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Abstract 

Statistical and scientijic computing applications 
exhibit characteristics that are fundamentally differ
ent [rom classical database system application 
domains. Tne CROSS-DB data model presented in 
this paper is optimized for use in such applications by 
providing advanced data modelling methods and 
application-oriented query facilities, thus providing 
a framework for optimized data management proce
dures. CROSS-DB (which stands for Classijication
oriented, Redundancy-based Optimization of Statisti
cal and Scientijic DataBases) is based on a multidi
mensional data view. Tne model dijfers from other 
approaches by offering two complementary mecha
nisms for structuring qualifying information, classiji
cation and feature description. Using these mecha
nisms results in a normalized, low-dimensional data
base schema which ensures both, modelling 
uniqueness and understandability while providing 
enhanced modelling jlexibility. 

1 Introduction 

Statistical and scientific computing application domains like 

earth sciences, biomedicine and socio-economics require 
database support tbat fund.amentally differs from classical 
database applications Illre banking and administration on tbe 
logical data modelling Ievel as weil as on tbe physical data 
management side ([Shos82]). Various proposals bave been 
made to overcome tbe shortcomings of traditional database 
systems to improve tbeir support for tbe statistical and scien
tific computing domain (Section 6). 

The applications we are aiming at witb our approach, reflect 
a typical "Online Analytical Processing" scenario witb 
mainly read-only access performing data aggregating opera
tors on ultra large databases ([LeRT95aJ). Figure 1 depictes 
a sample market research table, describing sales figures of 
electronic equipment in different countries. The table dis-
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plays tbe data at different levels of detail. Video-equipment 
for example is split up into their subsumed classes Cam
corder and HomeVCR, represented as sbaded heading cells, 
as wen as partitioned according to the applicable character
istics like VuleoSystem. The nested table structure may be 
regarded as a flattened multi-dimensional representation 
issuing two major tasks from a database research point of 
view. First, tbe structure of nested table headings witb their 
nested attributes has to be modelled in an appropriate way. 
Second, the data fields of tbe table have to be efficiently cal
culated. 

Obviously, the table depicted in Figure 1 reflects only one of 
many possible views on tbe data material. The CROSS-DB 
data model allows to describe generic schemata of applica
tions on a conceptual level, thus providing tbe basis for a 
flexible and highly efficient generation of arbitrary table 
instances on an extemal level, as will be shown tbroughout 
tbe remainder of tbe paper. 

In the next section, the general arcbitecture of the CROSS
DB model is sketched from a design and usage point of view 
according to tbe ANSUSPARC tbree schema database arcbi
tecture. Section 3 covers tbe modelling techniques of hierar
chical and feature extended qualifing information whereas 
section 4 explains tbe user access and extemal view on tbe 
data. Section 5 sketches tbe characteristics of tbe internal 
level. Section 6 discusses related work and shows tbat none 
of tbe statistical data models described so far in tbe literature 
allows for tbe tine-grained, feature-extended modelling 
capabilities of CROSS-DB along witb a natural and classifi
cation driven data aggregation concept Section 7 summa
rizes the approacb and gives an outlook on future work. 

2 Three Level CROSS-DB Model 

The CROSS-DB model strictly follows the ANSUSPARC 
three schema database architecture ([TsK178]) in external 
level, conceptual level and internal level, tbus preserving 
logical data independence between external and conceptual 

· level as wen as physical data independence between concep
tual and internal level. In tbe following sub-sections. the dif
ferent schema levels will be described briefly.
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January 95 

67 147 

19 41 78 142 131 146 

37 68 32 78 71 81 

18 Il4I 111 367 325 362 

Figure 1: A Sample Market Research Table 

2.1 Conceptual Level 

In a multi-dimensional data model, the distinction of quali
fying and quantifying data is fundamental. Qualifying data, 
also known as „category attributes" ([Shos82]), structurally 
describe the application domain and are used for accessing 
quantifying data items during an analysis process. For exam
ple, sales figures may be characterized by a product, shop 
and time dimension. Typically, qualifying ciata for single 
dimensions can be arranged in a classification hierarchy. For 
example, products may be classified into product groups and 
these, in turn, into product areas. Tue modelling of qualify
ing data, i.e. the construction of classification hierarchies and 
the feature mechanism are detailed in the next section. 
Quantifying data, also known as "summary attributes", are 
typically numerical values which are the object of the ana
lyzing process in a multi-dimensional context (e.g. daily 
sales figures for single product sales in individual shops). To 
reflect the multi-dimensionality of the CROSS-DB data 
model, a single quantifying value is called a cell, referenca
ble in an n-dimensional space with a fixed granularity. Poten
tially, there may exist as many data values in the database as 
there are cells in the multi-dimensional array, but usually, 
some cells are structurally empty (e.g. due to the fact that not 
every product is sold in every shop). 

