑛, (1.6)

where 𝑈p𝑡´0 q “ 𝑢0.
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1.2 Existence, uniqueness, and error estimates

Indeed, if 𝑈 solves (1.2), then 𝑀𝑈 1 P 𝑃𝑟´1p𝐼𝑛,R𝑑q obviously satisfies all conditions of (1.5)
with 𝑣 “ 𝐹

`

¨, 𝑈p¨q
˘

. Hence, whenever 𝒫I,ℐ
𝑛 𝑣 is uniquely defined we directly get (1.6).

Otherwise let 𝑈 solve (1.6). Since there are polynomials on both sides, we can differentiate
the equation by any order. With (1.5a) and (1.5b) we have

𝑀𝑈 p𝑖`1q
p𝑡q “

d𝑖

d𝑡𝑖

´

𝒫I,ℐ
𝑛 𝐹

`

𝑡, 𝑈p𝑡q
˘

¯
ˇ

ˇ

ˇ

𝑡“𝑡
“

d𝑖

d𝑡𝑖

´

𝐹
`

𝑡, 𝑈p𝑡q
˘

¯
ˇ

ˇ

ˇ

𝑡“𝑡

for 𝑡 “ 𝑡´𝑛 and 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1, if 𝑘 ě 2, as well as for 𝑡 “ 𝑡`𝑛´1 and 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

´ 1, if
𝑘 ě 3, respectively. Hence, the conditions (1.2b) and (1.2c) hold. Taking the inner product
of (1.6) with an arbitrary 𝜙 P 𝑃𝑟´𝑘p𝐼𝑛,R𝑑q and applying I𝑛 on both sides yield together
with (1.5c)

I𝑛

”´

𝑀𝑈 1, 𝜙
¯ı

“ I𝑛

”´

𝒫I,ℐ
𝑛 𝐹

`

¨, 𝑈p¨q
˘

, 𝜙
¯ı

“ I𝑛

”´

ℐ𝑛𝐹
`

¨, 𝑈p¨q
˘

, 𝜙
¯ı

,

which is (1.2d). Hence, a solution of (1.6) also satisfies (1.2).

1.2 Existence, uniqueness, and error estimates

The existence and uniqueness of solutions to (1.2) as well as their error behavior are exten-
sively studied in [16] for non-stiff problems. For the sake of brevity we shall only present
the main results here. In order to formulate these results, some more notation and several
assumptions need to be introduced.

First of all, recall that I𝑛 as well as ℐ𝑛 are supposed to be local versions (obtained by
transformation) of appropriate linear operators pI and pℐ given on the reference interval
r´1, 1s. However, I𝑛 is an approximation of the integral operator while ℐ𝑛 approximates
the identity operator. Thus, the operations scale quite differently under transformation.
More precisely, let

𝑇𝑛 : r´1, 1s Ñ 𝐼𝑛, 𝑡 ÞÑ 𝑡 :“
𝑡𝑛 ` 𝑡𝑛´1

2
`
𝜏𝑛
2
𝑡, (1.7)

denote the affine transformation that maps the reference interval r´1, 1s on the closure of
an arbitrary mesh interval 𝐼𝑛 “ p𝑡𝑛´1, 𝑡𝑛s. Furthermore, let 𝑘I and 𝑘ℐ be the smallest
non-negative integers such that pI and pℐ are well-defined for functions in 𝐶𝑘Ipr´1, 1sq and
𝐶𝑘ℐpr´1, 1sq, respectively. Then, we have for all 𝜙 P 𝐶𝑘Ip𝐼𝑛,R𝑑q and for all 𝜓 P 𝐶𝑘ℐp𝐼𝑛,R𝑑q

that

I𝑛r𝜙s “ pIr𝜙 ˝ 𝑇𝑛s p𝑇𝑛q
1

“
𝜏𝑛
2
pIr𝜙 ˝ 𝑇𝑛s and ℐ𝑛𝜓 “

`

pℐp𝜓 ˝ 𝑇𝑛q
˘

˝ 𝑇´1
𝑛 .

Moreover, we suppose that for all non-negative integers 𝑙 and 𝑣 P 𝐶maxt𝑘ℐ ,𝑙upr´1, 1sq it holds
pℐ𝑣 P 𝐶 𝑙pr´1, 1sq, i.e., pℐ𝑣 is at least as smooth as 𝑣.

As before let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. The study of existence and uniqueness of solutions
to (1.2) as well as the error analysis is strongly connected with the following operator.

11
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Let 𝒥 I,ℐ
𝑛 : 𝐶𝑘𝒥 `1p𝐼𝑛,R𝑑q Ñ 𝑃𝑟p𝐼𝑛,R𝑑q, 1 ď 𝑛 ď 𝑁 , with 𝑘𝒥 :“ max

␣X

𝑘
2

\

´ 1, 𝑘I, 𝑘ℐ
(

be
defined by

p𝒥 I,ℐ
𝑛 𝑣q

p𝑖q
p𝑡`𝑛´1q “ 𝑣p𝑖q

p𝑡`𝑛´1q, if 𝑘 ě 1, 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

, (1.8a)

p𝒥 I,ℐ
𝑛 𝑣q

p𝑖q
p𝑡´𝑛 q “ 𝑣p𝑖q

p𝑡´𝑛 q, if 𝑘 ě 2, 𝑖 “ 1, . . . ,
X

𝑘
2

\

, (1.8b)

I𝑛

”

`

p𝒥 I,ℐ
𝑛 𝑣q

1
p𝑡q, 𝜙p𝑡q

˘

ı

` 𝛿0,𝑘𝒥 I,ℐ
𝑛 𝑣p𝑡`𝑛´1q𝜙p𝑡`𝑛´1q

“ I𝑛

“`

ℐ𝑛p𝑣1
qp𝑡q, 𝜙p𝑡q

˘‰

` 𝛿0,𝑘𝑣p𝑡`𝑛´1q𝜙p𝑡`𝑛´1q @𝜙 P 𝑃𝑟´𝑘p𝐼𝑛,R𝑑
q. (1.8c)

In [16, cf. (4.1) and Lemma 1] it was shown that 𝒥 I,ℐ
𝑛 is well-defined and that the condi-

tions (1.8) uniquely determine an approximation 𝒥 I,ℐ
𝑛 𝑣 P 𝑃𝑟p𝐼𝑛,R𝑑q of 𝑣 P 𝐶𝑘𝒥 `1p𝐼𝑛,R𝑑q if

the following assumption is fulfilled.

Assumption 1.1
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, be the parameters of the method. We assume that the reference
integrator pI is such that p𝜓 P 𝑃𝑟´maxt1,𝑘upr´1, 1sq and

pI
”

`

1 ´ 𝑡
˘t 𝑘

2 u`
1 ` 𝑡

˘|t 𝑘´1
2 u|

p𝜓p𝜙
ı

“ 0 @p𝜙 P 𝑃𝑟´maxt1,𝑘upr´1, 1sq

imply p𝜓 ” 0. Note that the absolute value in the exponent is needed only for 𝑘 “ 0.

Remark 1.2
The approximation operator 𝒥 I,ℐ

𝑛 is somewhat connected to 𝒫I,ℐ
𝑛 introduced in (1.5). In

fact it holds p𝒥 I,ℐ
𝑛 𝑣q1 “ 𝒫I,ℐ

𝑛 p𝑣1q for all 𝑣 P 𝐶𝑘𝒥 `1p𝐼𝑛,R𝑑q.
Accordingly, 𝒫I,ℐ

𝑛 is well-defined for functions in 𝐶𝑘𝒥 p𝐼𝑛,R𝑑q and uniquely determines
an approximation 𝒫I,ℐ

𝑛 𝑣 P 𝑃𝑟´1p𝐼𝑛,R𝑑q of 𝑣 P 𝐶𝑘𝒥 p𝐼𝑛,R𝑑q if Assumption 1.1 holds, cf. [16,
Lemma 17]. ♣

1.2.1 Unique solvability

First, we have a look on the unique solvability of the local problems (1.2) characterizing the
I𝑛-VTD𝑟

𝑘p𝐼𝑛q method.

Assumption 1.2
We assume that the reference integrator pI is a bounded linear operator between 𝐶𝑘Ipr´1, 1sq

and R. So, it satisfies

ˇ

ˇ

ˇ

pIrp𝜙s

ˇ

ˇ

ˇ
ď C0

𝑘I
ÿ

𝑗“0

sup
𝑡Pr´1,1s

ˇ

ˇ

p𝜙p𝑗q
p𝑡q

ˇ

ˇ @p𝜙 P 𝐶𝑘Ipr´1, 1sq,

where, as before, 𝑘I ě 0 is the smallest non-negative integer such that pI is well-defined on
𝐶𝑘Ipr´1, 1sq.

12



1.2 Existence, uniqueness, and error estimates

Assumption 1.3
We assume that for all 0 ď 𝑙 ď 𝑘I the reference approximation operator pℐ is a bounded
linear operator between 𝐶maxt𝑘ℐ ,𝑙upr´1, 1sq and 𝐶 𝑙pr´1, 1sq. So, for 0 ď 𝑙 ď 𝑘I it satisfies

sup
𝑡Pr´1,1s

ˇ

ˇppℐ p𝜙q
p𝑙q

p𝑡q
ˇ

ˇ ď C1

maxt𝑘ℐ ,𝑙u
ÿ

𝑗“0

sup
𝑡Pr´1,1s

ˇ

ˇ

p𝜙p𝑗q
p𝑡q

ˇ

ˇ @p𝜙 P 𝐶maxt𝑘ℐ ,𝑙upr´1, 1sq,

where, as before, 𝑘ℐ ě 0 is the smallest non-negative integer such that pℐ is well-defined on
𝐶𝑘ℐpr´1, 1sq.

Assumption 1.4
We assume that for 0 ď 𝑖 ď 𝑘𝒥 “ max

␣X

𝑘
2

\

´ 1, 𝑘I, 𝑘ℐ
(

the condition

›

›

›

›

d𝑖

d𝑡𝑖

´

𝐹
`

𝑡, 𝑣p𝑡q
˘

´ 𝐹
`

𝑡, 𝑤p𝑡q
˘

¯
ˇ

ˇ

ˇ

𝑡“𝑠

›

›

›

›

ď C2

𝑖
ÿ

𝑙“0

›

›p𝑣 ´ 𝑤q
p𝑙q

p𝑠q
›

› for a.e. 𝑠 P 𝐼 “ r𝑡0, 𝑡0 ` 𝑇 s

holds for sufficiently smooth functions 𝑣, 𝑤. Here C2 depends on 𝑘𝒥 and 𝐹 .

Remark 1.3
Sufficient conditions for Assumption 1.4 would be

(i) for 𝑘𝒥 “ 0: 𝐹 satisfies a Lipschitz condition on the second variable with constant
𝐿 ą 0,

(ii) for 𝑘𝒥 ě 1: 𝐹 is affine linear in 𝑢, i.e., 𝐹 p𝑡, 𝑢p𝑡qq “ 𝐴p𝑡q𝑢p𝑡q`𝑓p𝑡q, and }𝐴p¨q}𝐶𝑘𝒥 ă 8.
Then, the inequality follows from Leibniz’ rule for the 𝑖th derivative.

(iii) In the literature, see [39, p. 74], there also appear conditions of the form

sup
𝑡P𝐼, 𝑦PR𝑑

›

›

›

›

B

B𝑦
𝐹 p𝑖q

p𝑡, 𝑦q

›

›

›

›

ă 8, 0 ď 𝑖 ď 𝑘𝒥 ,

where 𝐹 p𝑖q denotes the 𝑖th total derivatives of 𝐹 with respect to 𝑡 in the sense of [39,
p. 65]. These conditions may be weaker in some cases.

Since in general the constant C2 is somewhat connected to the Lipschitz constant and, thus,
to the stiffness of the ode system, the dependence of the results on this constant shall be
particularly highlighted. ♣

Now, we are ready to state a result on the solvability of the local problem (1.2).

Theorem 1.4 (Existence and uniqueness, cf. [16, Theorem 5])
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. We suppose that Assumptions 1.1, 1.2, 1.3, and 1.4 hold. Then,
there is a constant 𝛾𝑟,𝑘 ą 0, multiplicatively depending on C´1

2 but independent of 𝑛, such
that problem (1.2) has a unique solution for all 1 ď 𝑛 ď 𝑁 when 𝜏𝑛 ď 𝛾𝑟,𝑘.
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1.2.2 Pointwise error estimates

In order to derive error estimates along the lines of [16, Section 4], the assumptions need to
be strengthened. In detail, compared to Theorem 1.4 we replace Assumption 1.3 by Assump-
tion 1.5a or 1.5b (following below). This is necessary since in the proof derivatives can be
handled if they are given in certain points but not their supremum. Furthermore, the error
analysis exploits an auxiliary interpolation operator ℐapp defined below, see Definition 1.6,
which amongst others is based on these assumptions.

Assumption 1.5a
For 0 ď 𝑙 ď 𝑘I we assume that pℐ p𝜙 P 𝐶 𝑙pr´1, 1sq and that there are disjoint points 𝑡ℐ𝑚,
𝑚 “ 0, . . . , 𝐾ℐ, in the reference interval r´1, 1s such that

sup
𝑡Pr´1,1s

ˇ

ˇppℐ p𝜙q
p𝑙q

p𝑡q
ˇ

ˇ ď C1,1

𝐾ℐ
ÿ

𝑚“0

r𝐾ℐ
𝑚

ÿ

𝑗“0

ˇ

ˇ𝜙p𝑗q
p𝑡ℐ𝑚q

ˇ

ˇ ` C1,2 sup
𝑡Pr´1,1s

ˇ

ˇ

p𝜙p𝑡q
ˇ

ˇ @p𝜙 P 𝐶𝑘ℐpr´1, 1sq.

Note that then typically 𝑘ℐ “ max
␣

r𝐾ℐ
𝑚 : 𝑚 “ 0, . . . , 𝐾ℐ

(

.

Assumption 1.5b
We assume that there are disjoint points 𝑡I𝑚, 𝑚 “ 0, . . . , 𝐾I, in the reference interval r´1, 1s

such that

ˇ

ˇ

ˇ

pIrp𝜙s

ˇ

ˇ

ˇ
ď rC0,1

𝐾I
ÿ

𝑚“0

r𝐾I
𝑚

ÿ

𝑗“0

ˇ

ˇ

p𝜙p𝑗q
p𝑡I𝑚q

ˇ

ˇ ` rC0,2 sup
𝑡Pr´1,1s

ˇ

ˇ

p𝜙p𝑡q
ˇ

ˇ @p𝜙 P 𝐶𝑘Ipr´1, 1sq.

Note that then typically 𝑘I “ max
␣

r𝐾I
𝑚 : 𝑚 “ 0, . . . , 𝐾I

(

.
Moreover, we assume that there are disjoint points 𝑡ℐ𝑚, 𝑚 “ 0, . . . , 𝐾ℐ, in the reference

interval r´1, 1s such that

𝐾I
ÿ

𝑚“0

r𝐾I
𝑚

ÿ

𝑙“0

ˇ

ˇppℐ p𝜙q
p𝑙q

p𝑡I𝑚q
ˇ

ˇ ` sup
𝑡Pr´1,1s

ˇ

ˇpℐ p𝜙p𝑡q
ˇ

ˇ

ď rC1,1

𝐾ℐ
ÿ

𝑚“0

r𝐾ℐ
𝑚

ÿ

𝑗“0

ˇ

ˇ

p𝜙p𝑗q
p𝑡ℐ𝑚q

ˇ

ˇ ` rC1,2 sup
𝑡Pr´1,1s

ˇ

ˇ

p𝜙p𝑡q
ˇ

ˇ @p𝜙 P 𝐶maxt𝑘I, 𝑘ℐu
pr´1, 1sq.

Remark 1.5
Assumption 1.5a is satisfied if pℐ is a polynomial approximation operator whose defining
degrees of freedom only use derivatives in certain points, as, for example, Hermite interpo-
lation operators. Together with Assumption 1.2, then

ˇ

ˇ
pI
“

pℐ p𝜙
‰
ˇ

ˇ could be estimated by the
supremum of |p𝜙| in r´1, 1s and certain point values of derivatives of p𝜙.

However, Assumption 1.5a is not satisfied if pℐ “ Id and 𝑘I ą 0. In order to enable
a similar estimate for

ˇ

ˇ
pI
“

pℐ p𝜙
‰ˇ

ˇ also in this case, Assumption 1.5b is formulated. Here,
the requirements on the integrator pI are increased. Of course, the defining degrees of
freedom for the integrator now should use derivatives in certain points only. In return, the
requirements for pℐ can be weakened such that they are met for example also by pℐ “ Id. ♣
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1.2 Existence, uniqueness, and error estimates

Definition 1.6 (Auxiliary interpolation operator)
For the error estimation we introduce a special Hermite interpolation operator ℐapp

𝑛 . Con-
cretely, the operator should satisfy the following conditions: ℐapp

𝑛 preserves derivatives up
to order

X

𝑘
2

\

´ 1 in 𝑡´𝑛 and up to order
X

𝑘´1
2

\

´ 1 in 𝑡`𝑛´1, i.e.,

pℐapp
𝑛 𝜙q

p𝑙q
p𝑡´𝑛 q “ 𝜙p𝑙q

p𝑡´𝑛 q for 0 ď 𝑙 ď
X

𝑘
2

\

´ 1,

pℐapp
𝑛 𝜙q

p𝑙q
p𝑡`𝑛´1q “ 𝜙p𝑙q

p𝑡`𝑛´1q for 0 ď 𝑙 ď
X

𝑘´1
2

\

´ 1.
(1.9)

Moreover, we suppose that

pℐapp
𝑛 𝜙q

p𝑙q
p𝑡ℐ𝑛,𝑚q “ 𝜙p𝑙q

p𝑡ℐ𝑛,𝑚q for 0 ď 𝑚 ď 𝐾ℐ , 0 ď 𝑙 ď r𝐾ℐ
𝑚, (1.10a)

with 𝑡ℐ𝑛,𝑚 :“ 𝑡𝑛`𝑡𝑛´1

2
` 𝜏𝑛

2
𝑡ℐ𝑚, where the points 𝑡ℐ𝑚 are those of Assumption 1.5a or 1.5b,

respectively. If (1.9) and (1.10a) provide 𝑟app independent interpolation conditions and
𝑟app ă 𝑟 ` 1, then we choose 𝑟 ` 1 ´ 𝑟app further points 𝑡ℐ𝑚 P p´1, 1qzt𝑡ℐ𝑗 : 𝑗 “ 0, . . . , 𝐾ℐu,
𝑚 “ 𝐾ℐ ` 1, . . . , 𝐾ℐ ` 𝑟 ` 1 ´ 𝑟app, and suppose

pℐapp
𝑛 𝜙qp𝑡ℐ𝑛,𝑚q “ 𝜙p𝑡ℐ𝑛,𝑚q for 𝐾ℐ

` 1 ď 𝑚 ď 𝐾ℐ
` 𝑟 ` 1 ´ 𝑟app, (1.10b)

where again 𝑡ℐ𝑛,𝑚 :“ 𝑡𝑛`𝑡𝑛´1

2
` 𝜏𝑛

2
𝑡ℐ𝑚. We agree that ℐapp

𝑛 is applied component-wise to
vector-valued functions. Overall, conditions (1.9) and (1.10) uniquely define a Hermite-type
interpolation operator of ansatz order maxt𝑟app ´ 1, 𝑟u. ♣

Now, we are able to provide an abstract error estimate.

Theorem 1.7 (Cf. [16, Theorem 8])
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. We suppose that Assumptions 1.1, 1.2, and 1.4 hold. Moreover, let
Assumption 1.5a or 1.5b be satisfied. Denote by 𝑢 and 𝑈 the solutions of (1.1) and (1.2),
respectively. Then, we have for 1 ď 𝑛 ď 𝑁 , sufficiently small 𝜏 , and 𝑙 “ 0, 1 that

sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝑈q
p𝑙q

p𝑡q
›

› ď 𝐶 max
1ď𝜈ď𝑛

˜

sup
𝑡P𝐼𝜈

›

›

`

Id ´ ℐapp
𝜈

˘

𝑢p𝑡q
›

› `

𝑙
ÿ

𝑗“0

sup
𝑡P𝐼𝜈

›

›

`

𝑢 ´ 𝒥 I,ℐ
𝜈 𝑢

˘p𝑗q
p𝑡q

›

›

¸

` 𝐶 max
1ď𝜈ď𝑛´1

𝜏´1
𝜈

›

›

`

𝑢 ´ 𝒥 I,ℐ
𝜈 𝑢

˘

p𝑡´𝜈 q
›

›,

where the constants 𝐶 in general exponentially depend on the product of 𝑇 and C2.

Remark 1.8 (Cf. [16, Remark 9])
Based on Theorem 1.7 we can also prove abstract estimates for higher order derivatives of
the error. Of course, we obtain that

sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝑈q
p𝑙q

p𝑡q
›

› ď sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝒥 I,ℐ
𝑛 𝑢q

p𝑙q
p𝑡q

›

› ` sup
𝑡P𝐼𝑛

›

›p𝒥 I,ℐ
𝑛 𝑢 ´ 𝑈q

p𝑙q
p𝑡q

›

›

ď sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝒥 I,ℐ
𝑛 𝑢q

p𝑙q
p𝑡q

›

› ` 𝐶inv

`

𝜏𝑛
2

˘´𝑙
sup
𝑡P𝐼𝑛

›

›p𝒥 I,ℐ
𝑛 𝑢 ´ 𝑈qp𝑡q

›

›

ď sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝒥 I,ℐ
𝑛 𝑢q

p𝑙q
p𝑡q

›

› ` 𝐶inv

`

𝜏𝑛
2

˘´𝑙

ˆ

sup
𝑡P𝐼𝑛

›

›p𝒥 I,ℐ
𝑛 𝑢 ´ 𝑢qp𝑡q

›

› ` sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝑈qp𝑡q
›

›

˙

,
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1 Formulation, Analysis for Non-Stiff Systems, and Further Properties

where an inverse inequality was used. However, since we only have a non-local error estimate
for sup𝑡P𝐼𝑛

›

›p𝑢´ 𝑈qp𝑡q
›

›, we cannot expect that the inverse of the local time step length can
be compensated in general. So, usually we additionally need to assume that 𝜏𝜈 ď 𝜏𝜈`1 for
all 𝜈 or alternatively that the mesh is quasi-uniform (𝜏{𝜏𝜈 ď 𝐶 for all 𝜈) to get a proper
estimate. ♣

Remark 1.9
Note that the estimate of Theorem 1.7 is appropriate for non-stiff problems only. Indeed,
since the error constant 𝐶 exponentially depends on the Lipschitz constant of the problem
(hidden in C2), this constant would be excessively large in the case of stiffness such that
then the error bound would be useless.

Moreover, for the proof of Theorem 1.7 it is needed that 𝜏𝑛 is smaller than a certain
bound which is inversely dependent on the Lipschitz constant. Therefore, stiff problems
would force very small time step lengths. For semi-discretizations in space of parabolic
time-space problems on shape-regular, quasi-uniform meshes, where the Lipschitz constant
is typically proportional to ℎ´2 with ℎ denoting the spatial mesh parameter, this would
cause upper bounds on the time step length with respect to ℎ similar to CFL conditions. ♣

Of course, Theorem 1.7 provides an abstract bound for the error of the variational time
discretization method. However, the order of convergence still is not clear. Since ℐapp

𝑛 is a
Hermite-type interpolator of polynomial ansatz order larger than or equal to 𝑟, its approx-
imation order (at least 𝑟 ` 1) is known. Suitable bounds on the error of the approximation
operator 𝒥 I,ℐ

𝑛 shall be stated below. For their proof we refer to [16, Section 4].

Definition 1.10 (Approximation orders of I𝑛 and ℐ𝑛)
Let 𝑟I

ex, 𝑟ℐex, 𝑟ℐ , and 𝑟I
ℐ,𝑖 P N0 Y t´1,8u denote the largest numbers such that

ż

𝐼𝑛

𝜙p𝑡q d𝑡 “ I𝑛r𝜙s @𝜙 P 𝑃𝑟I
ex

p𝐼𝑛q,

ż

𝐼𝑛

𝜙p𝑡q d𝑡 “

ż

𝐼𝑛

ℐ𝑛𝜙p𝑡q d𝑡 @𝜙 P 𝑃𝑟ℐex
p𝐼𝑛q,

𝜙 “ ℐ𝑛𝜙 @𝜙 P 𝑃𝑟ℐp𝐼𝑛q, I𝑛r𝜙𝜓𝑖s “ I𝑛rpℐ𝑛𝜙q𝜓𝑖s @𝜙 P 𝑃𝑟I
ℐ,𝑖

p𝐼𝑛q, 𝜓𝑖 P 𝑃𝑖p𝐼𝑛q.

Here, 𝑃´1p𝐼𝑛q is interpreted as t0u, in which case the respective operator does not provide
the corresponding approximation property. For convenience, set 𝑟I

ℐ :“ 𝑟I
ℐ,𝑟´𝑘. Moreover,

simply write 𝑟
ş

ℐ,𝑖 instead of 𝑟I
ℐ,𝑖 if I𝑛 represents the (exact) integral over 𝐼𝑛. Note that

𝑟ℐex ě 𝑟
ş

ℐ,𝑖 ě 𝑟ℐ and 𝑟I
ℐ,𝑖 ě 𝑟ℐ hold by definition. ♣

Lemma 1.11 (Cf. [16, Lemma 12])
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and suppose that Assumptions 1.1, 1.2, and 1.3 hold. Furthermore,
let 𝑙, 𝑟 P N0 and define

𝑗min,𝑟 :“ min
␣

𝑟, 𝑟 ` 1, 𝑟I
ℐ ` 2

(

, 𝑗max,𝑟 :“ max
␣

𝑘𝒥 ` 1, 𝑙, 𝑗min,𝑟

(

.

Then, provided that 𝑣 P 𝐶𝑗max,𝑟p𝐼𝑛,R𝑑q, the error estimate

sup
𝑡P𝐼𝑛

›

›

`

𝑣 ´ 𝒥 I,ℐ
𝑛 𝑣

˘p𝑙q
p𝑡q

›

› ď 𝐶

𝑗max,𝑟
ÿ

𝑗“𝑗min,𝑟

`

𝜏𝑛
2

˘𝑗´𝑙
sup
𝑡P𝐼𝑛

›

›𝑣p𝑗q
p𝑡q

›

›

holds with a constant 𝐶 independent of 𝜏𝑛.
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1.2 Existence, uniqueness, and error estimates

Compared to the pointwise estimate of Lemma 1.11, the estimate for the approximation
error of 𝒥 I,ℐ

𝑛 in the mesh points 𝑡´𝑛 can even be improved in some cases. In fact, the following
statement holds.

Lemma 1.12 (Cf. [16, Lemma 14])
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Suppose that the Assumptions 1.1, 1.2, and 1.3 hold. Moreover,
assume that max

␣

𝑟I
ex, 𝑟

I
ℐ ` 1

(

ě 𝑟 ´ 1. Let 𝑟 P N0 and define

𝑗˛
min,𝑟 :“ min

␣

𝑟, max
␣

𝑟I
ex ` 1,min

␣

𝑟, 𝑟I
ℐ ` 1

((

` 1, 𝑟I
ℐ,0 ` 2

(

,

𝑗˛
max,𝑟 :“ max

␣

𝑘𝒥 ` 1, 𝑗˛
min,𝑟

(

.

Then, provided that 𝑣 P 𝐶𝑗˛
max,𝑟p𝐼𝑛,R𝑑q, the error estimate

›

›

`

𝑣 ´ 𝒥 I,ℐ
𝑛 𝑣

˘

p𝑡´𝑛 q
›

› ď 𝐶

𝑗˛
max,𝑟
ÿ

𝑗“𝑗˛
min,𝑟

`

𝜏𝑛
2

˘𝑗
sup
𝑡P𝐼𝑛

›

›𝑣p𝑗q
p𝑡q

›

›

holds for 1 ď 𝑛 ď 𝑁 , where the constant 𝐶 is independent of 𝜏𝑛.

Finally, summarizing the above results, the guaranteed orders of convergence can now be
listed clearly.

Corollary 1.13 (Cf. [16, Corollary 15])
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and 𝑙 P t0, 1u. Suppose that Assumptions 1.1, 1.2, 1.3, and 1.4
hold. Moreover, let Assumption 1.5a or 1.5b be satisfied. Denote by 𝑢 and 𝑈 the solutions
of (1.1) and (1.2), respectively. Then, we have for 1 ď 𝑛 ď 𝑁

sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝑈q
p𝑙q

p𝑡q
›

› ď 𝐶p𝐹, 𝑢q 𝜏mint𝑟, 𝑟I
ℐ `1u, (1.11)

with 𝑟I
ℐ as defined in Definition 1.10. If in addition max

␣

𝑟I
ex, 𝑟

I
ℐ ` 1

(

ě 𝑟´ 1, then we even
have

sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝑈qp𝑡q
›

› ď 𝐶p𝐹, 𝑢q 𝜏mint𝑟`1, 𝑟I
ℐ `2, 𝑟I

ℐ,0`1,maxt𝑟I
ex`1,mint𝑟, 𝑟I

ℐ `1uuu

as an improved error estimate.

If max
␣

𝑟I
ex, 𝑟

I
ℐ ` 1

(

ě 𝑟 ´ 1 is satisfied, we obtain formally

sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝑈q
1
p𝑡q

›

› ď 𝐶p𝐹, 𝑢q 𝜏mint𝑟, 𝑟I
ℐ `1, 𝑟I

ℐ,0`1,maxt𝑟I
ex`1,mint𝑟, 𝑟I

ℐ `1uuu

for the error of the first derivative. However, this gives the same convergence order as (1.11)
for 𝑙 “ 1.

Remark 1.14
Since the quantity 𝑟I

ℐ “ 𝑟I
ℐ,𝑟´𝑘 used in the lemmas and the corollary above is quite abstract,

we want to provide lower bounds for 𝑟I
ℐ,𝑖 based on the more familiar quantities 𝑟ℐ , 𝑟ℐex,
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1 Formulation, Analysis for Non-Stiff Systems, and Further Properties

and 𝑟I
ex. For the sake of simplicity, we shall impose somewhat stronger requirements on

ℐ𝑛 than actually necessary. For a proof in a slightly more general setting we refer to [13,
Lemma 4.13].

Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and 𝑖 P N0. Then, 𝑟I
ℐ,𝑖 ě 𝑟ℐ . So, for 𝑟ℐ “ 8 the bound

cannot be improved further. Otherwise, supposing that ℐ𝑛 is a projection onto the space of
polynomials of maximal degree 𝑟ℐ ă 8, i.e., ℐ𝑛 : 𝐶𝑘ℐp𝐼𝑛q Ñ 𝑃𝑟ℐp𝐼𝑛q and ℐ𝑛𝜙 “ 𝜙 for all
𝜙 P 𝑃𝑟ℐp𝐼𝑛q, we even get

𝑟I
ℐ,𝑖 ě max

␣

𝑟ℐ ,min
␣

𝑟I
ex ´ 𝑖, 𝑟

ş

ℐ,𝑖
((

.

Of course, it holds 𝑟
ş

ℐ,0 “ 𝑟ℐex. In order to simplify the term on the right-hand side for 𝑖 ě 1,
we additionally could assume that ℐ𝑛 is a Hermite-type interpolation operator. Then, we
simply have

𝑟I
ℐ,𝑖 ě max

␣

𝑟ℐ ,min
␣

𝑟I
ex, 𝑟

ℐ
ex

(

´ 𝑖
(

since then 𝑟
ş

ℐ,𝑖 ě max
␣

𝑟ℐ , 𝑟
ℐ
ex ´ 𝑖

(

.
Furthermore, under the weaker assumption that ℐ “ ℐ1 ˝ . . . ˝ ℐ 𝑙 is a composition of

several Hermite-type interpolation operators ℐ𝑗, 1 ď 𝑗 ď 𝑙, we still find

𝑟
ş

ℐ,𝑖 ě min
𝑗Pℳ𝑖Yt𝑙u

␣

max
␣

𝑟ℐ𝑗 , 𝑟ℐ
𝑗

ex ´ 𝑖
((

,

where ℳ𝑖 :“
␣

𝑗 P N
ˇ

ˇ 1 ď 𝑗 ď 𝑙 ´ 1, max
␣

𝑟ℐ𝑗 , 𝑟ℐ
𝑗

ex ´ 𝑖
(

ă min𝑗`1ď𝑚ď𝑙t𝑟ℐ𝑚u
(

. ♣

1.2.3 Superconvergence in time mesh points

The I𝑛-VTD𝑟
𝑘p𝐼𝑛q methods described by (1.2) show some superconvergence behavior in the

time mesh points. More concretely, in many cases the convergence order of the error in the
time mesh points is considerably larger than the convergence order for the pointwise error.
The following statement can be proven.

Theorem 1.15 (Superconvergence estimate, cf. [16, Theorem 18])
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Suppose that the Assumptions 1.1, 1.2, and 1.3 hold. Moreover,
denote by 𝑢 and 𝑈 the solutions of (1.1) and (1.2), respectively. Suppose that (for 𝜏 suf-
ficiently small) the global error sup𝑡P𝐼

›

›p𝑢 ´ 𝑈qp𝑡q
›

›, as well as 𝑈 and all of its derivatives,
can be bounded independent of the mesh parameter. Then, we have for 1 ď 𝑛 ď 𝑁

›

›p𝑢 ´ 𝑈qp𝑡´𝑛 q
›

› ď 𝐶p𝐹, 𝑢q

˜

sup
𝑡Pr𝑡0,𝑡𝑛s

›

›p𝑢 ´ 𝑈qp𝑡q
›

›

2
` 𝜏mint2𝑟´𝑘`1, 𝑟Iℐ

var `1,maxt𝑟I
ex`1,mint𝑟, 𝑟I

ℐ `1uuu

¸

,

where 𝑟Iℐ
var :“ min0ď𝑖ď𝑟´𝑘

␣

𝑟I
ℐ,𝑖 ` 𝑖

(

.

Remark 1.16
The term sup𝑡Pr𝑡0,𝑡𝑛s

›

›p𝑢 ´ 𝑈qp𝑡q
›

›

2 in the estimate of Theorem 1.15 may be dropped under
certain conditions. For more details on this, see [16, Remark 19]. ♣
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1.2 Existence, uniqueness, and error estimates

Remark 1.17
While a bound for the global error sup𝑡P𝐼

›

›p𝑢 ´ 𝑈qp𝑡q
›

› could be derived from Theorem 1.7,
also see Corollary 1.13, it is not directly clear how to guarantee in Theorem 1.15 that 𝑈
and all of its derivatives can be bounded independent of the mesh parameter. However,
provided that Assumption 1.1 holds and a uniform bound for the global error is known, it
is shown in [16, Lemma 20] that sup𝑡P𝐼

›

›𝑈 p𝑙qp𝑡q
›

› ď 𝐶p𝐹, 𝑢q for all 𝑙 ě 0 if 𝑟I
ℐ ě 𝑟 ´ 2. ♣

Remark 1.18 (Superconconvergence of derivative(s) in time mesh points, cf. [14, Re-
mark 4.10])
From the point conditions (1.2b) and the bound of Theorem 1.15 we also gain superconver-
gence estimates up to the

X

𝑘
2

\

th derivative of the solution 𝑈 of I𝑛-VTD𝑟
𝑘pℐ𝑛q in 𝑡´𝑛 , provided

that 𝐹 satisfies Assumption 1.4. Indeed, we find for 1 ď 𝑛 ď 𝑁

›

›p𝑢 ´ 𝑈q
p𝑖`1q

p𝑡´𝑛 q
›

› “

›

›

›

›

d𝑖

d𝑡𝑖

´

𝑀´1𝐹
`

𝑡, 𝑢p𝑡q
˘

´ 𝑀´1𝐹
`

𝑡, 𝑈p𝑡q
˘

¯
ˇ

ˇ

ˇ

𝑡“𝑡´
𝑛

›

›

›

›

ď 𝐶
𝑖
ÿ

𝑗“0

›

›p𝑢 ´ 𝑈q
p𝑗q

p𝑡´𝑛 q
›

› ď . . . ď 𝐶
›

›p𝑢 ´ 𝑈qp𝑡´𝑛 q
›

›

by iteration over 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1. ♣

Summarizing the above observations, the following estimates in the time mesh points can
be stated.

Corollary 1.19 (Cf. [16, Corollary 21])
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Suppose that Assumptions 1.1, 1.2, 1.3, and 1.4 hold. Moreover, let
Assumption 1.5a or 1.5b be satisfied. Denote by 𝑢 and 𝑈 the solutions of (1.1) and (1.2),
respectively. Then, if 𝑟I

ℐ ě 𝑟 ´ 2, we have for 1 ď 𝑛 ď 𝑁
›

›p𝑢 ´ 𝑈qp𝑡´𝑛 q
›

› ď 𝐶p𝐹, 𝑢q

´

𝜏mint2𝑟´𝑘`1, 𝑟Iℐ
var `1,maxt𝑟I

ex`1,mint𝑟,𝑟I
ℐ `1uuu ` 𝛿0,𝑘𝜏

2𝑟I
ℐ `4

¯

(1.12)

with 𝑟Iℐ
var :“ min0ď𝑖ď𝑟´𝑘

␣

𝑟I
ℐ,𝑖 ` 𝑖

(

, 𝑟I
ℐ “ 𝑟I

ℐ,𝑟´𝑘, and 𝑟I
ℐ,𝑖 as defined in Definition 1.10.

If 𝑟I
ℐ ă 𝑟 ´ 2, the uniform boundedness of 𝑈 and all its derivatives cannot be ensured in

general. Then, we only have
›

›p𝑢 ´ 𝑈qp𝑡´𝑛 q
›

› ď sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝑈qp𝑡q
›

›,

where we refer to Corollary 1.13 for bounds on the right-hand side term.

1.2.4 Numerical results

In this subsection, we want to show that the estimates of Corollary 1.13 and Corollary 1.19
are sharp. To this end, the error in the norms

}𝑣}𝐿8 “ ess sup
𝑡P𝐼

›

›𝑣p𝑡q
›

›, }𝑣}𝑊 1,8 “ max
0ď𝑙ď1

ess sup
𝑡P𝐼

›

›𝑣p𝑙q
p𝑡q

›

›, }𝑣}ℓ8 “ max
1ď𝑛ď𝑁

›

›𝑣p𝑡´𝑛 q
›

›

should be investigated numerically. Appropriate numerical studies have been already made
in [16, Section 6]. However, for completeness we give a short summary of the obtained
numerical results here.
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Example
We consider the initial value problem

ˆ

𝑢1
1p𝑡q
𝑢1
2p𝑡q

˙

“

ˆ

´𝑢21p𝑡q ´ 𝑢2p𝑡q
𝑢1p𝑡q ´ 𝑢1p𝑡q𝑢2p𝑡q

˙

, 𝑡 P p0, 32q, 𝑢p0q “

ˆ

1{2
0

˙

, (1.13)

of a system of nonlinear ordinary differential equations that has

𝑢1p𝑡q “
cos 𝑡

2 ` sin 𝑡
, 𝑢2p𝑡q “

sin 𝑡

2 ` sin 𝑡

as solution.

The appearing nonlinear systems within each time step were solved by Newton’s method
where a Taylor expansion of the inherited data from the previous time interval was applied to
calculate an initial guess for all unknowns on the current interval. If higher order derivatives
were needed at initial time 𝑡 “ 0, the ode system and its temporal derivatives were used,
see (1.4).

According to Corollary 1.13 and Corollary 1.19, we expect the following orders of conver-
gence

“𝑊 1,8-order” “ min
␣

𝑟, 𝑟I
ℐ ` 1

(

, (1.14a)

“𝐿8-order” “ min
␣

𝑟 ` 1, 𝑟I
ℐ ` 2, 𝑟I

ℐ,0 ` 1, max
␣

𝑟I
ex ` 1, min

␣

𝑟, 𝑟I
ℐ ` 1

(((

, (1.14b)

“ℓ8-order” “ min
␣

2𝑟 ´ 𝑘 ` 1, 𝑟Iℐ
var ` 1, max

␣

𝑟I
ex ` 1, min

␣

𝑟, 𝑟I
ℐ ` 1

(((

(1.14c)

for the error in the 𝑊 1,8-norm, the 𝐿8-norm, and the ℓ8-norm. However, recall that there
are the additional conditions max

␣

𝑟I
ex, 𝑟

I
ℐ ` 1

(

ě 𝑟 ´ 1 for the 𝐿8-estimate and 𝑟I
ℐ ě 𝑟 ´ 2

for the ℓ8-estimate, respectively.
In order to verify these theoretical results, a wide variety of integrators and interpolators

needs to be studied. Here we always consider I𝑛-VTD6
3pℐ𝑛q methods, which are variants of

cGP-𝐶1p6q, as discretization of (1.13) where I𝑛 and ℐ𝑛 are obtained from given reference
operators pI and pℐ via transformation. Each integrator pI and each interpolation operator
pℐ that is studied is based on Lagrangian interpolation with respect to a specific node set 𝑃

pI
and 𝑃

pℐ , respectively. Hence, we have 𝑘I “ 𝑘ℐ “ 0. Both node sets are given for each of the
test cases. Since often nodes of quadrature formulas are used, we also write for instance “left
Gauss–Radaup𝑘q” to indicate that the nodes of the left-sided Gauss–Radau formula with 𝑘
points have been used. All upcoming settings fulfill Assumption 1.1.

The different test cases are listed in Table 1.1. Beyond the node sets for integrator and in-
terpolation operator also the associated theoretical expressions for the orders of convergence
are presented. Note that the limiting terms are always indicated in boldface. The expres-
sions for the 𝐿8-order or the ℓ8-order are struck out if the conditions max

␣

𝑟I
ex, 𝑟

I
ℐ `1

(

ě 𝑟´1

or 𝑟I
ℐ ě 𝑟 ´ 2, respectively, are not fulfilled.

In the first test case both conditions are violated such that only the 𝑊 1,8-estimate holds
and gives order 3 while the 𝐿8- and ℓ8-estimates would yield order 4. The case group 2
provides choices for 𝑃

pI and 𝑃
pℐ that show that the 𝐿8-convergence order can be limited

by each of the three terms occurring in the maximum expression inside the outer minimum
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Table 1.2: Error of I𝑛-VTD6
3pℐ𝑛q in different (semi-)norms and associated (experimental)

convergence orders

case }𝑢 ´ 𝑈}𝐿8 eoc }p𝑢 ´ 𝑈q1}𝐿8 eoc }𝑢 ´ 𝑈}ℓ8 eoc
(theo) (theo) (theo)

1 1.615e-06 3.04 2.369e-05 3.00 1.559e-06 3.01
1.961e-07 (3) 2.965e-06 (3) 1.937e-07 (3)

2a 3.759e-11 6.00 3.863e-09 5.00 7.003e-12 6.00
5.862e-13 (5) 1.208e-10 (5) 1.096e-13 (5)

2a* 9.412e-11 5.08 4.048e-09 5.00 8.666e-11 5.00
2.775e-12 (5) 1.266e-10 (5) 2.699e-12 (5)

2b 1.465e-12 6.07 6.841e-11 6.00 1.354e-12 6.00
2.175e-14 (6) 1.072e-12 (6) 2.122e-14 (6)

2c 6.604e-12 6.00 1.130e-10 5.99 6.601e-12 6.00
1.034e-13 (6) 1.773e-12 (6) 1.034e-13 (6)

3a 1.716e-10 5.19 1.072e-08 5.00 1.459e-10 5.02
4.688e-12 (5) 3.353e-10 (5) 4.500e-12 (5)

3b 3.069e-07 4.02 3.581e-05 3.00 6.011e-08 4.12
1.886e-08 (4) 4.479e-06 (3) 3.455e-09 (4)

3c 4.068e-13 7.00 7.155e-11 6.00 6.689e-19 10.00
3.181e-15 (7) 1.119e-12 (6) 6.529e-22 (10)

4a 4.464e-11 6.00 5.648e-09 5.00 5.120e-15 8.00
6.981e-13 (6) 1.766e-10 (5) 2.005e-17 (8)

4b 4.068e-13 7.00 7.155e-11 6.00 5.318e-19 10.00
3.181e-15 (7) 1.119e-12 (6) 5.192e-22 (10)

4c 8.654e-13 7.00 1.288e-10 6.00 2.565e-15 8.00
6.759e-15 (7) 2.014e-12 (6) 1.002e-17 (8)

4d 2.028e-07 4.00 2.111e-05 3.00 4.377e-08 4.00
1.268e-08 (4) 2.641e-06 (3) 2.735e-09 (4)

in (1.14b). Hereby, note that it is not possible that 𝑟I
ex `1 is the only limiting term since the

structure of (1.14b) implies that min
␣

𝑟 ` 1, 𝑟I
ℐ ` 2

(

ě 𝑟I
ex ` 1 ě min

␣

𝑟, 𝑟I
ℐ ` 1

(

if 𝑟I
ex ` 1 is

limiting. Hence, the integer 𝑟I
ex`1 coincides either with min

␣

𝑟`1, 𝑟I
ℐ `2

(

or min
␣

𝑟, 𝑟I
ℐ `1

(

.
Case group 3 shows that each of the first three expressions in the outer minimum in (1.14b)
can bound the 𝐿8-order and that the 𝑊 1,8-order can be limited by both occurring terms
in (1.14a). With case group 4 we consider settings where the convergence order in the
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1.3 Associated quadrature formulas and their advantages

ℓ8-norm suggested by (1.14c) is strictly greater than the 𝐿8-order given by (1.14b). It is
shown that the first two arguments in the minimum in (1.14c) and the first argument inside
the maximum there can limit the ℓ8-convergence order. Moreover, we consider a case where
the higher superconvergence order cannot be expected since 𝑟I

ℐ ă 𝑟 ´ 2.
Computational results for all the different test cases are given in Table 1.2. All calculations

were carried out with the software Julia [18] using the floating point data type BigFloat
with 512 bits. We present the errors in different (semi-)norms obtained for 256 and 512
time steps and also give the experimental orders of convergence (eoc) calculated from these
two errors. For comparison, in addition the theoretically predicted convergence orders are
given in brackets.

The numerical results confirm the expected convergence behavior. The only exception is
case 2a, where we see an experimental order of convergence of 6, which is one order higher
than expected. This discrepancy can be explained by a closer look to Lemma 1.12. For
its proof a splitting is used whose single terms only vanish for all 𝑣 P 𝑃5p𝐼𝑛q. However, in
case 2a, due to symmetry reasons, it holds

ş

𝐼𝑛

`

𝑣 ´ 𝒥 I,ℐ
𝑛 𝑣

˘1
p𝑡q d𝑡 “ 0 for all 𝑣 P 𝑃6p𝐼𝑛q and

so
`

𝑣 ´ 𝒥 I,ℐ
𝑛 𝑣

˘

p𝑡´𝑛 q “ 0 for all 𝑣 P 𝑃6p𝐼𝑛q. Thus, the convergence order of the limiting term
is actually better than predicted. For a more detailed discussion of this and all other cases,
we refer to [16, Section 6].

1.3 Associated quadrature formulas and their advantages

In order to obtain a fully computable discrete problem, usually a quadrature formula 𝑄𝑛 is
chosen as integrator, i.e., I𝑛 “ 𝑄𝑛. To indicate this choice, we simply write 𝑄𝑛-VTD𝑟

𝑘pℐ𝑛q.
Moreover, recall that integration over 𝐼𝑛 is used if no quadrature rule is specified and that
the specification of ℐ𝑛 is omitted if ℐ𝑛 “ Id. We shall mostly use quadrature rules that are
exact for polynomials of degree up to 2𝑟 ´ 𝑘. This ensures in the case of an affine linear
right-hand side 𝐹 p𝑡, 𝑢q “ 𝑓p𝑡q ´ 𝐴𝑢 with time-independent 𝐴 that at least all 𝑢 depending
terms in (1.2d) are integrated exactly.

1.3.1 Special quadrature formulas

The special structure of the method (1.2) motivates to use an assigned interpolation operator
that conserves derivatives at the end points of the interval up to a certain order. In detail,
we define on r´1, 1s the reference interpolation operator pℐ𝑟

𝑘 : 𝐶t 𝑘
2 upr´1, 1sq Ñ 𝑃𝑟pr´1, 1sq

that uses the interpolation points

at the left end: derivatives up to order
X

𝑘´1
2

\

in ´1`,
at the right end: derivatives up to order

X

𝑘
2

\

in 1´,
in the interior: zeros 𝑡𝑖 P p´1, 1q of the p𝑟 ´ 𝑘qth Jacobi-polynomial

with respect to the weight p1 ` 𝑡qt 𝑘´1
2 u`1

p1 ´ 𝑡qt 𝑘
2 u`1.

(1.15)
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1 Formulation, Analysis for Non-Stiff Systems, and Further Properties

Note that there is no point evaluation at the left end for 𝑘 “ 0. In any case, the number of
interpolation conditions is

𝑟 ´ 𝑘 `
X

𝑘
2

\

` 1 `
X

𝑘´1
2

\

` 1 “ 𝑟 ´ 𝑘 ` 𝑘 ´ 1 ` 2 “ 𝑟 ` 1

and, thus, coincides with the dimension of 𝑃𝑟. The interpolation operator pℐ𝑟
𝑘 is of Hermite-

type and provides the standard error estimates for Hermite interpolation, see e.g. [51,
(2.1.5.9) Theorem, p. 57].

In addition, we define by

p𝑄𝑟
𝑘

“

p𝜙
‰

:“

ż 1

´1

`

pℐ𝑟
𝑘 p𝜙

˘

p𝑡q d𝑡

a quadrature rule on r´1, 1s that is in a natural way assigned to the method VTD𝑟
𝑘. The

quadrature rules p𝑄𝑟
𝑘 are known in the literature as generalized Gauss–Radau or Gauss–

Lobatto formulas, respectively, see e.g. [32, 44]. The weights of the quadrature rule p𝑄𝑟
𝑘 could

be calculated by integrating the appropriate Hermite basis functions on r´1, 1s. Finally, we
obtain

ż 1

´1

p𝜙p𝑡q d𝑡 « p𝑄𝑟
𝑘

“

p𝜙
‰

“

ż 1

´1

`

pℐ𝑟
𝑘 p𝜙

˘

p𝑡q d𝑡 “

t 𝑘´1
2 u
ÿ

𝑖“0

𝑤𝐿
𝑖 p𝜙

p𝑖q
p´1`

q `

𝑟´𝑘
ÿ

𝑖“1

𝑤𝐼
𝑖 p𝜙p𝑡𝑖q `

t 𝑘
2 u
ÿ

𝑖“0

𝑤𝑅
𝑖 p𝜙

p𝑖q
p`1´

q.

The quadrature rule p𝑄𝑟
𝑘 is exact for polynomials up to degree 2𝑟 ´ 𝑘. It can be shown that

all quadrature weights are different from zero, see [44]. More precisely, we have

𝑤𝐼
𝑗 ą 0, 𝑤𝐿

𝑗 ą 0, p´1q
𝑗𝑤𝑅

𝑗 ą 0, (1.16)

so even the sign of the weights is known. Note that in general (for 𝑘 ě 2) not all weights are
positive. Semi-explicit or recursive formulas for the weights of these methods can be found
in [48].

Transferring the quadrature rule p𝑄𝑟
𝑘 and the interpolation operator pℐ𝑟

𝑘 from r´1, 1s to the
interval 𝐼𝑛, we obtain 𝑄𝑟

𝑘,𝑛 and ℐ𝑟
𝑘,𝑛. We usually skip 𝑛 in the notation since the relation to

𝐼𝑛 will mostly be clear from context. Hence, we have

ż

𝐼𝑛

𝜙p𝑡q d𝑡 « 𝑄𝑟
𝑘

“

𝜙
‰

“
𝜏𝑛
2

»

–

t 𝑘´1
2 u
ÿ

𝑖“0

𝑤𝐿
𝑖

`

𝜏𝑛
2

˘𝑖
𝜙p𝑖q

p𝑡`𝑛´1q `

𝑟´𝑘
ÿ

𝑖“1

𝑤𝐼
𝑖𝜙p𝑡𝑛,𝑖q `

t 𝑘
2 u
ÿ

𝑖“0

𝑤𝑅
𝑖

`

𝜏𝑛
2

˘𝑖
𝜙p𝑖q

p𝑡´𝑛 q

fi

fl,

where 𝑡𝑛,𝑖 “
𝑡𝑛`𝑡𝑛´1

2
` 𝜏𝑛

2
𝑡𝑖 P 𝐼𝑛, 𝑖 “ 1, . . . , 𝑟 ´ 𝑘.

Remark 1.20
The quadrature rule 𝑄𝑟

0 is the well-known right-sided Gauss–Radau quadrature formula with
𝑟 ` 1 points, which is typically used for the discontinuous Galerkin method dGp𝑟q. 𝑄𝑟

1 is
the Gauss–Lobatto quadrature rule with 𝑟` 1 points, which is often used together with the
continuous Galerkin–Petrov method cGPp𝑟q. ♣
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1.3.2 Postprocessing

The quadrature formulas defined by the quadrature points (1.15) enable a simple postpro-
cessing, which shall be presented in this subsection. Postprocessing techniques for dG and
cGP methods have been introduced in [46] and were generalized to the whole family of
variational time discretizations in [14]. The postprocessing creates an improved solution
where the global smoothness is increased by one differentiation order if 𝐹 is

X

𝑘´1
2

\

-times
continuously differentiable on 𝐼. Moreover, the postprocessing lifts the originally obtained
numerical solution on each time subinterval to the polynomial space with one degree higher.
This results in an increased accuracy and mostly an improved convergence by one order for
the pointwise error.

The postprocessing can be formulated as follows. For the proofs we refer to [14, Section 3].

Theorem 1.21 (Postprocessing 𝑄𝑟
𝑘-VTD𝑟

𝑘 ⇝ 𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2, cf. [14, Theorem 3.1])
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and suppose that 𝑈 P 𝑌𝑟 solves 𝑄𝑟

𝑘-VTD𝑟
𝑘. For every 𝑛 “ 1, . . . , 𝑁

set

r𝑈
ˇ

ˇ

𝐼𝑛
“ 𝑈

ˇ

ˇ

𝐼𝑛
` 𝑎𝑛𝜗𝑛, 𝜗𝑛 P 𝑃𝑟`1p𝐼𝑛,Rq,

where 𝜗𝑛 vanishes in the p𝑟`1q quadrature points of 𝑄𝑟
𝑘 and satisfies 𝜗pt 𝑘

2 u`1q
𝑛 p𝑡´𝑛 q “ 1 while

the vector 𝑎𝑛 P R𝑑 is defined by

𝑎𝑛 “ 𝑀´1

˜

dt 𝑘
2 u

d𝑡t
𝑘
2 u
𝐹
`

𝑡, 𝑈p𝑡q
˘

ˇ

ˇ

ˇ

𝑡“𝑡´
𝑛

´ 𝑀𝑈pt 𝑘
2 u`1qp𝑡´𝑛 q

¸

. (1.17)

Moreover, let r𝑈p𝑡´0 q “ 𝑈p𝑡´0 q. Then, r𝑈 P 𝑌𝑟`1 solves 𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2.

From the definition (1.17), it seems that a linear system with the mass matrix 𝑀 has
to be solved in every time step in order to obtain the correction vector 𝑎𝑛. However, the
computational costs for calculating 𝑎𝑛 can be reduced significantly if 𝐹 is sufficiently smooth
as shown in the following proposition.

Proposition 1.22 (Cf. [14, Proposition 3.2])
Suppose that 𝐹 is

X

𝑘´1
2

\

-times continuously differentiable on 𝐼. Then, the correction vec-
tors 𝑎𝑛 P R𝑑 defined in (1.17) for the postprocessing presented in Theorem 1.21 can be
alternatively calculated by

𝑎𝑛 “
´1

𝜗
pt 𝑘´1

2 u`1q
𝑛 p𝑡`𝑛´1q

´

𝑈pt 𝑘´1
2 u`1qp𝑡`𝑛´1q ´ r𝑈pt 𝑘´1

2 u`1qp𝑡´𝑛´1q

¯

for 𝑛 ą 1,

and

𝑎1 “
´1

𝜗
pt 𝑘´1

2 u`1q
1 p𝑡`0 q

´

𝑈pt 𝑘´1
2 u`1qp𝑡`0 q ´ 𝑢pt 𝑘´1

2 u`1qp𝑡0q
¯

,

where 𝑢pt 𝑘´1
2 u`1qp𝑡0q is defined in (1.4).
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1 Formulation, Analysis for Non-Stiff Systems, and Further Properties

Note that 𝑎𝑛 can be calculated in this way without solving a system of linear equations
and, thus, with almost no computational costs. From the structure of 𝑎𝑛 we see that the
postprocessing can be interpreted as a correction of the jump in the lowest order derivative
of the discrete solution that is not continuous by construction.

Since the division by 𝜗pt 𝑘´1
2 u`1q

𝑛 p𝑡`𝑛´1q changes the normalization of 𝜗𝑛 only, we gain the
following.

Corollary 1.23 (Alternative postprocessing 𝑄𝑟
𝑘-VTD𝑟

𝑘 ⇝ 𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2, cf. [14, Corol-
lary 3.3])
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and suppose that 𝑈 P 𝑌𝑟 solves 𝑄𝑟

𝑘-VTD𝑟
𝑘. For every 𝑛 “ 1, . . . , 𝑁

set

r𝑈
ˇ

ˇ

𝐼𝑛
“ 𝑈

ˇ

ˇ

𝐼𝑛
´ �̃�𝑛𝜗𝑛, 𝜗𝑛 P 𝑃𝑟`1p𝐼𝑛,Rq,

where 𝜗𝑛p𝑡q “ 𝜗𝑛p𝑡q{𝜗
pt 𝑘´1

2 u`1q
𝑛 p𝑡`𝑛´1q with 𝜗𝑛 from Theorem 1.21, i.e., 𝜗𝑛 vanishes in all

p𝑟 ` 1q quadrature points of 𝑄𝑟
𝑘 and satisfies 𝜗pt 𝑘´1

2 u`1q
𝑛 p𝑡`𝑛´1q “ 1. The vector �̃�𝑛 P R𝑑 is

defined by

�̃�𝑛 :“

#

𝑈pt 𝑘´1
2 u`1qp𝑡`0 q ´ 𝑢pt 𝑘´1

2 u`1qp𝑡0q, 𝑛 “ 1,

𝑈pt 𝑘´1
2 u`1qp𝑡`𝑛´1q ´ r𝑈pt 𝑘´1

2 u`1qp𝑡´𝑛´1q, 𝑛 ą 1,

where 𝑢pt 𝑘´1
2 u`1qp𝑡0q is given by (1.4). Moreover, let r𝑈p𝑡´0 q “ 𝑈p𝑡´0 q. Then, if 𝐹 is

X

𝑘´1
2

\

-
times continuously differentiable on 𝐼, we have that r𝑈 P 𝑌𝑟`1 solves 𝑄𝑟

𝑘-VTD𝑟`1
𝑘`2.

1.3.3 Connections to collocation methods

In this subsection, we see that the (local) solution of 𝑄𝑟
𝑘-VTD𝑟`1

𝑙 with 1 ď 𝑙 ď 𝑘 ` 2,
which obviously includes 𝑄𝑟

𝑘-VTD𝑟`1
𝑘`2, can be characterized as the solution of the (local)

collocation problem with multiple nodes, as known e.g. from [37, p. 275], with respect to
the quadrature points of 𝑄𝑟

𝑘, i.e.,

Given r𝑈p𝑡´𝑛´1q P R𝑑, find r𝑈 P 𝑃𝑟`1p𝐼𝑛,R𝑑q such that r𝑈p𝑡`𝑛´1q “ r𝑈p𝑡´𝑛´1q and

𝑀 r𝑈 p𝑖`1q
p𝑡´𝑛 q “

d𝑖

d𝑡𝑖

´

𝐹
`

𝑡, r𝑈p𝑡q
˘

¯
ˇ

ˇ

ˇ

𝑡“𝑡´
𝑛

, 𝑖 “ 0, . . . ,
X

𝑘
2

\

, (1.18a)

𝑀 r𝑈 p𝑖`1q
p𝑡`𝑛´1q “

d𝑖

d𝑡𝑖

´

𝐹
`

𝑡, r𝑈p𝑡q
˘

¯ˇ

ˇ

ˇ

𝑡“𝑡`
𝑛´1

, if 𝑘 ě 1, 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

, (1.18b)

𝑀 r𝑈 1
p𝑡𝑛,𝑖q “ 𝐹

`

𝑡𝑛,𝑖, r𝑈p𝑡𝑛,𝑖q
˘

, 𝑖 “ 1, . . . , 𝑟 ´ 𝑘, (1.18c)

where r𝑈p𝑡´0 q “ 𝑢0. Here, 𝑡𝑛,𝑖 “
𝑡𝑛`𝑡𝑛´1

2
` 𝜏𝑛

2
𝑡𝑖, where 𝑡𝑖 denote the zeros of the p𝑟 ´ 𝑘qth

Jacobi-polynomial with respect to the weight p1 ` 𝑡qt 𝑘´1
2 u`1

p1 ´ 𝑡qt 𝑘
2 u`1, see also (1.15).

The following connection was found and proven in [14].
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Theorem 1.24 (Equivalence to collocation methods, cf. [14, Theorem 4.1])
Let 𝑟, 𝑘, 𝑙 P Z, 0 ď 𝑘 ď 𝑟, and 1 ď 𝑙 ď 𝑘 ` 2. Then, r𝑈 P 𝑃𝑟`1p𝐼𝑛,R𝑑q solves 𝑄𝑟

𝑘-VTD𝑟`1
𝑙

if and only if r𝑈 solves the collocation method (1.18) with respect to the quadrature points of
𝑄𝑟

𝑘.

Summarizing, we have that every solution of 𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2 also solves 𝑄𝑟
𝑘-VTD𝑟`1

𝑙 with
1 ď 𝑙 ď 𝑘 ` 2 as well as a collocation with respect to the quadrature points of 𝑄𝑟

𝑘 and vice
versa. This can be shortly described as

𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2 p“ 𝑄𝑟
𝑘-VTD𝑟`1

𝑙 with 1 ď 𝑙 ď 𝑘 ` 2

p“ collocation with respect to the quadrature points of 𝑄𝑟
𝑘.

Remark 1.25
Independent of the above findings, the connection between collocation methods and (post-
processed) numerically integrated discontinuous Galerkin methods (using the right-sided
Gauss–Radau quadrature), i.e., Theorem 1.24 for 𝑘 “ 0 ď 𝑟 and 𝑙 “ 2, was already ob-
served in [53]. Moreover, connections between collocation methods and the numerically inte-
grated continuous Galerkin–Petrov methods (using interpolatory quadrature formulas with
as many quadrature points as number of independent variational conditions) were shown
in [40, 41]. Certain equivalences between collocation methods and dG or cGP methods have
also been discussed in [26, Proposition 70.7]. ♣

1.3.4 Shortcut to error estimates

Error estimates for collocation methods with multiple nodes, as defined e.g. in [37, p. 275],
are well-known provided that 𝐹 and 𝑢 satisfy certain (regularity) assumptions. Unfortu-
nately, these conditions on 𝐹 and 𝑢 are often not explicitly given in the literature. Never-
theless, according to [37, p. 276, pp. 212–214], we shall state various error bounds for the
solution of (1.18) without specifying these assumptions. Moreover, global error estimates
can be derived by adapting techniques presented in [40, Theorem 2].

Proposition 1.26
Let r𝑈 denote the solution of the collocation method (1.18) and 𝑢 the exact solution of (1.1).
Then, assuming that 𝐹 and 𝑢 satisfy certain (regularity) assumptions, we have

max
1ď𝑛ď𝑁

›

›p𝑢 ´ r𝑈qp𝑡´𝑛 q
›

› ď 𝐶p𝐹, 𝑢q𝜏 2𝑟´𝑘`1 (1.19)

and

sup
𝑡P𝐼𝑛

›

›p𝑢 ´ r𝑈q
p𝑙q

p𝑡q
›

› ď 𝐶p𝐹, 𝑢q𝜏mint2𝑟´𝑘`1,p𝑟`1q`1´𝑙u, 0 ď 𝑙 ď 𝑟 ` 1, (1.20)

for all 1 ď 𝑛 ď 𝑁 .

The term 2𝑟 ´ 𝑘 ` 1 inside the minimum is due to the fact that the convergence order of
the collocation method is limited by the accuracy of the underlying quadrature formula 𝑄𝑟

𝑘

that is exactly 2𝑟 ´ 𝑘 ` 1. Note that the limitation is active for 𝑟 “ 𝑘 and 𝑙 “ 0 only.
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Exploiting the equivalence of 𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2 and the collocation method (1.18) as well as
the connection between 𝑄𝑟

𝑘-VTD𝑟
𝑘 and 𝑄𝑟

𝑘-VTD𝑟`1
𝑘`2 through the postprocessing and its re-

version by interpolation in the quadrature points of 𝑄𝑟
𝑘 (for details see [14, Proposition 4.5]),

we immediately also gain various results for the 𝑄𝑟
𝑘-VTD𝑟

𝑘 method.

Corollary 1.27 (Existence and uniqueness, cf. [14, Corollary 4.6])
If there is a solution r𝑈 P 𝑃𝑟`1p𝐼𝑛,R𝑑q of the collocation method with multiple nodes defined
by (1.18), then 𝑈 “ ℐ𝑟

𝑘
r𝑈 P 𝑃𝑟p𝐼𝑛,R𝑑q solves 𝑄𝑟

𝑘-VTD𝑟
𝑘. Furthermore, if r𝑈 is uniquely

defined as solution of (1.18), then so is 𝑈 as solution of 𝑄𝑟
𝑘-VTD𝑟

𝑘.

Corollary 1.28 (Global error estimates, cf. [14, Corollary 4.7])
Let (1.20) hold for the solution r𝑈 of (1.18) and the exact solution 𝑢 of (1.1). Then, we
have for the solution 𝑈 of 𝑄𝑟

𝑘-VTD𝑟
𝑘 and 0 ď 𝑙 ď 𝑟 that

sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝑈q
p𝑙q

p𝑡q
›

› ď sup
𝑡P𝐼𝑛

›

›p𝑢 ´ r𝑈q
p𝑙q

p𝑡q
›

› ` sup
𝑡P𝐼𝑛

›

›pr𝑈 ´ ℐ𝑟
𝑘
r𝑈q

p𝑙q
p𝑡q

›

› ď 𝐶p𝐹, 𝑢q𝜏 𝑟`1´𝑙

for all 1 ď 𝑛 ď 𝑁 .

Corollary 1.29 (Superconvergence in time mesh points, cf. [14, Corollary 4.8])
Let (1.19) hold for the solution r𝑈 of (1.18) and the exact solution 𝑢 of (1.1). Then, we
have

max
1ď𝑛ď𝑁

›

›p𝑢 ´ 𝑈qp𝑡´𝑛 q
›

› “ max
1ď𝑛ď𝑁

›

›p𝑢 ´ r𝑈qp𝑡´𝑛 q
›

› ď 𝐶p𝐹, 𝑢q𝜏 2𝑟´𝑘`1

for the solution 𝑈 of 𝑄𝑟
𝑘-VTD𝑟

𝑘.

Remark 1.30 (Superconvergence in quadrature points, cf. [14, Remark 4.9])
We obtain under the assumptions of Corollary 1.28 also a (lower order) superconvergence
estimate for the solution 𝑈 of 𝑄𝑟

𝑘-VTD𝑟
𝑘 in the quadrature points of 𝑄𝑟

𝑘 if 0 ď 𝑘 ă 𝑟. In
fact, let 𝑡𝑛,𝑖, 𝑖 “ 1, . . . , 𝑟 ´ 𝑘, denote the local quadrature points of 𝑄𝑟

𝑘 in the interior of 𝐼𝑛.
Then, we have for 1 ď 𝑛 ď 𝑁

›

›p𝑢 ´ 𝑈qp𝑡𝑛,𝑖q
›

› “
›

›p𝑢 ´ r𝑈qp𝑡𝑛,𝑖q
›

› ď 𝐶p𝐹, 𝑢q𝜏 p𝑟`1q`1.

In addition, we obtain
›

›p𝑢 ´ 𝑈q
p𝑙q

p𝑡´𝑛 q
›

› “
›

›p𝑢 ´ r𝑈q
p𝑙q

p𝑡´𝑛 q
›

› ď 𝐶p𝐹, 𝑢q𝜏 p𝑟`1q`1´𝑙, 0 ď 𝑙 ď
X

𝑘
2

\

,

and
›

›p𝑢 ´ 𝑈q
p𝑙q

p𝑡`𝑛´1q
›

› “
›

›p𝑢 ´ r𝑈q
p𝑙q

p𝑡`𝑛´1q
›

› ď 𝐶p𝐹, 𝑢q𝜏 p𝑟`1q`1´𝑙, 0 ď 𝑙 ď
X

𝑘´1
2

\

,

provided 𝑘 ě 1.
These superconvergence estimates especially imply
˜

𝑁
ÿ

𝑛“1

𝑄𝑟
𝑘,𝑛

”

}𝑢 ´ 𝑈}
2
ı

¸1{2

“

˜

𝑁
ÿ

𝑛“1

𝑄𝑟
𝑘,𝑛

”

}𝑢 ´ r𝑈}
2
ı

¸1{2

ď p𝑡𝑁 ´ 𝑡0q
1{2𝐶p𝐹, 𝑢q𝜏 p𝑟`1q`1,
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which compared to

˜

𝑁
ÿ

𝑛“1

ż

𝐼𝑛

›

›p𝑢 ´ 𝑈qp𝑡q
›

›

2
d𝑡

¸1{2

ď p𝑡𝑁 ´ 𝑡0q
1{2𝐶p𝐹, 𝑢q𝜏 𝑟`1

gives an extra order of convergence. ♣

1.3.5 Numerical results

In this subsection, we want to illustrate the effects of postprocessing by some computational
results. Hereby, we draw on the numerical data of [15, Section 7]. As in Subsection 1.2.4 we
consider the initial value problem (1.13) as test example. Moreover, for the calculations the
software Julia [18] have been used with floating point data type BigFloat with 512 bits.

We are interested in the error of the discrete solution 𝑈 and the error of the postprocessed
solution r𝑈 where the postprocessing is determined using the jumps of the derivatives, as
given in Corollary 1.23. The errors are measured in the norms

}𝑣}𝐿2 “

ˆ
ż 𝑡𝑁

𝑡0

›

›𝑣p𝑡q
›

›

2
d𝑡

˙1{2

, }𝑣}ℓ8 “ max
1ď𝑛ď𝑁

›

›𝑣p𝑡´𝑛 q
›

›

with } ¨ } denoting the Euclidean norm in R𝑑.
Numerical results for 𝑄6

𝑘-VTD6
𝑘 with 𝑘 “ 0, 5, 6 are presented in Table 1.3. The given

errors are those obtained for 256 and 512 time steps. In addition, the associated experimental
orders of convergence (eoc) and the theoretically predicted convergence orders (theo) are
listed.

Overall, our theoretical findings are well confirmed by the numerical data. The error of
the discrete solution as well as the error of the postprocessed solution show the expected
(super-)convergence orders. Moreover, the postprocessing yields the predicted improve-
ments.

Especially note that, as expected from Remark 1.18, for 𝑄6
0-VTD6

0 we have a supercon-
vergence behavior of the derivative in the time mesh points only after postprocessing since
only the postprocessed solution satisfies appropriate collocation conditions. On the other
hand, for 𝑄6

𝑘-VTD6
𝑘, 𝑘 “ 5, 6, we see that }p𝑢 ´ 𝑈q1}ℓ8 “ }p𝑢 ´ r𝑈q1}ℓ8 , which is clear by

construction of the postprocessing. Nevertheless, the expected (super-)convergence orders
are obtained since collocation conditions are fulfilled already by the discrete solution 𝑈 in
these cases. Furthermore, note that for 𝑄6

6-VTD6
6 the postprocessing does not lead to an

improvement of the error itself, whereas the 𝐿2-norm of the time derivative of the error is
improved. This also is in agreement with our theory, cf. Corollary 1.28 and (1.20).

For further numerical results and a more detailed discussion we refer to [15, Section 7].
Also note that in [14, Section 6] similar investigations and findings were made for another
test problem.
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Table 1.3: Error of 𝑄6
𝑘-VTD6

𝑘, 𝑘 “ 0, 5, 6, in different (semi-)norms and associated (experi-
mental) convergence orders before and after postprocessing

𝑄6
0-VTD6

0 eoc 𝑄6
5-VTD6

5 eoc 𝑄6
6-VTD6

6 eoc
(theo) (theo) (theo)

}𝑢 ´ 𝑈}𝐿2 2.607e-11 7.00 2.828e-10 7.01 2.092e-09 6.98
2.042e-13 (7) 2.188e-12 (7) 1.653e-11 (7)

}𝑢 ´ r𝑈}𝐿2 9.898e-13 7.99 5.008e-11 7.99 1.184e-09 6.99
3.881e-15 (8) 1.972e-13 (8) 9.295e-12 (7)

}𝑢 ´ 𝑈}ℓ8 1.385e-21 13.00 4.552e-12 7.98 7.584e-10 7.01
1.685e-25 (13) 1.798e-14 (8) 5.891e-12 (7)

}p𝑢 ´ 𝑈q1}𝐿2 7.699e-09 6.00 1.641e-08 6.00 3.871e-08 6.02
1.207e-10 (6) 2.564e-10 (6) 5.954e-10 (6)

}p𝑢 ´ r𝑈q1}𝐿2 1.531e-10 6.99 1.632e-09 6.99 7.753e-09 6.99
1.201e-12 (7) 1.281e-11 (7) 6.120e-11 (7)

}p𝑢 ´ 𝑈q1}ℓ8 3.573e-09 5.99 6.361e-12 7.99 8.736e-10 6.96
5.605e-11 (6) 2.504e-14 (8) 7.012e-12 (7)

}p𝑢 ´ r𝑈q1}ℓ8 1.522e-21 13.01 6.361e-12 7.99 8.735e-10 6.96
1.851e-25 (13) 2.504e-14 (8) 7.012e-12 (7)

1.4 Results for affine linear problems

The following section is restricted to the study of affine linear problems of the form

Find 𝑢 : 𝐼 Ñ R𝑑 such that

𝑀𝑢1
p𝑡q “ 𝑓p𝑡q ´ 𝐴𝑢p𝑡q, 𝑢p𝑡0q “ 𝑢0 P R𝑑, (1.21)

where 𝑀,𝐴 P R𝑑ˆ𝑑 are time-independent matrices and 𝑀 is regular. Thus, in the general
setting we have 𝐹 p𝑡, 𝑢q “ 𝑓p𝑡q ´ 𝐴𝑢.

1.4.1 A slight modification of the method

In this subsection, we want to introduce a slight modification of the variational time dis-
cretization method for the more structured affine linear problem (1.21). As we will see
later, many schemes of practical relevance can be nicely described in the modified structure.
Moreover, the modification is also quite interesting from a theoretical point of view.

Let 0 ď 𝑘 ď 𝑟. In order to solve (1.21) numerically, we define the (local) I𝑛-VTD𝑟
𝑘

`

𝑔
˘

problem by
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Given 𝑈p𝑡´𝑛´1q P R𝑑, find 𝑈 P 𝑃𝑟p𝐼𝑛,R𝑑q such that

𝑈p𝑡`𝑛´1q “ 𝑈p𝑡´𝑛´1q, if 𝑘 ě 1, (1.22a)

𝑀𝑈 p𝑖`1q
p𝑡´𝑛 q “ 𝑔p𝑖q

p𝑡´𝑛 q ´ 𝐴𝑈 p𝑖q
p𝑡´𝑛 q, if 𝑘 ě 2, 𝑖 “ 0, . . . ,

X

𝑘
2

\

´ 1, (1.22b)

𝑀𝑈 p𝑖`1q
p𝑡`𝑛´1q “ 𝑔p𝑖q

p𝑡`𝑛´1q ´ 𝐴𝑈 p𝑖q
p𝑡`𝑛´1q, if 𝑘 ě 3, 𝑖 “ 0, . . . ,

X

𝑘´1
2

\

´ 1, (1.22c)

and

I𝑛

“`

𝑀𝑈 1, 𝜙
˘‰

` 𝛿0,𝑘
`

𝑀
“

𝑈
‰

𝑛´1
, 𝜙p𝑡`𝑛´1q

˘

“ I𝑛

“`

𝑔 ´ 𝐴𝑈,𝜙
˘‰

@𝜙 P 𝑃𝑟´𝑘p𝐼𝑛,R𝑑
q,

(1.22d)
where 𝑈p𝑡´0 q “ 𝑢0 and 𝑔 is some approximation of 𝑓 , details will be given later on. As before
I𝑛 denotes an integrator, typically the integral over 𝐼𝑛 or a quadrature formula.

First of all, we want to point out the main differences between the methods given by (1.2)
and by (1.22). Also note that in the notation I𝑛-VTD𝑟

𝑘

`

𝑔
˘

the approximation 𝑔 itself is
indicated instead of an approximation operator.

• Collocation conditions: In (1.2b) and (1.2c) the “real” right-hand side appears while
in (1.22b) and (1.22c) usually an approximation of the right-hand side (𝑔 instead of
𝑓) is used.

• Variational condition: In case that the operator ℐ𝑛 does not preserve polynomials up
to degree 𝑟, we have ℐ𝑛p𝑓 ´ 𝐴𝑈q “ ℐ𝑛𝑓 ´ 𝐴ℐ𝑛𝑈 ‰ ℐ𝑛𝑓 ´ 𝐴𝑈 in general. Thus, the
variational conditions (1.2d) and (1.22d) even differ for the affine linear problem (1.21).

• The approximation 𝑔 of 𝑓 usually does not provide global regularity properties. There-
fore, even if 𝑓 is sufficiently smooth, the solution 𝑈 of (1.22) is

`

min
␣X

𝑘´1
2

\

, 𝑘𝑔 ` 1
(˘

-
times continuously differentiable only. Here 𝑘𝑔 ě ´1 denotes the largest integer such
that 𝑔 P 𝐶𝑘𝑔p𝐼q.

Remark 1.31
Applied to the affine linear problem (1.21) the methods I𝑛-VTD𝑟

𝑘pℐ𝑛q defined by (1.2) and
I𝑛-VTD𝑟

𝑘pℐ𝑛𝑓q defined by (1.22) are equivalent if ℐ𝑛 preserves polynomials of degree less
than or equal to 𝑟 and additionally satisfies that p𝑣´ℐ𝑛𝑣qp𝑖qp𝑡`𝑛´1q “ 0 for 0 ď 𝑖 ď

X

𝑘´1
2

\

´ 1

as well as p𝑣 ´ ℐ𝑛𝑣qp𝑖qp𝑡´𝑛 q “ 0 for 0 ď 𝑖 ď
X

𝑘
2

\

´ 1.
Especially, we have for example that

I𝑛-VTD𝑟
𝑘 p“ I𝑛-VTD𝑟

𝑘p𝑓q,

I𝑛-VTD𝑟
𝑘pℐ𝑟

𝑘q p“ I𝑛-VTD𝑟
𝑘pℐ𝑟

𝑘𝑓q for all 0 ď 𝑘 ď 𝑟,

I𝑛-VTD𝑟
𝑘pℐ𝑟`1

𝑘`2q p“ I𝑛-VTD𝑟
𝑘pℐ𝑟`1

𝑘`2𝑓q for all 0 ď 𝑘 ď 𝑟 ´ 1,

where ℐ𝑟
𝑘 is the Hermite interpolation operator associated to the quadrature rule 𝑄𝑟

𝑘 deter-
mined by (1.15). Note that for the last equivalence the case 𝑟 “ 𝑘 needs to be excluded
since otherwise ℐ𝑟`1

𝑘`2𝑓 would not be well-defined. ♣
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1.4.2 Postprocessing for the modified method

Similar to the postprocessing of Subsection 1.3.2 we can also define a postprocessing for
the modified method. Recall that 𝑄𝑟

𝑘 denotes the quadrature rule associated to VTD𝑟
𝑘

determined by (1.15).

Theorem 1.32 (Postprocessing 𝑄𝑟
𝑘-VTD𝑟

𝑘p𝑔q ⇝̌ 𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2p𝑔q)
Let 𝑟, 𝑘, P Z, 0 ď 𝑘 ď 𝑟, and suppose that 𝑈 P 𝑌𝑟 solves 𝑄𝑟

𝑘-VTD𝑟
𝑘

`

𝑔
˘

. For 𝑛 “ 1, . . . , 𝑁
set

q𝑈
ˇ

ˇ

𝐼𝑛
“ 𝑈

ˇ

ˇ

𝐼𝑛
` �̌�𝑛𝜗𝑛, 𝜗𝑛 P 𝑃𝑟`1p𝐼𝑛,Rq,

where 𝜗𝑛 vanishes in the p𝑟`1q quadrature points of 𝑄𝑟
𝑘 and satisfies 𝜗pt 𝑘

2 u`1q
𝑛 p𝑡´𝑛 q “ 1 while

the vector �̌�𝑛 P R𝑑 is defined by

�̌�𝑛 “ 𝑀´1
´

𝑔pt 𝑘
2 uqp𝑡´𝑛 q ´ 𝐴𝑈pt 𝑘

2 uqp𝑡´𝑛 q ´ 𝑀𝑈pt 𝑘
2 u`1qp𝑡´𝑛 q

¯

. (1.23)

Moreover, let q𝑈p𝑡´0 q “ 𝑈p𝑡´0 q. Then, q𝑈 P 𝑌𝑟`1 solves 𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2

`

𝑔
˘

.

Proof. The argumentation is quite analog to that of [14, Theorem 3.1]. But for the sake
of completeness and clarity we give it here. Especially, it can be seen that we do not need
global regularity assumptions on 𝑔. We have to verify that q𝑈 satisfies all conditions of
𝑄𝑟

𝑘-VTD𝑟`1
𝑘`2

`

𝑔
˘

where 𝑄𝑟
𝑘 is the quadrature rule associated to VTD𝑟

𝑘, which is exact for
polynomials up to degree 2𝑟 ´ 𝑘.

First of all, we show an identity needed later. The special form of 𝜗𝑛, the exactness of
𝑄𝑟

𝑘, and integration by parts yield

𝑄𝑟
𝑘

“

𝜗1
𝑛𝜙

‰

“

ż

𝐼𝑛

𝜗1
𝑛p𝑡q𝜙p𝑡q d𝑡 “ ´

ż

𝐼𝑛

𝜗𝑛p𝑡q𝜙1
p𝑡q d𝑡 ` p𝜗𝑛𝜙q

ˇ

ˇ

𝑡´
𝑛

𝑡`
𝑛´1

“ ´𝑄𝑟
𝑘

“

𝜗𝑛𝜙
1
‰

loooomoooon

“0

´ 𝛿0,𝑘p𝜗𝑛𝜙qp𝑡`𝑛´1q “ ´𝛿0,𝑘p𝜗𝑛𝜙qp𝑡`𝑛´1q @𝜙 P 𝑃𝑟´𝑘p𝐼𝑛,Rq. (1.24)

Precisely, we used that both 𝜗1
𝑛𝜙 and 𝜗𝑛𝜙

1 are polynomials of maximal degree 2𝑟 ´ 𝑘 and
that 𝜗𝑛 vanishes in all quadrature points, especially in 𝑡´𝑛 and for 𝑘 ě 1 also in 𝑡`𝑛´1.

For 𝑘 ě 1 we have 𝜗𝑛p𝑡`𝑛´1q “ 𝜗𝑛p𝑡´𝑛 q “ 0. Therefore, the initial condition holds due
to q𝑈p𝑡`𝑛´1q “ 𝑈p𝑡`𝑛´1q “ 𝑈p𝑡´𝑛´1q “ q𝑈p𝑡´𝑛´1q. For 𝑘 “ 0 it is somewhat more complicated
to prove q𝑈p𝑡`𝑛´1q “ q𝑈p𝑡´𝑛´1q, for details see (iii) below. The remaining conditions can be
verified as follows.

(i) Conditions at 𝑡´𝑛 for 0 ď 𝑖 ď
X

𝑘`2
2

\

´ 2 “
X

𝑘
2

\

´ 1:

We obtain from the definitions of q𝑈 and 𝑈

𝑀 q𝑈 p𝑖`1q
p𝑡´𝑛 q “ 𝑀𝑈 p𝑖`1q

p𝑡´𝑛 q ` 𝑀�̌�𝑛𝜗
p𝑖`1q
𝑛 p𝑡´𝑛 q

loooomoooon

“0

“ 𝑔p𝑖q
p𝑡´𝑛 q ´ 𝐴𝑈 p𝑖q

p𝑡´𝑛 q

“ 𝑔p𝑖q
p𝑡´𝑛 q ´ 𝐴q𝑈 p𝑖q

p𝑡´𝑛 q

since the derivatives of 𝑈 and q𝑈 in 𝑡´𝑛 coincide up to order
X

𝑘
2

\

due to the definition
of 𝜗𝑛.
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(ii) Condition at 𝑡´𝑛 for 𝑖 “
X

𝑘`2
2

\

´ 1 “
X

𝑘
2

\

:
Just like above we get

𝑀 q𝑈pt 𝑘
2 u`1qp𝑡´𝑛 q “ 𝑀𝑈pt 𝑘

2 u`1qp𝑡´𝑛 q ` 𝑀�̌�𝑛𝜗
pt 𝑘

2 u`1q
𝑛 p𝑡´𝑛 q

loooooomoooooon

“1

“ 𝑀𝑈pt 𝑘
2 u`1qp𝑡´𝑛 q ` 𝑔pt 𝑘

2 uqp𝑡´𝑛 q ´ 𝐴𝑈pt 𝑘
2 uqp𝑡´𝑛 q ´ 𝑀𝑈pt 𝑘

2 u`1qp𝑡´𝑛 q

“ 𝑔pt 𝑘
2 uqp𝑡´𝑛 q ´ 𝐴𝑈pt 𝑘

2 uqp𝑡´𝑛 q “ 𝑔pt 𝑘
2 uqp𝑡´𝑛 q ´ 𝐴q𝑈pt 𝑘

2 uqp𝑡´𝑛 q,

where additionally the definition of �̌�𝑛 was used.

