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In the year 2020 you will be able to go into the drug store, have your DNA sequence
read in an hour or so, and given back on a compact disk so you can analyze it.

Walter Gilbert, 1980





1 Introduction and objectives

Cancer is a complex genetic disease that is driven by combinations of mutated genes.
These mutations can vary greatly between patients contributing to multiple subtypes
with different causes and clinical outcomes. Nowadays, thousands of cancers have
been characterized at the genomic, transcriptomic and epigenetic level. Frequently
mutated genes and molecular subtypes of different types of cancer have been identi-
fied, but it is still extremely challenging to better understand the impact and interplay
of mutations to improve prognosis predictions or to design more tailored therapies for
individual patients.

Gene expression signatures that distinguish molecular subtypes can be determined
in a straightforward manner by using standard statistical approaches, but the identi-
fication of major regulators among those genes that control such signatures is still a
great challenge. Further, hundreds of genes are typically affected by large DNA copy
number alterations, but computational methods that distinguish driver from passenger
mutations to reveal which of these genes contribute to cancer development or therapy
resistance are widely missing. Moreover, two cancers rarely share identical somatic
gene mutation profiles even if they show similar clinical outcome. This means that
apart from co-occurring and well-documented frequently mutated genes the vast ma-
jority of gene mutations are virtually private for each individual cancer. This raises the
question about the role of rarely mutated genes in cancer and how we can predict the
impact of all (rare and frequent) gene mutations on clinically relevant characteristics for
each individual cancer patient?

Novel computational approaches are urgently needed to disentangle driver genes
and molecular mechanisms that contribute to cancer development and therapy failure.
A promising strategy is to consider cancer as a disease of combinations of mutated
genes that alter cellular pathways and gene regulatory networks. Consequently, the
computational analysis of molecular cancer data with the help of gene interaction net-
works has the great potential to overcome limitations of frequently used standard data
analysis tools (e.g. statistical tests, regression methods), which mainly focus on single
genes, cannot deal with rare gene mutations, and can only hardly distinguish between
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1. Introduction and objectives

driver and passenger mutations without the usage of prior knowledge.
This habilitation thesis contains a selection of seven publications with a specific focus

on the development and application of omics data analysis strategies to address the
following highly relevant research objectives:

• Characterization of similarities and differences of different astrocytoma grades
to identify gene expression signatures and gene regulatory networks associated
with the malignancy of astrocytomas

• Prediction of molecular subtypes of histologically classified oligodendrogliomas
to derive characteristic gene expression signatures and associated altered gene
regulatory networks

• Identification of molecular subtypes of DNMT3A-mutant acute myeloid leukemia
patients to determine gene expression signatures and gene regulatory networks
associated with survival differences

• Development of a computational network-based framework to enable a quantifi-
cation of potential direct and indirect impacts of rare and frequent gene copy
number alterations on clinically relevant characteristics

• Implementation of a user-friendly R package to provide the developed network in-
ference and network propagation algorithms along with characteristic case stud-
ies to demonstrate the potential of the approaches

• Identification of novel driver gene candidates within the region of the 1p/19q co-
deletion of oligodendrogliomas

• Prediction of novel marker gene candidates associated with radioresistance and
relapse behavior of prostate cancer patients

Besides the identification and characterization of molecular cancer subtypes, the over-
arching connection between these different studies is the integrative analysis of multi-
ple omics layers by specifically developed algorithms for gene regulatory network infer-
ence and network propagation with the goal to identify potential major regulators and
to quantify impacts of altered genes on clinically relevant characteristics (Fig. 1.1).

The work on these studies has been a very interesting and highly satisfying journey,
which enabled me to work together with excellent researchers from different fields. I
was able to develop novel network-based approaches for the integrative analysis of
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1. Introduction and objectives

Molecular
Cancer Data

- patient cohorts                 
- cell lines                           

- mainly large-scale public  
data sets, but also local  
experimental data           

- gene expression           

- gene copy numbers      

- gene mutations             

- miRNA expression        

- DNA methylation           

Network-based
Predictions

- Major regulators distinguishing         
cancer subtypes                             
- Seifert et al. (2015), BMC Cancer      
- Lauber et al. (2018), BMC Cancer       
 - Lauber et al. (2020), Scientific Reports

- Driver candidate genes impacting     
on patient survival or key pathways
- Seifert et al. (2016), Genome Biology  
- Seifert et al. (2018), Bioinformatics  
 - Gladitz et al. (2018), Acta Neurop Com  
- Seifert et al. (2019), PLoS Comput Biol
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Figure 1.1: General data flow scheme of the network-based analyses that are part of the
original works summarized in this habilitation thesis. Different omics data sets formed the basis
of each study (left box). These data sets were used to learn signature-specific or genome-
wide gene regulatory networks that were validated based on independent data sources (middle
box). Resulting networks were used to determine major regulators of molecular signatures
that distinguished cancer subtypes (right box: top) or to predict impacts of gene copy number
alterations on clinically relevant target genes via network propagation (right box: bottom).

gene copy number and gene expression data filling gaps on the road map of computa-
tional tools for the analysis of cancer omics data. My habilitation thesis demonstrates
the great potential of these network-based approaches in cancer research.

Outline of the habilitation thesis. In chapter 2, I provide a general overview of
the scientific background going from the hallmarks of cancer over the complexity of
cancer genomes down to the importance of networks in cancer. This also includes
a brief introduction to the mathematical concepts that underlie the network inference
and network propagation algorithms developed for the publications that are part of this
habilitation thesis. In chapter 3, I briefly motivate and summarize my studies. Chapter
4 contains the publications that I selected for my thesis. The scientific background and
results of each publication are introduced and summarized before each publication. In
chapter 5, I close the habilitation thesis with a discussion of the results.
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2 Scientific background

2.1 Hallmarks of cancer

Cancer is a collective term for related genetic diseases that are characterized by un-
controlled cell proliferation and spread of cancer cells into the surrounding tissue or to
distant organs. About two decades ago major discoveries of the past 25 years of can-
cer research were summarized to define the hallmarks of cancer in a seminal review
manuscript by Hanahan and Weinberg (2000). The authors initially defined six es-
sential physiological alterations (self-sufficiency in growth signals, insensitivity to anti-
growth signals, tissue invasion and metastasis, limitless replicative potential, sustained
angiogenesis, evasion of apoptosis) that jointly contribute to the malignant growth of
cancer cells. These six hallmarks have helped to better structure the complexity of nu-
merous interrelated properties of cancer, but this integrative reductionist view was also
not free of critique (e.g. Lazebnik (2010)). Many new additional insights into tumorige-
nesis were gained in the first decade after the publication of the initial hallmarks.

This has led to a revised review on the hallmarks of cancer by Hanahan and Wein-
berg (2011). Two new emerging hallmarks (avoiding immune destruction, deregulating
cellular energetics) and two enabling traits (genome instability and mutation, tumor-
promoting inflammation) were added by the authors to their initial model of cellular
alterations that contribute to cancer development. This hallmark model represents an
excellent summary of cellular components and processes that are altered in cancer,
but it does not answer when and why those alterations arise. The variation in cancer
risk among different tissues is mainly attributable to different rates of stem cell divi-
sions, which increases the risk of developing cancer with increasing age (Tomasetti
and Vogelstein (2015)).

Consequently, the hallmarks of cancer can be embedded into an evolutionary trans-
formation process with underlying clonal selection of acquired traits that drive the tran-
sition of normal to malignant cells (Fouad and Anaei (2017)). This is illustrated in
Fig. 2.1. Nowadays, we have a clear notion of the basic principles of cancer devel-
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2. Scientific background

opment, but we are still at the beginning to understand the critical details of individual
cancers.

Evolution and clonal selection over time   

- Genetic and epigenetic alterations      
- Chromosomal aberrations                   
- Acquisition of cancer hallmark traits    

Normal
Cells

Malignant
Cells

Figure 2.1: Transformation of normal cells to malignant cells. Normal cells are continuously
exposed to environmental factors that contribute to DNA damage or are faced with DNA repli-
cation errors during cell division. An accumulation of such DNA damages due to DNA repair
deficiencies can initiate a cyclic evolutionary process of clonal selection that can transform
normal cells to malignant cells over time.

2.2 Complexity of cancer genomes

Fast progress in the development of high-throughput experimental technologies over
the last two decades enabled to measure molecular data of different types of can-
cer with unprecedented detail. Multi-omics analyses of thousands of cancer patients
by The Cancer Genome Atlas (TCGA) revealed an enormous complexity of cancer
genomes, transcriptomes and methylomes within and between different types of cancer
(e.g. The Cancer Genome Atlas Research Network (2008, 2011, 2012c,a,b, 2013a,b,
2014a,b, 2015)).

The systematic analysis of cancer genomes revealed that a single tumor can carry
several hundred up to even thousands of somatic mutations depending on the type of
cancer (Vogelstein et al. (2013)). Interestingly, major driver genes frequently mutated
in specific cancer types were found, but the potential role of almost all infrequently mu-
tated genes is still largely unknown (Vogelstein et al. (2013); Lawrence et al. (2014)).
This mutational heterogeneity suggests that many different subtypes of each specific
type of cancer exist. This is supported by the observation that individual tumors of
the same type of cancer can show strikingly different gene mutations (Mardis (2014)).
Still, tumors with largely different gene mutation patterns can show comparable clini-
cal outcomes (Hofree et al. (2013)). A widely accepted explanation for this mutational

5



2. Scientific background

heterogeneity of tumors is that cancer arises due to alterations of cellular hallmark
pathways. Typically, only a single gene of a cancer-relevant signaling pathway is mu-
tated per tumor most likely because additional mutations of genes of the same pathway
do not provide further advantages (Ciriello et al. (2012)).

Further, also DNA copy number alterations and chromosomal instability are a hall-
mark of cancer (Hanahan and Weinberg (2011); Ciriello et al. (2013); Zack et al.
(2013)). Recurrently occurring deletions or duplications of whole chromosomes or
chromosomal arms affecting hundreds of genes or infrequently observed deletions and
duplications of smaller DNA fragments affecting only very few or a single gene are hard
to analyze for driver genes and suffer from the same problem even if the number of al-
tered genes differs. In the first case, the recurrent occurrence of almost identical large
chromosomal mutations (e.g. the 1p/19q co-deletion in oligodendrogliomas or the am-
plification of chromosome 7 in glioblastomas) does not allow to distinguish between
driver and passenger genes, because one cannot narrow down specific chromosomal
regions. In the second case, the rare occurrence does not allow to obtain robust re-
sults, because similar cancer samples are often not available for systematic studies
of driver impacts. These challenges cannot be overcome by standard statistical and
bioinformatics methods for molecular data analysis.

Overall, the complexity of cancer genomes strongly complicates the identification of
driver mutations for individual cancers and puts great challenges to reveal how these
mutations alter molecular mechanisms that influence pathogenesis and therapy re-
sponse. A promising way to overcome this is to consider cancer as a disease of cellular
pathways or networks and to integrate this network principle into the development of
novel computational strategies to improve the analysis of individual cancer genomes
(Krogan et al. (2015)).

2.3 Importance of cellular networks in cancer

Networks generally represent a simplified representation of a complex system to cap-
ture basic connections between the components of a system. One can study the in-
dividual components of a system and individual connections between components in
isolation, but to gain detailed insights on how the full system works it is necessary to
study the pattern of connections between all components (Newman (2010)).

This concept can also be transferred to molecular cancer research to analyze het-
erogeneous molecular omics data sets with the help of network-based approaches.
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2. Scientific background

The components of a cellular network are represented by nodes that constitute genes
(or proteins) and connections between nodes are represented by edges that constitute
gene-gene (or protein-protein) interactions. This network representation specifies a ba-
sic computational model for the analysis of molecular data that is widely considered for
its simplicity, generality and potential to identify complex molecular patterns (Barabási
and Oltvai (2004)). Instead of analyzing each gene in isolation, we can utilize known or
computationally predicted regulatory interactions between genes to analyze how gene
mutations or altered transcription levels putatively influence other genes or hallmark
pathways driving cancer development and clinical outcomes. Such a network-based
analysis of tumor data directly accounts for the fact that cancer is a complex genetic
disease that is driven by combinations of mutated genes that greatly vary between
individual tumors. This is the central component of computational network medicine
for complex human diseases to identify altered molecular modules and pathways and
to predict relationships between pathogenic geno- and phenotypes (Barabási et al.
(2011)).

One of the first studies that demonstrated the great power of the analysis of molec-
ular cancer data with the help of protein interaction networks was the classification
of breast cancer into metastatic and non-metastatic tumors by Chuang et al. (2007).
Chuang et al. analyzed gene expression data of two independent studies from van’t
Veer et al. (2002) and Wang et al. (2005), which had initially shown only very poor
overlap of individual marker genes correlated with metastatic potential. Early network-
based analysis approaches mainly followed the principle of ’guilt by association’ that is
motivated by the observation that genes or proteins share molecular and phenotypic
properties with their direct network interaction partners (Schwikowski et al. (2000)).
This concept has been further generalized in different approaches to include the lo-
cal network neighborhood of a gene or protein to improve the identification of gene
clusters or modules (Brohée and van Helden (2006)). These local network neighbor-
hood approaches are nowadays frequently replaced by network propagation algorithms
(Cowen et al. (2017)).

Starting with prior information of initially altered nodes (e.g. mutated genes, differen-
tially expressed genes), network propagation algorithms transmit information from each
node to its direct neighbor nodes in an iterative manner enabling to predict previously
hidden data patterns that emerge from the underlying molecular network. Network
propagation has been developed and applied in different research disciplines includ-
ing statistical physics, electrical engineering, machine learning, data sciences, biology
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2. Scientific background

and medicine (Cowen et al. (2017)). Successful biological and medical applications in-
clude gene function prediction (e.g. Noble et al. (2005); Sharan et al. (2007)), module
discovery (e.g. Mitra et al. (2013); Leiserson et al. (2015)), disease characterization
and disease gene prediction (e.g. Cho et al. (2012); Ideker and Sharan (2008); Ruffalo
et al. (2015)), prediction of novel drug targets (e.g. Csermely et al. (2013); Chen et al.
(2012); Shnaps et al. (2016)) and patient stratification and subtype discovery (e.g. Va-
nunu et al. (2010); Hofree et al. (2013); Zhang et al. (2018)). Almost all approaches
utilized existing human protein-protein interaction networks such as STRING (Szklar-
czyk et al. (2017)) or data of biological pathways such as Pathway Commons (Cerami
et al. (2011)) as basis for network propagation. These networks usually contain exper-
imentally validated interactions and interactions predicted by computational methods.

Such global pre-existing networks mainly provide a general representation of inter-
actions between genes or proteins across different tissues. But cells of specific tissues
or within a specific tissue can largely differ in their gene expression profiles. Conse-
quently, not each reported interaction will exist in each cell. This is critical for network
propagation and can lead to inaccurate results due to the usage of interactions that may
not be possible or exist in reality. Thus, as an alternative to these general networks, the
usage of tissue-specific networks directly learned from molecular data can contribute
to better account for the great heterogeneity within and across different types of cancer
and further provides the opportunity to develop network propagation algorithms that
exploit individual cancer gene expression profiles.

2.4 Inference of cancer-specific gene interaction

networks from molecular data

The computational reconstruction of gene regulatory networks (also called reverse en-
gineering) from molecular data represents one of the fundamental challenges in com-
putational biology. The accurate prediction of biological interactions between genes is
essential to obtain a systems-based view and detailed insights into molecular mecha-
nisms that drive individual cancers. High-throughput technologies to measure genome-
wide gene expression profiles allow to gain snapshots of transcriptomes of different
cancer cells that can be used to learn gene regulatory networks. The computational
challenge is to predict regulatory dependencies between regulators and their target
genes. The aggregation of all predicted interactions between genes comprises the
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2. Scientific background

learned gene regulatory network.

A broad range of more than thirty different network inference methods have been
developed over the last two decades as outlined in different reviews and comparison
studies (e.g. Li et al. (2008); Marbach et al. (2010, 2012); Chai et al. (2014)). The
used computational frameworks include regression, correlation and mutual information
approaches, but also other methods such as ANOVA, Boolean networks, Bayesian net-
works or Random Forest have been studied. Some of the methods were exclusively
developed for the inference of gene regulatory networks from gene expression data
(De Smet and Marchal (2010); Marbach et al. (2010)), whereas other methods inte-
grate multiple data layers (e.g. Bar-Joseph et al. (2003); Reiss et al. (2006); Jörnsten
et al. (2011); Marbach et al. (2012)). These methods differ in their data requirements
and large-scale comparison studies revealed that each algorithm has certain strengths
and weaknesses and that their results can differ substantially (Marbach et al. (2010,
2012)).

Interestingly, sparse linear regression approaches were among the best performing
methods for gene regulatory network inference (Marbach et al. (2012)). Such regres-
sion approaches also enable a straightforward interpretation of the predicted links and
their corresponding parameters, which is important for the design of specific network
propagation algorithms that take the gene expression levels of individual genes into
account instead of only considering the existence of regulatory links between genes.
Nevertheless, these regression-based methods varied largely in their performances
due to the usage of different underlying data resampling strategies (Marbach et al.
(2012)). Still, sparse linear models represent a well-suited simplified approach to model
the gene expression behavior of the vast majority of genes (Jörnsten et al. (2011)).
Limitations of the resembling strategies can be overcome by repeating the network in-
ference several times to later focus only on links that were robustly identified in the
majority of networks or to utilize the whole ensemble of regression-based networks for
downstream analyses. Such ensemble-based strategies have a long tradition in com-
putational systems biology to derive robust network models from experimental data
(Kaltenbach et al. (2009); Marbach et al. (2009, 2010, 2012)).

In this habilitation thesis, I focused on the inference of gene regulatory networks
utilizing sparse regression models. The good performance of these models in combi-
nation with their simplicity and interpretability also enabled a direct integration of the
model parameters into the development of novel network propagation methods that
make use of the learned regression models to quantify impacts of altered genes on
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clinically relevant downstream targets and cellular pathways. The basics of the under-
lying network inference algorithm are described in the following.

2.5 Network inference based on sparse regression

Following the detailed descriptions in Seifert et al. (2016) and Seifert and Beyer (2018),
we divide the network inference problem into independent gene-specific sub-network
inference tasks. We assume that for each gene i ∈ {1, . . . , N} its expression level eid
in a sample d ∈ {1, . . . , D} is modeled by a linear combination

eid = aii · cid +
∑
j ̸=i

aji · ejd (2.1)

of its gene-specific copy number cid and the expression levels ejd of other potential
regulator genes j ̸= i. The parameters of this gene-specific linear model are defined
by a⃗i := (a1i, . . . , aNi) ∈ RN , where aii quantifies the direct local gene copy number
effect and aji with j ̸= i specifies the contribution of the expression of gene j on
the expression of gene i. It has already been shown that linear models represent a
reasonable approximation for the modeling of gene expression levels for the majority
of genes (Jörnsten et al. (2011)).

We use lasso (least absolute shrinkage and selection operator) regression (Tibshi-
rani (1996)), which realizes variable selection and regularization, to compute a sparse
solution for the linear model in (2.1) by minimizing the residual sum of squares to de-
termine an optimal solution

a⃗∗i := argmin
a⃗i

D∑
d=1

(
eid −

(
aii · cid +

∑
j ̸=i

aji · ejd

))2

+ λi

N∑
j=1

|aji| (2.2)

for each gene i with respect to a fixed complexity parameter λi ≥ 0 that specifies
the amount of shrinkage of the individual model parameters in a⃗i toward zero. Larger
values of λi lead to greater shrinkage enabling to select the most relevant predictors
(own gene-specific copy number and expression levels of other genes) that best explain
the expression of the response gene i. Irrelevant model parameters are automatically
shrunken to zero by lasso.

The obtained model parameters a⃗∗i depend on the choice of the gene-specific com-
plexity parameter λi. We determine the optimal gene-specific complexity parameter
along with the corresponding optimal model parameters by cross-validation using the
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2. Scientific background

R package glmnet (Friedman et al. (2010)). We further determine the significance of
model parameters when they first enter the lasso model in (2.2) using a significance
test for lasso (Lockhart et al. (2014)). In more detail, we first compute the lasso so-
lution paths for all active predictors (model parameters in a⃗∗i that are unequal zero) of
the gene-specific linear model for the given data set using the R package lars (Hastie
and Efron (2013)). These paths are evaluated using the R package covTest (Lockhart
et al. (2013, 2014)) to obtain p-values that quantify the relevance of individual active
predictors for the gene-specific linear model. The network inference step for gene i is
illustrated in Fig. 2.2.

The obtained optimal parameters of the sparse linear model can be directly inter-
preted in the context of relationships between genes j and i: a∗ji < 0 suggests that the
putative regulator j is associated with the inhibition of target i, a∗ji > 0 suggests that the
putative regulator j is associated with the activation of target i, and a∗ji = 0 suggests
that no putative regulatory link between j and i exists. It is important to note that a
dependency between the genes j and i can either represent direct or indirect causal
interactions or only a correlation. The integration of copy number data into the linear
model extends pure correlation-based network inference approaches.