2.2 External Level 

On the external level, the different dimensions which are 
modelled and instantiated independently from one another 
on the conceptual level are combined into an n-dimensional 
context that reflects the user's multidimensional view. Oper
ators on data can be visualized as transformations of cells 
within the granularity context stretched by different dimen
sions. Every cell within a data cube, containing one or more 
atomic values, may at last be split up according to feature 

combinations defined upon the cell (e.g. sales by Videosys

tem and ShopType, Figure 2). Tue user's view and data 
access is detailed in Section 5.

2.3 Internal Level 

Tue main objective on the intemal level in the CROSS-DB 
approach is to handle quantifying data by providing an intel
ligent storage and query optimiz.ation system for multidi
mensional data. Tue storage management system clusters 
raw data as weil as materialized aggregation data according 
to an application-defined schema and provides a "data retire
ment" strategy to automatically off-load expensive storage 
devices by transferring data to cheaper devices. Section 5 
sketches these tasks of the intemal level. 

3 Qualifying Data at the Conceptual Level 

Even if scientific data usually have to be displayed in a two
dimensional way, a multi-dimensional data model is the nat
ural choice for the statistical and scientific application 
domain frum a conceptual point of view ([Shos82]). Quali
fying data may be considered as "master data" which 
describe the part of the real world known by the database 
system in terms of a conceptual schema Tue CROSS-DB 
model distinguishes between object and meta level as well as 
schema and instance level ([Ortn95]). In this section, hierar
chical classification and the notion of features on schema 
level as weil as the complex process of classification schema 
instantiation and the notion of categorizations on meta level 
are described. 

3.1 Cbwification Schemata 

Compared to the other approaches towards statistical and 
scientific databases (SSDBs) mentioned in Section 6, one of 
the main achievements of the CROSS-DB model is the pos-
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sibility to specify detailed classifications of qualifying data 
in a very flexible way. These dassifications enable a user
friendly addressing scheme and, at the same time, provide a 
basis for advanced query optimization. The desired hierar
chy of terms on schema level is described in an object-ori
ented modelling approach which reflects the repeated gener
alization steps perfom1ed during the constitution of the hier
archy of concepts. 

DEFINITION: A classification schema S is an inheritance 
hierarchy where the root of the structure is the generic 
superclass "*" and every node, except the root node, 
is a subclass of its predecessor node. 

Figure 2 shows a possible dassification schema for product 
information. For example, video is a superclass of camcord
ers and home VCR 's; in the opposite direction, the dass video 
is a subclass of the dass electronic equipment. 

·---------------------------{ • )-------------------(4)
------·---------. --------:5-. eqi? · -------( ... )--t·· -- -----(3) 

_ ..... -_...., ._ 1s-a --
-;_.,.... )-

-
-
-----

-
----

�!"�-
- (2)

(camcorda}·C:::vcR)-·( nceiver} CD-,,." ,iT- ---(1) 

Figure 2: Sample Product Classification Schema 

DEFINITION: A classification schema is called well-formed if 
it is a partitioning (i.e. non-overlapping) and bal
anced (i.e. the path length from the root to any leaf is 
the same for all leaves) dassification tree. 

As classification schemata are established in a normative 
way, the constraints for well-formedness have no severe 
impact in real-world applications, because they can be ful
filled in a constructive manner by decomposing overlapping 
classes into separate subclasses and by introducing "place
holder'' classes in a path, if necessary. Besides providing 
high-level terms for user data access specification, well
formed classification schemata have the great advantage that 
they may be used for storage organization as well 
(Section 5). Tue fact that the dasses describe a füll, intersec
tion-free partitioning of the corresponding data elements at 
each level in the classification hierarchy also makes it possi
ble to systematically use precomputed and materialzed 
aggregation values for the computation of queries. Section 5
will discuss this issue. 

DEFINITION: Tue inheritance level in a classification schema 
is called its granularity. The generic superclass "*" 
holds the coarsest level of granularity N, all leaf 
nodes of the classification schema have the finest 
level of granularity 1. 