(iii) Variational condition:
We have to prove that 𝑄𝑟

𝑘

“

p𝑀 q𝑈 1, 𝜙q
‰

“ 𝑄𝑟
𝑘

“

p𝑔´𝐴q𝑈, 𝜙q
‰

for all 𝜙 P 𝑃p𝑟`1q´p𝑘`2qp𝐼𝑛,R𝑑q.
Actually, we can even test with functions 𝜙 P 𝑃𝑟´𝑘p𝐼𝑛,R𝑑q.

We first study the case 𝑘 ě 1. By the definitions of q𝑈 and 𝑈 , the identity (1.24), and
the fact that 𝑈 and q𝑈 coincide at all quadrature points we have

𝑄𝑟
𝑘

”

`

𝑀 q𝑈 1, 𝜙
˘

ı

“ 𝑄𝑟
𝑘

”

`

𝑀𝑈 1, 𝜙
˘

ı

` 𝑄𝑟
𝑘

”

`

𝑀�̌�𝑛𝜗
1
𝑛, 𝜙

˘

ı

“ 𝑄𝑟
𝑘

”

`

𝑔 ´ 𝐴𝑈,𝜙
˘

ı

` 𝑄𝑟
𝑘

”

𝜗1
𝑛

`

𝑀�̌�𝑛, 𝜙
˘

ı

looooooooomooooooooon

“0, since
p𝑀�̌�𝑛,𝜙qP𝑃𝑟´𝑘p𝐼𝑛,Rq

“ 𝑄𝑟
𝑘

”

`

𝑔 ´ 𝐴q𝑈, 𝜙
˘

ı

@𝜙 P 𝑃𝑟´𝑘p𝐼𝑛,R𝑑
q.

Now let 𝑘 “ 0. The same arguments as for 𝑘 ě 1 here yield for all 𝜙 P 𝑃𝑟p𝐼𝑛,R𝑑q

𝑄𝑟
0

”

`

𝑀 q𝑈 1, 𝜙
˘

ı

“ 𝑄𝑟
0

”

`

𝑔 ´ 𝐴q𝑈, 𝜙
˘

ı

´
`

𝑀
“

𝑈
‰

𝑛´1
, 𝜙p𝑡`𝑛´1q

˘

´ 𝜗𝑛p𝑡`𝑛´1q
`

𝑀�̌�𝑛, 𝜙p𝑡`𝑛´1q
˘

.

We study the last two terms. Using the definitions of the jump
“

𝑈
‰

𝑛´1
and of q𝑈 , we

find
“

𝑈
‰

𝑛´1
` �̌�𝑛𝜗𝑛p𝑡`𝑛´1q “ q𝑈p𝑡`𝑛´1q ´ 𝑈p𝑡´𝑛´1q “

“

q𝑈
‰

𝑛´1
, (1.25)

where we also exploited that 𝜗𝑛´1p𝑡
´
𝑛´1q “ 0. Hence, we have

𝑄𝑟
0

”

`

𝑀 q𝑈 1, 𝜙
˘

ı

`
`

𝑀
“

q𝑈
‰

𝑛´1
, 𝜙p𝑡`𝑛´1q

˘

“ 𝑄𝑟
0

”

`

𝑔 ´ 𝐴q𝑈, 𝜙
˘

ı

@𝜙 P 𝑃𝑟p𝐼𝑛,R𝑑
q.

(1.26)

Choosing the special test functions 𝜙𝑗 P 𝑃𝑟p𝐼𝑛,R𝑑q, 1 ď 𝑗 ď 𝑑, that vanish in the 𝑟
inner quadrature points of 𝑄𝑟

0 and satisfy 𝜙𝑗p𝑡
`
𝑛´1q “ 𝑒𝑗 as well as having in mind (ii),

we find 𝑀
“

q𝑈
‰

𝑛´1
“ 0 component by component. Thereby, at once we have proven

the initial condition and verified the needed variational condition since now also the
jump term in (1.26) can be dropped.
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(iv) Conditions at 𝑡`𝑛´1 for 0 ď 𝑖 ď
X

𝑘`2´1
2

\

´ 2 “
X

𝑘´1
2

\

´ 1:
With an argumentation similar to that in (i) we gain

𝑀 q𝑈 p𝑖`1q
p𝑡`𝑛´1q “ 𝑀𝑈 p𝑖`1q

p𝑡`𝑛´1q ` 𝑀�̌�𝑛𝜗
p𝑖`1q
𝑛 p𝑡`𝑛´1q

looooomooooon

“0

“ 𝑔p𝑖q
p𝑡`𝑛´1q ´ 𝐴𝑈 p𝑖q

p𝑡`𝑛´1q

“ 𝑔p𝑖q
p𝑡`𝑛´1q ´ 𝐴q𝑈 p𝑖q

p𝑡`𝑛´1q.

(v) Condition at 𝑡`𝑛´1 for 𝑖 “
X

𝑘`2´1
2

\

´ 1 “
X

𝑘´1
2

\

if 𝑘 ě 1:
It remains to prove that

𝑀 q𝑈pt 𝑘´1
2 u`1qp𝑡`𝑛´1q “ 𝑔pt 𝑘´1

2 uqp𝑡`𝑛´1q ´ 𝐴q𝑈pt 𝑘´1
2 uqp𝑡`𝑛´1q.

We use the variational condition for q𝑈 , already shown in (iii), with specially chosen
test functions 𝜙𝑗 P 𝑃𝑟´𝑘p𝐼𝑛,R𝑑q, 1 ď 𝑗 ď 𝑑, that vanish in all inner quadrature points
of 𝑄𝑟

𝑘, i.e.,

𝜙𝑗p𝑡𝑛,𝑖q “ 0, 𝑖 “ 1, . . . , 𝑟 ´ 𝑘, and satisfy 𝜙𝑗p𝑡
`
𝑛´1q “ 𝑒𝑗.

Since 𝑘 ě 1 here, we have that

𝑄𝑟
𝑘

”

`

𝑀 q𝑈 1, 𝜙𝑗

˘

ı

“ 𝑄𝑟
𝑘

”

`

𝑔 ´ 𝐴q𝑈, 𝜙𝑗

˘

ı

, 𝑗 “ 1, . . . , 𝑑.

The special choices of 𝜙𝑗, the definition of the quadrature rule, and the already known
identities from (i), (ii), and (iv) yield after a short calculation using Leibniz’ rule for
the 𝑖th derivative that

𝑄𝑟
𝑘

”

`

𝑀 q𝑈 1, 𝜙𝑗

˘

ı

“ 𝑄𝑟
𝑘

”

`

𝑔 ´ 𝐴q𝑈, 𝜙𝑗

˘

ı

, 𝑗 “ 1, . . . , 𝑑,

ô 𝑤𝐿

t 𝑘´1
2 u
𝑀 q𝑈pt 𝑘´1

2 u`1qp𝑡`𝑛´1q ¨ 𝜙𝑗p𝑡
`
𝑛´1q

looomooon

“𝑒𝑗

“ 𝑤𝐿

t 𝑘´1
2 u

´

𝑔pt 𝑘´1
2 uqp𝑡`𝑛´1q ´ 𝐴q𝑈pt 𝑘´1

2 uqp𝑡`𝑛´1q

¯

¨ 𝜙𝑗p𝑡
`
𝑛´1q

looomooon

“𝑒𝑗

, 𝑗 “ 1, . . . , 𝑑,

ô 𝑀 q𝑈pt 𝑘´1
2 u`1qp𝑡`𝑛´1q “ 𝑔pt 𝑘´1

2 uqp𝑡`𝑛´1q ´ 𝐴q𝑈pt 𝑘´1
2 uqp𝑡`𝑛´1q.

Note that here we also used that 𝑤𝐿

t 𝑘´1
2 u

‰ 0, cf. (1.16).

Collecting the above arguments, we see that q𝑈 solves 𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2

`

𝑔
˘

.

As we already noticed above, one further issue is that in general 𝑔 is not globally smooth
and so also the discrete solution does not possess higher regularity properties. Therefore, we
cannot expect that the alternative definition of the postprocessing, based on the correction
of jumps, is equivalent to the postprocessing of Theorem 1.32 anymore.
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Proposition 1.33
The correction vectors �̌�𝑛 P R𝑑 defined in (1.23) for the postprocessing presented in Theo-
rem 1.32 could be alternatively calculated for 𝑛 ą 1 by

�̌�𝑛 “
´1

𝜗𝑛p𝑡`𝑛´1q

ˆ

𝑈p𝑡`𝑛´1q ´ q𝑈p𝑡´𝑛´1q

˙

, if 𝑘 “ 0,

�̌�𝑛 “
´1

𝜗
pt 𝑘´1

2 u`1q
𝑛 p𝑡`𝑛´1q

ˆ

𝑈pt 𝑘´1
2 u`1qp𝑡`𝑛´1q ´ q𝑈pt 𝑘´1

2 u`1qp𝑡´𝑛´1q

´ 𝑀´1
”

𝑔pt 𝑘´1
2 uq

ı

𝑛´1
` 𝑀´1𝐴

”

𝑈pt 𝑘´1
2 uq

ı

𝑛´1

˙

, if 𝑘 ě 1,

and for 𝑛 “ 1 by

�̌�1 “
´1

𝜗
pt 𝑘´1

2 u`1q
1 p𝑡`0 q

ˆ

𝑈pt 𝑘´1
2 u`1qp𝑡`0 q ´ 𝑢pt 𝑘´1

2 u`1qp𝑡0q

´
ÿt 𝑘´1

2 u

𝑗“0

`

´𝑀´1𝐴
˘𝑗
𝑀´1

`

𝑔 ´ 𝑓
˘pt 𝑘´1

2 u´𝑗q
p𝑡`0 q

˙

,

where 𝑢pt 𝑘´1
2 u`1qp𝑡0q is defined via (1.4).

The proposition shows that in general the correction vector cannot be determined without
solving a linear equation system with system matrix 𝑀 if 𝑔 is not globally smooth. However,
if 𝑔 is at least

X

𝑘´1
2

\

-times continuously differentiable and preserves 𝑓 and its derivatives up
to order

X

𝑘´1
2

\

at 𝑡`0 , then �̌�𝑛, 𝑛 ě 1, can still be easily calculated as jump correction.

Proof. The basic ideas of the proof can be adopted from the proof of [14, Proposition 3.2].
However, many details have to be adapted since 𝑔 cannot be assumed to be globally suffi-
ciently smooth.

For 𝑘 “ 0, we get from (1.25) combined with
“

q𝑈
‰

𝑛´1
“ 0, which was shown just be-

low (1.26), that �̌�𝑛 “ ´1
𝜗𝑛p𝑡`

𝑛´1q

“

𝑈
‰

𝑛´1
“ ´1

𝜗𝑛p𝑡`
𝑛´1q

`

𝑈p𝑡`𝑛´1q ´ q𝑈p𝑡´𝑛´1q
˘

. Taking into account

that q𝑈p𝑡´0 q “ 𝑈p𝑡´0 q “ 𝑢p𝑡0q “ 𝑢0, we are done in this case.
Otherwise, for 𝑘 ě 1, using the definition of the postprocessing and (v) of the proof of

Theorem 1.32, we obtain that

𝑀𝑈pt 𝑘´1
2 u`1qp𝑡`𝑛´1q ` 𝑀�̌�𝑛𝜗

pt 𝑘´1
2 u`1q

𝑛 p𝑡`𝑛´1q “ 𝑀 q𝑈pt 𝑘´1
2 u`1qp𝑡`𝑛´1q

“ 𝑔pt 𝑘´1
2 uqp𝑡`𝑛´1q ´ 𝐴q𝑈pt 𝑘´1

2 uqp𝑡`𝑛´1q.
(1.27)

Furthermore, we have 𝜗p𝑖q
𝑛 p𝑡`𝑛´1q “ 0 for 𝑖 “ 0, . . . ,

X

𝑘´1
2

\

and therefore

q𝑈pt 𝑘´1
2 uqp𝑡`𝑛´1q “ 𝑈pt 𝑘´1

2 uqp𝑡`𝑛´1q.
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If 𝑔 is an approximation of 𝑓 which is not globally smooth, then also the derivatives of 𝑈
are not necessarily continuous up to a sufficiently high order anymore. So, we get for 𝑛 ą 1

𝑔pt 𝑘´1
2 uqp𝑡`𝑛´1q ´ 𝐴𝑈pt 𝑘´1

2 uqp𝑡`𝑛´1q

“ 𝑔pt 𝑘´1
2 uqp𝑡´𝑛´1q ´ 𝐴𝑈pt 𝑘´1

2 uqp𝑡´𝑛´1q `

”

𝑔pt 𝑘´1
2 uq ´ 𝐴𝑈pt 𝑘´1

2 uq
ı

𝑛´1

“ 𝑔pt 𝑘´1
2 uqp𝑡´𝑛´1q ´ 𝐴q𝑈pt 𝑘´1

2 uqp𝑡´𝑛´1q `

”

𝑔pt 𝑘´1
2 uq ´ 𝐴𝑈pt 𝑘´1

2 uq
ı

𝑛´1

“ 𝑀 q𝑈pt 𝑘´1
2 u`1qp𝑡´𝑛´1q `

”

𝑔pt 𝑘´1
2 uq ´ 𝐴𝑈pt 𝑘´1

2 uq
ı

𝑛´1
,

where also 𝜗
p𝑖q
𝑛´1p𝑡

´
𝑛´1q “ 0 for 𝑖 “ 0, . . . ,

X

𝑘
2

\

and (i) or (ii), respectively, of the proof of
Theorem 1.32 were used. Altogether, exploiting that 𝑀 is regular, an easy manipulation of
the identities yields

�̌�𝑛 “
´1

𝜗
pt 𝑘´1

2 u`1q
𝑛 p𝑡`𝑛´1q

ˆ

𝑈pt 𝑘´1
2 u`1qp𝑡`𝑛´1q ´ q𝑈pt 𝑘´1

2 u`1qp𝑡´𝑛´1q

´ 𝑀´1
”

𝑔pt 𝑘´1
2 uq

ı

𝑛´1
` 𝑀´1𝐴

”

𝑈pt 𝑘´1
2 uq

ı

𝑛´1

˙

for 𝑛 ą 1.

It remains to derive the formula for 𝑛 “ 1. Since 𝑈 satisfies (1.22c) and recalling the
definition (1.4) of 𝑢p𝑖qp𝑡0q, we have

`

𝑈 ´ 𝑢
˘p𝑖q

p𝑡`0 q “ 𝑀´1
`

𝑔 ´ 𝑓
˘p𝑖´1q

p𝑡`0 q ´ 𝑀´1𝐴
`

𝑈 ´ 𝑢
˘p𝑖´1q

p𝑡`0 q for 𝑖 “ 1, . . . ,
X

𝑘´1
2

\

.

By recursion and exploiting that 𝑈p𝑡`0 q “ 𝑈p𝑡´0 q “ 𝑢0 “ 𝑢p𝑡0q, we obtain

`

𝑈 ´ 𝑢
˘p𝑖q

p𝑡`0 q “

𝑖
ÿ

𝑗“1

`

´𝑀´1𝐴
˘𝑗´1

𝑀´1
`

𝑔 ´ 𝑓
˘p𝑖´𝑗q

p𝑡`0 q for 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

.

Therefore, the right-hand side of (1.27) can be rewritten for 𝑛 “ 1 as follows

𝑔pt 𝑘´1
2 uqp𝑡`0 q ´ 𝐴q𝑈pt 𝑘´1

2 uqp𝑡`0 q “ 𝑔pt 𝑘´1
2 uqp𝑡`0 q ´ 𝐴𝑈pt 𝑘´1

2 uqp𝑡`0 q

“ 𝑀𝑢pt 𝑘´1
2 u`1qp𝑡0q ` p𝑔 ´ 𝑓qpt 𝑘´1

2 uqp𝑡`0 q ´ 𝐴p𝑈 ´ 𝑢qpt 𝑘´1
2 uqp𝑡`0 q

“ 𝑀𝑢pt 𝑘´1
2 u`1qp𝑡0q ` 𝑀

ÿt 𝑘´1
2 u

𝑗“0

`

´𝑀´1𝐴
˘𝑗
𝑀´1

`

𝑔 ´ 𝑓
˘pt 𝑘´1

2 u´𝑗q
p𝑡`0 q.

This results in

�̌�1 “
´1

𝜗
pt 𝑘´1

2 u`1q
1 p𝑡`0 q

ˆ

𝑈pt 𝑘´1
2 u`1qp𝑡`0 q ´ 𝑢pt 𝑘´1

2 u`1qp𝑡0q

´
ÿt 𝑘´1

2 u

𝑗“0

`

´𝑀´1𝐴
˘𝑗
𝑀´1

`

𝑔 ´ 𝑓
˘pt 𝑘´1

2 u´𝑗q
p𝑡`0 q

˙

,

which completes the proof.
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Remark 1.34
Theorem 1.32 also enables us to apply the postprocessing properly to the exactly integrated
variational time discretization method VTD𝑟

𝑘p𝑓q. However, some trick is necessary.
For 𝑓 P 𝐶t 𝑘´1

2 up𝐼𝑛,R𝑑q define Π𝑟
𝑘𝑓 P 𝑃𝑟p𝐼𝑛,R𝑑q by

pΠ𝑟
𝑘𝑓q

p𝑖q
p𝑡`𝑛´1q “ 𝑓 p𝑖q

p𝑡`𝑛´1q, if 𝑘 ě 1, 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

, (1.28a)

pΠ𝑟
𝑘𝑓q

p𝑖q
p𝑡´𝑛 q “ 𝑓 p𝑖q

p𝑡´𝑛 q, if 𝑘 ě 2, 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1, (1.28b)
ż

𝐼𝑛

`

Π𝑟
𝑘𝑓p𝑡q, 𝜙p𝑡q

˘

d𝑡 “

ż

𝐼𝑛

`

𝑓p𝑡q, 𝜙p𝑡q
˘

d𝑡 @𝜙 P 𝑃𝑟´𝑘p𝐼𝑛,R𝑑
q. (1.28c)

Then, it obviously holds

VTD𝑟
𝑘p𝑓q p“ VTD𝑟

𝑘

`

Π𝑟
𝑘𝑓
˘

p“ 𝑄𝑟
𝑘-VTD𝑟

𝑘

`

Π𝑟
𝑘𝑓
˘

,

where for the last equivalence we used that all terms in the variational condition are of
maximal polynomial degree 2𝑟 ´ 𝑘 and, thus, are integrated exactly by 𝑄𝑟

𝑘.
The application of the postprocessing of Theorem 1.32 therefore yields

VTD𝑟
𝑘p𝑓q p“ 𝑄𝑟

𝑘-VTD𝑟
𝑘

`

Π𝑟
𝑘𝑓
˘

⇝̌ 𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2

`

Π𝑟
𝑘𝑓
˘

p“ VTD𝑟`1
𝑘`2pΠ

𝑟
𝑘𝑓q

for all 0 ď 𝑘 ď 𝑟. For the above argument it is not needed that (1.28a) holds also for
𝑖 “

X

𝑘´1
2

\

. However, this additional feature of Π𝑟
𝑘 guarantees that the postprocessed solution

always is
X

𝑘
2

\

-times continuously differentiable if 𝑓 is globally
`X

𝑘
2

\

´ 1
˘

-times continuously
differentiable. ♣

1.4.3 Interpolation cascade

Recall that ℐ𝑟
𝑘 is the Hermite interpolation operator associated to the quadrature rule 𝑄𝑟

𝑘

determined by (1.15). ℐ𝑟
𝑘 is a projection operator onto polynomials of maximal degree 𝑟.

The quadrature rule 𝑄𝑟
𝑘 is exact for polynomials up to degree 2𝑟 ´ 𝑘.

The presented postprocessing techniques essentially use that the quadrature formula 𝑄𝑟
𝑘 is

well-suited to the VTD𝑟
𝑘 method. After one postprocessing step, however, we stay with 𝑄𝑟

𝑘,
but the basic method has changed to VTD𝑟`1

𝑘`2. This does not match anymore. Therefore,
we ask whether the quadrature rule can be changed and readjusted.

In a first step, we will consider 𝑄𝑟
𝑘-VTD𝑟

𝑘

`

ℐ𝑟`1
𝑘`2𝑓

˘

for 0 ď 𝑘 ď 𝑟´1. Here the case 𝑟 “ 𝑘 is
excluded in order to ensure that ℐ𝑟`1

𝑘`2𝑓 is well-defined. We observe the following interesting
property.

Theorem 1.35 (Cf. [14, Theorem 5.1])
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟 ´ 1. Suppose that 𝑈 P 𝑌𝑟 solves 𝑄𝑟

𝑘-VTD𝑟
𝑘

`

ℐ𝑟`1
𝑘`2𝑓

˘

. Determine
r𝑈 P 𝑌𝑟`1 by the postprocessing of Theorem 1.32. Then, r𝑈 solves 𝑄𝑟`1

𝑘`2-VTD𝑟`1
𝑘`2

`

𝑓
˘

.

Proof. Let 𝑈 solve 𝑄𝑟
𝑘-VTD𝑟

𝑘

`

ℐ𝑟`1
𝑘`2𝑓

˘

. Then, by Theorem 1.32 the postprocessed solution
r𝑈 solves 𝑄𝑟

𝑘-VTD𝑟`1
𝑘`2

`

ℐ𝑟`1
𝑘`2𝑓

˘

. It remains to prove that

𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2

`

ℐ𝑟`1
𝑘`2𝑓

˘

p“ 𝑄𝑟`1
𝑘`2-VTD𝑟`1

𝑘`2

`

ℐ𝑟`1
𝑘`2𝑓

˘

p“ 𝑄𝑟`1
𝑘`2-VTD𝑟`1

𝑘`2

`

𝑓
˘

.
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Since ℐ𝑟`1
𝑘`2𝑓 P 𝑃𝑟`1p𝐼𝑛,R𝑑q, all terms of the variational condition are integrated exactly

by quadrature formulas that are exact for polynomials up to degree 2𝑟´ 𝑘, so especially by
𝑄𝑟

𝑘 and 𝑄𝑟`1
𝑘`2. Thus, the first equivalence is shown.

Moreover, on the one hand, ℐ𝑟`1
𝑘`2 preserves all derivatives of 𝑓 that occur in the collocation

conditions and so can be dropped there. On the other hand, ℐ𝑟`1
𝑘`2 is not seen by 𝑄𝑟`1

𝑘`2 since
both are defined by the same points. Hence, ℐ𝑟`1

𝑘`2 can also be dropped in the variational
condition, which verifies the second equivalence.

Remark 1.36 (Cf. [14, Remark 5.2])
Within the above argument we proved that the method 𝑄𝑟`1

𝑘`2-VTD𝑟`1
𝑘`2

`

𝑓
˘

and the method
𝑄𝑟

𝑘-VTD𝑟`1
𝑘`2

`

ℐ𝑟`1
𝑘`2𝑓

˘

are equivalent for 0 ď 𝑘 ď 𝑟 ´ 1.
Similarly, one can show that 𝑄𝑟

𝑘-VTD𝑟`1
𝑘`2

`

𝑓
˘

is equivalent to 𝑄𝑟`1
𝑘`2-VTD𝑟`1

𝑘`2

`

ℐ𝑟
𝑘𝑓
˘

for
0 ď 𝑘 ď 𝑟´1. Note that also ℐ𝑟

𝑘 preserves all derivatives that appear in the point conditions
at both ends of the interval. ♣

Having a closer look at the result of Theorem 1.35, we see that the postprocessed solu-
tion of the modified discrete problem also solves a numerically integrated variational time
discretization method but with the “right” associated quadrature rule. This enables one
further postprocessing step.

For 1 ď 𝑗 ď 𝑟 ´ 𝑘, using an interpolation cascade, we even could enable up to 𝑗 ` 1
postprocessing steps. More concretely, we have (where ⇝̌ denotes the postprocessing steps
as given by Theorem 1.32)

𝑄𝑟
𝑘-VTD𝑟

𝑘

`

ℐ𝑟`1
𝑘`2 ˝ ℐ𝑟`2

𝑘`4 ˝ . . . ˝ ℐ𝑟`𝑗
𝑘`2𝑗𝑓

˘

⇝̌ 𝑄𝑟`1
𝑘`2-VTD𝑟`1

𝑘`2

`

ℐ𝑟`2
𝑘`4 ˝ . . . ˝ ℐ𝑟`𝑗

𝑘`2𝑗𝑓
˘

⇝̌ . . .

⇝̌ 𝑄𝑟`𝑗´1
𝑘`2p𝑗´1q

-VTD𝑟`𝑗´1
𝑘`2p𝑗´1q

`

ℐ𝑟`𝑗
𝑘`2𝑗𝑓

˘

⇝̌ 𝑄𝑟`𝑗
𝑘`2𝑗-VTD𝑟`𝑗

𝑘`2𝑗

`

𝑓
˘

⇝̌ 𝑄𝑟`𝑗
𝑘`2𝑗-VTD𝑟`𝑗`1

𝑘`2p𝑗`1q

`

𝑓
˘

.

Note that 𝑓 itself can be used in each postprocessing step to calculate the correction vector
�̌�𝑛 P R𝑑 (cf. Theorem 1.32) since in each step the occurring derivative of 𝑓 at 𝑡´𝑛 is preserved
by the respective interpolation cascade.

As abbreviation, we write 𝒞𝑟
𝑘 :“ ℐ𝑟

𝑘 ˝ℐ𝑟`1
𝑘`2 ˝ . . .˝ℐ2𝑟´𝑘

2𝑟´𝑘 for the longest interpolation cascade
(for which 𝑗 “ 𝑟 ´ 𝑘) in the following.

Remark 1.37
If 𝑔 is locally on 𝐼𝑛 an approximation of 𝑓 of maximal polynomial degree 𝑟`1, then similar to
the proof of Theorem 1.35 we have that 𝑄𝑟

𝑘-VTD𝑟`1
𝑘`2

`

𝑔
˘

is equivalent to 𝑄𝑟`1
𝑘`2-VTD𝑟`1

𝑘`2

`

𝑔
˘

.
Hence, if 𝑔|𝐼𝑛 P 𝑃𝑟`1p𝐼𝑛,R𝑑q, we are always able to perform up to 𝑟 ´ 𝑘 ` 1 postprocessing
steps. We find (where ⇝̌ denotes the postprocessing steps as given by Theorem 1.32)

𝑄𝑟
𝑘-VTD𝑟

𝑘

`

𝑔
˘

⇝̌ 𝑄𝑟`1
𝑘`2-VTD𝑟`1

𝑘`2

`

𝑔
˘

⇝̌ . . . ⇝̌ 𝑄2𝑟´𝑘
2𝑟´𝑘-VTD2𝑟´𝑘

2𝑟´𝑘

`

𝑔
˘

⇝̌ 𝑄2𝑟´𝑘
2𝑟´𝑘-VTD2𝑟´𝑘`1

2𝑟´𝑘`2

`

𝑔
˘

.

However, while 𝑔|𝐼𝑛 P 𝑃𝑟`1p𝐼𝑛,R𝑑q is needed to enable the change of the quadrature rule
after the first postprocessing step, this entails that after several postprocessing steps the
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approximation of 𝑓 by 𝑔 is of lower order than the ansatz order of the variational time
discretization method. Therefore, we cannot expect an improvement of the convergence
order after two or more postprocessing steps in general. The interpolation cascade does not
have this issue.

Moreover, from Proposition 1.33 it is obvious that in general (for arbitrary 𝑔) the post-
processing by (modified) residuals and the usual postprocessing by jumps do not provide
the same correction anymore.

A more detailed analysis shows that applying two postprocessing steps based on residuals
on the solution of 𝑄𝑟

𝑘-VTD𝑟
𝑘p𝑓q yields the solution of 𝑄𝑟`2

𝑘`4-VTD𝑟`2
𝑘`4pℐ𝑟`1

𝑘,f 𝑓q where ℐ𝑟`1
𝑘,f 𝑓

interpolates 𝑓 in the quadrature points of 𝑄𝑟
𝑘 and additionally preserves its

`X

𝑘
2

\

` 1
˘

th
derivative in 𝑡´𝑛 . Similarly (at least) for dG-like methods (characterized by even 𝑘) it can
be shown that applying two postprocessing steps based on jumps on the solution of 𝑄𝑟

𝑘-
VTD𝑟

𝑘p𝑓q gives the solution of 𝑄𝑟`2
𝑘`4-VTD𝑟`2

𝑘`4pℐ𝑟`1
𝑘,˚ 𝑓q where ℐ𝑟`1

𝑘,˚ 𝑓 interpolates 𝑓 in the
quadrature points of 𝑄𝑟

𝑘 and additionally preserves its
`X

𝑘´1
2

\

` 1
˘

th derivative in 𝑡`𝑛´1. ♣

Remark 1.38
Since the postprocessing does not change the function value in 𝑡´𝑛 , 1 ď 𝑛 ď 𝑁 , we have
for 1 ď 𝑗 ď 𝑟 ´ 𝑘 that the solutions of 𝑄𝑟

𝑘-VTD𝑟
𝑘

`

ℐ𝑟`1
𝑘`2 ˝ ℐ𝑟`2

𝑘`4 ˝ . . . ˝ ℐ𝑟`𝑗
𝑘`2𝑗𝑓

˘

and of 𝑄𝑟`𝑗
𝑘`2𝑗-

VTD𝑟`𝑗`1
𝑘`2p𝑗`1q

`

𝑓
˘

coincide in the end points of the intervals. Hence, the pointwise error
estimates for the latter method immediately imply superconvergence in the time mesh points
for 𝑄𝑟

𝑘-VTD𝑟
𝑘

`

ℐ𝑟`1
𝑘`2 ˝ ℐ𝑟`2

𝑘`4 ˝ . . . ˝ ℐ𝑟`𝑗
𝑘`2𝑗𝑓

˘

. ♣

Remark 1.39 (Cf. [14, Remark 5.3])
For Dahlquist’s stability equation

𝑢1
p𝑡q “ 𝜆𝑢p𝑡q, 𝑢p𝑡0q “ 𝑢0 P R, (1.29)

i.e., 𝑑 “ 1, 𝑀 “ 1, 𝐴 “ ´𝜆 P C, and 𝑓 “ 0 in (1.21), we easily see that

VTD𝑟´𝑗
𝑘´2𝑗

`

𝑓
˘

p“ 𝑄𝑟´𝑗
𝑘´2𝑗-VTD𝑟´𝑗

𝑘´2𝑗

`

𝑓
˘

p“ 𝑄𝑟´𝑗
𝑘´2𝑗-VTD𝑟´𝑗

𝑘´2𝑗

`

ℐ𝑟´𝑗`1
𝑘´2𝑗`2 ˝ ℐ𝑟´𝑗`2

𝑘´2𝑗`4 ˝ . . . ˝ ℐ𝑟
𝑘𝑓
˘

for all 𝑗 “ 0, . . . ,
X

𝑘
2

\

. Thus, 𝑗 postprocessing steps can be applied for this equation. Since
the postprocessing does not change the function value in the end points of the intervals, the
stability function does not change either. Therefore, VTD𝑟

𝑘 as well as 𝑄𝑟
𝑘-VTD𝑟

𝑘 provide
the same stability function as VTD𝑟´𝑗

𝑘´2𝑗. With the special choice 𝑗 “
X

𝑘
2

\

, we immediately
find that VTD𝑟

𝑘 shares its stability properties with

VTD
𝑟´t 𝑘

2 u

𝑘´2t 𝑘
2 u

p“

$

&

%

VTD
𝑟´t 𝑘

2 u
0 p“ dG

`

𝑟 ´
X

𝑘
2

\˘

, if 𝑘 is even,

VTD
𝑟´t 𝑘

2 u
1 p“ cGP

`

𝑟 ´
X

𝑘
2

\˘

, if 𝑘 is odd,

also cf. Remark 1.1 and [14, 17]. Thus, the VTD𝑟
𝑘 methods are 𝐴-stable for 𝑘 odd while

they are even strongly 𝐴-stable if 𝑘 is even. ♣

1.4.4 Derivatives of solutions

In this subsection, the derivatives of solutions to VTD𝑟
𝑘

`

𝑔
˘

methods are studied. We see
that the conditions of (1.22) are somewhat nested and that the derivatives also are solutions
of certain variational time discretization schemes.
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Theorem 1.40
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and suppose that 𝑈 P 𝑌𝑟 solves VTD𝑟

𝑘

`

𝑔
˘

. Then, it holds
ż

𝐼𝑛

`

𝑀p𝑈 p𝑗q
q

1
` 𝐴𝑈 p𝑗q, 𝜙

˘

d𝑡 “

ż

𝐼𝑛

`

𝑔p𝑗q, 𝜙
˘

d𝑡

for all 0 ď 𝑗 ď
X

𝑘´1
2

\

and 𝜙 P 𝑃𝑟´𝑘`𝑗p𝐼𝑛,R𝑑q. Further, for 𝑗 “
X

𝑘
2

\

with 𝑘 even we find that
ż

𝐼𝑛

`

𝑀p𝑈 p𝑗q
q

1
` 𝐴𝑈 p𝑗q, 𝜙

˘

d𝑡 ` 𝛿0,𝑘´2𝑗

`

𝑀
“

𝑈 p𝑗q
‰

𝑛´1
, 𝜙p𝑡`𝑛´1q

˘

“

ż

𝐼𝑛

`

𝑔p𝑗q, 𝜙
˘

d𝑡

for all 𝜙 P 𝑃𝑟´𝑘`𝑗p𝐼𝑛,R𝑑q, if 𝑔 is globally
`X

𝑘
2

\

´ 1
˘

-times continuously differentiable and,
for 𝑗 ě 1, 𝑈 p𝑗qp𝑡´0 q is determined by 𝑀𝑈 p𝑗qp𝑡´0 q ` 𝐴𝑈 p𝑗´1qp𝑡`0 q “ 𝑔p𝑗´1qp𝑡`0 q.

Proof. The proof of [14, Theorem 5.5] can be directly adopted replacing ℐ𝑓 by 𝑔. Since,
however, 𝑔 does not provide global smoothness, we shortly recapitulate the key arguments
of the proof in order to reveal where smoothness is actually necessary.

Let us start with the case 0 ď 𝑗 ď
X

𝑘´1
2

\

. Integration by parts several times and exploit-
ing (1.22), we find

ż

𝐼𝑛

`

𝑀p𝑈 p𝑗q
q

1
` 𝐴𝑈 p𝑗q, 𝜙

˘

d𝑡

“ p´1q
𝑗

ż

𝐼𝑛

`

𝑀𝑈 1
` 𝐴𝑈,𝜙p𝑗q

˘

d𝑡 `

𝑗´1
ÿ

𝑙“0

p´1q
𝑙
“`

B
𝑗´1´𝑙
𝑡 p𝑀𝑈 1

` 𝐴𝑈q, 𝜙p𝑙q
˘‰𝑡´

𝑛

𝑡`
𝑛´1

“ p´1q
𝑗

ż

𝐼𝑛

`

𝑔, 𝜙p𝑗q
˘

d𝑡 `

𝑗´1
ÿ

𝑙“0

p´1q
𝑙
“`

𝑔p𝑗´1´𝑙q, 𝜙p𝑙q
˘‰𝑡´

𝑛

𝑡`
𝑛´1

“

ż

𝐼𝑛

`

𝑔p𝑗q, 𝜙
˘

d𝑡

for all 𝜙 P 𝑃𝑟´𝑘`𝑗p𝐼𝑛,R𝑑q. Here, we do not need any global smoothness of 𝑔.
Now, let 𝑗 “

X

𝑘
2

\

with 𝑘 ě 2 even. With the same arguments as just above we obtain
ż

𝐼𝑛

`

𝑀p𝑈 p𝑗q
q

1
` 𝐴𝑈 p𝑗q, 𝜙

˘

d𝑡

“

ż

𝐼𝑛

`

𝑔p𝑗q, 𝜙
˘

d𝑡 ´
`

𝑀𝑈 p𝑗q
p𝑡`𝑛´1q ` 𝐴𝑈 p𝑗´1q

p𝑡`𝑛´1q, 𝜙p𝑡`𝑛´1q
˘

`
`

𝑔p𝑗´1q
p𝑡`𝑛´1q, 𝜙p𝑡`𝑛´1q

˘

for all 𝜙 P 𝑃𝑟´𝑘`𝑗p𝐼𝑛,R𝑑q. Note that there are these extra terms on the right-hand side since
an appropriate collocation condition is missing here. However, by the additional assumption
that 𝑔 is globally

`X

𝑘
2

\

´ 1
˘

-times continuously differentiable, which thereby also holds for
𝑈 , the desired jump term can be derived for 𝑛 ą 1 from (1.22b) and for 𝑛 “ 1 using the
special definition of 𝑈 p𝑗qp𝑡´0 q, respectively.

Remark 1.41
If 𝑔 preserves 𝑓 and its derivatives up to order

X

𝑘
2

\

´ 1 at 𝑡`0 , then 𝑈 p𝑗qp𝑡´0 q “ 𝑢p𝑗qp𝑡0q for
0 ď 𝑗 ď

X

𝑘
2

\

. ♣

Using an appropriate initial condition, derivatives of VTD solutions are themselves solu-
tions of VTD methods.
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Corollary 1.42
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Furthermore, suppose that 𝑓 is globally

`X

𝑘
2

\

´ 1
˘

-times continuously
differentiable and that 𝑈 P 𝑌𝑟 solves VTD𝑟

𝑘

`

ℐ𝑓
˘

with ℐ P tId,Π𝑟
𝑘, ℐ𝑟

𝑘 , 𝒞𝑟
𝑘u. Then, 𝑈 p𝑗q P 𝑌𝑟´𝑗,

0 ď 𝑗 ď
X

𝑘
2

\

, solves VTD𝑟´𝑗
𝑘´2𝑗

`

pℐ𝑓qp𝑗q
˘

if 𝑢p𝑗qp𝑡0q is used as initial condition.

Proof. Because of Theorem 1.40, it only remains to prove the needed conditions at 𝑡`𝑛´1 and
𝑡´𝑛 . Since we have by construction that 𝑈 is

X

𝑘´1
2

\

-times continuously differentiable, the
desired identities follow from the fact that 𝑈 p𝑗q is continuous for 0 ď 𝑗 ď

X

𝑘´1
2

\

together
with (1.22a), (1.22b), and (1.22c) with 𝑔 “ ℐ𝑓 .

Remark 1.43
For a convenient interpretation of Corollary 1.42 note that for the affine linear problems of
the form (1.21) we have that VTD𝑟

𝑘 p“ VTD𝑟
𝑘

`

𝑓
˘

p“ VTD𝑟
𝑘

`

Π𝑟
𝑘𝑓
˘

and

𝑄𝑟
𝑘-VTD𝑟

𝑘 p“ 𝑄𝑟
𝑘-VTD𝑟

𝑘

`

𝑓
˘

p“ 𝑄𝑟
𝑘-VTD𝑟

𝑘

`

ℐ𝑟
𝑘𝑓
˘

p“ VTD𝑟
𝑘

`

ℐ𝑟
𝑘𝑓
˘

for all 0 ď 𝑘 ď 𝑟. Moreover, recall that 𝒞𝑟
𝑘 “ ℐ𝑟

𝑘 ˝ ℐ𝑟`1
𝑘`2 ˝ . . . ˝ ℐ2𝑟´𝑘

2𝑟´𝑘 .
Thus, ℐ “ Id and ℐ “ Π𝑟

𝑘 model the case of exact integration, ℐ “ ℐ𝑟
𝑘 models the case

of numerical integration by the 𝑄𝑟
𝑘 quadrature formula, and ℐ “ 𝒞𝑟

𝑘 models the case where
the interpolation cascade 𝒞𝑟

𝑘 is used. ♣

1.4.5 Numerical results

Our theoretical investigations suggest that the application of cascadic interpolation to the
right-hand side 𝑓 allows multiple postprocessing steps. This should be illustrated by some
computational results. Besides we want to have a look on the differences between postpro-
cessing based on jumps and postprocessing based on residuals when more than one postpro-
cessing step is applied. Since appropriate numerical studies were made in [14, Section 6],
also see [15, Section 7], we only give a short summary of the obtained results here.

Example
We consider the affine linear initial value problem

ˆ

10 ´20
´10 20

˙ˆ

𝑢1
1p𝑡q
𝑢1
2p𝑡q

˙

“

ˆ

´10𝑒´10𝑡

0

˙

´

ˆ

1 ´101
´1 1

˙ˆ

𝑢1p𝑡q
𝑢2p𝑡q

˙

, 𝑡 P p0, 40q, (1.30a)

with initial condition
𝑢1p0q “ 2, 𝑢2p0q “ 1. (1.30b)

Then, the solution components are given by

𝑢1p𝑡q “ 𝑒´𝑡{10
` p1 ` 𝑡q𝑒´10𝑡, 𝑢2p𝑡q “ p1 ` 𝑡q𝑒´10𝑡.

Note that test problem (1.30) is a slight modification of [28, Example 7.3]. In particular,
a non-trivial mass matrix was introduced. Furthermore, a non-vanishing right-hand side
function 𝑓 “ p´10𝑒´10𝑡, 0q

𝑇 was added since otherwise the effects of the interpolation cascade
cannot be studied.
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1 Formulation, Analysis for Non-Stiff Systems, and Further Properties

Again all calculations were carried out with the software Julia [18], where the floating
point data type BigFloat with 512 bits was used. For clarity, the function obtained after
an application of 𝑠 postprocessing steps starting from the discrete solution 𝑈 is denoted by
PP𝑠𝑈 in the following.

In Table 1.4 the experimental orders of convergence of }p𝑢 ´ PP𝑠𝑈q1}𝐿2 for 𝑄9
𝑘-VTD9

𝑘,
𝑘 “ 3, . . . , 7, after 𝑠 “ 0, . . . , 𝑟` 1´ 𝑘 “ 10´ 𝑘 postprocessing steps are presented. Hereby,
the experimental orders of convergence were calculated from the errors obtained for 1024
and 2048 uniform time steps. Results are given for three different settings. In setting piq
cascadic interpolation is applied to the right-hand side 𝑓 , i.e., we use 𝑔 “ 𝒞9

𝑘𝑓 . In this case
both types of postprocessing are equivalent and, thus, lead to identical results. This changes
substantially if no cascadic interpolation is used, i.e., for 𝑔 “ 𝑓 . Therefore, for this case,
the postprocessing based on jumps and the postprocessing based on residuals are considered
separately in setting piiq and piiiq, respectively.

Table 1.4: Experimental orders of convergence for }p𝑢 ´ PP𝑠𝑈q1}𝐿2 using 𝑄9
𝑘-VTD9

𝑘 with
𝑘 “ 3, . . . , 7, and 𝑠 postprocessing steps

𝑘 𝑠 “ 0 𝑠 “ 1 𝑠 “ 2 𝑠 “ 3 𝑠 “ 4 𝑠 “ 5 𝑠 “ 6 𝑠 “ 7

piq cascadic interpolation of 𝑓
3 9.000 9.949 10.970 11.977 12.980 13.981 14.981 15.979
4 9.000 9.930 10.954 11.963 12.967 13.969 14.967
5 9.000 9.949 10.970 11.976 12.979 13.977
6 9.001 9.927 10.952 11.961 12.962
7 9.001 9.950 10.969 11.972

piiq postprocessing based on jumps
3 9.000 9.948 9.994 8.994 7.994 6.994 5.994 4.994
4 9.000 9.932 10.966 11.059 10.971 10.934 10.905
5 9.000 9.949 10.981 9.981 8.980 7.980
6 9.000 9.929 10.957 10.954 10.991
7 9.000 9.949 9.995 8.994

piiiq postprocessing based on residuals
3 9.000 9.948 10.962 10.966 10.977 10.986 10.982 10.988
4 9.000 9.932 10.952 10.958 10.968 10.978 10.973
5 9.000 9.949 10.956 10.958 10.963 10.987
6 9.000 9.929 10.940 10.945 10.945
7 9.000 9.949 10.946 10.947

The numerical data are in good agreement with our theoretical expectations. If cascadic
interpolation of the right-hand side 𝑓 is used, it can be clearly seen that the convergence
order increases by one with each additional postprocessing step. Moreover, if no interpo-
lation cascade is applied, the computational results nicely verify the improvements by the
first postprocessing step independent of the type of postprocessing. However, the situation
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changes substantially when at least two postprocessing steps are used. While, independent
of 𝑘, two or more postprocessing steps based on residuals always increase the convergence
order by two compared to the results without postprocessing, such improvements can only
be observed for dG-like methods (characterized by even 𝑘) if the postprocessing is based
on jumps. In contrast, for cGP-like methods (corresponding to odd 𝑘) the second postpro-
cessing step based on jumps leads to an additional improvement only for 𝑘 ” 1 pmod 4q,
whereas for 𝑘 ” 3 pmod 4q the convergence order is not increased further. Besides, for all
cGP-like methods the convergence orders start to decrease if three or more postprocessing
steps based on jumps are applied. Note that in calculations for 𝑄10

𝑘 -VTD10
𝑘 , 𝑘 “ 0, . . . , 10,

the roles of 𝑘 ” 1 pmod 4q and 𝑘 ” 3 pmod 4q were switched. For further discussions and
results we refer to [14, Section 6] and [15, Section 7].
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2 Error Analysis for Stiff Systems

The error analysis for numerical methods applied to stiff ordinary differential equations is
strongly connected to the concept of 𝐵-convergence introduced in [29]. The main object of
this concept, developed for general nonlinear differential equations satisfying a certain one-
sided Lipschitz condition, is the derivation of error bounds that only depend on the one-sided
Lipschitz constant. A dependence of the error constant on the two-sided Lipschitz constant,
which might be disproportionately large due to the stiffness of the problem, is explicitly
avoided.

It is well-known that 𝑄𝑟
1-VTD𝑟

1 and 𝑄𝑟
0-VTD𝑟

0 can be interpreted as p𝑟 ` 1q-stage Lo-
batto IIIA and Radau IIA methods, respectively, as it was exemplarily shown in [46, p. 8,
p. 13]. But Lobatto IIIA methods are not 𝐵-convergent for the general class of nonlinear
problems, see [38, p. 231]. Therefore, it cannot be possible to prove a general 𝐵-convergence
result for the variational time discretization methods (1.2). However, for certain classes of
semilinear initial value problems, Lobatto IIIA methods and others nevertheless can be 𝐵-
convergent, as it was shown for example in [20, see Theorem 3.4 and Lemma 2.3]. Thus,
we have the reasonable hope that at least for affine linear problems with time-independent
constants of the form (1.21) the VTD𝑟

𝑘 methods provide an error estimate independent of
the stiffness.

In order to study the variational time discretization methods, we shall write them in a
way similar to Runge–Kutta methods. For this purpose, first of all a Runge–Kutta-like
framework is presented that enables an easy fitting of the VTD methods. In the end, the
reformulation allows us to adapt and generalize many ideas and results that are usually
used in the (stiff) error analysis for Runge–Kutta methods. In this context we particularly
refer to [19], where the 𝐵-convergence of Runge–Kutta methods was studied for a semilinear
problem which has the stiffness contained in a constant coefficient linear part. This situation
is slightly more general than our setting but still so simple that most technical details can
be avoided.

2.1 Runge–Kutta-like discretization framework

The aim of this section is to establish a Runge–Kutta-like framework that easily allows the
representation of VTD methods but still enables typical convergence analysis approaches
for Runge–Kutta methods. Here the well-known connection between collocation and Runge–
Kutta methods can be used as motivation and inspiration. With these insights the Runge–
Kutta formulation is extended in such a way that appropriate characteristics of the VTD
methods can nicely be covered.
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2.1.1 Connection between collocation and Runge–Kutta methods
and its extension

It is well-known that collocation methods with 𝑠 points can be easily written as 𝑠-stage
Runge–Kutta methods, see e.g. [37, Theorem II.7.7, p. 212]. The Runge–Kutta coefficients
then are given as certain integrals over the Lagrangian basis functions with respect to
the collocation points. For the proof it is used that, given 𝑈p𝑡´𝑛´1q P R𝑑, the collocation
polynomial 𝑈 P 𝑃𝑠p𝐼𝑛,R𝑑q is determined by

𝑈p𝑡`𝑛´1q “ 𝑈p𝑡´𝑛´1q, 𝑀𝑈 1
p¨q “ 𝒫𝑛𝐹

`

¨, 𝑈p¨q
˘

(2.1)

where 𝒫𝑛 is the polynomial interpolation operator into 𝑃𝑠´1p𝐼𝑛q with respect to the 𝑠 collo-
cation points, which is applied component-wise here.

For a first extension, we now assume that 𝒫𝑛 is the local (transformed) version of a
more general projection operator p𝒫 on r´1, 1s. More concretely, for sufficiently smooth
functions on r´1, 1s let p𝒫 be a projection operator onto 𝑃𝑠´1pr´1, 1sq uniquely defined by
the 𝑠 linear functionals p𝑁 ℓr𝑖s

𝑖 , 𝑖 “ 1, . . . , 𝑠. The upper script ℓr𝑖s ě 0 here denotes the
smallest derivative included in the definition of p𝑁 ℓr𝑖s

𝑖 , so with suitable functionals p𝑁0
𝑖 we

could simply write p𝑁 ℓr𝑖s

𝑖

`

𝑣
˘

“ p𝑁0
𝑖

`

𝑣pℓr𝑖sq
˘

. Typical examples are, of course, functionals based
on point evaluations of functions or derivatives as p𝑁 ℓr𝑖s

𝑖

`

𝑣
˘

“ 𝑣pℓr𝑖sqp𝑡q for some 𝑡 P r´1, 1s

but also functionals based on integrals as p𝑁 ℓr𝑖s

𝑖

`

𝑣
˘

“
ş1

´1
𝑣pℓr𝑖sqp𝑠q d𝑠. The associated basis

functions p𝐵𝑖 P 𝑃𝑠´1pr´1, 1sq, 𝑖 “ 1, . . . , 𝑠, should be chosen such that p𝑁 ℓr𝑗s

𝑗

`

p𝐵𝑖

˘

“ 𝛿𝑖,𝑗. Thus,
for sufficiently smooth functions 𝑣 on r´1, 1s the projection p𝒫𝑣 can be written as

𝑣 ÞÑ
`

p𝑃𝑣
˘

p¨q “

𝑠
ÿ

𝑖“1

p𝑁 ℓr𝑖s

𝑖

`

𝑣
˘

p𝐵𝑖p¨q.

The local versions 𝒫𝑛 on 𝐼𝑛, 𝑛 “ 1, . . . , 𝑁 , are then given by

𝑣 ÞÑ 𝒫𝑛𝑣 “
`

p𝒫p𝑣 ˝ 𝑇𝑛q
˘

˝ 𝑇´1
𝑛 “

𝑠
ÿ

𝑖“1

p𝑁 ℓr𝑖s

𝑖

`

𝑣 ˝ 𝑇𝑛
˘`

p𝐵𝑖 ˝ 𝑇´1
𝑛

˘

with 𝑇𝑛 from (1.7). For brevity, we set 𝑁 ℓr𝑖s

𝑖,𝑛 p𝑣q “ p𝑁 ℓr𝑖s

𝑖

`

𝑣 ˝ 𝑇𝑛
˘

.
We start to review the proof of the connection between collocation and Runge–Kutta

methods step by step and extend the ideas if necessary. For 𝑈 satisfying (2.1) the funda-
mental theorem of calculus implies for all 𝑡 P 𝐼𝑛 that

𝑀𝑈p𝑡q “ 𝑀𝑈p𝑡`𝑛´1q `

ż 𝑡

𝑡𝑛´1

𝑀𝑈 1
p𝑠q d𝑠 “ 𝑀𝑈p𝑡´𝑛´1q `

ż 𝑡

𝑡𝑛´1

𝒫𝑛𝐹
`

𝑠, 𝑈p𝑠q
˘

d𝑠.

Additionally using the (extended) definition of 𝒫𝑛, we find

𝑀𝑈p𝑡q “ 𝑀𝑈p𝑡´𝑛´1q `

𝑠
ÿ

𝑗“1

𝑁 ℓr𝑗s

𝑗,𝑛

`

𝐹 p¨, 𝑈p¨qq
˘

ż 𝑡

𝑡𝑛´1

`

p𝐵𝑗 ˝ 𝑇´1
𝑛

˘

p𝑠q d𝑠

“ 𝑀𝑈p𝑡´𝑛´1q `

𝑠
ÿ

𝑗“1

𝑁 ℓr𝑗s

𝑗,𝑛

`

𝐹 p¨, 𝑈p¨qq
˘𝜏𝑛
2

ż 𝑇´1
𝑛 p𝑡q

´1

p𝐵𝑗p𝑠q d𝑠.
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Therefore, it follows for 𝑖 “ 1, . . . , 𝑠 that

𝑀𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑈p¨q
˘

“ 𝑀𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑈p𝑡´𝑛´1q
˘

`
𝜏𝑛
2

𝑠
ÿ

𝑗“1

𝑁 ℓr𝑗s

𝑗,𝑛

`

𝐹 p¨, 𝑈p¨qq
˘

𝑁 ℓr𝑖s

𝑖,𝑛

´

ş𝑇´1
𝑛 p¨q

´1
p𝐵𝑗p𝑠q d𝑠

¯

“ 𝑀𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑈p𝑡´𝑛´1q
˘

`
𝜏𝑛
2

𝑠
ÿ

𝑗“1

𝑁 ℓr𝑗s

𝑗,𝑛

`

𝐹 p¨, 𝑈p¨qq
˘

p𝑁 ℓr𝑖s

𝑖

´

ş ¨

´1
p𝐵𝑗p𝑠q d𝑠

¯

. (2.2a)

Here, 𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑈p𝑡´𝑛´1q
˘

means the application of 𝑁 ℓr𝑖s

𝑖,𝑛 to the constant function 𝑡 ÞÑ 𝑈p𝑡´𝑛´1q.
Now, in the case of collocation methods we have that

𝑁 ℓr𝑗s

𝑗,𝑛

`

𝐹 p¨, 𝑈p¨qq
˘

“ 𝑁 ℓr𝑗s

𝑗,𝑛

`

𝐹
`

¨, 𝑁 ℓr𝑗s

𝑗,𝑛 p𝑈p¨qq
˘˘

(2.2b)

since for those methods 𝑁 ℓr𝑗s

𝑗,𝑛 “ 𝑁0
𝑗,𝑛 is just a function evaluation at a single point. Then,

(2.2) gives a nonlinear equation system for 𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑈p¨q
˘

, 𝑖 “ 1, . . . , 𝑠, because 𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑈p𝑡´𝑛´1q
˘

can be calculated from known data. But, if 𝑁 ℓr𝑗s

𝑗,𝑛 for example represents the integral mean
over 𝐼𝑛, then (2.2b) does not hold in general. Therefore, we will restrict ourselves to affine
linear problems with time-independent coefficients of the form (1.21), i.e., we assume that
𝐹 p𝑡, 𝑢q “ 𝑓p𝑡q ´ 𝐴𝑢. Then, for any linear functional 𝑁 ℓr𝑗s

𝑗,𝑛 it holds

𝑁 ℓr𝑗s

𝑗,𝑛

`

𝐹 p¨, 𝑈p¨qq
˘

“ 𝑁 ℓr𝑗s

𝑗,𝑛

`

𝑓p¨q
˘

´ 𝐴𝑁 ℓr𝑗s

𝑗,𝑛

`

𝑈p¨q
˘

.

Thus, (2.2b) is not necessary since only terms of the desired form 𝑁 ℓr𝑗s

𝑗,𝑛

`

𝑈p¨q
˘

appear on the
right-hand side anyway.

Altogether, for 𝑈 solving (2.1) with 𝐹 p𝑡, 𝑢q “ 𝑓p𝑡q ´ 𝐴𝑢 we have found that

𝑀𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑈p¨q
˘

“ 𝑀𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑈p𝑡´𝑛´1q
˘

`
𝜏𝑛
2

𝑠
ÿ

𝑗“1

´

𝑁 ℓr𝑗s

𝑗,𝑛

`

𝑓p¨q
˘

´ 𝐴𝑁 ℓr𝑗s

𝑗,𝑛

`

𝑈p¨q
˘

¯

p𝑁 ℓr𝑖s

𝑖

´

ş ¨

´1
p𝐵𝑗p𝑠q d𝑠

¯

(2.3a)

for all 𝑖 “ 1, . . . , 𝑠. Moreover, it easily follows

𝑀𝑈p𝑡´𝑛 q “ 𝑀𝑈p𝑡´𝑛´1q `
𝜏𝑛
2

𝑠
ÿ

𝑗“1

´

𝑁 ℓr𝑗s

𝑗,𝑛

`

𝑓p¨q
˘

´ 𝐴𝑁 ℓr𝑗s

𝑗,𝑛

`

𝑈p¨q
˘

¯

ż 1

´1

p𝐵𝑗p𝑠q d𝑠. (2.3b)

These equations (2.3) could be seen as some generalization of a Runge–Kutta scheme in
the style of [38, Proposition IV.3.1, p. 40] for the affine linear problem (1.21). Here, the
equations (2.3a) could be interpreted as generalized stage equations for the “internal stages”
𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑈p¨q
˘

, 𝑖 “ 1, . . . , 𝑠.
For a second extension, we recall that according to (1.3) not only the function value of 𝑈

at 𝑡𝑛´1 can be inherited from the previous interval but (depending on 𝑘) also evaluations
of derivatives. In the derivation of “stage” and “iteration” equations we thus could afford
also higher derivatives at 𝑡𝑛´1. So, in generalization of (2.1) we suppose that 𝑈 P 𝑃𝑠p𝐼𝑛,R𝑑q

satisfies

𝑈 p𝑙q
p𝑡`𝑛´1q “ 𝑈 p𝑙q

p𝑡´𝑛´1q, 0 ď 𝑙 ď �̄�, 𝑀𝑈 1
p¨q “ 𝒫𝑛𝐹

`

¨, 𝑈p¨q
˘

(2.4)
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for some �̄� ě 0. Then, similar as above, we also gain for 0 ď 𝑙 ď �̄� and 𝑡 P 𝐼𝑛 that

𝑀𝑈 p𝑙q
p𝑡q “ 𝑀𝑈 p𝑙q

p𝑡`𝑛´1q `

ż 𝑡

𝑡𝑛´1

𝑀𝑈 p𝑙`1q
p𝑠q d𝑠

“ 𝑀𝑈 p𝑙q
p𝑡´𝑛´1q `

ż 𝑡

𝑡𝑛´1

`

𝒫𝑛𝐹
`

¨, 𝑈p¨q
˘˘p𝑙q

p𝑠q d𝑠

“ 𝑀𝑈 p𝑙q
p𝑡´𝑛´1q `

𝑠
ÿ

𝑗“1

𝑁 ℓr𝑗s

𝑗,𝑛

`

𝐹 p¨, 𝑈p¨qq
˘

´𝜏𝑛
2

¯1´𝑙
ż 𝑇´1

𝑛 p𝑡q

´1

p𝐵
p𝑙q
𝑗 p𝑠q d𝑠.

Choosing for every 𝑖 “ 1, . . . , 𝑠 an ℓr𝑖s P
␣

0, . . . ,mint�̄�, ℓr𝑖su
(

, we therefore have
´𝜏𝑛
2

¯´ℓr𝑖s

𝑀𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑈p¨q
˘

“ 𝑀𝑁
ℓr𝑖s´ℓr𝑖s

𝑖,𝑛

`

𝑈 pℓr𝑖sq
p¨q
˘

(2.5a)

“ 𝑀𝑁
ℓr𝑖s´ℓr𝑖s

𝑖,𝑛

`

𝑈 pℓr𝑖sq
p𝑡´𝑛´1q

˘

`

´𝜏𝑛
2

¯1´ℓr𝑖s
𝑠
ÿ

𝑗“1

𝑁 ℓr𝑗s

𝑗,𝑛

`

𝐹 p¨, 𝑈p¨qq
˘

p𝑁
ℓr𝑖s´ℓr𝑖s

𝑖

´

ş ¨

´1
p𝐵

pℓr𝑖sq

𝑗 p𝑠q d𝑠
¯

and

𝑀𝑈 p𝑙q
p𝑡´𝑛 q “ 𝑀𝑈 p𝑙q

p𝑡´𝑛´1q `

´𝜏𝑛
2

¯1´𝑙 𝑠
ÿ

𝑗“1

𝑁 ℓr𝑗s

𝑗,𝑛

`

𝐹 p¨, 𝑈p¨qq
˘

ż 1

´1

p𝐵
p𝑙q
𝑗 p𝑠q d𝑠 (2.5b)

for 0 ď 𝑙 ď �̄�.

2.1.2 A Runge–Kutta-like scheme

Let 𝑠 P N, ℓ P N0, and fix for every 𝑖 “ 1, . . . , 𝑠 an ℓr𝑖s P t0, . . . , ℓu. In addition, let
␣

p𝑁˚
𝑖

ˇ

ˇ 𝑖 “ 1, . . . , 𝑠
(

denote a set of linear functionals which are defined for sufficiently smooth
functions on r´1, 1s. Usually, but not necessarily, those functionals are chosen such that a
polynomial 𝑣 P 𝑃𝑠´1pr´1, 1sq is uniquely determined by the 𝑠 values p𝑁𝑖

`

𝑣
˘

:“ p𝑁˚
𝑖

`

𝑣pℓr𝑖sq
˘

,
𝑖 “ 1, . . . , 𝑠. Using the transformation 𝑇𝑛 of (1.7) with 𝑛 “ 1, . . . , 𝑁 , we set for sufficiently
smooth functions 𝑣 on 𝐼𝑛

r𝑁˚
𝑖,𝑛

`

𝑣
˘

:“ p𝑁˚
𝑖

`

𝑣 ˝ 𝑇𝑛
˘

, r𝑁𝑖,𝑛

`

𝑣
˘

:“ r𝑁˚
𝑖,𝑛

`

𝑣pℓr𝑖sq
˘

“ p𝑁˚
𝑖

`

𝑣pℓr𝑖sq
˝ 𝑇𝑛

˘

“
`

𝜏𝑛
2

˘´ℓr𝑖s
p𝑁˚
𝑖

`

p𝑣 ˝ 𝑇𝑛q
pℓr𝑖sq

˘

“
`

𝜏𝑛
2

˘´ℓr𝑖s
p𝑁𝑖

`

𝑣 ˝ 𝑇𝑛
˘

.

Moreover, let 𝑔 be an approximation of 𝑓 which can be used in a local scheme instead of 𝑓 .
Motivated by (2.5) and in the style of [38, Proposition IV.3.1, p. 40], the local version

(on 𝐼𝑛) of an 𝑠-stage Runge–Kutta-like formulation for the discretization of (1.21) given an
approximation 𝑔 of 𝑓 as well as function value and ℓ derivatives at 𝑡´𝑛´1, for short we write
p𝑠, ℓq-RKlp𝑔q, should have the form

𝑀𝑔RKl
𝑖,𝑛 “ 𝑀 r𝑁˚

𝑖,𝑛

`

𝑈 pℓr𝑖sq
p𝑡´𝑛´1q

˘

`
𝜏𝑛
2

𝑠
ÿ

𝑗“1

𝑎RKl
𝑖𝑗

`

𝜏𝑛
2

˘ℓr𝑗s´ℓr𝑖s

´

r𝑁𝑗,𝑛

`

𝑔p¨q
˘

´ 𝐴𝑔RKl
𝑗,𝑛

¯

, 𝑖 “ 1, . . . , 𝑠,

𝑀𝑈 p𝑖q
p𝑡´𝑛 q “ 𝑀𝑈 p𝑖q

p𝑡´𝑛´1q `
𝜏𝑛
2

𝑠
ÿ

𝑗“1

𝑏RKl
p𝑖`1q𝑗

`

𝜏𝑛
2

˘ℓr𝑗s´𝑖
´

r𝑁𝑗,𝑛

`

𝑔p¨q
˘

´ 𝐴𝑔RKl
𝑗,𝑛

¯

, 𝑖 “ 0, . . . , ℓ,
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2.1 Runge–Kutta-like discretization framework

where all 𝑎RKl
𝑖𝑗 and 𝑏RKl

𝑖𝑗 are real coefficients. Here, the 𝑔RKl
𝑖,𝑛 , 𝑖 “ 1, . . . , 𝑠, could be interpreted

as generalized “internal stages”.
The coefficients are compressed in two matrices 𝐴RKl P R𝑠ˆ𝑠 and 𝐵RKl P Rpℓ`1qˆ𝑠 that are

given by p𝐴RKlq𝑖𝑗 “ 𝑎RKl
𝑖𝑗 and p𝐵RKlq𝑖𝑗 “ 𝑏RKl

𝑖𝑗 , respectively. Moreover, a diagonal scaling
matrix is defined by

𝑆RKl
𝑛 “ diag

´

`

𝜏𝑛
2

˘ℓr1s , . . . ,
`

𝜏𝑛
2

˘ℓr𝑠s

¯

P R𝑠ˆ𝑠.

For brevity, we further set 𝐴RKl
𝑛 P R𝑠ˆ𝑠 and 𝐵RKl

𝑛 P Rpℓ`1qˆ𝑠 as

𝐴RKl
𝑛 “

`

𝑆RKl
𝑛

˘´1
𝐴RKl𝑆RKl

𝑛 and 𝐵RKl
𝑛 “ diag

´

1,
`

𝜏𝑛
2

˘´1
, . . . ,

`

𝜏𝑛
2

˘´ℓ
¯

𝐵RKl𝑆RKl
𝑛 .

Then, the Runge–Kutta-like formulation simply reads
¨

˚

˝

𝑀𝑈p𝑡´𝑛 q
...

𝑀𝑈 pℓqp𝑡´𝑛 q

˛

‹

‚

“

¨

˚

˝

𝑀𝑈p𝑡´𝑛´1q
...

𝑀𝑈 pℓqp𝑡´𝑛´1q

˛

‹

‚

`
𝜏𝑛
2

`

𝐵RKl
𝑛 b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
r𝑁𝑗,𝑛

`

𝑔p¨q
˘

´ 𝐴𝑔RKl
𝑗,𝑛

...

˛

‹

‚

(2.6a)

where
¨

˚

˝

...
𝑀𝑔RKl

𝑖,𝑛
...

˛

‹

‚

“

¨

˚

˝

...
𝑀 r𝑁˚

𝑖,𝑛

`

𝑈 pℓr𝑖sqp𝑡´𝑛´1q
˘

...

˛

‹

‚

`
𝜏𝑛
2

`

𝐴RKl
𝑛 b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
r𝑁𝑗,𝑛

`

𝑔p¨q
˘

´ 𝐴𝑔RKl
𝑗,𝑛

...

˛

‹

‚

. (2.6b)

Here, b denotes the Kronecker product and 𝐼𝑑,𝑑 the identity matrix in R𝑑ˆ𝑑.
Especially, we observe that the iteration equation (2.6a) uses and returns not just point

values but also derivatives at 𝑡´𝑛´1 and 𝑡´𝑛 , respectively. Therefore, in general 𝐵RKl
𝑛 is not a

vector as for Runge–Kutta methods but a matrix.

Remark 2.1
Setting 𝑀𝑘RKl

𝑖,𝑛 “ r𝑁𝑖,𝑛

`

𝑔p¨q
˘

´ 𝐴𝑔RKl
𝑖,𝑛 , we could rewrite p𝑠, ℓq-RKlp𝑔q as

𝑀𝑘RKl
𝑖,𝑛 “ r𝑁𝑖,𝑛

`

𝑔p¨q
˘

´ 𝐴

ˆ

r𝑁˚
𝑖,𝑛

`

𝑈 pℓr𝑖sq
p𝑡´𝑛´1q

˘

`
𝜏𝑛
2

𝑠
ÿ

𝑗“1

𝑎RKl
𝑖𝑗

`

𝜏𝑛
2

˘ℓr𝑗s´ℓr𝑖s 𝑘RKl
𝑗,𝑛

˙

, 𝑖 “ 1, . . . , 𝑠,

𝑀𝑈 p𝑖q
p𝑡´𝑛 q “ 𝑀𝑈 p𝑖q

p𝑡´𝑛´1q `
𝜏𝑛
2

𝑠
ÿ

𝑗“1

𝑏RKl
p𝑖`1q𝑗

`

𝜏𝑛
2

˘ℓr𝑗s´𝑖
𝑀𝑘RKl

𝑗,𝑛 , 𝑖 “ 0, . . . , ℓ,

which nicely shows the similarity to the other frequently used formulation of Runge–Kutta
methods, see e.g. [37, Definition II.7.1, p. 205]. ♣

Remark 2.2
The classical Runge–Kutta method for the discretization of (1.21), completely described by
the coefficient matrices

`

𝐴RK, 𝑏RK, 𝑐RK
˘

, is obtained for ℓ “ ℓr𝑖s “ 0, 𝑔 “ 𝑓 , 𝐴RKl “ 𝐴RK,
𝐵RKl “ 𝑏RK, and p𝑁˚

𝑖 p𝑣q “ 𝑣p´1 ` 2𝑐RK
𝑖 q for all 𝑖. ♣
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Remark 2.3
In order to fit (2.5) for problems of the form (1.21) in the Runge–Kutta-like framework, we
can set

p𝑁˚
𝑖

`

𝑣
˘

“ p𝑁
ℓr𝑖s´ℓr𝑖s

𝑖

`

𝑣
˘

and p𝑁𝑖

`

𝑣
˘

“ p𝑁˚
𝑖

`

𝑣pℓr𝑖sq
˘

“ p𝑁
ℓr𝑖s´ℓr𝑖s

𝑖

`

𝑣pℓr𝑖sq
˘

“ p𝑁 ℓr𝑖s

𝑖

`

𝑣
˘

.

Note that then

r𝑁˚
𝑖,𝑛

`

𝑣
˘

“ p𝑁˚
𝑖

`

𝑣 ˝ 𝑇𝑛
˘

“ p𝑁
ℓr𝑖s´ℓr𝑖s

𝑖

`

𝑣 ˝ 𝑇𝑛
˘

“ 𝑁
ℓr𝑖s´ℓr𝑖s

𝑖,𝑛

`

𝑣
˘

,

r𝑁𝑖,𝑛

`

𝑣
˘

“
`

𝜏𝑛
2

˘´ℓr𝑖s
p𝑁𝑖

`

𝑣 ˝ 𝑇𝑛
˘

“
`

𝜏𝑛
2

˘´ℓr𝑖s
p𝑁 ℓr𝑖s

𝑖

`

𝑣 ˝ 𝑇𝑛
˘

“
`

𝜏𝑛
2

˘´ℓr𝑖s 𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑣
˘

.

Therefore, we have that

𝑔RKl
𝑖,𝑛 p“

`

𝜏𝑛
2

˘´ℓr𝑖s 𝑁 ℓr𝑖s

𝑖,𝑛

`

𝑈p¨q
˘

“ r𝑁𝑖,𝑛

`

𝑈p¨q
˘

,

𝑎RKl
𝑖𝑗 p“ p𝑁

ℓr𝑖s´ℓr𝑖s

𝑖

´

ş ¨

´1
p𝐵

pℓr𝑖sq

𝑗 p𝑠q d𝑠
¯

“ p𝑁˚
𝑖

´

ş ¨

´1
p𝐵

pℓr𝑖sq

𝑗 p𝑠q d𝑠
¯

,

𝑏RKl
p𝑖`1q𝑗 p“

ş1

´1
p𝐵

p𝑖q
𝑗 p𝑠q d𝑠,

where p𝐵𝑖 P 𝑃𝑠´1pr´1, 1sq, 𝑖 “ 1, . . . , 𝑠, are determined by p𝑁𝑗

`

p𝐵𝑖

˘

“ p𝑁 ℓr𝑗s

𝑗

`

p𝐵𝑖

˘

“ 𝛿𝑖,𝑗. ♣

2.1.3 Existence and uniqueness

We now ask under which conditions the Runge–Kutta-like discretization scheme (2.6) has
an appropriate solution. Of course, for a proper description of the solution, the involved
“stage equations” (2.6b) should be uniquely solvable. Rewriting (2.6b), we easily see that
this is guaranteed if the system matrix

`

p𝐼𝑠,𝑠 b 𝑀q ` 𝜏𝑛
2

p𝐴RKl
𝑛 b 𝐴q

˘

is regular.
Since 𝑀 is regular by assumption, the system matrix also could be split in different ways,

for example, as

(i)
`

𝐼𝑠,𝑠 b 𝑀
˘`

p𝐼𝑠,𝑠 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴RKl
𝑛 b 𝑀´1𝐴q

˘

or

(ii)
`

p𝐼𝑠,𝑠 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴RKl
𝑛 b 𝐴𝑀´1q

˘`

𝐼𝑠,𝑠 b 𝑀
˘

.

Another, more symmetric splitting can be carried out if 𝑀 is not just regular but symmetric
and positive definite. Then, the square root 𝑀1{2 of 𝑀 is uniquely defined and also sym-
metric and positive definite. So, we have 𝑀 “ 𝑀1{2𝑀1{2. In this case the system matrix
can be rewritten as

(iii)
`

𝐼𝑠,𝑠 b 𝑀1{2
˘`

p𝐼𝑠,𝑠 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴RKl
𝑛 b 𝑀´1{2𝐴𝑀´1{2q

˘`

𝐼𝑠,𝑠 b 𝑀1{2
˘

.

For brevity, we will write

𝑀 :“

$

’

&

’

%

𝐼𝑑,𝑑, for splitting (i),
𝑀, for splitting (ii),
𝑀1{2, for splitting (iii),

𝐴 :“ 𝑀𝑀´1𝐴𝑀
´1

“

$

’

&

’

%

𝑀´1𝐴, for (i),
𝐴𝑀´1, for (ii),
𝑀´1{2𝐴𝑀´1{2, for (iii).
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Then, all three splittings could be written in a unified form as
`

𝐼𝑠,𝑠 b 𝑀𝑀
´1˘`

p𝐼𝑠,𝑠 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴RKl
𝑛 b 𝐴q

˘`

𝐼𝑠,𝑠 b 𝑀
˘

.

Setting 𝑔RKl
𝑖,𝑛 :“ 𝑀𝑔RKl

𝑖,𝑛 and left multiplying the equation system (2.6a) by
`

𝐼ℓ`1,ℓ`1b𝑀𝑀´1
˘

and the equation system (2.6b) by
`

𝐼𝑠,𝑠 b 𝑀𝑀´1
˘

, we find
¨

˚

˝

𝑈p𝑡´𝑛 q
...

𝑈
pℓq

p𝑡´𝑛 q

˛

‹

‚

“

¨

˚

˝

𝑈p𝑡´𝑛´1q
...

𝑈
pℓq

p𝑡´𝑛´1q

˛

‹

‚

`
𝜏𝑛
2

`

𝐵RKl
𝑛 b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
r𝑁𝑗,𝑛

`

𝑀𝑀´1𝑔p¨q
˘

´ 𝐴𝑔RKl
𝑗,𝑛

...

˛

‹

‚

(2.7a)

and
¨

˚

˝

...
𝑔RKl
𝑖,𝑛
...

˛

‹

‚

“

¨

˚

˚

˝

...
r𝑁˚
𝑖,𝑛

`

𝑈
pℓr𝑖sq

p𝑡´𝑛´1q
˘

...

˛

‹

‹

‚

`
𝜏𝑛
2

`

𝐴RKl
𝑛 b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
r𝑁𝑗,𝑛

`

𝑀𝑀´1𝑔p¨q
˘

´ 𝐴𝑔RKl
𝑗,𝑛

...

˛

‹

‚

,

(2.7b)

which could be interpreted as the “iteration” and “stage equations” associated to the solution
𝑈 “ 𝑀𝑈 of p𝑠, ℓq-RKlp𝑀𝑀´1𝑔q as approximation to the solution 𝑢 “ 𝑀𝑢 of

𝑢 1
p𝑡q “ 𝐹

`

𝑡, 𝑢p𝑡q
˘

:“ 𝑀𝑀´1𝑓p𝑡q ´ 𝐴𝑢p𝑡q, 𝑢p𝑡0q “ 𝑀𝑢0. (2.8)

Due to the regularity (or even the symmetry and positive definiteness) of 𝑀 , both equation
systems (2.6) and (2.7) as well as both problems (1.21) and (2.8) are equivalent. Therefore,
we will concentrate on the discretization of the somewhat more simple problem (2.8).

In the following, let 𝑀 P R𝑑ˆ𝑑 always be regular and 𝑀 , 𝐴 matrices in R𝑑ˆ𝑑. For the
study of the existence and uniqueness of solutions to (2.7b), we need more notation.

Definition 2.4
For Λ P R𝑑ˆ𝑑 we set

𝜇rΛs :“ sup
␣

p𝑣,Λ𝑣q : 𝑣 P R𝑑, }𝑣} “ 1
(

,

which is the largest eigenvalue of the symmetric part 1
2

`

Λ𝑇 ` Λ
˘

of Λ. Also note that 𝜇rΛs

is the logarithmic norm of Λ with respect to the Euclidean inner product, see [42, (2.1.2)]
or [37, Theorem I.10.5, p. 61]. ♣

Remark 2.5
For 𝜇 ě 𝜇

“

´𝐴
‰

we easily verify that
`

´𝐴𝑣, 𝑣
˘

“
`

𝑣,´𝐴𝑣
˘

ď 𝜇
›

›𝑣
›

›

2
@𝑣 P R𝑑. (2.9)

Therefore, 𝐹 (with 𝐹 p𝑡, 𝑣q “ 𝑀𝑀´1𝑓p𝑡q ´ 𝐴𝑣) satisfies the one-sided Lipschitz condition
`

𝐹
`

𝑡, 𝑣
˘

´ 𝐹
`

𝑡, 𝑣
˘

, 𝑣 ´ 𝑣
˘

ď 𝜇
›

›𝑣 ´ 𝑣
›

›

2
@𝑡 P 𝐼, @𝑣, 𝑣 P R𝑑

with one-sided Lipschitz constant 𝜇 P R.
Note that there is no restriction on the sign of 𝜇. Indeed, in many situations of practical

relevance 𝜇 is negative. For example, if 𝐴 is the stiffness matrix of a semi-discretization in
space of a parabolic problem, then 𝜇 is a negative multiple of the coercivity constant. ♣
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Further, we introduce some notation on functions with matrix arguments following [42,
Subsection 2.2.2, Subsection 2.4.3].

Denote by 𝜑denom and 𝜑num two polynomials without common non-trivial factors and
consider the rational function 𝜑 given by 𝜑p𝑧q “ p𝜑denomp𝑧qq

´1 𝜑nump𝑧q for all 𝑧 P C with
𝜑denomp𝑧q ‰ 0. Let Λ P R𝑑ˆ𝑑. Then, provided 𝜑denompΛq is regular, we say that 𝜑pΛq exists
and is given by 𝜑pΛq “ p𝜑denompΛqq

´1 𝜑numpΛq.
Moreover, let Φ be a matrix-valued function given by Φp𝑧q “

`

𝜑𝑖𝑗p𝑧q
˘

P C𝑠ˆ𝑠 whenever
𝑧 P C and all 𝜑𝑖𝑗p𝑧q are well-defined where 𝜑𝑖𝑗 are rational functions with real coefficients.
Then, for Λ P R𝑑ˆ𝑑, we denote by ΦpΛq the 𝑠𝑑ˆ 𝑠𝑑 matrix with block-entries 𝜑𝑖𝑗pΛq P R𝑑ˆ𝑑.
Of course, we say that ΦpΛq exists if all 𝜑𝑖𝑗pΛq exist.

Using [42, Lemma 2.4.6, Lemma 2.2.6] it can be shown that the regularity of the system
matrix

`

p𝐼𝑠,𝑠 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴RKl
𝑛 b 𝐴q

˘

is strongly connected to the properties of the matrix-
valued function given by 𝑧 P C ÞÑ

`

𝐼𝑠,𝑠 ` 𝐴RKl𝑧
˘

. In fact, the following lemma holds.

Lemma 2.6
Let 𝜏 ą 0 and 𝜇 ě 𝜇

“

´𝐴
‰

. Then, the system matrix
`

p𝐼𝑠,𝑠 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴RKl
𝑛 b𝐴q

˘

is regular
for all 𝜏𝑛 P p0, 𝜏 s if

`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘

is regular for all 𝑧 P C with Re 𝑧 ď max
␣

0, 1
2
𝜏𝜇

(

.

Proof. First of all, 𝐴RKl
𝑛 “

`

𝑆RKl
𝑛

˘´1
𝐴RKl𝑆RKl

𝑛 implies

`

p𝐼𝑠,𝑠 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴RKl
𝑛 b 𝐴q

˘

“
` `

𝑆RKl
𝑛

˘´1
b 𝐼𝑑,𝑑

˘`

p𝐼𝑠,𝑠 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴RKl
b 𝐴q

˘`

𝑆RKl
𝑛 b 𝐼𝑑,𝑑

˘

.

Hence, it suffices to study the regularity of
`

p𝐼𝑠,𝑠 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴RKl b𝐴q
˘

, which we will call
the main part of the system matrix.

For 𝑧 P C, let 𝑉 p𝑧q “
`

𝑣𝑖𝑗p𝑧q
˘

“
`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘

and 𝑊 p𝑧q “
`

𝑤𝑖𝑗p𝑧q
˘

“ 𝑉 p𝑧q´1 if 𝑉 p𝑧q

is regular. Recalling the notation for matrix-valued functions, the main part of the system
matrix

`

p𝐼𝑠,𝑠 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴RKl b 𝐴q
˘

can be shortly written as 𝑉 p´ 𝜏𝑛
2
𝐴q. Now, according

to [42, Lemma 2.4.6], we have that 𝑉 p´ 𝜏𝑛
2
𝐴q is regular if and only if 𝑊 p´ 𝜏𝑛

2
𝐴q exists. So,

of course, we shall ask whether all 𝑤𝑖𝑗p´ 𝜏𝑛
2
𝐴q exist.

Now, it is well-known that (if existing) the inverse matrix of 𝑉 p𝑧q, 𝑧 P C, can be written as
𝑉 p𝑧q´1 “ 1

detp𝑉 p𝑧qq
adjp𝑉 p𝑧qq where adjp𝑉 p𝑧qq denotes the adjugate of 𝑉 p𝑧q. Exploiting this

representation, we find that 𝑤𝑖𝑗 is a rational function with 𝑤𝑖𝑗p𝑧q “
padjp𝑉 p𝑧qqq𝑖𝑗

detp𝑉 p𝑧qq
. Obviously,

𝑤𝑖𝑗p𝑧q exists for 𝑧 P C if detp𝑉 p𝑧qq ‰ 0, i.e., if 𝑉 p𝑧q is regular. Moreover, because of
𝜇 ě 𝜇

“

´𝐴
‰

(also cf. (2.9)), we obtain from [42, Lemma 2.2.6] that all 𝑤𝑖𝑗p´ 𝜏𝑛
2
𝐴q exist and,

thus, immediately get that
`

p𝐼𝑠,𝑠 b𝐼𝑑,𝑑q` 𝜏𝑛
2

p𝐴RKl b𝐴q
˘´1

“ 𝑉 p´ 𝜏𝑛
2
𝐴q´1 “ 𝑊 p´ 𝜏𝑛

2
𝐴q exists

if detp𝑉 p𝑧qq has no zeros in
␣

𝑧 P C : Re 𝑧 ď 𝜏𝑛
2
𝜇
(

. This completes the proof.

Remark 2.7
The statement of Lemma 2.6 is quite interesting in many ways. First of all, we find that
in order to guarantee that (2.7b) (and consequently also (2.6b)) has a unique solution,
`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘

should be regular at least on C´ “ t𝑧 P C : Rep𝑧q ď 0u. Indeed, then
`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘

would even be regular on t𝑧 P C : Rep𝑧q ď 𝜔u for some 𝜔 ą 0 and, thus,
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2.1 Runge–Kutta-like discretization framework

also the system matrix is regular for 𝜏𝑛 P p0, 𝜏 s when 𝜏𝜇 ď 2𝜔. In general this yields an
upper bound for the time step length. However, we observe that for 𝜇 ď 0 no restrictions
on 𝜏𝑛 ą 0 are necessary. ♣

As we shall prove below, the regularity of
`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘

is strongly connected to the
eigenvalues of 𝐴RKl. Let 𝜎pΛq denote the spectrum of the matrix Λ. Moreover, we define
some special regions of the complex plane C by

C´ :“ t𝑧 P C : Rep𝑧q ď 0u,

C`
0 :“ t𝑧 P C : 𝑧 “ 0 or Rep𝑧q ą 0u.

Then, we have the following statements that especially also hold for Λ “ 𝐴RKl.

Lemma 2.8
Let Λ P R𝑠ˆ𝑠 and 𝑧 P Czt0u. Then,

`

𝐼𝑠,𝑠 ´ Λ𝑧
˘

is regular if and only if 𝑧´1 R 𝜎pΛq.

Proof. The matrix
`

𝐼𝑠,𝑠 ´ Λ𝑧
˘

with 𝑧 P Czt0u is singular if and only if

det
`

𝐼𝑠,𝑠 ´ Λ𝑧
˘

“ 0 ô det
`

𝑧´1𝐼𝑠,𝑠 ´ Λ
˘

“ 0 ô 𝑧´1
P 𝜎pΛq,

which immediately gives the desired statement.

Corollary 2.9 (Cf. [19, Lemma 4.1])
Let Λ P R𝑠ˆ𝑠. Then,

`

𝐼𝑠,𝑠 ´ Λ𝑧
˘

is regular on C´ if and only if 𝜎pΛq Ă C`
0 .

Proof. For 𝑧 “ 0 the matrix is always regular. Otherwise, we gain by Lemma 2.8 that
`

𝐼𝑠,𝑠 ´ Λ𝑧
˘

is regular on C´
zt0u ô t𝑧´1 : 𝑧 P C´

zt0uu Ă Cz𝜎pΛq

ô 𝜎pΛq Ă Czt𝑧´1 : 𝑧 P C´
zt0uu “ C`

0 ,

where we also used that t𝑧´1 : 𝑧 P C´zt0uu “ C´zt0u “ CzC`
0 .

2.1.4 Stability properties

In order to enable a proper approximation of the global error, especially for the discretization
of stiff problems, a discretization method needs to fulfill certain stability properties. Since
we consider affine linear problems, we do not need (and in general also do not have) 𝐵-
stability for the methods we are particularly interested in. However, we shall have a look
on some similar stability concepts in analogy to [19, Subsection 3.1].