Initially, we considered the standard detection limit of the covariance test implemen-
tation by Lockhart et al. (2013) to select highly predictive links. This strategy was used
in Seifert et al. (2015), Seifert et al. (2016), Lauber et al. (2018), and Seifert et al.
(2019), which are all part of this habilitation thesis. Later, in my R package regNet
(Seifert and Beyer (2018)), I explicitly modified the R function covTest from Lockhart
et al. (2013) to avoid the undocumented implicit rounding of p-values to four decimals.
This enabled a correction of p-values for multiple testing by computing false discov-
ery rates (FDRs) (Benjamini and Hochberg (1995)) considering the p-values computed
for the active parameters of all gene-specific linear models. These FDR-adjusted p-
values were considered to obtain the networks in Seifert and Beyer (2018), Gladitz
et al. (2018), and Lauber et al. (2020).

Further, the described network inference approach has been used in different varia-
tions within the frame of this habilitation thesis. Genome-wide gene regulatory net-
works based on gene copy number and expression profiles have been learned in
Seifert et al. (2016), Seifert and Beyer (2018), Gladitz et al. (2018), and Seifert et al.
(2019). Gene regulatory networks associated with gene expression signatures have
been learned in Seifert et al. (2015), Lauber et al. (2018), and Lauber et al. (2020).
Study-specific modifications are described in the corresponding manuscripts motivat-
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2. Scientific background

ing restrictions to transcription factor expression levels as predictors instead of consid-
ering all genes (Seifert et al. (2015); Lauber et al. (2018)) and the usage of miRNA ex-
pression levels as additional omics layer instead of gene copy number profiles (Lauber
et al. (2020)). Details to the integration of network instances by focusing on repro-
ducible links or by ensemble-based integrations of network results are given in the
publications.

  

gene 1 gene 2 gene 3 gene N...
...

gene i

...
  

gene 1 gene 2 gene 3 gene N...
...

gene i

...

Potential Predictors

Target Gene Target Gene

Selected Predictors

lasso

covTest

Figure 2.2: Illustration of the network inference step for target gene i. The expression level
of target gene i is modeled as a linear combination of potential predictors. Lasso regression
in combination with a significance test for lasso is used to select the most relevant predictors
(red: activation link, blue: inhibitory link). This network inference step is done for each gene i
to obtain a global gene regulatory network.

2.6 Network-based prediction of gene expression

levels

Again following the detailed descriptions in Seifert et al. (2016) and Seifert and Beyer
(2018), a regression-based gene regulatory network can be used to predict the expres-
sion levels of genes in a given data set. We compute the correlation between predicted
êid and originally measured expression levels eid for each gene i ∈ {1, . . . , N} across
all samples d ∈ {1, . . . , D} of a given data set to quantify the predictive power of each
network. This is done by computing the Pearson correlation coefficient

ri :=

D∑
d=1

(êid − êi) · (eid − ei)√ D∑
d=1

(êid − êi)2 ·
D∑

d=1

(eid − ei)2

(2.3)
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for each gene i. The corresponding mean values of the predicted and the originally
measured expression levels of gene i over all samples D are given by êi and ei, re-
spectively. A correlation ri > 0 implies that the learned network is able to predict the
measured expression trend of a gene: the greater positive the correlation ri the better
the network-based prediction.

These correlations can be used to evaluate how good a network is able to predict
the expression behavior of individual genes and to analyze the location and shape of
the correlation distribution obtained for all genes. This enables comparisons of network
instances of different complexities and comparisons to random baseline network mod-
els. In addition, gene-specific correlations between predicted and originally measured
expression levels provide the basis to integrate the quality of the predictions of individ-
ual genes into the impact computations of my newly developed network propagation
algorithm, which is described in the next section.

2.7 Network-based propagation of gene expression

alterations

Networks can be used to determine impacts of gene perturbations (e.g. gene expres-
sion changes due to directly underlying gene copy number alterations) on other genes
in the network. The key idea is to propagate these impacts along the network edges
from the affected gene to its direct neighbors and from those to their direct neighbors
in an iterative manner. This can be realized by network propagation algorithms.

We developed a novel network propagation algorithm in Seifert et al. (2016) that
quantifies for each gene pair (j, i) the direct and indirect contribution of gene j on the
expression of gene i under consideration of all existing network paths from j to i, the
prediction quality of individual genes along the paths, and possibly existing feedback
loops. These impacts can be computed over all patients in a cohort or for each individ-
ual patient. It is also possible to integrate potential inhibitor or activator contributions.
Initial mathematical descriptions of the different variations of the network propagation
algorithm have been provided in Seifert et al. (2016) along with in-depth validation
studies. Next, I introduce the basic version of the network propagation algorithm that
we used for the computation of a cohort-specific impact matrix following the detailed
descriptions provided in Seifert et al. (2016) and Seifert and Beyer (2018).

We consider a data set of D samples for which the expression level eid and the
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2. Scientific background

copy number cid of each gene i ∈ {1, . . . , N} have been measured for each sample
d ∈ {1, . . . , D}. We further consider a learned network and its underlying gene-specific
linear models specified in (2.1). We denote the optimal parameter vector of the linear
model of gene i in (2.2) by a⃗∗i := (a∗1i, . . . , a

∗
Ni). First, we compute for each gene i

the correlation coefficient ri between predicted and originally measured expression
levels across all samples of the given data set as specified in (2.3). Subsequently,
we only consider predictable genes with positive correlations between predicted and
observed expression levels (ri > 0). Poorly predictable genes (i.e. genes with small
positive ri) will only contribute very little to the total impact score. Next, we compute
the corresponding explained variance R2

i = ri · ri of each predictable gene covered by
its underlying sparse linear model in (2.1). We further set R2

i := 0 for unpredictable
genes (ri < 0) to exclude those genes from the network propagation.

Let us now consider each regulator gene j of gene i to determine for each regulator
its direct contribution to the observed explained variance R2

i of gene i. We first compute
the average proportion of each regulator j on the prediction of the expression of target
gene i by

pji =
1

D

D∑
d=1

|a∗ji · ejd|
|a∗ii · cid|+

∑
v ̸=i |a∗vi · evd|

and we determine the direct average copy number contribution of target gene i by

pii =
1

D

D∑
d=1

|a∗ii · cid|
|a∗ii · cid|+

∑
v ̸=i |a∗vi · evd|

under consideration of all D samples of the given data set. The usage of absolute
values in the computation of pij (and pii) accounts for regulator genes that either act
as potential inhibitors or activators of target gene i enabling to reveal the strongest
regulators independent of their mode of action. If a gene j is not a direct regulator of
gene i (learned a∗ji = 0 in the underlying gene-specific linear model of gene i), then
pji := 0. In analogy, if target gene i does not have a direct copy number effect (learned
aii = 0 in the underlying gene-specific linear model of gene i), then pii := 0. This allows
to define a basic network flow matrix

F = (fji)1≤j,i≤N := pji ·R2
i (2.4)

by weighting the explained variance R2
i of target gene i with the average proportion pji

14



2. Scientific background

of its direct predictors (gene copy number, regulator genes) j. F quantifies the direct
impacts of regulators on target genes. In more detail, each column i of F contains
the explained variance of a target gene i split into average proportions according to
the contributions of its copy number and its target gene-specific regulators. Since the
predictions of expression levels by the underlying gene-specific linear model are not
perfect, the explained variance fulfills 0 ≤ R2

i < 1. Therewith, the column sum norm of
F is strictly less than one. We use this property to compute indirect effects between
each pair of genes (i.e. the network flow) via the following equation

F ∗ =
∞∑
k=1

F k (2.5)

that sums over the contributions of all network paths of increasing length k. The matrix
F k specifies the k-th matrix power obtained by a k-fold matrix multiplication of F . An
element fk

ji of F k represents the impact of a trans-acting regulator gene j on the ex-
plained variance of a target gene i via all directed network paths from j to i of length
k. Since the basic network flow matrix F has a column sum norm that is strictly less
than one, the network flow F ∗ will converge to its limit (I − F )−1 − I (geometric series
of matrix F starting at one), where I is the identity matrix and (I − F )−1 specifies the
inverse of matrix I − F .

However, the computation of the inverse of a large matrix (I−F has dimension N×N )
is very time consuming. In addition, due to the sparsity of F (majority of entries are
zero because only the most relevant predictors should be included in a network) and
its entries in [0, 1), we also know that the values of the elements in F k should relatively
quickly approach zero. Thus, it is more efficient to approximate F ∗ by only adding an
additional F k if the obtained difference of the sum over F k up to k and the previous
sum up to k − 1 is greater than a predefined threshold. We stopped the approximation
of F ∗ if the sum of the differences of the column sums of the current and the previous
approximated matrix is less than 10-3. The resulting matrix F ∗ represents the impact
matrix that contains for each gene pair (j, i) the direct and indirect impacts that flow via
the underlying network form gene j to gene i. The absolute impact of a gene j on the
expression of a gene i is given by the entry f ∗

ji. The basic idea of impact quantification
by network propagation is illustrated in Fig. 2.3.

We considered impact matrices computed by this network propagation approach in
Seifert et al. (2016), Seifert and Beyer (2018), Gladitz et al. (2018), and Seifert et al.
(2019), which are all part of this habilitation thesis, to analyze downstream impacts of
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2. Scientific background

observed gene copy number or expression alterations on cancer-relevant pathways or
clinically relevant signature genes.

Patient-specific gene alteration

Clinically relevant signature genes

Patient-specific gene alteration

Clinically relevant signature genes

Network propagation

Figure 2.3: Illustration of impact quantification by network propagation. The potential impact
of a patient-specific gene alteration (orange box) on clinically relevant signature genes (green
boxes) can be quantified with the help of a gene regulatory network. All existing network paths
(red arrows) that connect the altered gene to the individual signature genes are considered.
This strategy allows to quantify direct or indirect impacts between each pair of genes enabling
to analyze the potential impact of each patient-specific gene alteration on clinically relevant
target genes by taking all individual patient-specific alterations into account.
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3 Motivation and summary of studies

After completing my PhD in bioinformatics with a specific focus on the development of
Hidden Markov Models for the analysis of sequential data from high-throughput omics
experiments (Seifert (2010)), it became clear to me that such tools in combination with
methodological developments in the field of computational systems biology and sys-
tems medicine would offer a great chance to continue my career with a strong focus on
medical applications. I started to work as a postdoc on network-based approaches for
the analysis of cancer omics data in May 2012 in the research group of Prof. Dr. An-
dreas Beyer at the Biotechnology Center (BIOTEC) TU Dresden. In December 2015,
after two more postdoc positions, I started to work as a group leader at the Institute for
Medical Informatics and Biometry (IMB) TU Dresden headed by Prof. Dr. Ingo Roeder.
I established a Bioinformatics Core Unit at the IMB to support the analysis of molecular
high-throughput data and to develop innovative methods and strategies for the integra-
tive analysis of omics data. Over all these years, I had the chance to work together
with researchers from different disciplines to lay the ground for this habilitation thesis.

3.1 Molecular stratification and driver gene

identification for gliomas

In 2012, I met Dr. Barbara Klink, who was working at the Institute for Medical Genet-
ics of the Faculty of Medicine of the TU Dresden, and we started to exchange ideas
and decided to work together on different brain cancer research projects with a spe-
cific focus on the analysis of molecular data of astrocytomas and oligodendrogliomas
belonging to the group of gliomas (Ohgaki and Kleihues (2013); Louis et al. (2016)).

One of our first key questions was to find out how different grades of astrocytomas
differ at the molecular level and which molecular factors contribute to their increasing
malignancy? Omics data sets of different astrocytoma grades were publicly available,
but studies that compared all four grades did not exist with few exceptions dating back
to the time when omics approaches were still in their infancy (Rickman et al. (2001);
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3. Motivation and summary of studies

Hunter et al. (2002); Rorive et al. (2006)). To address this, we systematically char-
acterized similarities and differences between the astrocytoma grades at the level of
single genes, signaling pathways and gene regulatory networks. The results of our
study were published as (see also Section 4.1):

• Michael Seifert, Martin Garbe, Betty Friedrich, Michel Mittelbronn and Barbara
Klink (2015): Comparative transcriptomics reveals similarities and differ-
ences between astrocytoma grades, BMC Cancer, 15:952.

This first success motivated us to further analyze molecular data of oligoden-
drogliomas, which are closely related to astrocytomas. Oligodendrogliomas were clas-
sified purely based on histology for many years (Louis et al. (2007)), but these histologi-
cal classifications were known to be error-prone and not always consistent between dif-
ferent neuropathologists (Coons et al. (1997); van den Bent (2010)). When we started
this project in December 2015, characteristic molecular markers of oligodendrogliomas
(1p/19q co-deletion and IDH1/2) had already been identified and had further been
shown to improve diagnosis and prediction of treatment response (Cairncross et al.
(1998); Jansen et al. (2010); Labussiere et al. (2010)), but almost all publicly available
data sets of oligodendrogliomas were still established on the basis of pure histological
classifications. We therefore decided to analyze publicly available gene copy number
and gene expression profiles of histologically classified oligodendrogliomas from The
Cancer Genome Atlas (TCGA) with the goal to identify and characterize molecular sub-
types, associated gene regulatory networks and potential major regulators. The results
of our study were published as (see also Section 4.2):

• Chris Lauber, Barbara Klink and Michael Seifert (2018): Comparative anal-
ysis of histologically classified oligodendrogliomas reveals characteristic
molecular differences between subgroups, BMC Cancer, 18:399.

This study enabled us to gain a deep understanding of molecular alterations that
characterize oligodendrogliomas, but one of the main challenges still remained. The
identification of core driver genes involved in oligodendroglioma development had not
made much progress since many years. The 1p/19q co-deletion is most likely caused
by an unbalanced translocation (Jenkins et al. (2006)), but no fusion genes that drive
the tumor development have been found most likely because the break points are lo-
cated in a gene-poor heterochromatic region. Further, in-depth searches for inactivat-
ing point mutations have identified FUBP1 located on 1p and CIC located on 19q as
potential tumor suppressors (Bettegowda et al. (2011); Eisenreich et al. (2013)), but
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both mutations are only observed in some or an increased fraction of patients (The
Cancer Genome Atlas Research Network (2015)) implying that they are not driving
the initial tumor development. Essentially, the challenge is that hundreds of genes on
the p-arm of chromosome 1 and on the q-arm of chromosome 19 are affected by the
co-deletion of one copy of these chromosomal arms. Since oligodendrogliomas show
nearly identical co-deletions, it is not possible to simply overlay the copy number pro-
files of many oligodendrogliomas to localize chromosomal regions on 1p and 19q that
potentially drive tumor development. Further, a differential gene expression analysis
of genes of the 1p/19q region will result in hundreds of differentially expressed genes,
but one cannot distinguish between drivers and passengers. Thus, the identification
of driver gene candidates within the region of the 1p/19q co-deletion is an enormous
challenge that can only be addressed by the usage of novel innovative methods.

One promising way to address this was the application of network-based data anal-
ysis strategies that I had already established in Seifert et al. (2016). Consequently, we
searched for novel driver gene candidates with the help of oligodendroglioma-specific
gene regulatory networks to determine how differentially expressed genes within the
region of the 1p/19q co-deletion act on altered cancer-relevant signaling and metabolic
pathways. The results of our study were published as (see also Section 4.6):

• Josef Gladitz, Barbara Klink and Michael Seifert (2018): Network-based anal-
ysis of oligodendrogliomas predicts novel cancer gene candidates within
the region of the 1p/19q co-deletion, Acta Neuropathologica Communications,
6:49.

These three selected studies represent important contributions to glioma research
that I did together with Dr. Barbara Klink. However, our collaboration has been very
productive leading to several other publications with researchers from different fields
that I did not include in this habilitation thesis (Seifert et al. (2014); Abou-El-Ardat et al.
(2017); Alfonso et al. (2017); Klapproth et al. (2018); Mäder et al. (2018); Zakrzewski
et al. (2019); Biedermann et al. (2019); Seifert et al. (2020)).

3.2 Survival differences of DNMT3A-mutant acute

myeloid leukemia patients

In 2016, I started to work on a project with the goal to identify molecular factors asso-
ciated with survival differences of DNMT3A-mutant acute myeloid leukemia patients.
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This was motivated by the SyTASC (Systems-based Therapy of AML Stem Cells)
project funded by the German Cancer Aid in which I was involved to support bioin-
formatics data analyses for the work package of Prof. Dr. Ingo Roeder.

Acute myeloid leukemia (AML) is a highly malignant cancer of myeloid blood cells
that is characterized by a rapid growth of abnormal immature myeloblasts that lost their
ability to differentiate leading to the replacement of normal cells in bone marrow and
blood (Döhner et al. (2015)). DNMT3A belongs to the most frequently mutated genes
in AML (The Cancer Genome Atlas Research Network (2013a)), which encodes a DNA
methyltransferase (Shah and Licht (2011)) that is important for normal hematopoiesis
(Challen et al. (2011); Yang et al. (2015)). Mutations of DNMT3A have been asso-
ciated with very poor prognosis (e.g. Ribeiro et al. (2012); Renneville et al. (2012)).
Nevertheless, some DNMT3A-mutant patients have shown relatively long survival or
even reached a long-term remission (Ploen et al. (2014); Sun et al. (2016)), but molec-
ular differences distinguishing short- and long-lived patients had not been extensively
studied.

To fill this gap, we considered molecular data of DNMT3A-mutant AML patients from
TCGA (The Cancer Genome Atlas Research Network (2013a)) to search for subgroups
with survival differences, to characterize their underlying molecular alterations and as-
sociated gene regulatory networks, and to analyze the transfer of our findings to inde-
pendent cohorts. The results of our study were published as (see also Section 4.3):

• Chris Lauber, Nádia Correia , Andreas Trumpp , Michael A. Rieger, Anna Dolnik,
Lars Bullinger, Ingo Roeder and Michael Seifert (2020): Survival differences
and associated molecular signatures of DNMT3A-mutant acute myeloid
leukemia patients, Scientific Reports, 10:12761.

This study represents the first in-depth computational approach that characterizes
molecular factors associated with survival differences of DNMT3A-mutant AML pa-
tients, which could contribute to the development of robust markers for an improved
patient stratification.

3.3 Impact of rare gene copy number alterations on

survival of cancer patients

In 2012, I started to work on the development of computational methods to quantify im-
pacts of gene copy number alterations on clinically relevant characteristics. This work
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was motivated by the fact that more and more large-scale omics data sets of differ-
ent types of cancer were published, but it was still extremely challenging to determine
impacts of individual mutations. The mountains and hills of frequently mutated genes
had been characterized, but it was still largely unknown which contribution the long tail
of rarely mutated genes had (Vogelstein et al. (2013); Lawrence et al. (2014)). Rare
mutations could act in combination with frequent mutations or they could independently
contribute to tumor development. But essentially, the importance of rare mutations in
comparison to frequent mutations was not known.

A major reason for this lack of knowledge was that computational methods to quan-
tify the impacts of rare gene mutations did not exist. A groundbreaking publication by
Hofree et al. (2013) showed that one can utilize existing gene or protein interaction net-
works in combination with network propagation to stratify highly diverse gene mutation
profiles of cancer patients into homogeneous subgroups with consistent clinical behav-
ior. A similar approach was used by Leiserson et al. (2015) to identify the impact of
rare mutations on cellular pathways and protein complexes. These approaches greatly
helped to better characterize the potential impact of small gene mutations (single nu-
cleotide variations and small insertions/deletions), but they are only suboptimal for the
analysis of gene copy number alterations, because they do not account for alterations
of expression levels of affected genes.

To overcome this, I developed a network inference algorithm to directly learn gene
regulatory networks form hundreds of paired gene copy number and expression pro-
files (see Section 2.5). I used these networks in combination with a specifically de-
signed network propagation algorithm (see Section 2.7) to quantify the impacts of
rare and frequent gene copy number alterations on patient survival or signaling and
metabolic pathways.

I used these novel computational concepts in a first pioneer study to show that a
regulatory network learned from gene expression and gene copy number data of 768
human cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) (Barretina
et al. (2012)) can quantify impacts of patient-specific gene copy number alterations
on patient survival. Based on an in-depth analysis of six cancer types, we revealed
that rare patient-specific gene copy number alterations often had stronger effects on
survival signature genes than frequent gene copy number alterations. This analysis
also showed that rare gene copy number alterations are important for the prediction of
survival of glioblastoma and skin cancer patients, whereas frequent gene copy number
alterations were important to predict survival of lung cancer patients. Moreover, a
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comparison to a closely related network-based approach showed that the integration
of indirectly acting gene copy number alterations significantly improved the separation
of patients into short and long survivors. The results of our study were published as
(see also Section 4.4):

• Michael Seifert, Betty Friedrich and Andreas Beyer (2016): Importance of rare
gene copy number alterations for personalized tumor characterization and
survival analysis, Genome Biology, 17:204.