Referring again to Figure 2, the schema nodes of camcorders 
and homeVCR's possess a level of granularity of (1), and the 
Iayer of video and audio equipment is assigned the level of 
granularity (2). In general, every generalization process 
increments the granularity value. 

3.2 Feature Descriptions 

Tue normative construction of a schema hierarchy arranges 
the conceptual world by the intensional concept of generali
zation ([SmSm77]), which does not necessarily manifest in 
the extensional world. In other words, the only way of deter
mining the assigned dass of a given entity is to refer to the 
specification of the classification itself. Tbere is, however, a 
second, extensional way of grouping things into a classifica
tion hierarchy: feature assignment For example, a feature 
VuJeoSystem may be used to assign one of the values '8', 
'Hi8', 'VHS' or 'VHS-C' to an entity belonging to the class 
camcorder. Then, entities can be grouped by features values, 
as can be seen in Figure 3. Formally, the enrichment of the 
specification of a class in a classification schema by a detail
ing feature description is defined as follows: 

DEFINmoN: A feature at the scbema level consists of an 
identifier and a discrete domain D = {v1,·•·· v

0
} of 

possible values vi.

In our example, the VuieoSystem feature of the classification 
node camcorder would be modelled as (VuJSys, { '8', 'Hi8', 
'VHS', 'VHS-C'} ). Tue requirement of discrete domains 
does not impose a restriction for the modelling process: in 
practice, domains whicb are used for feature descriptions are 
made discrete by grouping values into classes for reporting 
purposes anyway (e.g. weight tigures are grouped into 
classes 'light', 'medium', and 'heavy'). 

When generating a classification scbema, an arbitrary 
number of features may be assigned to the classes of the hier
archy. Tue feature schema is defined on class level, whereas 
the specific values are assigned to single instances of the 
classes. One advantage of the object-oriented modelling 
approach adopted on schema level is the mechanism of fea
ture inheritance. Every subclass inherits all the features of 
the superclass; however, the feature domain of the subclass 
may be only a subset of the corresponding feature domain of 
the superclass. This "top-down" approach of inheriting pos
sible feature values along the classification hierarchy is 
depicted in Figure 3. Tue class camcorder inherits all the 
features from the superclass video with the restriction that 
there are no camcorders in the real world with a video system 
"Beta". Even the set of possible brands is restricted, because 
in the modelled world, not every video equipment producer 
sells camcorders. On the other band, new features may be on 
the lower Ievels of the classification hierarchy which are 
only valid for subsets of the classes (e.g. only camcorders 
have a feature BatteryLife1ime, but not homeVCRs). 

-----.. (Brand. { Sony, SQJ1Yo, JVC, G11111dig }) 
( video ) (VulSys, { 8, Hi8. VHS, VHS-C, Beta}) �--------""!e��(SoundSys, { Mono, Stereo}) 

(,.h_o_m_e _V_C_R-..) ( camcorder ) 
(Brand. ( Sony. JVC. Grundig}) (Brand, ( Sony,_ Sany,,, JVC /) 
(VidSys. ( 8, Hi8, VHS. VHS-C, Beta }) (VidSys, { 8, H,8. VHS. VHS-C }) 
(SoundSys, { Mono, Stereo}) (SoundSys. { Mono, Stereo}) 
( Receiver#, { J, 2 }) ( BatLifeTrme. { l h. 2h, 3h, 4h, Sh }) 

Figure 3: Feature Inheritance 
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schema-level 
( all possrble fe= va/ues) 

instance-level 
( all real /eallUe values) 

normative 
world 

- - - - - - - -

factual 
world 

Figure 4: Feature Values Propagation 

The feature inheritance mechanism is of great importance for 
data production as weil as for data evaluation. In the produc
tion pbase, feature schemata help to guide the classification 
ofincoming values for items who's identification is unclear. 
During the data analysis process, it may be decided from the 
master data alone whether a query may generate results by 
simply checking the feature domains; in the example shown 
in Figure 3, the answer that the total of sales of camcorders 
with video system "Beta" is zero can be given without 
accessing any raw data. 