Definition 2.10
The Runge–Kutta-like method (2.7) is called 𝐴𝑆𝐼-stable if

`

𝐼𝑠,𝑠 ´𝐴RKl𝑧
˘

is regular as well
as

`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘´1 is uniformly bounded for all 𝑧 P C´. ♣

Definition 2.11
The Runge–Kutta-like method (2.7) is called 𝐴𝑆-stable if

`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘

is regular as well
as 𝐵RKl𝑧

`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘´1 is uniformly bounded for all 𝑧 P C´. ♣
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2 Error Analysis for Stiff Systems

The Definitions 2.10 and 2.11 simply transfer the concepts of 𝐴𝑆𝐼- and 𝐴𝑆-stability,
respectively, which are typically studied for Runge–Kutta methods, to the Runge–Kutta-
like method (2.7).

Analogously to [19, Lemma 4.3] it can be shown that the 𝐴𝑆𝐼-stability is strongly con-
nected to the spectrum of the matrix 𝐴RKl. In fact, the following lemma holds.

Lemma 2.12
The Runge–Kutta-like method (2.7) is 𝐴𝑆𝐼-stable if 𝜎p𝐴RKlq Ă C`

0 and zero is at most a
simple eigenvalue of 𝐴RKl.

Proof. First of all, Corollary 2.9 yields that the matrix
`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘

is regular for all
𝑧 P C´ if and only if 𝜎p𝐴RKlq Ă C`

0 . Furthermore, according to [19, Lemma 4.3], we have
that

`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘´1 is uniformly bounded if 𝜎p𝐴RKlq Ă C`

0 and zero is at most a simple
eigenvalue of 𝐴RKl. This completes the proof.

Furthermore, under certain conditions it can be shown that for Runge–Kutta-like methods
of the form (2.7) the 𝐴𝑆𝐼-stability already implies the 𝐴𝑆-stability. This result and its proof
are quite similar to that of [19, Lemma 4.4].

Lemma 2.13
Assume that 𝐵RKl “ 𝐶𝐴RKl for some matrix 𝐶. Then, any 𝐴𝑆𝐼-stable Runge–Kutta-like
method of form (2.7) also is 𝐴𝑆-stable.

Proof. Because of 𝐵RKl “ 𝐶𝐴RKl, we gain that

𝐵RKl𝑧
`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘´1

“ 𝐶
``

𝐴RKl𝑧 ´ 𝐼𝑠,𝑠
˘

` 𝐼𝑠,𝑠
˘`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘´1

“ 𝐶
`

𝐼𝑠,𝑠 ´ 𝐴RKl𝑧
˘´1

´ 𝐶.

Now, if the method is 𝐴𝑆𝐼-stable, we easily verify that this matrix is well-defined and
uniformly bounded for 𝑧 P C´, and thus 𝐴𝑆-stable.

Since 𝐴RKl is not necessarily regular, the condition 𝐵RKl “ 𝐶𝐴RKl really is an additional
assumption. However, in many cases this assumption is fulfilled, especially also for the
methods of our interest, see Corollary 2.16 below.

2.2 VTD methods as Runge–Kutta-like discretizations

This section aims to give a convenient description for the discrete VTD solution 𝑈 in terms
of a Runge–Kutta-like formulation. Here, unlike for collocation methods and their Runge–
Kutta formulation, the internal stages will in general not represent function values of the
discrete solution at intermediate time points but certain (other) degrees of freedom. For
convenience we will consider the somewhat simpler problem representation (2.8) only.

Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. For 𝑖 “ 1, . . . , 𝑟 ` 1 set ℓr𝑖s :“ min
␣

𝑖 ´ 1,
X

𝑘
2

\(

. Moreover, define

p𝑁˚
𝑖 p𝑣q “ 𝑣p1´

q, 𝑖 “ 1, . . . ,
X

𝑘
2

\

, p𝑁˚

t 𝑘
2 u`𝑖

p𝑣q “ 𝑣p𝑡𝑖q, 𝑖 “ 1, . . . , 𝑟 ´
X

𝑘
2

\

` 1, (2.10)
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where 𝑡𝑖 P r´1, 1s, 𝑖 “ 1, . . . , 𝑟 ´
X

𝑘
2

\

` 1, denote the quadrature points of 𝑄𝑟´t𝑘{2u

𝑘´2t𝑘{2u
, which is

Gauss–Radau for 𝑘 even or Gauss–Lobatto for 𝑘 odd, respectively. This implies that

p𝑁˚
𝑟`1p𝑣q “ 𝑣p1´

q and p𝑁˚

t 𝑘
2 u`1

p𝑣q “ 𝑣p´1`
q, if 𝑘 is odd.

Also note that these functionals are such that for a constant function 𝑣 ” 𝑐 they return 𝑐.
It can be easily shown that a function 𝑣 P 𝑃𝑟pp´1, 1sq can be uniquely described by

the 𝑟 ` 1 degrees of freedom p𝑁𝑖p𝑣q :“ p𝑁˚
𝑖

`

𝑣pℓr𝑖sq
˘

, 𝑖 “ 1, . . . , 𝑟 ` 1. Thus, any function
𝑣 P 𝑃𝑟pp´1, 1sq can be written as

𝑣p𝑡q “

𝑟`1
ÿ

𝑖“1

p𝑁𝑖p𝑣q p𝐵𝑖p𝑡q @𝑡 P p´1, 1s,

where the p𝐵𝑖 P 𝑃𝑟pp´1, 1sq, 𝑖 “ 1, . . . , 𝑟 ` 1, denote the associated basis functions, i.e., it
holds p𝑁𝑖

`

p𝐵𝑗

˘

“ p𝑁˚
𝑖

`

p𝐵
pℓr𝑖sq

𝑗

˘

“ 𝛿𝑖,𝑗 for all 𝑖, 𝑗 “ 1, . . . , 𝑟 ` 1.
Because of the special choice of the degrees of freedom, we have that the basis functions

p𝐵𝑗, 1 ď 𝑗 ď
X

𝑘
2

\

, which are associated to the function and derivative values at 1´, are simply
given by p𝐵𝑗p𝑡q “

p´1q𝑗´1

p𝑗´1q!

`

1 ´ 𝑡
˘𝑗´1. This implies that for 𝑣 P 𝑃𝑟pp´1, 1sq and 𝑙 “ 0, . . . ,

X

𝑘
2

\

𝑣p𝑙q
p𝑡q “

𝑟`1
ÿ

𝑖“1

p𝑁𝑖p𝑣q p𝐵
p𝑙q
𝑖 p𝑡q “

𝑟`1
ÿ

𝑖“𝑙`1

p𝑁𝑖p𝑣q p𝐵
p𝑙q
𝑖 p𝑡q @𝑡 P p´1, 1s.

Also note that by construction p𝑁˚
𝑖

`

p𝐵
pt𝑘{2uq

𝑗

˘

“ 𝛿𝑖,𝑗 for 𝑖, 𝑗 “
X

𝑘
2

\

`1, . . . , 𝑟`1, which especially
implies that p𝐵

pt𝑘{2uq

𝑖 P 𝑃𝑟´t𝑘{2upp´1, 1sq, 𝑖 “
X

𝑘
2

\

`1, . . . , 𝑟`1, are just the nodal basis functions
associated to the set of linear functionals

␣

p𝑁˚
𝑖

ˇ

ˇ 𝑖 “
X

𝑘
2

\

` 1, . . . , 𝑟 ` 1
(

.
For the sake of clarity, we concretize the general operators of Subsection 2.1.2 in our

current setting. We have for sufficiently smooth functions 𝑣 on 𝐼𝑛

r𝑁˚
𝑖,𝑛

`

𝑣
˘

:“ p𝑁˚
𝑖

`

𝑣 ˝ 𝑇𝑛
˘

“ 𝑣p𝑡´𝑛 q, 𝑖 “ 1, . . . ,
X

𝑘
2

\

,

r𝑁˚

t 𝑘
2 u`𝑖,𝑛

`

𝑣
˘

:“ p𝑁˚

t 𝑘
2 u`𝑖

`

𝑣 ˝ 𝑇𝑛
˘

“ 𝑣p𝑇𝑛p𝑡𝑖qq, 𝑖 “ 1, . . . , 𝑟 ´
X

𝑘
2

\

` 1,
(2.11a)

where the transformation 𝑇𝑛 is given by (1.7). Moreover, it holds

r𝑁𝑖,𝑛

`

𝑣
˘

:“ r𝑁˚
𝑖,𝑛

`

𝑣pℓr𝑖sq
˘

“ 𝑣pℓr𝑖sq
p𝑡´𝑛 q “ 𝑣p𝑖´1q

p𝑡´𝑛 q, 𝑖 “ 1, . . . ,
X

𝑘
2

\

,

r𝑁t 𝑘
2 u`𝑖,𝑛

`

𝑣
˘

:“ r𝑁˚

t 𝑘
2 u`𝑖,𝑛

`

𝑣pt 𝑘
2 uq

˘

“ 𝑣pt 𝑘
2 uqp𝑇𝑛p𝑡𝑖qq, 𝑖 “ 1, . . . , 𝑟 ´

X

𝑘
2

\

` 1.
(2.11b)

Of course, the 𝑙th derivative, 0 ď 𝑙 ď
X

𝑘
2

\

, of a function 𝑣 P 𝑃𝑟p𝐼𝑛q then is represented by

𝑣p𝑙q
p𝑡q “

𝑟`1
ÿ

𝑖“𝑙`1

`

𝜏𝑛
2

˘ℓr𝑖s´𝑙
r𝑁𝑖,𝑛p𝑣q

`

p𝐵
p𝑙q
𝑖 ˝ 𝑇´1

𝑛

˘

p𝑡q, @𝑡 P 𝐼𝑛. (2.12)

We now are ready to reveal a Runge–Kutta-like formulation of the VTD methods. Recall
that, for convenience, we only consider the more simple problem (2.8). Moreover, we need
some assumptions on 𝑔.
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Assumption 2.1
We assume that 𝑔 is

`X

𝑘
2

\

´ 1
˘

-times continuously differentiable on 𝐼. Moreover, we suppose
that 𝑔 satisfies

𝑔
ˇ

ˇ

𝐼𝑛
P 𝑃𝑟p𝐼𝑛,R𝑑

q for all 1 ď 𝑛 ď 𝑁

as well as

𝑔p𝑖q
p𝑡𝑛q “ 𝑓 p𝑖q

p𝑡𝑛q for all 0 ď 𝑛 ď 𝑁 and 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1

if the right-hand side function 𝑓 : 𝐼 Ñ R𝑑 is sufficiently smooth.

Remark 2.14
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Typical choices for 𝑔 that fulfill Assumption 2.1 (for sufficiently
smooth 𝑓) are

• 𝑔 “ Π𝑟
𝑘𝑓 : Here, Π𝑟

𝑘 is defined in (1.28).

• 𝑔 “ ℐ𝑟
𝑘𝑓 : For a definition of ℐ𝑟

𝑘 compare (1.15).

• 𝑔 “ 𝒞𝑟
𝑘𝑓 : Here, 𝒞𝑟

𝑘 “ ℐ𝑟
𝑘 ˝ ℐ𝑟`1

𝑘`2 ˝ . . . ˝ ℐ2𝑟´𝑘
2𝑟´𝑘 is the interpolation cascade known from

Subsection 1.4.3.

For a convenient interpretation of these choices see Remark 1.43.
Note that, for 𝑘 ě 2, also the situation after a postprocessing of 𝑄𝑟´1

𝑘´2-VTD𝑟´1
𝑘´2p𝑓q can

be described by a 𝑔 satisfying Assumption 2.1. Indeed, for this case set 𝑔 “ ℐ𝑟
𝑘´2,˚𝑓 , where

ℐ𝑟
𝑘´2,˚ is, in accordance with Remark 1.37, the interpolation operator which interpolates in

the quadrature points of 𝑄𝑟´1
𝑘´2 and additionally preserves the

X

𝑘´1
2

\

th derivative in 𝑡`𝑛´1. ♣

Proposition 2.15
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Moreover, let

␣

p𝑁˚
𝑖

(

be specified by (2.10), ℓr𝑖s “ min
␣

𝑖 ´ 1,
X

𝑘
2

\(

,
and ℓ “

X

𝑘
2

\

. Furthermore, suppose that 𝑓 is globally
`X

𝑘
2

\

´ 1
˘

-times continuously differ-
entiable and that 𝑈 P 𝑌𝑟 solves VTD𝑟

𝑘p𝑀𝑀´1𝑔q with 𝑔 fulfilling Assumption 2.1. Then,
𝑔VTD
𝑖,𝑛 “ r𝑁𝑖,𝑛

`

𝑈p¨q
˘

P R𝑑, 𝑖 “ 1, . . . , 𝑟 ` 1, satisfy
¨

˚

˝

...
𝑔VTD
𝑖,𝑛
...

˛

‹

‚

“

¨

˚

˚

˝

...
𝑈

pℓr𝑖sq
p𝑡´𝑛´1q
...

˛

‹

‹

‚

`
𝜏𝑛
2

`

𝐴VTD
𝑛 b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
r𝑁𝑗,𝑛

`

𝑀𝑀´1𝑔p¨q
˘

´ 𝐴𝑔VTD
𝑗,𝑛

...

˛

‹

‚

(2.13)

with 𝑈 pℓr𝑖sq
p𝑡´0 q “ 𝑢pℓr𝑖sqp𝑡0q. Here, we have

𝐴VTD
𝑛 :“ 𝑆´1

𝑛 𝐴VTD𝑆𝑛,

where 𝐴VTD P Rp𝑟`1qˆp𝑟`1q is given by

`

𝐴VTD
˘

𝑖𝑗
“

#

p𝑁˚
𝑖

´

ş ¨

´1
p𝐵

pℓr𝑖sq

𝑗 p𝑠q d𝑠
¯

, 1 ď 𝑖 ď 𝑟 ` 1, ℓr𝑖s ` 1 “ min
␣

𝑖,
X

𝑘
2

\

` 1
(

ď 𝑗 ď 𝑟 ` 1,

0, otherwise,
(2.14)

and 𝑆𝑛 P Rp𝑟`1qˆp𝑟`1q is the diagonal scaling matrix 𝑆𝑛 “ diag
´

1,
`

𝜏𝑛
2

˘ℓr2s , . . . ,
`

𝜏𝑛
2

˘ℓr𝑟`1s

¯

.
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2.2 VTD methods as Runge–Kutta-like discretizations

Proof. The argument strongly uses various properties of the postprocessed solution and its
connection to the actual solution which therefore shall be summarized at first.

The postprocessing of Theorem 1.32 can be applied to the solution 𝑈 of VTD𝑟
𝑘p𝑀𝑀´1𝑔q

with 𝑔 satisfying Assumption 2.1. This procedure then yields a solution q𝑈 P 𝑌𝑟`1 of the
𝑄𝑟

𝑘-VTD𝑟`1
𝑘`2p𝑀𝑀´1𝑔q method that coincides with 𝑈 in the 𝑟 ` 1 quadrature points of 𝑄𝑟

𝑘.
More concrete, there is a vector 𝑐𝑛 P R𝑑 such that

q𝑈
ˇ

ˇ

𝐼𝑛
“ 𝑈

ˇ

ˇ

𝐼𝑛
` 𝑐𝑛p𝜑 ˝ 𝑇´1

𝑛 q

with 𝜑p𝑡q “
`

1 ´ 𝑡
˘t 𝑘

2 u`1 `
1 ` 𝑡

˘t 𝑘´1
2 u`1

𝑃
pt 𝑘

2 u`1,t 𝑘´1
2 u`1q

𝑟´𝑘 p𝑡q @𝑡 P r´1, 1s,

where 𝑃 pt 𝑘
2 u`1,t 𝑘´1

2 u`1q
𝑟´𝑘 denotes the p𝑟´𝑘qth Jacobi-polynomial with respect to the weighting

function
`

1 ´ 𝑡
˘t 𝑘

2 u`1 `
1 ` 𝑡

˘t 𝑘´1
2 u`1 in the interval p´1, 1q, cf. Appendix A.2. Therefore, as a

consequence of Rodrigues’ formula we further gain that 𝑈pt 𝑘
2 uqˇ

ˇ

𝐼𝑛
and q𝑈pt 𝑘

2 uq
ˇ

ˇ

𝐼𝑛
also coincide

in the quadrature points of 𝑄𝑟´t𝑘{2u

𝑘´2t𝑘{2u
since

𝜑pt 𝑘
2 uqp𝑡q “ 𝐶

`

1 ´ 𝑡
˘ `

1 ` 𝑡
˘t 𝑘´1

2 u`1´t 𝑘
2 u
𝑃

p1,t 𝑘´1
2 u`1´t 𝑘

2 uq

𝑟´t 𝑘´1
2 u´1

p𝑡q @𝑡 P r´1, 1s

due to (A.2). Altogether this implies that

r𝑁𝑖,𝑛

`

𝑈p¨q
˘

“ r𝑁𝑖,𝑛

`

q𝑈p¨q
˘

for all 𝑖 “ 1, . . . , 𝑟 ` 1. (2.15a)

Moreover, recalling Theorem 1.24, we could also interpret q𝑈 as a solution of a certain
collocation method. Then, in particular, we find that ℐ𝑟

𝑘

`

q𝑈 1
˘ˇ

ˇ

𝐼𝑛
“ ℐ𝑟

𝑘

`

𝑀𝑀´1𝑔 ´ 𝐴q𝑈
˘ˇ

ˇ

𝐼𝑛
.

Using that 𝑀 , 𝑀 , and 𝐴 are independent of 𝑡 as well as that q𝑈 1 and 𝑔 are polynomials of
maximal degree 𝑟, we thus conclude

q𝑈 1
p𝑡q “ ℐ𝑟

𝑘

`

q𝑈 1
˘

p𝑡q “ ℐ𝑟
𝑘

`

𝑀𝑀´1𝑔 ´ 𝐴q𝑈
˘

p𝑡q “
`

𝑀𝑀´1ℐ𝑟
𝑘𝑔 ´ 𝐴ℐ𝑟

𝑘
q𝑈
˘

p𝑡q

“
`

𝑀𝑀´1𝑔 ´ 𝐴𝑈
˘

p𝑡q
(2.15b)

for all 𝑡 P 𝐼𝑛. Last but not least, by construction the solution q𝑈 of 𝑄𝑟
𝑘-VTD𝑟`1

𝑘`2

`

𝑀𝑀´1𝑔
˘

is at least
X

𝑘
2

\

-times continuously differentiable since 𝑓 and 𝑔 are sufficiently smooth by
assumption. Hence, we obtain

q𝑈 p𝑖q
p𝑡`𝑛´1q “ q𝑈 p𝑖q

p𝑡´𝑛´1q “

#

𝑈
p𝑖q

p𝑡´𝑛´1q, 𝑛 ą 1,

𝑢p𝑖qp𝑡0q, 𝑛 “ 1,
for 𝑖 “ 0, . . . ,

X

𝑘
2

\

, (2.15c)

where, for 𝑛 ą 1, we used that the derivatives of 𝜑 up to order
X

𝑘
2

\

vanish at 1´ and,
for 𝑛 “ 1, we used the definition of 𝑢p𝑖qp𝑡0q, the collocation conditions at 𝑡`0 , and that
𝑔p𝑖qp𝑡`0 q “ 𝑓 p𝑖qp𝑡`0 q for 𝑖 “ 0, . . . ,

X

𝑘
2

\

´ 1.
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Now, we are ready to start the actual proof. For any 𝑙 “ 0, . . . ,
X

𝑘
2

\

and 𝑡 P 𝐼𝑛 we gain for
q𝑈 P 𝑌𝑟`1 from the fundamental theorem of calculus and (2.12) that

q𝑈 p𝑙q
p𝑡q “ q𝑈 p𝑙q

p𝑡`𝑛´1q `

ż 𝑡

𝑡𝑛´1

q𝑈 p𝑙`1q
p𝑠q d𝑠

“ q𝑈 p𝑙q
p𝑡`𝑛´1q `

𝑟`1
ÿ

𝑗“𝑙`1

`

𝜏𝑛
2

˘ℓr𝑗s´𝑙
r𝑁𝑗,𝑛

`

q𝑈 1
p¨q
˘

ż 𝑡

𝑡𝑛´1

`

p𝐵
p𝑙q
𝑗 ˝ 𝑇´1

𝑛

˘

p𝑠q d𝑠

“ q𝑈 p𝑙q
p𝑡`𝑛´1q `

𝜏𝑛
2

𝑟`1
ÿ

𝑗“𝑙`1

`

𝜏𝑛
2

˘ℓr𝑗s´𝑙
r𝑁𝑗,𝑛

`

q𝑈 1
p¨q
˘

ż 𝑇´1
𝑛 p𝑡q

´1

p𝐵
p𝑙q
𝑗 p𝑠q d𝑠, (2.16)

where the last identity follows from integration by substitution.
For 𝑖 “ 1, . . . , 𝑟 ` 1 applying r𝑁˚

𝑖,𝑛 to (2.16) with 𝑙 “ ℓr𝑖s “ min
␣

𝑖 ´ 1,
X

𝑘
2

\(

, we obtain

r𝑁˚
𝑖,𝑛

`

q𝑈 pℓr𝑖sq
p¨q
˘

“ r𝑁˚
𝑖,𝑛

`

q𝑈 pℓr𝑖sq
p𝑡`𝑛´1q

˘

`
𝜏𝑛
2

𝑟`1
ÿ

𝑗“ℓr𝑖s`1

`

𝜏𝑛
2

˘ℓr𝑗s´ℓr𝑖s
r𝑁𝑗,𝑛

`

q𝑈 1
p¨q
˘

r𝑁˚
𝑖,𝑛

´

ş𝑇´1
𝑛 p¨q

´1
p𝐵

pℓr𝑖sq

𝑗 p𝑠q d𝑠
¯

.

So, from the definitions and properties of the linear functionals, we further conclude that

r𝑁𝑖,𝑛

`

q𝑈p¨q
˘

“ q𝑈 pℓr𝑖sq
p𝑡`𝑛´1q `

𝜏𝑛
2

𝑟`1
ÿ

𝑗“ℓr𝑖s`1

`

𝜏𝑛
2

˘ℓr𝑗s´ℓr𝑖s
r𝑁𝑗,𝑛

`

q𝑈 1
p¨q
˘

p𝑁˚
𝑖

´

ş ¨

´1
p𝐵

pℓr𝑖sq

𝑗 p𝑠q d𝑠
¯

for 𝑖 “ 1, . . . , 𝑟 ` 1. Recalling the definition of 𝐴VTD, this identity simply reads

r𝑁𝑖,𝑛

`

q𝑈p¨q
˘

“ q𝑈 pℓr𝑖sq
p𝑡`𝑛´1q `

𝜏𝑛
2

𝑟`1
ÿ

𝑗“1

`

𝐴VTD
˘

𝑖𝑗

`

𝜏𝑛
2

˘ℓr𝑗s´ℓr𝑖s
r𝑁𝑗,𝑛

`

q𝑈 1
p¨q
˘

.

Noting that the scaling matrices 𝑆𝑛 and 𝑆´1
𝑛 are defined such that

`

𝑆𝑛

˘

𝑖𝑗
“

#

`

𝜏𝑛
2

˘ℓr𝑖s , if 𝑖 “ 𝑗,

0, otherwise,
and

`

𝑆´1
𝑛

˘

𝑖𝑗
“

#

`

𝜏𝑛
2

˘´ℓr𝑖s , if 𝑖 “ 𝑗,

0, otherwise,

respectively, we gain the equation system
¨

˚

˝

...
r𝑁𝑖,𝑛

`

q𝑈p¨q
˘

...

˛

‹

‚

“

¨

˚

˝

...
q𝑈 pℓr𝑖sqp𝑡`𝑛´1q

...

˛

‹

‚

`
𝜏𝑛
2

`

𝑆´1
𝑛 𝐴VTD𝑆𝑛

looooomooooon

“:𝐴VTD
𝑛

b 𝐼𝑑,𝑑
˘

¨

˚

˝

...
r𝑁𝑗,𝑛

`

q𝑈 1p¨q
˘

...

˛

‹

‚

. (2.17)

Finally, recalling 𝑈 p𝑙q
p𝑡´0 q “ 𝑢p𝑙qp𝑡0q for 𝑙 “ 0, . . . ,

X

𝑘
2

\

and noting (2.15), we have

r𝑁𝑖,𝑛

`

q𝑈p¨q
˘

“ r𝑁𝑖,𝑛

`

𝑈p¨q
˘

, q𝑈 pℓr𝑖sq
p𝑡`𝑛´1q “ 𝑈

pℓr𝑖sq
p𝑡´𝑛´1q, and

r𝑁𝑗,𝑛

`

q𝑈 1
p¨q
˘

“ r𝑁𝑗,𝑛

`

𝑀𝑀´1𝑔p¨q ´ 𝐴𝑈p¨q
˘

“ r𝑁𝑗,𝑛

`

𝑀𝑀´1𝑔p¨q
˘

´ 𝐴 r𝑁𝑗,𝑛

`

𝑈p¨q
˘

, (2.18)

where we also used that 𝐴 is time-independent. From this and (2.17) we easily conclude
that 𝑔VTD

𝑖,𝑛 “ r𝑁𝑖,𝑛

`

𝑈p¨q
˘

, 𝑖 “ 1, . . . , 𝑟 ` 1, solves the equation system (2.13) as desired.
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2.2 VTD methods as Runge–Kutta-like discretizations

Corollary 2.16 (Runge–Kutta-like formulation)
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Moreover, let

␣

p𝑁˚
𝑖

(

be specified by (2.10), ℓr𝑖s “ min
␣

𝑖 ´ 1,
X

𝑘
2

\(

,
and ℓ “

X

𝑘
2

\

. Furthermore, suppose that 𝑓 is globally
`X

𝑘
2

\

´ 1
˘

-times continuously differen-
tiable and that 𝑈 P 𝑌𝑟 solves VTD𝑟

𝑘p𝑀𝑀´1𝑔q with 𝑔 fulfilling Assumption 2.1. Then, 𝑈
satisfies (2.7) with 𝑔RKl

𝑖,𝑛 “ 𝑔VTD
𝑖,𝑛 “ r𝑁𝑖,𝑛

`

𝑈p¨q
˘

, 𝑖 “ 1, . . . , 𝑟 ` 1, where

𝐴RKl
𝑛 “ 𝐴VTD

𝑛 P Rp𝑟`1qˆp𝑟`1q and 𝐵RKl
𝑛 “ 𝐵VTD

𝑛 :“
´

𝐼t𝑘{2u,𝑟`1

𝑒𝑇𝑟`1

¯

𝐴VTD
𝑛 P Rpℓ`1qˆp𝑟`1q

with 𝐴VTD
𝑛 as defined in Proposition 2.15. In this spirit 𝑈 can be viewed as solution of an

`

𝑟 ` 1,
X

𝑘
2

\˘

-RKlp𝑀𝑀´1𝑔q scheme.

Proof. The vectors 𝑔VTD
𝑖,𝑛 in Proposition 2.15 represent the evaluation of the linear operators

r𝑁𝑖,𝑛 for 𝑈 . Therefore, (2.13) could be interpreted as generalized stage equations for the “in-
ternal stages” 𝑔RKl

𝑖,𝑛 “ 𝑔VTD
𝑖,𝑛 “ r𝑁𝑖,𝑛

`

𝑈p¨q
˘

, 𝑖 “ 1, . . . , 𝑟 ` 1, of an
`

𝑟 ` 1,
X

𝑘
2

\˘

-RKlp𝑀𝑀´1𝑔q

scheme, cf. (2.7b). Here, also recall that 𝑈 pℓr𝑖sq
p𝑡´𝑛´1q “ r𝑁˚

𝑖,𝑛

`

𝑈
pℓr𝑖sq

p𝑡´𝑛´1q
˘

for all 𝑖.

Additionally noting that 𝑔VTD
𝑖,𝑛 “ r𝑁𝑖,𝑛

`

𝑈p¨q
˘

“ 𝑈
pℓr𝑖sq

p𝑡´𝑛 q for 𝑖 “ 1, . . . ,
X

𝑘
2

\

and 𝑖 “ 𝑟 ` 1

with ℓr𝑖s “ min
␣

𝑖 ´ 1,
X

𝑘
2

\(

, the first
X

𝑘
2

\

rows and the last row of (2.13) give that

¨

˚

˝

𝑈p𝑡´𝑛 q
...

𝑈
pt 𝑘

2 uq
p𝑡´𝑛 q

˛

‹

‚

“

¨

˚

˝

𝑈p𝑡´𝑛´1q
...

𝑈
pt 𝑘

2 uq
p𝑡´𝑛´1q

˛

‹

‚

`
𝜏𝑛
2

ˆ

´

𝐼t𝑘{2u,𝑟`1

𝑒𝑇𝑟`1

¯

𝐴VTD
𝑛

loooooooomoooooooon

“:𝐵VTD
𝑛

b 𝐼𝑑,𝑑

˙

¨

˚

˝

...
r𝑁𝑗,𝑛

`

𝑀𝑀´1𝑔p¨q
˘

´ 𝐴𝑔VTD
𝑗,𝑛

...

˛

‹

‚

, (2.19)

which could be seen as some generalized iteration equation as occurring in Runge–Kutta-like
methods, cf. (2.7a).

Remark 2.17
For clarity, 𝐼t𝑘{2u,𝑟`1 P Rt 𝑘

2 uˆp𝑟`1q denotes the generalized identity matrix in Rt 𝑘
2 uˆp𝑟`1q, i.e.,

`

𝐼t𝑘{2u,𝑟`1

˘

𝑖𝑗
“ 𝛿𝑖,𝑗 for all 𝑖 “ 1, . . . ,

X

𝑘
2

\

, 𝑗 “ 1, . . . , 𝑟 ` 1, and 𝑒𝑟`1 is the p𝑟 ` 1qth standard
unit vector in R𝑟`1. So, 𝐵VTD

𝑛 only contains the first
X

𝑘
2

\

rows and the last row of 𝐴VTD
𝑛 . ♣

2.2.1 Block structure of 𝐴VTD

Taking a closer look on its definition (2.14), we note that the matrix 𝐴VTD P Rp𝑟`1qˆp𝑟`1q

has a special block structure. Indeed, it holds

𝐴VTD
“

˜

𝐵11 𝐵12

0 𝐵22

¸

(2.20)
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2 Error Analysis for Stiff Systems

with 𝐵11 P Rt 𝑘
2 uˆt 𝑘

2 u, 𝐵12 P Rt 𝑘
2 uˆp𝑟`1´t 𝑘

2 uq, and 𝐵22 P Rp𝑟`1´t 𝑘
2 uqˆp𝑟`1´t 𝑘

2 uq, where 𝐵11 is
an upper triangular matrix. Obviously, sums of matrices with this particular structure also
have this structure. Moreover, if the inverse matrix exists, then it also has this structure.

We shall now investigate the matrix blocks 𝐵11 and 𝐵22 in more detail.

Lemma 2.18
It holds

`

𝐴VTD
˘

𝑖𝑗
“

2¨p´2q𝑗´𝑖

p𝑗´𝑖`1q!
for 1 ď 𝑖 ď 𝑗 ď

X

𝑘
2

\

. This completely determines the upper
left (triangular) matrix block 𝐵11 of 𝐴VTD, see (2.20). Especially, note that 𝐵11 is 2 on the
main diagonal.

Proof. Let 1 ď 𝑖 ď 𝑗 ď
X

𝑘
2

\

throughout the whole proof. Then, we have

`

𝐴VTD
˘

𝑖𝑗
“ p𝑁˚

𝑖

´

ş ¨

´1
p𝐵

p𝑖´1q

𝑗 p𝑠q d𝑠
¯

“
ş1

´1
p𝐵

p𝑖´1q

𝑗 p𝑠q d𝑠.

The occurring basis functions p𝐵𝑗 are those associated to the function and derivative values
at 1´. Therefore, as we already noted earlier, it holds p𝐵𝑗p𝑡q “

p´1q𝑗´1

p𝑗´1q!

`

1 ´ 𝑡
˘𝑗´1. From this

it is easy to verify that p𝐵
p𝑖´1q

𝑗 p𝑡q “
p´1q𝑗´𝑖

p𝑗´𝑖q!

`

1 ´ 𝑡
˘𝑗´𝑖. Hence, we find

`

𝐴VTD
˘

𝑖𝑗
“

p´1q𝑗´𝑖

p𝑗 ´ 𝑖q!

ż 1

´1

p1 ´ 𝑠q𝑗´𝑖 d𝑠 “
p´1q𝑗´𝑖

p𝑗 ´ 𝑖q!

”

´1
𝑗´𝑖`1

p1 ´ 𝑠q𝑗´𝑖`1
ı1

𝑠“´1
“

2 ¨ p´2q𝑗´𝑖

p𝑗 ´ 𝑖 ` 1q!
,

which finishes the proof.

Lemma 2.19
The lower right matrix block 𝐵22 of 𝐴VTD, see (2.20), equates to the Runge–Kutta matrix
of the

`

𝑟 ` 1 ´
X

𝑘
2

\˘

-stage Radau IIA method if 𝑘 is even or the
`

𝑟 ` 1 ´
X

𝑘
2

\˘

-stage Lo-
batto IIIA method if 𝑘 is odd, respectively. However, note that the Runge–Kutta matrices
are typically defined with respect to the reference interval r0, 1s, whereas 𝐴VTD is defined
with respect to r´1, 1s, which causes a transformation factor of 2. Concretely, 𝐵22 is twice
the corresponding Runge–Kutta matrix as given e.g. in [38, pp. 74–75].

Proof. The functionals p𝑁˚
𝑖 , 𝑖 “

X

𝑘
2

\

`1, . . . , 𝑟`1, are exactly the function evaluations at the
quadrature points of𝑄𝑟´t𝑘{2u

𝑘´2t𝑘{2u
, which is right-sided Gauss–Radau for 𝑘 even or Gauss–Lobatto

for 𝑘 odd, respectively. The implicit Runge–Kutta methods that are equivalent to the
collocation methods based on these quadrature points are the

`

𝑟 ` 1 ´
X

𝑘
2

\˘

-stage Radau IIA
method (𝑘 even) and the

`

𝑟 ` 1 ´
X

𝑘
2

\˘

-stage Lobatto IIIA method (𝑘 odd), respectively,
see [37, Theorem II.7.7, p. 212] and [38, pp. 72–77]. Since disregarding transformation the
coefficients of the matrix block 𝐵22 of 𝐴VTD are defined in the same way, we are done.

Remark 2.20
Lemma 2.19 already indicates some connection between VTD methods and Runge–Kutta
methods of type Radau IIA or Lobatto IIIA. In fact, taking a closer look at the derivation of
the Runge–Kutta-like formulation, it can be seen that 𝑄𝑟

0-VTD𝑟
0 is equivalent to the p𝑟`1q-

stage Radau IIA method, whereas 𝑄𝑟
1-VTD𝑟

1 is equivalent to the p𝑟`1q-stage Lobatto IIIA
method. This was already exemplarily shown in [46, p. 8, p. 13].
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The connection between Radau IIA and numerically integrated dG methods with quadra-
ture at the right-sided Gauss–Radau nodes was earlier proven in [45, Lemma 2.3], also
see [26, Lemma 69.11]. Moreover, an equivalence of numerically integrated cGP methods
with quadrature at the Gauss–Legendre nodes and certain Kuntzmann–Butcher methods
has been observed in [26, Lemma 70.5]. However, note that we use cGP methods together
with quadrature at the Gauss–Lobatto nodes. ♣

2.2.2 Eigenvalue structure of 𝐴VTD

In Section 2.1 we noticed that for Runge–Kutta-like methods a good knowledge of various
properties of the method matrix 𝐴RKl is needed to answer questions on the solvability and
stability of the discrete method. For this reason and since VTD methods can be viewed as
Runge–Kutta-like methods (as proven in Corollary 2.16), the eigenvalue structure of 𝐴VTD

shall be studied in detail in this subsection.
Recalling the special block structure of 𝐴VTD, see Subsection 2.2.1,

X

𝑘
2

\

eigenvalues can
be directly read from the first

X

𝑘
2

\

entries on the main diagonal. Because of Lemma 2.18,
we thus have that 𝜆 “ 2 is an eigenvalue of 𝐴VTD with algebraic multiplicity greater than
or equal to

X

𝑘
2

\

.
The remaining eigenvalues are those of the lower right matrix block 𝐵22 of 𝐴VTD, cf. (2.20),

which can be nicely interpreted due to Lemma 2.19. It is easy to verify that the first row
of 𝐵22 is zero if 𝑘 is odd. In this case 𝜆 “ 0 is a simple eigenvalue of 𝐴VTD since all further
eigenvalues have a real part greater than zero as we shall see below. To verify the latter
statement, the following auxiliary lemma is quite useful.

Lemma 2.21
Let Λ P R𝑠ˆ𝑠 and 𝐷 “ diag

`

𝑑1, . . . , 𝑑𝑠
˘

with 𝑑𝑖 ą 0 for all 𝑖 “ 1, . . . , 𝑠. Then, for every
eigenvalue 𝜆Λ of Λ it holds

Rep𝜆Λq ě

´

max
𝑖“1,...,𝑠

𝑑𝑖

¯´1

𝜆min

`

1
2
p𝐷Λ ` Λ𝑇𝐷q

˘

,

where 𝜆minp𝐵q denotes the smallest eigenvalue of the symmetric matrix 𝐵 P R𝑠ˆ𝑠.

Proof. Since similar matrices share their eigenvalues, every eigenvalue 𝜆Λ of Λ equals to an
eigenvalue 𝜆𝐷1{2Λ𝐷´1{2 of 𝐷1{2Λ𝐷´1{2. Because of [31, Theorem C1], we thus have

Rep𝜆Λq “ Rep𝜆𝐷1{2Λ𝐷´1{2q ě 𝜆min

`

1
2
p𝐷1{2Λ𝐷´1{2

` 𝐷´1{2Λ𝑇𝐷1{2
q
˘

.

Since for symmetric matrices the smallest eigenvalue can be calculated by minimizing the
Rayleigh quotient (see e.g. [31, p. 32]), it follows

𝜆min

`

1
2
p𝐷1{2Λ𝐷´1{2

` 𝐷´1{2Λ𝑇𝐷1{2
q
˘

“ min
𝑥PR𝑠,𝑥‰0

𝑥𝑇
`

1
2
p𝐷1{2Λ𝐷´1{2 ` 𝐷´1{2Λ𝑇𝐷1{2q

˘

𝑥

𝑥𝑇𝑥

“ min
𝑥PR𝑠,𝑥‰0

𝑥𝑇𝐷1{2Λ𝐷´1{2𝑥

𝑥𝑇𝑥
“ min

𝑦PR𝑠,𝑦‰0

𝑦𝑇𝐷Λ𝑦

𝑦𝑇𝐷𝑦
,
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where 𝑦 “ 𝐷´1{2𝑥. We further gain

min
𝑦PR𝑠,𝑦‰0

𝑦𝑇𝐷Λ𝑦

𝑦𝑇𝐷𝑦
“ min

𝑦PR𝑠,𝑦‰0

𝑦𝑇
`

1
2
p𝐷Λ ` Λ𝑇𝐷q

˘

𝑦

𝑦𝑇𝑦

𝑦𝑇𝑦

𝑦𝑇𝐷𝑦

ě min
𝑦PR𝑠,𝑦‰0

𝑦𝑇
`

1
2
p𝐷Λ ` Λ𝑇𝐷q

˘

𝑦

𝑦𝑇𝑦
min

𝑦PR𝑠,𝑦‰0

𝑦𝑇𝑦

𝑦𝑇𝐷𝑦
.

The first minimum on the right-hand side just is 𝜆min

`

1
2
p𝐷Λ`Λ𝑇𝐷q

˘

. The second minimum
can be bounded from below as follows

min
𝑦PR𝑠,𝑦‰0

𝑦𝑇𝑦

𝑦𝑇𝐷𝑦
ě min

𝑦PR𝑠,𝑦‰0

𝑦𝑇𝑦
`

max𝑖“1,...,𝑠 𝑑𝑖
˘

𝑦𝑇𝑦
“

´

max
𝑖“1,...,𝑠

𝑑𝑖

¯´1

.

Combining the above estimates, we easily complete the proof.

Lemma 2.22
Let 𝐵22 P R𝑠ˆ𝑠 with 𝑠 “ 𝑟` 1´

X

𝑘
2

\

denote the lower right matrix block of 𝐴VTD, see (2.20).
Moreover, let 𝑡𝑖 P r´1, 1s, 𝑖 “ 1, . . . , 𝑠, denote the quadrature points of 𝑄𝑟´t𝑘{2u

𝑘´2t𝑘{2u
and �̃�𝑖 the

associated weights. Set 𝐷 “ diag
`

𝑑1, . . . , 𝑑𝑠
˘

with

𝑑𝑖 “ �̃�𝑖
`

1 ` 𝑡𝑖
˘´p𝜎𝑘`1q for 𝑖 “ 𝜎𝑘 ` 1, . . . , 𝑠 and 𝑑1 “ 1 if 𝑘 is odd, (2.21)

where 𝜎𝑘 :“ 𝑘 ´ 2
X

𝑘
2

\

“

"

1, if 𝑘 is odd,
0, if 𝑘 is even. Then, it holds

𝑥𝑇
`

1
2
p𝐷𝐵22 ` 𝐵𝑇

22𝐷q
˘

𝑥 ą 0 for all 𝑥 P R𝑠
zt0u with 𝑥1 “ 0 if 𝑘 is odd.

Proof. First of all, we note that 𝑄𝑟´t𝑘{2u

𝑘´2t𝑘{2u
is the Gauss–Radau quadrature if 𝑘 is even or

the Gauss–Lobatto quadrature if 𝑘 is odd, respectively. Therefore, for odd 𝑘 we especially
have that 𝑡1 “ ´1, which makes clear why another definition for 𝑑1 is needed in this case.
Moreover, for these quadrature rules it is well-known that the weights are positive and are
given as integrals over the associated basis functions. So, we have �̃�𝑖 “

ş1

´1
p𝐵

pt𝑘{2uq

t𝑘{2u`𝑖p𝑠q d𝑠 ą 0,
which also implies that 𝑑𝑖 ą 0, 𝑖 “ 1, . . . , 𝑠.

Let 𝑥 P R𝑠 be arbitrary and assume that 𝑥1 “ 0 if 𝑘 is odd. We define a polynomial
𝑝1 P 𝑃𝑠´1pp´1, 1sq by

𝑝1
p𝑡q “

𝑠
ÿ

𝑗“1

𝑥𝑗 p𝐵
pt𝑘{2uq

t𝑘{2u`𝑗p𝑡q for all 𝑡 P p´1, 1s,

i.e., 𝑝1 is the Gauss–Radau (𝑘 even) or Gauss–Lobatto (𝑘 odd) interpolant satisfying

𝑥𝑖 “ 𝑝1
p𝑡𝑖q “ p𝑁˚

t𝑘{2u`𝑖p𝑝
1
q for all 𝑖 “ 1, . . . , 𝑠.

Obviously, 𝑝1p´1q “ 𝑝1p𝑡1q “ 𝑥1 “ 0 if 𝑘 is odd.
Further, we denote by 𝑝 the particular antiderivative of 𝑝1 satisfying 𝑝p´1q “ 0. Then,

𝑝 P 𝑃𝑠pp´1, 1sq allows the following representations

𝑝p𝑡q “
ş𝑡

´1
𝑝1p𝑠q d𝑠 “

`

1 ` 𝑡
˘𝜎𝑘`1

𝑞p𝑡q with 𝑞 P 𝑃𝑠´1´𝜎𝑘
pp´1, 1sq.
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Of course, we then have

𝑝1
p𝑡q “ p𝜎𝑘 ` 1q

`

1 ` 𝑡
˘𝜎𝑘𝑞p𝑡q `

`

1 ` 𝑡
˘𝜎𝑘`1

𝑞1
p𝑡q.

Now, for 𝑖 “ 1, . . . , 𝑠 we obtain

`

𝐵22𝑥
˘

𝑖
“

𝑠
ÿ

𝑗“1

`

𝐴VTD
˘

t 𝑘
2 u`𝑖,t 𝑘

2 u`𝑗
𝑥𝑗 “

𝑠
ÿ

𝑗“1

ˆ
ż 𝑡𝑖

´1

p𝐵
pt𝑘{2uq

t𝑘{2u`𝑗p𝑠q d𝑠

˙

𝑥𝑗

“

ż 𝑡𝑖

´1

ˆ 𝑠
ÿ

𝑗“1

𝑥𝑗 p𝐵
pt𝑘{2uq

t𝑘{2u`𝑗p𝑠q

˙

d𝑠 “

ż 𝑡𝑖

´1

𝑝1
p𝑠q d𝑠 “ 𝑝p𝑡𝑖q.

Using this, it is easy to verify that

𝑥𝑇
`

1
2
p𝐷𝐵22 ` 𝐵𝑇

22𝐷q
˘

𝑥 “ 𝑥𝑇
`

𝐷𝐵22

˘

𝑥 “

𝑠
ÿ

𝑖“1

𝑝1
p𝑡𝑖q𝑑𝑖𝑝p𝑡𝑖q “

𝑠
ÿ

𝑖“1`𝜎𝑘

𝑝1
p𝑡𝑖q𝑑𝑖𝑝p𝑡𝑖q,

where for the last identity we have exploited that 𝑝1p𝑡1q “ 𝑥1 “ 0 if 𝑘 is odd. Recalling the
definition of 𝑑𝑖 and the alternative representations of 𝑝 and 𝑝1 via 𝑞, we further conclude

𝑠
ÿ

𝑖“1`𝜎𝑘

𝑝1
p𝑡𝑖q𝑑𝑖𝑝p𝑡𝑖q

“

𝑠
ÿ

𝑖“1`𝜎𝑘

�̃�𝑖
`

1 ` 𝑡𝑖
˘´p𝜎𝑘`1q

´

p𝜎𝑘 ` 1q
`

1 ` 𝑡𝑖
˘2𝜎𝑘`1

𝑞2p𝑡𝑖q `
`

1 ` 𝑡𝑖
˘2p𝜎𝑘`1q

𝑞1
p𝑡𝑖q𝑞p𝑡𝑖q

¯

“

𝑠
ÿ

𝑖“1

�̃�𝑖

´

p𝜎𝑘 ` 1q
`

1 ` 𝑡𝑖
˘𝜎𝑘𝑞2p𝑡𝑖q `

`

1 ` 𝑡𝑖
˘𝜎𝑘`1

𝑞1
p𝑡𝑖q𝑞p𝑡𝑖q

¯

.

Here, for the last step we have used that the summand for 𝑖 “ 1 is zero if 𝑘 is odd since in
this case the factor

`

1 ` 𝑡1
˘𝜎𝑘

“
`

1 ` p´1q
˘1 is vanishing.

The function 𝑡 ÞÑ
`

p𝜎𝑘 `1q
`

1` 𝑡
˘𝜎𝑘𝑞2p𝑡q`

`

1` 𝑡
˘𝜎𝑘`1

𝑞1p𝑡q𝑞p𝑡q
˘

is a polynomial of maximal
degree p2𝑠 ´ 2 ´ 𝜎𝑘q “ p2𝑟 ´ 𝑘q and, thus, is exactly integrated by 𝑄

𝑟´t𝑘{2u

𝑘´2t𝑘{2u
. Therefore,

combining the above identities, we gain

𝑥𝑇
`

1
2
p𝐷𝐵22 ` 𝐵𝑇

22𝐷q
˘

𝑥 “

ż 1

´1

´

p𝜎𝑘 ` 1q
`

1 ` 𝑡
˘𝜎𝑘𝑞2p𝑡q `

`

1 ` 𝑡
˘𝜎𝑘`1

𝑞1
p𝑡q𝑞p𝑡q

¯

d𝑡

“
1

2

ż 1

´1

p𝜎𝑘 ` 1q
`

1 ` 𝑡
˘𝜎𝑘𝑞2p𝑡q d𝑡 ` 2𝜎𝑘𝑞2p1q ě 0, (2.22)

where we used integration by parts to rewrite the integral over the second summand. Indeed,
it follows
ż 1

´1

`

1 ` 𝑡
˘𝜎𝑘`1

𝑞1
p𝑡q𝑞p𝑡q d𝑡 “

ż 1

´1

`

1 ` 𝑡
˘𝜎𝑘`11

2

`

𝑞2
˘1

p𝑡q d𝑡

“ ´
1

2

ż 1

´1

p𝜎𝑘 ` 1q
`

1 ` 𝑡
˘𝜎𝑘𝑞2p𝑡q d𝑡 `

1

2

”

`

1 ` 𝑡
˘𝜎𝑘`1

𝑞2p𝑡q
ı1

𝑡“´1
.
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It only remains to prove that the term (2.22) is zero only if 𝑥 “ 0. Now, if the expression
in (2.22) vanishes, then 𝑞 ” 0. But this directly implies 𝑝 ” 0 and therefore also 𝑝1 ” 0.
Hence, 𝑥𝑖 “ 𝑝1p𝑡𝑖q “ 0 for all 𝑖 “ 1, . . . , 𝑠 and we are done.

Bringing together the above results, we obtain the following statement.

Corollary 2.23
It holds 𝜎

`

𝐴VTD
˘

Ă C`
0 . Moreover, 𝜆 “ 0 is an eigenvalue of 𝐴VTD if and only if 𝑘 is

odd. In this case 𝜆 “ 0 is a simple eigenvalue. Thus, for even 𝑘 all eigenvalues have a
positive real part while for odd 𝑘 zero is a simple eigenvalue and all further eigenvalues have
a positive real part.

Proof. We have already seen that the first
X

𝑘
2

\

eigenvalues of 𝐴VTD are 𝜆 “ 2 and, thus,
obviously have a positive real part. Moreover, we noted that 𝜆 “ 0 is an eigenvalue of 𝐴VTD

if 𝑘 is odd since then the first row of the matrix block 𝐵22 of 𝐴VTD, see (2.20), vanishes.
Therefore, bringing to mind the structure of 𝐴VTD, the remaining eigenvalues are just

those of r𝐵22 “
`

𝐵22

˘

𝑖,𝑗“1`𝜎𝑘,...,𝑠
where 𝑠 “ 𝑟 ` 1 ´

X

𝑘
2

\

and 𝜎𝑘 “ 𝑘 ´ 2
X

𝑘
2

\

. But, setting
r𝐷 “ diag

`

𝑑𝜎𝑘`1, . . . , 𝑑𝑠
˘

with 𝑑𝑖 ą 0 as defined in (2.21), we conclude from Lemma 2.22
that

`

1
2
p r𝐷 r𝐵22 ` r𝐵𝑇

22
r𝐷q
˘

is positive definite and, thus, only has positive eigenvalues. Hence,
according to Lemma 2.21, all eigenvalues of r𝐵22 have positive real part.

2.2.3 Solvability and stability

Knowing the eigenvalue structure of the matrix 𝐴VTD, we are now able to assess the solv-
ability of (2.13) and the stability of the Runge–Kutta-like formulation of the VTD method.

Proposition 2.24
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and 𝜇 ě 𝜇

“

´𝐴
‰

. Moreover, let
␣

p𝑁˚
𝑖

(

be specified by (2.10),
ℓr𝑖s “ min

␣

𝑖 ´ 1,
X

𝑘
2

\(

, and ℓ “
X

𝑘
2

\

. Furthermore, suppose that 𝑓 is globally
`X

𝑘
2

\

´ 1
˘

-times
continuously differentiable.

Then, the Runge–Kutta-like formulation associated by Corollary 2.16 to VTD𝑟
𝑘p𝑀𝑀´1𝑔q

with 𝑔 fulfilling Assumption 2.1 is uniquely solvable for time step lengths 𝜏𝑛 P p0, 𝜏 s with
𝜏 ą 0 sufficiently small. If 𝜇 ď 0, the unique solvability holds without restriction on the
(maximal) mesh interval length. Moreover, in either case the formulation is 𝐴𝑆𝐼-stable and
𝐴𝑆-stable.

Proof. From Corollary 2.23 we know that 𝜎
`

𝐴VTD
˘

Ă C`
0 and that 𝜆 “ 0 is at most a simple

eigenvalue of 𝐴VTD. Therefore, the solvability follows from Lemma 2.6 and Corollary 2.9,
also note Remark 2.7. Furthermore, the 𝐴𝑆𝐼-stability holds due to Lemma 2.12. Since
𝐵VTD “

´

𝐼t𝑘{2u,𝑟`1

𝑒𝑇𝑟`1

¯

𝐴VTD, we also gain 𝐴𝑆-stability from Lemma 2.13.

We already know that the VTD methods are 𝐴-stable (cf. Remark 1.1 and Remark 1.39).
However, their special construction involving collocation conditions yields in combination
with the special structure of their associated Runge–Kutta-like formulation some more quite
interesting consequences with respect to stability.
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Lemma 2.25
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and suppose that 𝑈 P 𝑌𝑟 is the VTD𝑟

𝑘p0q approximation to the
solution of Dahlquist’s stability equation (1.29). Then, there is a (stability) function 𝑅
(defined on C a.e.) such that

𝑈
p𝑙q

p𝑡´𝑛 q “ 𝑅
`

𝜏𝑛
2
𝜆
˘

𝑈
p𝑙q

p𝑡´𝑛´1q

for all 𝑙 “ 0, . . . ,
X

𝑘
2

\

. Further, we have that 𝑅 is just the
`

𝑟 ´
X

𝑘
2

\

, 𝑟 ´
X

𝑘´1
2

\˘

Padé approx-
imation of expp2𝑧q, so especially satisfies

|𝑅p𝑧q| ď 1 for all 𝑧 P C´
“ t𝑧 P C : Rep𝑧q ď 0u.

Proof. According to Corollary 1.42, we have that 𝑈 p𝑙q, 𝑙 “ 0, . . . ,
X

𝑘
2

\

, solve VTD𝑟´𝑙
𝑘´2𝑙p0q

when appropriate initial conditions are used. Because of Remark 1.39, we further know
that all these methods share their stability properties with dG

`

𝑟 ´
X

𝑘
2

\˘

if 𝑘 is even or
cGP

`

𝑟 ´
X

𝑘
2

\˘

if 𝑘 is odd, respectively. Hence, they especially have the same stability func-
tion 𝑅, which yields the first statement. Moreover, |𝑅p𝑧q| ď 1 on C´ immediately follows
from the fact that dG methods as well as cGP methods are 𝐴-stable.

Furthermore, because of Remark 2.20, the stability functions of dGp𝑠q (with 𝑠 ě 0) and
cGPp𝑠q (with 𝑠 ě 1) are essentially the same as for the p𝑠`1q-stage Radau IIA method and
for the p𝑠 ` 1q-stage Lobatto IIIA method, respectively, thus certain Padé approximations,
cf. [38, Table IV.5.13, p. 77]. Therefore, we find that 𝑅 is the

`

𝑟 ´
X

𝑘
2

\

, 𝑟 ´
X

𝑘´1
2

\˘

Padé
approximation of expp2𝑧q.

As for Runge–Kutta methods it would be nice to have some representation of the (stabil-
ity) function 𝑅 in terms of the method parameters, i.e., in terms of 𝐴VTD. This is provided
by the following lemma.

Lemma 2.26
Let 0 ď 𝑖 ď

X

𝑘
2

\

. The (stability) function 𝑅 of Lemma 2.25 provides the following represen-
tations

𝑅p𝑧q “ 𝑒𝑇𝜎r𝑖s

`

𝐼𝑟`1,𝑟`1 ´ 𝐴VTD𝑧
˘´1

˜

𝑟`1
ÿ

𝑗“𝑖`1

𝑧mint𝑗´1,t 𝑘
2 uu´𝑖𝑒𝑗

¸

,

where 𝑒𝑗 denotes the 𝑗th standard unit vector in R𝑟`1 and 𝜎r𝑖s “ p𝑖 ` 1q ` 𝛿𝑖,t 𝑘
2 u p𝑟 ´ 𝑖q. This

also implies that for all 𝑖 the expressions on the right-hand side are the same.

Proof. Applied to Dahlquist’s stability equation (1.29), i.e., to problem (1.21) with 𝑑 “ 1,
𝑀 “ 1 “ 𝑀 , 𝐴 “ ´𝜆 “ 𝐴, and 𝑓 “ 0, the “stage” equations (2.13) of VTD𝑟

𝑘p0q simply
read

¨

˚

˝

...
𝑔VTD
𝑖,𝑛
...

˛

‹

‚

“

¨

˚

˚

˝

...
𝑈

pℓr𝑖sq
p𝑡´𝑛´1q
...

˛

‹

‹

‚

`
𝜏𝑛
2
𝐴VTD

𝑛

¨

˚

˝

...
𝜆𝑔VTD

𝑗,𝑛
...

˛

‹

‚

.
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Rewriting this and recalling that 𝑔VTD
𝑖,𝑛 “ r𝑁𝑖,𝑛

`

𝑈p¨q
˘

“ 𝑈
pℓr𝑖sq

p𝑡´𝑛 q for 𝑖 “ 1, . . . ,
X

𝑘
2

\

and
𝑖 “ 𝑟 ` 1 with ℓr𝑖s “ min

␣

𝑖 ´ 1,
X

𝑘
2

\(

, we obtain
¨

˚

˝

𝑈p𝑡´𝑛 q
...

𝑈
pt 𝑘

2 uq
p𝑡´𝑛 q

˛

‹

‚

“

´

𝐼t𝑘{2u,𝑟`1

𝑒𝑇𝑟`1

¯

¨

˚

˝

...
𝑔VTD
𝑖,𝑛
...

˛

‹

‚

“

´

𝐼t𝑘{2u,𝑟`1

𝑒𝑇𝑟`1

¯

`

𝐼𝑟`1,𝑟`1 ´ 𝜏𝑛
2
𝐴VTD

𝑛 𝜆
˘´1

¨

˚

˚

˝

...
𝑈

pℓr𝑗sq
p𝑡´𝑛´1q
...

˛

‹

‹

‚

.

This identity already looks quite promising. However, for 𝜆 ‰ 0 the various derivatives of
𝑈 at 𝑡´𝑛´1 on the right-hand side are coupled, whereas for the desired statement we need for
each 𝑖 “ 0, . . . ,

X

𝑘
2

\

an expression that links 𝑈 p𝑖q
p𝑡´𝑛 q to 𝑈 p𝑖q

p𝑡´𝑛´1q only.
But, from the collocation conditions at 𝑡´𝑛´1 for 𝑛 ą 1, cf. (1.22b), or the definition of the

discrete initial values by 𝑈 p𝑖q
p𝑡´0 q “ 𝑢p𝑖qp𝑡`0 q, respectively, we have that

𝑈
p𝑖q

p𝑡´𝑛´1q “ 𝜆𝑈
p𝑖´1q

p𝑡´𝑛´1q for all 1 ď 𝑖 ď
X

𝑘
2

\

.

Therefore, we find for 0 ď 𝑖 ď
X

𝑘
2

\

that

𝑈
p𝑖q

p𝑡´𝑛 q “ 𝑒𝑇𝜎r𝑖s

`

𝐼𝑟`1,𝑟`1 ´ 𝜏𝑛
2
𝐴VTD

𝑛 𝜆
˘´1

˜

𝑟`1
ÿ

𝑗“1

𝑈
pℓr𝑗sq

p𝑡´𝑛´1q𝑒𝑗

¸

“ 𝑒𝑇𝜎r𝑖s

`

𝐼𝑟`1,𝑟`1 ´ 𝜏𝑛
2
𝐴VTD

𝑛 𝜆
˘´1

˜

𝑖
ÿ

𝑗“1

𝑈
p𝑗´1q

p𝑡´𝑛´1q𝑒𝑗 `

𝑟`1
ÿ

𝑗“𝑖`1

𝜆ℓr𝑗s´𝑖 𝑈
p𝑖q

p𝑡´𝑛´1q𝑒𝑗

¸

.

Further, exploiting that 𝐴VTD
𝑛 “ 𝑆´1

𝑛 𝐴VTD𝑆𝑛 and taking advantage of the special structure
of 𝐴VTD, see (2.20), which is transferred to

`

𝐼𝑟`1,𝑟`1 ´ 𝜏𝑛
2
𝐴VTD𝜆

˘´1, we gain

𝑈
p𝑖q

p𝑡´𝑛 q “ 𝑒𝑇𝜎r𝑖s
𝑆´1
𝑛

`

𝐼𝑟`1,𝑟`1 ´ 𝜏𝑛
2
𝐴VTD𝜆

˘´1
𝑆𝑛

˜

𝑟`1
ÿ

𝑗“𝑖`1

𝜆ℓr𝑗s´𝑖 𝑈
p𝑖q

p𝑡´𝑛´1q𝑒𝑗

¸

“ 𝑒𝑇𝜎r𝑖s

`

𝐼𝑟`1,𝑟`1 ´ 𝐴VTD
`

𝜏𝑛
2
𝜆
˘˘´1

˜

𝑟`1
ÿ

𝑗“𝑖`1

`

𝜏𝑛
2
𝜆
˘ℓr𝑗s´𝑖

𝑒𝑗

¸

𝑈
p𝑖q

p𝑡´𝑛´1q.

From this, we easily complete the proof.

Remark 2.27
Starting with the generalized iteration equation (2.19) for VTD𝑟

𝑘p0q applied to Dahlquist’s
stability problem (1.29) and using similar arguments as in the proof of Lemma 2.26, it also
can be shown for 0 ď 𝑖 ď

X

𝑘
2

\

that

𝑅p𝑧q “ 1 ` 𝑧𝑒𝑇𝜎r𝑖s
𝐴VTD

`

𝐼𝑟`1,𝑟`1 ´ 𝐴VTD𝑧
˘´1

˜

𝑟`1
ÿ

𝑗“𝑖`1

𝑧mint𝑗´1,t 𝑘
2 uu´𝑖𝑒𝑗

¸

,

where the notation of Lemma 2.26 is reused.
This representation of the stability function is quite similar to that for Runge–Kutta

methods, cf. [38, Proposition IV.3.1, p. 40]. Note that due to 𝐵VTD “

´

𝐼t𝑘{2u,𝑟`1

𝑒𝑇𝑟`1

¯

𝐴VTD we

have that 𝑒𝑇𝜎r𝑖s
𝐴VTD “ 𝑒𝑇𝑖`1𝐵

VTD is just the p𝑖` 1qth row of 𝐵VTD. Moreover, if 𝑖 “
X

𝑘
2

\

“ 0,

then
ř𝑟`1

𝑗“𝑖`1 𝑧
mint𝑗´1,t 𝑘

2 uu´𝑖𝑒𝑗 simply is the all-ones vector in R𝑟`1. ♣
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2.3 (Stiff) Error analysis

In this section, we derive error estimates for VTD methods also in the case of stiff systems
of ordinary differential equations. To be exact, throughout the whole section, we consider
the VTD𝑟

𝑘p𝑀𝑀´1𝑔q method with 𝑔 fulfilling Assumption 2.1 where 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and
where we suppose that 𝑓 is globally

`X

𝑘
2

\

´ 1
˘

-times continuously differentiable. The scheme
is used as approximation for the initial value problem (2.8). Moreover, we let 𝜇 ě 𝜇

“

´𝐴
‰

,
i.e., 𝜇 is supposed to satisfy (2.9).

The presented error analysis strongly uses that the considered VTD methods can be
reformulated in a Runge–Kutta-like way as it has been observed in the previous section, see
Corollary 2.16. Therefore, also the notation introduced and specified in Section 2.2 is used
further, especially the linear functionals (2.10) and their local versions (2.11).

Let the operator 𝒫VTD
𝑛 : 𝐶t 𝑘

2 up𝐼𝑛q Ñ 𝑃𝑟p𝐼𝑛q be defined by

𝒫VTD
𝑛 𝑣 “

𝑟`1
ÿ

𝑖“1

`

𝜏𝑛
2

˘ℓr𝑖s
r𝑁𝑖,𝑛p𝑣q

`

p𝐵𝑖 ˝ 𝑇´1
𝑛

˘

.

Since, in view of (2.12), this operator is a projection onto 𝑃𝑟p𝐼𝑛q, it provides for 0 ď 𝑖 ď 𝑟`1
the following approximation error estimates

sup
𝑡P𝐼𝑛

ˇ

ˇ

`

𝑣 ´ 𝒫VTD
𝑛 𝑣

˘p𝑖q
p𝑡q

ˇ

ˇ ď 𝐶
`

𝜏𝑛
2

˘𝑟`1´𝑖
sup
𝑡P𝐼𝑛

ˇ

ˇ𝑣p𝑟`1q
p𝑡q

ˇ

ˇ @𝑣 P 𝐶𝑟`1
p𝐼𝑛q. (2.23)

Moreover, it follows that

`

𝒫VTD
𝑛 𝑣

˘p𝑙q
“

𝑟`1
ÿ

𝑖“𝑙`1

`

𝜏𝑛
2

˘ℓr𝑖s´𝑙
r𝑁𝑖,𝑛p𝑣q

`

p𝐵
p𝑙q
𝑖 ˝ 𝑇´1

𝑛

˘

for all 0 ď 𝑙 ď
X

𝑘
2

\

.

2.3.1 Recursion scheme for the global error

According to Corollary 2.16, also see (2.13), the solution 𝑈 of VTD𝑟
𝑘p𝑀𝑀´1𝑔q with 𝑔

fulfilling Assumption 2.1 satisfies certain recursion schemes. In preparation for the error
analysis we show now that a similar recursion scheme holds for the error too.

Similar to q𝑈 (cf. (2.16)) the exact solution 𝑢 of (2.8) satisfies for 0 ď 𝑙 ď
X

𝑘
2

\

and 𝑡 P 𝐼𝑛

𝑢p𝑙q
p𝑡q “ 𝑢p𝑙q

p𝑡`𝑛´1q `

ż 𝑡

𝑡𝑛´1

`

𝒫VTD
𝑛 𝑢1

˘p𝑙q
p𝑠q d𝑠 `

ż 𝑡

𝑡𝑛´1

`

𝑢1
´ 𝒫VTD

𝑛 𝑢1
˘p𝑙q

p𝑠q d𝑠

“ 𝑢p𝑙q
p𝑡`𝑛´1q `

𝜏𝑛
2

𝑟`1
ÿ

𝑗“𝑙`1

`

𝜏𝑛
2

˘ℓr𝑗s´𝑙
r𝑁𝑗,𝑛

`

𝑢1
p¨q
˘

ż 𝑇´1
𝑛 p𝑡q

´1

p𝐵
p𝑙q
𝑗 p𝑠q d𝑠

`

ż 𝑡

𝑡𝑛´1

`

𝑢1
´ 𝒫VTD

𝑛 𝑢1
˘p𝑙q

p𝑠q d𝑠. (2.24)
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Therefore, analogously to (2.17) for q𝑈 , we find for 𝑢
¨

˚

˝

...
r𝑁𝑖,𝑛

`

𝑢p¨q
˘

...

˛

‹

‚

“

¨

˚

˝

...
𝑢pℓr𝑖sqp𝑡`𝑛´1q

...

˛

‹

‚

`
𝜏𝑛
2

`

𝐴VTD
𝑛 b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
r𝑁𝑗,𝑛

`

𝑢1p¨q
˘

...

˛

‹

‚

`

¨

˚

˝

...
𝑟VTD
𝑖,𝑛
...

˛

‹

‚

(2.25)

where 𝑟VTD
𝑖,𝑛 P R𝑑, 𝑖 “ 1, . . . , 𝑟 ` 1, is given by

𝑟VTD
𝑖,𝑛 :“ r𝑁˚

𝑖,𝑛

´

ş ¨

𝑡𝑛´1

`

𝑢1 ´ 𝒫VTD
𝑛 𝑢1

˘pℓr𝑖sq
p𝑠q d𝑠

¯

. (2.26)

Now, combining (2.17) and (2.25) as well as using that (2.8) and (2.18) hold, we find for
the error 𝑒 “ 𝑢 ´ 𝑈 (and setting q𝑒 “ 𝑢 ´ q𝑈) that
¨

˚

˝

...
r𝑁𝑖,𝑛

`

𝑒p¨q
˘

...

˛

‹

‚

“

¨

˚

˝

...
q𝑒pℓr𝑖sqp𝑡`𝑛´1q

...

˛

‹

‚

`
𝜏𝑛
2

`

𝐴VTD
𝑛 b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
r𝑁𝑗,𝑛

`

q𝑒1p¨q
˘

...

˛

‹

‚

`

¨

˚

˝

...
𝑟VTD
𝑖,𝑛
...

˛

‹

‚

“

¨

˚

˝

...
𝑒pℓr𝑖sqp𝑡´𝑛´1q

...

˛

‹

‚

`
𝜏𝑛
2

`

𝐴VTD
𝑛 b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
𝑀𝑀´1

r𝑁𝑗,𝑛

`

p𝑓 ´ 𝑔qp¨q
˘

´ 𝐴 r𝑁𝑗,𝑛

`

𝑒p¨q
˘

...

˛

‹

‚

`

¨

˚

˝

...
𝑟VTD
𝑖,𝑛
...

˛

‹

‚

.

Hence, rewriting this, it follows that
¨

˚

˝

...
r𝑁𝑖,𝑛

`

𝑒p¨q
˘

...

˛

‹

‚

“
`

p𝐼𝑟`1,𝑟`1 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴VTD
𝑛 b 𝐴q

˘´1 (2.27)
¨

˚

˝

¨

˚

˝

...
𝑒pℓr𝑖sqp𝑡´𝑛´1q

...

˛

‹

‚

`
𝜏𝑛
2

`

𝐴VTD
𝑛 b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
𝑀𝑀´1

r𝑁𝑗,𝑛

`

p𝑓 ´ 𝑔qp¨q
˘

...

˛

‹

‚

`

¨

˚

˝

...
𝑟VTD
𝑖,𝑛
...

˛

‹

‚

˛

‹

‚

.

Recalling Remark 2.7, Corollary 2.9, and Corollary 2.23, in order to guarantee the existence
of the inverse matrix on the right-hand side, we only need that 𝜏𝑛 is sufficiently small, and
that only if 𝜇 ą 0.

Furthermore, with an argument similar to that in the proof of Corollary 2.16, especially re-
calling that r𝑁𝑖,𝑛

`

𝑒p¨q
˘

“ 𝑒pℓr𝑖sqp𝑡´𝑛 q for 𝑖 “ 1, . . . ,
X

𝑘
2

\

and 𝑖 “ 𝑟`1 with ℓr𝑖s “ min
␣

𝑖 ´ 1,
X

𝑘
2

\(

,
we find
¨

˚

˝

𝑒p𝑡´𝑛 q
...

𝑒pt 𝑘
2 uqp𝑡´𝑛 q

˛

‹

‚

“

´´

𝐼t𝑘{2u,𝑟`1

𝑒𝑇𝑟`1

¯

b 𝐼𝑑,𝑑

¯

`

p𝐼𝑟`1,𝑟`1 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴VTD
𝑛 b 𝐴q

˘´1

¨

˚

˝

¨

˚

˝

...
𝑒pℓr𝑖sqp𝑡´𝑛´1q

...

˛

‹

‚

`
𝜏𝑛
2

`

𝐴VTD
𝑛 b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
𝑀𝑀´1

r𝑁𝑗,𝑛

`

p𝑓 ´ 𝑔qp¨q
˘

...

˛

‹

‚

`

¨

˚

˝

...
𝑟VTD
𝑖,𝑛
...

˛

‹

‚

˛

‹

‚

.
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Using that 𝐴VTD
𝑛 “ 𝑆´1

𝑛 𝐴VTD𝑆𝑛, the right-hand side can be rewritten and split as follows
¨

˚

˝

𝑒p𝑡´𝑛 q
...

𝑒pt 𝑘
2 uqp𝑡´𝑛 q

˛

‹

‚

“

¨

˚

˝

ℰpiq,0
...

ℰpiq,t𝑘{2u

˛

‹

‚

loooomoooon

ℰpiq

`

¨

˚

˝

ℰpiiq,0
...

ℰpiiq,t𝑘{2u

˛

‹

‚

looooomooooon

ℰpiiq

`

¨

˚

˝

ℰpiiiq,0
...

ℰpiiiq,t𝑘{2u

˛

‹

‚

looooomooooon

ℰpiiiq

(2.28)

where, reusing the notation of Lemma 2.26, the block components
`

𝑙 “ 0, . . . ,
X

𝑘
2

\˘

of the
block vectors ℰpiq, ℰpiiq, and ℰpiiiq are given by

ℰpiq,𝑙 “ Ξ𝜎r𝑙s

¨

˚

˝

...
`

𝜏𝑛
2

˘ℓr𝑖s´𝑙
𝑒pℓr𝑖sqp𝑡´𝑛´1q...

˛

‹

‚

,

ℰpiiq,𝑙 “ Ξ𝜎r𝑙s

`

𝐴VTD
b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
`

𝜏𝑛
2

˘ℓr𝑗s`1´𝑙
𝑀𝑀´1

r𝑁𝑗,𝑛

`

p𝑓 ´ 𝑔qp¨q
˘

...

˛

‹

‚

,

and

ℰpiiiq,𝑙 “ Ξ𝜎r𝑙s

¨

˚

˝

...
`

𝜏𝑛
2

˘ℓr𝑖s´𝑙
𝑟VTD
𝑖,𝑛...

˛

‹

‚

with

Ξ𝜎r𝑙s
:“

`

𝑒𝑇𝜎r𝑙s
b 𝐼𝑑,𝑑

˘`

p𝐼𝑟`1,𝑟`1 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴VTD
b 𝐴q

˘´1
.

For further progress, we rewrite the term ℰpiq. First of all, from (2.8) and from the
collocation conditions at 𝑡´𝑛´1 for 𝑛 ą 1, cf. (1.22b), or the definition of discrete initial
values for 𝑛 “ 1, respectively, we gain that

𝑒p𝑖q
p𝑡´𝑛´1q “ 𝑀𝑀´1

p𝑓 ´ 𝑔q
p𝑖´1q

p𝑡𝑛´1q ´ 𝐴𝑒p𝑖´1q
p𝑡´𝑛´1q for 1 ď 𝑖 ď

X

𝑘
2

\

and 1 ď 𝑛 ď 𝑁 .

Now, because of Assumption 2.1, the occurring differences p𝑓 ´ 𝑔q
p𝑖´1q

p𝑡𝑛´1q always vanish.
So, we actually get

𝑒p𝑗q
p𝑡´𝑛´1q “

`

´𝐴
˘𝑗´𝑖

𝑒p𝑖q
p𝑡´𝑛´1q for all 0 ď 𝑖 ď 𝑗 ď

X

𝑘
2

\

and 1 ď 𝑛 ď 𝑁 . (2.29)

Hence, adapting the argument used in the proof of Lemma 2.26, we conclude

ℰpiq,𝑙 “
`

𝑒𝑇𝜎r𝑙s
b 𝐼𝑑,𝑑

˘`

p𝐼𝑟`1,𝑟`1 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴VTD
b 𝐴q

˘´1

˜

𝑟`1
ÿ

𝑗“𝑙`1

`

𝜏𝑛
2

˘ℓr𝑗s´𝑙
𝑒𝑗 b 𝑒pℓr𝑗sq

p𝑡´𝑛´1q

¸

“
`

𝑒𝑇𝜎r𝑙s
b 𝐼𝑑,𝑑

˘`

p𝐼𝑟`1,𝑟`1 b 𝐼𝑑,𝑑q ´ p𝐴VTD
b p´ 𝜏𝑛

2
𝐴qq

˘´1

˜

𝑟`1
ÿ

𝑗“𝑙`1

𝑒𝑗 b
`

´ 𝜏𝑛
2
𝐴
˘ℓr𝑗s´𝑙

¸

𝑒p𝑙q
p𝑡´𝑛´1q
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for 0 ď 𝑙 ď
X

𝑘
2

\

. But this means that

ℰpiq “
`

𝐼t𝑘{2u`1,t𝑘{2u`1 b 𝑅
`

´ 𝜏𝑛
2
𝐴
˘˘

¨

˚

˝

𝑒p𝑡´𝑛´1q
...

𝑒pt 𝑘
2 uqp𝑡´𝑛´1q

˛

‹

‚

, (2.30)

where 𝑅 is the (stability) function of Lemma 2.25, also cf. Lemma 2.26, associated to the
respective VTD method.

2.3.2 Error estimates

Before the actual error estimate is addressed, we derive some bound on the inverse of
the main part of the system matrix. In the proof the following technical result, know
from [19, 36], is applied.

Lemma 2.28 (Cf. [19, Lemma 3.4] and [36, Theorem 4])
Let 𝜔 P R and let 𝜑 be a rational function without poles in t𝑧 P C : Rep𝑧q ď 𝜔u. Suppose
that Λ P R𝑠ˆ𝑠, 𝑠 P N, satisfies p𝑣,Λ𝑣q ď 𝜔 }𝑣}

2 for all 𝑣 P R𝑠, i.e., 𝜇rΛs ď 𝜔. Then, 𝜑pΛq

exists and we have in the corresponding matrix norm, i.e., in the spectral norm, that

}𝜑pΛq} ď sup t|𝜑p𝑧q| : 𝑧 P C, Rep𝑧q ď 𝜔u.

Lemma 2.29
Let 𝜇 ě 𝜇

“

´𝐴
‰

, i.e., 𝜇 is supposed to satisfy (2.9). Then, it holds

›

›

›

`

p𝐼𝑟`1,𝑟`1 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴VTD
b 𝐴q

˘´1
›

›

›
ď 𝐶 for all 𝜏𝑛 P p0, 𝜏 s

with sufficiently small 𝜏 ą 0. Note that 𝜏 can be chosen arbitrarily large if 𝜇 ď 0.

Proof. We reuse and slightly adapt the notation of Lemma 2.6, which is shortly recalled
now. For 𝑧 P C, let 𝑉 p𝑧q “

`

𝑣𝑖𝑗p𝑧q
˘

“
`

𝐼𝑟`1,𝑟`1 ´𝐴VTD𝑧
˘

and 𝑊 p𝑧q “
`

𝑤𝑖𝑗p𝑧q
˘

“ 𝑉 p𝑧q´1 if
𝑉 p𝑧q is regular. Then, according to the notation introduced for matrix-valued functions, the
main part of the system matrix

`

p𝐼𝑟`1,𝑟`1 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴VTD b 𝐴q
˘

simply reads 𝑉 p´ 𝜏𝑛
2
𝐴q.

Similarly
`

p𝐼𝑟`1,𝑟`1 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴VTD b 𝐴q
˘´1 then can be shortly written as 𝑊 p´ 𝜏𝑛

2
𝐴q.

From Proposition 2.24 we have 𝐴𝑆𝐼-stability for the considered Runge–Kutta-like for-
mulation and, thus, there exists an 𝜔 ą 0 such that 𝑉 p𝑧q is regular and all entries 𝑤𝑖𝑗p𝑧q

of 𝑊 p𝑧q are uniformly bounded for Rep𝑧q ď 𝜔. Therefore, from Lemma 2.6 we know that
𝑊 p´ 𝜏𝑛

2
𝐴q exists if additionally 𝜏𝑛

2
𝜇 ď 𝜔. Furthermore, because of (2.9), Lemma 2.28 yields

that
›

›𝑤𝑖𝑗p´ 𝜏𝑛
2
𝐴q

›

› ď sup
␣

|𝑤𝑖𝑗p𝑧q| : 𝑧 P C, Rep𝑧q ď 𝜏𝑛
2
𝜇
(

ď 𝐶

if 𝜏𝑛
2
𝜇 ď 𝜔. But this implies

›

›𝑊 p´ 𝜏𝑛
2
𝐴q

›

› ď 𝐶 for 𝜏𝑛 ą 0 sufficiently small, which is the
desired statement. Note that for 𝜇 ď 0 no restriction on 𝜏𝑛 (from above) is necessary.
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2.3 (Stiff) Error analysis

We now are well prepared for the derivation of error estimates. In the next theorem a
bound for the error in the time mesh points is presented. Afterwards, also the pointwise
error is estimated. For convenience, we here suppose that similar to (2.23) it holds for
0 ď 𝑖 ď 𝑟 ` 1 and 1 ď 𝑛 ď 𝑁

sup
𝑡P𝐼𝑛

›

›

`

𝑓 ´ 𝑔
˘p𝑖q

p𝑡q
›

› ď 𝐶
`

𝜏𝑛
2

˘𝑟`1´𝑖
sup
𝑡P𝐼𝑛

›

›𝑓 p𝑟`1q
p𝑡q

›

› (2.31)

when 𝑓 is sufficiently smooth and its approximation 𝑔 satisfies Assumption 2.1.

Theorem 2.30
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and 𝜇 ě 𝜇

“

´𝐴
‰

. Moreover, suppose that 𝑓 is globally
`X

𝑘
2

\

´ 1
˘

-
times continuously differentiable. Denote by 𝑢 the solution of (2.8) and let 𝑈 P 𝑌𝑟 be the
solution of VTD𝑟

𝑘p𝑀𝑀´1𝑔q with 𝑔 fulfilling Assumption 2.1 and (2.31) where we assume,
if 𝜇 ą 0, that 𝜏𝑛 P p0, 𝜏 s for all 𝑛 with 𝜏 sufficiently small. Then, for all 0 ď 𝑙 ď

X

𝑘
2

\

and
0 ď 𝑛 ď 𝑁 , it holds

›

›p𝑢 ´ 𝑈q
p𝑙q

p𝑡´𝑛 q
›

› ď 𝐶𝜏 𝑟`1´𝑙

ˆ

sup
𝑡Pp𝑡0,𝑡𝑛s

›

›𝑀𝑀´1𝑓 p𝑟`1q
p𝑡q

›

› ` sup
𝑡Pp𝑡0,𝑡𝑛s

›

›𝑢p𝑟`2q
p𝑡q

›

›

˙

,

where 𝐶 is independent of 𝜏 “ max1ď𝑛ď𝑁 𝜏𝑛 but exponentially depends on 𝑇 . Moreover, 𝐶
and 𝜏 may depend on 𝜇 but are independent of the two-sided Lipschitz constant.

Proof. Starting from the splitting (2.28), each term on the right-hand side shall be analyzed
separately.

For the block components of ℰpiiiq we find from Lemma 2.29 for all 𝜏𝑛 P p0, 𝜏 s with 𝜏 ą 0
sufficiently small that

›

›ℰpiiiq,𝑙

›

› ď

›

›

›

`

𝑒𝑇𝜎r𝑙s
b 𝐼𝑑,𝑑

˘

›

›

›

looooooomooooooon

“1

›

›

›

`

p𝐼𝑟`1,𝑟`1 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴VTD
b 𝐴q

˘´1
›

›

›

loooooooooooooooooooooooomoooooooooooooooooooooooon

ď𝐶

›

›

›

›

›

›

›

¨

˚

˝

...
`

𝜏𝑛
2

˘ℓr𝑖s´𝑙
𝑟VTD
𝑖,𝑛...

˛

‹

‚

›

›

›

›

›

›

›

for 0 ď 𝑙 ď
X

𝑘
2

\

. Moreover, (2.26) and (2.23) imply
›

›𝑟VTD
𝑖,𝑛

›

› “

›

›

›

r𝑁˚
𝑖,𝑛

´

ş ¨

𝑡𝑛´1

`

𝑢1 ´ 𝒫VTD
𝑛 𝑢1

˘pℓr𝑖sq
p𝑠q d𝑠

¯
›

›

›
ď sup

𝑡P𝐼𝑛

›

›

›

ş𝑡

𝑡𝑛´1

`

𝑢1 ´ 𝒫VTD
𝑛 𝑢1

˘pℓr𝑖sq
p𝑠q d𝑠

›

›

›

ď 𝜏𝑛 sup
𝑡P𝐼𝑛

›

›

›

`

𝑢1
´ 𝒫VTD

𝑛 𝑢1
˘pℓr𝑖sq

p𝑡q
›

›

›
ď 𝐶

`

𝜏𝑛
2

˘𝑟`2´ℓr𝑖s sup
𝑡P𝐼𝑛

›

›𝑢p𝑟`2q
p𝑡q

›

›.

Combining both estimates, we gain
›

›ℰpiiiq,𝑙

›

› ď 𝐶
`

𝜏𝑛
2

˘𝑟`2´𝑙
sup
𝑡P𝐼𝑛

›

›𝑢p𝑟`2q
p𝑡q

›

›.

Similarly, again with Lemma 2.29, it follows for the block components of ℰpiiq that

›

›ℰpiiq,𝑙

›

› ď
›

›Ξ𝜎r𝑙s

›

›

loomoon

ď1¨𝐶

›

›

`

𝐴VTD
b 𝐼𝑑,𝑑

˘
›

›

loooooooomoooooooon

ď𝐶

›

›

›

›

›

›

›

¨

˚

˝

...
`

𝜏𝑛
2

˘ℓr𝑗s`1´𝑙
𝑀𝑀´1

r𝑁𝑗,𝑛

`

p𝑓 ´ 𝑔qp¨q
˘

...

˛

‹

‚

›

›

›

›

›

›

›
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for all 𝜏𝑛 P p0, 𝜏 s with 𝜏 ą 0 sufficiently small. From (2.31) we gain

›

›

›

r𝑁𝑗,𝑛

`

p𝑓 ´ 𝑔qp¨q
˘

›

›

›
ď sup

𝑡P𝐼𝑛

›

›p𝑓 ´ 𝑔q
pℓr𝑗sq

p𝑡q
›

› ď 𝐶
`

𝜏𝑛
2

˘𝑟`1´ℓr𝑗s sup
𝑡P𝐼𝑛

›

›𝑓 p𝑟`1q
p𝑡q

›

›.

Therefore, we get for 0 ď 𝑙 ď
X

𝑘
2

\

›

›ℰpiiq,𝑙

›

› ď 𝐶
`

𝜏𝑛
2

˘𝑟`2´𝑙
sup
𝑡P𝐼𝑛

›

›𝑀𝑀´1𝑓 p𝑟`1q
p𝑡q

›

›.