The great success of this study further motivated me to develop the R package reg-
Net to provide the network inference algorithm along with the different network propa-
gation algorithms as user-friendly tools that enable own analyses and methodological
extensions. The initial developments of the source code of regNet date back to the
year 2012. Major parts of the source code were already used to learn the networks of
the original works that are part of this habilitation thesis. The R package regNet was
published as (see also Section 4.5):

• Michael Seifert and Andreas Beyer (2018): regNet: an R package for network-
based propagation of gene expression alterations, Bioinformatics, 34(2), 308-
311.

This package was also used to perform the driver gene candidate prediction for oligo-
dendrogliomas (see Section 4.6) and to search for potential driver genes in radioresis-
tant prostate cancer cell lines (see Section 4.7).

3.4 Impact of gene copy number alterations on

radioresistance of prostate cancer

In 2014, Prof. Dr. Anna Dubrovska from the OncoRay TU Dresden and Dr. Barbara
Klink invited me to a joint meeting to ask if I can support the analysis of gene copy
number and gene expression profiles of prostate cancer cell lines. The central idea
of this project was to identify candidate genes that are involved in the regulation of
radioresistance of prostate cancer. It became immediately clear to me that this cannot
be realized with standard bioinformatics tools, because they only had two cell lines
whose radioresistant cells showed large chromosomal deletions and duplications of
DNA segments in comparison to their radiosensitive parental cells. These DNA copy
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number alterations were induced by irradiation due to error-prone DNA repair of dou-
ble strand breaks (Mateo et al. (2017)). Many genes are usually located within these
regions and alterations of their copy numbers are frequently transferred to the expres-
sion level. This further complicated the situation, because we had not only to deal with
very few samples but also with hundreds or thousands of gene copy number alterations
and expression changes. Thus, the search for potential driver genes associated with
radioresistance of prostate cancer cell lines was comparable to finding the needle in a
haystack.

I suggested to address this challenging problem with the help of a prostate-cancer
specific gene regulatory network to propagate potential impacts of altered genes on
known radioresistance marker genes. This was a perfect application for my network
inference and network propagation algorithms (Seifert et al. (2016); Seifert and Beyer
(2018)), which were still under development at that time. The results of our study were
published as (see also Section 4.7):

• Michael Seifert, Claudia Peitzsch, Ielizaveta Gorodetska, Caroline Börner,
Barbara Klink and Anna Dubrovska (2019): Network-based analysis of
prostate cancer cell lines reveals novel marker gene candidates associ-
ated with radioresistance and patient relapse, PLoS Computational Biology,
15(11):e1007460.

Our computational approach enabled us to predict 14 potential driver candidates that
were able to distinguish irradiated prostate cancer patients into early and late relapse
groups. In-depth wet lab validation studies of one driver candidate further confirmed
the value of our approach.
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4 Original works

This chapter contains the seven original works that I selected for my habilitation thesis.
I contributed substantially to each of these works, which is also highlighted by the fact
that I am either the first author or the last author of these different studies. I am also
the corresponding author of each of these publications.

Each original work is introduced by a brief overview of the bibliographic information
followed by a brief motivation of the work in the specific scientific context and a
summary of the main results of the publication. This overview is completed by a
statement that provides detailed information about my contribution to each publication.

Additional information in the form of Supplementary Materials have been prepared
for each original work, but these materials are not reproduced within this habilitation
thesis for reasons of brevity. These materials are available from the corresponding
website of the publisher of each original work or they can also be obtained from me
upon request.
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Placement and summary of the publication

Astrocytomas represent the most frequently diagnosed primary human brain tumors in the
course of life (Ohgaki and Kleihues (2005)). At the time of this study, astrocytomas were clas-
sified by the World Health Organization (WHO) brain tumor classification system into four his-
tological grades of increasing malignancy (Louis et al. (2007)). In this study, we focused on a
systematic computational comparison of molecular data of pilocytic astrocytomas (PA I), diffuse
astrocytomas (AS II), anaplastic astrocytomas (AS III) and glioblastomas (GBM IV) represent-
ing the most frequently occurring astrocytomas. PA I represents a well-circumscribed slowly
growing astrocytoma that is predominantly occurring in childhood and adolescence, whereas
AS II, AS III and GBM IV almost exclusively occur in adults and are further characterized by infil-
trative growth into the surrounding brain tissue (Louis et al. (2007); Ohgaki and Kleihues (2009);
Tonn et al. (2005); Jones et al. (2012)). Molecular analysis of individual astrocytoma grades al-
ready revealed insights into genetic, transcriptomic and epigenetic alterations (e.g. Jones et al.
(2013); The Cancer Genome Atlas Research Network (2008); Verhaak et al. (2010); Noush-
mehr et al. (2010); Deshmukh et al. (2011); Wang et al. (2013)), but studies that compared all
four astrocytoma grades did not exist with few exceptions performed in the early 2000s (Rick-
man et al. (2001); Hunter et al. (2002); Rorive et al. (2006)). This provided an excellent basis
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for our comprehensive study to systematically compare all four astrocytoma grades.
Our computational study revealed similarities and differences between astrocytoma grades

at the level of individual genes, signaling pathways and regulatory networks. In comparison to
normal brain, the number of differentially expressed genes generally increased with the astro-
cytoma grade with one major exception. Interestingly, the cytokine receptor pathway showed
nearly the same number of differentially expressed genes in PA I and GBM IV. Further analyses
revealed a strong exclusive overexpression of CX3CL1 (fractalkine) and its receptor CX3CR1
in PA I that possibly contributes to the absence of invasive growth. Moreover, surprisingly, we
found that PA I was significantly associated with the mesenchymal subtype typically observed
for GBM IV. Expression of endothelial and mesenchymal markers (e.g. ANG2, CHI3L1, THBD)
indicated a stronger contribution of the micro-environment to the manifestation of the mes-
enchymal subtype than the tumor biology itself. In accordance with this, we further confirmed
by immunohistochemistry that PA I and GBM IV showed ANG2-positive endothelial cells in re-
gions with activated blood vessels, a feature that was largely absent in AS II and AS III. We also
inferred a transcriptional regulatory network associated with specific expression differences be-
tween PA I and AS II, AS III and GBM IV. Major transcriptional regulators were involved in brain
development, cell cycle control, proliferation, apoptosis, chromatin remodeling or DNA methy-
lation. Many of these regulators showed directly underlying DNA methylation changes in PA I
or gene copy number alterations in AS II, AS III and GBM IV.

Our study identified similarities and differences between all four astrocytoma grades. We
confirmed already known characteristics and further revealed novel insights into astrocytoma
biology. Therefore, our findings represent a valuable resource for future computational and ex-
perimental studies to further disentangle molecular mechanisms that drive the infiltrative growth
of diffuse astrocytomas.

Author contribution

I designed the concept of the study and contributed substantially to the computational analysis.

I supervised the gene expression analysis and the network inference that were done as part

of a master thesis by Martin Garbe. I further supervised the acquisition and curation of the

different pathway and gene annotations by Betty Friederich and Martin Garbe. I established

the collaboration to Michel Mittelbronn, who did the validation of the Ang2 expression and lo-

calization by immunohistochemistry. I discussed all findings with Barbara Klink, who supported

the biological interpretation of our findings. I wrote the manuscript, created the figures and

performed the revision of the manuscript.
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Abstract

Background: Astrocytomas are the most common primary brain tumors distinguished into four histological grades.
Molecular analyses of individual astrocytoma grades have revealed detailed insights into genetic, transcriptomic and
epigenetic alterations. This provides an excellent basis to identify similarities and differences between astrocytoma
grades.
Methods: We utilized public omics data of all four astrocytoma grades focusing on pilocytic astrocytomas (PA I),
diffuse astrocytomas (AS II), anaplastic astrocytomas (AS III) and glioblastomas (GBM IV) to identify similarities and
differences using well-established bioinformatics and systems biology approaches. We further validated the
expression and localization of Ang2 involved in angiogenesis using immunohistochemistry.
Results: Our analyses show similarities and differences between astrocytoma grades at the level of individual genes,
signaling pathways and regulatory networks. We identified many differentially expressed genes that were either
exclusively observed in a specific astrocytoma grade or commonly affected in specific subsets of astrocytoma grades
in comparison to normal brain. Further, the number of differentially expressed genes generally increased with the
astrocytoma grade with one major exception. The cytokine receptor pathway showed nearly the same number of
differentially expressed genes in PA I and GBM IV and was further characterized by a significant overlap of commonly
altered genes and an exclusive enrichment of overexpressed cancer genes in GBM IV. Additional analyses revealed a
strong exclusive overexpression of CX3CL1 (fractalkine) and its receptor CX3CR1 in PA I possibly contributing to the
absence of invasive growth. We further found that PA I was significantly associated with the mesenchymal subtype
typically observed for very aggressive GBM IV. Expression of endothelial and mesenchymal markers (ANGPT2, CHI3L1)
indicated a stronger contribution of the micro-environment to the manifestation of the mesenchymal subtype than
the tumor biology itself. We further inferred a transcriptional regulatory network associated with specific expression
differences distinguishing PA I from AS II, AS III and GBM IV. Major central transcriptional regulators were involved in
brain development, cell cycle control, proliferation, apoptosis, chromatin remodeling or DNA methylation. Many of
these regulators showed directly underlying DNA methylation changes in PA I or gene copy number mutations in AS
II, AS III and GBM IV.
Conclusions: This computational study characterizes similarities and differences between all four astrocytoma
grades confirming known and revealing novel insights into astrocytoma biology. Our findings represent a valuable
resource for future computational and experimental studies.
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Background
Astrocytomas are the most common primary brain
tumors in the course of life [1]. Molecular origins of astro-
cytomas are not fully understood. Different studies have
identified tumorigenic cells with stem-cell-like proper-
ties suggesting that astrocytomas originate from neural
stem cells [2, 3]. Astrocytomas are classified by the World
HealthOrganization (WHO) grading system into four his-
tological grades of increasing malignancy [4]. Here, we
focus on a comparative analysis of the most frequently
occurring astrocytomas (pilocytic astrocytoma, diffuse
astrocytoma, anaplastic astrocytoma, glioblastoma) of dif-
ferent degrees of aggressiveness to assess for similarities
and differences at the level of individual genes, signaling
pathways, molecular subtypes and regulatory networks.
This is highly important to better understand the devel-
opment of specific astrocytomas.
The pilocytic astrocytoma WHO grade I (PA I) is a

very slowly growing benign astrocytoma. PA I is the most
commonly diagnosed brain tumor in childhood and ado-
lescence [5]. The ten-year overall survival rate of PA I
patients is greater than 95% [1]. The treatment of choice
for PA I is gross total resection, but PA I tumors that
are inoperable or only partly accessible by surgery repre-
sent a therapeutic challenge often showing a serve clinical
course [6, 7]. Recent studies have indicated that PA I is
predominantly a single-pathway disease driven by muta-
tions affecting the MAPK pathway [5, 7]. In addition,
PA I can also display histological features of glioblas-
toma (GBM IV) includingmicrovascular proliferation and
necrosis, but in contrast to GBM IV, these features are
not directly associated with increased malignancy of PA I
[8]. In rare cases, progression of PA I to more malignant
astrocytomas has been observed [9].
In contrast to PA I, astrocytomas of WHO grade II to

IV almost exclusively occur in adults. These astrocytomas
are characterized by a diffuse infiltrating growth into the
surrounding brain tissue that is absent in PA I. Therefore,
AS II, AS III and GBM IV are also referred to as diffuse
gliomas.
The diffuse astrocytoma WHO grade II (AS II) is a

slowly growing invasive semi-benign astrocytoma. AS II
is frequently diagnosed in young adults between 20 and
45 years with an average age of 35 years [10]. The dif-
fuse invasive growth of AS II with no clearly identifiable
boarder between tumor and normal tissue makes com-
plete surgical resection almost impossible [11]. Recur-
rences of tumors are observed in most patients after few
years with progression to more malignant AS III or GBM
IV in many cases [12–14]. The median survival of AS II
patients is between five to eight years [15].
The anaplastic astrocytoma WHO grade III (AS III) is

an invasively and faster growing malignant astrocytoma.
AS III is characterized by increased mitotic activity and

more variable size and shape of tumor cells in comparison
to AS II [4]. The average age of patients diagnosed with AS
III is 45 years. When possible, surgical resection followed
by radiotherapy and/or chemotherapy is the treatment of
choice. Similar to AS II, progression of AS III to the most
malignant GBM IV is frequently observed [13, 14]. The
overall five-year survival rate of AS III patients is 24% [16]
and the median survival is between one to four years [17].
The glioblastomaWHO grade IV (GBM IV) is the most

malignant astrocytoma [4]. GBM IV is a very fast inva-
sively growing tumor. In contrast to AS III, GBM IV also
shows necrosis and/or vascular proliferation. Two genet-
ically distinct GBM IV classes are known: (i) secondary
GBMs that develop progressively over several years from
less malignant AS II or AS III, and (ii) primary GBMs
that develop within fewmonths without prior occurrences
of lower grade astrocytomas [12, 13]. Only about 5% of
GBM IV cases are secondary GBMs [18]. Patients diag-
nosed with a secondary GBM are on average younger than
primary GBM patients (45 vs. 62 years) [12]. Primary and
secondary GBMs are histologically indistinguishable. IDH
mutations in secondary GBMs enable a distinction from
primary GBMs at the molecular level [19]. These IDH1
or IDH2 mutations are already present in less malignant
AS II and AS III [20]. The treatment of choice is surgical
resection in combination with radiation and chemother-
apy. This intensive treatment increases the average sur-
vival of GBM IV patients to about 15 months [21] com-
pared to 13 weeks for surgery alone [22]. Less than 5% of
patients survive longer than five years [18].
Over the last years, rapid advances in experimental

technologies have enabled detailed molecular analyses of
large cohorts of different types of astrocytomas that pro-
vided new insights into pathological mechanisms [5, 7, 19,
23, 24], molecular subtypes [25–27], alterations of signal-
ing pathways [23, 24, 28], or activities of transcriptional
regulatory networks [29–33]. Other studies have focused
on the characterization of differences between astrocy-
toma grades to better understand pathogenic impacts of
molecular alterations. Differential expression of immune
defense genes in PA I in comparison to AS II with poten-
tial indications toward benign behavior of PA I have been
reported [34]. Characteristic expression of anti-migratory
genes has been found in PA I in comparison to AS II,
AS III and GBM IV putatively contributing to the com-
pact, well-circumscribed growth of PA I in contrast to
the infiltrative growth of higher-grade astrocytomas [35].
Further molecular markers distinguishing PA I from AS
II, AS III and GBM IV have been reported in [36, 37].
A comparative analysis of AS II, AS III and GBM IV
has revealed greater regulatory network dysregulation
associated with increasing astrocytoma grade [33]. Addi-
tionally, mutational patterns associated with the origin
and chemotherapy therapy-driven evolution of recurrent
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secondary gliomas have recently been reported [14]. All
these andmany other studies have greatly contributed to a
better understanding of astrocytoma development hope-
fully contributing to urgently needed new therapeutic
strategies in the near future.
However, most studies have only focused on the iden-

tification of differences between astrocytoma grades.
This is of course very important to better understand
molecular mechanisms associated with aggressiveness of
different astrocytoma grades and to reveal novel grade-
specific therapeutic targets. On the other hand, still only
little is known about commonly altered genes, shared
molecular subtypes, common alterations in signaling or
metabolic pathways, or activities of major transcriptional
regulators. More detailed information about these reg-
ulatory mechanisms is also very important to further
increase our knowledge about astrocytoma development
and may reveal unexpected similarities between astrocy-
toma grades.
Here, we utilize publicly available molecular data of

astrocytomas to systematically characterize similarities
and differences of all four astrocytoma grades. In more
detail, we characterize transcriptional alterations at the
level of individual genes and known molecular path-
ways. We analyze all four astrocytoma grades for their
association with known molecular subtypes and utilize
immunohistochemistry to validate Ang2 as a marker gene
predicted to distinguish PA I and GBM IV from AS II and
AS III. We further determine a regulatory network that
distinguishes PA I from AS II, AS III and GBM IV reveal-
ing major transcriptional regulators and directly underly-
ing mutations putatively associated with pathobiological
differences.

Methods
No ethical approval was required for this study. All uti-
lized public omics data sets were generated by others who
obtained ethical approval.

Molecular data of PA I
We considered raw gene expression data of 49 PA I
and 9 normal cerebellum reference samples (5 fetal
and 4 adult samples) available from Gene Expression
Omnibus (GSE44971) [38]. We performed stringent qual-
ity controls of all expression arrays by reconstructing
the hybridization images. We removed three arrays with
slight hybridization artifacts. The remaining samples are
listed in Additional file 1: Table S1. All correspond-
ing microarrays were normalized using GCRMA [39]
with a design file from BrainArray (HGU133Plus2 ver-
sion 15.0.0). The resulting PA I gene expression data set
comprised 47 PA I samples and 8 corresponding normal
cerebellum references for which expression levels were
measured for 16,973 genes. We further also downloaded

processed DNA methylation profiles available for 38 of
the considered PA I samples (GSE44684) analyzed in [38].
Tumor-specific DNAmethylation profiles were compared
to DNA methylation profiles of normal cerebellum sam-
ples from four fetal and two adult probes. We refer to [38]
for more details. All PA I tumors were diagnosed in chil-
dren or young adults (Additional file 2: Figure S1) and
fulfill all editorial policies (ethical approval and consent,
standards of reporting, data availability).

Molecular data of AS II, AS III and GBM IV
We considered raw gene expression and gene copy num-
ber data of AS II, AS III, GBM IV and adult normal
brain references from epilepsy patients from the Repos-
itory for Molecular Brain Neoplasia Data (Rembrandt,
release 1.5.9) [40]. The non-tumor samples from Rem-
brandt were already used as references for the analysis of
AS II, AS III and GBM IV tumors in [41]. We again per-
formed stringent quality controls and removed all patient
or reference samples where expression or copy number
microarrays had hybridization artifacts. See Additional
file 1: Table S1 for considered samples. The remaining
gene expression samples were further normalized as pre-
viously described for PA I. This resulted in a gene expres-
sion data set that comprised 16 AS II, 17 AS III, 45 GBM
IV and 21 corresponding normal adult brain references
from epilepsy patients for which expression levels were
measured for 16,973 genes. Processing of corresponding
gene copy number data was more complex (Additional file
2: Text S1). The majority of tumors was diagnosed in older
adults. The age at diagnosis tended to increase with the
WHO grades of the tumors (Additional file 2: Figure S1).
All data sets fulfill the editorial policies (ethical approval
and consent, standards of reporting, data availability).

Identification of differentially expressed genes
We performed t-tests to identify under- and overex-
pressed genes for each type of astrocytoma (PA I, AS II,
AS III, GBM IV) under consideration of the correspond-
ing normal brain references. We corrected for multiple
testing by computing FDR-adjusted p-values (q-values) for
all genes [42] and considered for each type of astrocy-
toma all genes with q-values below 0.0001 as differentially
expressed in tumor compared to normal brain tissue. We
further used the sign of the average gene-specific log-ratio
of tumor versus normal to specify which of these genes
were under- (negative sign) and overexpressed (positive
sign) in each specific type of astrocytoma. See Additional
file 1: Table S2 for t-test results obtained for all four
astrocytoma grades. Further, we note that the considered
astrocytoma types represent a heterogeneous group of
tumors. PA I is often localized in the cerebellum of chil-
dren or young adults, whereas AS II, AS III and GBM
IV are mainly occurring in the cerebrum of adults. Thus,
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it is hard to specify a common normal brain reference
that would perfectly fit to all astrocytoma types with
respect to their different tumor locations and age inci-
dences. Therefore, we decided to analyze all astrocytomas
under consideration of the normal brain references that
were used in the corresponding initial publications (see
[38] for PA I and [40, 41] for AS II, AS III and GBM
IV). With the choice of these references we try to control
for the heterogeneity of the astrocytoma grades to iden-
tify differences in astrocytoma-specific gene expression
in comparison to the surrounding normal brain tissue in
which these tumors are typically diagnosed. That is, PA I
was analyzed with respect to normal cerebellum. Normal
brain references from epilepsy patients were considered
for the analysis of AS II, AS III and GBM IV. Note that this
choice of references does not exclude that some of the dif-
ferentially expressed genes that distinguish PA I from AS
II, AS III and GBM IV may only occur because of expres-
sion differences in the corresponding references. How-
ever, considering both references, we found a significant
positive correlation between average gene expression lev-
els of normal cerebellum and normal brain from epilepsy
patients (r = 0.874, P < 2.2 × 10−16). This indicates
that the majority of genes has very similar expression pro-
files in both astrocytoma type-specific references. Thus,
the used normal brain references should represent a good
compromise to account for the location- and age-specific
heterogeneity distinguishing PA I from AS II, AS III and
GBM IV.