3.3 lnstantiation of Classification Schemata 

So far, classifications and feature assignments based upon 
tbem were introduced only at schema level. Next, we 
describe the two.step process to instantiate a classification 
schema. In the first step, all factual instances of a dimension 
must be assigned to an appropriate and feature.compatible 
class that can serve as their schema The second step consists 
of creating exactly one instance for every class in the classi
fication hierarchy, including the "bottom-up" instantiation of 
the corresponding features. 

DEFINmoN: Afactual instance consists of a name and a set 
of features. At any point in time, a feature may hold 
at most one (empirically determinable) value. 

For example, five factual instances representing some single 
products are illustrat.ed in Figure 4 by rectangles in the lower 
half of the picture. Note that the values at instance level have 
to be selected from the list of possible values determined by 
the parent node in the classification hierarchy. If the value is 
not found in this list. the value may either be incorrect or 

belong to an item which has not been introduced in the 
dimension yet. In the latt.er case, the list of possible feature 
values at the parent node has to be extended before the new 
item can be introduced in the database. As mentioned before, 

this mecbanism also helps to guide the classifcation of new 
items into the hierarchy as well as to check the validity of a 

query at schema level. 

Figure 4 shows how the connection between the world of 
factual instances and the world of normative classifications 
is established in the CROSS-DB model. By assigning a fac
tual instance to a dass in the classification hierarchy, it 
assumes a role in which it may be used on the external level 
of the database system. When assuming a role, the features 
of the factual instances are mapped to the feature list of the 
corresponding class. Next, the feature values of the factual 
instances are propagated to the class instances. Thus, the fea
ture descriptions of the class instances refect the current val
ues of their child nodes. This may significantly reduce the 
search process when evaluating a feature-orient.ed query; in 
many cases, it may be det.ermined on a high classification 
level that a whole subtree doesn't have tobe included in the 
searcb, because the value of interest is not present in any of 
the successor nodes. For example, a query for the sales of 
"Grundig" video equipment may skip the camcorder 
instances completely, because from the camcorder class at 
instance level, it is clear that there are no "Grundig" cam

corders modelled in the database. 

Now we are able to specify precisely what a classification 
and a corresponding categorization is in the CROSS-DB 
model: 

DEFINITION: A classijication is the result of the instantiation 
of a classification scheme, comprising the steps of: 

• assigning factual instances to leaf classes of the clas
sification schema describing the finest level of granu
larity O;

• instantiating the classes in the classification schema
exactly once;
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• instantiating the features of the normative instances
by all values of the features of the subsumed
instances;

Classifications with the corresponding categorizations at the 
meta data level provide the fundamental bridge from the 
conceptual world of factual instances to the user data access 
Ievel on the extemal Ievel of our architecture. 

DEFINITION: A list of application defined identifiers for 
granularity level specifications ordered from the fac
tual instances up to the coarsest level of granularity of 
the generic normative instance "*" forms the catego
rization of the corresponding classification. 

In opposite to the classification scbema and an instantiated 
classification, the notion categorization reflects meta data 
information, namely user defineable identifiers for granular
ity levels. Referring to the ongoing example, Figure 5 shows 
a part of the classification at object level with the corre
sponding categorization. 

Object Data Level Meta Data Level 
(Classificatlon) (Calegorizatlon) 

·········--·-··-I • 1---- <4> --!:/:it'=f,�µ#Jt=t--· 

- - - - - - - - -+1tt . .. � -- -- -- --- <J> --{iik?:�\?:\;-- ·

-----� �-------------- c2> --rwr�t;i,,)--· 

1115/::1:.�:.'.:::::::: :: ::::=:: 
Figure 5: Object vs. Meta Data Level 

3.4 Dimensions of the CROSS-DB data model 

With the notions of factual instance and classification 
scbema in mincl, the notion of a dimension within the 
CROSS-DB data model is defined as follows: 

DEFINmoN: A dimension consists of a globally unique 
identifier, a set of classifications eacb with a corre
sponding categorization and a set of factual instances. 

The set of all factual instances of the universe is partitioned 
into sets eacb belonging to another dimension named by the 
unique identifier. Unlike other approaches, each set builds 
the basis for multiple classification trees with each obtaining 
another feature inheritance scbema Furthermore, each 
dimension is handled independendly at the conceptual level 
to preserve logical data independence ([LeRT95b]). 