For the block components of ℰpiq, we get from (2.30) that

›

›ℰpiq,𝑙

›

› ď
›

›𝑅
`

´ 𝜏𝑛
2
𝐴
˘›

›

›

›𝑒p𝑙q
p𝑡´𝑛´1q

›

›

for 0 ď 𝑙 ď
X

𝑘
2

\

. Further, because of (2.9), Lemma 2.28, and Lemma 2.25, we conclude

›

›𝑅
`

´ 𝜏𝑛
2
𝐴
˘›

› ď sup
␣

|𝑅p𝑧q| : 𝑧 P C, Rep𝑧q ď 𝜏𝑛
2
𝜇
(

ď

#

1, if 𝜇 ď 0,

1 ` r𝐶 𝜏𝑛
2
, if 𝜇 ą 0,

for 𝜏𝑛 P p0, 𝜏 s with 𝜏 ą 0 sufficiently small (if 𝜇 ą 0, to ensure that 𝑅 has no poles in the
considered area).

Altogether, the above estimates result in

›

›𝑒p𝑙q
p𝑡´𝑛 q

›

› ď
›

›ℰpiq,𝑙

›

› `
›

›ℰpiiq,𝑙

›

› `
›

›ℰpiiiq,𝑙

›

›

ď
`

1 ` r𝐶 𝜏𝑛
2

˘
›

›𝑒p𝑙q
p𝑡´𝑛´1q

›

› ` 𝐶
`

𝜏𝑛
2

˘𝑟`2´𝑙

ˆ

sup
𝑡P𝐼𝑛

›

›𝑀𝑀´1𝑓 p𝑟`1q
p𝑡q

›

› ` sup
𝑡P𝐼𝑛

›

›𝑢p𝑟`2q
p𝑡q

›

›

˙

for 0 ď 𝑙 ď
X

𝑘
2

\

and 1 ď 𝑛 ď 𝑁 if 𝜏𝑛 P p0, 𝜏 s with 𝜏 ą 0 sufficiently small. Again we note
that 𝜏 can be chosen arbitrarily large if 𝜇 ď 0. A discrete version of Gronwall’s lemma, see
Lemma A.1, then yields

›

›𝑒p𝑙q
p𝑡´𝑛 q

›

› ď exp
`

r𝐶
2

p𝑡𝑛 ´ 𝑡0q
˘

˜

›

›𝑒p𝑙q
p𝑡´0 q

›

› `

𝑛
ÿ

𝜈“1

𝐶
`

𝜏𝜈
2

˘𝑟`2´𝑙

ˆ

sup
𝑡P𝐼𝜈

›

›𝑀𝑀´1𝑓 p𝑟`1q
p𝑡q

›

› ` sup
𝑡P𝐼𝜈

›

›𝑢p𝑟`2q
p𝑡q

›

›

˙

¸

ď exp
`

r𝐶
2

p𝑡𝑛 ´ 𝑡0q
˘

˜

𝐶𝜏 𝑟`1´𝑙

ˆ

sup
𝑡Pp𝑡0,𝑡𝑛s

›

›𝑀𝑀´1𝑓 p𝑟`1q
p𝑡q

›

› ` sup
𝑡Pp𝑡0,𝑡𝑛s

›

›𝑢p𝑟`2q
p𝑡q

›

›

˙ˆ 𝑛
ÿ

𝜈“1

𝜏𝜈
2

˙

¸

ď 𝐶p𝑡𝑛 ´ 𝑡0q exp
`

r𝐶
2

p𝑡𝑛 ´ 𝑡0q
˘

𝜏 𝑟`1´𝑙

ˆ

sup
𝑡Pp𝑡0,𝑡𝑛s

›

›𝑀𝑀´1𝑓 p𝑟`1q
p𝑡q

›

› ` sup
𝑡Pp𝑡0,𝑡𝑛s

›

›𝑢p𝑟`2q
p𝑡q

›

›

˙

,

where we also used that 𝑒p𝑙qp𝑡´0 q “ 0. This is the desired statement.
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Theorem 2.31
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and 𝜇 ě 𝜇

“

´𝐴
‰

. Moreover, suppose that 𝑓 is globally
`X

𝑘
2

\

´ 1
˘

-
times continuously differentiable. Denote by 𝑢 the solution of (2.8) and let 𝑈 P 𝑌𝑟 be the
solution of VTD𝑟

𝑘p𝑀𝑀´1𝑔q with 𝑔 fulfilling Assumption 2.1 and (2.31) where we assume,
if 𝜇 ą 0, that 𝜏𝑛 P p0, 𝜏 s for all 𝑛 with 𝜏 sufficiently small. Then, for all 1 ď 𝑛 ď 𝑁 , it holds

sup
𝑡P𝐼𝑛

›

›p𝑢 ´ 𝑈qp𝑡q
›

›

ď 𝐶𝜏 𝑟`1

ˆ

sup
𝑡Pp𝑡0,𝑡𝑛s

›

›𝑀𝑀´1𝑓 p𝑟`1q
p𝑡q

›

› ` sup
𝑡Pp𝑡0,𝑡𝑛s

›

›𝑢p𝑟`1q
p𝑡q

›

› ` sup
𝑡Pp𝑡0,𝑡𝑛s

›

›𝑢p𝑟`2q
p𝑡q

›

›

˙

,

where 𝐶 is independent of 𝜏 “ max1ď𝑛ď𝑁 𝜏𝑛 but exponentially depends on 𝑇 . Moreover, 𝐶
and 𝜏 may depend on 𝜇 but are independent of the two-sided Lipschitz constant.

Proof. We start decomposing the error 𝑒 “ 𝑢 ´ 𝑈 as follows

sup
𝑡P𝐼𝑛

›

›

`

𝑢 ´ 𝑈
˘

p𝑡q
›

› ď sup
𝑡P𝐼𝑛

›

›

`

𝑢 ´ 𝒫VTD
𝑛 𝑢

˘

p𝑡q
›

› ` sup
𝑡P𝐼𝑛

›

›

`

𝒫VTD
𝑛 𝑢 ´ 𝑈

˘

p𝑡q
›

›.

The first term on the right-hand side can be bounded by (2.23) to

sup
𝑡P𝐼𝑛

›

›

`

𝑢 ´ 𝒫VTD
𝑛 𝑢

˘

p𝑡q
›

› ď 𝐶
`

𝜏𝑛
2

˘𝑟`1
sup
𝑡P𝐼𝑛

›

›𝑢p𝑟`1q
p𝑡q

›

›.

In order to estimate the second term, we use that 𝒫VTD
𝑛 𝑈 |𝐼𝑛 “ 𝑈 |𝐼𝑛 , which holds since

𝑈 |𝐼𝑛 P 𝑃𝑟p𝐼𝑛,R𝑑q, and exploit the definition of 𝒫VTD
𝑛 to obtain

sup
𝑡P𝐼𝑛

›

›

`

𝒫VTD
𝑛 𝑢 ´ 𝑈

˘

p𝑡q
›

› “ sup
𝑡P𝐼𝑛

›

›𝒫VTD
𝑛 𝑒p𝑡q

›

›

ď

𝑟`1
ÿ

𝑖“1

`

𝜏𝑛
2

˘ℓr𝑖s
›

› r𝑁𝑖,𝑛

`

𝑒p¨q
˘
›

› sup
𝑡P𝐼𝑛

ˇ

ˇ

`

p𝐵𝑖 ˝ 𝑇´1
𝑛

˘

p𝑡q
ˇ

ˇ “

𝑟`1
ÿ

𝑖“1

`

𝜏𝑛
2

˘ℓr𝑖s
›

› r𝑁𝑖,𝑛

`

𝑒p¨q
˘
›

›

ď𝐶
hkkkkkkikkkkkkj

sup
𝑡Pp´1,1s

ˇ

ˇ p𝐵𝑖p𝑡q
ˇ

ˇ .

Thus, it only remains to derive suitable bounds on
`

𝜏𝑛
2

˘ℓr𝑖s
›

› r𝑁𝑖,𝑛

`

𝑒p¨q
˘›

›.
Now, from the identity (2.27) and using 𝐴VTD

𝑛 “ 𝑆´1
𝑛 𝐴VTD𝑆𝑛, it follows that

`

𝜏𝑛
2

˘ℓr𝑙s
›

› r𝑁𝑙,𝑛

`

𝑒p¨q
˘
›

› ď
›

›rℰpiq,𝑙

›

› `
›

›rℰpiiq,𝑙

›

› `
›

›rℰpiiiq,𝑙

›

›

for 1 ď 𝑙 ď 𝑟 ` 1 where the vectors rℰpiq,𝑙, rℰpiiq,𝑙, and rℰpiiiq,𝑙 are given by

rℰpiq,𝑙 “ Ξ𝑙

¨

˚

˝

...
`

𝜏𝑛
2

˘ℓr𝑖s 𝑒pℓr𝑖sqp𝑡´𝑛´1q...

˛

‹

‚

,

rℰpiiq,𝑙 “ Ξ𝑙

`

𝐴VTD
b 𝐼𝑑,𝑑

˘

¨

˚

˝

...
`

𝜏𝑛
2

˘ℓr𝑗s`1
𝑀𝑀´1

r𝑁𝑗,𝑛

`

p𝑓 ´ 𝑔qp¨q
˘

...

˛

‹

‚

,

rℰpiiiq,𝑙 “ Ξ𝑙

¨

˚

˝

...
`

𝜏𝑛
2

˘ℓr𝑖s 𝑟VTD
𝑖,𝑛...

˛

‹

‚
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with
Ξ𝑙 :“

`

𝑒𝑇𝑙 b 𝐼𝑑,𝑑
˘`

p𝐼𝑟`1,𝑟`1 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴VTD
b 𝐴q

˘´1
.

Applying similar techniques as used to bound ℰpiiq,𝑙 and ℰpiiiq,𝑙, see the proof of Theo-
rem 2.30, we gain

›

›rℰpiiq,𝑙

›

› `
›

›rℰpiiiq,𝑙

›

› ď 𝐶
`

𝜏𝑛
2

˘𝑟`2

ˆ

sup
𝑡P𝐼𝑛

›

›𝑀𝑀´1𝑓 p𝑟`1q
p𝑡q

›

› ` sup
𝑡P𝐼𝑛

›

›𝑢p𝑟`2q
p𝑡q

›

›

˙

.

Further, Lemma 2.29 and Theorem 2.30 yield

›

›rℰpiq,𝑙

›

› ď
›

›

`

𝑒𝑇𝑙 b 𝐼𝑑,𝑑
˘
›

›

loooooomoooooon

“1

›

›

›

`

p𝐼𝑟`1,𝑟`1 b 𝐼𝑑,𝑑q ` 𝜏𝑛
2

p𝐴VTD
b 𝐴q

˘´1
›

›

›

loooooooooooooooooooooooomoooooooooooooooooooooooon

ď𝐶

›

›

›

›

›

›

›

¨

˚

˝

...
`

𝜏𝑛
2

˘ℓr𝑖s 𝑒pℓr𝑖sqp𝑡´𝑛´1q...

˛

‹

‚

›

›

›

›

›

›

›

ď 𝐶𝜏 𝑟`1

ˆ

sup
𝑡Pp𝑡0,𝑡𝑛´1s

›

›𝑀𝑀´1𝑓 p𝑟`1q
p𝑡q

›

› ` sup
𝑡Pp𝑡0,𝑡𝑛´1s

›

›𝑢p𝑟`2q
p𝑡q

›

›

˙

if 𝜏𝜈 P p0, 𝜏 s for all 𝜈 with 𝜏 sufficiently small. Of course, also here 𝜏 can be chosen arbitrarily
large if 𝜇 ď 0.

Combining the above estimates, we easily finish the proof.

Remark 2.32
Note that, because of 𝑒 “ 𝑀

´1
𝑒 and since 𝑀 is independent of 𝑡, we also gain analogous

results for the error 𝑒 “ 𝑢 ´ 𝑈 . To this end, we only need to use that
›

›p𝑢 ´ 𝑈q
p𝑙q

p𝑡q
›

› “

›

›

›
𝑀

´1
p𝑢 ´ 𝑈q

p𝑙q
p𝑡q

›

›

›
ď

›

›

›
𝑀

´1
›

›

›

›

›p𝑢 ´ 𝑈q
p𝑙q

p𝑡q
›

› ď 𝐶
›

›p𝑢 ´ 𝑈q
p𝑙q

p𝑡q
›

›

for 0 ď 𝑙 ď
X

𝑘
2

\

and 𝑡 P 𝐼𝑛, 1 ď 𝑛 ď 𝑁 .
Of course, 𝐶 is independent of 𝜏 . However, for example for semi-discretizations in space of

time-space problems, 𝑀 and so 𝐶 may depend on the spatial mesh parameter ℎ. Therefore,
closer considerations would be needed to check whether or not we can also conclude ℎ-
uniform estimates for 𝑢 ´ 𝑈 in this case. ♣

2.3.3 Numerical results

In this subsection, we want to present some computational results in the case of stiff prob-
lems. To this end, we have a look on one of the standard problems in the study of numerical
methods for stiff differential equations – the example of Prothero and Robinson, see [49,
Example 1].

Example
We consider the initial value problem

𝑢1
p𝑡q “ r𝑔1

p𝑡q ` 𝜆
`

𝑢p𝑡q ´ r𝑔p𝑡q
˘

, 𝑡 P p0, 10q, 𝑢p0q “ r𝑔p0q,

r𝑔p𝑡q “ 10 ´ p10 ` 𝑡q𝑒´𝑡, 𝜆 P R.
(2.32)

For any 𝜆 the solution of the problem is given by 𝑢p𝑡q “ r𝑔p𝑡q “ 10 ´ p10 ` 𝑡q𝑒´𝑡.
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This example has many advantages. On the one hand, it is quite simple and fits in the
form (1.21). On the other hand, the stiffness is directly controllable via 𝜆 while the solution
itself does not depend on 𝜆. Moreover, there is a non-vanishing right-hand side 𝑓 “ r𝑔1 ´ 𝜆r𝑔
such that the test problem does not automatically force the case of cascadic interpolation.

All computational results given below were carried out with the software Julia [18], where
we used the floating point data type BigFloat with 512 bits.

We are mainly interested in studying the influence of stiffness on the convergence behavior.
Therefore, in Table 2.1 and Table 2.2 the errors of 𝑄6

3-VTD6
3 in different norms and semi-

norms are listed for 𝜆 P t´10,´1000u and 𝜆 “ ´100000, respectively. Here, of course,
problem (2.32) can be assessed as non-stiff for 𝜆 “ ´10 while it is rather stiff in the case
𝜆 “ ´100000. Error results and associated experimental orders of convergence (eoc) are
given for a wide range of equidistant meshes with𝑁 “ 2𝑖, 𝑖 “ 5, . . . , 13, uniform subintervals.

We note that the pointwise errors }𝑢 ´ 𝑈}𝐿8 are quite similar for all 𝜆. Moreover, we
clearly obtain an associated convergence order of 𝑟` 1 “ 7 as expected from Theorem 2.31.
Hence, the numerical results show that stiffness does not influence the 𝐿8-order.

The situation is quite different for }𝑢 ´ 𝑈}ℓ8 . Although the error in the time mesh points
is significantly smaller than the pointwise error for all 𝜆, there are substantial differences in
the obtained experimental orders of convergence. In the non-stiff case 𝜆 “ ´10, we clearly
see the typical (non-stiff) superconvergence order 2𝑟 ´ 𝑘 ` 1 “ 10 over a wide range of
meshes. For 𝜆 “ ´1000 we start for the coarse mesh with 𝑁 “ 32 subintervals with an eoc
of about 6 and only reach an order just under 10 for the relatively fine mesh with 𝑁 “ 4096.
For the rather stiff case 𝜆 “ ´100000 the experimental convergence orders are about 6 for all
considered meshes, although they show an upward trend. Thus, a classical superconvergence
behavior as in the non-stiff case cannot be expected for stiff problems. However, we again
want to stress that the error in the time mesh points is very much smaller than the pointwise
error also in the stiff case.

Table 2.1: Error of 𝑄6
3-VTD6

3 in different (semi-)norms and associated experimental con-
vergence orders

𝜆 “ ´10 𝜆 “ ´1000

𝑁 }𝑢 ´ 𝑈}𝐿8 eoc }𝑢 ´ 𝑈}ℓ8 eoc }𝑢 ´ 𝑈}𝐿8 eoc }𝑢 ´ 𝑈}ℓ8 eoc

32 7.376e-11 6.92 1.646e-13 9.78 7.409e-11 6.93 6.452e-15 6.08
64 6.090e-13 6.96 1.870e-16 9.94 6.091e-13 6.97 9.552e-17 6.24

128 4.884e-15 6.98 1.902e-19 9.98 4.881e-15 6.98 1.262e-18 6.51
256 3.864e-17 6.99 1.877e-22 10.00 3.862e-17 6.99 1.380e-20 6.99
512 3.038e-19 7.00 1.838e-25 10.00 3.036e-19 7.00 1.087e-22 7.74

1024 2.381e-21 7.00 1.797e-28 10.00 2.380e-21 7.00 5.077e-25 8.68
2048 1.863e-23 7.00 1.755e-31 10.00 1.863e-23 7.00 1.234e-27 9.46
4096 1.456e-25 7.00 1.714e-34 10.00 1.456e-25 7.00 1.754e-30 9.84
8192 1.138e-27 1.674e-37 1.138e-27 1.921e-33
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Table 2.2: Error of 𝑄6
3-VTD6

3 in different (semi-)norms and associated experimental con-
vergence orders

𝜆 “ ´100000

𝑁 }𝑢 ´ 𝑈}𝐿8 eoc }𝑢 ´ 𝑈}ℓ8 eoc }p𝑢 ´ 𝑈q1}𝐿8 eoc }p𝑢 ´ 𝑈q1}ℓ8 eoc

32 7.414e-11 6.93 7.094e-19 5.94 2.599e-09 5.92 7.094e-14 5.94
64 6.095e-13 6.96 1.154e-20 5.97 4.281e-11 5.96 1.154e-15 5.97

128 4.884e-15 6.98 1.836e-22 5.99 6.867e-13 5.98 1.836e-17 5.99
256 3.864e-17 6.99 2.886e-24 6.00 1.087e-14 5.99 2.886e-19 6.00
512 3.038e-19 7.00 4.497e-26 6.02 1.710e-16 6.00 4.497e-21 6.02

1024 2.381e-21 7.00 6.937e-28 6.04 2.680e-18 6.00 6.937e-23 6.04
2048 1.863e-23 7.00 1.052e-29 6.09 4.195e-20 6.00 1.052e-24 6.09
4096 1.456e-25 7.00 1.548e-31 6.17 6.560e-22 6.00 1.548e-26 6.17
8192 1.138e-27 2.143e-33 1.025e-23 2.143e-28

The results presented in Table 2.2 show two conspicuous features. Firstly, the exper-
imental ℓ8-order is smaller than the 𝐿8-order and, secondly, the errors }𝑢 ´ 𝑈}ℓ8 and
}p𝑢 ´ 𝑈q1}ℓ8 only differ by a factor. Therefore, for further examination the results of 𝑄6

𝑘-
VTD6

𝑘, 𝑘 “ 0, . . . , 6, for 𝜆 “ ´100000 are summarized in Table 2.3. The given errors
are those for 𝑁 P t256, 512u and the experimental convergence orders are calculated from
these values. However, we want to remark that not for all 𝑘 the range of the experimental
ℓ8-orders (when considering meshes with 𝑁 “ 2𝑖, 𝑖 “ 5, . . . , 13) is as narrow as for 𝑘 “ 3.

First of all, all methods show an 𝐿8-order of 𝑟 ` 1 “ 7 and, thus, also confirm The-
orem 2.31. Moreover, for 𝑘 ě 2 we have that }𝑢 ´ 𝑈}ℓ8 and }p𝑢 ´ 𝑈q1}ℓ8 only differ by
factor |𝜆| “ 105, while this is not the case for 𝑘 P t0, 1u. This behavior is in full accordance
with (2.29). The unexpectedly lower experimental ℓ8-order compared to the 𝐿8-order,
which was already seen for 𝑘 “ 3, also shows up for all 𝑘 ě 2. It seems that an experimental
ℓ8-order of about 𝑟 ` 1 ´

X

𝑘
2

\

is obtained and, thus, just the order of the maximal deriva-
tive covered by Theorem 2.30. Nevertheless, because of

›

›p𝑢 ´ 𝑈qp𝑙q
›

›

ℓ8 ď
›

›p𝑢 ´ 𝑈qp𝑙q
›

›

𝐿8 and
since we gain the expected 𝐿8- and 𝑊 1,8-orders of 𝑟 ` 1 “ 7 and 𝑟 “ 6, respectively, this
is not really a contradiction to the estimates of Theorem 2.30.
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Table 2.3: Error of 𝑄6
𝑘-VTD6

𝑘, 𝑘 “ 0, . . . , 6, in different (semi-)norms and associated exper-
imental convergence orders

𝜆 “ ´100000

𝑘 }𝑢 ´ 𝑈}𝐿8 eoc }𝑢 ´ 𝑈}ℓ8 eoc }p𝑢 ´ 𝑈q1}𝐿8 eoc }p𝑢 ´ 𝑈q1}ℓ8 eoc

0 4.755e-17 6.99 2.744e-22 7.01 5.965e-14 5.99 8.494e-15 5.99
3.738e-19 2.128e-24 9.378e-16 1.337e-16

1 3.259e-21 7.00 1.259e-24 7.78 1.164e-17 6.00 1.163e-17 6.00
2.551e-23 5.716e-27 1.822e-19 1.821e-19

2 6.086e-21 7.00 1.129e-27 6.04 2.327e-17 6.00 1.129e-22 6.04
4.764e-23 1.713e-29 3.643e-19 1.713e-24

3 3.864e-17 6.99 2.886e-24 6.00 1.087e-14 5.99 2.886e-19 6.00
3.038e-19 4.497e-26 1.710e-16 4.497e-21

4 1.888e-20 7.00 1.783e-29 5.02 1.529e-17 6.00 1.783e-24 5.02
1.478e-22 5.490e-31 2.394e-19 5.490e-26

5 1.517e-16 6.99 2.980e-25 4.91 3.261e-14 5.99 2.980e-20 4.91
1.193e-18 9.906e-27 5.129e-16 9.906e-22

6 6.833e-16 6.99 2.731e-29 4.00 6.999e-14 5.99 2.731e-24 4.00
5.377e-18 1.709e-30 1.101e-15 1.709e-25

77





Part II

Variational Time Discretization
Methods for Parabolic Problems

79





3 Introduction to Parabolic Problems

In the following, we want to study parabolic problems of the form

B𝑡𝑢p𝑡q ` 𝒜𝑢p𝑡q “ 𝑓p𝑡q in Ω, 𝑡0 ă 𝑡 ă 𝑡0 ` 𝑇, (3.1a)
ℬ 𝑢p𝑡q “ 0 on BΩ, 𝑡0 ă 𝑡 ă 𝑡0 ` 𝑇, (3.1b)
𝑢p𝑡0q “ 𝑢0 in Ω, (3.1c)

where Ω Ă R𝑑Ω , 𝑑Ω P N, is a bounded domain with boundary BΩ and 𝑇 ą 0 some time
horizon. Here, 𝒜 is a uniformly elliptic linear differential operator independent of time
𝑡. In addition, ℬ is some linear operator (also independent of 𝑡) modeling the boundary
conditions. Further assumptions on 𝒜 and ℬ will be stated later on. As before, we set
𝐼 “ p𝑡0, 𝑡0 ` 𝑇 s for brevity.

Most parts of our analysis will, however, consider parabolic problems in their weak for-
mulation. Therefore, we provide an abstract setting for this generalized formulation at first.
To this end, let p𝐻, p¨, ¨qq and p𝑉, p¨, ¨q𝑉 q denote two Hilbert spaces with 𝑉 continuously
embedded in 𝐻 (for brevity, 𝑉 ãÑ 𝐻), i.e., 𝑉 Ă 𝐻 and there is a positive constant 𝐶emb ą 0
such that }𝑣} ď 𝐶emb }𝑣}𝑉 for all 𝑣 P 𝑉 . Moreover, suppose that 𝑉 is dense in 𝐻. Then,
identifying 𝐻 with 𝐻 1, we have that 𝑉 Ă 𝐻 ” 𝐻 1 Ă 𝑉 1. Thereby the duality pairing
x¨, ¨y𝑉 1,𝑉 can be viewed as extension of p¨, ¨q. Furthermore, let 𝑎p¨, ¨q : 𝑉 ˆ 𝑉 Ñ R be a
continuous, 𝑉 -elliptic bilinear form, i.e.,

D𝛼 ą 0 : 𝑎
`

𝑣, 𝑣
˘

ě 𝛼 }𝑣}
2
𝑉 @𝑣 P 𝑉, (3.2a)

D𝐶𝑎 ą 0 :
ˇ

ˇ𝑎
`

𝑣, 𝑤
˘
ˇ

ˇ ď 𝐶𝑎 }𝑣}𝑉 }𝑤}𝑉 @𝑣, 𝑤 P 𝑉. (3.2b)

Here, (3.2a) means the 𝑉 -ellipticity and (3.2b) the continuity of the bilinear form 𝑎p¨, ¨q.
The abstract generalized formulation then is given for 𝑓 P 𝐿2p𝐼, 𝑉 1q and 𝑢0 P 𝐻 by

Find 𝑢 P 𝒲p𝑉, 𝑉 1q :“ t𝑣 P 𝐿2p𝐼, 𝑉 q : B𝑡𝑣 P 𝐿2p𝐼, 𝑉 1qu with 𝑢p𝑡0q “ 𝑢0 such that
@

B𝑡𝑢p𝑡q, 𝑣
D

𝑉 1,𝑉
` 𝑎

`

𝑢p𝑡q, 𝑣
˘

“
@

𝑓p𝑡q, 𝑣
D

𝑉 1,𝑉
for a.e. 𝑡 P 𝐼, @𝑣 P 𝑉. (3.3)

Note that it holds 𝒲p𝑉, 𝑉 1q Ă 𝐶p𝐼,𝐻q. So, the initial condition 𝑢p𝑡0q “ 𝑢0 is meaningful.
Here, usual notation for Bochner spaces is used, for details see e.g. [25, Subsection 6.1.1].
Especially, the definitions of the function spaces introduced in Part I are extended to Banach
space-valued functions.

It is well known that under certain further assumptions on the data, problem (3.1) can
be rewritten in the form (3.3). Of course, appropriate choices of the spaces 𝐻 and 𝑉 as well
as of the bilinear form 𝑎p¨, ¨q then strongly depend on the nature of 𝒜 and ℬ. Note that
in this way the requirements made on the involved spaces and bilinear form may implicitly
cause (additional) assumptions on 𝒜 (and ℬ).
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In addition to the already used notation for (Banach space-valued) square-integrable or
continuously differentiable functions, in the following also standard notation for Sobolev
and Bochner–Sobolev spaces is used. So, for arbitrary 𝑝 P r1,8s and 𝑚 P Z, 𝑚 ě 0, let
𝑊𝑚,𝑝pΩq denote the Sobolev space of 𝐿𝑝pΩq functions whose weak derivatives up to order
𝑚 are also in 𝐿𝑝pΩq. The associated norms are given by

›

›𝑣
›

›

𝑊𝑚,𝑝pΩq
“

˜

ÿ

0ď|𝛼|ď𝑚

›

›𝐷𝛼𝑣
›

›

𝑝

𝐿𝑝pΩq

¸1{𝑝

“

˜

ÿ

0ď|𝛼|ď𝑚

ż

Ω

ˇ

ˇ𝐷𝛼𝑣p𝑥q
ˇ

ˇ

𝑝
d𝑥

¸1{𝑝

, if 𝑝 P r1,8q,

›

›𝑣
›

›

𝑊𝑚,8pΩq
“ max

0ď|𝛼|ď𝑚

›

›𝐷𝛼𝑣
›

›

𝐿8pΩq
“ max

0ď|𝛼|ď𝑚
ess sup

𝑥PΩ

ˇ

ˇ𝐷𝛼𝑣p𝑥q
ˇ

ˇ, if 𝑝 “ 8.

Here, we use the notation 𝐷𝛼 “ B𝛼1
𝑥1

¨ ¨ ¨ B
𝛼𝑑Ω
𝑥𝑑Ω

where 𝛼 “ p𝛼1, . . . , 𝛼𝑑Ωq P N𝑑Ω
0 is a multi-index

with |𝛼| “ 𝛼1 ` . . . ` 𝛼𝑑Ω . Usually, we simply write 𝐿𝑝pΩq instead of 𝑊 0,𝑝pΩq and 𝐻𝑚pΩq

for 𝑊𝑚,2pΩq. Moreover, we write 𝐻1
0 pΩq :“ t𝑢 P 𝐻1pΩq : 𝑢 “ 0 on BΩu for the subspace of

𝐻1pΩq of functions having zero boundary traces and 𝐻´1pΩq “ 𝐻1
0 pΩq1 for its dual space.

In analogy to the definition of Sobolev spaces, for an arbitrary interval 𝐽 and a Banach
space 𝑋 let 𝑊𝑚,𝑝p𝐽,𝑋q with 𝑝 P r1,8s and 𝑚 P Z, 𝑚 ě 0, denote the respective Bochner–
Sobolev space of 𝑋-valued functions. Of course, also here 𝑊 0,𝑝p𝐽,𝑋q “ 𝐿𝑝p𝐽,𝑋q and
𝐻𝑚p𝐽,𝑋q “ 𝑊𝑚,2p𝐽,𝑋q. We have

›

›𝑣
›

›

𝑊𝑚,𝑝p𝐽,𝑋q
“

˜

ÿ

0ď𝑗ď𝑚

›

›B
𝑗
𝑡 𝑣
›

›

𝑝

𝐿𝑝p𝐽,𝑋q

¸1{𝑝

“

˜

ÿ

0ď𝑗ď𝑚

ż

𝐽

›

›B
𝑗
𝑡 𝑣p𝑡q

›

›

𝑝

𝑋
d𝑡

¸1{𝑝

, if 𝑝 P r1,8q,

›

›𝑣
›

›

𝑊𝑚,8p𝐽,𝑋q
“ max

0ď𝑗ď𝑚

›

›B
𝑗
𝑡 𝑣
›

›

𝐿8p𝐽,𝑋q
“ max

0ď𝑗ď𝑚
ess sup

𝑡P𝐽

›

›B
𝑗
𝑡 𝑣p𝑡q

›

›

𝑋
, if 𝑝 “ 8.

Moreover, for sufficiently smooth functions we also use the norm
›

›𝑣
›

›

𝐶p𝐽,𝑋q
“ sup𝑡P𝐽

›

›𝑣p𝑡q
›

›

𝑋
.

Model problem
For simplicity in the following we mainly concentrate on the model problem

B𝑡𝑢p𝑡q ´ divp𝜖∇𝑢p𝑡qq ` 𝑏 ¨ ∇𝑢p𝑡q ` 𝑐𝑢p𝑡q “ 𝑓p𝑡q in Ω, 𝑡0 ă 𝑡 ă 𝑡0 ` 𝑇, (3.4a)
𝑢p𝑡q “ 0 on BΩ, 𝑡0 ă 𝑡 ă 𝑡0 ` 𝑇, (3.4b)
𝑢p𝑡0q “ 𝑢0 in Ω, (3.4c)

with coefficients 𝜖, 𝑏, and 𝑐 defined over Ω and taking values in R𝑑Ωˆ𝑑Ω , R𝑑Ω , and R, respec-
tively, where we additionally assume that there is a constant 𝜖0 ą 0 such that

𝑧𝑇 𝜖p𝑥q𝑧 ě 𝜖0𝑧
𝑇 𝑧 for a.e. 𝑥 P Ω and all 𝑧 P R𝑑Ω . (3.4d)

This means that the operators 𝒜 and ℬ in (3.1) are specified by

𝒜𝑣 “ ´divp𝜖∇𝑣q ` 𝑏 ¨ ∇𝑣 ` 𝑐𝑣 and ℬ𝑣 “ 𝑣. (3.5a)

Moreover, in this case we have that

𝑎
`

𝑣, 𝑤
˘

“
`

𝜖∇𝑣,∇𝑤
˘

`
`

𝑏 ¨ ∇𝑣, 𝑤
˘

`
`

𝑐𝑣, 𝑤
˘

(3.5b)
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3.1 Regularity of solutions

and the two occurring Hilbert spaces then are

𝐻 “ 𝐿2
pΩq with the inner product

`

𝑣, 𝑤
˘

“

ż

Ω

𝑣𝑤 d𝑥 and

𝑉 “ 𝐻1
0 pΩq with the inner product

`

𝑣, 𝑤
˘

𝑉
“
`

∇𝑣,∇𝑤
˘

`
`

𝑣, 𝑤
˘

.

(3.5c)

Obviously, it holds 𝑉 ãÑ 𝐻 with 𝐶emb “ 1. Provided that 𝜖 P
“

𝐿8pΩq
‰𝑑Ωˆ𝑑Ω satisfies (3.4d),

𝑏 P
“

𝐿8pΩq
‰𝑑Ω , divp𝑏q P 𝐿8pΩq, as well as 𝑐 P 𝐿8pΩq, the 𝑉 -ellipticity and the continuity of

𝑎
`

¨, ¨q can be guaranteed if 𝑐 ´ 1
2
divp𝑏q ě 0. For further details see e.g. [25, Theorem 3.8,

pp. 115–116]. In the following, we assume that (3.2) holds for this model problem.
Note that the stationary problem associated to (3.4), i.e.,

𝒜𝑢 “ r𝑓 in Ω, ℬ𝑢 “ 0 on BΩ,

is uniformly elliptic and has homogeneous Dirichlet boundary conditions. We say that the
stationary problem is 𝐻2-regular if for all r𝑓 P 𝐿2pΩq the adjoint variational problem

Find 𝑢 P 𝑉 such that

𝑎p𝑣, 𝑢q “
`

r𝑓, 𝑣
˘

@𝑣 P 𝑉

has a unique solution 𝑢 P 𝑉 X 𝐻2pΩq that satisfies the estimate
›

›𝑢
›

›

𝐻2pΩq
ď 𝐶

›

› r𝑓
›

›

𝐿2pΩq
. ♣

Remark 3.1
As we have already seen for the model problem, the space 𝑉 and the bilinear form 𝑎p¨, ¨q
are just those arising in the weak formulation of the associated stationary problem

𝒜𝑢 “ r𝑓 in Ω, ℬ𝑢 “ 0 on BΩ.

For linear elliptic differential equations of second order and the most typical (combinations
of) boundary conditions the weak formulations and conditions for the 𝑉 -ellipticity of the
associated bilinear form 𝑎p¨, ¨q are derived in e.g. [25, Section 3.1]. Also see [25, Remark 6.10]
where the time-dependent versions are broached.

An easily comprehensible overview on elliptic boundary value problems and their weak
formulations that also handles higher order problems is given in [35]. For details, on how the
(system of) boundary differential operator(s) ℬ could look like, especially see [35, Subsec-
tions 5.2.1 and 5.3.2] and the references provided there. For a discussion of some associated
weak formulations especially see [35, Sections 7.2 and 7.4].

For a very detailed and general study of elliptic, parabolic, but also hyperbolic partial
differential equations, we refer to [56]. So, for example, conditions on the equivalence of (3.1)
and (3.3) are discussed in [56, Satz 27.6, pp. 403–404]. However, due to the very general
setup, the notation used there is somewhat more difficult to understand. ♣

3.1 Regularity of solutions
The existence, uniqueness, and regularity of solutions to (3.1) or (3.3), respectively, have
been studied in detail in the literature, see e.g. [56, Chapter 26 and 27] and references
therein.
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3 Introduction to Parabolic Problems

Theorem 3.2 (Cf. [56, Satz 26.1, p. 384, Satz 27.2, p. 393])
Let 𝑗 P Z, 𝑗 ě 0, and suppose that (3.2) holds. Moreover, let

𝑓 P 𝐻𝑗
`

𝐼, 𝑉 1
˘

and B
𝑖
𝑡𝑢0 P 𝑉, 𝑖 “ 0, . . . , 𝑗 ´ 1, B

𝑗
𝑡𝑢0 P 𝐻. (3.6)

Then, the abstract problem (3.3) has a unique solution 𝑢 satisfying

𝑢 P 𝐻𝑗
`

𝐼, 𝑉
˘

, B
𝑗`1
𝑡 𝑢 P 𝐿2

`

𝐼, 𝑉 1
˘

, B
𝑖
𝑡𝑢p𝑡0q “ B

𝑖
𝑡𝑢0, 𝑖 “ 0, . . . , 𝑗.

The quantities B𝑖
𝑡𝑢0 occurring in the theorem are recursively defined via

B
0
𝑡 𝑢0 “ 𝑢0,

@

B
𝑖
𝑡𝑢0, 𝑣

D

𝑉 1,𝑉
“
@

𝑓 p𝑖´1q
p𝑡0q, 𝑣

D

𝑉 1,𝑉
´ 𝑎

`

B
𝑖´1
𝑡 𝑢0, 𝑣

˘

@𝑣 P 𝑉, 𝑖 “ 1, . . . , 𝑗.
(3.7)

This nicely shows that (3.6) should not be misinterpreted as additional initial conditions
but actually states certain compatibility conditions, i.e., the initial condition 𝑢0, 𝑓 p𝑖qp𝑡0q for
𝑖 “ 0, . . . , 𝑗 ´ 1, and the boundary conditions (given by 𝑉 ) should match at 𝑡0.

Some situations in which (3.6) is guaranteed are discussed in [56, pp. 396–397]. Note that
the notation there is somewhat different since the linear operator from 𝑉 to 𝑉 1 representing
the bilinear form 𝑎p¨, ¨q is used to define B𝑖

𝑡𝑢0.
If, as in our case, the abstract problem (3.3) originates from a weak formulation of a

parabolic problem of the form (3.1), then also the interaction between time and space as well
as the regularity of the solution with respect to the space variable is of interest. Appropriate
results are given in [56, Subsections 27.2 and 27.3], especially see [56, Satz 27.5, pp. 402–
403]. So, provided that the problem data satisfies suitable regularity and compatibility
assumptions, then the solution can be guaranteed to be as smooth as desired in time and
space. Note that in the literature often quite strong regularity assumptions on the domain Ω
are supposed. However, some results may also hold for domains with nonsmooth boundary,
also see the following remark.

Remark 3.3
For the solution 𝑢 of the model problem, cf. (3.4), we also have on a convex domain that

𝑢 P 𝐿2
`

𝐼,𝐻1
0 pΩq X 𝐻2

pΩq
˘

, B𝑡𝑢 P 𝐿2
`

𝐼, 𝐿2
pΩq

˘

if 𝑓 P 𝐿2p𝐼, 𝐿2pΩqq and 𝑢0 P 𝐻1pΩq, see for example [50, Proposition 11.12, p. 215]. Here
additionally note that the assumptions on Ω stated in [50] can be further weakened since
the elliptic 𝐻2-regularity, that was used to prove the 𝐻2-regularity, can also be guaranteed
on convex domains, cf. [33, Theorem 3.2.1.2, p. 147] or [35, Theorem 9.24, p. 282].

Note that under certain assumptions the 𝐻2-regularity of the solution to the stationary
problem can be proven for even more general domains, see [2] and [30]. ♣

3.2 Semi-discretization in space
There are several ways to approach the numerical approximation of problem (3.1) and (3.3),
respectively. We shall follow the method of lines and first approximate the solution to (3.3)
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3.2 Semi-discretization in space

in space only. This approach results in a coupled system of ordinary differential equations
with respect to the time variable 𝑡. Later, in a second step, for example the methods known
from Part I can be applied to obtain a fully discrete scheme.

We denote by 𝑉ℎ a finite dimensional subspace of 𝑉 . Moreover, in order to keep things
clear and simple, let 𝑓 P 𝐶p𝐼, 𝑉 1q. Then, consider the following semi-discretized problem

Find 𝑢ℎ P 𝐶1p𝐼, 𝑉ℎq with 𝑢ℎp𝑡0q “ 𝑢ℎ,0 such that
`

B𝑡𝑢ℎp𝑡q, 𝑣ℎ
˘

` 𝑎
`

𝑢ℎp𝑡q, 𝑣ℎ
˘

“
@

𝑓p𝑡q, 𝑣ℎ
D

𝑉 1,𝑉
@𝑡 P 𝐼, @𝑣ℎ P 𝑉ℎ, (3.8)

where 𝑢ℎ,0 P 𝑉ℎ is an approximation of the initial value 𝑢0.
This problem is called the semi-discretization in space of (3.3) and well-known from the

literature, see e.g. [25, Subsection 6.1.4] or [34, Subsection 5.1.2]. If 𝑢0 P 𝑉 1, then 𝑢ℎ,0 P 𝑉ℎ
may be determined via the projection 𝑃ℎ : 𝑉 1 Ñ 𝑉ℎ given by

@

𝑃ℎ𝑣, 𝑤
D

𝑉 1,𝑉
“
@

𝑣, 𝑤
D

𝑉 1,𝑉
@𝑤 P 𝑉ℎ. (3.9)

Note that in this definition the duality pairing x¨, ¨y𝑉 1,𝑉 can be replaced by p¨, ¨q if 𝑣 P 𝐻.
Moreover, 𝑃ℎ is stable in }¨}, i.e., it holds

›

›𝑃ℎ𝑣
›

› ď }𝑣} for all 𝑣 P 𝐻, which can be easily
shown using the Cauchy–Schwarz inequality. However, as we shall see later, other choices
for 𝑢ℎ,0 may be more appropriate. The concrete choices, of course, then strongly depend on
the properties of the data and the properties desired from 𝑢ℎ.

3.2.1 Reformulation as ode system

In order to make the structure of (3.8) more clear, the problem is reformulated. Denoting
by t𝜙𝑖u𝑖“1,...,dimp𝑉ℎq a basis of 𝑉ℎ, we can write 𝑢ℎ P 𝐶1p𝐼, 𝑉ℎq as

𝑢ℎp𝑡q “

dimp𝑉ℎq
ÿ

𝑖“1

𝑈ℎ,𝑖p𝑡q𝜙𝑖

with 𝑈ℎ,𝑖 P 𝐶1p𝐼q. Now, testing in (3.8) with 𝜙𝑗, 𝑗 “ 1, . . . , dimp𝑉ℎq, we get
`

B𝑡𝑢ℎp𝑡q,𝜙𝑗

˘

` 𝑎
`

𝑢ℎp𝑡q,𝜙𝑗

˘

“
@

𝑓p𝑡q,𝜙𝑗

D

𝑉 1,𝑉
@𝑗 “ 1, . . . , dimp𝑉ℎq.

Then, defining the mass matrix 𝑀 and the stiffness matrix 𝐴 as usual by

𝑀𝑖𝑗 “
`

𝜙𝑗,𝜙𝑖

˘

, 𝐴𝑖𝑗 “ 𝑎
`

𝜙𝑗,𝜙𝑖

˘

@𝑖, 𝑗 “ 1, . . . , dimp𝑉ℎq, (3.10)

the left-hand side can be rewritten as

`

B𝑡𝑢ℎp𝑡q,𝜙𝑗

˘

` 𝑎
`

𝑢ℎp𝑡q,𝜙𝑗

˘

“

dimp𝑉ℎq
ÿ

𝑖“1

𝑈 1
ℎ,𝑖p𝑡q

`

𝜙𝑖,𝜙𝑗

˘

`

dimp𝑉ℎq
ÿ

𝑖“1

𝑈ℎ,𝑖p𝑡q 𝑎
`

𝜙𝑖,𝜙𝑗

˘

“
`

𝑀𝑈 1
ℎp𝑡q ` 𝐴𝑈ℎp𝑡q

˘

𝑗
.

Therefore, setting r𝐹𝑗p𝑡q :“
@

𝑓p𝑡q,𝜙𝑗

D

𝑉 1,𝑉
, the basis representation 𝑈ℎ of the solution 𝑢ℎ

of (3.8) satisfies the initial value problem

𝑀𝑈 1
ℎp𝑡q ` 𝐴𝑈ℎp𝑡q “ r𝐹 p𝑡q @𝑡 P 𝐼, 𝑈ℎp𝑡0q “ 𝑈ℎ,0. (3.11)

Here, 𝑈ℎ,0 P Rdimp𝑉ℎq denotes the basis representation of 𝑢ℎ,0, i.e., 𝑢ℎ,0 “
řdimp𝑉ℎq

𝑖“1

`

𝑈ℎ,0

˘

𝑖
𝜙𝑖.
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Remark 3.4
Looking on 𝑃ℎ𝑓p𝑡q P 𝑉ℎ in its basis representation, i.e., 𝑃ℎ𝑓p𝑡q “

řdimp𝑉ℎq

𝑖“1 𝐹 𝑃ℎ
𝑖 p𝑡q𝜙𝑖, we get

from the definition of the orthogonal projection 𝑃ℎ that

r𝐹𝑗p𝑡q “
@

𝑓p𝑡q,𝜙𝑗

D

𝑉 1,𝑉
“
@

𝑃ℎ𝑓p𝑡q,𝜙𝑗

D

𝑉 1,𝑉

“

dimp𝑉ℎq
ÿ

𝑖“1

𝐹 𝑃ℎ
𝑖 p𝑡q

@

𝜙𝑖,𝜙𝑗

D

𝑉 1,𝑉
“

dimp𝑉ℎq
ÿ

𝑖“1

𝐹 𝑃ℎ
𝑖 p𝑡q

`

𝜙𝑖,𝜙𝑗

˘

“
`

𝑀𝐹 𝑃ℎp𝑡q
˘

𝑗
.

Hence, it holds r𝐹 p𝑡q “ 𝑀𝐹 𝑃ℎp𝑡q. ♣

Since (3.11) is a system of coupled odes, standard ode theory can be applied to answer
questions on solvability and regularity. However, we should know somewhat more about the
involved matrices 𝑀 and 𝐴 as well as about the right-hand side r𝐹 .

Lemma 3.5
The mass matrix 𝑀 P Rdimp𝑉ℎqˆdimp𝑉ℎq is symmetric and positive definite.

Proof. The symmetry of 𝑀 follows easily from its definition due to the symmetry of the
inner product p¨, ¨q.

Now, we study the positive definiteness. To this end, let 𝑍 P Rdimp𝑉ℎqzt0u and associated
𝑧ℎ “

řdimp𝑉ℎq

𝑖“1 𝑍𝑖𝜙𝑖 P 𝑉ℎzt0u be given. Then, it holds

𝑍𝑇𝑀𝑍 “

dimp𝑉ℎq
ÿ

𝑖,𝑗“1

𝑍𝑗

`

𝜙𝑗,𝜙𝑖

˘

𝑍𝑖 “

˜

dimp𝑉ℎq
ÿ

𝑗“1

𝑍𝑗𝜙𝑗,

dimp𝑉ℎq
ÿ

𝑖“1

𝑍𝑖𝜙𝑖

¸

“
`

𝑧ℎ, 𝑧ℎ
˘

“ }𝑧ℎ}
2

ą 0

and we are done.

We now know that 𝑀 is symmetric and positive definite, which also implies existence,
symmetry, and positive definiteness of 𝑀1{2. It is appropriate to define

𝑀 :“ 𝑀1{2 and 𝐴 :“ 𝑀𝑀´1𝐴𝑀
´1

“ 𝑀´1{2𝐴𝑀´1{2.

Then, setting 𝑈ℎ “ 𝑀𝑈ℎ “ 𝑀1{2𝑈ℎ and 𝑈ℎ,0 “ 𝑀𝑈ℎ,0 “ 𝑀1{2𝑈ℎ,0, in addition to (3.11) it
also holds

𝑈
1

ℎp𝑡q ` 𝐴𝑈ℎp𝑡q “ 𝑀𝑀´1
r𝐹 p𝑡q @𝑡 P 𝐼, 𝑈ℎp𝑡0q “ 𝑈ℎ,0. (3.12)

Since this is a finite linear system of ordinary differential equations with constant coefficients
in standard form, we have that

𝑈ℎp𝑡q “ 𝑒´p𝑡´𝑡0q𝐴 𝑈ℎp𝑡0q `

ż 𝑡

𝑡0

𝑒´p𝑡´𝑠q𝐴𝑀𝑀´1
r𝐹 p𝑠q d𝑠. (3.13)

Thus, the regularity of 𝑈ℎ only depends on the smoothness of the right-hand side r𝐹 .
In case of the standard application, where 𝑉ℎ is a conforming finite element space, it is well-

known that the system gets stiffer if the spatial mesh gets finer. In fact, on shape-regular,
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3.2 Semi-discretization in space

quasi-uniform meshes the two-sided Lipschitz constant associated to the semi-discretization
of model problem (3.4) then is proportional to ℎ´2 with ℎ denoting the spatial mesh param-
eter, also see Remark 3.8. Therefore, we ask and check whether at least a uniform one-sided
Lipschitz condition is satisfied for problem (3.12). To this end, we have to verify that (2.9)
holds with 𝜇 independent of 𝑉ℎ.

In the following, the notations }¨} and p¨, ¨q are also used for the Euclidean norm and inner
product. From the context, however, it will always be easy to understand what meaning is
meant.

Lemma 3.6
For every 𝑍 P Rdimp𝑉ℎq it holds

`

´𝐴𝑍,𝑍
˘

ď 𝜇
›

›𝑍
›

›

2

with 𝜇 “ ´𝛼𝐶´2
emb ă 0, where 𝛼 ą 0 is the 𝑉 -ellipticity constant of 𝑎p¨, ¨q.

Proof. Let 𝑍 P Rdimp𝑉ℎq be arbitrarily chosen and 𝑧ℎ “
řdimp𝑉ℎq

𝑖“1 𝑍𝑖𝜙𝑖 P 𝑉ℎ. Then,

p𝐴𝑍,𝑍q “ 𝑍𝑇𝐴𝑍 “

dimp𝑉ℎq
ÿ

𝑖,𝑗“1

𝑍𝑗𝑎
`

𝜙𝑗,𝜙𝑖

˘

𝑍𝑖 “ 𝑎

˜

dimp𝑉ℎq
ÿ

𝑗“1

𝑍𝑗𝜙𝑗,

dimp𝑉ℎq
ÿ

𝑖“1

𝑍𝑖𝜙𝑖

¸

“ 𝑎
`

𝑧ℎ, 𝑧ℎ
˘

.

Now, due to the 𝑉 -ellipticity of 𝑎p¨, ¨q and 𝑉 ãÑ 𝐻, we have

𝑎
`

𝑧ℎ, 𝑧ℎ
˘

ě 𝛼 }𝑧ℎ}
2
𝑉 ě 𝛼𝐶´2

emb }𝑧ℎ}
2 .

Recalling the identity used in the proof of Lemma 3.5, the norm on the right-hand side can
further be rewritten as

}𝑧ℎ}
2

“ 𝑍𝑇𝑀𝑍 “ 𝑍𝑇𝑀1{2𝑀1{2𝑍 “
`

𝑀1{2𝑍
˘𝑇 `

𝑀1{2𝑍
˘

“
›

›𝑀1{2𝑍
›

›

2
,

where we used that 𝑀1{2 exists and is symmetric since 𝑀 is symmetric and positive definite.
Hence, it follows

p𝐴𝑍,𝑍q ě 𝛼𝐶´2
emb

›

›𝑀1{2𝑍
›

›

2
.

Multiplying this identity by ´1, setting 𝑍 “ 𝑀´1{2𝑍, and recalling the definition of 𝐴, the
desired statement follows easily. Here, also note that 𝑀´1{2 exists and is symmetric and
positive definite.

Remark 3.7
Note that within the proof of Lemma 3.6 we have made the following observations. Let
𝑧ℎ P 𝑉ℎ be represented by the coefficient vector 𝑍 P Rdimp𝑉ℎq, i.e., 𝑧ℎ “

řdimp𝑉ℎq

𝑖“1 𝑍𝑖𝜙𝑖, and
define 𝑍 P Rdimp𝑉ℎq by 𝑍 “ 𝑀𝑍 “ 𝑀1{2𝑍. Then, it holds

›

›𝑍
›

› “ }𝑧ℎ} and
`

𝐴𝑍,𝑍
˘

“ 𝑎
`

𝑧ℎ, 𝑧ℎ
˘

.

Therefore, stability and error results obtained for the coefficient vectors immediately also
yield results for the represented functions in an appropriate norm and vice versa. Moreover,
this suggests that estimates for ode systems as those of Section 2.3 can nicely be interpreted
if the ode system results from a spatial semi-discretization of a time-space problem. ♣
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3 Introduction to Parabolic Problems

Remark 3.8
Adapting the arguments used in the proof of Lemma 3.6, we obtain for functions 𝑦ℎ, 𝑧ℎ P 𝑉ℎ
and their associated basis representation vectors 𝑌, 𝑍 P Rdimp𝑉ℎq, i.e., 𝑦ℎ “

řdimp𝑉ℎq

𝑗“1 𝑌𝑗𝜙𝑗

and 𝑧ℎ “
řdimp𝑉ℎq

𝑖“1 𝑍𝑖𝜙𝑖, that

𝑎p𝑦ℎ, 𝑧ℎq “ p𝐴𝑌,𝑍q “
`

𝐴𝑌 ,𝑍
˘

where 𝑌 “ 𝑀𝑌 “ 𝑀1{2𝑌 and 𝑍 “ 𝑀𝑍 “ 𝑀1{2𝑍.
Thus, inspired by the proof of [25, Theorem 9.11, pp. 388–389], we find for the spectral

norm of 𝐴 that

}𝐴} “ sup
𝑌 PRdimp𝑉ℎqzt0u

}𝐴𝑌 }

}𝑌 }
“ sup

𝑌 ,𝑍PRdimp𝑉ℎqzt0u

`

𝐴𝑌 ,𝑍
˘

}𝑌 }}𝑍}
“ sup

𝑦ℎ,𝑧ℎP𝑉ℎzt0u

𝑎p𝑦ℎ, 𝑧ℎq

}𝑦ℎ}}𝑧ℎ}
,

where we also exploited the observations of Remark 3.7. Using the 𝑉 -ellipticity and the
continuity of 𝑎p¨, ¨q, we further conclude

𝛼

˜

sup
𝑧ℎP𝑉ℎzt0u

}𝑧ℎ}𝑉

}𝑧ℎ}

¸2

ď }𝐴} “ sup
𝑦ℎ,𝑧ℎP𝑉ℎzt0u

𝑎p𝑦ℎ, 𝑧ℎq

}𝑦ℎ}}𝑧ℎ}
ď 𝐶𝑎

˜

sup
𝑧ℎP𝑉ℎzt0u

}𝑧ℎ}𝑉

}𝑧ℎ}

¸2

.

In the setting of model problem (3.4) with (3.5) and considering a conforming finite ele-
ment space 𝑉ℎ on a shape-regular, quasi-uniform mesh, we have that sup𝑧ℎP𝑉ℎzt0u

}𝑧ℎ}𝑉

}𝑧ℎ}
is

proportional to ℎ´1 with ℎ denoting the spatial mesh parameter. Here, an upper bound
follows from an inverse inequality and an appropriate lower bound follows from choosing
any non-zero function in 𝑉ℎ whose support has a diameter of order ℎ, also see [25, (9.12)
and (9.15), pp. 388 and 390]. Hence, }𝐴} is proportional to ℎ´2 then. ♣

Lemma 3.9
The solution 𝑈ℎ of (3.12) satisfies the following stability estimate

›

›𝑈ℎp𝑡q
›

› ď 𝑒´𝛼𝐶´2
embp𝑡´𝑡0q

›

›𝑈ℎp𝑡0q
›

› `

ż 𝑡

𝑡0

𝑒´𝛼𝐶´2
embp𝑡´𝑠q

›

›𝑀𝑀´1
r𝐹 p𝑠q

›

› d𝑠.

Proof. Scalar multiplying (3.12) by 𝑈ℎp𝑡q, we get
`

𝑈
1

ℎp𝑡q, 𝑈ℎp𝑡q
˘

`
`

𝐴𝑈ℎp𝑡q, 𝑈ℎp𝑡q
˘

“
`

𝑀𝑀´1
r𝐹 p𝑡q, 𝑈ℎp𝑡q

˘

.

Using the result of Lemma 3.6 and the Cauchy–Schwarz inequality, we therefore gain

1

2
B𝑡}𝑈ℎp𝑡q}

2
` 𝛼𝐶´2

emb}𝑈ℎp𝑡q}
2

ď }𝑀𝑀´1
r𝐹 p𝑡q}}𝑈ℎp𝑡q}.

From this, we conclude that

B𝑡}𝑈ℎp𝑡q} ` 𝛼𝐶´2
emb}𝑈ℎp𝑡q} ď }𝑀𝑀´1

r𝐹 p𝑡q}.

Further, multiplying by 𝑒𝛼𝐶
´2
emb𝑡, we find that

B𝑡
`

𝑒𝛼𝐶
´2
emb𝑡}𝑈ℎp𝑡q}

˘

“ 𝑒𝛼𝐶
´2
emb𝑡B𝑡}𝑈ℎp𝑡q} ` 𝛼𝐶´2

emb𝑒
𝛼𝐶´2

emb𝑡}𝑈ℎp𝑡q} ď 𝑒𝛼𝐶
´2
emb𝑡}𝑀𝑀´1

r𝐹 p𝑡q}.

So, replacing 𝑡 by 𝑠 and integrating over 𝑠 from 𝑡0 to 𝑡, we obtain the desired estimate.
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3.2 Semi-discretization in space

Recalling Remark 3.4 and Remark 3.7, we immediately get from Lemma 3.9 that

}𝑢ℎp𝑡q} ď 𝑒´𝛼𝐶´2
embp𝑡´𝑡0q

}𝑢ℎp𝑡0q} `

ż 𝑡

𝑡0

𝑒´𝛼𝐶´2
embp𝑡´𝑠q

}𝑓p𝑠q} d𝑠. (3.14)

However, under weaker assumptions on 𝑓 still the following stability results can be shown.

Lemma 3.10
The solution 𝑢ℎ of (3.8) satisfies the following stability estimates

}𝑢ℎp𝑡q}
2

` 𝛼

ż 𝑡

𝑡0

}𝑢ℎp𝑠q}
2
𝑉 d𝑠 ď }𝑢ℎp𝑡0q}

2
`

1

𝛼

ż 𝑡

𝑡0

}𝑓p𝑠q}
2
𝑉 1
ℎ
d𝑠

and

}𝑢ℎp𝑡q}
2

ď 𝑒´𝛼𝐶´2
embp𝑡´𝑡0q

}𝑢ℎp𝑡0q}
2

`
1

𝛼

ż 𝑡

𝑡0

𝑒´𝛼𝐶´2
embp𝑡´𝑠q

}𝑓p𝑠q}
2
𝑉 1
ℎ
d𝑠.

Proof. Suitably adapt the proof of [25, Theorem 6.7, pp. 283–284].

3.2.2 Differentiability with respect to time

Next, we study the differentiability of the semi-discrete solution with respect to time. Obvi-
ously, from (3.13) we have that 𝑈ℎ is p𝑗`1q-times continuously differentiable, if r𝐹 is 𝑗-times
continuously differentiable with respect to 𝑡 on 𝐼. The connection to the regularity of the
right-hand side 𝑓 is shown in the following lemma.

Lemma 3.11
Let 𝑗 P Z, 𝑗 ě 0, and suppose that 𝑓 P 𝐶𝑗p𝐼, 𝑉 1q. Then, r𝐹 P 𝐶𝑗p𝐼,Rdimp𝑉ℎqq.

Proof. By definition we have r𝐹𝑖p¨q “ x𝑓p¨q,𝜙𝑖y𝑉 1,𝑉 for all 𝑖 “ 1, . . . , dimp𝑉ℎq. The statement
now is proven for each component separately. So, consider an arbitrary 𝑖 “ 1, . . . , dimp𝑉ℎq.
Obviously, x¨,𝜙𝑖y𝑉 1,𝑉 defines a linear functional on 𝑉 1. Therefore, 𝑓 P 𝐶𝑗p𝐼, 𝑉 1q implies that

r𝐹𝑖p¨q “ x𝑓p¨q,𝜙𝑖y𝑉 1,𝑉 P 𝐶𝑗
p𝐼,Rq,

also see [57, beginning of the proof of Proposition 3.6, p. 77].

Now, if 𝑈ℎ P 𝐶𝑗`1p𝐼,Rdimp𝑉ℎqq, also the differential equation (3.12) can be differentiated
with respect to 𝑡 and we obtain

𝑈
p𝑖`1q

ℎ p𝑡q ` 𝐴𝑈
p𝑖q

ℎ p𝑡q “ 𝑀𝑀´1
r𝐹 p𝑖q

p𝑡q @𝑡 P 𝐼, 𝑈
p𝑖q

ℎ p𝑡0q “ 𝑈
p𝑖q

ℎ p𝑡`0 q,

for 𝑖 “ 0, . . . , 𝑗, where we used that 𝐴 and 𝑀 are independent of time 𝑡. Analogously, in
function representation, we have that 𝑢ℎ P 𝐶𝑗`1p𝐼, 𝑉ℎq with 𝑢ℎp𝑡0q “ 𝑢ℎ,0 satisfies

`

𝑢
p𝑖`1q

ℎ p𝑡q, 𝑣ℎ
˘

` 𝑎
`

𝑢
p𝑖q
ℎ p𝑡q, 𝑣ℎ

˘

“
@

𝑓 p𝑖q
p𝑡q, 𝑣ℎ

D

𝑉 1,𝑉
@𝑡 P 𝐼, @𝑣ℎ P 𝑉ℎ,

𝑢
p𝑖q
ℎ p𝑡0q “ 𝑢

p𝑖q
ℎ p𝑡`0 q,

(3.15)

for 𝑖 “ 0, . . . , 𝑗.
Since 𝑈 p𝑖q

ℎ and 𝑢
p𝑖q
ℎ satisfy quite similar initial value problems as 𝑈ℎ and 𝑢ℎ, there also

hold analog stability estimates, cf. Lemma 3.9 or Lemma 3.10, respectively.
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3 Introduction to Parabolic Problems

Corollary 3.12
Let 𝑗 P Z, 𝑗 ě 0, and suppose that 𝑓 P 𝐶𝑗p𝐼, 𝑉 1q. Then, the solution 𝑈ℎ of (3.12) and the
solution 𝑢ℎ of (3.8) satisfy for 𝑖 “ 0, . . . , 𝑗 the stability estimates

›

›𝑈
p𝑖q

ℎ p𝑡q
›

› ď 𝑒´𝛼𝐶´2
embp𝑡´𝑡0q

›

›𝑈
p𝑖q

ℎ p𝑡`0 q
›

› `

ż 𝑡

𝑡0

𝑒´𝛼𝐶´2
embp𝑡´𝑠q

›

›𝑀𝑀´1
r𝐹 p𝑖q

p𝑠q
›

› d𝑠

or (in function representation)

›

›𝑢
p𝑖q
ℎ p𝑡q

›

›

2
ď 𝑒´𝛼𝐶´2

embp𝑡´𝑡0q
›

›𝑢
p𝑖q
ℎ p𝑡`0 q

›

›

2
`

1

𝛼

ż 𝑡

𝑡0

𝑒´𝛼𝐶´2
embp𝑡´𝑠q

›

›𝑓 p𝑖q
p𝑠q

›

›

2

𝑉 1
ℎ

d𝑠,

respectively.

While the latter (integral) terms in the stability estimates can always be bounded by terms
of the given data independent of ℎ, appropriate uniform bounds for the initial value(s) can
only be guaranteed if 𝑢ℎ,0 (and so 𝑈ℎ,0) is properly chosen. For more details on this topic
we refer to Subsection 4.2.3.

3.2.3 Error estimates for the semi-discrete approximation

The error analysis for the semi-discretization in space is well understood, see e.g. [25, The-
orem 6.14, pp. 287–288] or [34, pp. 324–326]. Therefore, we shall only sketch the derivation
of error estimates and concentrate on the results.

It is convenient to introduce another spatial projection operator. As before, let 𝑉ℎ Ă 𝑉
be a finite dimensional subspace of 𝑉 . We define 𝑅ℎ : 𝑉 Ñ 𝑉ℎ to be the Ritz projection
operator given by

𝑎
`

𝑅ℎ𝑣, 𝑤
˘

“ 𝑎
`

𝑣, 𝑤
˘

@𝑤 P 𝑉ℎ.

Note that 𝑅ℎ is stable in }¨}𝑉 , i.e., it holds
›

›𝑅ℎ𝑣
›

›

𝑉
ď 𝐶 }𝑣}𝑉 for all 𝑣 P 𝑉 . This can be

easily derived from the 𝑉 -ellipticity and continuity of 𝑎p¨, ¨q. Indeed, from (3.2) we get

𝛼
›

›𝑅ℎ𝑣
›

›

2

𝑉
ď 𝑎

`

𝑅ℎ𝑣,𝑅ℎ𝑣
˘

“ 𝑎
`

𝑣,𝑅ℎ𝑣
˘

ď 𝐶𝑎

›

›𝑅ℎ𝑣
›

›

𝑉

›

›𝑣
›

›

𝑉
,

which yields
›

›𝑅ℎ𝑣
›

›

𝑉
ď 𝐶𝑎

𝛼
}𝑣}𝑉 for all 𝑣 P 𝑉 .

The Ritz projection can be extended to functions of space and time in the 𝐿2-sense by
setting

`

𝑅ℎ𝑣
˘

p𝑡q :“ 𝑅ℎ

`

𝑣p𝑡q
˘

for all 𝑣 P 𝐿2p𝐽, 𝑉 q. Then, 𝑅ℎ : 𝐿2p𝐽, 𝑉 q Ñ 𝐿2p𝐽, 𝑉ℎq satisfies
ż

𝐽

𝑎
`

𝑅ℎ𝑣, 𝑤
˘

d𝑡 “

ż

𝐽

𝑎
`

𝑣, 𝑤
˘

d𝑡 @𝑤 P 𝐿2
p𝐽, 𝑉ℎq.

Similarly, the projection operator 𝑃ℎ : 𝑉 1 Ñ 𝑉ℎ of (3.9) can also be extended by setting
`

𝑃ℎ𝑣
˘

p𝑡q :“ 𝑃ℎ

`

𝑣p𝑡q
˘

for all 𝑣 P 𝐿2p𝐽, 𝑉 1q such that 𝑃ℎ : 𝐿2p𝐽, 𝑉 1q Ñ 𝐿2p𝐽, 𝑉ℎq then satisfies
ż

𝐽

@

𝑃ℎ𝑣, 𝑤
D

𝑉 1,𝑉
d𝑡 “

ż

𝐽

@

𝑣, 𝑤
D

𝑉 1,𝑉
d𝑡 @𝑤 P 𝐿2

p𝐽, 𝑉ℎq.

These extended projections will be needed in the later error analysis.
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3.2 Semi-discretization in space

Standard spatial discretization
In the setting of model problem (3.4) the discrete space 𝑉ℎ Ă 𝑉 is often chosen as a finite
element space of continuous piecewise polynomials of a certain order, say 𝜅 ě 1. This
space is based on a triangulation 𝒯ℎ of Ω, for example in simplices. Here, ℎ is not only
used as abstract parameter for notation purposes but also denotes the maximum among the
diameters of mesh cells contained in the triangulation 𝒯ℎ.

Under some standard assumptions on the triangulation it is well-known that 𝑅ℎ has the
following approximation properties, see e.g. [21, Theorem 3.2.2, p. 134, Theorem 3.2.5,
pp. 138–139]. If 𝑣 P 𝐻1

0 pΩq X 𝐻𝑞pΩq, then
›

›𝑣 ´ 𝑅ℎ𝑣
›

›

𝐻1pΩq
ď 𝐶ℎ𝑞´1

}𝑣}𝐻𝑞pΩq
(3.16a)

for 1 ď 𝑞 ď 𝜅 ` 1. If in addition the associated stationary problem is 𝐻2-regular, we also
have

›

›𝑣 ´ 𝑅ℎ𝑣
›

›

𝐿2pΩq
ď 𝐶ℎ𝑞 }𝑣}𝐻𝑞pΩq

, (3.16b)

which, compared to (3.16a), provides an improved 𝐿2-norm error estimate. ♣

The following (abstract) error estimates can be shown.

Theorem 3.13
Provided that 𝑢 and 𝑓 are sufficiently smooth, it holds
›

›𝑢p𝑖q
p𝑡q ´ 𝑢

p𝑖q
ℎ p𝑡q

›

› ď
›

›𝑢p𝑖q
p𝑡q ´ 𝑅ℎ𝑢

p𝑖q
p𝑡q

›

› `
›

›𝑅ℎ𝑢
p𝑖q

p𝑡`0 q ´ 𝑢
p𝑖q
ℎ p𝑡`0 q

›

›𝑒´𝛼𝐶´2
embp𝑡´𝑡0q{2

`
1

?
𝛼

ˆ
ż 𝑡

𝑡0

𝑒´𝛼𝐶´2
embp𝑡´𝑠q

›

›B𝑡
`

𝑢p𝑖q
´ 𝑅ℎ𝑢

p𝑖q
˘

p𝑠q
›

›

2

𝑉 1 d𝑠

˙1{2

and
›

›𝑢p𝑖q
p𝑡q ´ 𝑢

p𝑖q
ℎ p𝑡q

›

› ď
›

›𝑢p𝑖q
p𝑡q ´ 𝑅ℎ𝑢

p𝑖q
p𝑡q

›

› `
›

›𝑅ℎ𝑢
p𝑖q

p𝑡`0 q ´ 𝑢
p𝑖q
ℎ p𝑡`0 q

›

›𝑒´𝛼𝐶´2
embp𝑡´𝑡0q

`

ż 𝑡

𝑡0

𝑒´𝛼𝐶´2
embp𝑡´𝑠q

›

›B𝑡
`

𝑢p𝑖q
´ 𝑅ℎ𝑢

p𝑖q
˘

p𝑠q
›

› d𝑠.

Proof. Since the arguments are quite analog, we give a detailed proof for 𝑖 “ 0 only.
For estimation the error is split as follows 𝑢´ 𝑢ℎ “

`

𝑢´𝑅ℎ𝑢
˘

`
`

𝑅ℎ𝑢´ 𝑢ℎ
˘

. Now, using
the definition of 𝑅ℎ and subtracting (3.8) from (3.3), we find
@

B𝑡
`

𝑅ℎ𝑢 ´ 𝑢ℎ
˘

p𝑡q, 𝑣ℎ
D

𝑉 1,𝑉
` 𝑎

``

𝑅ℎ𝑢 ´ 𝑢ℎ
˘

p𝑡q, 𝑣ℎ
˘

“ ´
@

B𝑡
`

𝑢 ´ 𝑅ℎ𝑢
˘

p𝑡q, 𝑣ℎ
D

𝑉 1,𝑉

@𝑡 P 𝐼, @𝑣ℎ P 𝑉ℎ.

Therefore, the stability estimates, cf. (3.14) and Lemma 3.10, also give bounds for 𝑅ℎ𝑢´𝑢ℎ
(in certain norms) when 𝑓 is replaced by ´B𝑡

`

𝑢 ´ 𝑅ℎ𝑢
˘

. Because of
›

›

`

𝑢 ´ 𝑢ℎ
˘

p𝑡q
›

› ď
›

›

`

𝑢 ´ 𝑅ℎ𝑢
˘

p𝑡q
›

› `
›

›

`

𝑅ℎ𝑢 ´ 𝑢ℎ
˘

p𝑡q
›

›,

the desired results are proven easily.
If 𝑢 is sufficiently smooth, similar arguments can also be used to prove the desired state-

ment for 𝑖 ě 1. Here, note that an identity similar to (3.3) also holds for 𝑢p𝑖q with 𝑓 replaced
by 𝑓 p𝑖q and, moreover, that (3.15) can be applied instead of (3.8).
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3 Introduction to Parabolic Problems

3.3 Full discretization in space and time
After semi-discretizing (3.3) in space according to Section 3.2, we are still faced with differ-
ential equations. Therefore, in order to obtain a fully computable discrete scheme, further
discretization of the remaining system of coupled odes is needed. Here, it should be noted
that the system of ordinary differential equations becomes larger and also stiffer if the spa-
tial discretization gets finer. For this reason, careful consideration should be given to the
choice of the temporal discretization.

In the following, we shall apply and analyze the variational time discretization methods
presented in Part I. Our previous findings suggest that these methods are well-suited in this
context since they provide suitable stability properties (at least 𝐴-stability) and enable a
proper error analysis also in the case of stiff problems.

3.3.1 Formulation of the methods

First of all, the variational time discretization (VTD) methods of higher smoothness as
introduced in Chapter 1 are formulated also in the setting of parabolic problems. To this
end, we again use a time mesh

𝑡0 ă 𝑡1 ă ¨ ¨ ¨ ă 𝑡𝑁´1 ă 𝑡𝑁 “ 𝑡0 ` 𝑇.

Also recall the associated notation, e.g., we write 𝐼𝑛 for time mesh intervals and 𝜏𝑛 for the
time mesh interval lengths, see p. 7 for details.

Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, be given. Then, the local problem on 𝐼𝑛, 1 ď 𝑛 ď 𝑁 , reads:

Find 𝑢𝜏ℎ|𝐼𝑛 P 𝑃𝑟p𝐼𝑛, 𝑉ℎq such that

𝑢𝜏ℎp𝑡`𝑛´1q “ 𝑢𝜏ℎp𝑡´𝑛´1q, if 𝑘 ě 1, (3.17a)
`

B
𝑖`1
𝑡 𝑢𝜏ℎp𝑡´𝑛 q, 𝑣ℎ

˘

` 𝑎
`

B
𝑖
𝑡𝑢𝜏ℎp𝑡´𝑛 q, 𝑣ℎ

˘

“
@

𝑔p𝑖q
p𝑡´𝑛 q, 𝑣ℎ

D

𝑉 1,𝑉
@𝑣ℎ P 𝑉ℎ, (3.17b)

if 𝑘 ě 2, 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1,
`

B
𝑖`1
𝑡 𝑢𝜏ℎp𝑡`𝑛´1q, 𝑣ℎ

˘

` 𝑎
`

B
𝑖
𝑡𝑢𝜏ℎp𝑡`𝑛´1q, 𝑣ℎ

˘

“
@

𝑔p𝑖q
p𝑡`𝑛´1q, 𝑣ℎ

D

𝑉 1,𝑉
@𝑣ℎ P 𝑉ℎ, (3.17c)

if 𝑘 ě 3, 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

´ 1,

and
ż

𝐼𝑛

`

B𝑡𝑢𝜏ℎ, 𝑣𝜏ℎ
˘

` 𝑎
`

𝑢𝜏ℎ, 𝑣𝜏ℎ
˘

d𝑡 ` 𝛿0,𝑘
`

r𝑢𝜏ℎs𝑛´1, 𝑣𝜏ℎp𝑡`𝑛´1q
˘

“

ż

𝐼𝑛

@

𝑔, 𝑣𝜏ℎ
D

𝑉 1,𝑉
d𝑡

@𝑣𝜏ℎ P 𝑃𝑟´𝑘p𝐼𝑛, 𝑉ℎq, (3.17d)

where the initial value 𝑢𝜏ℎp𝑡´0 q P 𝑉ℎ should be a suitable approximation of 𝑢p𝑡0q “ 𝑢0.
Moreover, 𝑔 is some approximation of 𝑓 .

In the following, we mainly consider 𝑔 P t𝑓,Π𝑟
𝑘𝑓, ℐ𝑟

𝑘𝑓, 𝒞𝑟
𝑘𝑓u and, if 𝑘 ě 2, also 𝑔 “ ℐ𝑟

𝑘´2,˚𝑓 .
By these choices we are already able to model the exactly integrated version, the numerically
integrated version (with quadrature rule 𝑄𝑟

𝑘), and the version with cascadic interpolated
right-hand side of the VTD𝑟

𝑘 method. Moreover, for 𝑘 ě 2 we can consider the situation
after a postprocessing of 𝑄𝑟´1

𝑘´2-VTD𝑟´1
𝑘´2p𝑓q. Also cf. Remark 1.43 and Remark 2.14.
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3.3 Full discretization in space and time

Note that the integral on the left-hand side of (3.17d) can always be replaced by any
quadrature formula that is exact for polynomials of maximal degree 2𝑟 ´ 𝑘. The same
applies to the integral on the right-hand side if 𝑔 P 𝑃𝑟p𝐼𝑛, 𝑉

1q.

3.3.2 Reformulation and solvability

The fully discrete method can be rewritten using the same ideas as in Subsection 3.2.1.
So, recalling that t𝜙𝑖u𝑖“1,...,dimp𝑉ℎq denotes a basis of 𝑉ℎ, for any 𝑛 “ 1, . . . , 𝑁 we can write
𝑢𝜏ℎ|𝐼𝑛 P 𝑃𝑟p𝐼𝑛, 𝑉ℎq as

𝑢𝜏ℎp𝑡q “

dimp𝑉ℎq
ÿ

𝑖“1

𝑈𝜏ℎ,𝑖p𝑡q𝜙𝑖 @𝑡 P 𝐼𝑛

with 𝑈𝜏ℎ,𝑖 P 𝑃𝑟p𝐼𝑛q. Then, the initial condition (3.17a) and the collocation conditions (3.17b)
and (3.17c) can be reformulated as

𝑈𝜏ℎp𝑡`𝑛´1q “ 𝑈𝜏ℎp𝑡´𝑛´1q, if 𝑘 ě 1,

𝑀𝑈
p𝑖`1q

𝜏ℎ p𝑡´𝑛 q ` 𝐴𝑈
p𝑖q
𝜏ℎ p𝑡´𝑛 q “ r𝐺p𝑖q

p𝑡´𝑛 q, if 𝑘 ě 2, 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1,

𝑀𝑈
p𝑖`1q

𝜏ℎ p𝑡`𝑛´1q ` 𝐴𝑈
p𝑖q
𝜏ℎ p𝑡`𝑛´1q “ r𝐺p𝑖q

p𝑡`𝑛´1q, if 𝑘 ě 3, 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

´ 1,

with mass matrix 𝑀 and stiffness matrix 𝐴 given by (3.10) and right-hand side term r𝐺

determined by r𝐺𝑗p𝑡q :“
@

𝑔p𝑡q,𝜙𝑗

D

𝑉 1,𝑉
for all 𝑗 “ 1, . . . , dimp𝑉ℎq.

Similarly, the variational condition (3.17d) alternatively reads

ż

𝐼𝑛

`

𝑀𝑈 1
𝜏ℎ ` 𝐴𝑈𝜏ℎ, 𝑉𝜏ℎ

˘

d𝑡 ` 𝛿0,𝑘
`

𝑀 r𝑈𝜏ℎs𝑛´1, 𝑉𝜏ℎp𝑡`𝑛´1q
˘

“

ż

𝐼𝑛

`

r𝐺, 𝑉𝜏ℎ
˘

d𝑡

@𝑉𝜏ℎ P 𝑃𝑟´𝑘

`

𝐼𝑛,Rdimp𝑉ℎq
˘

.

Here, we also used that 𝑣𝜏ℎ P 𝑃𝑟´𝑘p𝐼𝑛, 𝑉ℎq can be represented by 𝑉𝜏ℎ P 𝑃𝑟´𝑘

`

𝐼𝑛,Rdimp𝑉ℎq
˘

via

𝑣𝜏ℎp𝑡q “

dimp𝑉ℎq
ÿ

𝑗“1

𝑉𝜏ℎ,𝑗p𝑡q𝜙𝑗.

In this reformulated representation, it becomes obvious that the full discretization (3.17)
of (3.3) can be viewed as VTD𝑟

𝑘p r𝐺q approximation (in the style of (1.22)) to the semi-
discrete problem (3.11). Therefore, especially the findings of Part I on the solvability can
be easily transferred. More concrete, from Proposition 2.24 and due to Lemma 3.6 we have
that the fully discrete problem (3.17) is uniquely solvable, where no restriction on the time
step length 𝜏𝑛 is needed.
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4 Error Analysis for VTD Methods

In this chapter, we want to present an error analysis for variational time discretization
(VTD) methods of higher smoothness as introduced in Chapter 1 in the setting of parabolic
problems. To this end, we combine variational techniques as usually used in the error
analysis of discontinuous Galerkin (dG) and continuous Galerkin–Petrov (cGP) methods
and techniques that are known from the stiff error analysis of Runge–Kutta(-like) methods
(cf. Section 2.3). As byproduct we give a variational error analysis capturing both cGP
and dG time stepping methods. In the following, we assume that 𝑢 as well as 𝑓 and 𝑔 are
smooth enough to guarantee that the occurring terms are well-defined.

Let 𝑢𝜏ℎ denote the solution of the VTD𝑟
𝑘p𝑔q method as given in (3.17) where 𝑟, 𝑘 P Z

with 0 ď 𝑘 ď 𝑟. For our analysis we assume that 𝑔 is at least globally
`X

𝑘
2

\

´ 1
˘

-times
continuously differentiable. Moreover, we choose and include the initial condition in a
very special manner. More detailed, the initial values B𝑖

𝑡𝑢𝜏ℎp𝑡´0 q P 𝑉ℎ, 𝑖 “
X

𝑘
2

\

, . . . , 0, are
determined by

B
t 𝑘
2 u

𝑡 𝑢𝜏ℎp𝑡´0 q :“ r𝑃 0
ℎB

t 𝑘
2 u

𝑡 𝑢0,

B
𝑖
𝑡𝑢𝜏ℎp𝑡´0 q P 𝑉ℎ with 𝑖 “

X

𝑘
2

\

´ 1, . . . , 0 :

𝑎
`

B
𝑖
𝑡𝑢𝜏ℎp𝑡´0 q, 𝑣ℎ

˘

“
@

𝑔p𝑖q
p𝑡`0 q, 𝑣ℎ

D

𝑉 1,𝑉
´
`

B
𝑖`1
𝑡 𝑢𝜏ℎp𝑡´0 q, 𝑣ℎ

˘

@𝑣ℎ P 𝑉ℎ,

(4.1)

with r𝑃 0
ℎ P t𝑅ℎ, 𝑃ℎu. Here, 𝑅ℎ is as before the Ritz projection and 𝑃ℎ is the projection

of (3.9), which is some generalization of the (global) 𝐿2-projection onto 𝑉ℎ. For a definition
of B𝑖

𝑡𝑢0, 𝑖 ě 0, see (3.7).
In view of Subsection 1.1.1 the assumptions on the smoothness of 𝑔 and the choice of the

initial value(s) ensure that (3.17a) and (3.17c) could be replaced by

B
𝑖
𝑡𝑢𝜏ℎp𝑡`𝑛´1q “ B

𝑖
𝑡𝑢𝜏ℎp𝑡´𝑛´1q @𝑖 “ 0, . . . ,

X

𝑘´1
2

\

. (4.2)

It follows that 𝑢𝜏ℎ is globally
X

𝑘´1
2

\

-times continuously differentiable for 𝑘 ě 1 and, in
general, discontinuous at the time (mesh) points for 𝑘 “ 0. Therefore, we are interested
whether the results of Subsection 1.4.4 can be transferred to the present setting.

Lemma 4.1
Let 0 ď 𝑗 ď

X

𝑘
2

\

and assume that 𝑔 is
`X

𝑘
2

\

´ 1
˘

-times continuously differentiable on 𝐼.
Moreover, suppose that 𝑢𝜏ℎ satisfies (3.17) with initial value determined by (4.1). Then, it
holds for 1 ď 𝑛 ď 𝑁

ż

𝐼𝑛

`

B𝑡𝑢
p𝑗q

𝜏ℎ , 𝑣𝜏ℎ
˘

` 𝑎
`

𝑢
p𝑗q

𝜏ℎ , 𝑣𝜏ℎ
˘

d𝑡 ` 𝛿0,𝑘´2𝑗

`“

𝑢
p𝑗q

𝜏ℎ

‰

𝑛´1
, 𝑣𝜏ℎp𝑡`𝑛´1q

˘

“

ż

𝐼𝑛

@

𝑔p𝑗q, 𝑣𝜏ℎ
D

𝑉 1,𝑉
d𝑡

@𝑣𝜏ℎ P 𝑃𝑟´𝑘`𝑗p𝐼𝑛, 𝑉ℎq.
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4 Error Analysis for VTD Methods

Proof. For 𝑗 “ 0 the statement is obvious. So we only consider the case 𝑗 ě 1, which also
directly implies that 𝑘 ě 2 and so there is no jump term in (3.17d).

Let 𝑣𝜏ℎ P 𝑃𝑟´𝑘`𝑗p𝐼𝑛, 𝑉ℎq. Integrating by parts 𝑗 times in time, we obtain
ż

𝐼𝑛

`

B𝑡𝑢
p𝑗q

𝜏ℎ , 𝑣𝜏ℎ
˘

` 𝑎
`

𝑢
p𝑗q

𝜏ℎ , 𝑣𝜏ℎ
˘

d𝑡 “

ż

𝐼𝑛

`

B
𝑗`1
𝑡 𝑢𝜏ℎ, 𝑣𝜏ℎ

˘

` 𝑎
`

B
𝑗
𝑡𝑢𝜏ℎ, 𝑣𝜏ℎ

˘

d𝑡

“ ´

ż

𝐼𝑛

`

B
𝑗
𝑡𝑢𝜏ℎ, 𝑣

1
𝜏ℎ

˘

` 𝑎
`

B
𝑗´1
𝑡 𝑢𝜏ℎ, 𝑣

1
𝜏ℎ

˘

d𝑡 `
“`

B
𝑗
𝑡𝑢𝜏ℎ, 𝑣𝜏ℎ

˘

` 𝑎
`

B
𝑗´1
𝑡 𝑢𝜏ℎ, 𝑣𝜏ℎ

˘‰
ˇ

ˇ

𝑡´
𝑛

𝑡`
𝑛´1

“ . . .

“ p´1q
𝑗

ż

𝐼𝑛

`

B𝑡𝑢𝜏ℎ, 𝑣
p𝑗q

𝜏ℎ

˘

` 𝑎
`

𝑢𝜏ℎ, 𝑣
p𝑗q

𝜏ℎ

˘

d𝑡

`

𝑗´1
ÿ

𝑙“0

p´1q
𝑙
“`

B
𝑗´𝑙
𝑡 𝑢𝜏ℎ, 𝑣

p𝑙q
𝜏ℎ

˘

` 𝑎
`

B
𝑗´1´𝑙
𝑡 𝑢𝜏ℎ, 𝑣

p𝑙q
𝜏ℎ

˘‰ˇ

ˇ

𝑡´
𝑛

𝑡`
𝑛´1
.