Molecular subtype classification
We downloaded the Verhaak gene expression signatures
of 840 genes (ClaNC840_centroids.xls) available from [25]
to determine the similarity of each individual astrocytoma
to four known molecular subtypes (neural, proneural,
classical, mesenchymal). We identified that 757 of these
840 signature genes were also measured in each of our
PA I, AS II, AS III and GBM IV samples. For each of
these samples, we first computed for each of the 757 genes
its relative expression level (log2-ratio) in tumor com-
pared to its average expression in normal brain. Next, we
computed the correlations of these 757 sample-specific
expression levels with the corresponding expression lev-
els of the four molecular subtypes. We further tested if
the correlation of an individual sample with a specific sub-
type was significantly greater than zero (Pearson’s product
moment correlation test). We finally assigned each astro-
cytoma sample to the Verhaak-subtype with the greatest
significant positive correlation (P < 0.05).

Molecular signature distinguishing PA I from AS II, AS III
and GBM IV
We determined a molecular gene signature that distin-
guished PA I from AS II, AS III and GBM IV using

the previously identified differentially expressed genes. To
realize this, we considered each gene that was (i) under-
expressed in PA I but not in AS II, AS III or GBM IV, (ii)
unchanged in PA I but not in AS II, AS III or GBM IV, or
(iii) overexpressed in PA I but not in AS II, AS III or GBM
IV. Then, we considered this reversely and determined
each gene that was (iv) underexpressed in AS II, AS III or
GBM IV but not in PA I, (v) unchanged in AS II, AS III
or GBM IV but not in PA I, or (vi) overexpressed in AS II,
AS III or GBM IV but not in PA I. All genes that passed
one of these criteria showed characteristic expression dif-
ferences comparing PA I against AS II, AS III or GBM IV.
We further only focused on signature genes with strong
expression differences and removed all genes with an aver-
age gene expression difference below two comparing both
classes. This resulted in 1,089 signature genes distinguish-
ing PA I fromAS II, AS III and GBM IV. See Additional file
1: Table S3 for obtained signature genes and their average
gene expression log-ratios of tumor versus normal.

Signature-specific regulatory network inference
We considered gene-specific sub-network inference prob-
lems to derive a transcriptional regulatory network asso-
ciated with the expression of molecular signature genes
distinguishing PA I fromAS II, AS III and GBM IV. There-
fore, we focused on the expression levels of N = 1, 089
signature genes in our data set of in total D = 125
astrocytomas. For each signature gene i ∈ {1, . . . ,N}, we
assumed that its expression level eid in an astrocytoma
d ∈ {1, . . . ,D} can be predicted by a linear combination

eid =
∑

j∈TF\{i}
aji · ejd (1)

of the expression levels ejd of transcriptional regulators
j ∈ TF \ {i} that were part of the molecular signature that
distinguishes PA I from AS II, AS III and GBM IV. Here,
TF defines the subset of genes in the molecular signature
that were annotated as TFs (151 of 1,089). The expression
level eid of each gene i in an astrocytoma d is given by the
log2-ratio of the expression level of gene i in astrocytoma
d in comparison to the expression level of gene i in the cor-
responding average normal brain reference. The unknown
parameters of this signature gene-specific linear model
are given by �ai := (aji)j∈TF\{i}. Each individual parame-
ter aji ∈ R quantifies the impact of the expression level of
regulator j on the expression level of signature gene i: (i)
aji < 0 specifies that TF j is a putative inhibitor of gene i,
(ii) aji > 0 defines that TF j is a putative activator of gene
i, and (iii) aji = 0 means that no dependency between j
and i exists. We used lasso (least absolute shrinkage and
selection operator) regression [43] in combination with
a recently developed significance test for lasso [44] to
estimate each aji and its corresponding significance for
Eq. (1). This enabled us to select themost relevant putative
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regulators of each signature gene (Additional file 1: Table
S4, P < 5×10−5). Details are provided in Additional file 2:
Text S2. We further validated the predictive power of the
obtained regulatory network on independent astrocytoma
data sets (Additional file 2: Text S4, Figure S7) and we
also evaluated the putative proportion of included direct
TF-target gene interactions (Additional file 2: Text S5,
Figure S8). All these validation studies clearly indicated
that the regulatory network included relevant TF-target
gene links to predict the expression levels of signature
genes based on the expression profiles of TFs.

Gene annotations
We utilized different public resources to create a compre-
hensive summary of cancer-relevant gene annotations for
the analysis of differentially expressed genes. This com-
prised genes annotated of TFs/cofactors, kinases, phos-
phatases, signaling pathway genes, metabolic pathway
genes, oncogenes, tumor suppressor genes, cancer census
genes, and genes essential for cell survival. Details and ref-
erences are provided in Additional file 1: Table S5. Addi-
tional studies of gene functions were done using PubMed
(http://www.ncbi.nlm.nih.gov/pubmed) and GeneCards
(http://www.genecards.org/).

Results and discussion
Transcriptional alterations increase with WHO grade
We first globally analyzed PA I, AS II, AS III and GBM
VI and found that the number of differentially expressed
genes increased significantly with increasing WHO grade
(r = 0.92, P = 0.04, Pearson’s product moment cor-
relation). Corresponding statistics are shown in Fig. 1a
for each type of astrocytoma. Compared to PA I known
to have the best prognosis, AS II and AS III showed a
nearly two-fold increase in differentially expressed genes.
A nearly four-fold increase was observed for GBM IV
representing the most malignant astrocytoma. We also
observed that the number of overexpressed genes in PA
I was more than two-fold higher than the number of
underexpressed genes. This was much more balanced for
AS II and AS III. Similar to PA I, GBM IV also showed
clearly more over- than underexpressed genes. The global
tendencies remained highly similar but the numbers of
differentially expressed genes were clearly reduced when
we further restricted the identified genes to those with
strong expression changes of absolute log2-fold-changes
greater than two compared to normal brain (Fig. 1a).
Next, we analyzed the identified differentially expressed

genes in the context of functional categories or cellular
processes known to be involved in cancer. Therefore, we
first used data from different public resources to define
nine cancer-relevant categories containing genes that are
essential for cell survival, oncogenes, tumor suppres-
sor genes, cancer census genes, phosphatases, kinases,

metabolome genes, signaling pathway genes, and tran-
scriptional regulators (Additional file 1: Table S5). We
then determined for each category the overlap with the
differentially expressed genes identified for each type of
astrocytoma. Again, we found that the numbers of dif-
ferentially expressed genes in each category increased
significantly with the WHO grades (r > 0.91, P < 0.043
for all categories, Pearson’s product moment correla-
tion). A statistic representing the number of differentially
expressed genes in each of these categories for each type
of astrocytoma is shown in Fig. 1b. Genes essential for cell
survival, phosphatases, and kinases were only significantly
overrepresented in AS II, AS III and GBM IV. Onco-
genes were enriched in PA I, AS III and GBM IV, whereas
tumor suppressor genes were only enriched in AS III
and GBM IV. Additionally, cancer census genes [45] and
genes that were part of known cancer-relevant signaling
pathways were only significantly overrepresented in GBM
IV. Although not significantly enriched, we observed sev-
eral differentially expressed metabolic pathway genes,
even more differentially expressed cancer-relevant sig-
naling pathway genes, and many differentially expressed
transcriptional regulators in all astrocytoma grades with
numbers of affected genes again increasing from PA I to
GBM IV (Fig. 1b).
Finally, we further extended the previous analysis to

distinguish between under- and overexpressed genes
(Additional file 2: Figure S2). No enrichment of under-
expressed genes was observed for essential and sig-
naling pathway genes in all four astrocytoma grades.
Underexpressed genes annotated as oncogenes, tumor
suppressor genes, cancer census genes or transcrip-
tional regulators were significantly enriched in PA I.
Phosphatases and kinases were significantly overrepre-
sented among underexpressed genes in AS II, AS III and
GBM IV. Underexpressed metabolome genes were only
significantly enriched in GBM IV. Further, no signifi-
cant enrichment of overexpressed genes was observed
for phosphatases, kinases and metabolome genes in all
four astrocytoma grades. Overexpressed oncogenes were
significantly overrepresented in AS II and AS III. Tran-
scriptional regulators, tumor suppressors and cancer cen-
sus genes were significantly enriched for overexpressed
genes in AS II, AS III and GBM IV. Overexpressed signal-
ing pathway genes were significantly enriched in all four
astrocytoma grades.

Verhaak classification reveals strong association of PA I
with mesenchymal subtype
Classification of astrocytomas according to knownmolec-
ular subtypes is important to improve treatment decisions
and prognosis. Four major subtypes of GBM IV were first
revealed in [25] and later also identified in AS II and AS
III [27]. This has been widely applied to classify individual

4. Original works

31



Seifert et al. BMC Cancer  (2015) 15:952 Page 6 of 22

Fig. 1 Expression changes and functional categorization of differentially expressed genes for different astrocytoma grades. a, Number of
differentially expressed genes identified for each type of astrocytoma in comparison to normal brain references at an FDR of 0.0001. An additional
log-fold-change cutoff (LFC) of two was used for the first three categories to focus on genes with strong expression changes. b, Number of
differentially expressed genes annotated in selected functional categories: essential genes, oncogenes, tumor suppressor genes, cancer census
genes, phosphatases, kinases, metabolome pathway genes, signaling pathway genes, and transcriptional regulators (see Methods for details).
Significant enrichment of genes in a category within a tumor type is represented by ’*’ (P < 0.05) and ’**’ (P < 0.01) (Fisher’s exact test)

AS II, AS III and GBM IV tumors either as neural, proneu-
ral, classical or mesenchymal, but so far it has not been
tested if one or more of these subtypes are also associated
with PA I. Therefore, we used the Verhaak-classifier [25]
to compute the correlation between the given signature-
specific expression levels of the Verhaak-subtypes and the
corresponding gene expression levels of each individual
astrocytoma. Correlations of each individual PA I, AS II,
AS III and GBM IV tumor with the four Verhaak-subtypes
are shown in Fig. 2 and provided in Additional file 1:
Table S6.
Interestingly, all PA I tumors showed very homogeneous

correlation profiles resulting in a significant association
with the mesenchymal subtype (Fig. 2a, r > 0.14, P <

2.14 × 10−5 for all PA I, Pearson’s product moment cor-
relation). We further confirmed this observation for an
independent PA I cohort [46], where again 40 of 41 PA I
tumors were significantly correlated with the mesenchy-
mal subtype (Additional file 2: Figure S3, r > 0.17, P <

4.5 × 10−7 for all PA I). The mesenchymal subtype was
observed to be strongly associated with cultured astroglial
cells that showed high expression of microglia markers
[25]. Additionally, PA I was reported to show increased
microglia proliferation in comparison to AS II, AS III and
GBM IV [47]. This indicates that the strong association of
PA I with the mesenchymal subtype may at least in part
be explained with the role of the microglia. To analyze

this, we first identified that 16 microglia/macrophage
marker genes from [48] were part of the Verhaak-classifier
(Additional file 1: Table S7). Next, we used these genes and
found a significant positive correlation between the aver-
age expression levels of microglia/macrophage marker
genes in PA I and corresponding mesenchymal subtype
expression levels from Verhaak (r = 0.56, P < 0.013).
This trend was also observed for AS II, AS III and
GBM IV average marker expression profiles (r > 0.58,
P < 0.009) and also for individual AS II, AS III and
GBM IV tumors that were not classified as mesenchymal
(Additional file 1: Table S7). Thus, additional pathobio-
logical features such as microvascular proliferation and
necrosis most likely contribute to the strong association of
PA I with mesenchymal subtype.
Microvascular proliferation and necrosis were

described as common features of PA I and GBM IV [8].
Also increased necrosis was reported for the mesenchy-
mal subtype [25]. We observed that ANGPT2 (alias
ANG2), an endothelial cell marker involved in angiogen-
esis [49], had significantly higher expression levels in PA
I and GBM IV than in AS II or AS III in comparison to
normal brain (Additional file 1: Table S2). Interestingly,
these astrocytoma grade-specific expression profile of
ANGPT2 was highly correlated with that of the endothe-
lial cell marker THBD (r = 0.86, P = 0.07), which is part
of the Verhaak signature. In contrast to THBD, ANGPT2
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Fig. 2 Classification of individual astrocytoma patients according to known molecular subtypes. Classification of PA I, AS II, AS III and GBM IV patients
according to molecular subtypes (Neural, Proneural, Classical, Mesenchymal) defined by Verhaak [25]. Correlations between patient-specific
expression levels of Verhaak signature genes and each of the four subtype-specific Verhaak signatures were computed for each patient. Colored
curves represent the obtained patient-specific correlations. A grey dot within each patient-specific curve highlights the assigned Verhaak-subtype
to which the underlying patient had the strongest positive correlation. The subfigures a to d show the results for individual PA I, AS II, AS III, and
GBM IV patients

is not part of the Verhaak signature, but this positive
correlation indicates that microvascular proliferation and
necrosis may contribute to the mesenchymal classifica-
tion obtained for all PA I and many GBM IV tumors. To
further test this, we confirmed by immunohistochemistry
that PA I and GBM IV showed Ang2-positive endothelial
cells (protein expression) in regions with activated blood
vessels, a feature that was largely absent in AS II and
AS III (Additional file 2: Figure S4, Text S3). We also
found that the expression of the mesenchymal marker
CHI3L1 [25] was highly correlated with the expression of
ANGPT2 (r = 0.89, P < 0.06). Thus, this all indicates
that several different factors contribute to the strong
association of PA I with the mesenchymal subtype. In
addition, the micro-environment may have a stronger
contribution on these subtype-characteristics than the
distinct aggressiveness of mostly benign PA I and highly
malignant GBM IV tumor cells.
The Verhaak-classification of AS II, AS III and GBM

IV was clearly more heterogeneous revealing few proneu-
ral, some classical and many mesenchymal astrocytomas
in each class (Fig. 2b–d). The neural subtype was clearly
underrepresented in the considered cohorts. Only one PA
I tumor from [46] was classified as neural with marginally
higher significance than for mesenchymal (Additional file
1: Table S6).

The Verhaak-classification scheme has been further
refined by a hypermethylator subtype predominantly
observed within a subgroup of proneural astrocytomas
[26]. A specific mutation of IDH1 frequently found in AS
II, AS III and secondary GBM IV has been shown to be a
key driver of this subtype [50]. We used the gene expres-
sion signature of the hypermethylator subtype (Table 2 in
[26]) to determine the correlation of each of our astrocy-
toma samples with this subtype. As expected, PA I and
the majority of our GBM IV tumors, both typically lack-
ing IDH1 mutations, were negatively correlated with the
hypermethylator subtype, whereas the majority of AS II
and AS II showed positive correlations (Additional file 2:
Figure S5).

Specific patterns of differential expression characterize
similarities and differences of different astrocytomas
Besides the observed molecular heterogeneity between
and within the different astrocytoma types, we next aimed
at the identification of core sets of genes that were
commonly under- or overexpressed in different astrocy-
toma subsets. We therefore considered all differentially
expressed genes identified for PA I, AS II, AS III and GBM
IV and utilized Venn diagrams to quantify the numbers
of genes that were exclusively present in specific subsets
of these types of astrocytomas (Fig. 3). Expression states of
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Fig. 3 Comparison of genes with altered expression in different astrocytoma grades. Venn diagrams were used to quantify commonalities and
differences between differentially expressed genes identified for each type of astrocytoma in comparison to normal brain. a, Underexpressed genes.
b, Overexpressed genes. c, Underexpressed cancer signaling pathway genes. d, Overexpressed cancer signaling pathway genes

individual genes for all types of astrocytomas are provided
in Additional file 1: Table S2. We observed that the num-
ber of commonly under- or overexpressed genes in AS II,
AS III and GBM IV were substantially increased in com-
parison to any intersection of PA I with two more malig-
nant astrocytoma grades (Fig. 3a–b, e.g. 1140 under- and
831 overexpressed genes in common between AS II, AS III
and GBM IV vs. 27 under- and 62 overexpressed genes in
common between PA I, AS II and GBM IV). Additionally,
AS II and AS III alone also shared many more commonly
under- or overexpressed genes with GBM IV than with PA
I (e.g. 270 under- and 203 overexpressed genes in com-
mon between AS II and GBM IV vs. 2 under- and 12
overexpressed genes in common between AS II and PA
I). Interestingly, there was a strong exclusive overlap of 86
under- and 305 overexpressed genes in common between
PA I and GBM IV that contained substantially more genes
than observed between PA I and AS II or PA I and AS
III. These different general tendencies were also observed
when we exclusively focused on known cancer signaling
pathway genes (Fig. 3c–d).

We further analyzed which genes were commonly
under- or overexpressed in each of the four specific astro-
cytoma grades and in different subsets of astrocytoma
grades (Fig. 3). We also investigated which molecular
processes were regulated by subset-specific genes using
GOrilla [51]. Since there were so many transcriptomic
changes comparing astrocytomas to normal brain tissue,
we only report details for some well-known or potentially
interesting genes. We further refer to Additional file 1:
Table S2 listing the expression states of all genes in specific
astrocytoma subsets. In addition, we have summarized
all discussed genes that were exclusively differentially
expressed in PA I, AS II, AS III or GBM IV in Table 1.

Selected genes exclusively observed in PA I Consid-
ering genes that were exclusively differentially expressed
in PA I, we observed several under- (e.g. EN2, EOMES,
MEIS1, NEUROD1, ZIC1, ZIC2, ZIC3, ZIC4) and overex-
pressed (e.g. EGR1, EGR3, OLIG1) TFs involved in brain
development. For example, EOMES is involved in neuron
division and/or migration [52]. Additionally, three known
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Table 1 Selected genes predicted to be differentially expressed in a specific astrocytoma grade

Gene Chromosome Band Expression Tumor Annotation

H3F3A 1 q42.12 - PA I H3 histone, family 3A

MEIS1 2 p14 - PA I Meis homeobox 1

NEUROD1 2 q31.3 - PA I neuronal differentiation 1

EOMES 3 p24.1 - PA I eomesodermin

ZIC1 3 q24 - PA I Zic family member 1

ZIC4 3 q24 - PA I Zic family member 4

EGR1 5 q31.2 + PA I early growth response 1

EN2 7 q36.3 - PA I engrailed homeobox 2

EGR3 8 p21.3 + PA I early growth response 3

CDKN2B 9 p21.3 + PA I cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)

NTRK2 9 q21.33 + PA I neurotrophic tyrosine kinase, receptor, type 2

HIF1AN 10 q24.31 + PA I hypoxia inducible factor 1, alpha subunit inhibitor

SUV420H1 11 q13.2 - PA I suppressor of variegation 4-20 homolog 1 (Drosophila)

KRAS 12 p12.1 - PA I Kirsten rat sarcoma viral oncogene homolog

ZIC2 13 q32.3 - PA I Zic family member 2

SUZ12 17 q11.2 - PA I SUZ12 polycomb repressive complex 2 subunit

SUV420H2 19 q13.42 - PA I suppressor of variegation 4-20 homolog 2 (Drosophila)

OLIG1 21 q22.11 + PA I oligodendrocyte transcription factor 1

OLIG2 21 q22.11 + PA I oligodendrocyte lineage transcription factor 2

ATRX X q21.1 - PA I alpha thalassemia/mental retardation syndrome X-linked

ZIC3 X q26.3 - PA I Zic family member 3

FAM110C 2 p25.3 - AS II family with sequence similarity 110, member C

HEY2 6 q22.31 + AS II hes-related family bHLH transcription factor with YRPWmotif 2

NR2E1 6 q21 - AS II nuclear receptor subfamily 2, group E, member 1

EYA1 8 q13.3 + AS II EYA transcriptional coactivator and phosphatase 1

GAS2 11 p14.3 - AS II growth arrest-specific 2

DLL3 19 q13.2 + AS II delta-like 3 (Drosophila)

CDH4 20 q13.33 - AS II cadherin 4, type 1, R-cadherin (retinal)

SHROOM2 X p22.2 - AS II shroom family member 2

AP1AR 4 q25 - AS III adaptor-related protein complex 1 associated regulatory protein

CDC27 17 q21.32 - AS III cell division cycle 27

PPM1D 17 q23.2 + AS III protein phosphatase, Mg2+/Mn2+ dependent, 1D

ZNF24 18 q12.2 + AS III zinc finger protein 24

TXN2 22 q12.3 + AS III thioredoxin 2

AKT3 1 q44 - GBM IV v-akt murine thymoma viral oncogene homolog 3

MDM4 1 q32.1 + GBM IV MDM4, p53 regulator

PDGFRB 5 q32 + GBM IV platelet-derived growth factor receptor, beta polypeptide

VEGFA 6 p21.1 + GBM IV vascular endothelial growth factor A

EGFR 7 p11.2 + GBM IV epidermal growth factor receptor

FGFR1 8 p11.23 + GBM IV fibroblast growth factor receptor 1

FGFR2 10 q26.13 - GBM IV fibroblast growth factor receptor 2

BIRC3 11 q22.2 + GBM IV baculoviral IAP repeat containing 3

ERRB2 14 q24.3 + GBM IV nuclear receptor

NTRK3 15 q25.3 - GBM IV neurotrophic tyrosine kinase, receptor, type 3

BRCA1 17 q21.31 + GBM IV breast cancer 1, early onset

AKT2 19 q13.2 + GBM IV v-akt murine thymoma viral oncogene homolog 2

SMARCA4 19 p13.2 + GBM IV SWI/SNF related, matrix associated, actin dependent regulator of chromatin

Summary of discussed genes that were exclusively observed to be under- or overexpressed in a specific type of astrocytoma. The expression state of a gene in tumor is
specified by the ’Expression’ column with ’-’ representing underexpression and ’+’ representing overexpression in comparison to normal brain
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chromatin remodelers (SUV420H1, SUV420H2, SUZ12)
were underexpressed in PA I. In accordance with a recent
study [53], ATRX, a biomarker of adult astrocytomas,
was underexpressed in PA I. In contrast to AS III and
GBM IV, HIF1AN was strongly overexpressed in PA I.
Further, CDKN2B, a tumor suppressor for which overex-
pression has been reported to inhibit cell proliferation and
to cause senescence of glioma cells with intact RB pathway
[54], was overexpressed. OLIG2, which has been reported
to show increased expression in PA I and high-grade
gliomas [55], was overexpressed. NRTK2, which has been
reported to be highly expressed in low grade (WHO grade
I and II) gliomas [56], was overexpressed. Further, KRAS,
which plays an important role in cell cycle regulation, was
underexpressed. Additionally, H3F3A, which encodes for
a histone variant that is predominantly integrated into
chromatin of non-dividing cells, was underexpressed.