4 User Data Access at the External Level 

When accessing quantifying data at tbe extemal level, 
dimensions have to be brought into a multi-dimensional con
text This section explains the process of providing multidi
mensional access to the database and presenting tbe results 
of a query according to some user-defined split criteria. The 
examples will be given in Cube-Query-Language CQL, a 
multidimensional query language derived from SQL. Due to 
space limitations, the syntax and semantics of Cube-Query-

Language will not be addressed in this paper. For a detailed 
discussion including a comparison of CQL and the "Data 
Cube" approach ([GBLP96]), the reader is encouraged to 
refer to [BaLe96]. The "Data Cube"approach maps a rela
tional table to a multidimensional cube by viewing primary 
key attributes as dimensions and numeric non-key attributes 
as quantifying data cells. lt further extends SQL by a cube 
clause expressing that aggregation operators have to worlc on 
all possible combinations of independantly grouped "diinen
sions". To flaten a multidimensional data cube resulting from 
an aggregation operation, tbe approach introduces an artifi
cal qualifying "ALL" -value, representing an aggregation 
wrt. tbe corresponding attribute. 

As depicted in Figure 6, the extemal level of the CROSS-DB 
model is subdivided into three layers. The lower layer spans 
the granularity context for a query by building the cross
product of the categorizations of all participating dimen
sions. Tue middle layer provides operators for transforming 
data cubes. On the upper layer, the query's results are pre
sented by using the actual feature values of the participating 
classifications nodes. The different layers are explained in 
more detail in the following subsections. 

wr=t?{}).\.=;:::\=:.=:;:J)lda=-�tiiile�\:.//::,:=·::rr-:::::;:}i'f)J 

•••••• 

• 
• •••• 

• 
• 

• 

• 
• 

n-Dimensional Granularitv Context

Figure 6: Data Access and Presentation Layers 

4.1 Constructing the Query Context 

Tue tirst step to provide a multidimensional view to the user 
is to combine dimensions, i.e. sets of factual instances witb 
corresponding categorizations, into a view which is appro
priate to the user's demands. Tue categorizations, depicted 
by a list of shaded rectangles in the lower level of Figure 6, 
constitute the so-called granularity space of a query. 

DEFINm0N: Tue n-dimensional granularity space G of a 
query is tbe cross-product of � used categorizations 
with the granularity O up to N

1 for the i-th categoriza-
tion: 

2 
G = (0, ... ,N

1
) ® (O, ... ,N ) ® ... ® (O, ... ,N

°
)
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Tue spanning of the granularity space is described in CQL in 
the FROM-clause of the SELECT-statement For example, 
line 2 of the statement below fixes the granularity space of 
the query to the product, shop and the timeline categorization 
which groups days by months. 

(1) select SALES
(2) from Product P, TimeByMonth T, Region R
(3) where P.Group = 'video',

T. Year = '1996'

To select a part of a data cube from within the multidimen
sional granularity space, two different mechanisms are pro
vided. Usually, selections are based on the dimensional clas
sification hierarchies, specified in the WHERE-clause of the 
SELECT-statement (line 3). Tue more general and complex 
addressing scheme used extensively in query optimization is 
introduced in [LeRT 95b]. Additionally, predicates over fea
ture values (e.g. with P->VidSys ! = 'Beta') and quan
tifying data (e.g. restrict SALES between (5,100)) 
are supported. 

4.2 Data Cube Operators 

Every point in the granularity space of the query context rep
resents an n-dimensional data cube which holds quantifying 
data of the corresponding granularity. As illustrated in 
Figure 6 by arrows from the lower to the middle level, a 
granularity space builds the frame that contains all data 
cubes for quantifying data that can be referenced or gener
ated in a query. In a specific query, one of these n-dimen
sional data cubes has to be selected, which may then be 
transformed according to the queries' demands. For data 
cube transformations, the CROSS-DB model supports two 
classes of operators: cell-oriented and aggregating operators. 
Cell-oriented operators are used to combine quantifying data 
from one or more cells into a new value, whereas aggregat
ing operators are used to introduce some higher-level data 
summaries under user control. 

With cell-oriented operators, input data for an operator are 
mapped to a cube of equal or even finer granularity. From a 
reporting perspective, however, the main objective in ana
lyzing data is to „compress" the detailed quantifying raw 
data into some few summary values. Aggregating operators 
allow for a user-oriented specification of such summary val
ues. The following CQL-statement shows the use of the 
SUM-operator: 

(1) select SUM(SALES)
(2) from Product P, TimeByMonth T, Region R

(3) where P.Group = 'video',
T.Year = '1996', R.Continent = 'europe'

(4) upto P. Familiy, T.Month, R.Country

Tue sample query generates monthly sales figures for the dif
ferent product families and countries across europe for the 
product group video in the year 1996. As can be seen from 
the example, aggregating operators need an explicit specifi
cation of the target granularity in the UP'fO-clause (line 4). 