Because of (3.17b), (3.17c), and (3.17d), we gain
ż

𝐼𝑛

`

B𝑡𝑢
p𝑗q

𝜏ℎ , 𝑣𝜏ℎ
˘

` 𝑎
`

𝑢
p𝑗q

𝜏ℎ , 𝑣𝜏ℎ
˘

d𝑡

“ p´1q
𝑗

ż

𝐼𝑛

@

𝑔, 𝑣
p𝑗q

𝜏ℎ

D

𝑉 1,𝑉
d𝑡 `

𝑗´1
ÿ

𝑙“0

p´1q
𝑙
“@

𝑔p𝑗´1´𝑙q, 𝑣
p𝑙q
𝜏ℎ

D

𝑉 1,𝑉

‰ˇ

ˇ

𝑡´
𝑛

𝑡`
𝑛´1

(4.3)

`
@

𝑔p𝑗´1q
p𝑡`𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q

D

𝑉 1,𝑉
´
`

B
𝑗
𝑡𝑢𝜏ℎp𝑡`𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q

˘

´ 𝑎
`

B
𝑗´1
𝑡 𝑢𝜏ℎp𝑡`𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q

˘

.

Note that we did not rewrite the term for 𝑙 “ 0 at 𝑡`𝑛´1 but only added the auxiliary
term

@

𝑔p𝑗´1qp𝑡`𝑛´1q ´ 𝑔p𝑗´1qp𝑡`𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q
D

𝑉 1,𝑉
“ 0 since (3.17c) does not apply in the case

𝑗 “
X

𝑘
2

\

ą
X

𝑘´1
2

\

. Now, again using integration be parts 𝑗 times, the first line of the
right-hand side of (4.3) can be rewritten as

p´1q
𝑗

ż

𝐼𝑛

@

𝑔, 𝑣
p𝑗q

𝜏ℎ

D

𝑉 1,𝑉
d𝑡 `

𝑗´1
ÿ

𝑙“0

p´1q
𝑙
“@

𝑔p𝑗´1´𝑙q, 𝑣
p𝑙q
𝜏ℎ

D

𝑉 1,𝑉

‰
ˇ

ˇ

𝑡´
𝑛

𝑡`
𝑛´1

“

ż

𝐼𝑛

@

𝑔p𝑗q, 𝑣𝜏ℎ
D

𝑉 1,𝑉
d𝑡.

It remains to study the second line of the right-hand side of (4.3). Since 𝑔p𝑗´1q is globally
continuous, we get from (3.17b) (if 𝑛 ě 1) or the definition of the initial values (4.1) (if
𝑛 “ 0) that

@

𝑔p𝑗´1q
p𝑡`𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q

D

𝑉 1,𝑉
“
@

𝑔p𝑗´1q
p𝑡´𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q

D

𝑉 1,𝑉

“
`

B
𝑗
𝑡𝑢𝜏ℎp𝑡´𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q

˘

` 𝑎
`

B
𝑗´1
𝑡 𝑢𝜏ℎp𝑡´𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q

˘

.

Because of (4.2), we have that 𝑢𝜏ℎ is globally
X

𝑘´1
2

\

-times continuously differentiable and,
thus, especially 𝑢p𝑗´1q

𝜏ℎ is globally continuous. Therefore, we conclude
@

𝑔p𝑗´1q
p𝑡`𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q

D

𝑉 1,𝑉
´
`

B
𝑗
𝑡𝑢𝜏ℎp𝑡`𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q

˘

´ 𝑎
`

B
𝑗´1
𝑡 𝑢𝜏ℎp𝑡`𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q

˘

“ ´𝛿0,𝑘´2𝑗

`“

𝑢
p𝑗q

𝜏ℎ

‰

𝑛´1
, 𝑣𝜏ℎp𝑡`𝑛´1q

˘

.

Combining the above identities, we are done.
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In order to guarantee that Lemma 4.1 is always applicable and that we do not need to
know about 𝑔 when defining the discrete initial values, cf. (4.1), we suppose that from now
on the following assumption holds true.

Assumption
We assume that 𝑓 and 𝑔 are

`X

𝑘
2

\

´ 1
˘

-times continuously differentiable on 𝐼. Moreover, we
suppose that

𝑔p𝑖q
p𝑡`0 q “ 𝑓 p𝑖q

p𝑡`0 q for all 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1.

In the following, we always set ℓ :“
X

𝑘
2

\

. Using the preceding lemma and provided
sufficiently smooth data, we see that the ℓth derivative 𝑤𝜏ℎ “ 𝑢

pℓq
𝜏ℎ of 𝑢𝜏ℎ solves on 𝐼𝑛,

1 ď 𝑛 ď 𝑁 , the local problem:

Find 𝑤𝜏ℎ|𝐼𝑛 P 𝑃𝑟´ℓp𝐼𝑛, 𝑉ℎq such that

𝑤𝜏ℎp𝑡`𝑛´1q “ 𝑤𝜏ℎp𝑡´𝑛´1q, if 𝑘 is odd, (4.4a)

and
ż

𝐼𝑛

`

B𝑡𝑤𝜏ℎ, 𝑣𝜏ℎ
˘

` 𝑎
`

𝑤𝜏ℎ, 𝑣𝜏ℎ
˘

d𝑡 ` 𝛿0,𝑘´2ℓ

`“

𝑤𝜏ℎ

‰

𝑛´1
, 𝑣𝜏ℎp𝑡`𝑛´1q

˘

“

ż

𝐼𝑛

@

𝑔pℓq, 𝑣𝜏ℎ
D

𝑉 1,𝑉
d𝑡

@𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq, (4.4b)

where 𝑤𝜏ℎp𝑡´0 q is given by

𝑤𝜏ℎp𝑡´0 q “ r𝑃 0
ℎB

ℓ
𝑡𝑢0.

When also 𝑢 is sufficiently smooth
`

e.g., 𝑢 P 𝐶ℓ`1pr𝑡0, 𝑡0 ` 𝑇 q, 𝑉 q
˘

, then the function
𝑤 “ 𝑢pℓq satisfies

𝑤p𝑡`𝑛´1q “ 𝑤p𝑡´𝑛´1q,

and
ż

𝐼𝑛

`

B𝑡𝑤, 𝑣
˘

` 𝑎
`

𝑤, 𝑣
˘

d𝑡 “

ż

𝐼𝑛

@

𝑓 pℓq, 𝑣
D

𝑉 1,𝑉
d𝑡 @𝑣 P 𝐿2

p𝐼𝑛, 𝑉 q,

where 𝑤p𝑡´0 q is given by

𝑤p𝑡´0 q “ B
ℓ
𝑡𝑢0.

Comparing the initial values for the continuous and the discrete problem, we see that

𝑤𝜏ℎp𝑡´0 q “ r𝑃 0
ℎB

ℓ
𝑡𝑢0 “ r𝑃 0

ℎ𝑤p𝑡´0 q,

where r𝑃 0
ℎ P

␣

𝑅ℎ, 𝑃ℎ

(

.
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4 Error Analysis for VTD Methods

4.1 Error estimates for the ℓth derivative

Recalling the above observations and that ℓ “
X

𝑘
2

\

, we conclude that 𝑤𝜏ℎ “ 𝑢
pℓq
𝜏ℎ is the

solution of a VTD𝑟´ℓ
𝑘´2ℓ method with adapted initial value applied to the modified problem

(cf. (3.1))

B𝑡𝑤p𝑡q ` 𝒜𝑤p𝑡q “ 𝑓 pℓq
p𝑡q in Ω, 𝑡0 ă 𝑡 ă 𝑡0 ` 𝑇,

ℬ𝑤p𝑡q “ 0 on BΩ, 𝑡0 ă 𝑡 ă 𝑡0 ` 𝑇,

𝑤p𝑡0q “ B
ℓ
𝑡𝑢0 in Ω,

which is solved by 𝑤 “ 𝑢pℓq. If 𝑘 ě 1 is odd, it holds 𝑘´ 2ℓ “ 1 and so the discrete problem
is that of a cGP method, whereas for 𝑘 ě 0 even it holds 𝑘´ 2ℓ “ 0, which implies that 𝑢pℓq

𝜏ℎ

is solution of a dG method.
Therefore, for the derivation of error estimates for the ℓth derivative of VTD𝑟

𝑘 meth-
ods we can build on the broad knowledge for the analysis of dG and cGP methods. We,
however, shall present a unified analysis for the global 𝐿2-error in the 𝐻-norm. Moreover,
global 𝐿2-error estimates in the 𝑉 -norm, pointwise error estimates in the 𝐻-norm, and some
supercloseness results are derived. Because of the usage of 𝑔 as approximation of 𝑓 on the
right-hand side of (3.17), we can easily study various variants of the method in one. Fur-
thermore, in order to gain even more flexibility, (especially) for the analysis, we consider an
integrator I𝑛 that satisfies the following assumption.

Assumption
We assume that the integrator I𝑛 either represents the exact integral over 𝐼𝑛, i.e., I𝑛 “

ş

𝐼𝑛
,

or the application of a quadrature formula based on function values of the integrand in 𝐼𝑛
that is exact for polynomials of maximal degree 2𝑟 ´ 𝑘 and has positive weights only.

Quadrature formulas that fulfill this assumption are, for example, the Gauss–Legendre,
the Gauss–Radau, or the Gauss–Lobatto quadrature rules with sufficiently high number of
quadrature points. We will typically use I𝑛 “

ş

𝐼𝑛
or I𝑛 “ 𝑄𝑟´ℓ

𝑘´2ℓ,𝑛.
By assumption the integrator I𝑛 is exact for polynomials up to degree 2𝑟 ´ 𝑘, i.e.,

I𝑛r𝑣s “

ż

𝐼𝑛

𝑣p𝑡q d𝑡 @𝑣 P 𝑃2𝑟´𝑘p𝐼𝑛,Rq. (4.5a)

Moreover, because of the positive weights in case of quadrature, we have that

I𝑛r𝑣s ď I𝑛r𝑤s @𝑣, 𝑤 : 𝐼𝑛 Ñ R with 𝑣p𝑡q ď 𝑤p𝑡q @𝑡 P 𝐼𝑛, (4.5b)

which also implies |I𝑛r𝑣s| ď I𝑛r|𝑣|s, and that the Cauchy–Schwarz inequality also holds for
I𝑛, i.e.,

I𝑛r𝑣𝑤s ď
`

I𝑛

“

𝑣2
‰˘1{2 `

I𝑛

“

𝑤2
‰˘1{2

@𝑣, 𝑤 : 𝐼𝑛 Ñ R. (4.5c)

Here, in (4.5b) and (4.5c) we tacitly assume that for 𝑣 and 𝑤 all occurring expressions are
well-defined.
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4.1 Error estimates for the ℓth derivative

Of course, depending on the concrete choice of I𝑛, the integrands need to satisfy different
conditions. Therefore, similar to Part I, we set 𝑘I “ 0 if I𝑛 represents a quadrature formula
based on function values and so requires integrands that are continuous on 𝐼𝑛. For the case
I𝑛 “

ş

𝐼𝑛
, which requires integrable integrands only, we set 𝑘I “ ´1.

The integrator I𝑛 also can be well interpreted for Banach space-valued functions. Indeed,
if I𝑛 “

ş

𝐼𝑛
, the integral is read in Bochner sense. Otherwise, if I𝑛 is a quadrature formula,

we just have a weighted sum of function values, which also makes sense in Banach spaces.
So, denoting by 𝑋 a Banach space over R, we have that I𝑛 is a bounded linear operator
from 𝐿1p𝐼𝑛, 𝑋q to 𝑋 if 𝑘I “ ´1 or from 𝐶p𝐼𝑛, 𝑋q to 𝑋 if 𝑘I “ 0, respectively.

Note that the integral in (4.4b) can be replaced by an integrator I𝑛 satisfying (4.5a) if
𝑔pℓq|𝐼𝑛 P 𝑃𝑟´ℓp𝐼𝑛, 𝑉

1q for all 𝑛 “ 1, . . . , 𝑁 . The latter can always be achieved since in (3.17)
we can use Π𝑟

𝑘𝑔, cf. (1.28), instead of 𝑔 without changing the discrete solution.
For sufficiently smooth functions 𝑣 and 𝑤 define a bilinear form by

𝐵I
𝑛 p𝑣, 𝑤q :“ I𝑛

“`

B𝑡𝑣, 𝑤
˘

` 𝑎
`

𝑣, 𝑤
˘‰

` 𝛿0,𝑘´2ℓ

`

r𝑣s𝑛´1, 𝑤p𝑡`𝑛´1q
˘

.

Then, for all 𝑛 “ 1, . . . , 𝑁 we have that 𝑢pℓq
𝜏ℎ

ˇ

ˇ

𝐼𝑛
P 𝑃𝑟´ℓp𝐼𝑛, 𝑉ℎq satisfies

𝑢
pℓq
𝜏ℎp𝑡`𝑛´1q “ 𝑢

pℓq
𝜏ℎp𝑡´𝑛´1q P 𝑉ℎ, if 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd), (4.6a)

and
𝐵I

𝑛

`

𝑢
pℓq
𝜏ℎ , 𝑣𝜏ℎ

˘

“ I𝑛

”

@

𝑔pℓq, 𝑣𝜏ℎ
D

𝑉 1,𝑉

ı

@𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq, (4.6b)

where 𝑢pℓq
𝜏ℎp𝑡´0 q :“ r𝑃 0

ℎBℓ
𝑡𝑢0 with r𝑃 0

ℎ P t𝑅ℎ, 𝑃ℎu.

4.1.1 Projection operators

To prepare the error analysis, we need to define some projection operators with respect to
time. For generality the projections are defined for 𝑋-valued functions where 𝑋 denotes
some Banach space over R. Note that we directly give the (local) operator definitions on
𝐼𝑛 for the concrete polynomial degrees (depending on 𝑟 and 𝑘) that are actually needed in
the later argumentation. For stand-alone definitions of the operators and the study of their
well-definedness see Appendix C.2.

First, for 𝑣 P 𝐿2p𝐼𝑛, 𝑋q let Π𝑟´𝑘`ℓ𝑣 P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑋q denote the (local) 𝐿2-projection onto
polynomials of maximal degree 𝑟 ´ 𝑘 ` ℓ, i.e.,

ż

𝐼𝑛

`

𝑣 ´ Π𝑟´𝑘`ℓ𝑣
˘

𝑤 d𝑡 “ 0 @𝑤 P 𝑃𝑟´𝑘`ℓp𝐼𝑛q,

cf. Definition C.4. The integral here needs to be understood in Bochner sense and the 0 on
the right-hand side should be read as the zero element in 𝑋.

For the case where I𝑛 is not just the integral over 𝐼𝑛, we also define an analog projection
with respect to the integrator I𝑛, i.e., for 𝑣 P 𝐶𝑘Ip𝐼𝑛, 𝑋q let ΠI

𝑟´𝑘`ℓ𝑣 P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑋q be
determined by

I𝑛

”

`

𝑣 ´ ΠI
𝑟´𝑘`ℓ𝑣

˘

𝑤
ı

“ 0 @𝑤 P 𝑃𝑟´𝑘`ℓp𝐼𝑛q,
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4 Error Analysis for VTD Methods

cf. Definition C.9. Here, we use that the integrator I𝑛 can be well interpreted also for
𝑋-valued functions. Recall that 𝐶´1p𝐼𝑛, 𝑋q is interpreted as 𝐿2p𝐼𝑛, 𝑋q.

Finally, there is another projection which is essentially used in the following analysis. For
𝑣 P 𝐻1p𝐼𝑛, 𝑋q X 𝐶𝑘I`1p𝐼𝑛, 𝑋q we define rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑣 P 𝑃𝑟´ℓp𝐼𝑛, 𝑋q by

`

𝑣 ´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣

˘

p𝑡`𝑛´1q “ 0, if 𝑘 ´ 2ℓ “ 1,

I𝑛

”

B𝑡
`

𝑣 ´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣

˘

𝑤
ı

` 𝛿0,𝑘´2ℓ

`

𝑣 ´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q “ 0 @𝑤 P 𝑃𝑟´𝑘`ℓp𝐼𝑛q,

cf. Definition C.10. Note that from the definition of rΠ𝑟´ℓ,I
𝑘´2ℓ with 𝑤 ” 1, we conclude

`

𝑣 ´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣

˘

p𝑡´𝑛 q “

ż

𝐼𝑛

B𝑡
`

𝑣 ´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣

˘

d𝑡 `
`

𝑣 ´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣

˘

p𝑡`𝑛´1q

“

ż

𝐼𝑛

B𝑡𝑣 d𝑡 ´ I𝑛rB𝑡𝑣s ` I𝑛

”

B𝑡
`

𝑣 ´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣

˘

ı

` 𝛿0,𝑘´2ℓ

`

𝑣 ´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣

˘

p𝑡`𝑛´1q

“

ż

𝐼𝑛

B𝑡𝑣 d𝑡 ´ I𝑛rB𝑡𝑣s “: 𝜔I
𝑛 p𝑣q, (4.7)

where also the fundamental theorem of calculus and the properties of I𝑛 were used. Thus,
𝜔I
𝑛 p𝑣q is an integrator error. For convenience, we set 𝜔I

0 p𝑣q :“ 0.
Composing the approximations locally defined by rΠ𝑟´ℓ,I

𝑘´2ℓ , we can define a global approx-
imation. For simplicity, the associated global approximation operator is also denoted by
rΠ𝑟´ℓ,I
𝑘´2ℓ . More concrete, for 𝑣 P

␣

𝑤 P 𝐻1p𝐼,𝑋q : 𝑤|𝐼𝑛 P 𝐶𝑘I`1p𝐼𝑛, 𝑋q, 𝑛 “ 1, . . . , 𝑁
(

we set

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣p𝑡´0 q :“ 𝑣p𝑡´0 q,

`

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣

˘
ˇ

ˇ

𝐼𝑛
“ rΠ𝑟´ℓ,I

𝑘´2ℓ p𝑣|𝐼𝑛q, 𝑛 “ 1, . . . , 𝑁.

Of course, this global approximation operator strongly depends on the time mesh. Note
that rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑣p𝑡´0 q needs to be defined as 𝑣p𝑡´0 q in order to be consistent with 𝜔I
0 p𝑣q “ 0.

Remark 4.2
For 𝑣 P 𝐶p𝐼𝑛, 𝑋q a projection rΠ𝑟´ℓ

𝑘´2ℓ𝑣 P 𝑃𝑟´ℓp𝐼𝑛, 𝑋q could also be defined by

`

𝑣 ´ rΠ𝑟´ℓ
𝑘´2ℓ𝑣

˘

p𝑡`𝑛´1q “ 0, if 𝑘 ´ 2ℓ “ 1,
`

𝑣 ´ rΠ𝑟´ℓ
𝑘´2ℓ𝑣

˘

p𝑡´𝑛 q “ 0,
ż

𝐼𝑛

`

𝑣 ´ rΠ𝑟´ℓ
𝑘´2ℓ𝑣

˘

𝑤 d𝑡 “ 0 @𝑤 P 𝑃𝑟´𝑘`ℓ´1p𝐼𝑛q,

cf. Definition C.6. For 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd) this is the projection that is typically used
in the analysis of the Galerkin–Petrov time stepping, see for example [4, (4.12)], [11, (2.7)],
and [26, (70.19), p. 202]. If 𝑘 ´ 2ℓ “ 0 (ô 𝑘 is even), the projection is the standard one in
the context of the discontinuous Galerkin time stepping method, see for example [5, (3.1)],
[26, (69.26), p. 186], and [52, (12.9), p. 207].

Note that from integration by parts the definition of rΠ𝑟´ℓ
𝑘´2ℓ also implies that for functions
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4.1 Error estimates for the ℓth derivative

𝑣 P 𝐻1p𝐼𝑛, 𝑋q Ă 𝐶p𝐼𝑛, 𝑋q it holds
ż

𝐼𝑛

B𝑡
`

𝑣 ´ rΠ𝑟´ℓ
𝑘´2ℓ𝑣

˘

𝑤 d𝑡 ` 𝛿0,𝑘´2ℓ

`

𝑣 ´ rΠ𝑟´ℓ
𝑘´2ℓ𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q (4.8)

“ ´

ż

𝐼𝑛

`

𝑣 ´ rΠ𝑟´ℓ
𝑘´2ℓ𝑣

˘

B𝑡𝑤 d𝑡 `
`

𝑣 ´ rΠ𝑟´ℓ
𝑘´2ℓ𝑣

˘

𝑤
ˇ

ˇ

𝑡´
𝑛

𝑡`
𝑛´1

` 𝛿0,𝑘´2ℓ

`

𝑣 ´ rΠ𝑟´ℓ
𝑘´2ℓ𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q

“ 0 @𝑤 P 𝑃𝑟´𝑘`ℓp𝐼𝑛q.

So, the projection operator rΠ𝑟´ℓ,I
𝑘´2ℓ can be viewed as a generalization of rΠ𝑟´ℓ

𝑘´2ℓ for the case
where I𝑛 not simply represents the integration over 𝐼𝑛. ♣

Since rΠ𝑟´ℓ,I
𝑘´2ℓ preserves polynomials up to degree 𝑟 ´ ℓ, by a standard approach, see

Lemma B.9 or also cf. [21, Theorem 3.1.4, p. 121] or [25, Theorem 1.103, p. 59] (where
the special case 𝑋 “ R is handled), we get for all maxt0, 𝑘Iu ` 2 ď 𝑞 ď 𝑟 ´ ℓ ` 1 and
0 ď 𝑚 ď 𝑞 that

ˇ

ˇ𝑣 ´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣

ˇ

ˇ

𝐻𝑚p𝐼𝑛,𝑋q
ď 𝐶𝜏 𝑞´𝑚

𝑛

ˇ

ˇ𝑣
ˇ

ˇ

𝐻𝑞p𝐼𝑛,𝑋q
@𝑣 P 𝐻𝑞

p𝐼𝑛, 𝑋q,
ˇ

ˇ𝑣 ´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣

ˇ

ˇ

𝑊𝑚,8p𝐼𝑛,𝑋q
ď 𝐶𝜏 𝑞´𝑚

𝑛

ˇ

ˇ𝑣
ˇ

ˇ

𝑊 𝑞,8p𝐼𝑛,𝑋q
@𝑣 P 𝑊 𝑞,8

p𝐼𝑛, 𝑋q.
(4.9)

In the case of exact integration, i.e., I𝑛 “
ş

𝐼𝑛
, some of these estimates are already known

from the literature, see e.g. [52, (12.10), p. 208] or [26, (69.27), p. 187, (70.20), p. 202].
In the case that 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd) we also need some norm equivalence in finite

dimensional spaces for the further analysis. The following lemma is proven later in a more
general setting, see Lemma D.2, where we here use that 𝑟 ´ ℓ ´ 1 “ 𝑟 ´ 𝑘 ` ℓ if 𝑘 is odd.
Note that, since 𝑉ℎ Ă 𝑉 Ă 𝐻 is finite dimensional, both p𝑉ℎ, }¨}𝑉 q and p𝑉ℎ, }¨}q are (finite
dimensional) Hilbert spaces.

Lemma 4.3
Let 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd) and }¨}𝑊 P

␣

}¨}𝑉 , }¨}
(

. Then, the mappings

𝑣 ÞÑ

ˆ
ż

𝐼𝑛

}𝑣p𝑡q}
2
𝑊 d𝑡

˙1{2

and 𝑣 ÞÑ

ˆ
ż

𝐼𝑛

}Π𝑟´𝑘`ℓ𝑣p𝑡q}
2
𝑊 d𝑡 `

`

𝜏𝑛
2

˘

}𝑣p𝑡𝑛q}
2
𝑊

˙1{2

define equivalent norms on 𝑃𝑟´ℓp𝐼𝑛, 𝑉ℎq where the equivalence constants are independent of
𝜏𝑛 and of 𝑉ℎ.

4.1.2 Global 𝐿2-error in the 𝐻-norm

At first, the global 𝐿2-error in the 𝐻-norm of the ℓth derivative is studied. To this end,
we apply standard variational arguments as they are typically used in and known from the
analysis of cGP and dG methods. What makes it special, however, is that we study both
types of methods in one error analysis. This nicely shows, on the one hand, how similar the
arguments are and, on the other hand, where the differences lie.

Moreover, this subsection provides the basis for the following error analysis in different
norms since many results can and will be reused as well as many techniques that are used
in the proofs can and will be adapted later.
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We start to show a quite useful property of the bilinear form 𝐵I
𝑛 p¨, ¨q, which will allow us

to control certain parts of the fully discrete solution and the fully discrete error.

Lemma 4.4
Let 𝑣𝜏 P 𝑃𝑟´ℓp𝐼𝑛, 𝑉 q and 𝑣𝜏 p𝑡´𝑛´1q P 𝐻 be given. Then,

𝐵I
𝑛

`

𝑣𝜏 ,Π𝑟´𝑘`ℓ𝑣𝜏
˘

` 𝛿1,𝑘´2ℓ

`

r𝑣𝜏 s𝑛´1, 𝑣𝜏 p𝑡`𝑛´1q
˘

“

ż

𝐼𝑛

`

B𝑡𝑣𝜏 ,Π𝑟´𝑘`ℓ𝑣𝜏
˘

` 𝑎
`

𝑣𝜏 ,Π𝑟´𝑘`ℓ𝑣𝜏
˘

d𝑡 `
`

r𝑣𝜏 s𝑛´1, 𝑣𝜏 p𝑡`𝑛´1q
˘

ě
1

2

›

›𝑣𝜏 p𝑡´𝑛 q
›

›

2
´

1

2

›

›𝑣𝜏 p𝑡´𝑛´1q
›

›

2
`

1

2

›

›r𝑣𝜏 s𝑛´1

›

›

2
` 𝛼

ż

𝐼𝑛

}Π𝑟´𝑘`ℓ𝑣𝜏}
2
𝑉 d𝑡.

Proof. First of all, from (4.5a) we have that all integral terms in 𝐵I
𝑛 p𝑣𝜏 ,Π𝑟´𝑘`ℓ𝑣𝜏 q are

integrated exactly by I𝑛. Thus, I𝑛 can be replaced by the integral over 𝐼𝑛. Moreover, the
Kronecker delta term in 𝐵I

𝑛 p¨, ¨q only appears if 𝑘 “ 2ℓ in which case Π𝑟´𝑘`ℓ𝑣𝜏 “ Π𝑟´ℓ𝑣𝜏 “ 𝑣𝜏
in 𝐼𝑛. This shows the desired identity.

In order to derive the lower bound, we note that B𝑡𝑣𝜏 P 𝑃𝑟´ℓ´1p𝐼𝑛, 𝑉 q is a feasible test
function for the 𝐿2-projection Π𝑟´𝑘`ℓ due to 𝑟 ´ 𝑘 ` ℓ “ 𝑟 ´

X

𝑘´1
2

\

´ 1 ě 𝑟 ´ ℓ ´ 1, also
cf. Corollary C.14. Therefore, we get by the fundamental theorem of calculus that
ż

𝐼𝑛

`

B𝑡𝑣𝜏 ,Π𝑟´𝑘`ℓ𝑣𝜏
˘

d𝑡 “

ż

𝐼𝑛

`

B𝑡𝑣𝜏 , 𝑣𝜏
˘

d𝑡 “
1

2

ż

𝐼𝑛

B𝑡 }𝑣𝜏}
2 d𝑡 “

1

2

´

›

›𝑣𝜏 p𝑡´𝑛 q
›

›

2
´
›

›𝑣𝜏 p𝑡`𝑛´1q
›

›

2
¯

.

Further, because of
›

›𝑣𝜏 p𝑡´𝑛´1q
›

›

2
“
›

›𝑣𝜏 p𝑡`𝑛´1q ´ r𝑣𝜏 s𝑛´1

›

›

2
“
›

›𝑣𝜏 p𝑡`𝑛´1q
›

›

2
´ 2

`

r𝑣𝜏 s𝑛´1, 𝑣𝜏 p𝑡`𝑛´1q
˘

`
›

›r𝑣𝜏 s𝑛´1

›

›

2
,

we find that

´
1

2

›

›𝑣𝜏 p𝑡`𝑛´1q
›

›

2
`
`

r𝑣𝜏 s𝑛´1, 𝑣𝜏 p𝑡`𝑛´1q
˘

“ ´
1

2

›

›𝑣𝜏 p𝑡´𝑛´1q
›

›

2
`

1

2

›

›r𝑣𝜏 s𝑛´1

›

›

2
.

Finally, using that Π𝑟´𝑘`ℓ𝑣𝜏 P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉 q is a feasible test function for Π𝑟´𝑘`ℓ, again also
cf. Corollary C.14, and involving the 𝑉 -ellipticity of 𝑎p¨, ¨q, we obtain

ż

𝐼𝑛

𝑎
`

𝑣𝜏 ,Π𝑟´𝑘`ℓ𝑣𝜏
˘

d𝑡 “

ż

𝐼𝑛

𝑎
`

Π𝑟´𝑘`ℓ𝑣𝜏 ,Π𝑟´𝑘`ℓ𝑣𝜏
˘

d𝑡 ě 𝛼

ż

𝐼𝑛

}Π𝑟´𝑘`ℓ𝑣𝜏}
2
𝑉 d𝑡.

Combining the above identities and estimates, we easily gain the desired statement.

In order to study the ℓth derivative of the error 𝑒p𝑡q “ 𝑢p𝑡q ´ 𝑢𝜏ℎp𝑡q, we use the following
splitting

𝑒pℓq
p𝑡q “

`

𝑢pℓq
p𝑡q ´ 𝑅ℎ

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
p𝑡q

˘

` 𝑒I𝜏ℎ,ℓp𝑡q with 𝑒I𝜏ℎ,ℓp𝑡q :“ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
p𝑡q ´ 𝑢

pℓq
𝜏ℎp𝑡q.

The identity of the next lemma shows how in the a priori error analysis we can get rid of
the fully discrete solution. Moreover, we see that the fully discrete error 𝑒I𝜏ℎ,ℓ is connected
to certain projection and approximation errors.
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4.1 Error estimates for the ℓth derivative

Lemma 4.5
Let 1 ď 𝑛 ď 𝑁 , then for all 𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq it holds

𝐵I
𝑛

`

𝑒I𝜏ℎ,ℓ, 𝑣𝜏ℎ
˘

“ ´I𝑛

“`

𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q, 𝑣𝜏ℎ
˘‰

´ I𝑛

”

𝑎
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq, 𝑣𝜏ℎ

˘

ı

` I𝑛

”

@

𝑓 pℓq
´ 𝑔pℓq, 𝑣𝜏ℎ

D

𝑉 1,𝑉

ı

` 𝛿0,𝑘´2ℓ

`

𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘

, 𝑣𝜏ℎp𝑡`𝑛´1q
˘

with 𝜔I
𝑛´1p¨q as defined in (4.7). Moreover, we have that

“

𝑒I𝜏ℎ,ℓ
‰

𝑛´1
“ 𝜔I

𝑛´1

`

𝑅ℎ𝑢
pℓq
˘

, if 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd).

Proof. According to (4.6b), it holds

𝐵I
𝑛

`

𝑢
pℓq
𝜏ℎ , 𝑣𝜏ℎ

˘

“ I𝑛

”

@

𝑔pℓq, 𝑣𝜏ℎ
D

𝑉 1,𝑉

ı

@𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq.

At the same time, assuming that the exact solution 𝑢 and the problem data are sufficiently
smooth, especially 𝑢pℓq globally continuous, we similarly have

𝐵I
𝑛

`

𝑢pℓq, 𝑣𝜏ℎ
˘

“ I𝑛

”

@

𝑓 pℓq, 𝑣𝜏ℎ
D

𝑉 1,𝑉

ı

@𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq.

Altogether, this implies

𝐵I
𝑛

`

𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ , 𝑣𝜏ℎ

˘

“ I𝑛

”

@

𝑓 pℓq
´ 𝑔pℓq, 𝑣𝜏ℎ

D

𝑉 1,𝑉

ı

@𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq

and, thus, we get

𝐵I
𝑛

`

𝑒I𝜏ℎ,ℓ, 𝑣𝜏ℎ
˘

“ 𝐵I
𝑛

`

𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
´ 𝑢

pℓq
𝜏ℎ , 𝑣𝜏ℎ

˘

“ 𝐵I
𝑛

`

𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
´ 𝑢pℓq, 𝑣𝜏ℎ

˘

` I𝑛

”

@

𝑓 pℓq
´ 𝑔pℓq, 𝑣𝜏ℎ

D

𝑉 1,𝑉

ı

@𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq.

We now rewrite the first term on the right-hand side. To this end, we first note that because
of the (assumed) global continuity of 𝑢pℓq and (4.7) it holds

“

𝑢pℓq
´ 𝑅ℎ

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
‰

𝑛´1
“ ´

“

𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
‰

𝑛´1
“
“

𝑅ℎ𝑢
pℓq

´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
‰

𝑛´1

“
`

𝑅ℎ𝑢
pℓq

´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
˘

p𝑡`𝑛´1q ´ 𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘

.
(4.10)

From this and using that the spatial projection 𝑅ℎ commutes with the temporal projection
rΠ𝑟´ℓ,I
𝑘´2ℓ , cf. Corollary B.5 and Remark B.6, we find that

𝐵I
𝑛

`

𝑢pℓq
´ 𝑅ℎ

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq, 𝑣𝜏ℎ
˘

“ I𝑛

”

`

B𝑡
`

𝑢pℓq
´ 𝑅ℎ

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
˘

, 𝑣𝜏ℎ
˘

ı

` 𝛿0,𝑘´2ℓ

`“

𝑢pℓq
´ 𝑅ℎ

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
‰

𝑛´1
, 𝑣𝜏ℎp𝑡`𝑛´1q

˘

` I𝑛

”

𝑎
`

𝑢pℓq
´ 𝑅ℎ

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq, 𝑣𝜏ℎ
˘

ı

“ I𝑛

“`

B𝑡p𝑢
pℓq

´ 𝑅ℎ𝑢
pℓq

q, 𝑣𝜏ℎ
˘‰

´ 𝛿0,𝑘´2ℓ

`

𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘

, 𝑣𝜏ℎp𝑡`𝑛´1q
˘

` I𝑛

”

`

B𝑡p𝑅ℎ𝑢
pℓq

´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑅ℎ𝑢

pℓq
q, 𝑣𝜏ℎ

˘

ı

` 𝛿0,𝑘´2ℓ

`

p𝑅ℎ𝑢
pℓq

´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑅ℎ𝑢

pℓq
qp𝑡`𝑛´1q, 𝑣𝜏ℎp𝑡`𝑛´1q

˘

` I𝑛

“

𝑎
`

𝑢pℓq
´ 𝑅ℎ𝑢

pℓq, 𝑣𝜏ℎ
˘‰

` I𝑛

”

𝑎
`

𝑅ℎ𝑢
pℓq

´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq, 𝑣𝜏ℎ
˘

ı

103



4 Error Analysis for VTD Methods

for all 𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq. From the definitions of rΠ𝑟´ℓ,I
𝑘´2ℓ and 𝑅ℎ the penultimate line as

well as the second to last term vanish. Furthermore, it holds

I𝑛

”

𝑎
`

𝑅ℎ𝑢
pℓq

´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq, 𝑣𝜏ℎ
˘

ı

“ I𝑛

”

𝑎
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq, 𝑣𝜏ℎ

˘

ı

.

Hence, collecting and combining the above identities as well as using that the time derivative
commutes with the spatial projection 𝑅ℎ, cf. [26, Lemma 64.34, p. 118], the first statement
is easily shown.

The second statement follows quite analogously to (4.10). Indeed, if 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is
odd), it follows from (4.6a) and (4.7) that

“

𝑒I𝜏ℎ,ℓ
‰

𝑛´1
“
“

𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
‰

𝑛´1
“

“0
hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj

`

𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
´ 𝑅ℎ𝑢

pℓq
˘

p𝑡`𝑛´1q ` 𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘

,

where the first term on the right-hand side vanishes by definition of rΠ𝑟´ℓ,I
𝑘´2ℓ .

Corollary 4.6
Let 1 ď 𝑛 ď 𝑁 , then for all 𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq it holds

𝐵I
𝑛

`

𝑒I𝜏ℎ,ℓ, 𝑣𝜏ℎ
˘

ď

„

𝐶emb

´

I𝑛

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı¯1{2

` 𝐶𝑎

´

I𝑛

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı¯1{2

`

´

I𝑛

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘›

›

2

𝑉 1

ı¯1{2
ȷˆ

ż

𝐼𝑛

›

›𝑣𝜏ℎ
›

›

2

𝑉
d𝑡

˙1{2

` 𝛿0,𝑘´2ℓ

›

›𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘›

›

›

›𝑣𝜏ℎp𝑡`𝑛´1q
›

›

with 𝜔I
𝑛´1p¨q as defined in (4.7). Moreover, if 𝑘´2ℓ “ 1 (ô 𝑘 is odd), we have for all 𝑤 P 𝐻

`“

𝑒I𝜏ℎ,ℓ
‰

𝑛´1
, 𝑤

˘

ď
›

›𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘
›

›

›

›𝑤
›

›.

Proof. From Lemma 4.5 and the definition of ΠI
𝑟´𝑘`ℓ we get for all 𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq that

𝐵I
𝑛

`

𝑒I𝜏ℎ,ℓ, 𝑣𝜏ℎ
˘

“ ´I𝑛

“`

𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q, 𝑣𝜏ℎ
˘‰

´ I𝑛

”

𝑎
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq, 𝑣𝜏ℎ

˘

ı

` I𝑛

”

@

ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘

, 𝑣𝜏ℎ
D

𝑉 1,𝑉

ı

` 𝛿0,𝑘´2ℓ

`

𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘

, 𝑣𝜏ℎp𝑡`𝑛´1q
˘

ď I𝑛

“
›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

›

›𝑣𝜏ℎ
›

›

‰

` 𝐶𝑎I𝑛

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

𝑉

›

›𝑣𝜏ℎ
›

›

𝑉

ı

` I𝑛

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘›

›

𝑉 1

›

›𝑣𝜏ℎ
›

›

𝑉

ı

` 𝛿0,𝑘´2ℓ

›

›𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘›

›

›

›𝑣𝜏ℎp𝑡`𝑛´1q
›

›,

where we also used the properties (4.5) of I𝑛, the Cauchy–Schwarz inequality, the continuity
of 𝑎p¨, ¨q, and the definition of the norm in 𝑉 1. Because of 𝑉 ãÑ 𝐻, we furthermore have
}𝑣𝜏ℎ} ď 𝐶emb }𝑣𝜏ℎ}𝑉 . So, applying the Cauchy–Schwarz-type inequality for I𝑛, we conclude

I𝑛

“
›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

›

›𝑣𝜏ℎ
›

›

‰

ď 𝐶embI𝑛

“
›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

›

›𝑣𝜏ℎ
›

›

𝑉

‰

ď 𝐶emb

´

I𝑛

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı¯1{2 ´

I𝑛

”

›

›𝑣𝜏ℎ
›

›

2

𝑉

ı¯1{2

,

I𝑛

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

𝑉

›

›𝑣𝜏ℎ
›

›

𝑉

ı

ď

´

I𝑛

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı¯1{2 ´

I𝑛

”

›

›𝑣𝜏ℎ
›

›

2

𝑉

ı¯1{2

,
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and

I𝑛

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

𝑉 1

›

›𝑣𝜏ℎ
›

›

𝑉

ı

ď

´

I𝑛

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2

𝑉 1

ı¯1{2 ´

I𝑛

”

›

›𝑣𝜏ℎ
›

›

2

𝑉

ı¯1{2

.

Summarizing and using that I𝑛 is exact for }𝑣𝜏ℎ}
2
𝑉 “ p𝑣𝜏ℎ, 𝑣𝜏ℎq𝑉 P 𝑃2p𝑟´𝑘`ℓqp𝐼𝑛q due to

2p𝑟 ´ 𝑘 ` ℓq “ 2𝑟 ´ 𝑘 ´ p𝑘 ´ 2ℓq ď 2𝑟 ´ 𝑘, we easily get the first desired estimate.
Since according to Lemma 4.5 it holds

“

𝑒I𝜏ℎ,ℓ
‰

𝑛´1
“ 𝜔I

𝑛´1

`

𝑅ℎ𝑢
pℓq
˘

if 𝑘 ´ 2ℓ “ 1 (𝑘 is odd),
the second estimate of the corollary simply follows from the Cauchy–Schwarz inequality.

Remark 4.7
Note that the projection operator ΠI

𝑟´𝑘`ℓ in the above estimate could be dropped. However,
because of Lemma C.15, it holds

I𝑛

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2

𝑉 1

ı

ď 𝐶I𝑛

”

›

›𝑓 pℓq
´ 𝑔pℓq

›

›

2

𝑉 1

ı

anyway. But note that the left-hand side term vanishes in some relevant situations where
the right-hand side term does not. ♣

Next, an estimate for the fully discrete error 𝑒I𝜏ℎ,ℓ is derived and presented. For brevity,
we use the notation Ir1,𝑛sr¨s “

ř𝑛
𝜈“1 I𝜈r¨s in the following.

Lemma 4.8
For all 𝑛 “ 1, . . . , 𝑁 it holds

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝑛 q
›

›

2
`

1

2

𝑛
ÿ

𝜈“1

›

›

“

𝑒I𝜏ℎ,ℓ
‰

𝜈´1

›

›

2
` 𝛼

ż 𝑡𝑛

𝑡0

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡

ď exp p𝑡𝑛´1 ´ 𝑡0q
„

3

𝛼

ˆ

𝐶2
embIr1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` 𝐶2
𝑎Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘›

›

2

𝑉 1

ı

˙

`
›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2
`

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2

ȷ

with 𝜔I
𝜈 p¨q as defined in (4.7). The exponential factor can be dropped if 𝜔I

𝜈

`

𝑅ℎ𝑢
pℓq
˘

“ 0 for
all 𝜈 “ 1, . . . , 𝑛 ´ 1.

Remark 4.9
As already noted in the statement of the lemma, the exponential factor exp p𝑡𝑛´1 ´ 𝑡0q can
be dropped in the above estimate if 𝜔I

𝜈

`

𝑅ℎ𝑢
pℓq
˘

“ 0 for all 𝜈 “ 1, . . . , 𝑛´ 1. This holds, for
example, if for all 𝜈 “ 1, . . . , 𝑛´ 1 the integrator I𝜈 is the integral over 𝐼𝜈 . Here, recall that
in this section I𝜈 is not fixed by the concrete method but was introduced to enable more
flexibility in the error analysis. So, the choice I𝜈 “

ş

𝐼𝜈
always is possible. ♣

Proof. Combining Lemma 4.4 with 𝑣𝜏 :“ 𝑒I𝜏ℎ,ℓ and Corollary 4.6 with 𝑣𝜏ℎ “ Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ and
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𝑤 “ 𝑒I𝜏ℎ,ℓp𝑡
`
𝜈´1q, we gain

1

2

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2
´

1

2

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈´1q

›

›

2
`

1

2

›

›

“

𝑒I𝜏ℎ,ℓ
‰

𝜈´1

›

›

2
` 𝛼

ż

𝐼𝜈

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡

ď 𝐵I
𝜈

`

𝑒I𝜏ℎ,ℓ,Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

˘

` 𝛿1,𝑘´2ℓ

`“

𝑒I𝜏ℎ,ℓ
‰

𝜈´1
, 𝑒I𝜏ℎ,ℓp𝑡

`
𝜈´1q

˘

ď

„

𝐶emb

´

I𝜈

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı¯1{2

` 𝐶𝑎

´

I𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı¯1{2

`

´

I𝜈

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2

𝑉 1

ı¯1{2
ȷˆ

ż

𝐼𝜈

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡

˙1{2

`
›

›𝜔I
𝜈´1

`

𝑅ℎ𝑢
pℓq
˘›

›

›

›𝑒I𝜏ℎ,ℓp𝑡
`
𝜈´1q

›

›

ď
3

2𝛼

ˆ

𝐶2
embI𝜈

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` 𝐶2
𝑎I𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

` I𝜈

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2

𝑉 1

ı

˙

`
𝛼

2

ż

𝐼𝜈

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡

`
›

›𝜔I
𝜈´1

`

𝑅ℎ𝑢
pℓq
˘
›

›

›

›𝑒I𝜏ℎ,ℓp𝑡
`
𝜈´1q

›

›,

where for the last step Young’s inequality was used. From this it easily follows
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2
´
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈´1q

›

›

2
`
›

›

“

𝑒I𝜏ℎ,ℓ
‰

𝜈´1

›

›

2
` 𝛼

ż

𝐼𝜈

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡

ď
3

𝛼

ˆ

𝐶2
embI𝜈

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` 𝐶2
𝑎I𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

` I𝜈

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘›

›

2

𝑉 1

ı

˙

` 2
›

›𝜔I
𝜈´1

`

𝑅ℎ𝑢
pℓq
˘
›

›

›

›𝑒I𝜏ℎ,ℓp𝑡
`
𝜈´1q

›

›.

Furthermore, the triangle inequality and again Young’s inequality yield for 𝜈 ą 1

2
›

›𝜔I
𝜈´1

`

𝑅ℎ𝑢
pℓq
˘
›

›

›

›𝑒I𝜏ℎ,ℓp𝑡
`
𝜈´1q

›

› ď 2
›

›𝜔I
𝜈´1

`

𝑅ℎ𝑢
pℓq
˘
›

›

´

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈´1q

›

› `
›

›

“

𝑒I𝜏ℎ,ℓ
‰

𝜈´1

›

›

¯

ď
`

2 ` 𝜏´1
𝜈´1

˘
›

›𝜔I
𝜈´1

`

𝑅ℎ𝑢
pℓq
˘
›

›

2
` 𝜏𝜈´1

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈´1q

›

›

2
`

1

2

›

›

“

𝑒I𝜏ℎ,ℓ
‰

𝜈´1

›

›

2
.

So, recalling that 𝜔I
0

`

𝑅ℎ𝑢
pℓq
˘

“ 0 and re-sorting the terms, we obtain (setting 𝜏0 “ 1)

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2
`

1

2

›

›

“

𝑒I𝜏ℎ,ℓ
‰

𝜈´1

›

›

2
` 𝛼

ż

𝐼𝜈

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡

ď
3

𝛼

ˆ

𝐶2
embI𝜈

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` 𝐶2
𝑎I𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

` I𝜈

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2

𝑉 1

ı

˙

` p1 ` p1 ´ 𝛿1,𝜈q 𝜏𝜈´1q
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈´1q

›

›

2
` p1 ´ 𝛿1,𝜈q

`

2 ` 𝜏´1
𝜈´1

˘
›

›𝜔I
𝜈´1

`

𝑅ℎ𝑢
pℓq
˘
›

›

2
.

Applying a discrete version of Gronwall’s lemma, see Lemma A.1, we easily conclude the
desired statement.

106



4.1 Error estimates for the ℓth derivative

We now are ready to give an abstract 𝐿2-error estimate in the 𝐻-norm in terms of certain
projection and approximation errors.

Lemma 4.10
Let } ¨ }𝑊 P

␣

} ¨ }, } ¨ }𝑉
(

if 𝑘 ´ 2ℓ “ 0 (ô 𝑘 is even) and } ¨ }𝑊 “ } ¨ } if 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is
odd), respectively. Then, for all 𝑛 “ 1, . . . , 𝑁 it holds
ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ

›

›

2

𝑊
d𝑡

ď 𝐶

ˆ
ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ 𝑅ℎ𝑢

pℓq
›

›

2

𝑊
d𝑡 `

ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉
d𝑡 `

ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑊
d𝑡

˙

where
ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑊
d𝑡 ď 𝐶

`

1 ` 𝛿1,𝑘´2ℓp𝑡𝑛 ´ 𝑡0q
˘

exp p𝑡𝑛´1 ´ 𝑡0q

ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2
`

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2
` Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2

𝑉 1

ı

˙

with 𝜔I
𝜈 p¨q as defined in (4.7). The exponential factor can be dropped if 𝜔I

𝜈

`

𝑅ℎ𝑢
pℓq
˘

“ 0 for
all 𝜈 “ 1, . . . , 𝑛 ´ 1.

Proof. In order to estimate the error, we use the splitting

𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ “

`

𝑢pℓq
´ 𝑅ℎ𝑢

pℓq
˘

`
`

𝑅ℎ𝑢
pℓq

´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
˘

` 𝑒I𝜏ℎ,ℓ, 𝑒I𝜏ℎ,ℓ “ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
´ 𝑢

pℓq
𝜏ℎ .

For the second summand the stability of 𝑅ℎ in }¨}𝑉 yields
ż 𝑡𝑛

𝑡0

›

›𝑅ℎ𝑢
pℓq

´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
›

›

2

𝑊
d𝑡

ď

ż 𝑡𝑛

𝑡0

maxt1, 𝐶2
embu

›

›𝑅ℎp𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq

q
›

›

2

𝑉
d𝑡 ď 𝐶

ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉
d𝑡.

So, the first statement follows easily by the triangle inequality.
It remains to study the third summand 𝑒I𝜏ℎ,ℓ “ 𝑅ℎ

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq ´ 𝑢
pℓq
𝜏ℎ . If 𝑘 ´ 2ℓ “ 0 (ô 𝑘 is

even), it holds 𝑒I𝜏ℎ,ℓ “ Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ and, thus,

ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑊
d𝑡 “

ż 𝑡𝑛

𝑡0

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑊
d𝑡 ď

ż 𝑡𝑛

𝑡0

maxt1, 𝐶2
embu

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡.

Otherwise, if 𝑘´ 2ℓ “ 1 (ô 𝑘 is odd), we use the norm equivalence of Lemma 4.3 to obtain
ż

𝐼𝜈

›

›𝑒I𝜏ℎ,ℓ
›

›

2
d𝑡 ď 𝐶

ˆ
ż

𝐼𝜈

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡 `

`

𝜏𝜈
2

˘ ›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2

˙

ď 𝐶

ˆ
ż

𝐼𝜈

𝐶2
emb

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡 `

`

𝜏𝜈
2

˘
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2

˙
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from which it follows
ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2
d𝑡 “

𝑛
ÿ

𝜈“1

ż

𝐼𝜈

›

›𝑒I𝜏ℎ,ℓ
›

›

2
d𝑡 ď 𝐶

ż 𝑡𝑛

𝑡0

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡 ` 𝐶

𝑛
ÿ

𝜈“1

`

𝜏𝜈
2

˘
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2
.

Therefore, in both cases, from Lemma 4.8 we conclude the desired estimate, where we also
used that 2

ř𝑛
𝜈“1

`

𝜏𝜈
2

˘
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2
ď p𝑡𝑛 ´ 𝑡0qmax𝜈“1,...,𝑛

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2.

In conclusion, we have a look on the resulting convergence orders for a concrete setting.
In order to easily consider different variants of the VTD𝑟

𝑘 method, we use the short and
clear notation

𝑆1 Ycond. 𝑆2 :“

#

𝑆1 Y 𝑆2, “cond.” is fulfilled,
𝑆1, otherwise,

where 𝑆1 and 𝑆2 are sets and “cond.” is a Boolean condition.

Theorem 4.11
Consider the setting of model problem (3.4) with standard spatial discretization satisfy-
ing (3.16) and let 𝑔 P t𝑓,Π𝑟

𝑘𝑓, ℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓u Yif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

. Then, we have the following
error estimate

ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ

›

›

2
d𝑡 `

ż 𝑡𝑛

𝑡0

›

›𝑒
ş

𝜏ℎ,ℓ

›

›

2
d𝑡

ď 𝐶
`

1 ` p𝑡𝑛 ´ 𝑡0q
˘

”

ℎ2p𝜅`𝜎q
›

›𝑢pℓq
›

›

2

𝐻1pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq

` 𝜏 2p𝑟´ℓ`1q
´

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq
` }𝑓}

2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐻´1pΩqq

¯ı

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.

Proof. Using Lemma 4.10 with choice I𝜈 “
ş

𝐼𝜈
, we only need to bound the projection errors.

From (3.16) we get
ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ 𝑅ℎ𝑢

pℓq
›

›

2
d𝑡 ď 𝐶ℎ2p𝜅`𝜎q

›

›𝑢pℓq
›

›

2

𝐿2pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.
Similarly it follows

ż 𝑡𝑛

𝑡0

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
d𝑡 ď 𝐶ℎ2p𝜅`𝜎q

›

›𝑢pℓ`1q
›

›

2

𝐿2pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
.

Furthermore, the projection error estimate (4.9) gives
ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉
d𝑡 ď 𝐶𝜏 2p𝑟´ℓ`1q

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq
.

Recalling Remark 4.7 and due to 𝑔 P t𝑓,Π𝑟
𝑘𝑓, ℐ𝑟

𝑘𝑓, 𝒞𝑟
𝑘𝑓u Yif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

, standard interpo-
lation/projection error estimates, cf. Lemma B.9, moreover imply
ż 𝑡𝑛

𝑡0

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2

𝑉 1 d𝑡 ď 𝐶

ż 𝑡𝑛

𝑡0

›

›𝑓 pℓq
´ 𝑔pℓq

›

›

2

𝑉 1 d𝑡 ď 𝐶𝜏 2p𝑟´ℓ`1q
}𝑓}

2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐻´1pΩqq

.
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Finally, the special choice 𝑢pℓq
𝜏ℎp𝑡´0 q “ r𝑃 0

ℎBℓ
𝑡𝑢0 of the initial value for the discrete problem

enables

𝑒I𝜏ℎ,ℓp𝑡
´
0 q “ 𝑅ℎ

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
p𝑡´0 q ´ 𝑢

pℓq
𝜏ℎp𝑡´0 q “ 𝑅ℎ𝑢

pℓq
p𝑡´0 q ´ r𝑃 0

ℎ𝑢
pℓq

p𝑡´0 q,

where we also have exploited that rΠ𝑟´ℓ,I
𝑘´2ℓ preserves the point value in 𝑡´0 . So, if r𝑃 0

ℎ “ 𝑅ℎ,
it follows 𝑒I𝜏ℎ,ℓp𝑡

´
0 q “ 0 and we are done. Otherwise, if r𝑃 0

ℎ “ 𝑃ℎ, we conclude, using the
definition of the projection 𝑃ℎ, that for 𝑢pℓqp𝑡´0 q P 𝐻

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2
“
`

𝑅ℎ𝑢
pℓq

p𝑡´0 q ´ 𝑃ℎ𝑢
pℓq

p𝑡´0 q, 𝑒I𝜏ℎ,ℓp𝑡
´
0 q
˘

“
`

𝑅ℎ𝑢
pℓq

p𝑡´0 q ´ 𝑢pℓq
p𝑡´0 q, 𝑒I𝜏ℎ,ℓp𝑡

´
0 q
˘

ď
›

›𝑅ℎ𝑢
pℓq

p𝑡´0 q ´ 𝑢pℓq
p𝑡´0 q

›

›

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›.

Hence, then the projection error estimates for 𝑅ℎ, cf. (3.16), yield

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2
ď
›

›𝑅ℎ𝑢
pℓq

p𝑡´0 q ´ 𝑢pℓq
p𝑡´0 q

›

›

2
ď 𝐶ℎ2p𝜅`𝜎q

›

›𝑢pℓq
p𝑡0q

›

›

2

𝐻𝜅`1pΩq

with 𝜎 as above, which completes the proof.

Remark 4.12
By construction 𝑢

pℓq
𝜏ℎ is an approximation of 𝑢pℓq that locally on 𝐼𝜈 lies in 𝑃𝑟´ℓp𝐼𝜈 , 𝑉ℎq. The

convergence orders in time and space, obtained in Theorem 4.11, thus are as expected. ♣

4.1.3 Global 𝐿2-error in the 𝑉 -norm

Inspecting the statements of Lemma 4.8 and Lemma 4.10, we see that, if 𝑘 ´ 2ℓ “ 0 (ô 𝑘

is even), we even have control over
ş𝑡𝑛
𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡 and

ş𝑡𝑛
𝑡0

›

›𝑢pℓq ´ 𝑢
pℓq
𝜏ℎ

›

›

2

𝑉
d𝑡, respectively. This

immediately enables us to derive error estimates for dG-like methods also in the 𝑉 -norm.
In detail, suitably adapting the proof of Theorem 4.11, we gain the following result.

Corollary 4.13
Let 𝑘 ´ 2ℓ “ 0 (ô 𝑘 is even). Consider the setting of model problem (3.4) with standard
spatial discretization satisfying (3.16) and let 𝑔 P t𝑓,Π𝑟

𝑘𝑓, ℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓uYif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

. Then,
we have the following error estimate

ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ

›

›

2

𝑉
d𝑡 `

ż 𝑡𝑛

𝑡0

›

›𝑒
ş

𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡

ď 𝐶
`

1 ` p𝑡𝑛 ´ 𝑡0q
˘

”

ℎ2𝜅
›

›𝑢pℓq
›

›

2

𝐻1pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq

` 𝜏 2p𝑟´ℓ`1q
´

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq
` }𝑓}

2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐻´1pΩqq

¯ı

.

Of course, we now ask whether or not a similar estimate also can be shown for cGP-like
methods, i.e., if 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd). Inspecting the proof of Lemma 4.10, this could
be done if we would have adequate control on 𝑒I𝜏ℎ,ℓp𝑡

´
𝜈 q also in the 𝑉 -norm. Therefore, to

gain such control, we suitably adapt the ideas used in Lemma 4.4. For the presented proof,
however, some more assumptions are needed.
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Assumption 4.1
We assume that the bilinear form 𝑎p¨, ¨q : 𝑉 ˆ 𝑉 Ñ R can be split such that

𝑎
`

𝑣, 𝑤
˘

“ 𝑎0
`

𝑣, 𝑤
˘

` 𝑎1
`

𝑣, 𝑤
˘

where 𝑎0p¨, ¨q : 𝑉 ˆ 𝑉 Ñ R is a symmetric, 𝑉 -elliptic, continuous bilinear form, i.e.,
𝑎0
`

𝑣, 𝑤
˘

“ 𝑎0
`

𝑤, 𝑣
˘

for all 𝑣, 𝑤 P 𝑉 ,

D𝛼0 ą 0 : 𝑎0
`

𝑣, 𝑣
˘

ě 𝛼0 }𝑣}
2
𝑉 @𝑣 P 𝑉,

D𝐶𝑎0 ą 0 :
ˇ

ˇ𝑎0
`

𝑣, 𝑤
˘
ˇ

ˇ ď 𝐶𝑎0 }𝑣}𝑉 }𝑤}𝑉 @𝑣, 𝑤 P 𝑉,

and 𝑎1p¨, ¨q : 𝑉 ˆ 𝐻 Ñ R is a continuous bilinear form, i.e.,

D𝐶𝑎1 ą 0 :
ˇ

ˇ𝑎1
`

𝑣, 𝑤
˘ˇ

ˇ ď 𝐶𝑎1 }𝑣}𝑉 }𝑤} @𝑣 P 𝑉, 𝑤 P 𝐻.

The bilinear forms 𝑎p¨, ¨q, 𝑎0p¨, ¨q, and 𝑎1p¨, ¨q are all assumed to be independent of time 𝑡.

Remark 4.14
In the setting of model problem (3.4) the bilinear form 𝑎0

`

¨, ¨
˘

could be given by

𝑎0
`

𝑣, 𝑤
˘

“
`

𝜖∇𝑣,∇𝑤
˘

`
`

𝑐𝑣, 𝑤
˘

with 𝑐 ě 0 independent of 𝑡. Then, of course,

𝑎1
`

𝑣, 𝑤
˘

“ 𝑎
`

𝑣, 𝑤
˘

´ 𝑎0
`

𝑣, 𝑤
˘

“
`

𝑏 ¨ ∇𝑣, 𝑤
˘

`
`

p𝑐 ´ 𝑐q𝑣, 𝑤
˘

.

In the case that 𝑐 ě 0 one can choose 𝑐 “ 𝑐. Alternatively, setting 𝑐 ě 1 always guarantees
that 𝑎0

`

𝑣, 𝑣
˘

ě }𝑣}
2, i.e., control in the 𝐻-norm, independent of 𝜖 and without additional

assumptions on 𝑐. ♣

Lemma 4.15
Let 1 ď 𝑛 ď 𝑁 , 𝑘´ 2ℓ “ 1 (ô 𝑘 is odd), and suppose that Assumption 4.1 holds. Then, for
all 𝑣𝜏 P 𝑃𝑟´ℓp𝐼𝑛, 𝑉 q we have

𝑎0
`

𝑣𝜏 , 𝑣𝜏
˘ˇ

ˇ

𝑡´
𝑛

𝑡`
𝑛´1

`

ż

𝐼𝑛

}B𝑡𝑣𝜏}
2 d𝑡 ď 2𝐵I

𝑛

`

𝑣𝜏 , B𝑡𝑣𝜏
˘

` 𝐶2
𝑎1

ż

𝐼𝑛

}Π𝑟´ℓ´1𝑣𝜏}
2
𝑉 d𝑡.

Proof. First of all, due to 𝑘´ 2ℓ “ 1 (ô 𝑘 is odd), the jump term in 𝐵I
𝑛 p¨, ¨q drops out. So,

exploiting the exactness of I𝑛 for polynomials of maximal degree 2𝑟´ 𝑘 and the splitting of
Assumption 4.1, we note that

𝐵I
𝑛

`

𝑣𝜏 , B𝑡𝑣𝜏
˘

“

ż

𝐼𝑛

`

B𝑡𝑣𝜏 , B𝑡𝑣𝜏
˘

d𝑡 `

ż

𝐼𝑛

𝑎
`

𝑣𝜏 , B𝑡𝑣𝜏
˘

d𝑡

“

ż

𝐼𝑛

}B𝑡𝑣𝜏}
2 d𝑡 `

ż

𝐼𝑛

𝑎0
`

𝑣𝜏 , B𝑡𝑣𝜏
˘

d𝑡 `

ż

𝐼𝑛

𝑎1
`

𝑣𝜏 , B𝑡𝑣𝜏
˘

d𝑡.

Now, on the one hand, the symmetry of 𝑎0
`

¨, ¨
˘

enables the identity
ż

𝐼𝑛

𝑎0
`

𝑣𝜏 , B𝑡𝑣𝜏
˘

d𝑡 “
1

2

ż

𝐼𝑛

B𝑡𝑎0
`

𝑣𝜏 , 𝑣𝜏
˘

d𝑡 “
1

2
𝑎0
`

𝑣𝜏 , 𝑣𝜏
˘
ˇ

ˇ

𝑡´
𝑛

𝑡`
𝑛´1
.
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On the other hand, B𝑡𝑣𝜏 is a feasible test function for the 𝐿2-projection in time Π𝑟´ℓ´1, also
cf. Corollary C.14. Using this together with the continuity of 𝑎1

`

¨, ¨
˘

, we obtain

ˇ

ˇ

ˇ

ˇ

ż

𝐼𝑛

𝑎1
`

𝑣𝜏 , B𝑡𝑣𝜏
˘

d𝑡

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

𝐼𝑛

𝑎1
`

Π𝑟´ℓ´1𝑣𝜏 , B𝑡𝑣𝜏
˘

d𝑡

ˇ

ˇ

ˇ

ˇ

ď 𝐶𝑎1

ż

𝐼𝑛

}Π𝑟´ℓ´1𝑣𝜏}𝑉 }B𝑡𝑣𝜏} d𝑡 ď
𝐶2

𝑎1

2

ż

𝐼𝑛

}Π𝑟´ℓ´1𝑣𝜏}
2
𝑉 d𝑡 `

1

2

ż

𝐼𝑛

}B𝑡𝑣𝜏}
2 d𝑡,

where we applied Young’s inequality in the last step.
Altogether the above estimates yield

1

2
𝑎0
`

𝑣𝜏 , 𝑣𝜏
˘
ˇ

ˇ

𝑡´
𝑛

𝑡`
𝑛´1

`

ż

𝐼𝑛

}B𝑡𝑣𝜏}
2 d𝑡 “ 𝐵I

𝑛

`

𝑣𝜏 , B𝑡𝑣𝜏
˘

´

ż

𝐼𝑛

𝑎1
`

𝑣𝜏 , B𝑡𝑣𝜏
˘

d𝑡

ď 𝐵I
𝑛

`

𝑣𝜏 , B𝑡𝑣𝜏
˘

`
𝐶2

𝑎1

2

ż

𝐼𝑛

}Π𝑟´ℓ´1𝑣𝜏}
2
𝑉 d𝑡 `

1

2

ż

𝐼𝑛

}B𝑡𝑣𝜏}
2 d𝑡.

From this we can easily complete the proof.

Since, in contrast to Lemma 4.4, in the inequality of Lemma 4.15 the second argument
of 𝐵I

𝑛 p¨, ¨q does not appear in the 𝐿2p𝑉 q-norm on the left-hand side but only in the 𝐿2p𝐻q-
norm, we also need to show a variant of Corollary 4.6 where instead of

` ş

𝐼𝑛
}𝑣𝜏ℎ}2𝑉 d𝑡

˘1{2

on the right-hand side it only appears
` ş

𝐼𝑛
}𝑣𝜏ℎ}2 d𝑡

˘1{2. For this purpose, we assume the
following.

Assumption 4.2
We assume that there is a Hilbert space r𝑉 satisfying r𝑉 ãÑ 𝑉 ãÑ 𝐻 and a bilinear form
�̃�
`

¨, ¨
˘

: r𝑉 ˆ 𝐻 Ñ R such that for all 𝑣 P r𝑉 , 𝑤 P 𝑉 it holds

�̃�
`

𝑣, 𝑤
˘

“ 𝑎
`

𝑣, 𝑤
˘

.

We furthermore assume that �̃�
`

¨, ¨
˘

is continuous, i.e.,

D𝐶�̃� ą 0 :
ˇ

ˇ�̃�
`

𝑣, 𝑤
˘ˇ

ˇ ď 𝐶�̃� }𝑣}
r𝑉 }𝑤} @𝑣 P r𝑉 , 𝑤 P 𝐻.

Remark 4.16
In the setting of model problem (3.4) the space r𝑉 could be chosen as r𝑉 “ 𝐻2pΩq X 𝐻1

0 pΩq

where the bilinear form �̃�
`

¨, ¨
˘

is given by

�̃�
`

𝑣, 𝑤
˘

“
`

𝒜𝑣, 𝑤
˘

“ ´
`

divp𝜖∇𝑢q, 𝑤
˘

`
`

𝑏 ¨ ∇𝑣, 𝑤
˘

`
`

𝑐𝑣, 𝑤
˘

.

As norm in r𝑉 we then use }¨}
r𝑉 “ }¨}𝐻2pΩq

. ♣

Under the additional Assumption 4.2 we can conclude from Lemma 4.5 the following
statement.
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4 Error Analysis for VTD Methods

Corollary 4.17
Let 1 ď 𝑛 ď 𝑁 and suppose that Assumption 4.2 holds true. Moreover, assume that
ΠI

𝑟´𝑘`ℓ

`

𝑓 pℓq ´ 𝑔pℓq
˘

p𝑡q P 𝐻 for all 𝑡 P 𝐼. Then, for all 𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq it holds

𝐵I
𝑛

`

𝑒I𝜏ℎ,ℓ, 𝑣𝜏ℎ
˘

ď

„

´

I𝑛

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı¯1{2

` 𝐶�̃�

´

I𝑛

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı¯1{2

`

´

I𝑛

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2
ı¯1{2

ȷˆ
ż

𝐼𝑛

›

›𝑣𝜏ℎ
›

›

2
d𝑡

˙1{2

` 𝛿0,𝑘´2ℓ

›

›𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘
›

›

›

›𝑣𝜏ℎp𝑡`𝑛´1q
›

›

with 𝜔I
𝑛´1p¨q as defined in (4.7).

Proof. Similar to the proof of Corollary 4.6, from Lemma 4.5, the definition of ΠI
𝑟´𝑘`ℓ, and

Assumption 4.2 we get for all 𝑣𝜏ℎ P 𝑃𝑟´𝑘`ℓp𝐼𝑛, 𝑉ℎq that

𝐵I
𝑛

`

𝑒I𝜏ℎ,ℓ, 𝑣𝜏ℎ
˘

“ ´I𝑛

“`

𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q, 𝑣𝜏ℎ
˘‰

´ I𝑛

”

𝑎
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq, 𝑣𝜏ℎ

˘

ı

` I𝑛

”

@

ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘

, 𝑣𝜏ℎ
D

𝑉 1,𝑉

ı

` 𝛿0,𝑘´2ℓ

`

𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘

, 𝑣𝜏ℎp𝑡`𝑛´1q
˘

“ ´I𝑛

“`

𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q, 𝑣𝜏ℎ
˘‰

´ I𝑛

”

�̃�
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq, 𝑣𝜏ℎ

˘

ı

` I𝑛

”

`

ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘

, 𝑣𝜏ℎ
˘

ı

` 𝛿0,𝑘´2ℓ

`

𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘

, 𝑣𝜏ℎp𝑡`𝑛´1q
˘

ď I𝑛

“
›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

›

›𝑣𝜏ℎ
›

›

‰

` 𝐶�̃�I𝑛

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

r𝑉

›

›𝑣𝜏ℎ
›

›

ı

` I𝑛

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘›

›

›

›𝑣𝜏ℎ
›

›

ı

` 𝛿0,𝑘´2ℓ

›

›𝜔I
𝑛´1

`

𝑅ℎ𝑢
pℓq
˘›

›

›

›𝑣𝜏ℎp𝑡`𝑛´1q
›

›.

Applying the Cauchy–Schwarz-type inequality (4.5c) and using the exactness of I𝑛 for poly-
nomials up to degree 2𝑟 ´ 𝑘, see (4.5a), we easily finish the proof.

We now get another estimate for the fully discrete error 𝑒I𝜏ℎ,ℓ similar to Lemma 4.8.

Lemma 4.18
Let 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd) and suppose that Assumptions 4.1 and 4.2 hold. Moreover,
assume that ΠI

𝑟´𝑘`ℓ

`

𝑓 pℓq ´ 𝑔pℓq
˘

p𝑡q P 𝐻 for all 𝑡 P 𝐼. Then, for all 𝑛 “ 1, . . . , 𝑁 we have

𝛼0

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝑛 q
›

›

2

𝑉
`

1

2

ż 𝑡𝑛

𝑡0

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡

ď exp p2p𝑡𝑛´1 ´ 𝑡0qq
˜

6
”

1 `
𝐶2

𝑎1
𝐶2

emb

2𝛼2

ı ´

Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2
ı¯

` 6𝐶2
�̃�Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` 3
𝐶2

𝑎1
𝐶2

𝑎

𝛼2 Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

`

”

𝐶𝑎0 `
𝐶2

𝑎1
𝐶2

emb

𝛼

ı

ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2

𝑉
`

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈

`

𝑅ℎ𝑢
pℓq
˘
›

›

2

𝑉

˙

¸
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4.1 Error estimates for the ℓth derivative

with 𝜔I
𝜈 p¨q as defined in (4.7). The exponential factor can be dropped if 𝜔I

𝜈

`

𝑅ℎ𝑢
pℓq
˘

“ 0 for
all 𝜈 “ 1, . . . , 𝑛 ´ 1.

Proof. Paying heed to 𝑘 ´ 2ℓ “ 1, an application of Lemma 4.15 with 𝑣𝜏 “ 𝑒I𝜏ℎ,ℓ and of
Corollary 4.17 with 𝑣𝜏ℎ “ B𝑡𝑒

I
𝜏ℎ,ℓ yields

𝑎0
`

𝑒I𝜏ℎ,ℓ, 𝑒
I
𝜏ℎ,ℓ

˘
ˇ

ˇ

𝑡´
𝜈

𝑡`
𝜈´1

`

ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡 ď 2𝐵I

𝜈

`

𝑒I𝜏ℎ,ℓ, B𝑡𝑒
I
𝜏ℎ,ℓ

˘

` 𝐶2
𝑎1

ż

𝐼𝜈

›

›Π𝑟´ℓ´1𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡

ď 2

„

´

I𝜈

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı¯1{2

` 𝐶�̃�

´

I𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı¯1{2

`

´

I𝜈

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2
ı¯1{2

ȷˆ
ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡

˙1{2

` 𝐶2
𝑎1

ż

𝐼𝜈

›

›Π𝑟´ℓ´1𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡

ď 6
´

I𝜈

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` 𝐶2
�̃�I𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` I𝜈

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2
ı¯

`
1

2

ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡 ` 𝐶2

𝑎1

ż

𝐼𝜈

›

›Π𝑟´ℓ´1𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡,

where we also used Young’s inequality. Hence, we have

𝑎0
`

𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q, 𝑒I𝜏ℎ,ℓp𝑡

´
𝜈 q
˘

`
1

2

ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡 (4.11)

ď 6
´

I𝜈

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` 𝐶2
�̃�I𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` I𝜈

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2
ı¯

` 𝐶2
𝑎1

ż

𝐼𝜈

›

›Π𝑟´ℓ´1𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡 ` 𝑎0

`

𝑒I𝜏ℎ,ℓp𝑡
`
𝜈´1q, 𝑒

I
𝜏ℎ,ℓp𝑡

`
𝜈´1q

˘

.

Recalling the second statement of Lemma 4.5, we get

𝑒I𝜏ℎ,ℓp𝑡
`
𝜈´1q “ 𝑒I𝜏ℎ,ℓp𝑡

´
𝜈´1q `

“

𝑒I𝜏ℎ,ℓ
‰

𝜈´1
“ 𝑒I𝜏ℎ,ℓp𝑡

´
𝜈´1q ` 𝜔I

𝜈´1

`

𝑅ℎ𝑢
pℓq
˘

. (4.12)

Therefore, since 𝑎0p¨, ¨q is an inner product on 𝑉 , it follows for 𝜈 ą 1

𝑎0
`

𝑒I𝜏ℎ,ℓp𝑡
`
𝜈´1q, 𝑒I𝜏ℎ,ℓp𝑡

`
𝜈´1q

˘

“ 𝑎0
`

𝑒I𝜏ℎ,ℓp𝑡
´
𝜈´1q ` 𝜔I

𝜈´1

`

𝑅ℎ𝑢
pℓq
˘

, 𝑒I𝜏ℎ,ℓp𝑡
´
𝜈´1q ` 𝜔I

𝜈´1

`

𝑅ℎ𝑢
pℓq
˘˘

“ 𝑎0
`

𝑒I𝜏ℎ,ℓp𝑡
´
𝜈´1q, 𝑒

I
𝜏ℎ,ℓp𝑡

´
𝜈´1q

˘

` 2𝑎0
`

𝑒I𝜏ℎ,ℓp𝑡
´
𝜈´1q, 𝜔

I
𝜈´1p𝑅ℎ𝑢

pℓq
q
˘

` 𝑎0
`

𝜔I
𝜈´1

`

𝑅ℎ𝑢
pℓq
˘

, 𝜔I
𝜈´1

`

𝑅ℎ𝑢
pℓq
˘˘

ď p1 ` 𝜏𝜈´1q 𝑎0
`

𝑒I𝜏ℎ,ℓp𝑡
´
𝜈´1q, 𝑒I𝜏ℎ,ℓp𝑡

´
𝜈´1q

˘

` 𝐶𝑎0

`

1 ` 𝜏´1
𝜈´1

˘
›

›𝜔I
𝜈´1

`

𝑅ℎ𝑢
pℓq
˘
›

›

2

𝑉
, (4.13)

where we applied the Cauchy–Schwarz inequality, Young’s inequality, and the continuity of
𝑎0p¨, ¨q. Moreover, for 𝜈 “ 1 we find

𝑎0
`

𝑒I𝜏ℎ,ℓp𝑡
`
0 q, 𝑒I𝜏ℎ,ℓp𝑡

`
0 q
˘

ď 𝐶𝑎0

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2

𝑉
(4.14)

because of 𝜔I
0 p¨q “ 0.
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Now, combining (4.11) with (4.13) for 𝜈 ą 1 or (4.14) for 𝜈 “ 1 and applying to the
resulting inequalities a discrete version of Gronwall’s lemma, see Lemma A.1, it follows

𝑎0
`

𝑒I𝜏ℎ,ℓp𝑡
´
𝑛 q, 𝑒I𝜏ℎ,ℓp𝑡

´
𝑛 q
˘

`
1

2

ż 𝑡𝑛

𝑡0

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡

ď exp p𝑡𝑛´1 ´ 𝑡0q

„

6Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` 6𝐶2
�̃�Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` 6Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2
ı

` 𝐶𝑎0

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2

𝑉

` 𝐶𝑎0

𝑛´1
ÿ

𝜈“1

p1 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2

𝑉
` 𝐶2

𝑎1

ż 𝑡𝑛

𝑡0

›

›Π𝑟´ℓ´1𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡

ȷ

.

Altogether, using the 𝑉 -ellipticity of 𝑎0p¨, ¨q, Lemma 4.8 (note that here 𝑟´ℓ´1 “ 𝑟´𝑘`ℓ),
and taking into account that }𝑤} ď 𝐶emb}𝑤}𝑉 for all 𝑤 P 𝑉 , which also implies the estimate
}𝑤}𝑉 1 ď 𝐶emb}𝑤} for all 𝑤 P 𝐻 Ă 𝑉 1, we obtain

𝛼0

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝑛 q
›

›

2

𝑉
`

1

2

ż 𝑡𝑛

𝑡0

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡

ď exp p2p𝑡𝑛´1 ´ 𝑡0qq
˜

6
”

1 `
𝐶2

𝑎1
𝐶2

emb

2𝛼2

ı ´

Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘›

›

2
ı¯

` 6𝐶2
�̃�Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` 3
𝐶2

𝑎1
𝐶2

𝑎

𝛼2 Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

`

”

𝐶𝑎0 `
𝐶2

𝑎1
𝐶2

emb

𝛼

ı

ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2

𝑉
`

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈

`

𝑅ℎ𝑢
pℓq
˘
›

›

2

𝑉

˙

¸

.

Thus, we are done.

Since Lemma 4.18 provides the previously missing control on
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

𝑉
, we obtain an

abstract estimate for the 𝐿2-error in the 𝑉 -norm also for cGP-like methods, i.e., if 𝑘´2ℓ “ 1
(ô 𝑘 is odd).

Lemma 4.19
Let 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd) and suppose that Assumptions 4.1 and 4.2 hold. Moreover,
assume that ΠI

𝑟´𝑘`ℓ

`

𝑓 pℓq ´ 𝑔pℓq
˘

p𝑡q P 𝐻 for all 𝑡 P 𝐼. Then, for all 𝑛 “ 1, . . . , 𝑁 it holds

ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ

›

›

2

𝑉
d𝑡

ď 𝐶

ˆ
ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ 𝑅ℎ𝑢

pℓq
›

›

2

𝑉
d𝑡 `

ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉
d𝑡 `

ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡

˙
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where
ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡 ď 𝐶

`

1 ` p𝑡𝑛 ´ 𝑡0q
˘

exp p2p𝑡𝑛´1 ´ 𝑡0qq

ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2

𝑉
`

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈

`

𝑅ℎ𝑢
pℓq
˘
›

›

2

𝑉
` Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2
ı

˙

with 𝜔I
𝜈 p¨q as defined in (4.7). The exponential factor can be dropped if 𝜔I

𝜈

`

𝑅ℎ𝑢
pℓq
˘

“ 0 for
all 𝜈 “ 1, . . . , 𝑛 ´ 1.

Proof. The arguments are quite analog to those used in the proof of Lemma 4.10. We
therefore only consider some of the details for the derivation of the second statement.

The norm equivalence of Lemma 4.3 gives
ż

𝐼𝜈

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡 ď 𝐶

ˆ
ż

𝐼𝜈

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡 `

`

𝜏𝜈
2

˘ ›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2

𝑉

˙

.

A summation over 𝜈 “ 1, . . . , 𝑛 yields
ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡 “

𝑛
ÿ

𝜈“1

ż

𝐼𝜈

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡 ď 𝐶

ż 𝑡𝑛

𝑡0

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡 ` 𝐶

𝑛
ÿ

𝜈“1

`

𝜏𝜈
2

˘
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2

𝑉
.

Then, an application of Lemma 4.8 and Lemma 4.18 gives the desired second estimate.

Concrete convergence orders for the model problem are given in the next theorem.

Theorem 4.20
Let 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd). Consider the setting of model problem (3.4) with standard
spatial discretization satisfying (3.16) and let 𝑔 P t𝑓,Π𝑟

𝑘𝑓, ℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓uYif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

. Then,
we have the following error estimate

ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ

›

›

2

𝑉
d𝑡 `

ż 𝑡𝑛

𝑡0

›

›𝑒
ş

𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡

ď 𝐶
`

1 ` p𝑡𝑛 ´ 𝑡0q
˘

”

ℎ2𝜅
›

›𝑢pℓq
›

›

2

𝐻1pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq

` 𝜏 2p𝑟´ℓ`1q
´

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻2pΩqq
` }𝑓}

2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐿2pΩqq

¯ı

.

Proof. First of all, note that in the setting of model problem (3.4) the Assumptions 4.1
and 4.2 usually are fulfilled when the problem data is sufficiently smooth, see Remarks 4.14
and 4.16, respectively.

So, because of Lemma 4.19, used with I𝜈 “
ş

𝐼𝜈
, it only remains to bound certain projection

errors. These error terms can be estimated similar to the terms in the proof of Theorem 4.11.
From (3.16a) we gain

ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ 𝑅ℎ𝑢

pℓq
›

›

2

𝑉
d𝑡 ď 𝐶ℎ2𝜅

›

›𝑢pℓq
›

›

2

𝐿2pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
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and
ż 𝑡𝑛

𝑡0

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
d𝑡 ď 𝐶ℎ2𝜅

›

›𝑢pℓ`1q
›

›

2

𝐿2pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
.

The error estimate (4.9) for rΠ𝑟´ℓ,I
𝑘´2ℓ yields

ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉
d𝑡 `

ż 𝑡𝑛

𝑡0

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉
d𝑡 ď 𝐶𝜏 2p𝑟´ℓ`1q

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻2pΩqq

and, since 𝑔 P t𝑓,Π𝑟
𝑘𝑓, ℐ𝑟

𝑘𝑓, 𝒞𝑟
𝑘𝑓u Yif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

, standard interpolation/projection error
estimates, cf. Lemma B.9, give

ż 𝑡𝑛

𝑡0

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘›

›

2
d𝑡 ď 𝐶

ż 𝑡𝑛

𝑡0

›

›𝑓 pℓq
´ 𝑔pℓq

›

›

2
d𝑡 ď 𝐶𝜏 2p𝑟´ℓ`1q

}𝑓}
2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐿2pΩqq

.

Moreover, as seen in the proof of Theorem 4.11, we have 𝑒I𝜏ℎ,ℓp𝑡
´
0 q “ 𝑅ℎ𝑢

pℓqp𝑡´0 q ´ r𝑃 0
ℎ𝑢

pℓqp𝑡´0 q.
Thus,

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

𝑉
“ 0 if r𝑃 0

ℎ “ 𝑅ℎ. Otherwise, for r𝑃 0
ℎ “ 𝑃ℎ, we conclude from the 𝑉 -

ellipticity and the continuity of 𝑎p¨, ¨q as well as the definition of 𝑅ℎ that

𝛼
›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2

𝑉
ď 𝑎

`

𝑅ℎ𝑢
pℓq

p𝑡´0 q ´ 𝑃ℎ𝑢
pℓq

p𝑡´0 q, 𝑒I𝜏ℎ,ℓp𝑡
´
0 q
˘

“ 𝑎
`

𝑢pℓq
p𝑡´0 q ´ 𝑃ℎ𝑢

pℓq
p𝑡´0 q, 𝑒I𝜏ℎ,ℓp𝑡

´
0 q
˘

ď 𝐶𝑎

›

›𝑢pℓq
p𝑡´0 q ´ 𝑃ℎ𝑢

pℓq
p𝑡´0 q

›

›

𝑉

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

𝑉
.

Using standard arguments to bound the error of 𝑃ℎ, we gain

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2

𝑉
ď 𝛼´2𝐶2

𝑎

›

›𝑢pℓq
p𝑡´0 q ´ 𝑃ℎ𝑢

pℓq
p𝑡´0 q

›

›

2

𝑉
ď 𝐶ℎ2𝜅

›

›𝑢pℓq
p𝑡´0 q

›

›

2

𝐻𝜅`1pΩq
.

Summarizing the above estimates gives the desired statement.

Remark 4.21
In this subsection we have looked at the stronger 𝑉 -norm in space and not the 𝐻-norm
anymore. This is also the reason why Corollary 4.13 and Theorem 4.20 show a slightly
lower spatial order of convergence than Theorem 4.11. The proven convergence orders
exactly match our expectations. ♣

Remark 4.22
Similar estimates to those of Corollary 4.13 and Theorem 4.20 are well known from the
literature for the discontinuous Galerkin method (𝑘 “ 0), even in a more general setting,
see e.g. [26, Theorem 69.18, p. 188]. However, for the continuous Galerkin–Petrov method
(𝑘 “ 1) typically only certain components of the error are estimated in the 𝐿2p𝑉 q-norm,
see e.g. [26, Theorem 70.11, p. 203, note (70.17), p. 201]. This is since, in contrast to the
dG methods, estimates in 𝐿2p𝑉 q are not directly obtained for cGP methods, also cf. [5,
Remark 5.1]. Thus, for odd 𝑘 such estimates may be new. ♣
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4.1 Error estimates for the ℓth derivative

4.1.4 Global (locally weighted) 𝐿2-error of the time derivative in
the 𝐻-norm

For 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd) Lemma 4.18 provides a bound for
ş𝑡𝑛
𝑡0

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡. This gives

rise to error estimates for the 𝐿2p𝐻q-norm of the time derivative of 𝑢pℓq ´ 𝑢
pℓq
𝜏ℎ for cGP-like

methods.

Lemma 4.23
Let 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd) and suppose that Assumptions 4.1 and 4.2 hold. Moreover,
assume that ΠI

𝑟´𝑘`ℓ

`

𝑓 pℓq ´ 𝑔pℓq
˘

p𝑡q P 𝐻 for all 𝑡 P 𝐼. Then, for all 𝑛 “ 1, . . . , 𝑁 it holds

ż 𝑡𝑛

𝑡0

›

›B𝑡𝑢
pℓq

´ B𝑡𝑢
pℓq
𝜏ℎ

›

›

2
d𝑡

ď 𝐶

ˆ
ż 𝑡𝑛

𝑡0

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
d𝑡 `

ż 𝑡𝑛

𝑡0

›

›B𝑡
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
˘
›

›

2

𝑉
d𝑡 `

ż 𝑡𝑛

𝑡0

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡

˙

where
ż 𝑡𝑛

𝑡0

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡 ď 𝐶 exp p2p𝑡𝑛´1 ´ 𝑡0qq

ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2

𝑉
`

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈

`

𝑅ℎ𝑢
pℓq
˘›

›

2

𝑉
` Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2
ı

˙

with 𝜔I
𝜈 p¨q as defined in (4.7). The exponential factor can be dropped if 𝜔I

𝜈

`

𝑅ℎ𝑢
pℓq
˘

“ 0 for
all 𝜈 “ 1, . . . , 𝑛 ´ 1.