Selected genes exclusively observed in AS II In com-
parison to PA I and GBM IV, less genes were found to
be exclusively differentially expressed in AS II (Fig. 3a–b).
FAM110C, which has been reported to be part of a
stem cell-related self-renewal signature associated with
resistance to chemotherapy [57] and for which overex-
pression has been shown to promote cell cycle arrest in
rats [58], was underexpressed. CDH4, which encodes for
a cell-adhesion protein involved in brain segmentation
and neural outgrowth, was underexpressed. Underexpres-
sion of CDH4 is known to play a role in early tumor
progression of colorectal and gastric cancer [59]. NR2E1
(TLX), which is involved in anterior brain differentiation,
was underexpressed. Underexpression of NR2E1 has been
associated with cancer stem cell death and longer sur-
vival of G-CIMP glioma patients [60]. Further, SHROOM2
involved in cell spreading and GAS2 involved in apoptosis
were both underexpressed. The transcription factor HEY2
and the Notch ligand DLL3 both known for their func-
tions in neurogenesis and implicated in glioma biology
[61] were overexpressed. EYA1, which encodes for a phos-
phatase and transcriptional coactivator that is involved in
DNA repair and which has been associated with glioma
tumorigenesis [62], was overexpressed.

Selected genes exclusively observed in AS III Like for
AS II, only relatively few genes were exclusively differ-
entially expressed in AS III. Interestingly, PPM1D, which
is involved in p53-mediated cell cycle arrest, was over-
expressed. PPM1D gain-of-function mutations have been
reported for brain stem gliomas [63]. Additionally, a
PPM1D knock-down has been reported to inhibit prolif-
eration and invasion of glioma cells [64]. Further, AP1AR,
which negatively regulates cell spreading, size and motil-
ity, was underexpressed. CDC27 (APC3), which is part of
the anaphase promoting complex and which is involved

in timing ofmitosis, was underexpressed. Downregulation
of a related component (APC7) of the anaphase promot-
ing complex has been observed in breast cancer with
poor prognosis [65]. TXN2, which has been identified to
play an important role in the protection of osteosarco-
mas against oxidant-induced apoptosis [66], was overex-
pressed. Also ZNF24, which is involved in the mainte-
nance of progenitor cell states in the developing central
nervous system, was overexpressed. ZNF24 has further
been reported to be involved in the negative regulation of
angiogenesis [67].

Selected genes exclusively observed in GBM IV Many
known cancer genes (e.g. BIRC3, BRCA1, EGFR, ERRB2,
PDGFRB, VEGFA) were overexpressed in GBM IV. EGFR
signaling has been reported to contribute to radia-
tion and chemotherapy resistance of gliomas [68]. In
line with VEGFA overexpression, PDGFRB, which has
been reported to enhance glioma angiogenesis in tumor
endothelia by promoting pericyte recruitment [69, 70],
was overexpressed. Further, MDM4, which has been
observed to inhibit a p53-dependent growth control
[71, 72], was overexpressed. AKT2, for which under-
expression has been reported to induce apoptosis and
for which overexpression has been associated with
cell survival and invasion of more aggressive gliomas
[73, 74], was overexpressed. FGFR1, which has been
reported for its increased expression and associa-
tion with autocrine growth signaling in GBM IV
[75], was overexpressed. Further, SMARCA4, which
has been observed to have increased expression in
gliomas and which is potentially involved in control-
ling of cell proliferation, migration and invasion [76],
was overexpressed. PKG1, which has been reported
to promote radioresistance of glioma cells [77, 78],
was overexpressed. Further, AKT3, which has recently
been reported to inhibit vascular tumor growth [79], was
underexpressed. FGFR2, which is frequently found to be
underexpressed in primary GBM IV and which has been
associated with a poor clinical outcome [80], was under-
expressed. NTRK3, which has been reported to show
reduced expression in high-grade gliomas due to underly-
ing DNA methylation changes [81], was underexpressed.

Selected genes in the intersection of PA I, AS II, AS III
and GBM IV Genes commonly under- or overexpressed
in PA I, AS II, AS III and GBM VI were involved in cell
cycle regulation, differentiation, apoptosis and cell migra-
tion. We found that the cyclin-dependent kinase inhibitor
CDKN2D was underexpressed and CD44, HIF1A and
MAPKAPK3 were overexpressed in all four astrocytoma
grades. CD44 is a well-known stem cell marker that has
been reported to represent a potential therapeutic target
for glioblastoma [82]. HIF1A encodes the alpha subunit of
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the TF hypoxia-inducible factor-1 (HIF-1), which is one
of the master regulators of hypoxia response promoting
glioma growth and angiogenesis [83]. MAPKAPK3 is a
central integrator of mitogen and stress responses in dif-
ferent MAPK pathways [84]. Interestingly, RB1, a know
tumor suppressor controlling the progression through G1
into the S-phase of the cell cycle [85], was overexpressed.
Induction of wild-type RB1 has been reported to inhibit
tumor growth and tumorigenicity [86]. On the other hand,
inactivating mutations affecting the RB pathway have fre-
quently been observed in higher-grade gliomas [85]. This
potentially indicates that an overexpression of wild-type
RB1 in PA I may contribute to a reduced tumor growth,
whereas an exclusive overexpression of CDK4 in con-
cert with RB1 observed for AS II, AS III and GBM IV
may counteract the inhibition of tumor growth (see next
section for more details to CDK4).

Selected genes in the intersection of AS II, AS III
and GBM IV but not in PA I Genes commonly under-
or overexpressed in AS II, AS III and GBM IV were
enriched for cell-cell signaling, cell cycle, differentiation,
DNA repair, apoptosis and metabolism. Several known
oncogenes (e.g. ABL1, AKT1, MYC, NRAS) and tumor
suppressor genes (e.g. ATM, BCL10, TP53) were overex-
pressed in all three astrocytoma types. AKT1 has been
found to enhance proliferation and invasion of glioma
cells [87]. Overexpression of NRAS that increased with
glioma grade was observed in [88]. Overexpression and
different cellular locations of TP53 have been reported for
primary and secondary glioblastomas impacting on vas-
culature control and tumorigenesis [89]. Overexpression
of TP53 has also been associated with shorter progres-
sion free survival in malignant gliomas [90]. Further, also
CDK4 and RAF1 were overexpressed. CDK4 overexpres-
sion has been reported to induce hyperploidy and to
counteract senescence of cultured mouse astrocytes [91].
Astrocyte-specific overexpression of CDK4 in transgenic
mouse lines has been observed to provide cell growth
advantages in concert with TP53 pathway alterations [92].
Consecutive RAF1 activation has been reported to induce
glioma formation in mice [93]. Moreover, also IDH1 was
overexpressed. Interestingly, the overexpression of IDH1
in gliomas has recently been reported to have different
impacts on chemotherapy response. Wild-type IDH1 was
associated with resistance, whereas mutant-IDH1 showed
enhanced sensitivity to therapy [94]. MAP2K4, which
has been reported to inhibit tumor cell invasion in lung
cancer [95], was strongly underexpressed. Further, also
MAP2K1, which is involved in the regulation of many cel-
lular processes including proliferation, differentiation and
apoptosis, and also MKRN1, which has been observed
to stimulate apoptosis under stress conditions [96], were
both underexpressed.

Selected genes in the intersection of AS III and GBM
IV but not in PA I and AS II Genes commonly under-
or overexpressed in AS III and GBM IV were involved
in cell migration, cell cycle, DNA repair, chromatin orga-
nization, angiogenesis and metabolism. HIF1AN (FIH-
1), an inhibitor of the previously reported HIF-1, was
underexpressed. HIF1AN is involved in hypervascular-
ization and survival of glioma cells under hypoxic con-
ditions and may represent a potential therapeutic target
[97]. EZH2, a member of the polycomb-group family
involved in the control of DNA methylation [98] and
histone H3K27 trimethylation [99] over cell generations,
was overexpressed. Also VEGFB involved in blood ves-
sel survival [100] and CDC20 contributing to survival of
glioma initiating cells [101] were overexpressed. Further,
SOX2, amarker for undifferentiated and proliferating cells
observed to show expression levels that increase with the
glioma grade [102] and reported to regulate genes and
pathways associated with malignancy of stem-like and dif-
ferentiated glioma cells [103], was overexpressed. TACC3,
a potential oncogene overexpressed in a grade-specific
manner [104] and observed as fusion partner of FGFR3
in glioblastomas [105], was overexpressed. Moreover,
IDH2 was overexpressed. Interestingly, another study has
associated the overexpression of a point-mutated IDH2
(IDH2R172K) with increased radio sensitivity, reactive
oxygen metabolism, suppression of tumor growth and
migration in glioma cell lines compared to wild-type
IDH2 [106]. Thus, the underlying mutational status of
IDH2 may influence tumor aggressiveness of AS III and
GBM IV.

Transcriptional alterations of individual signaling
pathways typically increase with WHO grade
Next, we focused on individual cancer-relevant signal-
ing pathways and determined corresponding differentially
expressed genes for each type of astrocytoma. Figure 4
shows the numbers of overexpressed genes in known
cancer signaling pathways representing major differences
and some similarities between individual astrocytoma
types. We observed strong differences in the number of
overexpressed genes for nearly all pathways with grad-
ual increases from PA I to GBM IV. This trend was also
observed for the majority of signaling pathways consider-
ing underexpressed genes, except for the DNA replication
pathway and all DNA repair pathways that both only
showed very few or no underexpressed genes in all four
astrocytoma grades (Additional file 2: Figure S6). Focus-
ing on overexpression (Fig. 4), especially genes involved
in cell cycle, PI3K-AKT, TGF-Beta, focal adhesion, notch,
DNA replication and DNA repair pathways were signifi-
cantly affected by overexpression in AS II, AS III or GBM
IV. Genes involved in the regulation of apoptosis were
enriched in all four astrocytoma types.
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Fig. 4 Characteristic patterns of overexpression in signaling pathways distinguishing different astrocytoma grades. Number of overexpressed genes
in each known cancer-relevant signaling pathway are shown for each type of astrocytoma (PA I, AS II, AS III, GBM IV). Significant enrichment of
overexpressed genes in a pathway within a tumor type is highlighted by ’*’ (P < 0.05) and ’**’ (P < 0.01) (Fisher’s exact test)

Interestingly, the cytokine-cytokine receptor interaction
pathway did not not follow the general trend that the num-
bers of overexpressed genes systematically increased from
PA I to GBM IV. This pathway showed nearly the same
proportion of overexpressed genes in PA I as in GBM
IV, whereas the proportions of overexpressed genes in AS
II and AS III were consistently only approximately half
as large as for PA I and GBM IV (Fig. 4). This atypical
behavior also strongly contributed to significant exclusive
overlaps between PA I and GBM IV comparing under-
and overexpressed genes (purple subsets in Fig. 3c–d: 7
underexpressed genes with P < 6.2×10−6 and 33 overex-
pressed genes with P < 1.7×10−8, Fisher’s exact test). We
additionally note that the p53 pathway and the Jak-STAT
pathway showed both a very similar behavior compara-
ble to those of the cytokine-cytokine receptor pathway
(Fig. 4).

Highly overlapping expression patterns of
cytokine-cytokine receptor interaction pathway between
PA I and GBM IV, but only GBM IV is enriched for known
cancer genes
We observed similar proportions of overexpressed genes
in the cytokine-cytokine receptor interaction pathway
for PA I and GBM IV (Fig. 4). Cytokines are intracel-
lular signaling proteins that are important regulators of
immune response, cell growth, differentiation, metastasis,
apoptosis and angiogenesis [107–109]. Some alterations

of expression levels of specific cytokines, their corre-
sponding receptors and links to their potential role in
brain tumor development have already been reported for
benign and malignant astrocytomas more than a decade
ago [110–112]. In addition, different chemokines and
chemokine receptors were found to contribute to glioma
cell survival, migration and invasion [113–118]. We there-
fore focused on individual genes in the cytokine-cytokine
receptor interaction pathway to provide a comprehen-
sive overview of differentially expressed genes comparing
PA I and GBM IV. A representation of the cytokine-
cytokine receptor interaction pathway highlighting exclu-
sively affected and commonly altered genes is shown
in Fig. 5. We found a significant overlap of commonly
observed under- and overexpressed genes in the cytokine-
cytokine receptor interaction pathway comparing PA I
and GBM IV (overlap: 20 genes, 1 underexpressed, 19
overexpressed genes, P < 2.5 × 10−42, Fisher’s exact
test). We further identified genes that were only differen-
tially expressed in PA I (1 under- and 20 overexpressed
genes) or in GBM IV (5 under- and 24 overexpressed
genes) alone. Only genes that were exclusively overex-
pressed in GBM IV were significantly enriched for known
cancer genes [45] (P < 4.2 × 10−5, Fisher’s exact test).
These genes were mainly assigned to the CXC chemokine,
hematopoietin, PDGF or TGF-Beta pathway subfamilies
of the cytokine-cytokine receptor interaction pathway
(Fig. 5). This included genes such as EGFR, PDGFRB,
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Fig. 5 Transcriptional alterations of cytokine-cytokine receptor interaction pathway genes comparing PA I and GBM IV. Representation of under-
and overexpressed cytokine-cytokine receptor interaction pathway genes identified in PA I and GBM IV in comparison to normal brain tissue. The
basic pathway map (hsa:04060) was generated using KEGG [130] and manually modified. Genes are colored according to their observed expression
level (i) genes only overexpressed in PA I (light blue), (ii) genes only underexpressed in GBM IV (red), (iii) genes only overexpressed in GBM IV (orange),
(iv) genes commonly overexpressed in PA I and GBM IV (grey), except for KIT that was underexpressed in both tumor types, (v) CX3CL1
overexpressed in PA I and underexpressed in GBM IV (green), (vi) genes that were not present on the microarray (purple), and (vii) genes with
unchanged expression levels (white)

TNFRSF14 or VEGFA previously associated with aggres-
siveness, invasion and poor outcome of GBM IV
[25, 119, 120].

Differences in CX3CL1 expression between PA I and AS II,
AS III and GBM IVmay contribute to absence or presence of
glioma cell invasion
Interestingly, CX3CL1 (also known as fractalkine or neu-
rotactin), a member of the cytokine-cytokine receptor
interaction pathway (Fig. 5) encoding for a chemokine,
showed a characteristic expression pattern distinguish-
ing PA I from AS II, AS III and GBM IV (Additional
file 1: Table S2). The soluble form of the CX3CL1 pro-
tein is a potent chemoattractant of T-cells and mono-
cytes, while the cell-surface-bound form promotes strong
adhesion of those leukocytes [121]. CX3CL1 implements
its adhesive and migratory functions by interacting with
the chemokine receptor CX3CR1 [122]. The roles of
CX3CL1 and CX3CR1 in glioma invasion and progres-
sion have been reviewed for malignant astrocytomas in

[117]. Potential contributions of both genes to suppress an
invasive phenotype in PA I have not been studied so far.
We found that CX3CL1 and CX3CR1 were overex-

pressed in PA I in comparison to normal brain tissue,
whereas we further observed strong underexpression of
CX3CL1 and unchanged expression of CX3CR1 in AS
II, AS III and GBM IV (Additional file 1: Table S2). In
accordance, CX3CR1 has been reported to be expressed
in gliomas [123], and CX3CL1 has been reported to
reduce neuronal migration by increasing cell adhesion
[124]. Potentially, a similar CX3CL1-induced mechanism
in PA I may contribute to the absence of infiltrative
growth typically observed for AS II, AS III and GBM IV
[125]. This hypothesis is supported by the finding that the
inhibition of CX3CL1 strongly increased glioma cell inva-
sion suggesting that functionally active CX3CL1 counter-
acts an invasive phenotype [116]. Additionally, they also
reported that TGFB1 negatively influenced the expression
of CX3CL1 facilitating glioma cell detachment and dis-
persion. In agreement with our hypothesis, the expression
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levels of CX3CL1 were negatively correlated with those
of TGFB1 (r = −0.98, P < 0.01). We observed overex-
pression of TGFB1 in AS II, AS III and GBM IV, whereas
TGFB1 expression was unchanged in PA I in comparison
to normal brain tissue (Additional file 1: Table S2).

A transcriptional signature distinguishes PA I from AS II, AS
III and GBM IV
Besides some similarities, our previous studies clearly
indicated the existence of systematic differences between
PA I and AS II, AS III and GBM IV supporting the find-
ing that both classes represent different pathobiological
entities [126]. To further investigate this, we determined
a molecular signature comprising 1,089 differentially
expressed genes distinguishing PA I from AS II, AS III and
GBM IV (Fig. 6, Additional file 1: Table S3). This signa-
ture included all under- and overexpressed genes from PA
I that did not show the same expression state in AS II,

AS III or GBM IV. Vice versa, this signature also included
each gene that was identified as under- or overexpressed
in AS II, AS III or GBM IV but which did not show the
same expression state in PA I. Clusters of genes that were
under- or overexpressed in one class but not in the other
are clearly visible characterizing differences between PA
I and AS II, AS III and GBM IV (Fig. 6). A gene annota-
tion analysis (Additional file 1: Table S3) further revealed
that nearly 14% of the signature genes were annotated as
TFs (151 of 1,089), about 10% were part of known cancer-
relevant signaling pathways (111 of 1,089), about 5% were
known cancer genes (55 of 1,089) and about 3% were part
of metabolic pathways (34 of 1,089).

A regulatory network is associated with expression
differences between PA I and AS II, AS III and GBM IV
Next, we used the 151 differentially expressed TFs from
the molecular signature (Fig. 6, Additional file 1: Table S3)

−10 −5 0 5 10

PA I AS II

     
AS III GBM IV

Gene Expression:            Log−Ratio(Tumor / Normal)Gene Expression:            Log−Ratio(Tumor / Normal)
Gene Type: Transcription Factor Pathway Gene BothGene Type: Transcription Factor Pathway Gene Both

Fig. 6Molecular signature distinguishing PA I from AS II, AS III and GBM IV. The heatmap shows the expression levels of 1,089 genes (rows) with
strong expression differences between PA I and AS II, AS III and GBM IV for individual tumor patients (columns). Expression levels are displayed as
log-ratios comparing gene expression levels in tumor to normal brain. Underexpressed genes are displayed in blue, unchanged expressed genes in
grey, and overexpressed genes are displayed in red. Genes were clustered according to their similarity of expression levels across all tumor samples.
The color code at the left side highlights genes that are TFs (purple), signaling pathway genes (green), or both (brown)
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to learn a transcriptional regulatory network that best
explained expression changes of all signature genes dis-
tinguishing PA I from AS II, AS III and GBM IV (Fig. 7,
Additional file 1: Table S4). This network contained for
each individual signature gene those TFs that may act
as putative regulators of this gene. The regulatory net-
work was extremely sparse containing only 1,558 out of
164,439 theoretically possible regulatory links from TFs
to signature genes. We observed more than three times
more activator than repressor links in the network (1,195
vs. 363). Nine TFs did not have any outgoing regulatory
links to other signature genes, and no putative regulators
were identified for 83 signature genes.
Still, as expected, the obtained regulatory network was

highly predictive for the expression levels of signature
genes in our astrocytoma data set used to learn the net-
work (Additional file 2: Figure S7a). We further used
the obtained regulatory network to predict expression
changes of signature genes in three independent brain
tumor cohorts (41 PA I from [46], 465 low grade gliomas
including 50 AS II and 104 AS III from TCGA LGG, 553
GBM IV from TCGA GBM [23], see Additional file 2:
Text S4 for details). We observed that the regulatory net-
work was very predictive for the vast majority of signature
genes (Additional file 2: Figures S7b–d). We also analyzed
the proportion of putative direct TF-target gene interac-
tions by comparing predicted target genes of TFs in the
regulatory network to target genes predicted by TF-based
motif search in promoter sequences of signature genes
(see Additional file 2: Text S5 for details).We observed sig-
nificant overlaps of network- andmotif-based target genes
for many TFs, but there were also TFs with only little or
no overlaps (Additional file 2: Figure S8). All these tests
indicated that the regulatory network contained relevant
TF-target gene links to enable the prediction of signature
gene expression levels.