4.3 Presentation of Query Results 

Up to now, features were introduced only at conceptual Ievel. 
Now we will detail what happens when features are used in 
a multidimensional context. As was seen in the last sub-sec
tion, new data may be generated in the data cubes by using 
aggregation operators. Tue results of these operators can be 
split according to the features of all instances referencing the 
cell when the data is tobe presented to the user (upper Iayer 
of Figure 6). The set of features of an n-dimensional cell 
consists of the union of all the features of the n instances 
addressing the cell. Thus, simultaneous feature splits in arbi
trary dimensions are possible. 

In CQL, the feature split is specified in the B Y-clause (line 5 
in the example below). Note that the data value is split only 
at the users level in the feature cube; on the conceptual level, 
only cells from the data cubes are known, as the correspond
ing classification hierarchies are defined on the conceptual 
level, whereas feature-oriented splits of values are only spec
ified in the user' s query. The powerful feature presentation 
mechanism is summarized in the following CQL query 
which generates the table presented in Figure 1. 

(1) select SUM(SALES)
(2) from Product P, TimeByMonth T, Region R
(3) where P.Group = 'video',

T.Year ='1996', R.Continent = 'europe'
(4) upto P.Familiy, T.Month, R.Country
(5) by P->VidSys, P->SoundSys, R->ShopType

5 The Package Storage System at the

Interna! Level

SSDBs in general handle huge amounts of quantifying data. 
Tue CROSS-DB storage system provides a configurable and 
cost-based logical storage interface for the query optimizer. 
Packages reflect single storage units and contain application
oriented clusters of data items and a label describing the con
tent of the package. In analogy to conventional access paths, 
the physical clustering of the multidimensional data implies 
the explicit definition of primary and secondary classifica
tions. For example, raw data values for sales of products 
clustered by different product groups may be put into a pack
age and described by a label (left side ofFigure 7) specifying 
the geographical area and the time frame which is covered by 
the individual values in the package. 

IDENT 
Pkgldent= 'lcdrom/salesXXX.dat 

DATAIDENT 

Userldent= 'SALES' 
,  

DATAGRANULARITY 
Product.Article 
Region.Shop 
1une.D� 

ADDRES:s 
Producr. Group= 'audio' 
Region.Country= 'germany' 
1une.Month= '03196' 

FORMAT 
RL coded 

MEDIUM 
CD-ROM 

}video 

Figure 7: Data Packages and their Meta Data 
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Tue contents of the packages are handled as BLOB 's without 
any intemal structure. This enables the storage subsystem to 
distribute different package contents over disk drives like a 
global striping algorithm, for example. In the same manner, 
contents may be spread over different physical devices 
within the storage hierarchy. This enables configurable "data 
migration" strategies, to automatically off-load expensive 
storage devices by transferring data to cheaper devices, e.g. 
after a predefined period of time has elapsed. The package 
labels are maintained in a main-memory label description 
table which includes location- and media-specific access 
cost information as an input of the query optimizer. Tue 
query optimizer uses the granularity context to find packages 
within each addressed classification where the granularity is 
as high as possible (wrt. the target granularity) and the access 
cost is as low as possible. A formal description of the query 
optimization algorithm can be found in [LeRu96]. 

6 Related Work 

The roots of researcb in statistical and scientific databases 
(SSDB) may be dated back to the beginning of tbe 80's. 
From an overall perspective and without claiming tobe com
plete, the proposals that have been made for the data model
ling side may be grouped into tbree major streams 
(Figure 7). On the left side of the figure, work geared at rep
resenting given statistical tables on a conceptual level is rep
resented. Both SUBJECT ([ChSh81]) and its direct succes
sor, GRASS ([RaRi87]), use a graphical notation to describe 
the structure of statistical tables in terms of cross products of 
dimensions, each of which can be further classified in a hier
archy of terms. GRASS extends SUBJECT by introducing 
new node types besides the duster and cross product nodes 
provided in SUBJECT, allowing for a better conceptualiza
tion of derived summary data calculated from the underlying 
table structure. Both approaches model specific table 
instances only. STORM ([RaSh90]) extends GRASS by 
explicitly distinguisbing an extensional and one or more 
intensional data modelling levels. This results in a much 
greater independence of the model from the initial table 
structure. In particular, the ambiguity of category schema 
and instance (e.g. camcorder may be regarded as schema for 
düferent products, but also as an instance of the category 
video) can be resolved. All the models in this line are suited 
to serve as a basis for implementing a statistical and scien
tific database management system (SSDBMS) in principal, 
although little attention has been given to the performance of 
the resulting systems. 