Proof. A similar splitting as in the proof of Lemma 4.10 gives

B𝑡𝑢
pℓq

´ B𝑡𝑢
pℓq
𝜏ℎ

“
`

𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
˘

`
`

𝑅ℎpB𝑡𝑢
pℓq

q ´ 𝑅ℎpB𝑡rΠ
𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
q
˘

`
`

B𝑡𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
´ B𝑡𝑢

pℓq
𝜏ℎ

˘

,

where we used that the time derivative commutes with the spatial operator 𝑅ℎ, see also [26,
Lemma 64.34, p. 118]. The second summand can be estimated exploiting the stability of
𝑅ℎ in the 𝑉 -norm as follows

ż 𝑡𝑛

𝑡0

›

›𝑅ℎpB𝑡𝑢
pℓq

q ´ 𝑅ℎpB𝑡rΠ
𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
q
›

›

2
d𝑡 ď

ż 𝑡𝑛

𝑡0

𝐶2
emb

›

›𝑅ℎB𝑡
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
˘
›

›

2

𝑉
d𝑡

ď 𝐶

ż 𝑡𝑛

𝑡0

›

›B𝑡
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
˘›

›

2

𝑉
d𝑡.

A bound for the third summand B𝑡𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq ´ B𝑡𝑢
pℓq
𝜏ℎ “ B𝑡𝑒

I
𝜏ℎ,ℓ was already presented in

Lemma 4.18. So, summarizing the above ideas and bounds, the proof is easily completed.
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Theorem 4.24
Let 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd). Consider the setting of model problem (3.4) with standard
spatial discretization satisfying (3.16) and let 𝑔 P t𝑓,Π𝑟

𝑘𝑓, ℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓uYif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

. Then,
we have the following error estimate
ż 𝑡𝑛

𝑡0

›

›B𝑡𝑢
pℓq

´ B𝑡𝑢
pℓq
𝜏ℎ

›

›

2
d𝑡 ď 𝐶

”

ℎ2p𝜅`r𝜎q
›

›𝑢pℓq
›

›

2

𝐻1pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
` 𝜏 2p𝑟´ℓq

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq

` 𝜏 2p𝑟´ℓ`1q
´

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻2pΩqq
` }𝑓}

2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐿2pΩqq

¯ı

,

where r𝜎 “ 1 if the associated stationary problem is 𝐻2-regular as well as r𝑃 0
ℎ “ 𝑅ℎ and r𝜎 “ 0

otherwise.

Proof. Analogously to the proof of Theorem 4.20 we (can) suppose that Assumptions 4.1
and 4.2 hold.

We bound the terms on the right-hand side of the estimate in Lemma 4.23 with I𝜈 “
ş

𝐼𝜈
.

By (3.16a) and (3.16b) we gain
ż 𝑡𝑛

𝑡0

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
d𝑡 ď 𝐶ℎ2p𝜅`𝜎q

›

›𝑢pℓ`1q
›

›

2

𝐿2pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.
Moreover, on the basis of (4.9) we get

ż 𝑡𝑛

𝑡0

›

›B𝑡
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
˘
›

›

2

𝑉
d𝑡 ď 𝐶𝜏 2p𝑟´ℓq

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq
.

The remaining terms have already been estimated in the proof of Theorem 4.20. Especially,
recall that

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2

𝑉
ď

#

0, r𝑃 0
ℎ “ 𝑅ℎ,

𝐶ℎ2𝜅
›

›𝑢pℓqp𝑡´0 q
›

›

2

𝐻𝜅`1pΩq
, r𝑃 0

ℎ “ 𝑃ℎ,

which must be reflected in the definition of r𝜎.

Remark 4.25
Compared to Theorem 4.11, we consider in Theorem 4.24 a time derivative of the error
increased by one. Therefore, as expected, the temporal order of convergence is decreased
by one. However, having a closer look at Lemma 4.23 and the proof of Theorem 4.24, we
observe that for 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd)

ż 𝑡𝑛

𝑡0

›

›B𝑡𝑒
ş

𝜏ℎ,ℓ

›

›

2
d𝑡 ď 𝐶p𝑓, 𝑢q

`

ℎ2p𝜅`r𝜎q
` 𝜏 2p𝑟´ℓ`1q

˘

.

So, the decrease does not occur for the fully discrete error with I𝜈 “
ş

𝐼𝜈
, which means that

B𝑡𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq is superclose to B𝑡𝑢
pℓq
𝜏ℎ .

Note that the spatial convergence order in Theorem 4.24 depends on the concrete choice
of the projection operator r𝑃 0

ℎ used for the spatial approximation of the initial value. It
is not yet clear whether this dependence is only due to the proof technique or whether it
actually exists. ♣

118



4.1 Error estimates for the ℓth derivative

A similar estimate, but in a locally weighted norm, shall now also be derived for 𝑘´2ℓ “ 0
(ô 𝑘 is even). We start with showing one further property of the bilinear form 𝐵I

𝑛 p¨, ¨q that
can be used to provide another kind of control on the fully discrete error.

Lemma 4.26
Let 1 ď 𝑛 ď 𝑁 , 𝑘 ´ 2ℓ “ 0 (ô 𝑘 is even), and suppose that Assumption 4.1 holds. Then,
for all 𝑣𝜏 P 𝑃𝑟´ℓp𝐼𝑛, 𝑉 q we have

𝜏𝑛𝑎0
`

𝑣𝜏 p𝑡´𝑛 q, 𝑣𝜏 p𝑡´𝑛 q
˘

`

ż

𝐼𝑛

}B𝑡𝑣𝜏}
2

p𝑡 ´ 𝑡𝑛´1q d𝑡

ď 2𝐵I
𝑛

`

𝑣𝜏 , p𝑡 ´ 𝑡𝑛´1qB𝑡𝑣𝜏
˘

`
`

𝐶𝑎0 ` 𝜏𝑛𝐶
2
𝑎1

˘

ż

𝐼𝑛

}𝑣𝜏}
2
𝑉 d𝑡.

Proof. Since the test function p𝑡´𝑡𝑛´1qB𝑡𝑣𝜏 is zero at 𝑡`𝑛´1, the jump term in 𝐵I
𝑛 p¨, ¨q vanishes.

So, under Assumption 4.1 and using the exactness of I𝑛 for polynomials of maximal degree
2𝑟 ´ 𝑘, we get that (only here 𝑘 ´ 2ℓ “ 0 is needed)

𝐵I
𝑛

`

𝑣𝜏 , p𝑡 ´ 𝑡𝑛´1qB𝑡𝑣𝜏
˘

“

ż

𝐼𝑛

`

B𝑡𝑣𝜏 , p𝑡 ´ 𝑡𝑛´1qB𝑡𝑣𝜏
˘

d𝑡 `

ż

𝐼𝑛

𝑎
`

𝑣𝜏 , p𝑡 ´ 𝑡𝑛´1qB𝑡𝑣𝜏
˘

d𝑡

“

ż

𝐼𝑛

}B𝑡𝑣𝜏}
2

p𝑡 ´ 𝑡𝑛´1q d𝑡 `

ż

𝐼𝑛

𝑎0
`

𝑣𝜏 , p𝑡 ´ 𝑡𝑛´1qB𝑡𝑣𝜏
˘

d𝑡 `

ż

𝐼𝑛

𝑎1
`

𝑣𝜏 , p𝑡 ´ 𝑡𝑛´1qB𝑡𝑣𝜏
˘

d𝑡.

Because of the symmetry of 𝑎0
`

¨, ¨
˘

, it follows

𝜏𝑛
2
𝑎0
`

𝑣𝜏 p𝑡´𝑛 q, 𝑣𝜏 p𝑡´𝑛 q
˘

“
1

2

ż

𝐼𝑛

B𝑡
`

𝑎0
`

𝑣𝜏 , 𝑣𝜏
˘

p𝑡 ´ 𝑡𝑛´1q
˘

d𝑡

“

ż

𝐼𝑛

𝑎0
`

𝑣𝜏 , p𝑡 ´ 𝑡𝑛´1qB𝑡𝑣𝜏
˘

d𝑡 `
1

2

ż

𝐼𝑛

𝑎0
`

𝑣𝜏 , 𝑣𝜏
˘

d𝑡.

Therefore, we obtain
ż

𝐼𝑛

}B𝑡𝑣𝜏}
2

p𝑡 ´ 𝑡𝑛´1q d𝑡 `
𝜏𝑛
2
𝑎0
`

𝑣𝜏 p𝑡´𝑛 q, 𝑣𝜏 p𝑡´𝑛 q
˘

“ 𝐵I
𝑛

`

𝑣𝜏 , p𝑡 ´ 𝑡𝑛´1qB𝑡𝑣𝜏
˘

`
1

2

ż

𝐼𝑛

𝑎0
`

𝑣𝜏 , 𝑣𝜏
˘

d𝑡 ´

ż

𝐼𝑛

𝑎1
`

𝑣𝜏 , p𝑡 ´ 𝑡𝑛´1qB𝑡𝑣𝜏
˘

d𝑡.

The continuity of 𝑎0
`

¨, ¨
˘

and 𝑎1
`

¨, ¨
˘

as well as Young’s inequality yield

1

2

ż

𝐼𝑛

𝑎0
`

𝑣𝜏 , 𝑣𝜏
˘

d𝑡 `

ˇ

ˇ

ˇ

ˇ

ż

𝐼𝑛

𝑎1
`

𝑣𝜏 , p𝑡 ´ 𝑡𝑛´1qB𝑡𝑣𝜏
˘

d𝑡

ˇ

ˇ

ˇ

ˇ

ď
𝐶𝑎0

2

ż

𝐼𝑛

}𝑣𝜏}
2
𝑉 d𝑡 ` 𝐶𝑎1

ż

𝐼𝑛

}𝑣𝜏}𝑉 }p𝑡 ´ 𝑡𝑛´1qB𝑡𝑣𝜏} d𝑡

ď
1

2

`

𝐶𝑎0 ` 𝜏𝑛𝐶
2
𝑎1

˘

ż

𝐼𝑛

}𝑣𝜏}
2
𝑉 d𝑡 `

1

2

ż

𝐼𝑛

}B𝑡𝑣𝜏}
2

p𝑡 ´ 𝑡𝑛´1q d𝑡.

Combining this estimate with the above identity and re-sorting the terms, we easily finish
the proof.
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4 Error Analysis for VTD Methods

On the basis of Lemma 4.26 and using other already known estimates for the fully discrete
error 𝑒I𝜏ℎ,ℓ, we can bound B𝑡𝑒

I
𝜏ℎ,ℓ in a locally weighted norm.

Lemma 4.27
Let 𝑘 ´ 2ℓ “ 0 (ô 𝑘 is even) and suppose that Assumptions 4.1 and 4.2 hold. Moreover,
assume that ΠI

𝑟´𝑘`ℓ

`

𝑓 pℓq ´ 𝑔pℓq
˘

p𝑡q P 𝐻 for all 𝑡 P 𝐼. Then, for all 𝑛 “ 1, . . . , 𝑁 we have

𝛼0

𝑛
ÿ

𝜈“1

𝜏𝜈
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2

𝑉
`

1

2

𝑛
ÿ

𝜈“1

ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
p𝑡 ´ 𝑡𝜈´1q d𝑡

ď exp p𝑡𝑛´1 ´ 𝑡0q
˜

6
”

𝜏 `
p𝐶𝑎0`𝜏𝐶2

𝑎1
q𝐶2

emb

2𝛼2

ı ´

Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2
ı¯

` 6𝐶2
�̃�𝜏Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` 3
p𝐶𝑎0`𝜏𝐶2

𝑎1
q𝐶2

𝑎

𝛼2 Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

`
𝐶𝑎0`𝜏𝐶2

𝑎1

𝛼

ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2
`

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2

˙

¸

with 𝜔I
𝜈 p¨q as defined in (4.7). The exponential factor can be dropped if 𝜔I

𝜈

`

𝑅ℎ𝑢
pℓq
˘

“ 0 for
all 𝜈 “ 1, . . . , 𝑛 ´ 1.

Proof. From Lemma 4.26 with 𝑣𝜏 “ 𝑒I𝜏ℎ,ℓ and Corollary 4.17 with 𝑣𝜏ℎ “ p𝑡 ´ 𝑡𝑛´1q B𝑡𝑒
I
𝜏ℎ,ℓ we

gain (noting that 𝑣𝜏ℎp𝑡`𝑛´1q “ 0 by choice of 𝑣𝜏ℎ)

𝜏𝜈𝑎0
`

𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q, 𝑒I𝜏ℎ,ℓp𝑡

´
𝜈 q
˘

`

ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
p𝑡 ´ 𝑡𝜈´1q d𝑡

ď 2𝐵I
𝜈

`

𝑒I𝜏ℎ,ℓ, p𝑡 ´ 𝑡𝜈´1qB𝑡𝑒
I
𝜏ℎ,ℓ

˘

`
`

𝐶𝑎0 ` 𝜏𝜈𝐶
2
𝑎1

˘

ż

𝐼𝜈

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡

ď 2

„

´

I𝜈

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı¯1{2

` 𝐶�̃�

´

I𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı¯1{2

`

´

I𝜈

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘›

›

2
ı¯1{2

ȷˆ
ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
p𝑡 ´ 𝑡𝜈´1q

2 d𝑡

˙1{2

`
`

𝐶𝑎0 ` 𝜏𝜈𝐶
2
𝑎1

˘

ż

𝐼𝜈

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡

ď 6𝜏𝜈

ˆ

I𝜈

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` 𝐶2
�̃�I𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` I𝜈

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘›

›

2
ı

˙

`
1

2

ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
p𝑡 ´ 𝑡𝜈´1q d𝑡

`
`

𝐶𝑎0 ` 𝜏𝜈𝐶
2
𝑎1

˘

ż

𝐼𝜈

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡,

where Young’s inequality was used. Therefore, also considering the 𝑉 -ellipticity of 𝑎0
`

¨, ¨
˘

,
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4.1 Error estimates for the ℓth derivative

a summation over 𝜈 “ 1, . . . , 𝑛 yields

𝛼0

𝑛
ÿ

𝜈“1

𝜏𝜈
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2

𝑉
`

1

2

𝑛
ÿ

𝜈“1

ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
p𝑡 ´ 𝑡𝜈´1q d𝑡

ď 6𝜏

ˆ

Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` 𝐶2
�̃�Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘›

›

2
ı

˙

`
`

𝐶𝑎0 ` 𝜏𝐶2
𝑎1

˘

ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡.

Estimating the last term according to Lemma 4.8 and noting that
›

›𝑤
›

› ď 𝐶emb

›

›𝑤
›

›

𝑉
for all

𝑤 P 𝑉 , which also implies
›

›𝑤
›

›

𝑉 1 ď 𝐶emb

›

›𝑤
›

› for all 𝑤 P 𝐻 Ă 𝑉 1, the desired statement
follows easily.

The previous lemma leads to the following abstract and concrete estimates on the pℓ`1qth
derivative of the error 𝑢 ´ 𝑢𝜏ℎ for dG-like methods.

Lemma 4.28
Let 𝑘 ´ 2ℓ “ 0 (ô 𝑘 is even) and suppose that Assumptions 4.1 and 4.2 hold. Moreover,
assume that ΠI

𝑟´𝑘`ℓ

`

𝑓 pℓq ´ 𝑔pℓq
˘

p𝑡q P 𝐻 for all 𝑡 P 𝐼. Then, for all 𝑛 “ 1, . . . , 𝑁 it holds

𝑛
ÿ

𝜈“1

ż

𝐼𝜈

›

›B𝑡𝑢
pℓq

´ B𝑡𝑢
pℓq
𝜏ℎ

›

›

2
p𝑡 ´ 𝑡𝜈´1q d𝑡

ď 𝐶
`

1 ` 𝜏
˘

exp p𝑡𝑛´1 ´ 𝑡0q

ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2
`

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2
` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2
ı

`

ż 𝑡𝑛

𝑡0

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
d𝑡 ` Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

` 𝜏Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` 𝜏

ż 𝑡𝑛

𝑡0

›

›B𝑡
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
˘
›

›

2

𝑉
d𝑡

˙

with 𝜔I
𝜈 p¨q as defined in (4.7). The exponential factor can be dropped if 𝜔I

𝜈

`

𝑅ℎ𝑢
pℓq
˘

“ 0 for
all 𝜈 “ 1, . . . , 𝑛 ´ 1.

Proof. We suitably adapt the proof of Lemma 4.23. Especially, we use the same splitting
and obtain for the occurring middle summand that

𝑛
ÿ

𝜈“1

ż

𝐼𝜈

›

›𝑅ℎpB𝑡𝑢
pℓq

q ´ 𝑅ℎpB𝑡rΠ
𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
q
›

›

2
p𝑡 ´ 𝑡𝜈´1q d𝑡

ď 𝐶
𝑛
ÿ

𝜈“1

ż

𝐼𝜈

›

›B𝑡
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
˘›

›

2

𝑉
p𝑡 ´ 𝑡𝜈´1q d𝑡 ď 𝐶𝜏

ż 𝑡𝑛

𝑡0

›

›B𝑡
`

𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
˘
›

›

2

𝑉
d𝑡.

Moreover, we use Lemma 4.27 to bound the term that includes B𝑡𝑒
I
𝜏ℎ,ℓ.
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Theorem 4.29
Let 𝑘 ´ 2ℓ “ 0 (ô 𝑘 is even). Consider the setting of model problem (3.4) with standard
spatial discretization satisfying (3.16) and let 𝑔 P t𝑓,Π𝑟

𝑘𝑓, ℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓uYif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

. Then,
we have the following error estimate

𝑛
ÿ

𝜈“1

ż

𝐼𝜈

›

›B𝑡𝑢
pℓq

´ B𝑡𝑢
pℓq
𝜏ℎ

›

›

2
p𝑡 ´ 𝑡𝜈´1q d𝑡

ď 𝐶
`

1 ` 𝜏
˘

”

ℎ2p𝜅`𝜎q
›

›𝑢pℓq
›

›

2

𝐻1pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
` 𝜏 2p𝑟´ℓq`1

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq

` 𝜏 2p𝑟´ℓ`1q
´

𝜏
›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻2pΩqq
` }𝑓}

2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐿2pΩqq

¯ı

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.

Proof. Again, we (can) suppose that Assumptions 4.1 and 4.2 are fulfilled. It then only
remains to bound the right-hand side of Lemma 4.28 for the choice I𝜈 “

ş

𝐼𝜈
. The estimates

for the occurring terms are clear, cf. the proofs of Theorems 4.11, 4.20, and 4.24.
However, we want to point out that, in contrast to the proof of Theorem 4.24, for 𝑒I𝜏ℎ,ℓp𝑡

´
0 q

only a bound in the 𝐻-norm is needed here. For this it holds (see proof of Theorem 4.11)

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2
ď

#

0, r𝑃 0
ℎ “ 𝑅ℎ,

𝐶ℎ2p𝜅`𝜎q
›

›𝑢pℓqp𝑡´0 q
›

›

2

𝐻𝜅`1pΩq
, r𝑃 0

ℎ “ 𝑃ℎ,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise. This
justifies the slightly better spatial order.

Remark 4.30
Comparing the estimates of Theorem 4.24 and Theorem 4.29, one may briefly wonder about
the additional power of 𝜏 . However, this results from the weighting functions 𝑡 ÞÑ p𝑡´ 𝑡𝜈´1q

used locally on 𝐼𝜈 .
Moreover, note that from Lemma 4.27 and usual estimates for the occurring projection

error terms, we have for the fully discrete error with I𝜈 “
ş

𝐼𝜈
and if 𝑘 ´ 2ℓ “ 0 (ô 𝑘 is

even) that
𝑛
ÿ

𝜈“1

ż

𝐼𝜈

›

›B𝑡𝑒
ş

𝜏ℎ,ℓ

›

›

2
p𝑡 ´ 𝑡𝜈´1q d𝑡 ď 𝐶p𝑓, 𝑢q

`

ℎ2p𝜅`𝜎q
` 𝜏 2p𝑟´ℓ`1q

˘

,

which shows an improved convergence behavior with respect to time approximation com-
pared to the respective estimate for the error. Thus, also in the dG-like case B𝑡𝑅ℎ

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq

is superclose to B𝑡𝑢
pℓq
𝜏ℎ . ♣

4.1.5 Pointwise error in the 𝐻-norm

For both, cGP-like and dG-like methods, we have control over the time derivative of the
discrete error term 𝑒I𝜏ℎ,ℓ in a (locally weighted) 𝐿2-norm. This can be used to derive pointwise
error estimates.
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4.1 Error estimates for the ℓth derivative

Lemma 4.31
Suppose that Assumptions 4.1 and 4.2 hold. Moreover, assume that ΠI

𝑟´𝑘`ℓ

`

𝑓 pℓq´𝑔pℓq
˘

p𝑡q P 𝐻

for all 𝑡 P 𝐼. Then, for all 𝑛 “ 1, . . . , 𝑁 it holds

sup
𝑡Pr𝑡0,𝑡𝑛s

›

›

`

𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ

˘

p𝑡q
›

›

2

ď 𝐶

ˆ

sup
𝑡Pr𝑡0,𝑡𝑛s

›

›𝑢pℓq
p𝑡q ´ 𝑅ℎ𝑢

pℓq
p𝑡q

›

›

2
` sup

𝑡Pr𝑡0,𝑡𝑛s

›

›𝑢pℓq
p𝑡q ´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq

p𝑡q
›

›

2

𝑉
` sup

𝑡Pr𝑡0,𝑡𝑛s

›

›𝑒I𝜏ℎ,ℓp𝑡q
›

›

2

˙

where

sup
𝑡Pr𝑡0,𝑡𝑛s

›

›𝑒I𝜏ℎ,ℓp𝑡q
›

›

2
ď 𝐶

`

1 ` 𝜏
˘

exp pp1 ` 𝛿1,𝑘´2ℓqp𝑡𝑛´1 ´ 𝑡0qq

ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2
`

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2

𝑉
` Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` 𝜏Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2
r𝑉

ı

` Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2
ı

` 𝜏𝛿1,𝑘´2ℓ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2

𝑉

˙

with 𝜔I
𝜈 p¨q as defined in (4.7). The exponential factor can be dropped if 𝜔I

𝜈

`

𝑅ℎ𝑢
pℓq
˘

“ 0 for
all 𝜈 “ 1, . . . , 𝑛 ´ 1.

Proof. We decompose the error as usual in the three terms

𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ “

`

𝑢pℓq
´ 𝑅ℎ𝑢

pℓq
˘

`
`

𝑅ℎ𝑢
pℓq

´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
˘

` 𝑒I𝜏ℎ,ℓ, 𝑒I𝜏ℎ,ℓ “ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
´ 𝑢

pℓq
𝜏ℎ .

The stability of 𝑅ℎ is used to estimate the second term by

sup
𝑡Pr𝑡0,𝑡𝑛s

›

›𝑅ℎ𝑢
pℓq

p𝑡q ´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
p𝑡q

›

›

2
ď 𝐶2

emb sup
𝑡Pr𝑡0,𝑡𝑛s

›

›𝑅ℎ

`

𝑢pℓq
p𝑡q ´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq

p𝑡q
˘
›

›

2

𝑉

ď 𝐶 sup
𝑡Pr𝑡0,𝑡𝑛s

›

›𝑢pℓq
p𝑡q ´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq

p𝑡q
›

›

2

𝑉
.

Hence, using the triangle inequality, the first desired statement follows easily.
We now analyze the third summand 𝑒I𝜏ℎ,ℓ “ 𝑅ℎ

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq ´ 𝑢
pℓq
𝜏ℎ . Let 𝑠 P r𝑡0, 𝑡𝑛s be fixed,

then it holds 𝑠 P r𝑡𝜈´1, 𝑡𝜈s for some 1 ď 𝜈 ď 𝑛 and

𝑒I𝜏ℎ,ℓp𝑠q “ 𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q ´

ż 𝑡𝜈

𝑠

B𝑡𝑒
I
𝜏ℎ,ℓ d𝑡.

From this we derive by the triangle inequality and the Cauchy–Schwarz inequality

›

›𝑒I𝜏ℎ,ℓp𝑠q
›

›

2
ď 2

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2
` 2

›

›

›

›

ż 𝑡𝜈

𝑠

B𝑡𝑒
I
𝜏ℎ,ℓ d𝑡

›

›

›

›

2

ď 2
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2
` 2

ˆ
ż 𝑡𝜈

𝑠

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

› d𝑡

˙2

ď 2
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2
` 2 p𝑡𝜈 ´ 𝑠q

ż 𝑡𝜈

𝑠

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡.
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Hence, we obtain

sup
𝑡Pr𝑡0,𝑡𝑛s

›

›𝑒I𝜏ℎ,ℓp𝑡q
›

›

2
ď 2 max

𝜈“1,...,𝑛

ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2
` 𝜏𝜈

ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡

˙

.

If 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd), the right-hand side then can be bounded by Lemma 4.18 (and
Lemma 4.8). Hence, in this case the second desired estimate follows easily.

If 𝑘 ´ 2ℓ “ 0 (ô 𝑘 is even), we further use a norm equivalence in the finite dimensional
polynomial space, cf. [52, (12.18), p. 210], that gives

𝜏𝜈

ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
d𝑡 ď r𝐶

ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
p𝑡 ´ 𝑡𝜈´1q d𝑡

for some constant r𝐶 ą 0 independent of 𝜈 (and 𝜏𝜈). Thus, it holds

sup
𝑡Pr𝑡0,𝑡𝑛s

›

›𝑒I𝜏ℎ,ℓp𝑡q
›

›

2
ď 𝐶 max

𝜈“1,...,𝑛

ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2
`

ż

𝐼𝜈

›

›B𝑡𝑒
I
𝜏ℎ,ℓ

›

›

2
p𝑡 ´ 𝑡𝜈´1q d𝑡

˙

.

Then, in order to bound the right-hand side, Lemma 4.8 and Lemma 4.27 can be applied. To
simplify the terms, note that due }𝑤} ď 𝐶emb }𝑤}𝑉 for all 𝑤 P 𝑉 it also holds the estimate
}𝑤}𝑉 1 ď 𝐶emb }𝑤} for all 𝑤 P 𝐻 Ă 𝑉 1.

Theorem 4.32
Consider the setting of model problem (3.4) with standard spatial discretization satisfy-
ing (3.16) and let 𝑔 P t𝑓,Π𝑟

𝑘𝑓, ℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓u Yif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

. Then, we have the following
error estimate

sup
𝑡Pr𝑡0,𝑡𝑛s

›

›

`

𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ

˘

p𝑡q
›

›

2

ď 𝐶
”

ℎ2p𝜅`𝜎q
´

›

›𝑢pℓq
›

›

2

𝐶pr𝑡0,𝑡𝑛s,𝐻𝜅`1pΩqq
`
›

›𝑢pℓq
›

›

2

𝐻1pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq

¯

` 𝛿1,𝑘´2ℓq𝜎𝜏ℎ
2𝜅
›

›𝑢pℓq
p𝑡0q

›

›

2

𝐻𝜅`1pΩq

` 𝜏 2p𝑟´ℓ`1q
´

›

›𝑢pℓq
›

›

2

𝑊 𝑟´ℓ`1,8pr𝑡0,𝑡𝑛s,𝐻1pΩqq
`
›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq

` 𝜏
›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻2pΩqq
` }𝑓}

2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐿2pΩqq

¯ı

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise. More-
over, q𝜎 “ 0 if r𝑃 0

ℎ “ 𝑅ℎ and q𝜎 “ 1 if r𝑃 0
ℎ “ 𝑃ℎ.

Proof. Starting with Lemma 4.31 for the case I𝜈 “
ş

𝐼𝜈
, the statement follows from projection

error estimates. Most terms have been already bounded earlier. The remaining terms can
be bounded using quite similar arguments.

Remark 4.33
The convergence behavior with respect to time shown in Theorem 4.32 is of the expected
order 𝑟 ´ ℓ ` 1. With respect to space, we find order 𝜅 ` 𝜎 in the dG-like case. For cGP-
like methods this spatial order is only obtained if the Ritz projection 𝑅ℎ is chosen for the
approximation of the initial value. However, it is not yet clear whether this choice is really
necessary to gain spatial order 𝜅 ` 𝜎 instead of 𝜅 or whether we only need it due to our
proof technique. ♣
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4.1 Error estimates for the ℓth derivative

4.1.6 Supercloseness and its consequences

Supercloseness phenomena occur for many different discretizations of various differential
problems. Supercloseness here means that the numerical solution is somewhat closer to a
certain projection of the exact solution than to the exact solution itself. Often this property
can be used to improve the method or the estimates.

Usually, supercloseness is strongly connected to specific properties of the involved projec-
tion operator. Therefore, we have a look on an interesting feature of the temporal projection
operator rΠ𝑟´ℓ,I

𝑘´2ℓ at first. The result then will be exploited later.

Lemma 4.34
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and ℓ “

X

𝑘
2

\

. Denote by 𝑋 a Banach space over R. Then, it holds

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣 “ rΠ𝑟´ℓ

𝑘´2ℓ𝑣 “ ℐ𝑟´ℓ
𝑘´2ℓ𝑣 @𝑣 P 𝑃𝑟´ℓ`1p𝐼𝑛, 𝑋q.

Proof. Taking a closer look at the definition of rΠ𝑟´ℓ,I
𝑘´2ℓ , we see that for 𝑣 P 𝑃𝑟´ℓ`1p𝐼𝑛, 𝑋q the

integrator I𝑛 can be replaced by the integral over 𝐼𝑛 due to our assumption (4.5a) that I𝑛

integrates polynomials of maximal degree 2𝑟´ 𝑘 exactly. Together with the observations of
Remark 4.2, the first identity is shown.

It remains to prove the second identity. Recalling the definitions of rΠ𝑟´ℓ
𝑘´2ℓ and ℐ𝑟´ℓ

𝑘´2ℓ, we
immediately get that

rΠ𝑟´ℓ
𝑘´2ℓ𝑣p𝑡`𝑛´1q “ 𝑣p𝑡`𝑛´1q “ ℐ𝑟´ℓ

𝑘´2ℓ𝑣p𝑡`𝑛´1q, if 𝑘 ´ 2ℓ “ 1,

and

rΠ𝑟´ℓ
𝑘´2ℓ𝑣p𝑡´𝑛 q “ 𝑣p𝑡´𝑛 q “ ℐ𝑟´ℓ

𝑘´2ℓ𝑣p𝑡´𝑛 q

for any 𝑣 P 𝐶p𝐼𝑛, 𝑋q. Moreover, using the exactness of the quadrature rule 𝑄𝑟´ℓ
𝑘´2ℓ up to

polynomial degree 2𝑟 ´ 𝑘, we gain for 𝑣 P 𝑃𝑟´ℓ`1p𝐼𝑛, 𝑋q that
ż

𝐼𝑛

rΠ𝑟´ℓ
𝑘´2ℓ𝑣 𝑤 d𝑡 “

ż

𝐼𝑛

𝑣 𝑤 d𝑡 “ 𝑄𝑟´ℓ
𝑘´2ℓ

”

𝑣 𝑤
ı

“ 𝑄𝑟´ℓ
𝑘´2ℓ

”

ℐ𝑟´ℓ
𝑘´2ℓ𝑣 𝑤

ı

“

ż

𝐼𝑛

ℐ𝑟´ℓ
𝑘´2ℓ𝑣 𝑤 d𝑡

@𝑤 P 𝑃𝑟´𝑘`ℓ´1p𝐼𝑛q.

Since both rΠ𝑟´ℓ
𝑘´2ℓ𝑣 and ℐ𝑟´ℓ

𝑘´2ℓ𝑣 are 𝑋-valued polynomials of degree 𝑟´ ℓ, which are uniquely
determined by these 𝑟 ´ ℓ ` 1 conditions, it follows that rΠ𝑟´ℓ

𝑘´2ℓ𝑣 “ ℐ𝑟´ℓ
𝑘´2ℓ𝑣 holds for all

𝑣 P 𝑃𝑟´ℓ`1p𝐼𝑛, 𝑋q.

The result of Lemma 4.34 suggests that rΠ𝑟´ℓ,I
𝑘´2ℓ provides improved approximation prop-

erties in the quadrature points of 𝑄𝑟´ℓ
𝑘´2ℓ. Now, inspecting the estimates for 𝑒I𝜏ℎ,ℓ derived

above, see Lemma 4.10, we note that the term

Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

is occurring. So, from our observations it seems that I𝜈 “ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈 is an appropriate choice

to gain improved estimates. This choice or change of the integrator, however, is possible
under certain assumptions on 𝑔 only, for example, if 𝑔pℓq is a polynomial in time of maximal
degree 𝑟 ´ ℓ on every 𝐼𝜈 , 𝜈 “ 1, . . . , 𝑛.
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4 Error Analysis for VTD Methods

Lemma 4.35
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, ℓ “

X

𝑘
2

\

, and set I𝜈 “ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈. Then, in the setting of model

problem (3.4) with standard spatial discretization satisfying (3.16) it holds

Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

“

𝑛
ÿ

𝜈“1

𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

ď 𝐶𝜏 2p𝑟´ℓ`2q
›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`2pp𝑡0,𝑡𝑛q,𝐻1pΩqq
.

Proof. Let 𝑋 denote some Banach space over R. We start defining another operator
rΠ𝑟´ℓ`1,I
𝑘´2ℓ,˚ : 𝐻1p𝐼𝑛, 𝑋q X 𝐶𝑘I`1p𝐼𝑛, 𝑋q Ñ 𝑃𝑟´ℓ`1p𝐼𝑛, 𝑋q by

`

𝑣 ´ rΠ𝑟´ℓ`1,I
𝑘´2ℓ,˚ 𝑣

˘

p𝑡`𝑛´1q “ 0, if 𝑘 ´ 2ℓ “ 1,

I𝑛

”

B𝑡
`

𝑣 ´ rΠ𝑟´ℓ`1,I
𝑘´2ℓ,˚ 𝑣

˘

𝑤
ı

` 𝛿0,𝑘´2ℓ

`

𝑣 ´ rΠ𝑟´ℓ`1,I
𝑘´2ℓ,˚ 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q “ 0 @𝑤 P 𝑃𝑟´𝑘`ℓp𝐼𝑛q,
ż

𝐼𝑛

B𝑡
`

𝑣 ´ rΠ𝑟´ℓ`1,I
𝑘´2ℓ,˚ 𝑣

˘

𝑤 d𝑡 ` 𝛿0,𝑘´2ℓ

`

𝑣 ´ rΠ𝑟´ℓ`1,I
𝑘´2ℓ,˚ 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q “ 0 @𝑤 P r𝑃𝑟´𝑘`ℓ`1p𝐼𝑛q

where r𝑃𝑟´𝑘`ℓ`1p𝐼𝑛q :“ 𝑃𝑟´𝑘`ℓ`1p𝐼𝑛qz𝑃𝑟´𝑘`ℓp𝐼𝑛q. One easily verifies that rΠ𝑟´ℓ`1,I
𝑘´2ℓ,˚ is a well-

defined projection operator onto𝑋-valued polynomials of degree 𝑟´ℓ`1, cf. Definition C.11.
Moreover, with the findings of Lemma 4.34 it follows

rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑣 “ rΠ𝑟´ℓ,I

𝑘´2ℓ
rΠ𝑟´ℓ`1,I
𝑘´2ℓ,˚ 𝑣 “ ℐ𝑟´ℓ

𝑘´2ℓ
rΠ𝑟´ℓ`1,I
𝑘´2ℓ,˚ 𝑣 for all 𝑣 P 𝐶maxt0,𝑘Iu`1

p𝐼𝑛, 𝑋q.

Thus, we obtain that

𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

“ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑢pℓq
´ ℐ𝑟´ℓ

𝑘´2ℓ
rΠ𝑟´ℓ`1,I
𝑘´2ℓ,˚ 𝑢pℓq

›

›

2

𝑉

ı

“ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ`1,I

𝑘´2ℓ,˚ 𝑢pℓq
›

›

2

𝑉

ı

.

Then, local projection error estimates, see Lemma B.9 or also cf. [21, Theorem 3.1.4, p. 121]
or [25, Remark 1.112, p. 62] (where the real-valued case is handled), yield for the term on
the right-hand side that

𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ`1,I

𝑘´2ℓ,˚ 𝑢pℓq
›

›

2

𝑉

ı

ď 𝐶𝜏𝜈
›

›𝑢pℓq
´ rΠ𝑟´ℓ`1,I

𝑘´2ℓ,˚ 𝑢pℓq
›

›

2

𝐶p𝐼𝜈 ,𝐻1pΩqq

ď 𝐶𝜏𝜈

´

𝐶𝜏 𝑟´ℓ`2´1{2
𝜈

›

›𝑢pℓq
›

›

𝐻𝑟´ℓ`2p𝐼𝜈 ,𝐻1pΩqq

¯2

ď 𝐶𝜏 2p𝑟´ℓ`2q
𝜈

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`2p𝐼𝜈 ,𝐻1pΩqq
,

which, after summation over 𝜈 “ 1, . . . , 𝑛, gives the desired bound.

In previous subsections, we have always chosen I𝜈 “
ş

𝐼𝜈
when concrete convergence orders

were shown. In this case, of course, no integrator error occurs. Since for the supercloseness
studies we choose I𝜈 “ 𝑄𝑟´ℓ

𝑘´2ℓ,𝜈 , an examination of 𝜔I
𝜈 p𝑅ℎ𝑢

pℓqq, 𝜈 “ 1, . . . , 𝑛, becomes
necessary.
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4.1 Error estimates for the ℓth derivative

Lemma 4.36
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, ℓ “

X

𝑘
2

\

, and set I𝜈 “ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈. Moreover, let 𝑗 P Z with

1 ď 𝑗 ď 2𝑟´𝑘`1 and 𝜔I
𝜈 p¨q be defined by (4.7). Then, in the setting of model problem (3.4)

with standard spatial discretization satisfying (3.16) it holds

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2
ď 𝐶 p1 ` 2𝜏q 𝜏 2𝑗

›

›𝑢pℓ`1q
›

›

2

𝐻𝑗pp𝑡0,𝑡𝑛´1q,𝐻1pΩqq
.

Proof. First of all, by definition we have that

𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q “

ż

𝐼𝜈

𝑅ℎ𝑢
pℓ`1q d𝑡 ´ 𝑄𝑟´ℓ

𝑘´2ℓ,𝜈

”

𝑅ℎ𝑢
pℓ`1q

ı

.

Furthermore, let qℐ𝑟´ℓ,𝑄
𝑘´2ℓ denote the local version of an interpolation operator such that

qℐ𝑟´ℓ,𝑄
𝑘´2ℓ 𝑤 P 𝑃2𝑟´𝑘p𝐼𝜈 , 𝑋q interpolates 𝑤 P 𝐶p𝐼𝜈 , 𝑋q in the 𝑟´ℓ`1 quadrature points of 𝑄𝑟´ℓ

𝑘´2ℓ,𝜈

and in 𝑟´ 𝑘` ℓ additional points. The exactness of the quadrature rule for polynomials up
to degree 2𝑟 ´ 𝑘 yields

𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

𝑅ℎ𝑢
pℓ`1q

ı

“ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

qℐ𝑟´ℓ,𝑄
𝑘´2ℓ

`

𝑅ℎ𝑢
pℓ`1q

˘

ı

“

ż

𝐼𝜈

qℐ𝑟´ℓ,𝑄
𝑘´2ℓ

`

𝑅ℎ𝑢
pℓ`1q

˘

d𝑡

“

ż

𝐼𝜈

𝑅ℎ
qℐ𝑟´ℓ,𝑄
𝑘´2ℓ 𝑢

pℓ`1q d𝑡.

So, using the Cauchy–Schwarz inequality and the stability of 𝑅ℎ in the 𝑉 -norm, it follows

›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2
“

›

›

›

›

ż

𝐼𝜈

𝑅ℎ𝑢
pℓ`1q d𝑡 ´ 𝑄𝑟´ℓ

𝑘´2ℓ,𝜈

”

𝑅ℎ𝑢
pℓ`1q

ı

›

›

›

›

2

(4.15)

“

›

›

›

›

ż

𝐼𝜈

𝑅ℎ𝑢
pℓ`1q

´ 𝑅ℎ
qℐ𝑟´ℓ,𝑄
𝑘´2ℓ 𝑢

pℓ`1q d𝑡

›

›

›

›

2

ď 𝐶2
emb𝜏𝜈

ż

𝐼𝜈

›

›𝑅ℎ

`

𝑢pℓ`1q
´ qℐ𝑟´ℓ,𝑄

𝑘´2ℓ 𝑢
pℓ`1q

˘
›

›

2

𝑉
d𝑡

ď 𝐶𝜏𝜈

ż

𝐼𝜈

›

›𝑢pℓ`1q
´ qℐ𝑟´ℓ,𝑄

𝑘´2ℓ 𝑢
pℓ`1q

›

›

2

𝑉
d𝑡.

Therefore, (standard) error estimates for the interpolation operator qℐ𝑟´ℓ,𝑄
𝑘´2ℓ imply

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2

ď 𝐶 p1 ` 2𝜏q

ż 𝑡𝑛´1

𝑡0

›

›𝑢pℓ`1q
´ qℐ𝑟´ℓ,𝑄

𝑘´2ℓ 𝑢
pℓ`1q

›

›

2

𝑉
d𝑡 ď 𝐶 p1 ` 2𝜏q 𝜏 2𝑗

›

›𝑢pℓ`1q
›

›

2

𝐻𝑗pp𝑡0,𝑡𝑛´1q,𝐻1pΩqq
,

which completes the proof.

Remark 4.37
If 𝑢 is sufficiently smooth (especially 𝑢pℓ`1q P 𝐻1pp𝑡0, 𝑡𝑛q, 𝐻1

0 pΩqqX𝐻2𝑟´𝑘`1pp𝑡0, 𝑡𝑛q, 𝐻1pΩqq),
the estimate of Lemma 4.36 ensures a behavior of the quadrature error term of 𝒪p𝜏 2p2𝑟´𝑘`1qq.
Note that this is in line with the superconvergence order in the time (mesh) points of 2𝑟´𝑘`1
seen in Subsection 1.2.3 in the case of non-stiff initial value problems. ♣
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4 Error Analysis for VTD Methods

It seems that supercloseness only can be proven if the right-hand side 𝑔 of the discrete
method fulfills certain conditions.

Assumption 4.3
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, ℓ “

X

𝑘
2

\

. We assume that there is an approximation operator A
satisfying

ℐ𝑟´ℓ
𝑘´2ℓ

`

pA𝑓q
pℓq

´ 𝑔pℓq
˘

“ 0 and
›

›p𝑓 ´ A𝑓q
pℓq
›

›

𝐶p𝐼𝑛,𝑉 1q
ď 𝐶𝜏 𝑟´ℓ`2´1{2

𝑛

›

›𝑓
›

›

𝐻𝑟`2p𝐼𝑛,𝑉 1q
(4.16)

with 𝐶 independent of 𝜏𝑛 and 1 ď 𝑛 ď 𝑁 .

Remark 4.38
We want to give some relevant examples for 𝑔 where (4.16) can be satisfied.

(i) For 𝑔 “ ℐ𝑟
𝑘𝑓 : Similar to pℐ𝑟

𝑘 let the operator pℐ𝑟`1
𝑘,♢ : 𝐶t 𝑘

2 upr´1, 1sq Ñ 𝑃𝑟`1pr´1, 1sq use
the same interpolation points as pℐ𝑟

𝑘 , cf. (1.15), and one additional interpolation point
𝑡♢ P p´1, 1q. By transformation with 𝑇𝑛 from (1.7) we also get interpolation operators
ℐ𝑟`1
𝑘,♢ on 𝐼𝑛, 𝑛 “ 1, . . . , 𝑁 .

We now choose A𝑓 “ ℐ𝑟`1
𝑘,♢ 𝑓 . Since, obviously, 𝑔 “ ℐ𝑟

𝑘𝑓 “ ℐ𝑟
𝑘ℐ𝑟`1

𝑘,♢ 𝑓 , we have on 𝐼𝑛 that

A𝑓 ´ 𝑔 “ pId ´ ℐ𝑟
𝑘qℐ𝑟`1

𝑘,♢ 𝑓 “ 𝑐 𝜑𝑛 for some 𝑐 P R, 𝜑𝑛 P 𝑃𝑟`1p𝐼𝑛q,

where 𝜑𝑛 vanishes in all interpolation points of ℐ𝑟
𝑘 .

Because of ℓ “
X

𝑘
2

\

and 𝑘 ´ ℓ ´ 1 “
X

𝑘´1
2

\

as well as due to the construction of ℐ𝑟
𝑘 , it

holds that 𝜑𝑛 “ 𝜑 ˝ 𝑇´1
𝑛 is the local version of the function 𝜑 P 𝑃𝑟`1pr´1, 1sq given by

𝜑p𝑡q “
`

1 ´ 𝑡
˘ℓ`1 `

1 ` 𝑡
˘𝑘´ℓ

𝑃
pℓ`1,𝑘´ℓq
𝑟´𝑘 p𝑡q. (4.17)

Here, 𝑃 pℓ`1,𝑘´ℓq
𝑟´𝑘 denotes the p𝑟 ´ 𝑘qth Jacobi-polynomial with respect to the weight

p1´ 𝑡qℓ`1p1` 𝑡q𝑘´ℓ, see Appendix A.2 for details. An easy conclusion from Rodrigues’
formula, see (A.2), furthermore gives that

𝜑pℓq
p𝑡q “ 𝑐

`

1 ´ 𝑡
˘ `

1 ` 𝑡
˘𝑘´2ℓ

𝑃
p1,𝑘´2ℓq
𝑟´𝑘`ℓ p𝑡q

and so 𝜑pℓq vanishes in the interpolation points of pℐ𝑟´ℓ
𝑘´2ℓ.

We therefore conclude ℐ𝑟´ℓ
𝑘´2ℓ

`

pA𝑓qpℓq ´ 𝑔pℓq
˘

“ 𝑐 ℐ𝑟´ℓ
𝑘´2ℓ𝜑

pℓq
𝑛 “ 0. Furthermore, since

A𝑓 “ ℐ𝑟`1
𝑘,♢ 𝑓 is a Hermite interpolation of 𝑓 of polynomial degree 𝑟 ` 1, the error

estimates are clear.

(ii) For 𝑔 “ 𝒞𝑟
𝑘𝑓 : Here, we choose A𝑓 “ 𝒞𝑟`1

𝑘`2𝑓 . Since, obviously, 𝑔 “ 𝒞𝑟
𝑘𝑓 “ ℐ𝑟

𝑘𝒞𝑟`1
𝑘`2𝑓 , we

again have on 𝐼𝑛 that

A𝑓 ´ 𝑔 “ pId ´ ℐ𝑟
𝑘q𝒞𝑟`1

𝑘`2𝑓 “ 𝑐 𝜑𝑛 for some 𝑐 P R, 𝜑𝑛 P 𝑃𝑟`1p𝐼𝑛q,

where 𝜑𝑛 vanishes in all interpolation points of ℐ𝑟
𝑘 . Therefore, we can conclude as

in (i). ♣
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4.1 Error estimates for the ℓth derivative

Lemma 4.39
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, ℓ “

X

𝑘
2

\

, and set I𝜈 “ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈. Moreover, assume that there

is an approximation operator A satisfying Assumption 4.3. Then, in the setting of model
problem (3.4) with standard spatial discretization satisfying (3.16) it holds

Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2

𝑉 1

ı

“

𝑛
ÿ

𝜈“1

𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2

𝑉 1

ı

ď 𝐶𝜏 2p𝑟´ℓ`2q
}𝑓}

2
𝐻𝑟`2pp𝑡0,𝑡𝑛q,𝐻´1pΩqq

.

Proof. Because of Remark 4.7, I𝜈 “ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈 , and ℐ𝑟´ℓ

𝑘´2ℓ

`

pA𝑓qpℓq ´ 𝑔pℓq
˘

“ 0, we get

I𝜈

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2

𝑉 1

ı

ď 𝐶𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑓 pℓq
´ 𝑔pℓq

›

›

2

𝑉 1

ı

“ 𝐶𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑓 pℓq
´ pA𝑓q

pℓq
›

›

2

𝑉 1

ı

.

With similar arguments as used in the proof of Lemma 4.35 but here applying the assump-
tions on the error of A, we further conclude

𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑓 pℓq
´ pA𝑓q

pℓq
›

›

2

𝑉 1

ı

ď 𝐶𝜏𝜈
›

›𝑓 pℓq
´ pA𝑓q

pℓq
›

›

2

𝐶p𝐼𝜈 ,𝐻´1pΩqq

ď 𝐶𝜏𝜈

´

𝐶𝜏 𝑟´ℓ`2´1{2
𝜈 }𝑓}𝐻𝑟`2p𝐼𝜈 ,𝐻´1pΩqq

¯2

ď 𝐶𝜏 2p𝑟´ℓ`2q
𝜈 }𝑓}

2
𝐻𝑟`2p𝐼𝜈 ,𝐻´1pΩqq

.

The desired statement follows easily by summation over 𝜈 “ 1, . . . , 𝑛.

Summarizing, we get supercloseness results for 𝑒I𝜏ℎ,ℓ with I𝜈 “ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈 under certain

assumptions on 𝑔. This also implies a lower order superconvergence result for the ℓth
derivative of the error in the time mesh points and an improved convergence order with
respect to the quadrature formula 𝑄𝑟´ℓ

𝑘´2ℓ. Hereby, recall that the choice I𝑛 “ 𝑄𝑟´ℓ
𝑘´2ℓ,𝑛 is

possible only if 𝑔pℓq|𝐼𝑛 P 𝑃𝑟´ℓp𝐼𝑛, 𝑉
1q for all 𝑛 “ 1, . . . , 𝑁 .

Theorem 4.40 (Supercloseness result)
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, ℓ “

X

𝑘
2

\

, and set I𝜈 “ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈. Moreover, assume that there

is an approximation operator A satisfying Assumption 4.3. Then, in the setting of model
problem (3.4) with standard spatial discretization satisfying (3.16) it holds

max
𝜈“1,...,𝑛

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›

2
`

ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2
d𝑡 ` 𝛿0,𝑘´2ℓ

ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡

ď 𝐶
`

1 ` 𝛿1,𝑘´2ℓp𝑡𝑛 ´ 𝑡0q
˘

exp p𝑡𝑛´1 ´ 𝑡0q
”

ℎ2p𝜅`𝜎q
´

p𝑡𝑛 ´ 𝑡0q
›

›𝑢pℓ`1q
›

›

2

𝐶pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
`
›

›𝑢pℓq
p𝑡0q

›

›

2

𝐻𝜅`1pΩq

¯

` 𝜏 2p𝑟´ℓ`2q
´

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`2pp𝑡0,𝑡𝑛q,𝐻1pΩqq
` }𝑓}

2
𝐻𝑟`2pp𝑡0,𝑡𝑛q,𝐻´1pΩqq

¯

` p1 ` 𝜏q 𝜏 2mint𝑟´ℓ`2,2𝑟´𝑘`1u
›

›𝑢pℓ`1q
›

›

2

𝐻mint𝑟´ℓ`2,2𝑟´𝑘`1upp𝑡0,𝑡𝑛´1q,𝐻1pΩqq

ı

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.
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Proof. Combining Lemma 4.8 and the second estimate of Lemma 4.10, we find

›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝑛 q
›

›

2
`

ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2
d𝑡 ` 𝛿0,𝑘´2ℓ

ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡

ď 𝐶
`

1 ` 𝛿1,𝑘´2ℓp𝑡𝑛 ´ 𝑡0q
˘

exp p𝑡𝑛´1 ´ 𝑡0q
ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2
`

𝑛´1
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2
` Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘
›

›

2

𝑉 1

ı

˙

with 𝜔I
𝜈 p¨q as defined in (4.7). Merging this with the Lemmas 4.35, 4.36, and 4.39 as well

as estimating the remaining spatial error terms by (3.16a) and (3.16b), we are done.

Corollary 4.41 (Consequences of the supercloseness result)
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, ℓ “

X

𝑘
2

\

, and set I𝜈 “ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈. Moreover, assume that there

is an approximation operator A satisfying Assumption 4.3. Then, in the setting of model
problem (3.4) with standard spatial discretization satisfying (3.16) it holds

max
𝜈“1,...,𝑛

›

›

`

𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ

˘

p𝑡´𝜈 q
›

›

2
`

𝑛
ÿ

𝜈“1

𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ

›

›

2
ı

ď 𝐶
`

1 ` 𝛿1,𝑘´2ℓp𝑡𝑛 ´ 𝑡0q
˘

exp p𝑡𝑛´1 ´ 𝑡0q
”

ℎ2p𝜅`𝜎q
´

p𝑡𝑛 ´ 𝑡0q
›

›𝑢pℓ`1q
›

›

2

𝐶pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
`
`

1 ` p𝑡𝑛 ´ 𝑡0q
˘ ›

›𝑢pℓq
›

›

2

𝐶pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq

¯

` 𝜏 2p𝑟´ℓ`2q
´

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`2pp𝑡0,𝑡𝑛q,𝐻1pΩqq
` }𝑓}

2
𝐻𝑟`2pp𝑡0,𝑡𝑛q,𝐻´1pΩqq

¯

` p1 ` 𝜏q 𝜏 2mint𝑟´ℓ`2,2𝑟´𝑘`1u
›

›𝑢pℓ`1q
›

›

2

𝐻mint𝑟´ℓ`2,2𝑟´𝑘`1upp𝑡0,𝑡𝑛q,𝐻1pΩqq

ı

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.

Proof. Using the error decomposition

𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ “

`

𝑢pℓq
´ 𝑅ℎ𝑢

pℓq
˘

`
`

𝑅ℎ𝑢
pℓq

´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
˘

` 𝑒I𝜏ℎ,ℓ, 𝑒I𝜏ℎ,ℓ “ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
´ 𝑢

pℓq
𝜏ℎ ,

we find together with (4.7) that
›

›

`

𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ

˘

p𝑡´𝜈 q
›

› ď
›

›

`

𝑢pℓq
´ 𝑅ℎ𝑢

pℓq
˘

p𝑡´𝜈 q
›

› `
›

›𝜔I
𝜈

`

𝑅ℎ𝑢
pℓq
˘
›

› `
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝜈 q
›

›.

These terms can be estimated by (3.16), Lemma 4.36, and Theorem 4.40.
Moreover, we obtain

𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ

›

›

2
ı

ď 3

ˆ

𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑢pℓq
´ 𝑅ℎ𝑢

pℓq
›

›

2
ı

` 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑅ℎ𝑢
pℓq

´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
›

›

2
ı

` 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑒I𝜏ℎ,ℓ
›

›

2
ı

˙

ď 𝐶

ˆ

𝜏𝜈
›

›𝑢pℓq
´ 𝑅ℎ𝑢

pℓq
›

›

2

𝐶p𝐼𝜈 ,𝐿2pΩqq
` 𝑄𝑟´ℓ

𝑘´2ℓ,𝜈

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

`

ż

𝐼𝜈

›

›𝑒I𝜏ℎ,ℓ
›

›

2
d𝑡

˙

.

130



4.2 Error estimates in the time (mesh) points

Here, we used 𝑉 ãÑ 𝐻 and the stability of 𝑅ℎ with respect to the norm in 𝑉 to bound the
second term. Moreover, we exploited

𝑄𝑟´ℓ
𝑘´2ℓ,𝜈

”

›

›𝑒I𝜏ℎ,ℓ
›

›

2
ı

ď 𝐶𝜏𝜈 sup
𝑡P𝐼𝜈

›

›𝑒I𝜏ℎ,ℓ
›

›

2
ď 𝐶

ż

𝐼𝜈

›

›𝑒I𝜏ℎ,ℓ
›

›

2
d𝑡,

where the last step follows from a norm equivalence since the function 𝑡 ÞÑ
›

›𝑒I𝜏ℎ,ℓp𝑡q
›

›

2 is in
𝑃2p𝑟´ℓqp𝐼𝜈q. Summing over 𝜈 “ 1, . . . , 𝑛 and applying (3.16), Lemma 4.35, and Theorem 4.40,
we easily complete the proof.

Remark 4.42
Theorem 4.40 shows that under certain assumptions the temporal convergence order 𝑟´ℓ`2
can be obtained for the fully discrete error 𝑒I𝜏ℎ,ℓ with I𝜈 “ 𝑄𝑟´ℓ

𝑘´2ℓ,𝜈 . This is one order higher
than in the respective results for the error, cf. Theorem 4.11 and Corollary 4.13.

In Corollary 4.41 we then see an improved temporal convergence behavior for the ℓth
derivative of the error in the time (mesh) points compared to the pointwise error estimate
of Theorem 4.32. Moreover, we also obtain an improved estimate if we consider not the
exactly integrated, squared 𝐻-norm of 𝑢pℓq ´ 𝑢

pℓq
𝜏ℎ , as in Theorem 4.11, but the numerically

integrated using quadrature formula 𝑄𝑟´ℓ
𝑘´2ℓ. ♣

4.2 Error estimates in the time (mesh) points

We now have estimates for the ℓth derivative of the error. However, for 𝑘 ě 2 (ô ℓ ě 1)
bounds for the error 𝑢 ´ 𝑢𝜏ℎ itself still are missing. In this section, we want to derive such
bounds at least in the time (mesh) points.

4.2.1 Exploiting the collocation conditions

Recall that ℓ “
X

𝑘
2

\

, which is the highest derivative order that appears in the collocation
conditions on the right interval end. Set 𝑣ℎ,𝑖 :“

`

𝑅ℎ𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q for 0 ď 𝑖 ď ℓ ´ 1. The

𝑉 -ellipticity of 𝑎p¨, ¨q and the definition of 𝑅ℎ yield

𝛼
›

›𝑣ℎ,𝑖p𝑡
´
𝑛 q
›

›

2

𝑉
ď 𝑎

`

𝑅ℎ𝑢
p𝑖q

p𝑡´𝑛 q ´ 𝑢
p𝑖q
𝜏ℎp𝑡´𝑛 q, 𝑣ℎ,𝑖p𝑡

´
𝑛 q
˘

“ 𝑎
`

𝑢p𝑖q
p𝑡´𝑛 q ´ 𝑢

p𝑖q
𝜏ℎp𝑡´𝑛 q, 𝑣ℎ,𝑖p𝑡

´
𝑛 q
˘

“ ´
`

𝑢p𝑖`1q
p𝑡´𝑛 q ´ 𝑢

p𝑖`1q

𝜏ℎ p𝑡´𝑛 q, 𝑣ℎ,𝑖p𝑡
´
𝑛 q
˘

`
@

𝑓 p𝑖q
p𝑡´𝑛 q ´ 𝑔p𝑖q

p𝑡´𝑛 q, 𝑣ℎ,𝑖p𝑡
´
𝑛 q
D

𝑉 1,𝑉
,

where we also used that 𝑢p𝑖q solves the 𝑖th (temporal) derivative of the differential equation
and that 𝑢𝜏ℎ satisfies (3.17b). Hence, by Cauchy–Schwarz’ inequality, the definition of the
𝑉 1-norm, and because of 𝑉 ãÑ 𝐻, we obtain

›

›

`

𝑅ℎ𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

›

𝑉
ď
𝐶emb

𝛼

›

›𝑢p𝑖`1q
p𝑡´𝑛 q ´ 𝑢

p𝑖`1q

𝜏ℎ p𝑡´𝑛 q
›

› `
1

𝛼

›

›𝑓 p𝑖q
p𝑡´𝑛 q ´ 𝑔p𝑖q

p𝑡´𝑛 q
›

›

𝑉 1

for all 0 ď 𝑖 ď ℓ ´ 1. (4.18)
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By the triangle inequality we recursively conclude for all 0 ď 𝑖 ď ℓ ´ 1 that
›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

› ď
›

›

`

𝑢 ´ 𝑅ℎ𝑢
˘p𝑖q

p𝑡´𝑛 q
›

› `
›

›

`

𝑅ℎ𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

› (4.19)

ď

ˆ

𝐶2
emb

𝛼

˙ℓ´𝑖
›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘pℓq

p𝑡´𝑛 q
›

›

`

ℓ´1
ÿ

𝑗“𝑖

ˆ

𝐶2
emb

𝛼

˙𝑗´𝑖ˆ
›

›

`

𝑢 ´ 𝑅ℎ𝑢
˘p𝑗q

p𝑡´𝑛 q
›

› `
𝐶emb

𝛼

›

›

`

𝑓 ´ 𝑔
˘p𝑗q

p𝑡´𝑛 q
›

›

𝑉 1

˙

.

Accordingly, to get estimates for the error in the time (mesh) points, it is sufficient to
have a suitable bound for the norm of the ℓth derivative of the error there. Such bounds
can be derived quite similar to those of Lemma 4.10. Therefore, as consequence we get the
following result.

Lemma 4.43
Let 0 ď 𝑖 ď ℓ. Then, for all 𝑛 “ 1, . . . , 𝑁 it holds

›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

›

2

ď 𝐶
ℓ
ÿ

𝑗“𝑖

›

›

`

𝑢 ´ 𝑅ℎ𝑢
˘p𝑗q

p𝑡´𝑛 q
›

›

2
` 𝐶

ℓ´1
ÿ

𝑗“𝑖

›

›

`

𝑓 ´ 𝑔
˘p𝑗q

p𝑡´𝑛 q
›

›

2

𝑉 1

` 𝐶 exp p𝑡𝑛´1 ´ 𝑡0q
ˆ

›

›𝑒I𝜏ℎ,ℓp𝑡
´
0 q
›

›

2
`

𝑛
ÿ

𝜈“1

p2 ` 𝜏´1
𝜈 q

›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2
` Ir1,𝑛s

”

›

›𝑢pℓ`1q
´ 𝑅ℎ𝑢

pℓ`1q
›

›

2
ı

` Ir1,𝑛s

”

›

›𝑢pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑢
pℓq
›

›

2

𝑉

ı

` Ir1,𝑛s

”

›

›ΠI
𝑟´𝑘`ℓ

`

𝑓 pℓq
´ 𝑔pℓq

˘›

›

2

𝑉 1

ı

˙

with 𝜔I
𝜈 p¨q as defined in (4.7).

Proof. Because of (4.19), it remains to derive a suitable bound for the norm of the ℓth
derivative of the error in the time (mesh) points. To this end, we split the error as

𝑢pℓq
´ 𝑢

pℓq
𝜏ℎ “

`

𝑢pℓq
´ 𝑅ℎ𝑢

pℓq
˘

`
`

𝑅ℎ𝑢
pℓq

´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
˘

` 𝑒I𝜏ℎ,ℓ, 𝑒I𝜏ℎ,ℓ “ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
´ 𝑢

pℓq
𝜏ℎ .

From (4.7) we get for the second summand
`

𝑅ℎ𝑢
pℓq

´ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
˘

p𝑡´𝑛 q “
`

𝑅ℎ𝑢
pℓq

´ rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑅ℎ𝑢

pℓq
˘

p𝑡´𝑛 q “ 𝜔I
𝑛

`

𝑅ℎ𝑢
pℓq
˘

.

Hence, we conclude that

›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

› ď

ˆ

𝐶2
emb

𝛼

˙ℓ´𝑖
´

›

›

`

𝑢 ´ 𝑅ℎ𝑢
˘pℓq

p𝑡´𝑛 q
›

› `
›

›𝜔I
𝑛

`

𝑅ℎ𝑢
pℓq
˘›

› `
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝑛 q
›

›

¯

`

ℓ´1
ÿ

𝑗“𝑖

ˆ

𝐶2
emb

𝛼

˙𝑗´𝑖ˆ
›

›

`

𝑢 ´ 𝑅ℎ𝑢
˘p𝑗q

p𝑡´𝑛 q
›

› `
𝐶emb

𝛼

›

›

`

𝑓 ´ 𝑔
˘p𝑗q

p𝑡´𝑛 q
›

›

𝑉 1

˙

.

The desired statement now follows from Lemma 4.8.
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Proposition 4.44
Let 1 ď 𝑛 ď 𝑁 and 0 ď 𝑖 ď ℓ. Consider the setting of model problem (3.4) with standard
spatial discretization satisfying (3.16) and let 𝑔 P t𝑓,Π𝑟

𝑘𝑓, ℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓uYif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

. Then,
we have the following error estimate

›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

›

2
ď 𝐶ℎ2p𝜅`𝜎q

ˆ

›

›𝑢pℓq
›

›

2

𝐻1pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
`

ℓ´1
ÿ

𝑗“𝑖

›

›𝑢p𝑗q
p𝑡´𝑛 q

›

›

2

𝐻𝜅`1pΩq

˙

` 𝐶𝜏 2p𝑟´ℓ`1q
´

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq
` }𝑓}

2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐻´1pΩqq

¯

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.

Proof. Applying Lemma 4.43, used with I𝜈 “
ş

𝐼𝜈
, we need to bound certain projection

errors only. Most of them have already been estimated in the proof of Theorem 4.11. The
remaining terms can be bounded using (3.16).

Remark 4.45
For 0 ď 𝑖 ď ℓ we would expect convergence of order 𝑟 ´ 𝑖 ` 1 with respect to time from
the 𝑖th derivative of the error 𝑢´ 𝑢𝜏ℎ. But Proposition 4.44 only gives the order 𝑟 ´ ℓ` 1,
which is suboptimal for 0 ď 𝑖 ă ℓ. ♣

4.2.2 What about superconvergence!?

For 0 ď 𝑖 ă ℓ the estimates of Proposition 4.44 do not show the convergence orders that we
would expect from the 𝑖th derivative of the error 𝑢 ´ 𝑢𝜏ℎ. Hence, we are not satisfied by
these estimates.

An obvious approach therefore would be to use superconvergence results in the time
(mesh) points to derive more appropriate convergence orders. Exploiting the supercloseness
result of Subsection 4.1.6, we can derive a low order superconvergence result for the ℓth
derivative of the error in the time (mesh) points at least for 𝑔 P tℐ𝑟

𝑘𝑓, 𝒞𝑟
𝑘𝑓u. We, thus, gain

the following result.

Proposition 4.46
Let 1 ď 𝑛 ď 𝑁 and 0 ď 𝑖 ď ℓ. Consider the setting of model problem (3.4) with standard
spatial discretization satisfying (3.16) and let 𝑔 P tℐ𝑟

𝑘𝑓, 𝒞𝑟
𝑘𝑓u. Then, we have the following

error estimate
›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

›

2

ď 𝐶
`

1 ` 𝛿1,𝑘´2ℓp𝑡𝑛 ´ 𝑡0q
˘

exp p𝑡𝑛´1 ´ 𝑡0q
„

ℎ2p𝜅`𝜎q

ˆ

p𝑡𝑛 ´ 𝑡0q
›

›𝑢pℓ`1q
›

›

2

𝐶pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
`
›

›𝑢pℓq
p𝑡0q

›

›

2

𝐻𝜅`1pΩq
`

ℓ
ÿ

𝑗“𝑖

›

›𝑢p𝑗q
p𝑡𝑛q

›

›

2

𝐻𝜅`1pΩq

˙

` 𝜏 2p𝑟´ℓ`2q
´

›

›𝑢pℓq
›

›

2

𝐻𝑟´ℓ`2pp𝑡0,𝑡𝑛q,𝐻1pΩqq
` }𝑓}

2
𝐻𝑟`2pp𝑡0,𝑡𝑛q,𝐻´1pΩqq

¯

` p1 ` 𝜏q 𝜏 2mint𝑟´ℓ`2,2𝑟´𝑘`1u
›

›𝑢pℓ`1q
›

›

2

𝐻mint𝑟´ℓ`2,2𝑟´𝑘`1upp𝑡0,𝑡𝑛q,𝐻1pΩqq

ȷ

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.
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Proof. Recalling the arguments in the proof of Lemma 4.43, we find for 0 ď 𝑖 ď ℓ

›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

› ď 𝐶
´

›

›

`

𝑢 ´ 𝑅ℎ𝑢
˘pℓq

p𝑡´𝑛 q
›

› `
›

›𝜔I
𝑛

`

𝑅ℎ𝑢
pℓq
˘
›

› `
›

›𝑒I𝜏ℎ,ℓp𝑡
´
𝑛 q
›

›

¯

` 𝐶
ℓ´1
ÿ

𝑗“𝑖

´

›

›

`

𝑢 ´ 𝑅ℎ𝑢
˘p𝑗q

p𝑡´𝑛 q
›

› `
›

›

`

𝑓 ´ 𝑔
˘p𝑗q

p𝑡´𝑛 q
›

›

𝑉 1

¯

,

where we choose I𝜈 “ 𝑄𝑟´ℓ
𝑘´2ℓ,𝜈 , which is possibly due to 𝑔 P tℐ𝑟

𝑘𝑓, 𝒞𝑟
𝑘𝑓u. Moreover, note that

there is an approximation operator A satisfying (4.16) because of Remark 4.38.
The desired statement then follows from (3.16), Lemma 4.36, and Theorem 4.40. Here,

also note that
`

𝑓 ´ 𝑔
˘p𝑗q

p𝑡´𝑛 q “ 0 for 0 ď 𝑗 ď ℓ since 𝑔 P tℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓u.

In view of Subsection 1.2.3, we could hope for superconvergence results of the high order
2𝑟´𝑘`1 in the time (mesh) points also in the case of parabolic problems. However, known
results from the literature, see e.g. [11, Theorem 4.2], [52, p. 211], or also [6, Section 6],
suggest that, in order to obtain such higher order superconvergence for dG or cGP methods,
certain compatibility conditions are needed. So, inconvenient assumptions on the data would
be required and some artificial boundary conditions would have to be imposed that often
are quite unrealistic. We therefore look for an alternative approach.

4.2.3 Satisfactory order convergence avoiding superconvergence

As we have seen in the previous subsection, superconvergence estimates are only suitable
to a limited extent to derive convergence of satisfactory order. Therefore, we need to find a
technique of proof avoiding superconvergence.

In view of Subsection 3.3.2, the fully discrete problem can be interpreted as approximation
to the semi-discrete problem (3.11). So, we may transfer the ideas of the (stiff) error analysis
of Section 2.3, especially the results of Theorem 2.30. However, to derive appropriate
estimates, we then need uniform bounds on the derivatives of the solution 𝑢ℎ to the semi-
discrete problem.

Semi-discretization in space revisited

Recalling the stability estimate of Corollary 3.12, it remains to derive uniform bounds for
›

›𝑢
p𝑖q
ℎ p𝑡0q

›

› or
›

›𝑈
p𝑖q

ℎ p𝑡0q
›

›, respectively. This, however, is only possible if the initial value 𝑢ℎ,0
for the semi-discretization in space is suitably chosen.

To this end, let 𝑓 and, thus, r𝐹 be at least p𝑟 ` 1q-times continuously differentiable with
respect to time on 𝐼. Then, by (3.15) we have for 𝑖 “ 0, . . . , 𝑟 ` 1 the following iterative
connection

`

𝑢
p𝑖`1q

ℎ p𝑡`0 q, 𝑣ℎ
˘

“
@

𝑓 p𝑖q
p𝑡`0 q, 𝑣ℎ

D

𝑉 1,𝑉
´ 𝑎

`

𝑢
p𝑖q
ℎ p𝑡`0 q, 𝑣ℎ

˘

@𝑣ℎ P 𝑉ℎ

or in basis representation

𝑈
p𝑖`1q

ℎ p𝑡`0 q “ 𝑀𝑀´1
r𝐹 p𝑖q

p𝑡`0 q ´ 𝐴𝑈
p𝑖q

ℎ p𝑡`0 q,
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where 𝑈 p𝑖q

ℎ p𝑡`0 q “ 𝑀𝑈
p𝑖q
ℎ p𝑡`0 q “ 𝑀1{2𝑈

p𝑖q
ℎ p𝑡`0 q and 𝑢p𝑖q

ℎ p𝑡`0 q “
řdimp𝑉ℎq

𝑗“1

`

𝑈
p𝑖q
ℎ p𝑡`0 q

˘

𝑗
𝜙𝑗. Adapting

the idea used in (4.1) to define the initial value of the discrete problem, we choose

𝑢
r𝑟`2s

ℎ,0 :“ 𝑃ℎB
𝑟`2
𝑡 𝑢0, (4.20)

𝑢
r𝑖s
ℎ,0 P 𝑉ℎ, 𝑖 “ 𝑟 ` 1, . . . , 0 : 𝑎

`

𝑢
r𝑖s
ℎ,0, 𝑣ℎ

˘

“
@

𝑓 p𝑖q
p𝑡`0 q, 𝑣ℎ

D

𝑉 1,𝑉
´
`

𝑢
r𝑖`1s

ℎ,0 , 𝑣ℎ
˘

@𝑣ℎ P 𝑉ℎ,

where B
𝑟`2
𝑡 𝑢0 is generated from 𝑢0 via (3.7). We then set 𝑢ℎ,0 :“ 𝑢

r0s

ℎ,0. Obviously, by
construction it holds that 𝑢p𝑖q

ℎ p𝑡`0 q “ 𝑢
r𝑖s
ℎ,0 for 𝑖 “ 0, . . . , 𝑟 ` 2.

Note that a similar approach for the choice of the initial values can be found in [52, pp. 74–
75]. There these initial values were needed to guarantee uniform estimates in negative norms
for the derivative of the error of the semi-discrete problem down to the initial time 𝑡 “ 𝑡0.

Lemma 4.47
Let 𝑓 P 𝐶𝑟`2p𝐼, 𝑉 1q and suppose that 𝑢ℎ,0 :“ 𝑢

r0s

ℎ,0 with 𝑢
r𝑖s
ℎ,0 according to (4.20). Then, for

𝑖 “ 0, . . . , 𝑟 ` 2 it holds

›

›𝑢
p𝑖q
ℎ p𝑡`0 q

›

› “
›

›𝑈
p𝑖q

ℎ p𝑡`0 q
›

› ď 𝐶

ˆ

›

›B
𝑟`2
𝑡 𝑢0

›

› `

𝑟`1
ÿ

𝑗“𝑖

›

›𝑓 p𝑗q
p𝑡`0 q

›

›

𝑉 1
ℎ

˙

.

Proof. The argument is quite similar to that used at the beginning of Subsection 4.2.1.
Indeed, using the 𝑉 -ellipticity of 𝑎p¨, ¨q, the definition of the norm in 𝑉 1

ℎ, the Cauchy–Schwarz
inequality, and 𝑉 ãÑ 𝐻, it follows for 𝑖 “ 0, . . . , 𝑟 ` 1

𝛼
›

›𝑢
r𝑖s
ℎ,0

›

›

2

𝑉
ď 𝑎

`

𝑢
r𝑖s
ℎ,0, 𝑢

r𝑖s
ℎ,0

˘

“
@

𝑓 p𝑖q
p𝑡`0 q, 𝑢

r𝑖s
ℎ,0

D

𝑉 1,𝑉
´
`

𝑢
r𝑖`1s

ℎ,0 , 𝑢
r𝑖s
ℎ,0

˘

ď

´

›

›𝑓 p𝑖q
p𝑡`0 q

›

›

𝑉 1
ℎ

` 𝐶emb

›

›𝑢
r𝑖`1s

ℎ,0

›

›

¯

›

›𝑢
r𝑖s
ℎ,0

›

›

𝑉
.

Therefore, we have

›

›𝑢
r𝑖s
ℎ,0

›

› ď 𝐶emb

›

›𝑢
r𝑖s
ℎ,0

›

›

𝑉
ď
𝐶emb

𝛼

´

›

›𝑓 p𝑖q
p𝑡`0 q

›

›

𝑉 1
ℎ

` 𝐶emb

›

›𝑢
r𝑖`1s

ℎ,0

›

›

¯

.

So, by recursion we conclude

›

›𝑢
r𝑖s
ℎ,0

›

› ď

ˆ

𝐶2
emb

𝛼

˙𝑟`2´𝑖
›

›𝑢
r𝑟`2s

ℎ,0

›

› `
𝐶emb

𝛼

𝑟`1
ÿ

𝑗“𝑖

ˆ

𝐶2
emb

𝛼

˙𝑗´𝑖
›

›𝑓 p𝑗q
p𝑡`0 q

›

›

𝑉 1
ℎ

for 𝑖 “ 0, . . . , 𝑟` 2. Because of 𝑢r𝑟`2s

ℎ,0 “ 𝑃ℎB
𝑟`2
𝑡 𝑢0, the desired statement follows easily using

the stability of 𝑃ℎ in } ¨ } and the fact that 𝑢p𝑖q
ℎ p𝑡`0 q “ 𝑢

r𝑖s
ℎ,0.

We see that the special choice of 𝑢ℎ,0 guarantees that the norm of
›

›𝑢
p𝑖q
ℎ p𝑡0q

›

› “
›

›𝑈
p𝑖q

ℎ p𝑡0q
›

›

with 𝑖 “ 0, . . . , 𝑟` 2 can be estimated with respect to the given data and independent of ℎ.
Therefore, together with Corollary 3.12, we obtain the following stability result.
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Corollary 4.48
Let 𝑓 P 𝐶𝑟`2p𝐼, 𝑉 1q and let the initial value of the semi-discrete problem be chosen as
𝑢ℎ,0 :“ 𝑢

r0s

ℎ,0 with 𝑢r𝑖s
ℎ,0 according to (4.20). Then, for 𝑖 “ 0, . . . , 𝑟 ` 2 it holds

sup
𝑡P𝐼

›

›𝑢
p𝑖q
ℎ p𝑡q

›

› “ sup
𝑡P𝐼

›

›𝑈
p𝑖q

ℎ p𝑡q
›

› ď 𝐶

ˆ

›

›B
𝑟`2
𝑡 𝑢0

›

› `
›

›𝑓 p𝑖q
›

›

𝐿2p𝐼,𝑉 1
ℎq

`

𝑟`1
ÿ

𝑗“𝑖

›

›𝑓 p𝑗q
p𝑡`0 q

›

›

𝑉 1
ℎ

˙

.

Remark 4.49
For 0 ď 𝑖 ď 𝑟 ` 1 the estimates of Lemma 4.47 and Corollary 4.48 stay true if

›

›B
𝑟`2
𝑡 𝑢0

›

› is
replaced by

›

›B
𝑟`2
𝑡 𝑢0

›

›

𝑉 1
ℎ

. Moreover, we only need 𝑓 P 𝐶𝑟`1p𝐼, 𝑉 1q then. ♣

Having the initial values properly defined, we can concretize the error estimates for the
semi-discrete approximation. The convergence rates obtained for the model problem are
given in the next proposition.

Proposition 4.50
Consider the setting of model problem (3.4) with standard spatial discretization satisfy-
ing (3.16). Moreover, suppose that 𝑓 be p𝑟`1q-times continuously differentiable with respect
to time on 𝐼 and let the initial value of the semi-discrete problem be chosen as 𝑢ℎ,0 :“ 𝑢

r0s

ℎ,0

with 𝑢
r𝑖s
ℎ,0 according to (4.20). Then, for 𝑖 “ 0, . . . , 𝑟 ` 1 and 𝑡 ą 𝑡0 we have the following

error estimate

›

›

`

𝑢 ´ 𝑢ℎ
˘p𝑖q

p𝑡q
›

› ď 𝐶ℎ𝜅`𝜎

ˆ

›

›𝑢p𝑖q
›

›

𝐻1pp𝑡0,𝑡q,𝐻𝜅`1pΩqq
`

𝑟
ÿ

𝑗“𝑖

›

›𝑢p𝑗`1q
p𝑡0q

›

›

𝐻𝜅`1pΩq

˙

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.

Proof. Recalling the estimates of Theorem 3.13, we already have

›

›

`

𝑢 ´ 𝑢ℎ
˘p𝑖q

p𝑡q
›

›

ď
›

›

`

𝑢p𝑖q
´ 𝑅ℎ𝑢

p𝑖q
˘

p𝑡q
›

› `
›

›

`

𝑅ℎ𝑢
p𝑖q

´ 𝑢
p𝑖q
ℎ

˘

p𝑡`0 q
›

› ` 𝐶

ˆ
ż 𝑡

𝑡0

›

›𝑢p𝑖`1q
´ 𝑅ℎ𝑢

p𝑖`1q
›

›

2

𝑉 1 d𝑠

˙1{2

.

Approximation results for 𝑅ℎ are known, cf. (3.16). So, bounds on
›

›

`

𝑅ℎ𝑢
p𝑖q ´ 𝑢

p𝑖q
ℎ

˘

p𝑡`0 q
›

›

are needed only. For this we can adapt the argumentation of the proof of Lemma 4.47 and
obtain for 𝑣r𝑖s

ℎ,0 :“
`

𝑅ℎ𝑢
p𝑖q ´ 𝑢

p𝑖q
ℎ

˘

p𝑡`0 q P 𝑉ℎ that

𝛼
›

›𝑣
r𝑖s
ℎ,0

›

›

2

𝑉
ď 𝑎

``

𝑅ℎ𝑢
p𝑖q

´ 𝑢
p𝑖q
ℎ

˘

p𝑡`0 q, 𝑣
r𝑖s
ℎ,0

˘

“ 𝑎
`

𝑢p𝑖q
p𝑡`0 q, 𝑣

r𝑖s
ℎ,0

˘

´ 𝑎
`

𝑢
p𝑖q
ℎ p𝑡`0 q, 𝑣

r𝑖s
ℎ,0

˘

“
@

𝑓 p𝑖q
p𝑡`0 q ´ B𝑡𝑢

p𝑖q
p𝑡`0 q, 𝑣

r𝑖s
ℎ,0

D

𝑉 1,𝑉
´
@

𝑓 p𝑖q
p𝑡`0 q ´ B𝑡𝑢

p𝑖q
ℎ p𝑡`0 q, 𝑣

r𝑖s
ℎ,0

D

𝑉 1,𝑉

“ ´
@`

𝑢p𝑖`1q
´ 𝑢

p𝑖`1q

ℎ

˘

p𝑡`0 q, 𝑣
r𝑖s
ℎ,0

D

𝑉 1,𝑉
ď
›

›

`

𝑢p𝑖`1q
´ 𝑢

p𝑖`1q

ℎ

˘

p𝑡`0 q
›

›

𝑉 1
ℎ

›

›𝑣
r𝑖s
ℎ,0

›

›

𝑉

ď

´

›

›

`

𝑢p𝑖`1q
´ 𝑅ℎ𝑢

p𝑖`1q
˘

p𝑡`0 q
›

›

𝑉 1
ℎ

` 𝐶emb

›

›

`

𝑅ℎ𝑢
p𝑖`1q

´ 𝑢
p𝑖`1q

ℎ

˘

p𝑡`0 q
›

›

¯

›

›𝑣
r𝑖s
ℎ,0

›

›

𝑉
.
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Thus, it follows

›

›

`

𝑅ℎ𝑢
p𝑖q

´ 𝑢
p𝑖q
ℎ

˘

p𝑡`0 q
›

› ď 𝐶emb

›

›

`

𝑅ℎ𝑢
p𝑖q

´ 𝑢
p𝑖q
ℎ

˘

p𝑡`0 q
›

›

𝑉
ď
𝐶emb

𝛼

›

›

`

𝑢p𝑖`1q
´ 𝑢

p𝑖`1q

ℎ

˘

p𝑡`0 q
›

›

𝑉 1
ℎ

ď
𝐶emb

𝛼

´

›

›

`

𝑢p𝑖`1q
´ 𝑅ℎ𝑢

p𝑖`1q
˘

p𝑡`0 q
›

›

𝑉 1
ℎ

` 𝐶emb

›

›

`

𝑅ℎ𝑢
p𝑖`1q

´ 𝑢
p𝑖`1q

ℎ

˘

p𝑡`0 q
›

›

¯

and consequently
›

›

`

𝑅ℎ𝑢
p𝑖q

´ 𝑢
p𝑖q
ℎ

˘

p𝑡`0 q
›

›

ď

ˆ

𝐶2
emb

𝛼

˙𝑟`1´𝑖
›

›

`

𝑅ℎ𝑢
p𝑟`1q

´ 𝑢
p𝑟`1q

ℎ

˘

p𝑡`0 q
›

› `
𝐶emb

𝛼

𝑟
ÿ

𝑗“𝑖

ˆ

𝐶2
emb

𝛼

˙𝑗´𝑖
›

›

`

𝑢p𝑗`1q
´ 𝑅ℎ𝑢

p𝑗`1q
˘

p𝑡`0 q
›

›

𝑉 1
ℎ

ď
𝐶emb

𝛼

ˆˆ

𝐶2
emb

𝛼

˙𝑟`1´𝑖
›

›pId ´ 𝑃ℎqB
𝑟`2
𝑡 𝑢0

›

›

𝑉 1
ℎ

`

𝑟
ÿ

𝑗“𝑖

ˆ

𝐶2
emb

𝛼

˙𝑗´𝑖
›

›

`

𝑢p𝑗`1q
´ 𝑅ℎ𝑢

p𝑗`1q
˘

p𝑡`0 q
›

›

𝑉 1
ℎ

˙

for 𝑖 “ 0, . . . , 𝑟 ` 1. Because of
›

›pId ´ 𝑃ℎqB
𝑟`2
𝑡 𝑢0

›

›

𝑉 1
ℎ

“ 0, we overall conclude from (3.16)
that

›

›

`

𝑢 ´ 𝑢ℎ
˘p𝑖q

p𝑡q
›

› ď 𝐶ℎ𝜅`𝜎

ˆ

›

›𝑢p𝑖q
›

›

𝐻1pp𝑡0,𝑡q,𝐻𝜅`1pΩqq
`

𝑟
ÿ

𝑗“𝑖

›

›𝑢p𝑗`1q
p𝑡0q

›

›

𝐻𝜅`1pΩq

˙

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise. So, we
are done.

Transferring the (stiff) error analysis

We now are ready to give estimates in the time (mesh) points of a satisfactory order.