Expression changes of hub regulators characterize
differences between PA I and AS II, AS III and GBM IV
We next utilized the obtained signature-specific regu-
latory network to identify central hub TFs with many
outgoing links to other signature genes. These hub regula-
tors are represented by large nodes in Fig. 7. The majority
of these TFs had on average lower expression levels in
AS II, AS III and GBM IV than in PA I (blue nodes).
A smaller proportion of hub TFs had higher expression
levels in AS II, AS III and GBM IV than in PA I (red
nodes). Many of these hub TFs were part of three major
functional categories: (i) TFs involved in apoptosis, cell
proliferation, cell cycle andDNA repair (CCNA2, CCNB1,
CCNB2, CDC20, CHD5, GPR123, MEF2C, NEUROD1,
VIP, ZNF365), (ii) TFs involved in chromatin remodel-
ing, histone modifications and DNA methylation (CHD5,
DNMT1, EZH2, JARID2), and (iii) TFs involved in

brain development and differentiation (ARNT2, CHD5,
DNMT1, ELF1, EOMES, HLF, JARID2, LHX1, MEF2C,
NEUROD1, OLIG1, SOX10, SOX11, THRB, TBR1, VIP,
ZIC1, ZIC3).
Next, we studied the hierarchy of TFs in the regulatory

network to identify signature-specific hub TFs that had
many regulatory links to other TFs. We found that several
TFs had clearly increased numbers of outgoing links to
other TFs (Additional file 2: Figure S9). Six TFs had more
than five outgoing regulatory links to other TFs (CCNL2,
GPR123, ZCCHC24, TBR1, ZNF300, ZNF337). CCNL2
encodes for a cyclin involved in the regulation of splic-
ing, apoptosis and cell growth [127]. GPR123 is a member
of the adhesion family of G-protein coupled receptors
mutated in leukemia [128]. TBR1 encodes for a T-box
TF required for normal brain development expressed in
post-mitotic cells [129]. Nothing was known in the lit-
erature about the functions of ZCCHC24, ZNF300 and
ZNF337 so far. We analyzed their network-target genes
to learn more about their putative functions. This sug-
gested that ZCCHC24 is involved in the regulation of the
cell cycle and of cell-cell interactions. ZNF300 might act
on developmental processes impacting on DNA and his-
tone methylation patterns. ZNF337 might contribute to
genomic and epigenomic integrity.

Mutations affecting TFs contribute to differences between
PA I and AS II, AS III and GBM IV
To further characterize how genomic and epigenomic
mutations may have contributed to expression differences
of TFs between PA I andAS II, AS III andGBM IV, we ana-
lyzed the individual signature-specific TFs for alterations
of DNA methylation levels or gene copy number muta-
tions in comparison to normal tissue. Gene copy number
mutations are typically absent in PA I, but changes of DNA
methylation patterns within gene bodies or up- and down-
stream of transcription start sites have been reported [38].
In contrast to PA I, deletions and amplifications of indi-
vidual genes are typically present in AS II, AS III and GBM
IV [40]. DNA methylation profiles were available for the
majority of our PA I tumors (38 of 47) and gene copy num-
ber profiles were available for all our AS II, AS III and
GBM IV tumors. We therefore analyzed the expression
of individual signature-specific TFs in relation to directly
underlying mutations (Fig. 8).
We found for PA I that TFs with altered expression

and/or altered DNA methylation levels were part of three
major functional categories (Fig. 8a): (i) TFs involved
in development and differentiation (e.g. EN2, EOMES,
DMRT2, NR0B1), (ii) TFs involved in cell cycle con-
trol, proliferation and apoptosis (e.g. CDC20, NFKBIZ,
ZCCHC24), and (iii) TFs involved in chromatin remod-
eling and DNA methylation (ESRRG, L3MBTL4, SATB2).
Several TFs were strongly under- or overexpressed in
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Fig. 7 Transcriptional regulatory network distinguishing PA I from AS II, AS III and GBM IV. TFs are displayed by labeled circles. The circle size
increases with the number of outgoing regulatory edges to other signature genes highlighting major regulators by large circles. The color coding of
the circle represents the average expression level of the corresponding gene in AS II, AS III and GBM IV diagnosed in adults relative to PA I diagnosed
in children and young adults: underexpressed (blue) and overexpressed (red) in adult astrocytomas. Inferred regulatory dependencies between TFs
and signature genes are displayed by directed edges: activator (orange) and repressor (purple)
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Fig. 8 Epigenomic and genomic mutations associated with TF expression changes distinguishing PA I from AS II, AS III and GBM IV. TFs are displayed
by circles. The circle size increases with the number of outgoing regulatory edges to other signature genes highlighting major regulators by large
circles. Names of TFs strongly deviating from the center are shown in black. TFs belonging to selected annotation categories are highlighted by
colored circles. Gene-specific changes in expression, DNA methylation or copy number are quantified by log-ratios comparing tumor to normal
brain tissue. A log-ratio close to zero indicates no change in tumor, whereas a strong deviation from zero indicates a change. a, Average DNA
methylation changes associated with TFs plotted against their average expression profiles in PA I. b, Average copy changes of TFs plotted against
their average expression profiles in AS II, AS III and GBM IV

PA I without strong directly underlying DNA methy-
lation changes (e.g. EGR2, INSM1, LHX1, NEUROD1).
None of the central hub TFs in Fig. 7 showed strong
expression changes in PA I in response to directly under-
lying DNA methylation changes, except for CDC20 and
ZCCHC24. Other TFs with fewer outgoing links to sig-
nature genes showed greatly altered expression levels in
PA I in response to strong DNAmethylation changes (e.g.
EGR3, EN2, EOMES, NR0B1, PAX6, SATB2, ZIC1, ZIC2,
ZIC3, ZIC4).
This situation was quite different for AS II, AS III and

GBM IV (Fig. 8b). Four central hub TFs showed strongly
altered expression levels in response to directly under-
lying gene copy number mutations (CDC20, GPR123,
ZNF365, ZNF488), whereas other hub TFs showed
strong underexpression without underlying deletions
(e.g. CHD5, HLF, TBR1, THRB, VIP). Again, TFs with
altered expression and/or copy number mutations were
part of three major functional categories as observed
for PA I before. The majority of TFs was involved
in development and differentiation (e.g. EGR2, EMX2,
DACH2, MEOX2, SOX11). Other TFs were involved in
cell cycle control, proliferation, apoptosis and DNA repair
(e.g. CCNA1, CDC20, CHD5, TP53, ZNF365). Some TFs
were involved in the regulation of chromatin remod-
eling and DNA methylation (CHD5, EZH2, PAXIP1,
ZNF300).

Conclusions
Our computational study revealed similarities and dif-
ferences in gene expression levels between astrocytomas
of all four WHO grades under consideration of astro-
cytoma type-specific normal brain references. We com-
pared all four considered astrocytoma grades (PA I, AS
II, AS III, GBM IV) at the level of individual genes and
cancer-relevant signaling pathways. Thereby, we identi-
fied many genes that were exclusively under- or over-
expressed in a specific astrocytoma grade. In addition,
we also revealed many genes that showed the same pat-
tern of under- or overexpression in specific subsets of
astrocytoma grades. We discussed many of these genes
in the background of the currently existing literature and
we summarized selected astrocytoma type-specific dif-
ferentially expressed genes that might be of interest for
future studies that aim at the development of novel mark-
ers. We further observed at the level of individual genes
and cancer-relevant signaling pathways that the num-
ber of differentially expressed genes typically increased
with the astrocytoma grade. This trend suggests an asso-
ciation of transcriptional alterations with the increased
tumor aggressiveness of the different astrocytoma grades.
Interestingly, the cytokine receptor interaction pathway
escaped this general trend. Nearly the same number of
overexpressed genes were observed for PA I and GBM
IV in this pathway. Detailed studies further identified
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commonly and exclusively overexpressed genes in the
cytokine receptor interaction pathway for PA I and GBM
IV and further revealed that only genes that were over-
expressed in GBM IV were significantly enriched for
known cancer genes involved in aggressiveness, invasion
and poor outcome. Moreover, this in-depth analysis also
revealed a characteristic expression patterns of CX3CL1
(fractalkine) and its receptor CX3CR1 that distinguished
PA I from AS II, AS III and GBM IV. These genes are
involved in glioma invasion and progression of malignant
astrocytomas [117]. Strong overexpression of both genes
in PA I in comparison to higher grade astrocytomas sug-
gests a potential contribution to the non-invasive growth
behavior of PA I. Thus, it might be worth to validate this
potential link by gene knockdowns in a future study.
Surprisingly, PA I was strongly associated with the mes-

enchymal subtype, which is typically observed for very
aggressive GBM IV. Additional analyses indicated that the
tumor micro-environment may have a greater contribu-
tion to the manifestation of the mesenchymal subtype
than the tumor biology itself, which might explain the
seemingly contradiction between the similarity in terms of
subtype classification and the very different clinical course
of mostly benign PA I and highly malignant GBM IV. In
accordance with this, we found that the endothelial cell
marker ANGPT2 (alias ANG2) was highly overexpressed
in PA I and GBM IV but not in AS II or AS III. Using
immunohistochemistry, we confirmed that PA I and GBM
IV showed Ang2-positive endothelial cells in regions with
activated blood vessels. This feature was largely absent in
AS II and AS III. Thus, our study suggests that microvas-
cular proliferation and necrosis, which both have been
described as common histological features of PA I and
GBM IV [8], contribute at least to some extent to the
observation of the mesenchymal subtype.
We also revealed major transcriptional regulators that

distinguished PA I from AS II, AS III and GBM IV based
on a computationally inferred signature-specific tran-
scriptional regulatory network.We found that many of the
differentially expressed central transcriptional regulators
play important roles in cell cycle regulation, chromatin
remodeling, or brain development and differentiation.
Further analyses indicated that the differential expression
of transcriptional regulators was mainly driven by directly
underlying DNAmethylation changes in PA I or gene copy
number alterations in AS II, AS III and GBM IV. We note
that the impacts of DNA methylation changes on tran-
scriptional regulators in AS II, AS III and GBM IV could
not be compared to those in PA I, because DNA methyla-
tion profiles were not available for AS II, AS III and GBM
IV tumors from Rembrandt. This could be addressed in
a future study using DNA methylation profiles measured
for AS II, AS III and GBM IV from TCGA brain tumor
cohorts.

We are aware that our network approach can also be
utilized for the analysis of a molecular signature that
distinguishes all four astrocytoma types. However, this
should be done based on a larger data set including
additional astrocytoma samples from other resources to
ensure robustness and transferability. A future study could
for example utilize additional publicly available astro-
cytoma data sets (e.g. TCGA and ICGC data sets and
other smaller studies) and further try to directly integrate
additional omics layers (e.g. gene copy numbers, DNA
methylation profiles, single nucleotide polymorphisms).
Altogether, our study confirmed many known findings

and revealed novel interesting insights into astrocytoma
biology and therefore represents a valuable resource for
future studies.
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Placement and summary of the publication

Oligodendrogliomas represent a specific class of human brain tumors that were diagnosed
based on the presence of specific histological features over many years (Louis et al. (2007)).
With the availability of molecular data and diagnostic tests, characteristic molecular markers
(1p/19q co-deletion, IDH1/2 mutation) are now considered to improve the diagnosis (Louis
et al. (2016)), but our knowledge about molecular tumor subtypes and their differences at the
level of signaling and metabolic pathways, underlying regulatory networks and involved major
regulators is still limited. We therefore considered publicly available gene copy number, single
nucleotide variation and transcriptome data of histologically classified oligodendrogliomas from
The Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas Research Network (2015);
Ceccarelli et al. (2016)) to reveal molecular subtypes and to characterize differences between
them by utilizing well-established standard bioinformatics methods for statistical data analysis
in combination with a network-based approach to predict altered major regulators.

Our study revealed three molecular subgroups for histologically classified oligoden-
drogliomas purely based on hierarchical clustering of their gene copy number profiles. Further
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analysis of the IDH mutation status, associations with known Verhaak and G-CIMP subtypes
and overall survival behavior of patients confirmed that these subgroups largely resembled
known molecular glioma subtypes that were previously determined by a combination of different
omics layers (The Cancer Genome Atlas Research Network (2015); Kamoun et al. (2016)). Af-
ter the exclusion of the classical glioblastoma-like subgroup, we derived a signature of 5113 dif-
ferentially expressed genes that distinguished histologically classified oligodendrogliomas with
a concurrent 1p/19q co-deletion and an IDH mutation from those that predominantly showed
an IDH mutation. These signature showed strong differences at the level of signaling and
metabolic pathways including known pathways involved in glioma development (e.g. cell pro-
liferation, differentiation, migration, cell-cell contacts). To further explore differences between
both molecular subtypes, we also learned a gene regulatory network revealing putative ma-
jor regulators with functions in cytoskeleton remodeling, apoptosis, and neural development
potentially contributing to the manifestation of differences between both subgroups. We also
identified characteristic differences in the expression of several HOX and SOX transcription fac-
tors between both subgroups indicating that different glioma stemness programs are active in
both subgroups. This is also supported by single cell transcriptome analyses by Tirosh et al.
(2016) and by Venteicher et al. (2017), which were both published during our work on this study.

Moreover, the considered oligodendroglioma data set represents an important resource, but
one has to be aware that all oligodendrogliomas were classified by TCGA according to the
WHO 2007 brain tumor classification system (Louis et al. (2007)). This histology-based system
is relatively error-prone (Coons et al. (1997); van den Bent (2010)) and has therefore been
replaced by the WHO 2016 brain tumor classification system that uses a combination of histo-
logical and molecular markers (Louis et al. (2016)). To address this, we discussed our findings
in the context of this new classification system. This is important for the interpretation of our
results and supports others that want to work with the TCGA lower-grade glioma data set.

Our study demonstrated that gene copy number profiles alone can be used to derive known
molecular subgroups of histologically classified oligodendrogliomas. In addition, the revealed
potential major regulators and the characteristic differences in the activity of potential stemness
programs provide a basis for future experimental validation studies.
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Abstract

Background: Molecular data of histologically classified oligodendrogliomas are available offering the possibility to
stratify these human brain tumors into clinically relevant molecular subtypes.

Methods: Gene copy number, mutation, and expression data of 193 histologically classified oligodendrogliomas
from The Cancer Genome Atlas (TCGA) were analyzed by well-established computational approaches (unsupervised
clustering, statistical testing, network inference).

Results: We applied hierarchical clustering to tumor gene copy number profiles and revealed three molecular
subgroups within histologically classified oligodendrogliomas. We further screened these subgroups for molecular
glioma markers (1p/19q co-deletion, IDHmutation, gain of chromosome 7 and loss of chromosome 10) and found
that our subgroups largely resemble known molecular glioma subtypes. We excluded glioblastoma-like tumors
(7a10d subgroup) and derived a gene expression signature distinguishing histologically classified oligodendrogliomas
with concurrent 1p/19q co-deletion and IDHmutation (1p/19q subgroup) from those with predominant IDH
mutation alone (IDHme subgroup). Interestingly, many signature genes were part of signaling pathways involved in
the regulation of cell proliferation, differentiation, migration, and cell-cell contacts. We further learned a gene
regulatory network associated with the gene expression signature revealing novel putative major regulators with
functions in cytoskeleton remodeling (e.g. APBB1IP, VAV1, ARPC1B), apoptosis (CCNL2, CREB3L1), and neural
development (e.g.MYTIL, SCRT1,MEF2C) potentially contributing to the manifestation of differences between both
subgroups. Moreover, we revealed characteristic expression differences of several HOX and SOX transcription factors
suggesting the activity of different glioma stemness programs in both subgroups.

Conclusions: We show that gene copy number profiles alone are sufficient to derive molecular subgroups of
histologically classified oligodendrogliomas that are well-embedded into general glioma classification schemes.
Moreover, our revealed novel putative major regulators and characteristic stemness signatures indicate that different
developmental programs might be active in these subgroups, providing a basis for future studies.
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Background
Oligodendrogliomas belong to the class of diffuse gliomas
that represent the most frequent primary brain tumors
in adults [1]. About 4 to 8% of all diagnosed tumors of
the central nervous system are oligodendrogliomas [2].
Diffuse gliomas are generally characterized by infiltra-
tion of the surrounding brain tissue, and fast progression
and relapse are common [3]. Traditionally, histological
similarities to normal glial cells (astrocytes and oligo-
dendrocytes) were used to distinguish between different
types of diffuse gliomas according to the World Health
Organization (WHO) 2007 grading system [4]. Known
downsides of this histological classification include a con-
siderable variability of diagnoses between neuropatholo-
gists and difficulties in discriminating oligodendrogliomas
from other types of diffuse gliomas like astrocytomas and
“mixed-type” oligoastrocytomas, which complicates diag-
nostics and treatment decisions for individual patients
[5, 6]. These challenges led to the exploration of molec-
ular markers for glioma diagnostics [7]. The majority of
oligodendrogliomas shows a characteristic allelic loss of
chromosomal arms 1p and 19q (1p/19q) that contributes
to better chemotherapy sensitivity and longer recurrence-
free survival [8, 9]. Three different gene expression
subtypes of 1p/19q co-deleted oligodendrogliomas have
recently been revealed, but the analysis of the clinical rel-
evance of these subtypes requires additional studies [10].
Further, specific heterozygous somatic point mutations of
the isocitrate dehydrogenase gene (IDH1/2) were found
in more than three-fourths of all oligodendrogliomas and
nearly three-fourths of all astrocytomas of WHO grades
II and III [11–13] and in all 1p/19q codeleted gliomas
[14]. These mutations are associated with the glioma-CpG
island methylator phenotype (G-CIMP) [15, 16] and with
a better prognosis compared to IDH wild-type tumors
[11, 17].
These molecular markers were integrated into a recent

update of the classification of tumors of the central ner-
vous system by the WHO [18]. As a consequence, some
diffuse glioma classes became obsolete, like the “mixed-
type” oligoastrocytomas that should now be classified as
either oligodendrogliomas or astrocytomas. According to
this new classification, oligodendrogliomas are charac-
terized by the co-occurrence of the mutation of IDH1/2
and the 1p/19q co-deletion. Notably, this class does not
accommodate IDH-mutated tumors with 1p/19q wild-
type that were classified as oligodendrogliomas based on
histology before. Such discrepancies between histologi-
cal and molecular tumor classification still remain a great
challenge for further improvements of glioma diagnos-
tics, but in terms of prognosis molecular markers can
outweigh histological characteristics. Recently, it has been
shown that glioma subgroups can be defined based on
IDH mutation and 1p/19q co-deletion status deriving

genetic subgroups that are more reflective of disease
subtypes than glioma classes defined by histology [19].
These results were further refined through the analysis
of DNA methylation profiles revealing clinically relevant
molecular subtypes [20]. In addition, single cell transcrip-
tome data has allowed to gain novel insights into the
molecular architecture of oligodendrogliomas showing
that themajority of tumor cells express either a specialized
astrocyte-like or oligodendrocyte-like program, whereas
a subpopulation of cells remains undifferentiated and is
associated with a neural stem cell expression program
that most likely drives tumor development [21]. This has
been further extended by analyzing single cell transcrip-
tomes of oligodendrogliomas and astrocytomas suggest-
ing a common stemness program for both tumor types
that drives tumor growth, whereas differences between
both types are mainly driven by the tumor microen-
vironemt and specific genetic signatures [22]. This has
important consequences for the clinical management of
oligodendrogliomas and may also explain in part differ-
ences between molecular and histological classifications.
All these and many other studies have greatly contributed
to a better understanding of molecular characteristics
of oligodendrogliomas. Still, also in the light of differ-
ences between histological and molecular classifications,
our knowledge about specific molecular characteristics of
oligodendrogliomas is incomplete.
Here, we present an in-depth computational analysis

of histologically classified oligodendrogliomas from The
Cancer Genome Atlas (TCGA) revealing novel differences
between molecular subgroups at the level of individual
genes, pathways, and gene regulatory networks. We first
stratified these tumors based on their gene copy number
profiles into three subgroups utilizing unsupervised clus-
tering. Additional screening for the presence of known
glioma markers showed that these subgroups largely
resembled already known molecular glioma subtypes. To
further characterize molecular differences, we derived a
signature of differentially expressed genes distinguishing
tumors with 1p/19 co-deletion and IDH mutation from
tumors that predominantly showed an IDH mutation. We
further learned a gene regulatory network that is capa-
ble to explain this observed expression signature. This
enabled us to identify novel putative major regulators that
are potentially involved in the manifestation of differences
between both subgroups. Interestingly, this network also
contained a characteristic expression signature of HOX
and SOX genes that distinguishes both subgroups indicat-
ing the activity of different glioma stemness programs.