A conceptualization of the underlying data structure has 
been the main focus of the approaches depicted in the middle 
of Figure 7 from the very beginning on. SAM* ([Su83]), 
SDM4S ([Sato88]) and CSM ([BaBa88]) all provide a rieb 
set of constructs for modelling the complex semantic rela

tions between entities in a statistical or scientific database. 
Although at least SDM4S was exploited as a modelling basis 
for an actual SSDB used by the National Land Agency in 

GRAPHICAL 
ORIENTED 

STATISTICAL 
DATA MODELS 

SUBJECT 
(Chang / Shoshani) 

1 
GRASS 

(Rafanelli / Ricci) 

SEMA.'ffIC 

CONCEPTUAL 

DATA MODELS 

SAM* 
(Su) 

1 
CSM 

DiB · a / Barini) 

4S 
o) 

STORM 
( Raf anelli / Shoshani) 

SUMMARY 

DATA MODELS 

N.N. 
(Saro; Johnson) 

SSDB 
(Oi.soyogiu er ai .. ) 

1 
SRT 

(Ghosh) 

Summary 
Data Model 

( Chen / McNamee / 

Melkanof]) 

Figure 8: Streams of SSDB Research 

Japan, the focus is clearly on the data modelling side and on 
the user interface; little attention is given to the issues on the 
physical database Ievel. CSM, for example, explicitly mod
els raw data and derived data in two separate data models, 
which makes it hard to support optimization of "drill down" 
queries typically found in SSDB applications, in which an 
analysis session starts from bigbly aggregated values, which 
are step-wise refined down to the raw data level. 

The third stream of SSDB research, depicted at the right 
band side of Figure 7, emphasizes the use of materialized 
summary data to speed up query execution times in an SSD
BMS. Early beginnings were made independently by Sato 
([Sato81]) and Johnson ([John81]), followed by the SSDB 
model of Z.M. Ozsoyoglu and G. Ozsoyoglu ([OzOz84]) 
and Ghosh's extensions of the relational database model to 
capture the notion of statistical summaries ([Ghos86]). Both 
approaches are based on an extension of relational algebra 
for manipulating aggregated summaries in the database. The 
Summary Data Model introduced by Chen, McNamee and 
Melkanoff ([ChMM88]) not only describes how to derive 
new aggregations from existing ones, but also provides a 
specific indexing method, the Logical Summary Data tree, 
down to the implementation level. Here, the internal Ievel of 
the database system is much more emphasized as in the 
approaches described above, but the modelling concepts like 
classification hierarchies are much more restricted than in 
those. 

Altogether, although some facets of the modelling and opti
mization techniques found in the CROSS-DB approach may 
be found in various other approaches as weil, none of these 
integrates all of them in a comprehensive way. 

7 Summary and Future Work 

In this paper, we presented the CROSS-DB data and access 
model which equally concentrates on the logical modelling 
siele and the physical implementation iSsues for an SSDBMS 
within a common framework. On the logical side, concepts 
like independent dimensions with classification hierarchies 
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defined upon them seem to be a necessity, particularly in 
order to ease the task of guery formulation at the user's level. 
Also, the conceptualization of the application domain is 
independent from a particular data or table structure. Addi
tionally, it is possible in CROSS-DB to provide different 
views of the data at the user interface, like in traditional data
base systems. On the pbysical database side, the details of 
how raw and summarized data are beld and managed in the 
storage systems are hidden from the user by the abstract 
"Package Storage System". 

Cwrently, we are working on implementing our conceptual 
model for qualifying information in an object-oriented data
base system whicb will then serve as a common reference for 
all other system components. On the user interface side, we 
bave implemented an CQL-parser and are currently design
ing a graphical table layout module. On the internal level, we 
are currently working on an intelligent storage manager and 
the memory mapping algorithms for storing and retrieving 
sparse multidimensional data. 
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