Theorem 4.51
Let 1 ď 𝑛 ď 𝑁 and 0 ď 𝑖 ď ℓ “

X

𝑘
2

\

. Consider the setting of model problem (3.4) with
standard spatial discretization satisfying (3.16) and let 𝑔 P tΠ𝑟

𝑘𝑓, ℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓uYif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

.
Moreover, suppose that 𝑓 is p𝑟` 2q-times continuously differentiable with respect to time on
𝐼. Then, we have the following error estimate

›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

› `
›

›

`

𝑅ℎ𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

›

ď 𝐶ℎ𝜅`𝜎

ˆ

›

›𝑢p𝑖q
›

›

𝐻1pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
`

𝑟
ÿ

𝑗“𝑖

›

›𝑢p𝑗`1q
p𝑡0q

›

›

𝐻𝜅`1pΩq

˙

` 𝐶p𝑡𝑛 ´ 𝑡0q𝜏 𝑟`1´𝑖

ˆ

›

›B
𝑟`2
𝑡 𝑢0

›

› `
›

›𝑓 p𝑟`2q
›

›

𝐿2pp𝑡0,𝑡𝑛q,𝑉 1
ℎq

` sup
𝑡Pp𝑡0,𝑡𝑛q

›

›𝑓 p𝑟`1q
p𝑡q

›

›

˙

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.

Proof. Unlike in the proof of Lemma 4.43, we here use a splitting of the error of the form

`

𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q “
`

𝑢 ´ 𝑢ℎ
˘p𝑖q

p𝑡´𝑛 q `
`

𝑢ℎ ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q (4.21)
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where 𝑢ℎ is the solution of the semi-discrete problem (3.8) to the initial value 𝑢ℎ,0 “ 𝑢
r0s

ℎ,0

with 𝑢r𝑖s
ℎ,0 defined according to (4.20).

The first term on the right-hand side of (4.21) can be estimated by Proposition 4.50. For
the second term we have due to Remark 3.7 that

›

›

`

𝑢ℎ ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

› “
›

›

`

𝑈ℎ ´ 𝑈 𝜏ℎ

˘p𝑖q
p𝑡´𝑛 q

›

›.

So, we are almost in the same setting as in Section 2.3. We let 𝑈ℎ take the role of 𝑢 in
Chapter 2 where r𝐹 replaces 𝑓 . Similarly, 𝑈 𝜏ℎ takes the part of 𝑈 where r𝐺 replaces 𝑔, but
the initial value is chosen slightly different. Of course, in contrast to Chapter 2, we do not
have 𝑈 𝜏ℎp𝑡0q “ 𝑈ℎp𝑡0q in general.

Now, revising the arguments of Section 2.3, we see that the concrete choice of the initial
value is only needed and used at the end of Theorem 2.30. Therefore, we gain (also noting
that r𝐶 “ 0 since 𝜇 “ ´𝛼𝐶´2

emb ă 0) that
›

›p𝑢ℎ ´ 𝑢𝜏ℎq
p𝑖q

p𝑡´𝑛 q
›

› “
›

›p𝑈ℎ ´ 𝑈 𝜏ℎq
p𝑖q

p𝑡´𝑛 q
›

›

ď
›

›p𝑈ℎ ´ 𝑈 𝜏ℎq
p𝑖q

p𝑡´0 q
›

› `

𝑛
ÿ

𝜈“1

𝐶
`

𝜏𝜈
2

˘𝑟`2´𝑖

ˆ

sup
𝑡P𝐼𝜈

›

›𝑀𝑀´1
r𝐹 p𝑟`1q

p𝑡q
›

› ` sup
𝑡P𝐼𝜈

›

›𝑈
p𝑟`2q

ℎ p𝑡q
›

›

˙

ď
›

›p𝑢ℎ ´ 𝑢𝜏ℎq
p𝑖q

p𝑡´0 q
›

› `

𝑛
ÿ

𝜈“1

𝐶
`

𝜏𝜈
2

˘𝑟`2´𝑖

ˆ

sup
𝑡P𝐼𝜈

›

›𝑓 p𝑟`1q
p𝑡q

›

› ` sup
𝑡P𝐼𝜈

›

›𝑢
p𝑟`2q

ℎ p𝑡q
›

›

˙

for 0 ď 𝑖 ď
X

𝑘
2

\

and 1 ď 𝑛 ď 𝑁 . Because of Corollary 4.48, the latter term is uniformly
bounded. But we need to study the initial value term. For this, we use the splitting

›

›p𝑢ℎ ´ 𝑢𝜏ℎq
p𝑖q

p𝑡´0 q
›

› ď
›

›

`

𝑢
p𝑖q
ℎ ´ 𝑅ℎ𝑢

p𝑖q
˘

p𝑡´0 q
›

› `
›

›

`

𝑅ℎ𝑢
p𝑖q

´ 𝑢
p𝑖q
𝜏ℎ

˘

p𝑡´0 q
›

›.

Estimates for the first term on the right-hand side have already been derived in the proof of
Proposition 4.50. Since the initial values of the fully discrete problem and the semi-discrete
problem are defined very similar, cf. (4.1) and (4.20), the second term can be estimated
quite analog. Here, also note that due to 𝑔 P tΠ𝑟

𝑘𝑓, ℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓u Yif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

we have
𝑔p𝑖qp𝑡`0 q “ 𝑓 p𝑖qp𝑡`0 q, 𝑖 “ 0, . . . ,

X

𝑘
2

\

´ 1. Thus, in (4.1) we could use 𝑓 instead of 𝑔. Therefore,
we obtain

›

›p𝑢ℎ ´ 𝑢𝜏ℎq
p𝑖q

p𝑡´0 q
›

›

ď 𝐶
›

›pId ´ 𝑃ℎqB
𝑟`2
𝑡 𝑢0

›

›

𝑉 1
ℎ

` 𝐶
›

›p𝑅ℎ ´ r𝑃 0
ℎ qB

t 𝑘
2 u

𝑡 𝑢0
›

› ` 𝐶
𝑟
ÿ

𝑗“𝑖

›

›

`

𝑢p𝑗`1q
´ 𝑅ℎ𝑢

p𝑗`1q
˘

p𝑡0q
›

›

𝑉 1
ℎ

.

Noting that
›

›pId ´ 𝑃ℎqB
𝑟`2
𝑡 𝑢0

›

›

𝑉 1
ℎ

“ 0 as well as
›

›p𝑅ℎ ´ r𝑃 0
ℎ qB

t 𝑘
2 u

𝑡 𝑢0
›

› “ 0 if r𝑃 0
ℎ “ 𝑅ℎ and

›

›p𝑅ℎ ´ r𝑃 0
ℎ qB

t 𝑘
2 u

𝑡 𝑢0
›

› ď
›

›p𝑅ℎ ´ IdqB
t 𝑘
2 u

𝑡 𝑢0
›

› if r𝑃 0
ℎ “ 𝑃ℎ, we thus get from (3.16) that

›

›p𝑢ℎ ´ 𝑢𝜏ℎq
p𝑖q

p𝑡´0 q
›

› ď 𝐶ℎ𝜅`𝜎
𝑟`1
ÿ

𝑗“mint𝑖`1,t 𝑘
2 uu

›

›𝑢p𝑗q
p𝑡0q

›

›

𝐻𝜅`1pΩq

for 0 ď 𝑖 ď
X

𝑘
2

\

.
Combining the above observations, we easily conclude the desired statement.
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4.3 Final error estimate

Because of Theorem 4.51, which for 0 ď 𝑖 ď ℓ shows the expected temporal convergence
order 𝑟´𝑖`1 for the 𝑖th derivative of the error 𝑢´𝑢𝜏ℎ at least in the time (mesh) points, we
do not need superconvergence estimates for error estimates of a satisfactory order anymore.

4.3 Final error estimate
We now have estimates for the ℓth derivative of the error as well as for the error in the
time (mesh) points. For discrete functions (in 𝑃𝑟p𝐼𝑛, 𝑉ℎq) these information suffice to bound
the 𝐿2p𝐻q-norm. Therefore, we split the error in a discrete error part and a remaining
projection error part where a suitable projection operator has to be used.

The further error analysis is based on a norm equivalence in the finite dimensional space
𝑃𝑟p𝐼𝑛, 𝑉ℎq where 𝑉ℎ is equipped with the norm }¨}. The following statement is proven in
Appendix D, see Lemma D.4, in a more general setting.

Lemma 4.52
Let 0 ď 𝑙 ď 𝑟 and let }¨}𝑊 denote some norm on 𝑉ℎ. Then, the mappings

𝑣 ÞÑ

ˆ
ż

𝐼𝑛

}𝑣p𝑡q}
2
𝑊 d𝑡

˙1{2

and 𝑣 ÞÑ

˜

`

𝜏𝑛
2

˘2𝑙
ż

𝐼𝑛

›

›𝑣p𝑙q
p𝑡q

›

›

2

𝑊
d𝑡 `

𝑙´1
ÿ

𝑖“0

`

𝜏𝑛
2

˘2𝑖`1 ›
›𝑣p𝑖q

p𝑡´𝑛 q
›

›

2

𝑊

¸1{2

define equivalent norms on 𝑃𝑟p𝐼𝑛, 𝑉ℎq where the equivalence constants are independent of 𝜏𝑛
and of 𝑉ℎ.

As before, let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and ℓ “
X

𝑘
2

\

. We generalize the projection operator
rΠ𝑟´ℓ,I
𝑘´2ℓ introduced in Subsection 4.1.1. So, let 𝑋 denote some Banach space over R. For

𝑣 P 𝐻ℓ`1p𝐼𝑛, 𝑋q X 𝐶𝑘I`ℓ`1p𝐼𝑛, 𝑋q let Π
𝑟,I
𝑘 𝑣 P 𝑃𝑟p𝐼𝑛, 𝑋q be determined by

`

Π
𝑟,I
𝑘 𝑣

˘p𝑗q
p𝑡´𝑛 q “ 𝑣p𝑗q

p𝑡´𝑛 q, for 𝑗 “ 0, . . . , ℓ ´ 1,
`

Π
𝑟,I
𝑘 𝑣

˘pℓq
p𝑡q “ rΠ𝑟´ℓ,I

𝑘´2ℓ

`

𝑣pℓq
˘

p𝑡q, for all 𝑡 P 𝐼𝑛,

cf. Definition C.12. Note that the second condition is just an identity of two polynomials
of (maximal) degree 𝑟 ´ ℓ.

In order to derive error estimates for Π
𝑟,I
𝑘 , we first of all note that for ℓ ě 1 we have

›

›

`

𝑣 ´ Π
𝑟,I
𝑘 𝑣

˘

p𝑡q
›

›

𝑋

“

›

›

›

›

`

𝑣 ´ Π
𝑟,I
𝑘 𝑣

˘

p𝑡´𝑛 q
loooooooomoooooooon

“0

´

ż 𝑡𝑛

𝑡

`

𝑣 ´ Π
𝑟,I
𝑘 𝑣

˘1
p𝑠q d𝑠

›

›

›

›

𝑋

ď

ż

𝐼𝑛

›

›

`

𝑣 ´ Π
𝑟,I
𝑘 𝑣

˘1
p𝑠q

›

›

𝑋
d𝑠 @𝑡 P 𝐼𝑛,

where we used the fundamental theorem of calculus, the definition of Π𝑟,I
𝑘 , and properties

of the Bochner integral. By iteration we then obtain for 𝑡 P 𝐼𝑛 that

›

›

`

𝑣 ´ Π
𝑟,I
𝑘 𝑣

˘

p𝑡q
›

›

𝑋
ď 𝜏 ℓ´1

𝑛

ż

𝐼𝑛

›

›

`

𝑣 ´ Π
𝑟,I
𝑘 𝑣

˘pℓq
p𝑠q

›

›

𝑋
d𝑠 “ 𝜏 ℓ´1

𝑛

ż

𝐼𝑛

›

›

`

𝑣pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑣
pℓq
˘

p𝑠q
›

›

𝑋
d𝑠.
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Hence, it follows
ż

𝐼𝑛

›

›

`

𝑣 ´ Π
𝑟,I
𝑘 𝑣

˘

p𝑡q
›

›

2

𝑋
d𝑡 ď 𝜏 2ℓ𝑛

ż

𝐼𝑛

›

›

`

𝑣pℓq
´ rΠ𝑟´ℓ,I

𝑘´2ℓ 𝑣
pℓq
˘

p𝑠q
›

›

2

𝑋
d𝑠, (4.22)

where also the Cauchy–Schwarz inequality was used. Bounds on the approximation error of
rΠ𝑟´ℓ,I
𝑘´2ℓ , which is on the right-hand side, are already known from (4.9).
Now, we are well prepared to start the proof of the error estimate for general variational

time discretization methods.

Theorem 4.53
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and ℓ “

X

𝑘
2

\

. Moreover, suppose that 𝑓 is p𝑟`2q-times continuously
differentiable with respect to time on 𝐼. Consider the setting of model problem (3.4) with
standard spatial discretization satisfying (3.16) and let 𝑔 P tΠ𝑟

𝑘𝑓, ℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓uYif 𝑘 ě 2

␣

ℐ𝑟
𝑘´2,˚𝑓

(

.
Then, we have the following error estimate
ż 𝑡𝑛

𝑡0

›

›𝑢 ´ 𝑢𝜏ℎ
›

›

2
d𝑡

ď 𝐶
`

1 ` p𝑡𝑛 ´ 𝑡0q
˘

ℎ2p𝜅`𝜎q

ˆ

}𝑢}
2
𝐻ℓ`1pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq

`

𝑟
ÿ

𝑗“0

›

›𝑢p𝑗`1q
p𝑡0q

›

›

2

𝐻𝜅`1pΩq

˙

` 𝐶
`

1 ` p𝑡𝑛 ´ 𝑡0q
3
˘

𝜏 2p𝑟`1q

ˆ

}𝑢}
2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq

`
›

›B
𝑟`2
𝑡 𝑢0

›

›

2
` }𝑓}

2
𝐻𝑟`2pp𝑡0,𝑡𝑛q,𝐻´1pΩqq

` sup
𝑡Pp𝑡0,𝑡𝑛q

›

›𝑓 p𝑟`1q
p𝑡q

›

›

2

˙

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.

Proof. For the proof we choose I𝜈 “
ş

𝐼𝜈
and decompose the error 𝑢 ´ 𝑢𝜏ℎ as follows

𝑢 ´ 𝑢𝜏ℎ “
`

𝑢 ´ 𝑅ℎ𝑢
˘

`
`

𝑅ℎ𝑢 ´ 𝑅ℎΠ
𝑟,I
𝑘 𝑢

˘

`
`

𝑅ℎΠ
𝑟,I
𝑘 𝑢 ´ 𝑢𝜏ℎ

˘

.

Because of the stability of 𝑅ℎ in }¨}𝑉 , the second summand can be bounded as

ż 𝑡𝑛

𝑡0

›

›𝑅ℎ𝑢 ´ 𝑅ℎΠ
𝑟,I
𝑘 𝑢

›

›

2
d𝑡 ď

ż 𝑡𝑛

𝑡0

𝐶2
emb

›

›𝑅ℎ

`

𝑢 ´ Π
𝑟,I
𝑘 𝑢

˘
›

›

2

𝑉
d𝑡 ď 𝐶

ż 𝑡𝑛

𝑡0

›

›𝑢 ´ Π
𝑟,I
𝑘 𝑢

›

›

2

𝑉
d𝑡.

Thus, the projection error parts can be estimated using the known error bounds for the
projection operators 𝑅ℎ, see (3.16), and Π

𝑟,I
𝑘 , see (4.9) and (4.22), by

ż 𝑡𝑛

𝑡0

›

›𝑢 ´ 𝑅ℎ𝑢
›

›

2
d𝑡 ď 𝐶ℎ2p𝜅`𝜎q

}𝑢}
2
𝐿2pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq

,

ż 𝑡𝑛

𝑡0

›

›𝑅ℎ𝑢 ´ 𝑅ℎΠ
𝑟,I
𝑘 𝑢

›

›

2
d𝑡 ď 𝐶𝜏 2p𝑟`1q

}𝑢}
2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq

,

where 𝜎 “ 1 if the associated stationary problem is 𝐻2-regular and 𝜎 “ 0 otherwise.
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4.3 Final error estimate

It remains to study the fully discrete error part
`

𝑅ℎΠ
𝑟,I
𝑘 𝑢 ´ 𝑢𝜏ℎ

˘

P 𝑃𝑟p𝐼𝑛, 𝑉ℎq. The norm
equivalence of Lemma 4.52 with 𝑙 “ ℓ gives

ż

𝐼𝜈

›

›𝑅ℎΠ
𝑟,I
𝑘 𝑢 ´ 𝑢𝜏ℎ

›

›

2
d𝑡

ď 𝐶

ˆ

`

𝜏𝜈
2

˘2ℓ
ż

𝐼𝜈

›

›

`

𝑅ℎΠ
𝑟,I
𝑘 𝑢 ´ 𝑢𝜏ℎ

˘pℓq›
›

2
d𝑡 `

ℓ´1
ÿ

𝑖“0

`

𝜏𝜈
2

˘2𝑖`1 ›
›

`

𝑅ℎΠ
𝑟,I
𝑘 𝑢 ´ 𝑢𝜏ℎ

˘p𝑖q
p𝑡´𝜈 q

›

›

2

˙

“ 𝐶

ˆ

`

𝜏𝜈
2

˘2ℓ
ż

𝐼𝜈

›

›𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
´ 𝑢

pℓq
𝜏ℎ

›

›

2
d𝑡 `

ℓ´1
ÿ

𝑖“0

`

𝜏𝜈
2

˘2𝑖`1 ›
›

`

𝑅ℎ𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝜈 q
›

›

2

˙

,

where for the second step the definition of Π𝑟,I
𝑘 was used. Recalling the notation of the two

previous sections, especially

𝑒I𝜏ℎ,ℓ “ 𝑅ℎ
rΠ𝑟´ℓ,I
𝑘´2ℓ 𝑢

pℓq
´ 𝑢

pℓq
𝜏ℎ ,

a summation over 𝜈 “ 1, . . . , 𝑛 yields
ż 𝑡𝑛

𝑡0

›

›𝑅ℎΠ
𝑟,I
𝑘 𝑢 ´ 𝑢𝜏ℎ

›

›

2
d𝑡 ď 𝐶𝜏 2ℓ

ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2
d𝑡 ` 𝐶

𝑛
ÿ

𝜈“1

ℓ´1
ÿ

𝑖“0

`

𝜏𝜈
2

˘2𝑖`1 ›
›

`

𝑅ℎ𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝜈 q
›

›

2

ď 𝐶𝜏 2ℓ
ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2
d𝑡 ` 𝐶 p𝑡𝑛 ´ 𝑡0q

ℓ´1
ÿ

𝑖“0

𝜏 2𝑖 max
𝜈“1,...,𝑛

›

›

`

𝑅ℎ𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝜈 q
›

›

2
.

All apparent terms can be estimated by Theorems 4.11 and 4.51. In detail, we have
ż 𝑡𝑛

𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2
d𝑡 ď 𝐶

`

1 ` p𝑡𝑛 ´ 𝑡0q
˘

”

ℎ2p𝜅`𝜎q
}𝑢}

2
𝐻ℓ`1pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq

` 𝜏 2p𝑟´ℓ`1q
´

}𝑢}
2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq

` }𝑓}
2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐻´1pΩqq

¯ı

and for 0 ď 𝑖 ď ℓ ´ 1

max
𝜈“1,...,𝑛

›

›

`

𝑅ℎ𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝜈 q
›

›

ď 𝐶ℎ𝜅`𝜎

ˆ

}𝑢}𝐻ℓpp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq
`

𝑟
ÿ

𝑗“0

›

›𝑢p𝑗`1q
p𝑡0q

›

›

𝐻𝜅`1pΩq

˙

` 𝐶p𝑡𝑛 ´ 𝑡0q𝜏
𝑟`1´𝑖

ˆ

›

›B
𝑟`2
𝑡 𝑢0

›

› `
›

›𝑓 p𝑟`2q
›

›

𝐿2pp𝑡0,𝑡𝑛q,𝑉 1
ℎq

` sup
𝑡Pp𝑡0,𝑡𝑛q

›

›𝑓 p𝑟`1q
p𝑡q

›

›

˙

with 𝜎 as above. Hence, it follows
ż 𝑡𝑛

𝑡0

›

›𝑅ℎΠ
𝑟,I
𝑘 𝑢 ´ 𝑢𝜏ℎ

›

›

2
d𝑡

ď 𝐶
`

1 ` p𝑡𝑛 ´ 𝑡0q
˘

ℎ2p𝜅`𝜎q

ˆ

}𝑢}
2
𝐻ℓ`1pp𝑡0,𝑡𝑛q,𝐻𝜅`1pΩqq

`

𝑟
ÿ

𝑗“0

›

›𝑢p𝑗`1q
p𝑡0q

›

›

2

𝐻𝜅`1pΩq

˙

` 𝐶
`

1 ` p𝑡𝑛 ´ 𝑡0q
3
˘

𝜏 2p𝑟`1q

ˆ

}𝑢}
2
𝐻𝑟`1pp𝑡0,𝑡𝑛q,𝐻1pΩqq

`
›

›B
𝑟`2
𝑡 𝑢0

›

›

2
` }𝑓}

2
𝐻𝑟`2pp𝑡0,𝑡𝑛q,𝐻´1pΩqq

` sup
𝑡Pp𝑡0,𝑡𝑛q

›

›𝑓 p𝑟`1q
p𝑡q

›

›

2

˙

.
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4 Error Analysis for VTD Methods

Summarizing, we get the desired statement and the proof is completed.

Remark 4.54
The estimate of Theorem 4.53 is of optimal order with respect to space and time. In the case
that 𝑘 P t0, 1u a similar estimate was already proven in Theorem 4.11. Otherwise, for 𝑘 ě 2,
in the proof of Theorem 4.53 the results of Theorem 4.51 and, thus, the (stiff) error analysis
were reused to gain estimates for

›

›

`

𝑅ℎ𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝜈 q
›

›

2 of sufficiently high order. However,
note that for 𝑘 P t2, 3u and 𝑔 P tℐ𝑟

𝑘𝑓, 𝒞𝑟
𝑘𝑓u we could alternatively use Proposition 4.46, which

was derived from the supercloseness result of Subsection 4.1.6, to get final error estimates
of optimal order.

Still another way to prove optimal order 𝐿2p𝐻q-estimates for VTD𝑟
𝑘p𝑔q with 𝑘 P t2, 3u and

specially chosen 𝑔 is presented in [9, 12] in the context of the parabolic wave equations and
in [27] for linear first order partial differential equations. The approach strongly exploits
the connection between VTD𝑟

𝑘 and postprocessed VTD𝑟´1
𝑘´2 methods. Moreover, for the

argument it is quite crucial that the difference between the dimensions of trial space and
test space in the variational condition and, thus, 𝑘 is not to large. Therefore, this approach
seems to be limited to small 𝑘. ♣

Remark 4.55 (Comments on the choice of the discrete initial condition)
By (4.1) the discrete initial condition is determined in a very special way. First the initial
value of the ℓth derivative is projected by a spatial approximation operator and then the
discrete initial values for lower derivatives are determined via the differential equation. This
special choice is exploited at several points in the analysis.

On the one hand, it guarantees that the collocation conditions also hold at 𝑡´0 . This
is used in the proof of Lemma 4.1 and in the argumentation of Section 4.2, especially in
Theorem 4.51. On the other hand, directly projecting the initial value of the ℓth derivative
makes the estimation of the initial error in Section 4.1 quite straightforward. Furthermore,
estimates for the initial error of higher derivatives in the𝐻-norm give respective estimates for
lower derivatives in the 𝑉 -norm, which can be easily seen by adapting the argumentation of
Subsection 4.2.1. Suitable error estimates for the initial error of the ℓth derivative therefore
also yield appropriate estimates for all lower derivatives.

In contrast, the latter argumentation does not work in the other direction since control
on the stronger 𝑉 -norm of the initial error of the 𝑖th derivative is necessary to bound the
𝐻-norm of the initial error of the p𝑖 ` 1qth derivative. Actually, this is also apparent in
numerical experiments, cf. Tables 4.1 and 4.2. Especially for large 𝑘, considerably larger
errors and reduced convergence orders are observed if, instead of by (4.1), the initial values
B𝑖
𝑡𝑢𝜏ℎp𝑡´0 q P 𝑉ℎ, 𝑖 “ 0, . . . ,

X

𝑘
2

\

, are determined by

B
0
𝑡 𝑢𝜏ℎp𝑡´0 q “ 𝑃ℎ𝑢0,

B
𝑖
𝑡𝑢𝜏ℎp𝑡´0 q P 𝑉ℎ with 𝑖 “ 1, . . . ,

X

𝑘
2

\

:
`

B
𝑖
𝑡𝑢𝜏ℎp𝑡´0 q, 𝑣ℎ

˘

“
@

𝑔p𝑖´1q
p𝑡`0 q, 𝑣ℎ

D

𝑉 1,𝑉
´ 𝑎

`

B
𝑖´1
𝑡 𝑢𝜏ℎp𝑡´0 q, 𝑣ℎ

˘

@𝑣ℎ P 𝑉ℎ.

(4.23)

With this in mind, further research to allow a more flexible or easily implemented choice of
initial conditions would be appropriate. ♣
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4.3 Final error estimate

Remark 4.56 (Comments on postprocessing)
Note that, due to the findings of Subsection 3.3.2, the postprocessing according to Theo-
rem 1.32 can be applied also in the considered parabolic setting. Especially, for the solution
𝑢𝜏ℎ of VTD𝑟

𝑘pℐ𝑟
𝑘𝑓q or VTD𝑟

𝑘p𝒞𝑟
𝑘𝑓q, 0 ď 𝑘 ă 𝑟, postprocessing yields the solution r𝑢𝜏ℎ of

VTD𝑟`1
𝑘`2

`

ℐ𝑟`1
𝑘,˚ 𝑓

˘

or VTD𝑟`1
𝑘`2

`

𝒞𝑟`1
𝑘`2𝑓

˘

, respectively. In order to estimate the 𝐿2p𝐻q-norm
of the error 𝑢 ´ r𝑢𝜏ℎ, then Theorem 4.53 can be used. However, a careful inspection of the
influences of the discrete initial condition may be required. ♣

Remark 4.57 (Comments on estimates in the 𝐿2p𝑉 q-norm)
Adapting the arguments in the proof of Theorem 4.53, also estimates in the 𝑉 -norm can be
proven. Of course, we then build on the results of Subsection 4.1.3 to bound

ş𝑡𝑛
𝑡0

›

›𝑒I𝜏ℎ,ℓ
›

›

2

𝑉
d𝑡.

Moreover, note that by (4.18) in the time (mesh) points error control in the 𝐻-norm implies
certain error control in the 𝑉 -norm. Therefore, for 0 ď 𝑖 ď ℓ ´ 1 the estimates of Theo-
rem 4.51 for

›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘p𝑖`1q

p𝑡´𝑛 q
›

› enable upper bounds for
›

›

`

𝑅ℎ𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝑛 q
›

›

𝑉
. However,

since results for the p𝑖 ` 1qth derivative are used to bound the 𝑖th derivative, we loose one
convergence order in 𝜏 and, thus, obtain a suboptimal estimate only.

With a more involved proof, this loss of order in the 𝐿2p𝑉 q-estimate can be avoided for
VTD𝑟

𝑘p𝑔q with 0 ď 𝑘 ă 𝑟 and 𝑔 P tℐ𝑟
𝑘𝑓, 𝒞𝑟

𝑘𝑓u such that we then find
ˆ
ż 𝑡𝑛

𝑡0

›

›𝑢 ´ 𝑢𝜏ℎ
›

›

2

𝑉
d𝑡

˙1{2

ď 𝐶p𝑓, 𝑢q
`

ℎ𝜅 ` 𝜏 𝑟`1
˘

.

Furthermore, we can drop Assumptions 4.1 and 4.2, which are otherwise needed if 𝑘´2ℓ “ 1
(ô 𝑘 is odd). For brevity, we shortly sketch the main ideas only.

Adapting and combining some of the arguments used in the proofs of Lemma 4.19 and
Theorem 4.53, we get (also using (4.7) if 𝑘 ´ 2ℓ “ 1 (ô 𝑘 is odd))
ż 𝑡𝑛

𝑡0

›

›𝑅ℎΠ
𝑟,I
𝑘 𝑢 ´ 𝑢𝜏ℎ

›

›

2

𝑉
d𝑡

ď 𝐶𝜏 2ℓ
ż 𝑡𝑛

𝑡0

›

›Π𝑟´𝑘`ℓ𝑒
I
𝜏ℎ,ℓ

›

›

2

𝑉
d𝑡 ` 𝐶 p𝑡𝑛 ´ 𝑡0q

ℓ´𝛿0,𝑘´2ℓ
ÿ

𝑖“0

𝜏 2𝑖 max
𝜈“1,...,𝑛

›

›

`

𝑅ℎ𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝜈 q
›

›

2

𝑉

` 𝐶𝛿1,𝑘´2ℓ𝜏
2ℓ

𝑛
ÿ

𝜈“1

`

𝜏𝜈
2

˘
›

›𝜔I
𝜈 p𝑅ℎ𝑢

pℓq
q
›

›

2

𝑉
.

We already showed how to suitably estimate the first and the third term on the right-hand
side, so we focus on the second term. Applying the postprocessing to the solution 𝑢𝜏ℎ of
VTD𝑟

𝑘

`

ℐ𝑟
𝑘𝑓
˘

or VTD𝑟
𝑘

`

𝒞𝑟
𝑘𝑓
˘

, 0 ď 𝑘 ă 𝑟, we obtain the solution r𝑢𝜏ℎ of VTD𝑟`1
𝑘`2

`

ℐ𝑟`1
𝑘,˚ 𝑓

˘

or
VTD𝑟`1

𝑘`2

`

𝒞𝑟`1
𝑘`2𝑓

˘

, respectively. Then, from Theorem 4.51 (and with a suitable choice of the
discrete initial condition) we find

›

›

`

𝑢 ´ r𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝜈 q
›

› ď 𝐶p𝑓, 𝑢q
`

ℎ𝜅`𝜎
` 𝜏 p𝑟`1q`1´𝑖

˘

for 0 ď 𝑖 ď ℓ ` 1,

which, by (4.18), gives
›

›

`

𝑅ℎ𝑢´r𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝜈 q
›

›

𝑉
ď 𝐶p𝑓, 𝑢q

`

ℎ𝜅`𝜎 `𝜏 𝑟`1´𝑖
˘

for 0 ď 𝑖 ď ℓ. Hence,
since by construction of the postprocessing r𝑢

p𝑖q
𝜏ℎp𝑡´𝜈 q “ 𝑢

p𝑖q
𝜏ℎp𝑡´𝜈 q holds true for 0 ď 𝑖 ď ℓ, we

also gain a suitable bound for the remaining terms. ♣
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4 Error Analysis for VTD Methods

Remark 4.58 (Comments on estimates for the time derivative(s) of the error)
Suitably adapting the arguments of Theorem 4.53 and Remark 4.57, also estimates for the
𝑖th time derivative, 0 ď 𝑖 ď ℓ, of the error in the 𝐿2p𝐻q- and the 𝐿2p𝑉 q-norm are possible.
The respective convergence order in 𝜏 then is reduced by 𝑖. ♣

Remark 4.59 (Comments on pointwise estimates in the 𝐻-norm)
If 𝑢|𝐼𝜈 P 𝐶ℓp𝐼𝜈 , 𝐻q, we easily find that

sup
𝑡P𝐼𝜈

›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘

p𝑡q
›

› ď

ℓ´1
ÿ

𝑖“0

𝜏 𝑖𝜈
›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘p𝑖q

p𝑡´𝜈 q
›

› ` 𝜏 ℓ𝜈 sup
𝑡P𝐼𝜈

›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘pℓq

p𝑡q
›

›,

where amongst others the fundamental theorem of calculus and properties of the Bochner
integral are used to show this. Therefore, Theorem 4.32 and Theorem 4.51 imply appropriate
bounds for the pointwise error of 𝑢 ´ 𝑢𝜏ℎ in the 𝐻-norm. ♣

Remark 4.60 (Superconvergence in time (mesh) points for cascadic interpolation)
Recalling the observations of Subsection 1.4.3, especially Remark 1.38, we have that the
solutions 𝑢𝜏ℎ of VTD𝑟

𝑘

`

𝒞𝑟
𝑘𝑓
˘

and r𝑢𝜏ℎ of VTD2𝑟´𝑘
2𝑟´𝑘

`

ℐ2𝑟´𝑘
2𝑟´𝑘𝑓

˘

coincide in the time (mesh)
points 𝑡´𝜈 . Therefore, with a suitably chosen discrete initial condition, from Theorem 4.51
it follows

›

›

`

𝑢 ´ 𝑢𝜏ℎ
˘

p𝑡´𝜈 q
›

› “
›

›

`

𝑢 ´ r𝑢𝜏ℎ
˘

p𝑡´𝜈 q
›

› ď 𝐶p𝑓, 𝑢q
`

ℎ𝜅`𝜎
` 𝜏 2𝑟´𝑘`1

˘

.

Hence, by using cascadic interpolation of the right-hand side 𝑓 , we can recover the high
superconvergence order in the time (mesh) points of 2𝑟´ 𝑘` 1 as known for non-stiff initial
value problems, cf. Subsection 1.2.3. ♣

4.4 Numerical results
In this section, we want to illustrate our theoretical findings and error estimates by some
numerical results. For simplicity, we only consider test problems that are one-dimensional
with respect to space, even more concrete, we always consider Ω “ p0, 1q.

To this end, for different test situations, the error in the (semi-)norms

}𝑣}𝐿2p𝐿2q
“

ˆ
ż

𝐼

ż

Ω

ˇ

ˇ𝑣p𝑡, 𝑥q
ˇ

ˇ

2
d𝑥 d𝑡

˙1{2

, |𝑣|𝐿2p𝐻1q
“

ˆ
ż

𝐼

ż

Ω

ˇ

ˇB𝑥𝑣p𝑡, 𝑥q
ˇ

ˇ

2
d𝑥 d𝑡

˙1{2

,

|𝑣|𝐻1p𝐿2q
“

ˆ
ż

𝐼

ż

Ω

ˇ

ˇB𝑡𝑣p𝑡, 𝑥q
ˇ

ˇ

2
d𝑥 d𝑡

˙1{2

, |𝑣|𝐻1p𝐻1q
“

ˆ
ż

𝐼

ż

Ω

ˇ

ˇB𝑡B𝑥𝑣p𝑡, 𝑥q
ˇ

ˇ

2
d𝑥 d𝑡

˙1{2

,

}𝑣}ℓ8p𝐿2q
“ max

1ď𝑛ď𝑁

ˆ
ż

Ω

ˇ

ˇ𝑣p𝑡´𝑛 , 𝑥q
ˇ

ˇ

2
d𝑥

˙1{2

is investigated numerically. The numerical experiments were performed with the software
Julia [18], where the floating point data type BigFloat with 512 bits was used for all
calculations.

We start with the following test problem known from [11, Section 5]. Note that the
right-hand side given in the reference had to be corrected.
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Example (cf. [11, Section 5])
We consider the one-dimensional heat equation

𝑢𝑡p𝑡, 𝑥q ´ 𝑢𝑥𝑥p𝑡, 𝑥q “ 𝑓p𝑡, 𝑥q for p𝑡, 𝑥q P p0, 3q ˆ p0, 1q,
𝑢p𝑡, 0q “ 𝑢p𝑡, 1q “ 0 for 𝑡 P p0, 3q,

𝑢p0, 𝑥q “ 0 for 𝑥 P p0, 1q

(4.24a)

with

𝑓p𝑡, 𝑥q “ 3𝑥 cos
`

3𝜋
2
𝑥
˘

cosp3𝑡q `

´

3𝜋 sin
`

3𝜋
2
𝑥
˘

`
`

3𝜋
2

˘2
𝑥 cos

`

3𝜋
2
𝑥
˘

¯

sinp3𝑡q, (4.24b)

which results in
𝑢p𝑡, 𝑥q “ 𝑥 cos

`

3𝜋
2
𝑥
˘

sinp3𝑡q

as exact solution.

The errors in different (semi-)norms of the 𝑄6
𝑘-VTD6

𝑘 method, 𝑘 P t3, 4u, in time and
continuous finite elements of piecewise polynomial degree 𝜅 P t5, 6, 7u in space are considered
for problem (4.24). Hereby, the discrete initial values are determined according to (4.1) with
r𝑃 0
ℎ “ 𝑃ℎ. The same number of mesh intervals in 𝑡 and in 𝑥 direction is used such that we

have 𝜏 “ 3ℎ. Therefore, we expect that the minimum of temporal and spatial convergence
order can be seen, which, according to Theorem 4.53, in the 𝐿2p𝐿2q-norm is mint𝑟`1, 𝜅`1u.
Moreover, according to Remark 4.57 and Remark 4.58, we expect that the temporal order is
reduced by one when the error of the derivative in time is considered and analogously that
the spatial order reduces by one if the derivative in space occurs.

The numerical results of Figure 4.1 nicely support all these expectations. Firstly, the
orders of convergence turn out to be independent of 𝑘. Secondly, for 𝜅 “ 6, we see 𝐿2p𝐿2q-
order mint6 ` 1, 6 ` 1u “ 7 while the 𝐿2p𝐻1q-, 𝐻1p𝐿2q-, and 𝐻1p𝐻1q-order only is 6, which
exactly meets our prediction since these (semi-)norms contain at least a derivative in time
or space. Thirdly, for 𝜅 “ 5, the spatial order is less than the temporal order and, as
predicted, we also see maximal order 6 which reduces to 5 if the first derivative with respect
to space is contained in the respective (semi-)norm. Fourthly, for 𝜅 “ 7, the behavior is
just the other way around. In this setting the spatial order is greater than the temporal
order, thus, the temporal order is the restricting one. So, we have and also see order 7 if no
temporal derivative is involved and order 6 if the respective (semi-)norm includes the first
time derivative.

Next, we want to numerically investigate the consequences of different choices for the
discrete initial condition. To this end, we consider selected 𝑄𝑟

𝑘-VTD𝑟
𝑘 methods in time

in combination with continuous finite elements of piecewise polynomial degree 𝜅 “ 𝑟 for
problem (4.24) where once the discrete initial values are determined in “downward direction”
according to (4.1) with r𝑃 0

ℎ “ 𝑃ℎ and once in “upward direction” by (4.23). We again use
meshes with the same number 𝑁 of uniform subintervals in space and time where 𝑁 “ 2𝑖,
𝑖 “ 3, . . . , 8. The errors in the 𝐿2p𝐿2q-norm as well as the associated experimental orders of
convergence for 𝑟 P t12, 13u and 𝑘 P t10, 11u are given in Tables 4.1 and 4.2.

If the discrete initial values are defined “downward” via (4.1), we obtain 𝐿2p𝐿2q-order 𝑟`1
for all considered methods, which exactly meets our theoretical prediction. In comparison,
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𝜅
“

5

𝑄6
3-VTD6

3 method
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Figure 4.1: Errors in different (semi-)norms of the 𝑄6
𝑘-VTD6

𝑘 method, 𝑘 P t3, 4u, in time
and continuous 𝑃𝜅-finite elements, 𝜅 P t5, 6, 7u, in space for problem (4.24)
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Table 4.1: Errors in 𝐿2p𝐿2q-norm and experimental orders of convergence for 𝑄12
𝑘 -VTD12

𝑘 ,
𝑘 P t10, 11u, in time with discrete initial values determined “down-/upward”
via (4.1)/(4.23) and continuous 𝑃12-finite elements in space for problem (4.24)

discrete initial values via (4.1) discrete initial values via (4.23)

𝑄12
10-VTD12

10 𝑄12
11-VTD12

11 𝑄12
10-VTD12

10 𝑄12
11-VTD12

11

𝑁 error eoc error eoc error eoc error eoc

8 1.384e-15 12.987 4.053e-15 12.986 5.798e-11 12.307 7.661e-06 10.768
16 1.705e-19 12.997 4.995e-19 12.996 1.144e-14 12.429 4.393e-09 10.920
32 2.086e-23 12.999 6.113e-23 12.999 2.075e-18 12.460 2.268e-12 10.969
64 2.548e-27 13.000 7.468e-27 13.000 3.684e-22 12.435 1.131e-15 10.986

128 3.111e-31 13.000 9.119e-31 13.000 6.652e-26 12.313 5.579e-19 10.986
256 3.797e-35 1.113e-34 1.307e-29 2.750e-22

Table 4.2: Errors in 𝐿2p𝐿2q-norm and experimental orders of convergence for 𝑄13
𝑘 -VTD13

𝑘 ,
𝑘 P t10, 11u, in time with discrete initial values determined “down-/upward”
via (4.1)/(4.23) and continuous 𝑃13-finite elements in space for problem (4.24)

discrete initial values via (4.1) discrete initial values via (4.23)

𝑄13
10-VTD13

10 𝑄13
11-VTD13

11 𝑄13
10-VTD13

10 𝑄13
11-VTD13

11

𝑁 error eoc error eoc error eoc error eoc

8 2.128e-17 14.000 5.166e-17 14.000 1.488e-12 12.526 1.729e-07 11.077
16 1.299e-21 14.000 3.153e-21 14.000 2.522e-16 12.510 8.007e-11 11.029
32 7.931e-26 14.000 1.924e-25 14.000 4.324e-20 12.503 3.832e-14 11.011
64 4.840e-30 14.000 1.174e-29 14.000 7.449e-24 12.501 1.857e-17 11.004

128 2.954e-34 14.000 7.168e-34 14.000 1.285e-27 12.500 9.041e-21 11.002
256 1.803e-38 4.375e-38 2.218e-31 4.409e-24

the computed errors are considerably larger and the associated experimental convergence
orders are clearly reduced if the discrete initial values are defined “upward” via (4.23). This
suggests that the rather complicated construction (4.1) for the discrete initial value is really
necessary.

A closer look at the computational results of Tables 4.1 and 4.2 moreover shows that,
depending on whether 𝑟 and 𝑘 are even or odd, there are significant differences in the gap
between the 𝐿2p𝐿2q-convergence order 𝑟` 1 expected for “downward” initial values and the
experimental order of convergence obtained for “upward” initial values. Therefore, for closer
examinations, the deficit compared to 𝑟 ` 1 of the 𝐿2p𝐿2q-convergence orders obtained for
discrete initial values determined via (4.23) are given in Table 4.3 for 𝑄𝑟

𝑘-VTD𝑟
𝑘 methods

with 5 ď 𝑘 ď 𝑟 ď 13. Here, the deficits are calculated using the experimental orders of
convergence computed from the 𝐿2p𝐿2q-errors for 𝑁 P t128, 256u.

First of all, from our computational results we see no deficit in the 𝐿2p𝐿2q-convergence
order for 𝑘 ď 6. However, for 𝑘 ě 7 the situation is quite different. For odd 𝑟, we see a
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Table 4.3: Deficit compared to 𝑟 ` 1 of the experimental 𝐿2p𝐿2q-orders of convergence for
𝑄𝑟

𝑘-VTD𝑟
𝑘, 5 ď 𝑘 ď 𝑟 ď 13, in time with discrete initial values determined

“upward” via (4.23) and continuous 𝑃𝑟-finite elements in space for problem (4.24)

𝑟 𝑘 “ 5 𝑘 “ 6 𝑘 “ 7 𝑘 “ 8 𝑘 “ 9 𝑘 “ 10 𝑘 “ 11 𝑘 “ 12 𝑘 “ 13

5 0.000
6 0.000 0.000
7 0.000 0.000 0.999
8 0.000 0.000 0.735 0.228
9 0.000 0.000 1.000 0.500 1.998

10 0.000 0.000 0.808 0.302 1.138 0.640
11 0.000 0.000 1.001 0.501 1.999 1.499 2.997
12 0.000 0.000 0.847 0.329 1.184 0.687 2.014 1.514
13 0.000 0.000 1.000 0.501 2.000 1.500 2.998 2.498 3.996

deficit of 1 for 𝑘 “ 7 and of 0.5 for 𝑘 “ 8. Further, incrementing 𝑘 ě 7 by two, increments
the observed deficit by one. For even 𝑟, we also see an enlargement of the gap between
𝑟 ` 1 and the obtained experimental 𝐿2p𝐿2q-order when 𝑘 ě 7 is incremented by two. But
the increase of the deficit is lower as for odd 𝑟 and we do not observe clear full or half
convergence orders. While the differences between even and odd 𝑘 may be explained by
the different stability properties or differences in the construction of dG-like and cGP-like
methods, the observed differences between even and odd 𝑟 here at the example are rather
surprising and we have no direct explanation for them.

In order to examine certain specific features of the variational time discretizations more
easily, we in addition study a problem with a solution that is polynomial in space and, thus,
allows to almost exclude the spatial error.

Example
We consider the instationary convection-diffusion-reaction problem

𝑢𝑡p𝑡, 𝑥q ´ 𝑢𝑥𝑥p𝑡, 𝑥q ` p1 ` 𝑥2q𝑢𝑥p𝑡, 𝑥q ` p1 ` 2𝑥q𝑢p𝑡, 𝑥q (4.25a)
“ 𝑓p𝑡, 𝑥q for p𝑡, 𝑥q P p0, 2q ˆ p0, 1q,

𝑢p𝑡, 0q “ 𝑢p𝑡, 1q “ 0 for 𝑡 P p0, 2q,
𝑢p0, 𝑥q “ 𝑥2p1 ´ 𝑥q for 𝑥 P p0, 1q

with 𝑓 chosen such that

𝑢p𝑡, 𝑥q “ 𝑥p1 ´ 𝑥q
`

𝑥 cosp𝑡q ´ sinp2𝑡q
˘

(4.25b)

is the exact solution.

For approximation in space we use continuous, piecewise cubic finite elements where the
spatial interval p0, 1q is decomposed into 10 uniform subintervals. Note that this proper
choice of the trial space for the spatial discretization ensures that the error in space is
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negligible. So, the numerical results for problem (4.25) reflect the error behavior of the
variational time discretization method.

At first, we have a look at the superconvergence behavior in the time mesh points. How-
ever, according to Subsection 4.2.2, in this parabolic setting for 𝑄𝑟

𝑘-VTD𝑟
𝑘 methods we

only can expect a low order superconvergence and not the high superconvergence order of
2𝑟 ´ 𝑘 ` 1 as known from the analysis of non-stiff ode systems. This can also be seen in
the results presented in Table 4.4 where errors in the 𝐿2p𝐿2q- and the ℓ8p𝐿2q-norm as well
as their associated experimental orders of convergence are given for the 𝑄6

0-VTD6
0 method

on time meshes with 𝑁 uniform subintervals where 𝑁 “ 2𝑖, 𝑖 “ 5, . . . , 13. While the
𝐿2p𝐿2q-order is 𝑟 ` 1 “ 7 as predicted by theory, the high superconvergence order, which is
2𝑟 ´ 𝑘 ` 1 “ 13, is clearly not obtained, even for quite small time steps. This suggests that
in general additional compatibility conditions, as those in [52, p. 211], really are needed for
higher order superconvergence.

The situation is quite different if we apply cascadic interpolation to the function 𝑓 on
the right-hand side. Corresponding computational results for 𝑄6

0-VTD6
0p𝒞6

0𝑓q are also given
in Table 4.4. We observe that the error in the 𝐿2p𝐿2q-norm is almost the same as for the
standard method without cascade, but the ℓ8p𝐿2q-norm is considerably smaller. Moreover,
now the desired high superconvergence order of 13 is achieved even for quite large time
steps, which is in accordance with the theoretical result of Remark 4.60. This suggests that
the application of cascadic interpolation can be quite advantageous.

Table 4.4: Errors and experimental orders of convergence for 𝑄6
0-VTD6

0 without and with
interpolation cascade of the right-hand side for problem (4.25)

without cascade with cascade

}𝑢 ´ 𝑢𝜏ℎ}𝐿2p𝐿2q }𝑢 ´ 𝑢𝜏ℎ}ℓ8p𝐿2q }𝑢 ´ 𝑢𝜏ℎ}𝐿2p𝐿2q }𝑢 ´ 𝑢𝜏ℎ}ℓ8p𝐿2q

𝑁 error eoc error eoc error eoc error eoc

32 2.016e-15 7.000 4.595e-20 9.263 2.016e-15 7.000 3.598e-28 12.963
64 1.575e-17 7.000 7.477e-23 9.236 1.575e-17 7.000 4.506e-32 12.986

128 1.231e-19 7.000 1.240e-25 9.261 1.231e-19 7.000 5.554e-36 12.994
256 9.616e-22 7.000 2.022e-28 9.517 9.616e-22 7.000 6.809e-40 12.997
512 7.513e-24 7.000 2.761e-31 9.796 7.513e-24 7.000 8.328e-44 12.999

1024 5.869e-26 7.000 3.105e-34 9.963 5.869e-26 7.000 1.018e-47 12.999
2048 4.586e-28 7.000 3.112e-37 10.828 4.586e-28 7.000 1.243e-51 13.000
4096 3.582e-30 7.000 1.712e-40 11.866 3.582e-30 7.000 1.517e-55 13.000
8192 2.799e-32 4.586e-44 2.799e-32 1.852e-59

In Table 4.5 computational results for the 𝑄6
3-VTD6

3 method without and with interpo-
lation cascade are presented. The behavior is quite similar as for 𝑄6

0-VTD6
0. While the

errors in the 𝐿2p𝐿2q-norm are almost equal for the standard method and the method with
cascadic interpolation and show the predicted convergence order 𝑟 ` 1 “ 7, the errors in
the time mesh points reveal considerable differences between both methods. So, with cas-
cade the high superconvergence order 2𝑟 ´ 𝑘 ` 1 “ 10 is obtained already for coarse grids,
whereas without cascade this order is clearly underachieved. Though, the differences are
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not as prominent as for 𝑄6
0-VTD6

0, which is certainly due to the smaller difference between
𝐿2p𝐿2q-order 7 and high superconvergence order 10.

Table 4.5: Errors and experimental orders of convergence for 𝑄6
3-VTD6

3 without and with
interpolation cascade of the right-hand side for problem (4.25)

without cascade with cascade

}𝑢 ´ 𝑢𝜏ℎ}𝐿2p𝐿2q }𝑢 ´ 𝑢𝜏ℎ}ℓ8p𝐿2q }𝑢 ´ 𝑢𝜏ℎ}𝐿2p𝐿2q }𝑢 ´ 𝑢𝜏ℎ}ℓ8p𝐿2q

𝑁 error eoc error eoc error eoc error eoc

32 5.071e-15 7.000 1.315e-18 9.331 5.072e-15 7.000 2.817e-21 9.983
64 3.962e-17 7.000 2.042e-21 9.290 3.962e-17 7.000 2.784e-24 9.996

128 3.095e-19 7.000 3.263e-24 9.267 3.095e-19 7.000 2.726e-27 9.999
256 2.418e-21 7.000 5.295e-27 9.242 2.418e-21 7.000 2.663e-30 10.000
512 1.889e-23 7.000 8.746e-30 9.255 1.889e-23 7.000 2.601e-33 10.000

1024 1.476e-25 7.000 1.431e-32 9.414 1.476e-25 7.000 2.541e-36 10.000
2048 1.153e-27 7.000 2.099e-35 9.572 1.153e-27 7.000 2.481e-39 10.000
4096 9.008e-30 7.000 2.758e-38 9.719 9.008e-30 7.000 2.423e-42 10.000
8192 7.038e-32 3.273e-41 7.038e-32 2.366e-45

In order to enable also an easy comparison of the variational time discretization methods
for different choices of the method parameter 𝑘, we present in Table 4.6 the computational
results for different versions of 𝑄6

𝑘-VTD6
𝑘 with 𝑘 “ 0, . . . , 6 for problem (4.25). In addition

to the standard method and the method with cascadic interpolation, we now also consider
the postprocessing of the methods without and with cascade. Note that the errors, given
in various (semi-)norms, are those obtained for a time mesh consisting of 𝑁 “ 256 uni-
form subintervals. Moreover, the listed associated experimental orders of convergence were
calculated from the errors for 𝑁 P t256, 512u.

The numerical results of Table 4.6 once again reflect many features of the variational
time discretization methods that we have observed and discussed earlier. We will therefore
highlight only a few aspects.

For 𝑟 “ 𝑘 “ 6 using the interpolation cascade has no effect on the computational results.
This is because the methods 𝑄6

6-VTD6
6 and 𝑄6

6-VTD6
6p𝒞6

6𝑓q are equivalent. Moreover,
postprocessing has no effect on the ℓ8p𝐿2q-norm of the error if 0 ď 𝑘 ď 𝑟 “ 6 and on the
ℓ8p𝐿2q-norm of the first time derivative of the error if 2 ď 𝑘 ď 𝑟 “ 6. This is because
postprocessing, by construction, preserves function and derivative values up to derivative
order

X

𝑘
2

\

in the time mesh points.
The errors in the 𝐿2p𝐿2q-norm and the 𝐻1p𝐿2q-semi-norm are hardly influenced by the

usage of cascadic interpolation. Without postprocessing we see, as expected, 𝐿2p𝐿2q-order
𝑟 ` 1 “ 7 and 𝐻1p𝐿2q-order 𝑟 “ 6. Moreover, postprocessing increases the 𝐿2p𝐿2q-order if
0 ď 𝑘 ď 𝑟 ´ 1 “ 5 and the 𝐻1p𝐿2q-order if 0 ď 𝑘 ď 𝑟 “ 6 by one. This is in accordance
with our theoretical and numerical results from Sections 1.3 and 1.4, also see Remark 4.56.

When using the interpolation cascade for the right-hand side, we observe the high super-
convergence order 2𝑟 ´ 𝑘 ` 1 “ 13 ´ 𝑘 for the error in the ℓ8p𝐿2q-norm. For 2 ď 𝑘 ď 𝑟 “ 6
before postprocessing and 0 ď 𝑘 ď 𝑟 “ 6 after postprocessing, respectively, this supercon-

150



4.4 Numerical results

vergence order is also obtained for the first time derivative of the error in the time mesh
points. Without cascadic interpolation the convergence orders for the errors in the time
mesh points are partly considerably smaller. However, a low order superconvergence behav-
ior can be observed for all 0 ď 𝑘 ď 𝑟 ´ 1 “ 5, which is in accordance with our theoretical
findings.

Summarizing, the numerical results nicely show the properties of the considered varia-
tional time discretization methods. The convergence behavior expected from our theoretical
error estimates is met and well illustrated.
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Table 4.6: Errors and experimental orders of convergence for different versions of 𝑄6
𝑘-VTD6

𝑘,
𝑘 “ 0, . . . , 6, for problem (4.25)

}𝑢 ´ 𝑢𝜏ℎ}𝐿2p𝐿2q |𝑢 ´ 𝑢𝜏ℎ|𝐻1p𝐿2q }𝑢 ´ 𝑢𝜏ℎ}ℓ8p𝐿2q }B𝑡p𝑢 ´ 𝑢𝜏ℎq}ℓ8p𝐿2q

𝑘 error eoc error eoc error eoc error eoc

piq standard method

0 9.616e-22 7.000 4.548e-18 6.000 2.022e-28 9.517 4.301e-18 6.000
1 1.007e-21 7.000 2.342e-18 6.000 6.102e-28 9.404 7.987e-18 6.000
2 1.645e-21 7.000 3.460e-18 6.000 9.839e-28 9.225 1.236e-24 8.339
3 2.418e-21 7.000 3.662e-18 6.000 5.295e-27 9.242 3.989e-24 8.257
4 4.836e-21 7.000 6.190e-18 6.000 1.665e-25 8.983 1.136e-23 8.248
5 1.026e-20 7.000 9.650e-18 6.000 2.828e-23 8.000 3.496e-22 7.989
6 4.139e-20 7.000 2.228e-17 6.000 4.939e-21 6.995 5.754e-20 6.995

piiq with cascadic interpolation

0 9.616e-22 7.000 4.548e-18 6.000 6.809e-40 12.997 4.301e-18 6.000
1 1.007e-21 7.000 2.342e-18 6.000 1.137e-36 12.000 7.987e-18 6.000
2 1.645e-21 7.000 3.460e-18 6.000 1.884e-33 10.997 2.195e-32 10.997
3 2.418e-21 7.000 3.662e-18 6.000 2.663e-30 10.000 3.103e-29 10.000
4 4.836e-21 7.000 6.190e-18 6.000 3.731e-27 8.996 4.346e-26 8.996
5 1.026e-20 7.000 9.650e-18 6.000 4.317e-24 8.000 5.029e-23 8.000
6 4.139e-20 7.000 2.228e-17 6.000 4.939e-21 6.995 5.754e-20 6.995

}𝑢 ´ r𝑢𝜏ℎ}𝐿2p𝐿2q |𝑢 ´ r𝑢𝜏ℎ|𝐻1p𝐿2q }𝑢 ´ r𝑢𝜏ℎ}ℓ8p𝐿2q }B𝑡p𝑢 ´ r𝑢𝜏ℎq}ℓ8p𝐿2q

𝑘 error eoc error eoc error eoc error eoc

piiiq with postprocessing

0 6.855e-25 7.999 1.694e-21 6.998 2.022e-28 9.517 6.056e-25 8.777
1 9.741e-25 8.000 1.781e-21 7.000 6.102e-28 9.404 1.657e-24 8.746
2 1.801e-24 7.999 2.903e-21 6.999 9.839e-28 9.225 1.236e-24 8.339
3 3.307e-24 8.000 4.275e-21 7.000 5.295e-27 9.242 3.989e-24 8.257
4 8.527e-24 7.999 8.537e-21 6.999 1.665e-25 8.983 1.136e-23 8.248
5 2.201e-23 8.000 1.813e-20 7.000 2.828e-23 8.000 3.496e-22 7.989
6 4.543e-21 6.999 4.833e-20 6.999 4.939e-21 6.995 5.754e-20 6.995

pivq with cascadic interpolation and postprocessing

0 6.868e-25 8.000 1.700e-21 7.000 6.809e-40 12.997 7.932e-39 12.997
1 9.741e-25 8.000 1.781e-21 7.000 1.137e-36 12.000 1.324e-35 12.000
2 1.804e-24 8.000 2.908e-21 7.000 1.884e-33 10.997 2.195e-32 10.997
3 3.307e-24 8.000 4.275e-21 7.000 2.663e-30 10.000 3.103e-29 10.000
4 8.539e-24 8.000 8.551e-21 7.000 3.731e-27 8.996 4.346e-26 8.996
5 3.336e-23 8.000 1.814e-20 7.000 4.317e-24 8.000 5.029e-23 8.000
6 4.543e-21 6.999 4.833e-20 6.999 4.939e-21 6.995 5.754e-20 6.995
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Summary and Outlook

We have considered a family of variational time discretization schemes VTD𝑟
𝑘 with param-

eters 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, that generalizes the well-known discontinuous Galerkin (dG)
method and continuous Galerkin–Petrov (cGP) method. Generalizing the methods and
studying the entire family was interesting for several reasons.

On the one hand, the new schemes have useful properties. So, for example, a higher
regularity of the discrete solution can be provided. Indeed, in dependence of 𝑘 we ob-
tain discrete solutions that are

X

𝑘´1
2

\

-times continuously differentiable with respect to time.
Further, holding the local polynomial ansatz degree 𝑟 constant, the number of unknowns
decreases with increasing 𝑘. In the extreme case 𝑟 “ 𝑘 the number of unknowns is (al-
most) halved. Moreover, under appropriate conditions superconvergence behavior in the
time mesh points can be observed also for derivatives up to order

X

𝑘
2

\

.
On the other hand, the unified analysis as well as the observed connections to other

discretization schemes, as collocation methods with multiple nodes or Runge–Kutta-like
methods, and the observed connections between different variational time discretization
methods via postprocessing provide interesting insights and lead to alternative proof tech-
niques. So, for example, in the case of cascadic interpolation we now have a nice and short
justification of superconvergence in the time mesh points.

Finally, we want to summarize briefly some of the important results and raise further
questions that came up during the extensive investigations.

In Part I, the VTD𝑟
𝑘 methods, 0 ď 𝑘 ď 𝑟, were studied for initial value problems. For non-

stiff ode systems, in Section 1.2, a unified error analysis was established that can be applied
in a rather abstract setting which also allows numerical integration and approximation of
the “right-hand side”. Beyond pointwise error estimates also superconvergence in time mesh
points was shown. However, especially for 𝑘 ě 4 Assumption 1.4 almost precluded to study
nonlinear problems. Therefore, we should ask whether or not similar results can also be
proven under weaker assumptions that allow nonlinear problems also for large 𝑘. Moreover,
it would be quite interesting to investigate the variational time discretization methods in
the context of integral equations.

In Section 1.3 a postprocessing technique was provided that under suitable assumptions
can be used to improve the discrete solution. In this context we also found out that some
of the variational time discretization methods are connected to collocation methods with
multiple nodes. Here, we could ask whether for all considered variational time discretization
methods the postprocessing can be used to drive an adaptive time step control as it is known
from [3] for dG and cGP methods.

Further, in Section 1.4 we considered affine linear problems with time-independent coef-
ficients. We introduced the idea of cascadic interpolation of the right-hand side function
in order to enable multiple postprocessing steps. As easy consequence we got a nice proof
of superconvergence in the case that the interpolation cascade is used. However, it is open
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Summary and Outlook

whether or not the idea of cascadic interpolation can be generalized to more general problems
with coefficients that depend on time. Moreover, it would be nice to find a mathematical
explanation for the computational results of Table 1.4 which showed that postprocessing
based on jumps and postprocessing based on residuals behave very different if multiple
postprocessing steps are applied.

In Chapter 2 we derived error estimates also for stiff ode systems. To this end, we fitted the
variational time discretization methods into a Runge–Kutta-like framework, see Sections 2.1
and 2.2. Then, in Section 2.3 we transferred the techniques that are usually used to prove
the 𝐵-convergence of Runge–Kutta methods in order to derive stiff error estimates for the
VTD𝑟

𝑘 methods. However, also here we have restricted the investigations to affine linear
problems with time-independent coefficients. Thus, it is still an open question whether for
the whole family of methods similar estimates can be shown also for more general problem
classes, e.g., for affine linear problems with time-dependent coefficients or certain semilinear
problems.

Part II was devoted to the study of variational time discretization methods in the context
of parabolic problems with time-independent spatial differential operators and homogeneous
boundary conditions. At first, in Chapter 3, we collected some well-known results on the
regularity of solutions and the semi-discretization in space that were needed later. More-
over, we presented a full discretization in space and time that was obtained by applying a
variational time discretization scheme to the semi-discretization in space.

Then, in Chapter 4 the findings from Part I were combined and transferred to prove error
estimates for VTD𝑟

𝑘p𝑔q also in the parabolic setting. Using that the
X

𝑘
2

\

th derivative of
the solution of VTD𝑟

𝑘p𝑔q actually solves a dG or cGP scheme, respectively, we started in
Section 4.1 by showing error estimates for this derivative. Although most estimates were
already known from the analysis of dG and cGP methods, this section was very interesting
since, firstly, also the application of quadrature rules for approximate integration in time
was allowed and, secondly, dG and cGP were studied at once, which nicely showed the
similarities and differences in the analysis of the two methods.

Next, in Section 4.2, we had a look on the error in the time (mesh) points. Since in general
a superconvergence behavior cannot be observed or at least does not provide sufficiently
high orders of convergence, we had to reuse the (stiff) error estimates of Section 2.3 to prove
satisfactory error estimates. This, however, also shows that a very detailed investigation
of superconvergence could be quite worthwhile since proper adjustments of the methods
may be possible if the crucial reason for the lack of high superconvergence is found. In this
regard note that we already showed that the high superconvergence order is obtained when
cascadic interpolation is used.

Finally, combining all these results, we concluded in Section 4.3 optimal error estimates
for full discretizations in space and time that use variational time discretization schemes for
approximation in time. Now, an obvious next step would be to allow also inhomogeneous
boundary conditions. Here, using the interpolation cascade may also help to treat the issue
of order-reduction known in this context. Other approaches that tackle this problem and
may be generalized are presented for the dG method in [54, Chapter 3] and for Runge–Kutta
methods in [7, 8]. Moreover, in further research, the variational time discretizations may be
analyzed also for other problems as, for example, the wave equation or the transient Stokes
problem. For wave equations a first step in this direction has been already gone in [9, 12].

154



Appendix

155





A Miscellaneous Results

In this section, we want to collect and partly prove miscellaneous results that are needed in
this thesis.

A.1 Discrete Gronwall inequality
Discrete versions of the Gronwall lemma are well-known from the literature, see e.g. [52,
Lemma 10.5, p. 175], [26, Exercise 67.1, p. 159, Exercise 68.3, pp. 174–175], or [23]. We
here prove one further, less common variant.

Lemma A.1 (Discrete Gronwall lemma)
Let p𝑎𝑛q𝑛PN0, p𝐴𝑛q𝑛PN, p𝐵𝑛q𝑛PN, and p𝑤𝑛q𝑛PN be sequences of real numbers satisfying

𝑤𝑛 ą 0 and 𝑎𝑛 ` 𝐴𝑛 ď 𝐵𝑛 ` 𝑤𝑛𝑎𝑛´1, 𝑛 ě 1.

Then, for all 𝑛 ě 1 it holds

𝑎𝑛 `

𝑛
ÿ

𝜈“1

˜

𝑛
ź

𝑘“𝜈`1

𝑤𝑘

¸

𝐴𝜈 ď 𝑎0

˜

𝑛
ź

𝑘“1

𝑤𝑘

¸

`

𝑛
ÿ

𝜈“1

˜

𝑛
ź

𝑘“𝜈`1

𝑤𝑘

¸

𝐵𝜈 .

If additionally 𝑎0, 𝐴𝑛, 𝐵𝑛 ě 0 and 𝑤𝑛 ě 1 for all 𝑛 ě 1, then it follows

𝑎𝑛 `

𝑛
ÿ

𝜈“1

𝐴𝜈 ď exp

˜

𝑛
ÿ

𝑘“1

p𝑤𝑘 ´ 1q

¸˜

𝑎0 `

𝑛
ÿ

𝜈“1

𝐵𝜈

¸

for all 𝑛 ě 1.

Proof. We define some auxiliary variables by �̃�𝑛 :“ 𝑎𝑛
`
ś𝑛

𝑘“1𝑤
´1
𝑘

˘

, 𝑛 ě 0. Then, from the
presumed inequality we gain

�̃�𝜈 ´ �̃�𝜈´1 “

˜

𝜈
ź

𝑘“1

𝑤´1
𝑘

¸

p𝑎𝜈 ´ 𝑤𝜈𝑎𝜈´1q ď

˜

𝜈
ź

𝑘“1

𝑤´1
𝑘

¸

p𝐵𝜈 ´ 𝐴𝜈q.

A summation over 𝜈 “ 1, . . . , 𝑛 yields

�̃�𝑛 ď �̃�0 `

𝑛
ÿ

𝜈“1

˜

𝜈
ź

𝑘“1

𝑤´1
𝑘

¸

p𝐵𝜈 ´ 𝐴𝜈q.

Recalling the definition of �̃�𝑛 and rearranging the terms, we obtain

𝑎𝑛 `

𝑛
ÿ

𝜈“1

˜

𝑛
ź

𝑘“𝜈`1

𝑤𝑘

¸

𝐴𝜈 ď 𝑎0

˜

𝑛
ź

𝑘“1

𝑤𝑘

¸

`

𝑛
ÿ

𝜈“1

˜

𝑛
ź

𝑘“𝜈`1

𝑤𝑘

¸

𝐵𝜈 ,
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which is the first estimate.
Because of the additional assumption 𝑤𝑛 ě 1 for 𝑛 ě 1, we have

1 ď

𝑛
ź

𝑘“𝜈`1

𝑤𝑘 ď

𝑛
ź

𝑘“1

𝑤𝑘 ď

𝑛
ź

𝑘“1

exp p𝑤𝑘 ´ 1q “ exp

˜

𝑛
ÿ

𝑘“1

p𝑤𝑘 ´ 1q

¸

.

For 𝑎0, 𝐴𝑛, 𝐵𝑛 ě 0 this enables to bound the left-hand side of the first estimate from below
and the right-hand side from above in the desired way.

A.2 Something about Jacobi-polynomials

The Jacobi-polynomials, denoted by 𝑃
p𝛼,𝛽q
𝑛 p𝑡q for 𝑛 P N0, 𝛼, 𝛽 ą ´1, form an orthogonal

system with respect to the weighting function 𝑤p𝑡q “ p1´ 𝑡q𝛼p1` 𝑡q𝛽 in the interval p´1, 1q,
see [1, 22.2.1, p. 774]. They are normalized by setting

𝑃 p𝛼,𝛽q
𝑛 p1q “

ˆ

𝑛 ` 𝛼

𝑛

˙

(A.1)

and satisfy
ż 1

´1

𝑃 p𝛼,𝛽q
𝑚 p𝑡q𝑃 p𝛼,𝛽q

𝑛 p𝑡qp1 ´ 𝑡q𝛼p1 ` 𝑡q𝛽d𝑡 “
2𝛼`𝛽`1

2𝑛 ` 𝛼 ` 𝛽 ` 1

Γp𝑛 ` 𝛼 ` 1qΓp𝑛 ` 𝛽 ` 1q

𝑛! Γp𝑛 ` 𝛼 ` 𝛽 ` 1q
𝛿𝑚,𝑛.

Hereby, Γp𝑡q is the gamma function and 𝛿𝑚,𝑛 the Kronecker symbol. Note that for 𝑛 P N0

the identity Γp𝑛 ` 1q “ 𝑛! holds.
Furthermore, the Jacobi-polynomials satisfy the Rodrigues’ formula

𝑃 p𝛼,𝛽q
𝑛 p𝑡q “

p´1q𝑛

2𝑛𝑛!
p1 ´ 𝑡q´𝛼

p1 ` 𝑡q´𝛽 d𝑛

d𝑡𝑛

”

p1 ´ 𝑡q𝑛`𝛼
p1 ` 𝑡q𝑛`𝛽

ı

,

see [1, 22.11.1, p. 785]. From this identity we easily conclude for 0 ď 𝑘 ď 𝑛 that

d𝑘

d𝑡𝑘

”

p1 ´ 𝑡q𝛼`𝑘
p1 ` 𝑡q𝛽`𝑘 𝑃

p𝛼`𝑘,𝛽`𝑘q

𝑛´𝑘 p𝑡q
ı

“
p´1q𝑘2𝑘𝑛!

p𝑛 ´ 𝑘q!
p1 ´ 𝑡q𝛼 p1 ` 𝑡q𝛽 𝑃 p𝛼,𝛽q

𝑛 p𝑡q. (A.2)
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B Abstract Projection Operators for Banach
Space-Valued Functions

Piecewise polynomial projection operators of real-valued or vector-valued functions are well
studied as this is part of the standard finite element interpolation theory, see e.g. [21,
Section 3.1] or [25, Chapter 1]. However, to the best of our knowledge for Banach space-
valued functions, apart from results on special projection operators, there are no general
studies in the literature. Therefore, in this section, a rather abstract definition and rigorous
error analysis is presented at least for the univariate, Banach space-valued case.

Here, standard notation for the occurring function spaces is used. For details, especially
on the definitions of the norms in Sobolev and Bochner–Sobolev spaces, see page 82. In
addition, we list some literature on the basics of Banach space-valued functions and Bochner
integration at the end of this section, see Appendix B.3, for easy reference.

B.1 Abstract definition and commutation properties

We start considering assumptions that enable the definition of an abstract polynomial pro-
jection operator.

Lemma B.1
Let 𝑋 denote a Banach space over R, let 𝑟 P Z, 𝑟 ě 0, and 𝑎, 𝑏 P R, 𝑎 ă 𝑏. Assume that
there is a Banach space 𝑉 pp𝑎, 𝑏q, 𝑋q with 𝑃𝑟pp𝑎, 𝑏q, 𝑋q Ď 𝑉 pp𝑎, 𝑏q, 𝑋q Ď 𝐿1pp𝑎, 𝑏q, 𝑋q and
that there are 𝑟` 1 bounded linear operators 𝒩𝑋

𝑖 : 𝑉 pp𝑎, 𝑏q, 𝑋q Ñ 𝑋, 𝑖 “ 0, . . . , 𝑟, such that
the mapping

𝑃𝑟pp𝑎, 𝑏q, 𝑋q Q 𝑣 ÞÑ
`

𝒩𝑋
𝑗 p𝑣q

˘

𝑗“0,...,𝑟
P 𝑋𝑟`1 is an isomorphism. (B.1)

Moreover, suppose that there exist functions 𝜑𝑖 P 𝑃𝑟pp𝑎, 𝑏qq, 𝑖 “ 0, . . . , 𝑟, such that

𝒩𝑋
𝑗 p𝑤𝜑𝑖q “ 𝛿𝑖,𝑗𝑤 @𝑖, 𝑗 “ 0, . . . , 𝑟, @𝑤 P 𝑋. (B.2)

Then, the projection operator

Π𝑋 : 𝑉 pp𝑎, 𝑏q, 𝑋q Ñ 𝑃𝑟pp𝑎, 𝑏q, 𝑋q, 𝑣 ÞÑ

𝑟
ÿ

𝑖“0

𝒩𝑋
𝑖 p𝑣q𝜑𝑖,

is well-defined and preserves 𝑋-valued polynomials of maximal degree 𝑟.
If furthermore 𝑘,𝑚 P Z, 𝑘,𝑚 ě 0, and 𝑝, 𝑞 P r1,8s are chosen such that the embedding

𝑊 𝑘`1,𝑝pp𝑎, 𝑏q, 𝑋q ãÑ 𝑉 pp𝑎, 𝑏q, 𝑋q holds true, then Π𝑋 is a bounded linear operator from
𝑊 𝑘`1,𝑝pp𝑎, 𝑏q, 𝑋q to 𝑊𝑚,𝑞pp𝑎, 𝑏q, 𝑋q.
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Proof. Obviously, since 𝒩𝑋
𝑖 : 𝑉 pp𝑎, 𝑏q, 𝑋q Ñ 𝑋, 𝑖 “ 0, . . . , 𝑟, are bounded linear operators,

for every function in 𝑣 P 𝑉 pp𝑎, 𝑏q, 𝑋q we have that Π𝑋𝑣 “
ř𝑟

𝑖“0𝒩𝑋
𝑖 p𝑣q𝜑𝑖 P 𝑃𝑟pp𝑎, 𝑏q, 𝑋q is

well-defined. Because of 𝑃𝑟pp𝑎, 𝑏q, 𝑋q Ď 𝑉 pp𝑎, 𝑏q, 𝑋q, we can also apply Π𝑋 to Π𝑋𝑣.
We further need to show that Π𝑋 preserves 𝑋-valued polynomials of maximal degree

𝑟 and, thus, also Π𝑋pΠ𝑋𝑣q “ Π𝑋𝑣 for all 𝑣 P 𝑉 pp𝑎, 𝑏q, 𝑋q. So, let 𝑣 P 𝑃𝑟pp𝑎, 𝑏q, 𝑋q be
arbitrarily chosen. Since 𝑣 is uniquely described by

`

𝒩𝑋
𝑗 p𝑣q

˘

𝑗“0,...,𝑟
, it suffices to verify that

𝒩𝑋
𝑗 pΠ𝑋𝑣q “ 𝒩𝑋

𝑗 p𝑣q for all 𝑗 “ 0, . . . , 𝑟. But this follows easily from (B.2)

𝒩𝑋
𝑗

`

Π𝑋𝑣
˘

“

𝑟
ÿ

𝑖“0

𝒩𝑋
𝑗

`

𝒩𝑋
𝑖 p𝑣q𝜑𝑖

˘

“

𝑟
ÿ

𝑖“0

𝛿𝑖,𝑗𝒩𝑋
𝑖 p𝑣q “ 𝒩𝑋

𝑗 p𝑣q.

Therefore, Π𝑋 is a projection operator onto 𝑃𝑟pp𝑎, 𝑏q, 𝑋q.
Now, it only remains to prove the boundedness of Π𝑋 . Let 𝑣 P 𝑊 𝑘`1,𝑝pp𝑎, 𝑏q, 𝑋q. Then,

due to 𝑊 𝑘`1,𝑝pp𝑎, 𝑏q, 𝑋q ãÑ 𝑉 pp𝑎, 𝑏q, 𝑋q, it also holds 𝑣 P 𝑉 pp𝑎, 𝑏q, 𝑋q and 𝒩𝑋
𝑖 , 𝑖 “ 0, . . . , 𝑟,

are bounded linear operators from 𝑊 𝑘`1,𝑝pp𝑎, 𝑏q, 𝑋q to 𝑋. Moreover, obviously we have
Π𝑋𝑣 P 𝑃𝑟pp𝑎, 𝑏q, 𝑋q Ă 𝑊𝑚,𝑞pp𝑎, 𝑏q, 𝑋q. Therefore,

›

›Π𝑋𝑣
›

›

𝑊𝑚,𝑞pp𝑎,𝑏q,𝑋q
ď

𝑟
ÿ

𝑖“0

›

›𝒩𝑋
𝑖 p𝑣q𝜑𝑖

›

›

𝑊𝑚,𝑞pp𝑎,𝑏q,𝑋q
“

𝑟
ÿ

𝑖“0

›

›𝒩𝑋
𝑖 p𝑣q

›

›

𝑋

›

›𝜑𝑖

›

›

𝑊𝑚,𝑞pp𝑎,𝑏q,Rq

ď

𝑟
ÿ

𝑖“0

𝐶𝒩𝑋
𝑖

›

›𝑣
›

›

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q

›

›𝜑𝑖

›

›

𝑊𝑚,𝑞pp𝑎,𝑏q,Rq
“ 𝐶

›

›𝑣
›

›

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q

with 𝐶 “
ř𝑟

𝑖“0𝐶𝒩𝑋
𝑖

›

›𝜑𝑖

›

›

𝑊𝑚,𝑞pp𝑎,𝑏q,Rq
.

Remark B.2
Note that the existence of suitable 𝜑𝑖 P 𝑃𝑟pp𝑎, 𝑏qq, 𝑖 “ 0, . . . , 𝑟, fulfilling (B.2) already follows
from the assumptions (B.1) on 𝒩𝑋

𝑖 , 𝑖 “ 0, . . . , 𝑟, if there are associated linear operators
𝒩 R

𝑖 : 𝑃𝑟pp𝑎, 𝑏qq Ñ R, 𝑖 “ 0, . . . , 𝑟, that satisfy

𝒩 R
𝑖

`

x𝑔, 𝑣y𝑋 1,𝑋

˘

“
@

𝑔,𝒩𝑋
𝑖 p𝑣q

D

𝑋 1,𝑋
@𝑔 P 𝑋 1, @𝑣 P 𝑃𝑟pp𝑎, 𝑏q, 𝑋q. (B.3)

Indeed, let r𝑤 P 𝑋 with } r𝑤}𝑋 “ 1. Then, since 𝑃𝑟pp𝑎, 𝑏q, 𝑋q Q 𝑣 ÞÑ
`

𝒩𝑋
𝑖 p𝑣q

˘

𝑖“0,...,𝑟
P 𝑋𝑟`1

is an isomorphism, there exist functions 𝜑 r𝑤
𝑖 P 𝑃𝑟pp𝑎, 𝑏q, 𝑋q, 𝑖 “ 0, . . . , 𝑟, such that

𝒩𝑋
𝑗 p𝜑 r𝑤

𝑖 q “ 𝛿𝑖,𝑗 r𝑤 @𝑖, 𝑗 “ 0, . . . , 𝑟.

Now, by Hahn–Banach’s theorem there is a 𝑔
r𝑤 P 𝑋 1 satisfying x𝑔

r𝑤, r𝑤y𝑋 1,𝑋 “ } r𝑤}𝑋 “ 1.
Using this, we define 𝜑𝑖 P 𝑃𝑟pp𝑎, 𝑏qq, 𝑖 “ 0, . . . , 𝑟, by

𝜑𝑖 “
@

𝑔
r𝑤, 𝜑

r𝑤
𝑖

D

𝑋 1,𝑋
.

It remains to prove that 𝜑𝑖, 𝑖 “ 0, . . . , 𝑟, fulfill (B.2). So, let 𝑤 P 𝑋 and 𝑔 P 𝑋 1 be
arbitrarily chosen. Then, using the properties of 𝒩 R

𝑗 and of the duality pairing, we obtain
@

𝑔,𝒩𝑋
𝑗 p𝑤𝜑𝑖q

D

𝑋 1,𝑋
“ 𝒩 R

𝑗

`

x𝑔, 𝑤𝜑𝑖y𝑋 1,𝑋

˘

“ 𝒩 R
𝑗

`

x𝑔, 𝑤y𝑋 1,𝑋𝜑𝑖

˘

“ x𝑔, 𝑤y𝑋 1,𝑋𝒩 R
𝑗

`

𝜑𝑖

˘

“ x𝑔, 𝑤y𝑋 1,𝑋𝒩 R
𝑗

`

x𝑔
r𝑤, 𝜑

r𝑤
𝑖 y𝑋 1,𝑋

˘

“ x𝑔, 𝑤y𝑋 1,𝑋

@

𝑔
r𝑤,𝒩𝑋

𝑗 p𝜑 r𝑤
𝑖 q
D

𝑋 1,𝑋

“ x𝑔, 𝑤y𝑋 1,𝑋

@

𝑔
r𝑤, 𝛿𝑖,𝑗 r𝑤

D

𝑋 1,𝑋
“ x𝑔, 𝑤y𝑋 1,𝑋𝛿𝑖,𝑗

@

𝑔
r𝑤, r𝑤

D

𝑋 1,𝑋

“ x𝑔, 𝛿𝑖,𝑗𝑤y𝑋 1,𝑋

for 𝑖, 𝑗 “ 0, . . . , 𝑟. Since this holds for arbitrary 𝑔 P 𝑋 1, it follows 𝒩𝑋
𝑗 p𝑤𝜑𝑖q “ 𝛿𝑖,𝑗𝑤. ♣
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Remark B.3
Often the linear operators that are used to define projection operators by the approach of
Lemma B.1 have the basic form

𝒩𝑋 : 𝑊 𝑙,1
pp𝑎, 𝑏q, 𝑋q Ñ 𝑋, 𝑣 ÞÑ

ż 𝑏

𝑎

𝑣p𝑙q
p𝑡q 𝑡𝑗 d𝑡, with 𝑙, 𝑗 P Z, 𝑙 ě 0, 𝑗 ě 0, (B.4a)

where the integral is interpreted in Bochner sense,

𝒩𝑋 : 𝐶 𝑙
pr𝑎, 𝑏s, 𝑋q Ñ 𝑋, 𝑣 ÞÑ 𝑣p𝑙q

p𝑡˚q, with 𝑙 P Z, 𝑙 ě 0, and 𝑡˚ P r𝑎, 𝑏s, (B.4b)

or are linear combinations of those operators. Of course, these operators are bounded.
The properties of the Bochner integral, see [26, Example 64.15, p. 114] or [50, (10.11),

p. 182], and of (derivatives of) Banach space-valued functions, see [26, Corollary 64.32 and
Lemma 64.34, p. 118] and [57, beginning of the proof of Proposition 3.6, p. 77], also guarantee
that (B.3) is satisfied by the linear operators in (B.4) and their linear combinations. ♣

The next lemma shows that under certain conditions the well-definedness of the Banach
space-valued projection operator already follows from that of its real-valued analogon.

Lemma B.4
Let 𝑋 be a Banach space over R, let 𝑟 P Z, 𝑟 ě 0, and 𝑎, 𝑏 P R, 𝑎 ă 𝑏. Suppose that
𝒩𝑋

𝑖 : 𝑃𝑟pp𝑎, 𝑏q, 𝑋q Ñ 𝑋, 𝑖 “ 0, . . . , 𝑟, are linear operators and that 𝒩 R
𝑖 : 𝑃𝑟pp𝑎, 𝑏qq Ñ R,

𝑖 “ 0, . . . , 𝑟, are associated linear operators that fulfill (B.3). Furthermore, assume that the
mapping 𝑃𝑟pp𝑎, 𝑏qq Q 𝑣 ÞÑ

`

𝒩 R
𝑗 p𝑣q

˘

𝑗“0,...,𝑟
P R𝑟`1 is an isomorphism. Then, the functions

𝜑𝑖 P 𝑃𝑟pp𝑎, 𝑏qq, 𝑖 “ 0, . . . , 𝑟, that are well-defined by 𝒩 R
𝑗 p𝜑𝑖q “ 𝛿𝑖,𝑗, 𝑖, 𝑗 “ 0, . . . , 𝑟, also

satisfy (B.2). Moreover, it holds (B.1).

Proof. Let 𝑤 P 𝑋 and 𝑔 P 𝑋 1 be arbitrarily chosen. Then,
@

𝑔,𝒩𝑋
𝑗 p𝑤𝜑𝑖q

D

𝑋 1,𝑋
“ 𝒩 R

𝑗

`

x𝑔, 𝑤𝜑𝑖y𝑋 1,𝑋

˘

“ 𝒩 R
𝑗

`

x𝑔, 𝑤y𝑋 1,𝑋𝜑𝑖

˘

“ x𝑔, 𝑤y𝑋 1,𝑋𝒩 R
𝑗

`

𝜑𝑖

˘

“ x𝑔, 𝑤y𝑋 1,𝑋𝛿𝑖,𝑗 “ x𝑔, 𝛿𝑖,𝑗𝑤y𝑋 1,𝑋

and, thus, 𝒩𝑋
𝑗 p𝑤𝜑𝑖q “ 𝛿𝑖,𝑗𝑤, which is (B.2).