Methods
Molecular data of oligodendrogliomas and normal brains
DNA copy number, RNA-seq gene expression, and
somatic mutation data was obtained from the TCGA
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data portal (https://gdc.cancer.gov/) for 193 histologically
classified oligodendrogliomas of the TCGA lower grade
glioma (LGG) cohort (Additional file 1). The vast majority
of tumor samples represented primary tumors, except
five recurrent tumors. We determined gene-specific copy
number log-ratios for each oligodendroglioma based on
its corresponding DNA copy number profile (see [23]
for details). Three commercially available normal brain
samples were obtained from StrataGen, BioChain, and
Clonetech for which RNA-seq gene expression has been
measured previously. All considered gene copy (17,677
genes) and gene expression (15,988 genes) profiles are
provided in Additional file 2.

Clustering based on CNV data
Hierarchical clustering (euclidean distance, complete link-
age) of tumors was done in R using the processed gene
copy number variation (CNV) log-ratio data of tumor
compared to normal. One obvious outlier (TCGA-P5-
A5F6-01A) was removed from subsequent analyses. Three
tumor subgroups were derived by cutting the clustering
dendrogram into three sub-trees. These subgroups were
named taking into account the following molecular prop-
erties: (i) 1p/19q - co-deletion of chromosomal arms 1p
and 19q and presence of characteristic IDH1/2 mutation,
(ii) IDHme - predominance of IDH1/2 mutation but no
co-deletion of 1p and 19q, and (iii) 7a10d - no co-deletion
of 1p and 19q, lack of IDH1/2 mutations, amplification of
chromosome 7, and deletion of chromosome 10.

Data normalization and identification of differentially
expressed genes
Raw RNA-seq gene expression counts were loaded into
R. Combined normalization of tumor and normal brain
RNA-seq data was done using the voom function of the
limma package [24] with normalization method cyclic
loess. Differential gene expression analysis between CNV-
derived tumor subgroups was done following limma’s
standard workflow. Differentially expressed (signature)
genes were selected using an FDR-adjusted p-value (q-
value) [25] cut-off of 0.01.

Verhaak and G-CIMP classification
Gene expression log2-ratios of genes in tumor compared
to the average expression in normal brain tissue were
computed for each oligodendroglioma sample. 756 of 840
genes that were used to derive the four Verhaak classes
[26] were part of our data set. We calculated pearson
correlation and associated p-values between the gene
expression log-ratios in the glioma reference set and our
tumor subgroups. Similarly, 42 of 50 genes of the glioma-
CpG islandmethylator phenotype (G-CIMP) set [15] were
part of our data set, for which we calculated Pearson
correlations and p-values. Note that genes missing from

the Verhaak and G-CIMP signature do not strongly affect
the classification, because there are other genes in these
signatures that show expression levels that are strongly
correlated with those of the missing genes [27].

Survival analysis
Information about days to death or days to last follow-up
was taken fromTable S1 of [20]. This table represented the
most recent survival information in months at the time of
our study. We transformed the survival information from
months into days using the factor 30.4167 followed by
a rounding to the nearest integer (Additional file 1). We
generated survival curves and performed log-rank tests
using the R package survival [28].

Gene and pathway annotation enrichment analysis
Gene, signaling, and metabolome pathway annotations
were obtained from [23]. The number of signature genes
per annotation category was counted separately for up-
and downregulated genes, and the significance of gene
enrichment was calculated using Fisher’s exact test.

Signature-specific regulatory network inference
We inferred transcriptional regulatory networks associ-
ated with the normalized expression of the signature genes
that discriminate between the 1p/19q and IDHme sub-
groups following the approach detailed in [27] with few
modifications. We constructed two types of networks that
differed in the set of predictor variables: (i) only the gene
copy number of a signature gene was used to predict its
own expression and (ii) in addition to the copy numbers,
the gene expression of all signature genes that were anno-
tated as transcription factors (TFs) were used to predict
the expression of a signature gene. The expression value
of a particular TF was excluded from its own prediction
in the latter analysis. For each signature gene, lasso (least
absolute shrinkage and selection operator) regression [29]
and a significance test for lasso [30] were used to estimate
the coefficients and their corresponding significance for
each predictor of the underlying signature gene-specific
linear model as implemented in [31]. We only considered
the most significant predictors with p-values less than
5 × 10−5 specified by the standard detection limit of the
covariance test implementation [30]. We further validated
each network through cross-validation by repeated ran-
dom subsampling. To this end, the data was randomly
partitioned into a training set constituting two-third of
the tumors on which the network was constructed and a
test set constituting the remaining one-third of tumors for
which the expression of the signature genes was predicted
and compared to the experimentally measured expres-
sion. This was repeated 100 times. To assess prediction
accuracy we calculated pearson correlation of predicted
and measured gene expression averaged over the 100
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networks. For network visualization we only kept links
that occurred in at least 75% of the 100 networks.

Results
Gene copy number variations and IDHmutations
characterize three molecular subgroups of histologically
classified oligodendrogliomas
It has been shown previously that the majority of histo-
logically classified oligodendrogliomas has a co-deletion
of chromosomal arms 1p and 19q and a characteristic
mutation of IDH1/2 [19, 32]. We thus analyzed genome-
wide gene copy number data that were available for 193
histologically classified oligodendrogliomas from TCGA
(Additional files 1 and 2). Unsupervised clustering of the
tumors based on their CNV profiles alone revealed three

subgroups (Fig. 1). We further analyzed the mutation sta-
tus of IDH1/2 of tumors in these subgroups (Table 1).
The largest subgroup comprised 133 tumors (68.9%) and
showed the characteristic 1p/19q co-deletion as well as
IDH1 or IDH2 mutations in each tumor. We refer to
this subgroup as 1p/19q. The second largest subgroup
included 45 tumors (23.3%) that showed no obvious pat-
tern of gene deletions or amplifications. Since themajority
of tumors in this subgroup had an IDH1/2 mutation
(82%), we named this subgroup IDH mutation-enriched
(IDHme). The third subgroup comprised 15 tumors (7.8%)
that were characterized by an amplification of chromo-
some 7 and a deletion of chromosome 10 as typically
observed in classical glioblastomas [3]. Only three tumors
in this subgroup had an IDH1 or IDH2 mutation (20%).

Fig. 1 CNV-derived molecular subgroups of histologically classified oligodendrogliomas. Heatmap of genome-wide gene copy number log-ratios of
193 histologically classified oligodendrogliomas (columns) compared to normal brain for 17677 genes (rows); blue: deletions, gray: unchanged, red:
amplifications. Chromosomes are highlighted by alternating gray and black bars to the left; chromosome midpoints are indicated by labels to the
right. Oligodendroglioma subgroups were revealed by unsupervised clustering and are shown using green (1p/19q), yellow (IDHme), and red
(7a10d) column coloring. Tumors of WHO grade II are labeled in light purple. WHO grade III is labeled in dark purple. Tumors with an IDH1/2
mutation are labeled in dark brown. The absence of an IDH mutation is labeled in light brown
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Table 1 Frequency of mutations of known cancer-relevant
genes per oligodendroglioma subgroup

Gene Mutated 1p/19q IDHme 7a10d

IDH1/2 Yes 133 37 3

No 0 8 12

TP53 Yes 7 35 6

No 126 10 9

ATRX Yes 3 30 3

No 130 15 12

CIC Yes 85 2 0

No 48 43 15

FUBP1 Yes 38 0 0

No 95 45 15

NOTCH1 Yes 31 3 0

No 102 42 15

We refer to this subgroup as 7a10d. It is important to
note that the 7a10d subgroup formed an own subcluster
that is relatively distant to the 1p/19q and IDHme sub-
groups, which were both part of one larger subcluster
(Fig. 1).

Tumors of the three subgroups differ in mutational status
of other cancer-relevant genes
We further observed differences in mutational profiles of
known glioma-relevant genes (TP53, ATRX, CIC, FUBP1,
NOTCH1 [3, 19]) between tumors of the three subgroups
(Table 1). Only 5% and 2% of the 1p/19q tumors showed
a mutation of, respectively, TP53 and ATRX, while about
two-third of the IDHme tumors had at least one of these
two genes mutated. For 7a10d tumors, these numbers
were 40% and 25%, respectively. In contrast, CIC and
FUBP1 were relatively frequently mutated in the 1p/19q
subgroup (64% and 29%, respectively), but only two CIC
and no FUBP1 mutations were observed in the IDHme
tumors and none of the 7a10d tumors showed CIC and
FUBP1 mutations. Also for NOTCH1 the IDHme and
7a10d subgroups resemble each other in terms of muta-
tion frequency (7% and 0%, respectively), while about
one-fourth of the 1p/19q tumors showed a NOTCH1
mutation.

Subgroup 7a10d differs in Verhaak and G-CIMP subtype
classification and patient survival from 1p/19q and IDHme
In order to explore whether tumors of the three oligo-
dendroglioma subgroups differ in their gene expres-
sion profiles compared to known molecular glioma sub-
types we first considered the Verhaak subtypes [26]. We
computed the correlation between the given signature-
specific expression levels of the Verhaak subtypes and

the corresponding gene expression levels of each individ-
ual oligodendroglioma. We observed moderate but still
significant correlation values with the Verhaak subtypes
for the vast majority of tumors (P <0.05 for 130 of 133
1p/19q tumors, for 43 of 45 IDHme tumors, and for all
7a10d tumors considering the Verhaak subtype with the
strongest correlation). The 1p/19q and IDHme subgroups
showed a similar association pattern (Fig. 2a top and mid-
dle). Tumors in both subgroups have highest similarity
to the proneural and classical subtypes followed by the
mesenchymal subtype, while there is generally a nega-
tive correlation with the neural subtype. In contrast, the
vast majority of tumors in the 7a10d subgroup had a
negative correlation with the proneural subtype (Fig. 2a
bottom). This is expected for tumors without an IDH
mutation [15].
In a similar analysis, we compared the associations of

the three oligodendroglioma subgroups with the expres-
sion signature of the G-CIMP subtype driven by the muta-
tion of IDH [15]. Like for the Verhaak classification, the
1p/19q and IDHme subgroups resembled each other and
the tumors in these subgroups had generally positive cor-
relation values to G-CIMP (P <0.1 for 73 of 133 1p/19q
tumors and 27 of 45 IDHme tumors), as opposed to 7a10d
tumors that showed no or very weak positive and negative
correlation (P <0.1 for 2 of 15 tumors, Fig. 2b).
We also analyzed whether there are differences in

patient survival between the three subgroups by using
the clinical data available for 125 1p/19q, 34 IDHme, and
15 7a10d tumors. Patients from the 1p/19q and IDHme
subgroups showed no differences in survival (Fig. 2c top
and middle, log-rank test, P = 0.7843). In sharp con-
trast, patients from 7a10d showed significantly shorter
survival than patients from the 1p/19q and IDHme sub-
groups (Fig. 2c bottom, log-rank tests, P = 4.9×10−6 and
P = 1.1 × 10−4, respectively) consistent with previous
findings [19].

All three subgroups are part of known glioma subtypes
Recent studies have defined molecular subtypes for
gliomas [19, 20]. We thus analyzed how our three sub-
groups 1p/19q, IDHme, and 7a10d observed for his-
tologically classified oligodendrogliomas are embedded
in these general classification schemes. Diffuse gliomas
were grouped into three major subtypes based on the
IDH mutation status and the presence of the 1p/19q co-
deletion in [19]. Our 1p/19q subgroup corresponds to the
1p/19q subtype in [19]. The IDHme subgroup is included
in the subtype that has no 1p/19q co-deletion but an
IDH mutation in [19]. The 7a10d subgroup is included
in the subtype that has no IDH mutation and no 1p/19q
co-deletion, which contains gliomas of which about 50%
showed a gain of chromosome 7 and a loss of chromo-
some 10 [19]. Further, our purely CNV-based derivation
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Fig. 2 Oligodendroglioma subgroup comparison. a Pearson correlation between the expression log-ratios of 756 marker genes in the Verhaak
glioma reference set and our tumor subgroups is shown for the four Verhaak classes. b Pearson correlation between the expression log-ratios of 42
genes in the G-CIMP reference set and our tumor subgroups. c Kaplan-Meier curves (solid lines) and 95%-confidence intervals (dashed lines) of
patient survival according to the corresponding clinical data

of the three subgroups (Fig. 1) shows that tumors with an
IDHmutation are more similar to each other than tumors
without an IDHmutation. This is in accordance with [19].
Also highly similar gene mutation patterns and survival
times are observed for our subgroups and those by [19].
The classification scheme in [19] has been refined in

[20] subdividing the IDH mutant group into a G-CIMP-
low, G-CIMP-high, and a 1p/19q co-deletion subtype. Our
1p/19q subgroup is included in the 1p/19q co-deletion
group in [20]. Further, the vast majority of tumors in
our IDHme subgroup belong to the G-CIMP-high group
in [20] indicated by the observation of positive correla-
tions with the G-CIMP subtype in our analysis (Fig. 2b
middle). Only four IDHme tumors may belong to the G-
CIMP-low subtype (correlation with G-CIMP less than
0.1, Fig. 2b middle). This is in good accordance with the
molecular classification of histologically classified oligo-
dendrogliomas by [20]. In addition, the non-IDH mutant
group was further subdivided in [20] into a classic-like,

mesenchymal-like, and two other subtypes. Tumors of
our 7a10d subgroup are represented by these subtypes.
About half of the 7a10d tumors belong to the classic-like
group (Fig. 2a bottom). The majority of the remaining
tumors belong to the mesenchymal-like group, but they
also show a relatively strong correlation with the classical
group (Fig. 2a bottom). This is similar to [20] where also
a large proportion of the tumors in the mesenchymal-like
group were classified to belong to the classical group of
Verhaak [26].
We further tested if the three subgroups were well-

embedded in molecular data of closely related histolog-
ically classified oligoastrocytomas and astrocytomas of
the TCGA lower grade glioma cohort. Therefore, we per-
formed unsupervised clustering of the gene copy number
profiles and found that all three subgroups were present
among the oligoastrocytomas and that the astrocytomas
were split up into the IDHme and 7a10d subgroup. In
addition, Verhaak and G-CIMP subtype classifications,
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patient survival, and gene expression behavior were highly
similar between the oligodendroglioma subgroups and
corresponding subgroups of oligoastrocytomas and astro-
cytomas (Additional file 3). This clearly indicates that each
of our derived subgroups was adequately covered based
on molecular data of histologically classified oligoden-
drogliomas.
Generally, strong differences in chromosomal muta-

tions, subtype characteristics, and patient survival
between the 7a10d subgroup and the other two sub-
groups 1p/19q and IDHme (Figs. 1 and 2) indicate that
7a10d tumors rather resemble glioblastoma-like tumors
[3, 19, 20]. We therefore focused our further analysis on
the comparison of tumors from the 1p/19q and IDHme
subgroups.

A signature of differential gene expression discriminates
1p/19q from IDHme
To compare genome-wide gene expression profiles of
the 1p/19q and IDHme subgroups we conducted a dif-
ferential gene expression analysis contrasting these two
subgroups. Using a q-value cut-off of 0.01 we identified
5113 genes to be differentially expressed between 1p/19q
and IDHme (Fig. 3, Additional file 4). The expression of
half of the signature genes was downregulated in 1p/19q
compared to IDHme, while the other half was upregu-
lated. When comparing tumors of grade II and grade III
within each subgroup we found no large-scale differences.
Only 104 signature genes where differentially expressed
between tumor grades II and III for the 1p/19q sub-
group (73 grade II vs. 60 grade III tumors, Additional
file 5), while there were no significant expression differ-
ences of signature genes between tumor grades II and
III for the IDHme subgroup (33 grade II vs. 12 grade
III tumors).

The signature is enriched for signaling andmetabolic
pathway genes and transcription factors
Looking at the annotations of the 5113 signature genes
we found that the categories transcription factor/cofactor,
kinase, phosphatase, signaling pathway gene, and tumor
suppressor gene were significantly enriched for downreg-
ulated genes in tumors of the 1p/19q subgroup compared
to that of the IDHme subgroup (P <0.05, Fig. 4). For sig-
nature genes upregulated in 1p/19q compared to IDHme
only the transcription factor/cofactor category was found
to be significantly enriched (P <0.1). Among the affected
signaling pathways several pathways known to be involved
in cancer were significantly enriched with genes downreg-
ulated in 1p/19q tumors compared to IDHme (Fig. 4c).
These were the MAPK signaling, ErbB signaling, mTOR
signaling, PI3k-Akt signaling, Apoptosis, Wnt signaling,
TGF-Beta signaling, VEGF signaling, Focal adhesion,
Adherence junction, Jak-STAT signaling, and Hedgehog

Fig. 3 Gene signature distinguishing 1p/19q from IDHme. The
heatmap shows the expression values of 5113 differentially expressed
(q-value <0.01) signature genes (rows) for 178 histologically classified
oligodendrogliomas (columns). Rows are Z-score-scaled and ordered
based on a hierarchical clustering of the data (dendrogram not
shown). Subgroups are shown in green (1p/19q) and yellow (IDHme)
with tumor grades highlighted using light (grade II) and dark (grade
III) shadings. Genes that are located on chromosomal arms 1p or 19q
are indicated by black lines to the left of the heatmap; other genes
are in gray

signaling pathway, which are known to affect prolifera-
tion, differentiation, migration, adhesion, cell growth and
survival, cell cycle arrest and progression, andmetabolism
(see Table S4 in [33]). For genes upregulated in 1p/19q no
enrichment of signaling pathways was observed.
Regarding metabolic pathways (Fig. 4b), the pentose

phosphate pathway (generating NADPH, pentoses, and
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Fig. 4 Functional analysis of signature genes. Enrichment of gene categories (a), metabolic pathways (b), and signaling pathways (c) with signature
genes. Bars are shown separately for genes down- and upregulated in 1p/19q compared to IDHme using blue and red color, respectively.
Significance of enrichment was calculated using Fisher’s exact test and is highlighted by asterisks symbols

Ribose 5-phosphate, a precursor for nucleotide synthesis)
and inositol phosphate pathway (generating inositol phos-
phates that play a role in various cellular processes includ-
ing cell growth and differentiation, cell migration and
apoptosis) were significantly enriched with genes down-
regulated in 1p/19q (P <0.05 and P <0.01, respectively).
The pyrimidine pathway (generating cytosine, thymine,
and uridine nucleotides) was enriched with genes showing
an increased expression in 1p/19q tumors (P <0.01).
Moreover, there were in total 1006 transcription fac-

tors/cofactors present in the signature (Additional file 6),
forming the basis for the subsequent reconstruction of
a gene regulatory network that is associated with the
observed expression differences between the 1p/19q and
IDHme subgroups.

A gene regulatory network is associated with expression
differences between 1p/19q and IDHme
We sought to construct a gene regulatory network which
can predict the expression of the 5113 signature genes
distinguishing 1p/19q from IDHme. In this analysis, 100
cross-validated networks were computed and used to cal-
culate an average predicted expression value for each
signature gene (see “Methods” for details). We applied the
approach to two different predictor sets. First, we started
to learn a network for which only the copy number of a
gene was used to predict its expression. For 1442 signature
genes (28.2%) no prediction of gene expression based on
the underlying gene copy number was obtained. For the

vast majority of the remaining signature genes the aver-
age predicted expression value correlated positively with
the measured expression for the test data (Fig. 5a), and the
median correlation coefficient over all signature genes was
0.292 (P <0.05 for 53.7% of the genes).
In the second analysis, we learned a regulatory network

by utilizing both the gene-specific copy numbers and the
expression values of transcription factors that were part
of the signature as predictors. This network yielded sig-
nificantly better predictions than the CNV-only network
(Fig. 5a, Mann-Whitney U test, P ≈ 0). Predictions were
obtained for all signature genes, and the median corre-
lation coefficient was 0.676 on the test data (P <0.05
for 95.8% of the genes). We chose this second network
(Additional file 7) for further analysis because of its supe-
rior prediction accuracy and the possibility to identify
potential regulators of other signature genes.
Hubs in the network, e.g. nodes with high degree that

have many connections to other nodes, may help to iden-
tify potential key regulators involved in the manifestation
of differences between the 1p/19q and IDHme subgroups.
We thus looked at the out-degree of nodes represent-
ing transcription factors and found that few of them
(49 of 1006, 4.9%) had an out-degree of at least 10, while
the vast majority were connected to few signature genes
(Fig. 5b). A sub-network containing only these hub tran-
scription factors and the signature genes connected to
them by ingoing or outgoing links is shown in Fig. 6. The
vast majority of network connections represent activating
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Fig. 5 Regulatory network predictions and hub transcription factors. a Pearson correlations between predicted and measured expression of the
5113 signature genes on the test data are shown for the network utilizing only gene copy number data (CNV: dark-turquoise) and the network
utilizing both gene copy number and gene expression data (CNV + EXP: light-turquoise) as predictors. Correlation values are averaged over 100
cross-validation iterations (see Methods for details). b Ranking of transcription factors by out-degree for the CNV + EXP network. Only very few
transcription factors have high out-degree values (hubs), whereas the large majority shows few connections to other signature genes

links. Moreover, this sub-network can be further par-
titioned into potential gene regulatory modules that (i)
show many internal connections, (ii) have few or no
external links to other gene clusters, and (iii) comprise sig-
nature genes with comparable patterns of expression dif-
ferences between 1p/19q and IDHme (see node coloring
in Fig. 6).