To show (B.1), we first of all note that the mapping 𝑃𝑟pp𝑎, 𝑏q, 𝑋q Q 𝑣 ÞÑ
`

𝒩𝑋
𝑗 p𝑣q

˘

𝑗“0,...,𝑟

obviously preserves the vector space structure, so it remains to show bijectivity. The surjec-
tivity is quite clear since for p𝑣𝑗q𝑗“0,...,𝑟 P 𝑋𝑟`1 we have that

ř𝑟
𝑖“0 𝑣𝑖𝜑𝑖 P 𝑃𝑟pp𝑎, 𝑏q, 𝑋q satisfies

𝒩𝑋
𝑗 p𝑣q “

ř𝑟
𝑖“0𝒩𝑋

𝑗 p𝑣𝑖𝜑𝑖q “ 𝑣𝑗 for all 𝑗 “ 0, . . . , 𝑟 due to (B.2). In order to prove injectivity,
let 𝑣, 𝑤 P 𝑃𝑟pp𝑎, 𝑏q, 𝑋q satisfy 𝒩𝑋

𝑗 p𝑣q “ 𝒩𝑋
𝑗 p𝑤q for all 𝑗 “ 0, . . . , 𝑟. Then, for arbitrary

𝑔 P 𝑋 1 we also have 𝒩 R
𝑗 px𝑔, 𝑣y𝑋 1,𝑋q “ 𝒩 R

𝑗 px𝑔, 𝑤y𝑋 1,𝑋q for all 𝑗 “ 0, . . . , 𝑟. Since x𝑔, 𝑣y𝑋 1,𝑋

and x𝑔, 𝑤y𝑋 1,𝑋 are in 𝑃𝑟pp𝑎, 𝑏qq and, thus, are uniquely determined by
`

𝒩 R
𝑗 p¨q

˘

𝑗“0,...,𝑟
, it

follows x𝑔, 𝑣y𝑋 1,𝑋 “ x𝑔, 𝑤y𝑋 1,𝑋 . This, of course, holds pointwise in p𝑎, 𝑏q and for arbitrary
𝑔 P 𝑋 1. Hence, 𝑣 “ 𝑤. Therefore, also (B.1) is verified.

An important commutation property of the projection operator is presented in the fol-
lowing corollary. We mainly use it in Chapter 4 to guarantee that the projections in time
commute with bounded linear operators in space.
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Corollary B.5
Let 𝑋, 𝑌 be Banach spaces over R, let 𝑟 P Z, 𝑟 ě 0, and 𝑎, 𝑏 P R, 𝑎 ă 𝑏. Suppose that for
𝑍 P t𝑋, 𝑌,Ru there are Banach spaces 𝑉 pp𝑎, 𝑏q, 𝑍q with

𝑃𝑟pp𝑎, 𝑏q, 𝑍q Ď 𝑉 pp𝑎, 𝑏q, 𝑍q Ď 𝐿1
pp𝑎, 𝑏q, 𝑍q

and bounded linear operators 𝒩 𝑍
𝑖 : 𝑉 pp𝑎, 𝑏q, 𝑍q Ñ 𝑍, 𝑖 “ 0, . . . , 𝑟, satisfying

𝒩 R
𝑖

`

x𝑔, 𝑣y𝑍1,𝑍

˘

“
@

𝑔,𝒩 𝑍
𝑖 p𝑣q

D

𝑍1,𝑍
@𝑔 P 𝑍 1, @𝑣 P 𝑉 pp𝑎, 𝑏q, 𝑍q,

where we tacitly assume that the term on the left-hand side is well-defined, i.e., we assume
that x𝑔, 𝑣y𝑍1,𝑍 P 𝑉 pp𝑎, 𝑏q,Rq for all 𝑔 P 𝑍 1, 𝑣 P 𝑉 pp𝑎, 𝑏q, 𝑍q. Moreover, presume that the
mapping 𝑃𝑟pp𝑎, 𝑏qq Q 𝑣 ÞÑ

`

𝒩 R
𝑗 p𝑣q

˘

𝑗“0,...,𝑟
P R𝑟`1 is an isomorphism and let 𝜑𝑖 P 𝑃𝑟pp𝑎, 𝑏qq,

𝑖 “ 0, . . . , 𝑟, satisfy 𝒩 R
𝑗 p𝜑𝑖q “ 𝛿𝑖,𝑗, 𝑖, 𝑗 “ 0, . . . , 𝑟.

Then, for 𝑍 P t𝑋, 𝑌,Ru the projection operators

Π𝑍 : 𝑉 pp𝑎, 𝑏q, 𝑍q Ñ 𝑃𝑟pp𝑎, 𝑏q, 𝑍q, 𝑣 ÞÑ

𝑟
ÿ

𝑖“0

𝒩 𝑍
𝑖 p𝑣q𝜑𝑖,

are well-defined and preserve 𝑍-valued polynomials of maximal degree 𝑟.
Let, in addition, 𝐾 : 𝑋 Ñ 𝑌 be a bounded linear operator. For functions 𝑣 : r𝑎, 𝑏s Ñ 𝑋

set
`

𝐾𝑣
˘

p𝑡q :“ 𝐾
`

𝑣p𝑡q
˘

for 𝑡 P r𝑎, 𝑏s. If, furthermore, 𝐾
`

𝒩𝑋
𝑖 p𝑣q

˘

“ 𝒩 𝑌
𝑖 p𝐾𝑣q, 𝑖 “ 0, . . . , 𝑟,

for all 𝑣 P 𝑉 pp𝑎, 𝑏q, 𝑋q, where we tacitly assume that the term on the right-hand side is
well-defined, i.e., we assume that 𝐾𝑣 P 𝑉 pp𝑎, 𝑏q, 𝑌 q for all 𝑣 P 𝑉 pp𝑎, 𝑏q, 𝑋q, then it holds
𝐾
`

Π𝑋𝑣
˘

“ Π𝑌
`

𝐾𝑣
˘

for all 𝑣 P 𝑉 pp𝑎, 𝑏q, 𝑋q.

Proof. Combining Lemma B.4 and Lemma B.1, the stated assumptions imply the well-
definedness of the projection operators Π𝑍 , 𝑍 P t𝑋, 𝑌,Ru.

The commutation property 𝐾
`

Π𝑋𝑣
˘

“ Π𝑌
`

𝐾𝑣
˘

for all 𝑣 P 𝑉 pp𝑎, 𝑏q, 𝑋q follows from

`

𝐾
`

Π𝑋𝑣
˘˘

p𝑡q “ 𝐾
``

Π𝑋𝑣
˘

p𝑡q
˘

“

𝑟
ÿ

𝑖“0

𝐾
`

𝒩𝑋
𝑖 p𝑣q

˘

𝜑𝑖p𝑡q “

𝑟
ÿ

𝑖“0

𝒩 𝑌
𝑖 p𝐾𝑣q𝜑𝑖p𝑡q “

`

Π𝑌
`

𝐾𝑣
˘˘

p𝑡q

for all 𝑡 P p𝑎, 𝑏q, where especially the linearity of 𝐾 was used.

Remark B.6
Let 𝑋, 𝑌 be Banach spaces over R and let 𝐾 : 𝑋 Ñ 𝑌 be a bounded linear operator. For
functions 𝑣 : r𝑎, 𝑏s Ñ 𝑋 set

`

𝐾𝑣
˘

p𝑡q :“ 𝐾
`

𝑣p𝑡q
˘

for 𝑡 P r𝑎, 𝑏s. Then, from [26, Corol-
lary 64.14, p. 114] and [26, Lemma 64.34, also note Corollary 64.32, p. 118] we have that
𝐾
`

𝒩𝑋p𝑣q
˘

“ 𝒩 𝑌 p𝐾𝑣q holds for linear operators of the form (B.4), where especially 𝒩 𝑌 is
well-defined for 𝐾𝑣 if 𝒩𝑋 is well-defined for 𝑣.

Consequently, if Π𝑍 , 𝑍 P t𝑋, 𝑌 u, are projection operators defined by the approach of
Lemma B.1 or Corollary B.5, respectively, where all 𝒩 𝑍

𝑖 : 𝑉 pp𝑎, 𝑏q, 𝑍q Ñ 𝑍, 𝑖 “ 0, . . . , 𝑟,
are linear combinations of linear operators of the form (B.4), then 𝐾

`

Π𝑋𝑣
˘

“ Π𝑌
`

𝐾𝑣
˘

for
all 𝑣 P 𝑉 pp𝑎, 𝑏q, 𝑋q. ♣
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B.2 Projection error estimates

B.2 Projection error estimates
Of course, we are also interested in error estimates for projections of Banach space-valued
functions. But, to prove these, we first have a look on some auxiliary results. Here, for
convenience, we use on 𝑊 𝑘,𝑝 pp𝑎, 𝑏q, 𝑋q the semi-norm |𝑣|𝑊𝑘,𝑝pp𝑎,𝑏q,𝑋q :“ }B𝑘

𝑡 𝑣}𝐿𝑝pp𝑎,𝑏q,𝑋q.

Lemma B.7 (Poincaré/Friedrichs’ inequality)
Let 𝑝 P r1,8s and 𝑎, 𝑏 P R, 𝑎 ă 𝑏. Moreover, let 𝑋 denote some Banach space. Suppose
that 𝑣 P 𝑊 1,𝑝 pp𝑎, 𝑏q, 𝑋q and 𝑣p𝑡˚q “ 0 for some 𝑡˚ P r𝑎, 𝑏s. Then, it holds

›

›𝑣
›

›

𝐿𝑝pp𝑎,𝑏q,𝑋q
ď p𝑏 ´ 𝑎q

ˇ

ˇ𝑣
ˇ

ˇ

𝑊 1,𝑝pp𝑎,𝑏q,𝑋q
.

Furthermore, for 𝑝 P r1,8q we have
›

›𝑣
›

›

𝐿8pp𝑎,𝑏q,𝑋q
ď p𝑏 ´ 𝑎q

p𝑝´1q{𝑝
ˇ

ˇ𝑣
ˇ

ˇ

𝑊 1,𝑝pp𝑎,𝑏q,𝑋q
.

Note that 𝑣p𝑡˚q “ 0 is a well-defined condition since embedding results yield that func-
tions in 𝑊 1,𝑝 pp𝑎, 𝑏q, 𝑋q are continuous on r𝑎, 𝑏s, see [26, Lemma 64.37(i), p. 120] or [50,
Proposition 10.8, p. 190].

Proof. First of all, using that 𝑣p𝑡˚q “ 0 and applying the fundamental theorem of calculus,
which also hold for functions in 𝑊 1,𝑝 pp𝑎, 𝑏q, 𝑋q, see [50, (10.16), p. 187], also note [50,
Proposition 10.8, p. 190], we gain for 𝑡 P r𝑎, 𝑏s

›

›𝑣p𝑡q
›

›

𝑋
“
›

›𝑣p𝑡q ´ 𝑣p𝑡˚q
›

›

𝑋
“

›

›

›

›

ż 𝑡

𝑡˚

B𝑡𝑣p𝑠q d𝑠

›

›

›

›

𝑋

ď

ż 𝑏

𝑎

›

›B𝑡𝑣p𝑠q
›

›

𝑋
d𝑠,

where for the last step also properties of the Bochner integral, see [50, Theorem 10.4, p. 182],
were exploited.

For 𝑝 “ 8 we now obtain
›

›𝑣p𝑡q
›

›

𝑋
ď

ż 𝑏

𝑎

›

›B𝑡𝑣p𝑠q
›

›

𝑋
d𝑠 ď p𝑏 ´ 𝑎q

›

›B𝑡𝑣
›

›

𝐿8pp𝑎,𝑏q,𝑋q
.

Otherwise, for 𝑝 P p1,8q applying the Hölder inequality with 𝑝 and 𝑞 “ 𝑝1 “
𝑝

𝑝´1
, it follows

›

›𝑣p𝑡q
›

›

𝑋
ď

ż 𝑏

𝑎

›

›B𝑡𝑣p𝑠q
›

›

𝑋
d𝑠 ď

ˆ
ż 𝑏

𝑎

1𝑞 d𝑠

˙1{𝑞 ˆż 𝑏

𝑎

›

›B𝑡𝑣p𝑠q
›

›

𝑝

𝑋
d𝑠

˙1{𝑝

ď p𝑏 ´ 𝑎q
p𝑝´1q{𝑝

›

›B𝑡𝑣
›

›

𝐿𝑝pp𝑎,𝑏q,𝑋q
.

Summarizing, we have already shown

›

›𝑣
›

›

𝐿8pp𝑎,𝑏q,𝑋q
ď

#

p𝑏 ´ 𝑎q
›

›B𝑡𝑣
›

›

𝐿8pp𝑎,𝑏q,𝑋q
, 𝑝 “ 8,

p𝑏 ´ 𝑎q
p𝑝´1q{𝑝

›

›B𝑡𝑣
›

›

𝐿𝑝pp𝑎,𝑏q,𝑋q
, 𝑝 P r1,8q.

So, for 𝑝 “ 8 we are done. Further, for 𝑝 P r1,8q we conclude from this estimate
›

›𝑣
›

›

𝑝

𝐿𝑝pp𝑎,𝑏q,𝑋q
“

ż 𝑏

𝑎

›

›𝑣p𝑡q
›

›

𝑝

𝑋
d𝑡 ď

›

›𝑣
›

›

𝑝

𝐿8pp𝑎,𝑏q,𝑋q

ż 𝑏

𝑎

1 d𝑡

ď p𝑏 ´ 𝑎q
𝑝´1

›

›B𝑡𝑣
›

›

𝑝

𝐿𝑝pp𝑎,𝑏q,𝑋q
p𝑏 ´ 𝑎q “ p𝑏 ´ 𝑎q

𝑝
›

›B𝑡𝑣
›

›

𝑝

𝐿𝑝pp𝑎,𝑏q,𝑋q
,

which completes the proof.
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Next, a Banach space-valued version of Deny–Lions’ lemma is shown for the case of uni-
variate functions. The result of this lemma is then, as in standard finite element interpolation
theory, one of the main arguments in the proof of projection error estimates.

Lemma B.8 (Banach space-valued Deny–Lions lemma: univariate case)
Let 𝑝 P r1,8s, 𝑘 P Z, 𝑘 ě 0, and 𝑎, 𝑏 P R, 𝑎 ă 𝑏. Moreover, let 𝑋 denote some Banach
space. Suppose that 𝑣 P 𝑊 𝑘`1,𝑝 pp𝑎, 𝑏q, 𝑋q. Then, it holds

inf
𝑞P𝑃𝑘pp𝑎,𝑏q,𝑋q

›

›𝑣 ´ 𝑞
›

›

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q
ď pexpp1q ` 1qmax

␣

1, p𝑏 ´ 𝑎q
𝑘`1

(
ˇ

ˇ𝑣
ˇ

ˇ

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q
.

Proof. From embedding theorems, which also hold for Banach space-valued functions, cf. [26,
Lemma 64.37(i), p. 120], we have that

𝑊 𝑘`1,𝑝
pp𝑎, 𝑏q, 𝑋q ãÑ 𝐶𝑘

pr𝑎, 𝑏s, 𝑋q .

Thus, 𝑣 P 𝐶𝑘 pr𝑎, 𝑏s, 𝑋q and so we can choose 𝑞˚ P 𝑃𝑘 pp𝑎, 𝑏q, 𝑋q as 𝑘th order Taylor polyno-
mial of 𝑣 at some point 𝑡˚ P p𝑎, 𝑏q, see also [57, (9) in Chapter 3, p. 77], i.e.,

𝑞˚p𝑡q “

𝑘
ÿ

𝑖“0

ˆ

1

𝑖!

`

𝑡 ´ 𝑡˚
˘𝑖

˙

𝑣p𝑖q
p𝑡˚q @𝑡 P p𝑎, 𝑏q.

By construction it furthermore holds for 0 ď 𝑗 ď 𝑘 that 𝑞p𝑗q
˚ P 𝑃𝑘´𝑗 pp𝑎, 𝑏q, 𝑋q is the p𝑘´𝑗qth

order Taylor polynomial of 𝑣p𝑗q at 𝑡˚. Then, for 0 ď 𝑗 ď 𝑘 ´ 1 Taylor’s theorem [57,
Proposition 3.6, p. 77] yields for all 𝑡 P p𝑎, 𝑏q

𝑣p𝑗q
p𝑡q ´ 𝑞p𝑗q

˚ p𝑡q

“

˜

𝑣p𝑗q
p𝑡q ´

𝑘´𝑗´1
ÿ

𝑖“0

ˆ

1

𝑖!

`

𝑡 ´ 𝑡˚
˘𝑖

˙

𝑣p𝑖`𝑗q
p𝑡˚q

¸

´
1

p𝑘 ´ 𝑗q!

`

𝑡 ´ 𝑡˚
˘𝑘´𝑗

𝑣p𝑘q
p𝑡˚q

“

ż 1

0

p1 ´ 𝑠q𝑘´𝑗´1

p𝑘 ´ 𝑗 ´ 1q!

`

𝑡 ´ 𝑡˚
˘𝑘´𝑗

𝑣p𝑘q
p𝑡˚ ` 𝑠p𝑡 ´ 𝑡˚qq d𝑠 ´

1

p𝑘 ´ 𝑗q!

`

𝑡 ´ 𝑡˚
˘𝑘´𝑗

𝑣p𝑘q
p𝑡˚q

“

ż 1

0

p1 ´ 𝑠q𝑘´𝑗´1

p𝑘 ´ 𝑗 ´ 1q!

`

𝑡 ´ 𝑡˚
˘𝑘´𝑗 `

𝑣p𝑘q
p𝑡˚ ` 𝑠p𝑡 ´ 𝑡˚qq ´ 𝑣p𝑘q

p𝑡˚q
˘

d𝑠

“

ż 𝑡

𝑡˚

p𝑡 ´ 𝑠q𝑘´𝑗´1

p𝑘 ´ 𝑗 ´ 1q!

`

𝑣p𝑘q
p𝑠q ´ 𝑣p𝑘q

p𝑡˚q
˘

d𝑠.

Thus, using Hölder’s inequality, it follows for 0 ď 𝑗 ď 𝑘 ´ 1
›

›𝑣p𝑗q
p𝑡q ´ 𝑞p𝑗q

˚ p𝑡q
›

›

𝑋
ď

›

›

›

p𝑡´ ¨ q𝑘´𝑗´1

p𝑘´𝑗´1q!

›

›

›

𝐿1pp𝑎,𝑏qq

›

›𝑣p𝑘q
p¨q ´ 𝑣p𝑘q

p𝑡˚q
›

›

𝐿8pp𝑎,𝑏q,𝑋q

ď
p𝑏 ´ 𝑎q𝑘´𝑗

p𝑘 ´ 𝑗q!

›

›𝑣p𝑘q
p¨q ´ 𝑣p𝑘q

p𝑡˚q
›

›

𝐿8pp𝑎,𝑏q,𝑋q
.

Therefore, we gain for all 0 ď 𝑗 ď 𝑘 that
›

›𝑣p𝑗q
´ 𝑞p𝑗q

˚

›

›

𝐿8pp𝑎,𝑏q,𝑋q
ď

p𝑏 ´ 𝑎q𝑘´𝑗

p𝑘 ´ 𝑗q!

›

›𝑣p𝑘q
p¨q ´ 𝑣p𝑘q

p𝑡˚q
›

›

𝐿8pp𝑎,𝑏q,𝑋q

ď
p𝑏 ´ 𝑎q𝑘´𝑗

p𝑘 ´ 𝑗q!

#

p𝑏 ´ 𝑎q
ˇ

ˇ𝑣
ˇ

ˇ

𝑊𝑘`1,8pp𝑎,𝑏q,𝑋q
, 𝑝 “ 8,

p𝑏 ´ 𝑎qp𝑝´1q{𝑝
ˇ

ˇ𝑣
ˇ

ˇ

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q
, 𝑝 P r1,8q,
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where Lemma B.7 is applied for the last inequality.
Altogether, also noting that 𝑞p𝑘`1q

˚ ” 0, we now obtain for 𝑝 “ 8 that

inf
𝑞P𝑃𝑘pp𝑎,𝑏q,𝑋q

›

›𝑣 ´ 𝑞
›

›

𝑊𝑘`1,8pp𝑎,𝑏q,𝑋q
ď
›

›𝑣 ´ 𝑞˚

›

›

𝑊𝑘`1,8pp𝑎,𝑏q,𝑋q
“ max

0ď𝑗ď𝑘`1

›

›𝑣p𝑗q
´ 𝑞p𝑗q

˚

›

›

𝐿8pp𝑎,𝑏q,𝑋q

ď max
␣

1, p𝑏 ´ 𝑎q
𝑘`1

( ˇ

ˇ𝑣
ˇ

ˇ

𝑊𝑘`1,8pp𝑎,𝑏q,𝑋q
.

Additionally using Hölder’s inequality, we similarly conclude for 𝑝 P r1,8q that

inf
𝑞P𝑃𝑘pp𝑎,𝑏q,𝑋q

›

›𝑣 ´ 𝑞
›

›

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q

ď
›

›𝑣 ´ 𝑞˚

›

›

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q
ď

˜

𝑘
ÿ

𝑗“0

›

›𝑣p𝑗q
´ 𝑞p𝑗q

˚

›

›

𝑝

𝐿𝑝pp𝑎,𝑏q,𝑋q
`
ˇ

ˇ𝑣
ˇ

ˇ

𝑝

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q

¸1{𝑝

ď

˜

𝑘
ÿ

𝑗“0

`

𝑏 ´ 𝑎
˘
›

›𝑣p𝑗q
´ 𝑞p𝑗q

˚

›

›

𝑝

𝐿8pp𝑎,𝑏q,𝑋q
`
ˇ

ˇ𝑣
ˇ

ˇ

𝑝

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q

¸1{𝑝

ď

˜

𝑘
ÿ

𝑗“0

ˆ

p𝑏 ´ 𝑎q𝑘´𝑗`1

p𝑘 ´ 𝑗q!

˙𝑝
ˇ

ˇ𝑣
ˇ

ˇ

𝑝

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q
`
ˇ

ˇ𝑣
ˇ

ˇ

𝑝

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q

¸1{𝑝

ď

˜

𝑘
ÿ

𝑗“0

ˆ

1

p𝑘 ´ 𝑗q!

˙𝑝

` 1

¸1{𝑝

looooooooooooooomooooooooooooooon

ďpexpp1q`1q
1{𝑝

max
␣

1, p𝑏 ´ 𝑎q
𝑘`1

(
ˇ

ˇ𝑣
ˇ

ˇ

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q
.

This completes the proof.

We now are well prepared to prove the following (local) projection error estimates, see [21,
Theorem 3.1.4, p. 121] for an analogous result in the case of real-valued functions.

Lemma B.9
Let 𝑋 denote a Banach space and let pΠ denote some approximation operator for 𝑋-valued
functions on r𝛼, 𝛽s with 𝛼, 𝛽 P R, 𝛼 ă 𝛽. Moreover, let 𝑘,𝑚 P Z, 𝑘,𝑚 ě 0, and 𝑝, 𝑞 P r1,8s

be chosen such that

• 𝑊 𝑘`1,𝑝pp𝛼, 𝛽q, 𝑋q ãÑ 𝑊𝑚,𝑞pp𝛼, 𝛽q, 𝑋q,

• pΠp𝑣 “ p𝑣 for all p𝑣 P 𝑃𝑘pp𝛼, 𝛽q, 𝑋q, and

• pΠ is a bounded linear operator from 𝑊 𝑘`1,𝑝pp𝛼, 𝛽q, 𝑋q to 𝑊𝑚,𝑞pp𝛼, 𝛽q, 𝑋q.

Then, for the transformed version Π of pΠ on p𝑎, 𝑏q with 𝑎, 𝑏 P R, 𝑎 ă 𝑏, that is defined by
Π𝑣 “

`

pΠp𝑣 ˝ 𝑇p𝑎,𝑏qq
˘

˝ 𝑇´1
p𝑎,𝑏q

with 𝑇p𝑎,𝑏q : p𝛼, 𝛽q Q 𝑡 ÞÑ 𝑎 ` 𝑏´𝑎
𝛽´𝛼

p𝑡 ´ 𝛼q P p𝑎, 𝑏q, we have

ˇ

ˇ𝑣 ´ Π𝑣
ˇ

ˇ

𝑊𝑚,𝑞pp𝑎,𝑏q,𝑋q
ď 𝐶

ˆ

𝑏 ´ 𝑎

𝛽 ´ 𝛼

˙𝑘´𝑚`1`1{𝑞´1{𝑝
ˇ

ˇ𝑣
ˇ

ˇ

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q
@𝑣 P 𝑊 𝑘`1,𝑝

pp𝑎, 𝑏q, 𝑋q,

where 𝐶 is independent of the interval p𝑎, 𝑏q.
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Proof. First of all, because of 𝑊 𝑘`1,𝑝pp𝛼, 𝛽q, 𝑋q ãÑ 𝑊𝑚,𝑞pp𝛼, 𝛽q, 𝑋q and due to the re-
spective assumption on pΠ, we have that pId ´ pΠq also is a bounded linear operator from
𝑊 𝑘`1,𝑝pp𝛼, 𝛽q, 𝑋q to 𝑊𝑚,𝑞pp𝛼, 𝛽q, 𝑋q.

Since pΠ preserves polynomials of degree less than or equal to 𝑘, we obtain that

p𝑣 ´ pΠp𝑣 “ pId ´ pΠqpp𝑣 ´ p𝑞q @p𝑣 P 𝑊 𝑘`1,𝑝
pp𝛼, 𝛽q, 𝑋q, @p𝑞 P 𝑃𝑘pp𝛼, 𝛽q, 𝑋q.

Using the boundedness of pId ´ pΠq, we thus conclude
ˇ

ˇ

p𝑣 ´ pΠp𝑣
ˇ

ˇ

𝑊𝑚,𝑞pp𝛼,𝛽q,𝑋q
ď 𝐶 inf

p𝑞P𝑃𝑘pp𝛼,𝛽q,𝑋q

›

›

p𝑣 ´ p𝑞
›

›

𝑊𝑘`1,𝑝pp𝛼,𝛽q,𝑋q
ď 𝐶

ˇ

ˇ

p𝑣
ˇ

ˇ

𝑊𝑘`1,𝑝pp𝛼,𝛽q,𝑋q
,

where Lemma B.8 was applied in the last step.
The desired statement then follows by transformation. Of course, it holds

p𝑣 ´ Π𝑣q ˝ 𝑇p𝑎,𝑏q “ p𝑣 ˝ 𝑇p𝑎,𝑏qq ´ pΠp𝑣 ˝ 𝑇p𝑎,𝑏qq “ p𝑣 ´ pΠp𝑣

with p𝑣 “ 𝑣 ˝ 𝑇p𝑎,𝑏q. Therefore, we gain

ˇ

ˇ𝑣 ´ Π𝑣
ˇ

ˇ

𝑊𝑚,𝑞pp𝑎,𝑏q,𝑋q
“

ˆ

𝑏 ´ 𝑎

𝛽 ´ 𝛼

˙1{𝑞´𝑚
ˇ

ˇ

p𝑣 ´ pΠp𝑣
ˇ

ˇ

𝑊𝑚,𝑞pp𝛼,𝛽q,𝑋q

ď 𝐶

ˆ

𝑏 ´ 𝑎

𝛽 ´ 𝛼

˙1{𝑞´𝑚
ˇ

ˇ

p𝑣
ˇ

ˇ

𝑊𝑘`1,𝑝pp𝛼,𝛽q,𝑋q
“ 𝐶

ˆ

𝑏 ´ 𝑎

𝛽 ´ 𝛼

˙p1{𝑞´𝑚q`p𝑘`1´1{𝑝q
ˇ

ˇ𝑣
ˇ

ˇ

𝑊𝑘`1,𝑝pp𝑎,𝑏q,𝑋q
.

This completes the proof.

B.3 Literature references on basics of Banach
space-valued functions

So far, various results on Banach space-valued functions, especially from Bochner–Sobolev
spaces, were used. In order to provide direct references to further details and the context of
these results, we briefly list some literature on the basics of Banach space-valued functions.

For details on continuous and (strong) differentiable functions of one real variable with
values in Banach spaces, we refer to [57, Sections 3.1 and 3.2]. A brief overview of the
Bochner integral theory is given in [26, Section 64.1] and [50, Section 10.1] for univariate
functions. For more general considerations of the Bochner integral and Bochner spaces
see [43, Section 1.2]. Further, for the definition of weak derivatives and associated function
spaces for univariate Banach space-valued functions, we refer to [26, Section 64.2]. A discus-
sion of Banach space-valued Sobolev spaces with arguments in a multidimensional domain
can be found in [43, Section 2.5]. Last but not least, embedding results for Banach space-
valued functions in the univariate case are presented, for example, in [26, Lemma 64.37 and
Theorem 64.39, p. 120]. In addition, in [10, Section 5] it was shown that Sobolev–Gagliardo–
Nirenberg inequalities and Morrey’s embedding theorem carry over from the real-valued to
the Banach space-valued case.
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C Operators for Interpolation and Projection in
Time

In this section, we collect the definitions of the temporal interpolation and projection op-
erators that are used especially in Part II of this thesis. Moreover, we discuss their well-
definedness and some of their properties. Here, we restrict ourselves to the local operators
on an arbitrary mesh interval 𝐼𝑛 “ p𝑡𝑛´1, 𝑡𝑛s. Throughout this section, let 𝑋 denote a
Banach space over R.

C.1 Interpolation operators
We start with important interpolation operators and the associated operator of cascadic
interpolation.

Definition C.1 (Standard VTD𝑟
𝑘 interpolation)

Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Then, ℐ𝑟
𝑘 : 𝐶t 𝑘

2 up𝐼𝑛, 𝑋q Ñ 𝑃𝑟p𝐼𝑛, 𝑋q is defined by
`

ℐ𝑟
𝑘𝑣
˘p𝑖q

p𝑡`𝑛´1q “ 𝑣p𝑖q
p𝑡`𝑛´1q, for 𝑖 “ 0, . . . ,

X

𝑘´1
2

\

,
`

ℐ𝑟
𝑘𝑣
˘p𝑖q

p𝑡´𝑛 q “ 𝑣p𝑖q
p𝑡´𝑛 q, for 𝑖 “ 0, . . . ,

X

𝑘
2

\

,

ℐ𝑟
𝑘𝑣p𝑡𝑛,𝑖q “ 𝑣p𝑡𝑛,𝑖q, for 𝑖 “ 1, . . . , 𝑟 ´ 𝑘,

with 𝑡𝑛,𝑖 :“ 𝑡𝑛`𝑡𝑛´1

2
` 𝜏𝑛

2
𝑡𝑖, where 𝑡𝑖, 𝑖 “ 1, . . . , 𝑟 ´ 𝑘, denote the zeros of the p𝑟 ´ 𝑘qth

Jacobi-polynomial 𝑃 pt 𝑘
2 u`1 , t 𝑘´1

2 u`1q
𝑟´𝑘 with respect to the weight p1 ` 𝑡qt 𝑘´1

2 u`1
p1 ´ 𝑡qt 𝑘

2 u`1.
The interpolation operator is of Hermite-type and, in any case, the number of linear

independent interpolation conditions is

𝑟 ´ 𝑘 `
X

𝑘
2

\

` 1 `
X

𝑘´1
2

\

` 1 “ 𝑟 ´ 𝑘 ` 𝑘 ´ 1 ` 2 “ 𝑟 ` 1.

Hence, the interpolation operator ℐ𝑟
𝑘 is well-defined. ♣

Definition C.2 (Extended VTD𝑟
𝑘 interpolation)

Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Then, ℐ𝑟`1
𝑘,˚ : 𝐶t 𝑘`1

2 up𝐼𝑛, 𝑋q Ñ 𝑃𝑟`1p𝐼𝑛, 𝑋q is defined by
`

ℐ𝑟`1
𝑘,˚ 𝑣

˘p𝑖q
p𝑡`𝑛´1q “ 𝑣p𝑖q

p𝑡`𝑛´1q, for 𝑖 “ 0, . . . ,
X

𝑘`1
2

\

,
`

ℐ𝑟`1
𝑘,˚ 𝑣

˘p𝑖q
p𝑡´𝑛 q “ 𝑣p𝑖q

p𝑡´𝑛 q, for 𝑖 “ 0, . . . ,
X

𝑘
2

\

,

ℐ𝑟`1
𝑘,˚ 𝑣p𝑡𝑛,𝑖q “ 𝑣p𝑡𝑛,𝑖q, for 𝑖 “ 1, . . . , 𝑟 ´ 𝑘,

with 𝑡𝑛,𝑖 :“ 𝑡𝑛`𝑡𝑛´1

2
` 𝜏𝑛

2
𝑡𝑖, where 𝑡𝑖, 𝑖 “ 1, . . . , 𝑟 ´ 𝑘, denote the zeros of the p𝑟 ´ 𝑘qth

Jacobi-polynomial 𝑃 pt 𝑘
2 u`1 , t 𝑘´1

2 u`1q
𝑟´𝑘 with respect to the weight p1 ` 𝑡qt 𝑘´1

2 u`1
p1 ´ 𝑡qt 𝑘

2 u`1.
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In short, ℐ𝑟`1
𝑘,˚ 𝑣 P 𝑃𝑟`1p𝐼𝑛, 𝑋q satisfies for 𝑣 P 𝐶t 𝑘`1

2 up𝐼𝑛, 𝑋q all 𝑟 ` 1 interpolation condi-
tions of ℐ𝑟

𝑘 and additionally interpolates the
X

𝑘`1
2

\

th derivative at 𝑡`𝑛´1.
Note that we also used the two other extensions ℐ𝑟`1

𝑘,f : 𝐶t 𝑘
2 u`1

p𝐼𝑛, 𝑋q Ñ 𝑃𝑟`1p𝐼𝑛, 𝑋q

and ℐ𝑟`1
𝑘,♢ : 𝐶t 𝑘

2 up𝐼𝑛, 𝑋q Ñ 𝑃𝑟`1p𝐼𝑛, 𝑋q of ℐ𝑟
𝑘 that additionally interpolate the

`X

𝑘
2

\

` 1
˘

th
derivative at 𝑡´𝑛 or the function value in one further inner point, respectively. ♣

Definition C.3 (Cascadic interpolation)
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Then, 𝒞𝑟

𝑘 : 𝐶𝑟´t 𝑘`1
2 up𝐼𝑛, 𝑋q Ñ 𝑃𝑟p𝐼𝑛, 𝑋q is defined by

𝒞𝑟
𝑘 :“ ℐ𝑟

𝑘 ˝ ℐ𝑟`1
𝑘`2 ˝ . . . ˝ ℐ2𝑟´𝑘

2𝑟´𝑘 .

Of course, in general 𝒞𝑟
𝑘 itself is not an interpolation operator. But it is a composition of

interpolation operators. ♣

C.2 Projection operators

Here, we present the projection operators that are involved in the error analysis. Note
that for all considered projection operators, because of Remark B.3 and Lemma B.5, it is
sufficient to study the well-definedness for the real-valued version of the operators.

Definition C.4 (𝐿2-projection onto polynomials of maximal degree 𝑚)
Let 𝑚 P Z, 𝑚 ě 0. Then, Π𝑚 : 𝐿2p𝐼𝑛, 𝑋q Ñ 𝑃𝑚p𝐼𝑛, 𝑋q is defined by

ż

𝐼𝑛

`

𝑣 ´ Π𝑚𝑣
˘

𝑤 d𝑡 “ 0 @𝑤 P 𝑃𝑚p𝐼𝑛q,

i.e., Π𝑚𝑣 P 𝑃𝑚p𝐼𝑛, 𝑋q denotes the 𝐿2-projection of 𝑣 P 𝐿2p𝐼𝑛, 𝑋q onto polynomials of maxi-
mal degree 𝑚.

In order to show that Π𝑚 is a well-defined projection operator, it suffices to consider the
case 𝑋 “ R. For 𝑣 P 𝑃𝑚p𝐼𝑛q we can choose 𝑤 “ 𝑣 ´ Π𝑚𝑣 P 𝑃𝑚p𝐼𝑛q as test function, which
then yields

ş

𝐼𝑛

`

𝑣 ´ Π𝑚𝑣
˘2

d𝑡 “ 0. Thus, 𝑣 “ Π𝑚𝑣 for all 𝑣 P 𝑃𝑚p𝐼𝑛q, which implies the
well-definedness if 𝑋 “ R. ♣

Definition C.5
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟. Then, Π𝑟

𝑘 : 𝐶
t 𝑘´1

2 up𝐼𝑛, 𝑋q Ñ 𝑃𝑟p𝐼𝑛, 𝑋q is defined by

`

𝑣 ´ Π𝑟
𝑘𝑣
˘p𝑖q

p𝑡`𝑛´1q “ 0, if 𝑘 ě 1, 𝑖 “ 0, . . . ,
X

𝑘´1
2

\

,
`

𝑣 ´ Π𝑟
𝑘𝑣
˘p𝑖q

p𝑡´𝑛 q “ 0, if 𝑘 ě 2, 𝑖 “ 0, . . . ,
X

𝑘
2

\

´ 1,
ż

𝐼𝑛

`

𝑣 ´ Π𝑟
𝑘𝑣
˘

𝑤 d𝑡 “ 0 @𝑤 P 𝑃𝑟´𝑘p𝐼𝑛q.

Note that it holds Π𝑟
0𝑣 “ Π𝑟𝑣 for all 𝑣 P 𝐿2p𝐼𝑛, 𝑋q.

For 𝑣 P 𝑃𝑟p𝐼𝑛q and using the point conditions at 𝑡`𝑛´1 and 𝑡´𝑛 , we get from polynomial
long division that

`

𝑣 ´ Π𝑟
𝑘𝑣
˘

p𝑡q “ p𝑡 ´ 𝑡𝑛´1qt 𝑘´1
2 u`1

p𝑡𝑛 ´ 𝑡qt 𝑘
2 u

r𝑤p𝑡q where r𝑤 P 𝑃𝑟´𝑘p𝐼𝑛q. So,
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C.2 Projection operators

choosing test function 𝑤 “ r𝑤, we gain that
ş

𝐼𝑛
p𝑡 ´ 𝑡𝑛´1qt 𝑘´1

2 u`1
p𝑡𝑛 ´ 𝑡qt 𝑘

2 u
r𝑤2p𝑡q d𝑡 “ 0 from

which we conclude that r𝑤 ” 0 and, thus, 𝑣 ´ Π𝑟
𝑘𝑣 ” 0 for 𝑣 P 𝑃𝑟p𝐼𝑛q. This implies the

well-definedness of Π𝑟
𝑘 if 𝑋 “ R. ♣

Definition C.6 (Standard dG/cGP projection)
Let 𝑙 P t0, 1u and 𝑚 P Z, 𝑚 ě 𝑙. Then, rΠ𝑚

𝑙 : 𝐶p𝐼𝑛, 𝑋q Ñ 𝑃𝑚p𝐼𝑛, 𝑋q is defined by
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡`𝑛´1q “ 0, if 𝑙 “ 1, (C.1a)
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡´𝑛 q “ 0, (C.1b)
ż

𝐼𝑛

`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

𝑤 d𝑡 “ 0 @𝑤 P 𝑃𝑚´𝑙´1p𝐼𝑛q. (C.1c)

Here, note that 𝑃´1p𝐼𝑛, 𝑋q is interpreted as t0u so that the variational condition (C.1c)
drops out if 𝑚 “ 𝑙. For 𝑣 P 𝐻1p𝐼𝑛, 𝑋q Ă 𝐶p𝐼𝑛, 𝑋q the projection can be equivalently
defined by

`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡´𝑛 q “ 0, if 𝑙 “ 1, (C.2a)
ż

𝐼𝑛

B𝑡
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

𝑤 d𝑡 ` 𝛿0,𝑙
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q “ 0 @𝑤 P 𝑃𝑚´𝑙p𝐼𝑛q. (C.2b)

Furthermore, we formally set
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡´0 q “ 0.
Note that rΠ𝑚

1 (𝑙 “ 1) is the standard projection used in the analysis of the Galerkin–
Petrov time stepping, see for example [4, Section 4.1] and [11, Sections 2–4]. On the other
hand, the projection rΠ𝑚

0 (𝑙 “ 0) is the standard in the analysis of the discontinuous Galerkin
time stepping method, see for example [52, Chapter 12, esp. Theorem 12.1] and [5, Sec-
tion 3]. For a study of the well-definedness we refer to that of the more general operator in
Definition C.10. ♣

Remark C.7
In the case 𝑙 “ 1 we also could use in (C.2a)

`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡`𝑛´1q “ 0 instead of
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡´𝑛 q “ 0,

which can be easily shown with the fundamental theorem of calculus. ♣

Lemma C.8
Let 𝑙 P t0, 1u and 𝑚 P Z, 𝑚 ě 𝑙. Then, for 𝑣 P 𝐻1p𝐼𝑛, 𝑋q the two definitions (C.1) and (C.2)
of rΠ𝑚

𝑙 𝑣 P 𝑃𝑚p𝐼𝑛, 𝑋q given in Definition C.6 are equivalent.

Proof. Let 𝑣 P 𝐻1p𝐼𝑛, 𝑋q.
(C.1) ñ (C.2): Obviously, (C.1b) implies that (C.2a) holds. It remains to prove (C.2b).

From integration by parts we obtain for arbitrary 𝑤 P 𝑃𝑚´𝑙p𝐼𝑛q that
ż

𝐼𝑛

B𝑡
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

𝑤 d𝑡 ` 𝛿0,𝑙
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q

“ ´

ż

𝐼𝑛

`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

B𝑡𝑤 d𝑡 `
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡´𝑛 q𝑤p𝑡´𝑛 q ´ p1 ´ 𝛿0,𝑙q
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q.
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Now, the first two terms on the right-hand side vanish due to (C.1c) and (C.1b). The last
term vanishes for 𝑙 “ 0 because of 1´ 𝛿0,𝑙 “ 0 and for 𝑙 “ 1 because of (C.1a). Thus, (C.2b)
holds.

(C.2) ñ (C.1): First of all, for 𝑙 “ 1 we gain from (C.2b) with 𝑤 ” 1, the fundamental
theorem of calculus, and (C.2a) that

0 “ ´

ż

𝐼𝑛

B𝑡
`

𝑣 ´ rΠ𝑚
1 𝑣

˘

d𝑡 “ ´
`

𝑣 ´ rΠ𝑚
1 𝑣

˘
ˇ

ˇ

𝑡´
𝑛

𝑡`
𝑛´1

“
`

𝑣 ´ rΠ𝑚
1 𝑣

˘

p𝑡`𝑛´1q,

which is (C.1a). Furthermore, (C.1b) follows for 𝑙 “ 1 directly from (C.2a) and for 𝑙 “ 0
from (C.2b) again tested with 𝑤 ” 1 after applying the fundamental theorem of calculus,
respectively.

We now want to show (C.1c). From (C.2b) we obtain by integration by parts for all
r𝑤 P 𝑃𝑚´𝑙p𝐼𝑛q that

0 “

ż

𝐼𝑛

B𝑡
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

r𝑤 d𝑡 ` 𝛿0,𝑙
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡`𝑛´1q r𝑤p𝑡`𝑛´1q

“ ´

ż

𝐼𝑛

`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

B𝑡 r𝑤 d𝑡 `
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡´𝑛 q r𝑤p𝑡´𝑛 q ´ p1 ´ 𝛿0,𝑙q
`

𝑣 ´ rΠ𝑚
𝑙 𝑣

˘

p𝑡`𝑛´1q r𝑤p𝑡`𝑛´1q.

The boundary term at 𝑡´𝑛 vanishes due to the already proven (C.1b), whereas the boundary
term at 𝑡`𝑛´1 vanishes because of the already proven (C.1a) if 𝑙 “ 1 or because of 1´ 𝛿0,𝑙 “ 0
if 𝑙 “ 0, respectively. Hence, it remains to verify that for every 𝑤 P 𝑃𝑚´𝑙´1p𝐼𝑛q we can
choose a r𝑤 P 𝑃𝑚´𝑙p𝐼𝑛q such that 𝑤 “ B𝑡 r𝑤. But this holds if r𝑤 is an antiderivative of 𝑤.

The following projections generalize the above operators such that also more general
integrators, as e.g. quadrature formulas of sufficiently high degree of exactness, can be
involved. Such projection operators are needed especially in Subsection 4.1.6 where specific
quadrature rules are chosen in order to show supercloseness and superconvergence results.
For simplicity, we restrict ourselves to integrators of the following form.

Assumption C.1
We assume that the integrator I𝑛 either represents the exact integral over 𝐼𝑛, i.e., I𝑛 “

ş

𝐼𝑛
,

(in which case 𝑘I “ ´1) or the application of a quadrature formula based on function and
derivative values of the integrand in 𝐼𝑛 (in which case 𝑘I ě 0 denotes the largest derivative
order that is needed for I𝑛).

In particular, Assumption C.1 yields that for all 𝑔 P 𝑋 1 it holds

@

𝑔,I𝑛r𝑣s
D

𝑋 1,𝑋
“ I𝑛

”

x𝑔, 𝑣y𝑋 1,𝑋

ı

@𝑣 P 𝐶𝑘Ip𝐼𝑛, 𝑋q, (C.3)

where we used properties of the Bochner integral (if 𝑘I “ ´1) or of (derivatives of) Banach
space-valued functions (if 𝑘I ě 0), also cf. Remark B.3.
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C.2 Projection operators

Definition C.9
Let 𝑚 P Z, 𝑚 ě 0. Furthermore, let I𝑛 : 𝐶𝑘Ip𝐼𝑛, 𝑋q Ñ 𝑋 with 𝑘I ě ´1 be an integrator
on 𝐼𝑛 that satisfies Assumption C.1 and integrates 𝑋-valued polynomials of maximal degree
2𝑚 exactly. Then, ΠI

𝑚 : 𝐶𝑘Ip𝐼𝑛, 𝑋q Ñ 𝑃𝑚p𝐼𝑛, 𝑋q is defined by

I𝑛

”

`

𝑣 ´ ΠI
𝑚𝑣

˘

𝑤
ı

“ 0 @𝑤 P 𝑃𝑚p𝐼𝑛q,

i.e., as a generalization of the 𝐿2-projection to integrators beyond the (Bochner) integral
over 𝐼𝑛.

Note that for 𝑣 P 𝑃𝑚p𝐼𝑛q we have, due to the exactness of I𝑛, that

0 “ I𝑛

”

`

𝑣 ´ ΠI
𝑚𝑣

˘

𝑤
ı

“

ż

𝐼𝑛

`

𝑣 ´ ΠI
𝑚𝑣

˘

𝑤 d𝑡 @𝑤 P 𝑃𝑚p𝐼𝑛q.

So, choosing 𝑤 “ 𝑣 ´ ΠI
𝑚𝑣 P 𝑃𝑚p𝐼𝑛q, we find 0 “

ş

𝐼𝑛
p𝑣 ´ ΠI

𝑚𝑣q2 d𝑡 and, thus, ΠI
𝑚𝑣 “ 𝑣 for

𝑣 P 𝑃𝑚p𝐼𝑛q. Hence, ΠI
𝑚 is a well-defined projection operator if 𝑋 “ R. ♣

Definition C.10 (Generalized dG/cGP projection)
Let 𝑙 P t0, 1u and 𝑚 P Z, 𝑚 ě 𝑙. Furthermore, let I𝑛 : 𝐶𝑘Ip𝐼𝑛, 𝑋q Ñ 𝑋 with 𝑘I ě ´1 be
an integrator on 𝐼𝑛 that satisfies Assumption C.1 and integrates 𝑋-valued polynomials of
maximal degree 2𝑚´ 𝑙´ 1 exactly. Then, rΠ𝑚,I

𝑙 : 𝐻1p𝐼𝑛, 𝑋q X𝐶𝑘I`1p𝐼𝑛, 𝑋q Ñ 𝑃𝑚p𝐼𝑛, 𝑋q is
defined by

`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

p𝑡`𝑛´1q “ 0, if 𝑙 “ 1,

I𝑛

”

B𝑡
`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

𝑤
ı

` 𝛿0,𝑙
`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q “ 0 @𝑤 P 𝑃𝑚´𝑙p𝐼𝑛q.

This is a generalization of the standard dG/cGP projection for cases where the integrator is
not simply the (Bochner) integral over 𝐼𝑛. Note that the domain of definition is chosen as
𝐻1p𝐼𝑛, 𝑋q X 𝐶𝑘I`1p𝐼𝑛, 𝑋q in order to guarantee that all expressions are well-defined in the
case of exact integration (𝑘I “ ´1) as well as in the case of approximate integration using
quadrature formulas that may require function and derivative values in 𝐼𝑛 (𝑘I ě 0). From
the definition it follows

`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

p𝑡´𝑛 q “

ż

𝐼𝑛

B𝑡
`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

d𝑡 `
`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

p𝑡`𝑛´1q

“

ż

𝐼𝑛

B𝑡𝑣 d𝑡 ´ I𝑛rB𝑡𝑣s ` I𝑛

”

B𝑡
`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

ı

` 𝛿0,𝑙
`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

p𝑡`𝑛´1q

“

ż

𝐼𝑛

B𝑡𝑣 d𝑡 ´ I𝑛rB𝑡𝑣s ,

where the fundamental theorem of calculus and the linearity of I𝑛 were used.
In order to verify that rΠ𝑚,I

𝑙 is well-defined, it suffices to show that 𝑣 “ rΠ𝑚,I
𝑙 𝑣 for all

𝑣 P 𝑃𝑚p𝐼𝑛q. First of all, using the exactness of I𝑛, we obtain for 𝑣 P 𝑃𝑚p𝐼𝑛q that
ż

𝐼𝑛

B𝑡
`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

𝑤 d𝑡 ` 𝛿0,𝑙
`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q

“ I𝑛

”

B𝑡
`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

𝑤
ı

` 𝛿0,𝑙
`

𝑣 ´ rΠ𝑚,I
𝑙 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q “ 0 @𝑤 P 𝑃𝑚´𝑙p𝐼𝑛q.
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Therefore, choosing 𝑤 “
`

B𝑡𝑣 ´ B𝑡rΠ
𝑚,I
𝑙 𝑣

˘

p𝑡 ´ 𝑡𝑛´1q
1´𝑙 P 𝑃𝑚´𝑙p𝐼𝑛q, we gain that

ż

𝐼𝑛

`

B𝑡𝑣 ´ B𝑡rΠ
𝑚,I
𝑙 𝑣

˘2
p𝑡 ´ 𝑡𝑛´1q

1´𝑙 d𝑡 “ 0 and, thus, B𝑡𝑣 “ B𝑡rΠ
𝑚,I
𝑙 𝑣.

So, because of
`

𝑣´rΠ𝑚,I
𝑙 𝑣

˘

p𝑡`𝑛´1q “ 0, which obviously holds for 𝑙 “ 1 and follows by choosing
𝑤 ” 1 for 𝑙 “ 0, we easily conclude that 𝑣 “ rΠ𝑚,I

𝑙 𝑣 for 𝑣 P 𝑃𝑚p𝐼𝑛q. ♣

Definition C.11 (Extended generalized dG/cGP projection)
Let 𝑙 P t0, 1u and 𝑚 P Z, 𝑚 ě 𝑙. Furthermore, let I𝑛 : 𝐶𝑘Ip𝐼𝑛, 𝑋q Ñ 𝑋 with 𝑘I ě ´1 be
an integrator on 𝐼𝑛 that satisfies Assumption C.1 and integrates 𝑋-valued polynomials of
maximal degree 2𝑚 ´ 𝑙 exactly. Then, rΠ𝑚`1,I

𝑙,˚ : 𝐻1p𝐼𝑛, 𝑋q X 𝐶𝑘I`1p𝐼𝑛, 𝑋q Ñ 𝑃𝑚`1p𝐼𝑛, 𝑋q

is defined by
`

𝑣 ´ rΠ𝑚`1,I
𝑙,˚ 𝑣

˘

p𝑡`𝑛´1q “ 0, if 𝑙 “ 1,

I𝑛

”

B𝑡
`

𝑣 ´ rΠ𝑚`1,I
𝑙,˚ 𝑣

˘

𝑤
ı

` 𝛿0,𝑙
`

𝑣 ´ rΠ𝑚`1,I
𝑙,˚ 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q “ 0 @𝑤 P 𝑃𝑚´𝑙p𝐼𝑛q,
ż

𝐼𝑛

B𝑡
`

𝑣 ´ rΠ𝑚`1,I
𝑙,˚ 𝑣

˘

𝑤 d𝑡 ` 𝛿0,𝑙
`

𝑣 ´ rΠ𝑚`1,I
𝑙,˚ 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q “ 0 @𝑤 P r𝑃𝑚´𝑙`1p𝐼𝑛q

where r𝑃𝑚´𝑙`1p𝐼𝑛q :“ 𝑃𝑚´𝑙`1p𝐼𝑛qz𝑃𝑚´𝑙p𝐼𝑛q. Note that in comparison to the definition of rΠ𝑚,I
𝑙

the assumption on the integrator is slightly stronger, an additional condition is added, and
the operator now maps to 𝑃𝑚`1p𝐼𝑛, 𝑋q. Therefore, it obviously holds rΠ𝑚,I

𝑙 𝑣 “ rΠ𝑚,I
𝑙

rΠ𝑚`1,I
𝑙,˚ 𝑣

for all 𝑣 P 𝐻1p𝐼𝑛, 𝑋q X 𝐶𝑘I`1p𝐼𝑛, 𝑋q and we have
`

𝑣 ´ rΠ𝑚`1,I
𝑙,˚ 𝑣

˘

p𝑡´𝑛 q “

ż

𝐼𝑛

B𝑡𝑣 d𝑡 ´ I𝑛rB𝑡𝑣s .

The operator rΠ𝑚`1,I
𝑙,˚ is well-defined, which can be shown similar as for rΠ𝑚,I

𝑙 . Especially,
note that we now even get for all 𝑣 P 𝑃𝑚`1p𝐼𝑛q that

ż

𝐼𝑛

B𝑡
`

𝑣 ´ rΠ𝑚`1,I
𝑙,˚ 𝑣

˘

𝑤 d𝑡 ` 𝛿0,𝑙
`

𝑣 ´ rΠ𝑚`1,I
𝑙,˚ 𝑣

˘

p𝑡`𝑛´1q𝑤p𝑡`𝑛´1q “ 0 @𝑤 P 𝑃𝑚´𝑙`1p𝐼𝑛q

due to the additional condition. Choosing 𝑤 “
`

B𝑡𝑣´ B𝑡rΠ
𝑚`1,I
𝑙,˚ 𝑣

˘

p𝑡´ 𝑡𝑛´1q
1´𝑙 P 𝑃𝑚´𝑙`1p𝐼𝑛q,

we easily complete the argument as for rΠ𝑚,I
𝑙 . ♣

Definition C.12
Let 𝑟, 𝑘 P Z, 0 ď 𝑘 ď 𝑟, and ℓ “

X

𝑘
2

\

. Furthermore, let I𝑛 : 𝐶𝑘Ip𝐼𝑛, 𝑋q Ñ 𝑋 with 𝑘I ě ´1

be an integrator on 𝐼𝑛 that satisfies Assumption C.1 and integrates 𝑋-valued polynomials of
maximal degree 2𝑟´ 𝑘´ 1 exactly. Then, Π𝑟,I

𝑘 : 𝐻ℓ`1p𝐼𝑛, 𝑋q X𝐶𝑘I`ℓ`1p𝐼𝑛, 𝑋q Ñ 𝑃𝑟p𝐼𝑛, 𝑋q

is defined by
`

Π
𝑟,I
𝑘 𝑣

˘p𝑗q
p𝑡´𝑛 q “ 𝑣p𝑗q

p𝑡´𝑛 q, for 𝑗 “ 0, . . . , ℓ ´ 1,
`

Π
𝑟,I
𝑘 𝑣

˘pℓq
p𝑡q “ rΠ𝑟´ℓ,I

𝑘´2ℓ

`

𝑣pℓq
˘

p𝑡q, for all 𝑡 P 𝐼𝑛.

Note that by definition of ℓ “
X

𝑘
2

\

ě 0 we always have 𝑟 ´ ℓ ě 𝑘 ´ 2ℓ P t0, 1u. Hence,
rΠ𝑟´ℓ,I
𝑘´2ℓ

`

𝑣pℓq
˘

is well-defined according to Definition C.10.
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C.3 Some commutation properties

The projection operator Π
𝑟,I
𝑘 is a further generalization of the generalized dG/cGP pro-

jection of Definition C.10. Of course, it holds Π
𝑟,I
𝑘 “ rΠ𝑟,I

𝑘 for 𝑘 P t0, 1u and 𝑟 ě 𝑘. ♣

C.3 Some commutation properties

We already studied commutation properties for the abstract projection operators in Corol-
lary B.5. Nevertheless, here we consider an important special case and one of its conse-
quences. Also concrete proofs are given.

Lemma C.13
Let 𝑚 P Z, 𝑚 ě 0, and let 𝑋 be a Banach space. Suppose that I𝑛 is an integrator on 𝐼𝑛 that
satisfies Assumption C.1 and integrates polynomials of maximal degree 2𝑚 exactly. Then,
for all 𝑔 P 𝑋 1 it holds

@

𝑔,ΠI
𝑚𝑣

D

𝑋 1,𝑋
“ ΠI

𝑚 x𝑔, 𝑣y𝑋 1,𝑋 @𝑣 P 𝐶𝑘Ip𝐼𝑛, 𝑋q.

Proof. Let 𝑤 P 𝑃𝑚p𝐼𝑛q be arbitrarily chosen. From the definition of ΠI
𝑚 it follows

I𝑛

”

ΠI
𝑚

`

x𝑔, 𝑣y𝑋 1,𝑋

˘

𝑤
ı

“ I𝑛

”

x𝑔, 𝑣y𝑋 1,𝑋 𝑤
ı

.

Further, the linearity of the duality pairing, (C.3), and again the definition of ΠI
𝑚 give

I𝑛

”

@

𝑔, 𝑣 ´ ΠI
𝑚𝑣

D

𝑋 1,𝑋
𝑤
ı

“ I𝑛

”

@

𝑔,
`

𝑣 ´ ΠI
𝑚𝑣

˘

𝑤
D

𝑋 1,𝑋

ı

“

A

𝑔,I𝑛

”

`

𝑣 ´ ΠI
𝑚𝑣

˘

𝑤
ıE

𝑋 1,𝑋
“ 0.

Hence, altogether we have shown that

I𝑛

”

ΠI
𝑚

`

x𝑔, 𝑣y𝑋 1,𝑋

˘

𝑤
ı

“ I𝑛

”

@

𝑔,ΠI
𝑚𝑣

D

𝑋 1,𝑋
𝑤
ı

@𝑤 P 𝑃𝑚p𝐼𝑛q.

Since both ΠI
𝑚

`

x𝑔, 𝑣y𝑋 1,𝑋

˘

and
@

𝑔,ΠI
𝑚𝑣

D

𝑋 1,𝑋
are in 𝑃𝑚p𝐼𝑛q, the integrands on both sides of

this equation are polynomials of maximal degree 2𝑚. Hence, I𝑛 can be replaced by
ş

𝐼𝑛
. We

then easily conclude the desired identity.

The proof of the following corollary exemplifies how to handle test functions that, unlike
in the definition of the projection operator, are not real-valued polynomials but Banach
space-valued polynomials.

Corollary C.14
Let 𝑚 P Z, 𝑚 ě 0, and let 𝑋, 𝑌 be Banach spaces as well as 𝐵p¨, ¨q : 𝑋ˆ𝑌 Ñ R a continuous
bilinear form. Suppose that I𝑛 is an integrator on 𝐼𝑛 that satisfies Assumption C.1 and
integrates polynomials of maximal degree 2𝑚 exactly. Then, for 𝑣 P 𝐶𝑘Ip𝐼𝑛, 𝑋q it holds

I𝑛

”

𝐵
`

𝑣, 𝑤
˘

ı

“ I𝑛

”

𝐵
`

ΠI
𝑚𝑣, 𝑤

˘

ı

@𝑤 P 𝑃𝑚p𝐼𝑛, 𝑌 q.
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C Operators for Interpolation and Projection in Time

Proof. Let 𝑤 P 𝑃𝑚p𝐼𝑛, 𝑌 q be arbitrarily chosen. Then, there are 𝑤𝑖 P 𝑌 and 𝑝𝑖 P 𝑃𝑖p𝐼𝑛q,
𝑖 “ 0, . . . ,𝑚, such that 𝑤p𝑡q “

ř𝑚
𝑖“0 𝑝𝑖p𝑡q𝑤𝑖. Here, the 𝑝𝑖 are typically chosen such that

𝑝𝑖p𝑡q “ 𝑡𝑖. Using the bilinearity of 𝐵p¨, ¨q and the linearity of the integrator, we obtain

I𝑛

”

𝐵
`

𝑣 ´ ΠI
𝑚𝑣, 𝑤

˘

ı

“

𝑚
ÿ

𝑖“0

I𝑛

”

𝐵
`

𝑣 ´ ΠI
𝑚𝑣, 𝑝𝑖𝑤𝑖

˘

ı

“

𝑚
ÿ

𝑖“0

I𝑛

”´

𝐵
`

𝑣, 𝑤𝑖

˘

´ 𝐵
`

ΠI
𝑚𝑣, 𝑤𝑖

˘

¯

𝑝𝑖

ı

.

Applying Lemma C.13 with 𝑔𝑖 P 𝑋 1, 𝑖 “ 0, . . . ,𝑚, defined by x𝑔𝑖, 𝑧y𝑋 1,𝑋 :“ 𝐵
`

𝑧, 𝑤𝑖

˘

for all
𝑧 P 𝑋, it follows

I𝑛

”´

𝐵
`

𝑣, 𝑤𝑖

˘

´ 𝐵
`

ΠI
𝑚𝑣, 𝑤𝑖

˘

¯

𝑝𝑖

ı

“ I𝑛

”´

𝐵
`

𝑣, 𝑤𝑖

˘

´ ΠI
𝑚𝐵

`

𝑣, 𝑤𝑖

˘

¯

𝑝𝑖

ı

“ 0,

where the definition of ΠI
𝑚 is used for the last step. Overall, this easily yields the desired

statement.

C.4 Some stability results
We want to prove a stability result for the projection operator ΠI

𝑚, which is used in Sec-
tion 4.1, see Remark 4.7, to keep the presentation simple. The assumptions on I𝑛 that occur
in the following lemma are those known from (4.5) with 𝑟 “ 𝑚 and 𝑘 “ 0.

Lemma C.15
Let 𝑚 P Z, 𝑚 ě 0, and let 𝑉 be a Hilbert space. Suppose that I𝑛 is an integrator on
𝐼𝑛 that satisfies Assumption C.1 and integrates polynomials of maximal degree 2𝑚 exactly.
Furthermore, let I𝑛 provide the monotonicity property I𝑛r𝑣s ď I𝑛r𝑤s if 𝑣p𝑡q ď 𝑤p𝑡q for all
𝑡 P 𝐼𝑛 as well as the Cauchy–Schwarz-type inequality I𝑛r𝑣𝑤s ď pI𝑛r𝑣2sq

1{2
pI𝑛r𝑤2sq

1{2, where
we tacitly assume that for 𝑣 and 𝑤 all occurring expressions are well-defined. Then, it holds

´

I𝑛

”

›

›ΠI
𝑚𝑣p¨q

›

›

2

𝑉 1

ı¯1{2

ď

´

I𝑛

”

›

›𝑣p¨q
›

›

2

𝑉 1

ı¯1{2

for all 𝑣 P 𝐶𝑘I
`

𝐼𝑛, 𝑉
1
˘

.

Proof. Since 𝑉 is a Hilbert space, also 𝑉 1 is a Hilbert space and its norm } ¨ }𝑉 1 is induced
by an inner product, say p¨, ¨q𝑉 1 . Hence, we have

I𝑛

”

›

›ΠI
𝑚𝑣p¨q

›

›

2

𝑉 1

ı

“ I𝑛

”

`

ΠI
𝑚𝑣p¨q,ΠI

𝑚𝑣p¨q
˘

𝑉 1

ı

“ I𝑛

”

`

𝑣p¨q,ΠI
𝑚𝑣p¨q

˘

𝑉 1

ı

, (C.4)

where in the last step Corollary C.14 was applied with 𝑋 “ 𝑌 “ 𝑉 1 and 𝐵p¨, ¨q “ p¨, ¨q𝑉 1 .
Further, for all 𝑡 P 𝐼𝑛 we get by Cauchy–Schwarz’ inequality that

`

𝑣p𝑡q,ΠI
𝑚𝑣p𝑡q

˘

𝑉 1 ď
›

›𝑣p𝑡q
›

›

𝑉 1

›

›ΠI
𝑚𝑣p𝑡q

›

›

𝑉 1 .

Therefore, using the assumed properties of I𝑛, we conclude

I𝑛

”

`

𝑣p¨q,ΠI
𝑚𝑣p¨q

˘

𝑉 1

ı

ď I𝑛

”

›

›𝑣p¨q
›

›

𝑉 1

›

›ΠI
𝑚𝑣p¨q

›

›

𝑉 1

ı

ď

´

I𝑛

”

›

›𝑣p¨q
›

›

2

𝑉 1

ı¯1{2 ´

I𝑛

”

›

›ΠI
𝑚𝑣p¨q

›

›

2

𝑉 1

ı¯1{2

.

So, combining this with (C.4) and dividing by
´

I𝑛

”

›

›ΠI
𝑚𝑣p¨q

›

›

2

𝑉 1

ı¯1{2

, we are done.
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D Norm Equivalences for Hilbert Space-Valued
Polynomials

In the error analysis of Chapter 4 norm equivalences for polynomial spaces are exploited
at several places. However, while for real-valued polynomials of fixed maximal degree the
equivalence of different norms follows immediately since the space is finite dimensional, for
Hilbert space-valued polynomials the situation is not that clear. On the one hand, for
infinite dimensional Hilbert spaces 𝑊 also the space of 𝑊 -valued polynomials of maximal
degree, say 𝑚 P Z, 𝑚 ě 0, is infinite dimensional. On the other hand, norm equivalence
constants should ideally not depend on the specific Hilbert space.

However, for the two sorts of norm equivalences that were needed in our analysis, we show
now that the norm equivalences for Hilbert space-valued polynomials hold with the same
constants as their real-valued analogs.

Let 𝐽 Ă R be an interval and 𝑋 a Banach space. Then,

𝑃𝑚p𝐽,𝑋q :“

#

𝑣 P 𝐶p𝐽,𝑋q : 𝑣p𝑡q “

𝑚
ÿ

𝑖“0

𝑡𝑖𝑣𝑖 with 𝑣𝑖 P 𝑋

+

defines the space of 𝑋-valued polynomials of maximal degree 𝑚.
In the following, let 𝑊 denote a Hilbert space. Then, 𝑊 possesses an orthonormal basis

𝐵, say 𝐵 “ t𝑏𝛼 : 𝛼 P 𝐴u, see [55, Theorem 3.10(a), p. 44]. Thus, for 𝑣 P 𝑃𝑚p𝐽,𝑊 q, we have

𝑣p𝑡q “

𝑚
ÿ

𝑖“0

𝑡𝑖𝑣𝑖 “

𝑚
ÿ

𝑖“0

𝑡𝑖

«

ÿ

𝛼P𝐴

p𝑣𝑖, 𝑏𝛼q𝑊 𝑏𝛼

ff

“
ÿ

𝛼P𝐴

«

𝑚
ÿ

𝑖“0

𝑡𝑖 p𝑣𝑖, 𝑏𝛼q𝑊

ff

𝑏𝛼 “
ÿ

𝛼P𝐴

𝑔𝛼p𝑡q𝑏𝛼,

where 𝑔𝛼p𝑡q “ p𝑣p𝑡q, 𝑏𝛼q𝑊 “
ř𝑚

𝑖“0 𝑡
𝑖 p𝑣𝑖, 𝑏𝛼q𝑊 P 𝑃𝑚p𝐽,Rq for all 𝛼 P 𝐴. Furthermore, by

Parseval’s identity it follows

}𝑣p𝑡q}
2
𝑊 “

ÿ

𝛼P𝐴

ˇ

ˇ

`

𝑣p𝑡q, 𝑏𝛼
˘

𝑊

ˇ

ˇ

2
“

ÿ

𝛼P𝐴

ˇ

ˇ𝑔𝛼p𝑡q
ˇ

ˇ

2
. (D.1)

Easily, we also get that

›

›B
𝑘
𝑡 𝑣p𝑡q

›

›

2

𝑊
“

ÿ

𝛼P𝐴

ˇ

ˇ

`

B
𝑘
𝑡 𝑣p𝑡q, 𝑏𝛼

˘

𝑊

ˇ

ˇ

2
“

ÿ

𝛼P𝐴

ˇ

ˇB
𝑘
𝑡

`

𝑣p𝑡q, 𝑏𝛼
˘

𝑊

ˇ

ˇ

2
“

ÿ

𝛼P𝐴

ˇ

ˇ𝑔p𝑘q
𝛼 p𝑡q

ˇ

ˇ

2 (D.2)

for 𝑘 ě 0.
In the following, we restrict ourselves to the study of norm equivalences for polynomials

that are defined on an arbitrary mesh interval 𝐼𝑛 “ p𝑡𝑛´1, 𝑡𝑛s.
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D Norm Equivalences for Hilbert Space-Valued Polynomials

D.1 Norm equivalence used for the cGP-like case
We start considering the norm equivalence used in Section 4.1, cf. Lemma 4.3.

Lemma D.1
Let 𝑚 P Z, 𝑚 ě 0. The two mappings

𝜙 ÞÑ

ˆ
ż

𝐼𝑛

|𝜙p𝑡q|
2 d𝑡

˙1{2

and

𝜙 ÞÑ

ˆ
ż

𝐼𝑛

|Π𝑚´1𝜙p𝑡q|
2 d𝑡 `

`

𝜏𝑛
2

˘

|𝜙p𝑡𝑛q|
2

˙1{2

define equivalent norms on 𝑃𝑚p𝐼𝑛,Rq where the equivalence constants are independent of
𝜏𝑛. The involved operator Π𝑚´1 is the 𝐿2-projection onto 𝑃𝑚´1p𝐼𝑛,Rq, cf. Definition C.4.
Further, we agree that in the case 𝑚 “ 0 we read Π´1𝜙 ” 0.

Proof. Using the affine transformation 𝑇𝑛, defined in (1.7), and associating to 𝜙 P 𝑃𝑚p𝐼𝑛,Rq

the function p𝜙 P 𝑃𝑚pp´1, 1s,Rq given by p𝜙p𝑡q :“ 𝜙p𝑇𝑛p𝑡qq, it suffices to prove that

𝜙 ÞÑ

ˆ
ż 1

´1

ˇ

ˇ

p𝜙p𝑡q
ˇ

ˇ

2
d𝑡

˙1{2

and p𝜙 ÞÑ

ˆ
ż 1

´1

ˇ

ˇ

ˇ

pΠ𝑚´1p𝜙p𝑡q
ˇ

ˇ

ˇ

2

d𝑡 ` |p𝜙p1q|
2

˙1{2

are equivalent norms on 𝑃𝑚pp´1, 1s,Rq. Here, note that the 𝜏𝑛
2

factor in the local 𝐼𝑛 version
of the second mapping is due to the transformation.

Obviously, the first expression is a norm. Since 𝑃𝑚pp´1, 1s,Rq is finite dimensional all
norms on this space are equivalent. So, it remains to prove that also the second expression
is a norm. Obviously, it is a semi-norm. We need to show that for all p𝜙 P 𝑃𝑚pp´1, 1s,Rq

ˆ
ż 1

´1

ˇ

ˇ

ˇ

pΠ𝑚´1p𝜙p𝑡q
ˇ

ˇ

ˇ

2

d𝑡 ` |p𝜙p1q|
2

˙1{2

“ 0 implies that p𝜙 ” 0.

Here, when the expression on the left-hand side equals zero, also every single (non-negative)
term needs to vanish.

From pΠ𝑚´1p𝜙 ” 0 it follows that p𝜙 is orthogonal to all polynomials of degree less than
or equal to 𝑚 ´ 1 with respect to the inner product in 𝐿2pp´1, 1sq. Thus, because of
p𝜙 P 𝑃𝑚pp´1, 1s,Rq, we have that p𝜙 is a multiple of the 𝑚th Legendre polynomial 𝑃 p0,0q

𝑚 , i.e.,
there is a 𝑐 P R such that p𝜙p𝑡q “ 𝑐𝑃

p0,0q
𝑚 p𝑡q. Since 𝑃 p0,0q

𝑚 p1q ‰ 0, see (A.1), we then conclude
from 0 “ p𝜙p1q “ 𝑐𝑃

p0,0q
𝑚 p1q that 𝑐 “ 0. Hence, it holds p𝜙 ” 0 and we are done.

Lemma D.2
Let 𝑚 P Z, 𝑚 ě 0, and let 𝑊 be a Hilbert space. Then, the mappings

𝑣 ÞÑ

ˆ
ż

𝐼𝑛

}𝑣p𝑡q}
2
𝑊 d𝑡

˙1{2
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D.1 Norm equivalence used for the cGP-like case

and

𝑣 ÞÑ

ˆ
ż

𝐼𝑛

}Π𝑚´1𝑣p𝑡q}
2
𝑊 d𝑡 `

`

𝜏𝑛
2

˘

}𝑣p𝑡𝑛q}
2
𝑊

˙1{2

define equivalent norms on 𝑃𝑚p𝐼𝑛,𝑊 q where the equivalence constants are independent of
𝜏𝑛 and of the space 𝑊 .

Proof. Let 𝑣 P 𝑃𝑚p𝐼𝑛,𝑊 q be arbitrarily chosen. Then, the polynomial 𝑣 can by represented
by 𝑣p𝑡q “

ř𝑚
𝑖“0 𝑡

𝑖𝑣𝑖 with 𝑣𝑖 P 𝑊 . We define Ă𝑊 :“ spant𝑣0, 𝑣1, . . . , 𝑣𝑚u Ă 𝑊 . Equipped with
the } ¨ }𝑊 -norm, Ă𝑊 is a finite dimensional Hilbert space. It, of course, has a orthonormal
basis t𝑏1, . . . , 𝑏𝑑u, where 𝑑 ď 𝑚 ` 1 is the dimension of Ă𝑊 .

By construction it holds 𝑣 P 𝑃𝑚p𝐼𝑛,Ă𝑊 q. Therefore, by (D.1) it follows

ż

𝐼𝑛

}𝑣p𝑡q}
2
𝑊 d𝑡 “

ż

𝐼𝑛

𝑑
ÿ

𝑗“1

ˇ

ˇp𝑣p𝑡q, 𝑏𝑗q𝑊
ˇ

ˇ

2
d𝑡 “

𝑑
ÿ

𝑗“1

ż

𝐼𝑛

ˇ

ˇp𝑣p𝑡q, 𝑏𝑗q𝑊
ˇ

ˇ

2
d𝑡

and similarly

ż

𝐼𝑛

}Π𝑚´1𝑣p𝑡q}
2
𝑊 d𝑡 `

`

𝜏𝑛
2

˘

}𝑣p𝑡𝑛q}
2
𝑊 “

𝑑
ÿ

𝑗“1

ˆ
ż

𝐼𝑛

ˇ

ˇpΠ𝑚´1𝑣p𝑡q, 𝑏𝑗q𝑊
ˇ

ˇ

2
d𝑡 `

`

𝜏𝑛
2

˘
ˇ

ˇp𝑣p𝑡𝑛q, 𝑏𝑗q𝑊
ˇ

ˇ

2

˙

“

𝑑
ÿ

𝑗“1

ˆ
ż

𝐼𝑛

ˇ

ˇΠ𝑚´1 p𝑣p𝑡q, 𝑏𝑗q𝑊
ˇ

ˇ

2
d𝑡 `

`

𝜏𝑛
2

˘
ˇ

ˇp𝑣p𝑡𝑛q, 𝑏𝑗q𝑊
ˇ

ˇ

2

˙

.

Here, in the last step, the projection operator Π𝑚´1 can be pulled out of the inner product
due to Lemma C.13 since for every 𝑗 “ 1, . . . , 𝑑 the expression p¨, 𝑏𝑗q𝑊 defines a function in
𝑊 1, i.e., there is a 𝑔𝑗 P 𝑊 1 such that x𝑔𝑗, 𝑤y𝑊 1,𝑊 “ p𝑤, 𝑏𝑗q𝑊 for all 𝑤 P 𝑊 .

But for every 𝑗 “ 1, . . . , 𝑑 the function 𝑡 ÞÑ p𝑣p𝑡q, 𝑏𝑗q𝑊 is in 𝑃𝑚p𝐼𝑛,Rq. Thus, from
Lemma D.1 we have

𝐶1

ż

𝐼𝑛

ˇ

ˇp𝑣p𝑡q, 𝑏𝑗q𝑊
ˇ

ˇ

2
d𝑡

ď

ż

𝐼𝑛

ˇ

ˇΠ𝑚´1 p𝑣p𝑡q, 𝑏𝑗q𝑊
ˇ

ˇ

2
d𝑡 `

`

𝜏𝑛
2

˘
ˇ

ˇp𝑣p𝑡𝑛q, 𝑏𝑗q𝑊
ˇ

ˇ

2
ď 𝐶2

ż

𝐼𝑛

ˇ

ˇp𝑣p𝑡q, 𝑏𝑗q𝑊
ˇ

ˇ

2
d𝑡,

where 𝐶1 and 𝐶2 do not dependent on 𝜏𝑛 and 𝑏𝑗. Summing up over 𝑗 “ 1, . . . , 𝑑 and
exploiting the identities proven above, we immediately get

𝐶1

ż

𝐼𝑛

}𝑣p𝑡q}
2
𝑊 d𝑡 ď

ż

𝐼𝑛

}Π𝑚´1𝑣p𝑡q}
2
𝑊 d𝑡 `

`

𝜏𝑛
2

˘

}𝑣p𝑡𝑛q}
2
𝑊 ď 𝐶2

ż

𝐼𝑛

}𝑣p𝑡q}
2
𝑊 d𝑡.

Since the constants are independent of 𝑏𝑗, they are also independent of Ă𝑊 and 𝑣, respectively.
So, since 𝑣 P 𝑃𝑚p𝐼𝑛,𝑊 q was arbitrarily chosen, we are done.
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D.2 Norm equivalence used for final error estimate
We now study the norm equivalence needed in Section 4.3, cf. Lemma 4.52.

Lemma D.3
Let 𝑚, 𝑙 P Z, 0 ď 𝑙 ď 𝑚. The two mappings

𝜙 ÞÑ

ˆ
ż

𝐼𝑛

|𝜙p𝑡q|
2 d𝑡

˙1{2

and

𝜙 ÞÑ

ˆ

`

𝜏𝑛
2

˘2𝑙
ż

𝐼𝑛

ˇ

ˇ𝜙p𝑙q
p𝑡q

ˇ

ˇ

2
d𝑡 `

𝑙´1
ÿ

𝑖“0

`

𝜏𝑛
2

˘2𝑖`1 ˇ
ˇ𝜙p𝑖q

p𝑡´𝑛 q
ˇ

ˇ

2
˙1{2

define equivalent norms on 𝑃𝑚p𝐼𝑛,Rq where the equivalence constants are independent of 𝜏𝑛.

Proof. Using the affine transformation 𝑇𝑛, defined in (1.7), and associating to 𝜙 P 𝑃𝑚p𝐼𝑛,Rq

the function p𝜙 P 𝑃𝑚pp´1, 1s,Rq given by p𝜙p𝑡q :“ 𝜙p𝑇𝑛p𝑡qq, it suffices to prove that

p𝜙 ÞÑ

ˆ
ż 1

´1

ˇ

ˇ

p𝜙p𝑡q
ˇ

ˇ

2
d𝑡

˙1{2

and p𝜙 ÞÑ

ˆ
ż 1

´1

ˇ

ˇ

p𝜙p𝑙q
p𝑡q

ˇ

ˇ

2
d𝑡 `

𝑙´1
ÿ

𝑖“0

ˇ

ˇ

p𝜙p𝑖q
p1´

q
ˇ

ˇ

2
˙1{2

are equivalent norms on 𝑃𝑚pp´1, 1s,Rq. Here, note that the
`

𝜏𝑛
2

˘2𝑙 and
`

𝜏𝑛
2

˘2𝑖`1 factors in
the local 𝐼𝑛 version of the second mapping are due to the transformation.

Obviously, the first expression is a norm. Since 𝑃𝑚pp´1, 1s,Rq is finite dimensional all
norms on this space are equivalent. So it remains to prove that also the second expression
is a norm. Obviously, it is a semi-norm. We need to show that for all p𝜙 P 𝑃𝑚pp´1, 1s,Rq

ˆ
ż 1

´1

ˇ

ˇ

p𝜙p𝑙q
p𝑡q

ˇ

ˇ

2
d𝑡 `

𝑙´1
ÿ

𝑖“0

ˇ

ˇ

p𝜙p𝑖q
p1´

q
ˇ

ˇ

2
˙1{2

“ 0 implies that p𝜙 ” 0.

Here, when the expression on the left-hand side equals zero, also every single (non-negative)
term needs to vanish.

Owing to p𝜙p𝑙q ” 0, we have that p𝜙p𝑙´1q is constant. Combining this with p𝜙p𝑙´1qp1´q “ 0,
it follows p𝜙p𝑙´1q ” 0. Then, because of p𝜙p𝑖qp1´q “ 0 for all 𝑖 “ 0, . . . , 𝑙 ´ 1, we recursively
conclude p𝜙 ” 0.

Lemma D.4
Let 𝑚, 𝑙 P Z, 0 ď 𝑙 ď 𝑚, and let 𝑊 be a Hilbert space. Then, the mappings

𝑣 ÞÑ

ˆ
ż

𝐼𝑛

}𝑣p𝑡q}
2
𝑊 d𝑡

˙1{2

and

𝑣 ÞÑ

ˆ

`

𝜏𝑛
2

˘2𝑙
ż

𝐼𝑛

›

›𝑣p𝑙q
p𝑡q

›

›

2

𝑊
d𝑡 `

𝑙´1
ÿ

𝑖“0

`

𝜏𝑛
2

˘2𝑖`1 ›
›𝑣p𝑖q

p𝑡´𝑛 q
›

›

2

𝑊

˙1{2

define equivalent norms on 𝑃𝑚p𝐼𝑛,𝑊 q where the equivalence constants are independent of
𝜏𝑛 and of the space 𝑊 .
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D.2 Norm equivalence used for final error estimate

Proof. Let 𝑣 P 𝑃𝑚p𝐼𝑛,𝑊 q be arbitrarily chosen. Then, the polynomial 𝑣 can by represented
by 𝑣p𝑡q “

ř𝑚
𝑖“0 𝑡

𝑖𝑣𝑖 with 𝑣𝑖 P 𝑊 . We define Ă𝑊 :“ spant𝑣0, 𝑣1, . . . , 𝑣𝑚u Ă 𝑊 . Equipped with
the } ¨ }𝑊 -norm, Ă𝑊 is a finite dimensional Hilbert space. It, of course, has a orthonormal
basis t𝑏1, . . . , 𝑏𝑑u, where 𝑑 ď 𝑚 ` 1 is the dimension of Ă𝑊 .

Therefore, since by construction 𝑣 P 𝑃𝑚p𝐼𝑛,Ă𝑊 q, we obtain by Parseval’s identity, cf. (D.1),
that

ż

𝐼𝑛

}𝑣p𝑡q}
2
𝑊 d𝑡 “

ż

𝐼𝑛

𝑑
ÿ

𝑗“1

ˇ

ˇp𝑣p𝑡q, 𝑏𝑗q𝑊
ˇ

ˇ

2
d𝑡 “

𝑑
ÿ

𝑗“1

ż

𝐼𝑛

ˇ

ˇp𝑣p𝑡q, 𝑏𝑗q𝑊
ˇ

ˇ

2
d𝑡

and similarly, cf. (D.2), that

`

𝜏𝑛
2

˘2𝑙
ż

𝐼𝑛

›

›𝑣p𝑙q
p𝑡q

›

›

2

𝑊
d𝑡 `

𝑙´1
ÿ

𝑖“0

`

𝜏𝑛
2

˘2𝑖`1 ›
›𝑣p𝑖q

p𝑡´𝑛 q
›

›

2

𝑊

“

𝑑
ÿ

𝑗“1

ˆ

`

𝜏𝑛
2

˘2𝑙
ż

𝐼𝑛

ˇ

ˇB
𝑙
𝑡

`

𝑣, 𝑏𝑗
˘

𝑊
p𝑡q

ˇ

ˇ

2
d𝑡 `

𝑙´1
ÿ

𝑖“0

`

𝜏𝑛
2

˘2𝑖`1 ˇ
ˇB

𝑖
𝑡

`

𝑣, 𝑏𝑗
˘

𝑊
p𝑡´𝑛 q

ˇ

ˇ

2
˙

.

But for every 𝑗 “ 1, . . . , 𝑑 the function 𝑡 ÞÑ p𝑣p𝑡q, 𝑏𝑗q𝑊 is in 𝑃𝑚p𝐼𝑛,Rq. Thus, from
Lemma D.3 we have

𝐶1

ż

𝐼𝑛

ˇ

ˇp𝑣p𝑡q, 𝑏𝑗q𝑊
ˇ

ˇ

2
d𝑡

ď
`

𝜏𝑛
2

˘2𝑙
ż

𝐼𝑛

ˇ

ˇB
𝑙
𝑡

`

𝑣, 𝑏𝑗
˘

𝑊
p𝑡q

ˇ

ˇ

2
d𝑡 `

𝑙´1
ÿ

𝑖“0

`

𝜏𝑛
2

˘2𝑖`1 ˇ
ˇB

𝑖
𝑡

`

𝑣, 𝑏𝑗
˘

𝑊
p𝑡´𝑛 q

ˇ

ˇ

2
ď 𝐶2

ż

𝐼𝑛

ˇ

ˇp𝑣p𝑡q, 𝑏𝑗q𝑊
ˇ

ˇ

2
d𝑡,

where 𝐶1 and 𝐶2 do not dependent on 𝜏𝑛 and 𝑏𝑗. Summing up over 𝑗 “ 1, . . . , 𝑑 and
exploiting the identities proven above, we immediately get

𝐶1

ż

𝐼𝑛

}𝑣p𝑡q}
2
𝑊 d𝑡 ď

`

𝜏𝑛
2

˘2𝑙
ż

𝐼𝑛

›

›𝑣p𝑙q
p𝑡q

›

›

2

𝑊
d𝑡 `

𝑙´1
ÿ

𝑖“0

`

𝜏𝑛
2

˘2𝑖`1 ›
›𝑣p𝑖q

p𝑡´𝑛 q
›

›

2

𝑊
ď 𝐶2

ż

𝐼𝑛

}𝑣p𝑡q}
2
𝑊 d𝑡.

Since the constants are independent of 𝑏𝑗, they are also independent of Ă𝑊 and 𝑣, respectively.
So, since 𝑣 P 𝑃𝑚p𝐼𝑛,𝑊 q was arbitrarily chosen, we are done.
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