Regulatory hubs and gene network modules affect
cancer-relevant functions
One of the gene modules in our regulatory network
(Fig. 6) contains APBB1IP, the gene with the highest out-
degree in the network, as well as other hub transcription
factors including VAV1, ARPC1B, SPI1, TFEC, FERMT3,
and IKZF1, among others. The expression of genes in this
cluster is downregulated in 1p/19q compared to IDHme.
According to GeneCards [34] and UniProtKB/Swiss-Prot
[35] annotations, APBB1IP functions in signal transduc-
tion from Ras activation to actin cytoskeletal remodeling
[36, 37], VAV1 is a guanine nucleotide exchange factor
for Rho family GTPases also known to be involved in the
regulation of cytoskeletal rearrangements and a known
proto-oncogene [38], ARPC1B regulates actin polymer-
ization and mediates the formation of branched actin net-
works [39], SPI1 is a proto-oncogene potentially involved
in the regulation of pre-mRNA splicing [40], TFEC has
been associated with breast cancer and is part of the
cancer-related C-MYB transcription factor network [41],
FERMT3 has been associated with cell adhesion deficien-
cies [42], and IKZF1 is known to be involved in different
types of cancer [43].
A second gene module includes the hub transcription

factors CDK5R2, MYT1L, CELF3, RGS7, and SCRT1

(Fig. 6). In contrast to the first gene cluster described
above, the expression of genes in this second cluster is
upregulated in 1p/19q compared to IDHme. CDK5R2 is
a regulator of the cell division protein Cyclin-dependent
kinase 5 and has been associated with neuronal migration
and development [44], MYT1L is a pan-neural transcrip-
tion factor involved in neuronal differentiation and is
thought to play a role in the development of neurons and
oligodendroglia [35], CELF3 is involved in the regulation
of pre-mRNA alternative splicing [45], RGS7 is associated
with benign neoplasms in different organs and regulates
G-protein-coupled receptor signaling [46], and SCRT1 is
a Zinc finger DNA-binding protein critical for neuronal
differentiation [47].
There are other individual hub transcription factors in

the network with potentially relevant functions in can-
cer development. One of them is PHB (upregulated in
1p/19q compared to IDHme) that codes for prohibitin,
which inhibits DNA synthesis, has been associated with
breast cancer, and plays a role in regulating prolifera-
tion [48, 49]. CREB3L1 (upregulated in 1p/19q) is thought
to be involved in the protection of astrocytes from ER
stress-induced cell death [50]. CENPT (upregulated in
1p/19q) encodes one of the inner kinetochore proteins
and is required for normal chromosome organization
and progress through mitosis [51].MEF2C (dowregulated
in 1p/19q) is crucial for normal neuronal development
and has been suggested to be involved in neurogenesis
and in the development of cortical architecture [52, 53].
EIF3K (downregulated in 1p/19q) is a component of the
eukaryotic translation initiation complex regulating pro-
tein synthesis [54]. CCNL2 (downregulated in 1p/19q)
regulates a critical factor involved in cell apoptosis [55].
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Fig. 6 Gene regulatory network distinguishing 1p/19q from IDHme Sub-network showing transcription factors with an out-degree of at least 10 and
the signature genes connected to them. Genes (nodes) are colored according to gene expression log-ratios between the average expression in
1p/19q and IDHme. Nodes with labels represent transcription factors and the size of a node is proportional to its out-degree. Activating and
repressing links are shown in yellow and green color, respectively, and transparency of a link is inversely proportional to the number of times the link
is present across the 100 cross-validation iterations

Further, ETV4 involved in developmental processes and
oncogenesis [34] was upregulated in 1p/19q compared to
IDHme.

Comparison of 1p/19q and IDHme to closely related
oligodendrogliomas and astrocytomas
Recently, bulk and single cell transcriptomes of IDH-
mutant oligodendrogliomas and astrocytomas have been
compared [22]. This study suggested shared glial lineages
and developmental hierarchies where most differences
resulted from characteristic mutations and microenvi-
ronmental compositions. In more detail, they observed
that differences in bulk gene expression profiles between
oligodendrogliomas and astrocytomas can be primar-
ily explained by the impact of characteristic tumor
class-specific mutations (oligodendrogliomas: 1p/19q co-

deletion, CIC mutations; astrocytomas: TP53 mutations)
and differences in the composition of the tumor microen-
vironment, but not by distinct expression programs of
glial lineages of malignant cells. They compared oligoden-
drogliomas defined based on their histology and the pres-
ence of the 1p/19q co-deletion to astrocytomas defined
based on their histology and the presence of mutations in
TP53 or ATRX. This is similar to our analysis. Our 1p/19q
subgroup has the same histological and genetic features as
their oligodendrogliomas. Our IDHme subgroup is closely
related to their astrocytomas, except for differences in
histology. In accordance with [22], we observed downreg-
ulations of genes on 1p and 19q (Fig. 3) and upregulations
of genes of the p53 signaling pathway (Fig. 4c) in 1p/19q
compared to IDHme. We found similar evidences that
genes involved in cytoskeleton remodeling (e.g. APBB1IP,
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VAV1, ARPC1B, Fig. 6) were downregulated in 1p/19q
compared to IDHme, which might indicate potentially
existing morphological differences. Further, we found
significant expression differences between 1p/19q and
IDHme analyzing oligodendrocyte-like and astrocyte-
like expression programs from [22] (Additional file 8:
Figure S1A-B, t-test, P = 4.8 × 10−11). The 1p/19q
subgroup showed higher expression of genes of the
oligodendrocyte-like program than the IDHme subgroup,
whereas IDHme showed higher expression of genes of the
astrocyte-like program. Similarly, both groups also dif-
fered in their expression of microglia/macrophage marker
genes (Additional file 8: Figure S1C, t-test, P <0.03). Inter-
estingly, we found a weak trend that the 1p/19q and
IDHme subgroups differ in the expression of the stem-
ness program from [22]. Still, the majority of genes of
the stemness program showed similar expression levels in
both groups, but there were several genes with stronger
expression differences (Additional file 8: Figure S1D).
This included genes involved in cytoskeleton remod-
eling (absolute average log-ratio for 1p/19q compared
to IDHme >1; DCX,TMSB15A: upregulated in 1p/19q;
FNBP1L: downregulated in 1p/19q) andMYT1L, a known
key factor of neural differentiation, upregulated in 1p/19q
compared to IDHme.

1p/19q and IDHme tumors differ in stemness programs
Glioma stemness programs have been characterized over
the last years suggesting important regulatory roles
for different members of the HOX [20, 56] and SOX
[20–22, 57] gene families. Roles of SOX genes in devel-
opment and pathology have been reviewed in [58]. We
thus analyzed our regulatory network (Additional file 7)

for characteristic expression differences of both gene fam-
ilies between 1p/19q and IDHme. Our network includes
seven HOX genes (HOXA4, HOXA5, HOXA6, HOXA7,
HOXA11, HOXA13, HOXC4) and four SOX genes (SOX6,
SOX8, SOX12, SOX13). Interestingly, all HOX genes were
downregulated in 1p/19q compared to IDHme, whereas
all SOX genes were upregulated in 1p/19q compared to
IDHme (Fig. 7). This indicates the activity of different
stemness programs between 1p/19q (potentially SOX-
driven) and IDHme (potentially HOX-driven) tumors.
Moreover, this is also supported by already known

cancer-relevant functions of different genes. HOXA4
overexpression suppressed cell motility and spreading in
ovarian cancer [59]. HOXA5 downregulation increased
stemness, cell plasticity and aggressiveness of breast can-
cer [60], and upregulation induced stemness loss in colon
cancer [61]. HOXA7 overexpression enhanced prolifera-
tion, migration, invasion and metastasis of liver cancer
[62].HOXA11was reported to represent a potential tumor
suppressor in different cancers [63, 64]. HOXC4 overex-
pression of was observed in lymph node metastases of
prostate cancer [65]. Interestingly, different SOX genes
have already been reported to be involved in oligoden-
drocyte development. Alterations of corresponding gene
expression patterns can therefore be important for tumor
development. SOX6 regulates different stages of oligo-
dendrocyte development by repressing cell specification
and terminal differentiation and by influencing cell migra-
tion patterns [66]. SOX8 is expressed in immature glia of
the developing cerebellum and in cerebellar tumors [67]
and has important functions in oligodendrocyte devel-
opment and differentiation [68, 69]. SOX13 regulates the
differentiation of specific neurons [70].

Fig. 7 HOX and SOX signature distinguishing 1p/19q from IDHme. Average log-fold expression differences of HOX and SOX genes between the
1p/19q and the IDHme subgroup. Genes downregulated in 1p/19q compared to IDHme are shown in blue and upregulated genes are shown in
red. Gene expression differences between tumors of both groups were highly significant with q-values clearly less than 0.01 (Additional file 6)
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Discussion
First, we analyzed gene copy number data of histologically
classified oligodendrogliomas from TCGA and revealed
three molecular subgroups by hierarchical clustering of
gene copy number data alone (Fig. 1). We used additional
information about the presence of a 1p/19q co-deletion
[8] and an IDH mutation [11] to further characterize
these subgroups. In accordance with previous findings
for histologically classified oligodendrogliomas [10, 71]
and gliomas in general [19], we observed a large 1p/19q
subgroup characterized by concurrent 1p/19q co-deletion
and IDH mutation, an intermediate IDHme subgroup of
tumors that mainly show an IDH mutation but no com-
monly overrepresented gene copy number alterations, and
a small 7a10d subgroup showing a concurrent duplication
of chromosome 7 and a deletion of chromosome 10 where
most tumors lacked IDH mutations. In addition, consid-
ering Verhaak [26] and G-CIMP [15] classes, the 1p/19q
and the IDHme subgroup resembled each other, whereas
the 7a10d subgroup strongly deviated from these two sub-
groups also in terms of significantly lower overall patient
survival (Fig. 2). This, in combination with the molecular
characteristics of the 7a10d subgroup, suggests that these
tumors might rather represent glioblastoma-like tumors
[3]. This is also supported by a refined molecular classifi-
cation of gliomas in [20]. Thus, tumors of our small 7a10d
subgroup may have been falsely classified as oligoden-
drogliomas based on histology alone, which is not unlikely
considering difficulties of pure histological classifications
[6]. We therefore decided to focus our further analyses on
the comparison of the 1p/19q and the IDHme subgroups.
Second, we performed an in-depth analysis of the

1p/19q and IDHme subgroups deriving a characteristic
gene expression signature that distinguished tumors of
both groups (Fig. 3). Interestingly, many of these signa-
ture genes were part of signaling pathways involved in
the regulation of cell proliferation, differentiation, migra-
tion, and cell-cell contacts (Fig. 4). Several of these path-
ways have already been reported to be involved in glioma
development (e.g. PI3K-AKT, MAPK, VEGF signaling)
[27, 33, 72, 73]. The strong downregulation of these path-
ways in the 1p/19q subgroup compared to the IDHme
subgroup might be associated with a better sensitivity to
treatment and prognosis of (1p/19q) oligodendrogliomas
compared to other low-grade gliomas [74, 75].
Third, to better understand differences between the

1p/19q and the IDHme subgroup, we reconstructed
a gene regulatory network capable to explain gene
expression differences between both subgroups (Figs. 5
and 6). Interestingly, we revealed that several poten-
tial hub transcription factors involved in remodeling of
the cytoskeleton (e.g. APBB1IP, VAV1, ARPC1B), apop-
tosis (CCNL2, CREB3L1), and neural development (e.g.
MYTIL, SCRT1, MEF2C) were differentially expressed

between both subgroups. Since all or the vast majority
of tumors of these two subgroups show IDH mutations,
the globally observed expression differences are likely to
be strongly influenced by the 1p/19q co-deletion. More-
over, we observed characteristic expression differences
between HOX and SOX transcription factors (Fig. 7). All
HOX genes included in our network were downregulated
and all SOX genes were upregulated in 1p/19q com-
pared to IDHme. This indicates that the 1p/19q subgroup
and the IDHme subgroup express different stemness pro-
grams. Recent findings of specific HOX and SOX gene
expression patterns for different types of gliomas indicate
an important role of both gene families in brain tumors
[20–22]. This is also supported by the recent finding
that SOX2 repression is an early driver of gliomagenesis
that blocks the differentiation of neural stem cells in an
in-vitro model of low-grade astrocytomas [76]. Further
experimental studies are required to analyze our revealed
stemness signatures.
Finally, it is important to discuss the revealed molecular

subtypes in the light of the new WHO 2016 brain tumor
classification scheme [18]. All oligodendrogliomas that
we analyzed have been classified by the TCGA accord-
ing to the WHO 2007 brain tumor classification scheme
[4], which was state-of-the-art when the tumors were
obtained. This older classification is purely based on his-
tology, whereas the new WHO 2016 classification addi-
tionally considers the 1p/19q-co-deletion and the IDH
mutation status. There would be differences in the group-
ing of tumors, but a reclassification of the analyzed tumors
is not straightforward and would require expert knowl-
edge of neuropathologists that have to consider histo-
logical and molecular data. Therefore, we cannot realize
this reclassification for the considered TCGA data set,
but we can interpret our subgroups with respect to the
new WHO 2016 classification. Considering our 7a10d
subgroup, information about the gain of chromosome
7 and the deletion of chromosome 10 are not consid-
ered at all in the new WHO 2016 classification system
[18]. Thus, tumors of these subgroup would still not be
classified as glioblastomas if no clear signs of high malig-
nancy (necrosis, pathological vascular proliferation) are
observed in histology. It is likely that such signs were
not present in nearly half of the 7a10d tumors (6 of 15),
otherwise these tumors would have been assigned the
WHO grade IV instead of grade II according to the WHO
2007 brain tumor classification system. Therefore, these
tumors of our 7a10d subgroup might rather be clas-
sified as astrocytoma IDH-wildtype or IDH-mutant (if
histological and molecular data are conclusive) or even
as oligodendroglioma, NOS (if histological and molecu-
lar data are inconclusive) according to the WHO 2016
brain tumor classification system. This may change in
future [77]. Such low-grade gliomas without any signs of
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high malignancy and without IDH mutation still repre-
sent an area of ongoing research [78]. Further, like for
the WHO 2007 brain tumor classification, all tumors of
our 1p/19q subgroup would also be classified as oligoden-
drogliomas (IDH-mutant and 1p/19q-codeleted) accord-
ing to the WHO 2016 brain tumor classification system.
This is also supported by the characteristic overexpression
of SOX genes. In contrast, tumors of our IDHme subgroup
would now be classified as astrocytoma IDH-mutant or
IDH-wildtype also when oligodendroglia-like features are
present in histology. This is further supported by the pres-
ence of characteristic ATRX (30 of 45 tumors) or TP53
(35 of 45 tumors) mutations in IDH-mutated tumors [18].
It is important to note that the new WHO 2016 brain
tumor classification system does not change the results
of our study. The observed molecular differences between
subgroups exist independent of the underlying classifi-
cation system. Still, one should always be aware of the
underlying classification system. In the light of the new
WHO 2016 brain tumor classification system, we per-
formed an in-depth comparison of oligodendrogliomas
(IDH-mutant and 1p/19q co-deleted) represented by our
1p/19q subgroup to astrocytomas (vast majority IDH-
mutant) represented by our IDHme subgroup. This is sup-
ported by our finding that the 1p/19q subgroup expressed
an oligodendrocyte-like program and that the IDHme
subgroup expressed an astrocyte-like program [22].

Conclusions
Our study confirms prior findings about the molecular
subtyping of histologically classified oligodendrogliomas
and further provides novel insights into gene expres-
sion differences between subtypes. It is important to
note that we were able to derive these subtypes purely
based on gene copy number data alone. Additional infor-
mation about the presence of a 1p/19q co-deletion and
an IDH mutation were only considered subsequently to
further characterize these subgroups. The in-depth com-
parison of the 1p/19q and IDHme subgroups provides
novel insights into differences at the level of single genes,
pathways, and regulatory networks that have not been
reported so far.We identified a characteristic gene expres-
sion signature that distinguishes both subgroups includ-
ing several known signaling pathways that impact on cell
proliferation, migration, and angiogenesis. We derived a
gene regulatory network that can explain expression dif-
ferences between both subgroups. Our network-based
analysis enabled us to predict novel putative major regu-
lators that contribute to the manifestation of differences
between both subgroups. Several of these major regu-
lators are known to be involved in the regulation of
cytoskeleton remodeling, apoptosis, and neural develop-
ment. Moreover, we also revealed a characteristic HOX
and SOX gene expression signature that distinguishes

both subgroups suggesting the activity of different glioma
stemness programs.
Further, the analyzed oligodendroglioma data set rep-

resents an important resource for future research, but
researchers have to be aware that these tumors were
classified by TCGA according to the WHO 2007 brain
tumor classification system. We hope that the discussion
of our findings in the context of the new WHO 2016
classification will raise awareness for the fact that brain
tumor classification systems can vary considerably. This
is important for the interpretation of the results of our
retrospective study and for future studies based on the
considered TCGA data set.
In summary, our in-depth study focused on the analysis

of molecular data of histologically classified oligoden-
drogliomas. Especially with respect to an oligodendroglial
phenotype, characteristic expression differences associ-
ated with histological classification may also exist for
other types of gliomas. Future studies with already exist-
ing molecular data of histologically classified oligoden-
drogliomas, oligoastrocytomas, and astrocytomas could
search for such patterns and evaluate their value for
molecular tumor classification.
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Placement and summary of the publication

The work on this study was motivated by my involvement in the SyTASC (Systems-based Ther-
apy of AML Stem Cells) project, which was funded by the German Cancer Aid with the goal to
identify molecular factors that can explain survival differences of acute myeloid leukemia (AML)
patients with a mutation of DNMT3A.

AML is a highly malignant and very heterogeneous cancer affecting myeloid blood cells.
AML is characterized by a rapid growth of abnormal immature myeloblasts that lost their ability
to differentiate leading to the replacement of normal cells in bone marrow and blood (Döhner
et al. (2015)). One of the most frequently mutated genes in AML is the DNA methyltransferase
DNMT3A (The Cancer Genome Atlas Research Network (2013a)), which is known to be impor-
tant for normal hematopoiesis (Challen et al. (2011); Yang et al. (2015)). DNMT3A-mutations
have been associated with shorter survival of AML patients in different studies (e.g. Ribeiro
et al. (2012); Renneville et al. (2012)). Still, some DNMT3A-mutant patients have also been
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reported to show long survival or even a long-term remission (Ploen et al. (2014); Sun et al.
(2016)). Molecular factors that explain these survival differences were not known so far and
molecular differences distinguishing short- and long-lived DNMT3A-mutant patients had not
been intensively studied, but such knowledge would be very important to improve patient strat-
ification. We therefore decided to search for such factors in publicly available omics profiles of
DNMT3A-mutant AML patients.

We initially analyzed genome-wide somatic mutation profiles of DNMT3A-mutant patients
from TCGA (The Cancer Genome Atlas Research Network (2013a)) by hierarchical cluster-
ing revealing two patient subgroups with strong differences in survival. We further determined
molecular mutation and expression signatures that distinguished both subgroups. We found
that the presence of FLT3 and/or NPM1 mutations, two known genes frequently mutated in
AML and associated with poor prognosis, contribute to the observed survival differences of
DNMT3A-mutant patients. We also observed an upregulation of genes of the p53, VEGF and
DNA replication pathway and a downregulation of genes of the PI3K-Akt pathway in short- com-
pared to long-lived patients. We further identified that the majority of microRNAs was down-
regulated in the short-lived group compared to the long-lived group and that some of these
microRNAs have not been linked to AML so far (miR-153-2, miR-3065, miR-95, miR-6718). We
learned gene regulatory networks to identify potential major regulators that distinguished both
subgroups revealing several genes and microRNAs with known roles in AML pathogenesis, but
also novel candidates involved in the regulation of hematopoiesis, cell cycle, cell differentia-
tion and immunity. Moreover, the characteristic gene mutation and expression signatures that
distinguished short- from long-lived patients were also predictive for independent DNMT3A-
mutant AML patients from other cohorts and could also contribute to further improve existing
prognostic scoring systems.

Our study represents the first in-depth computational approach that characterizes molecu-
lar factors associated with survival differences of DNMT3A-mutant AML patients. This could
contribute to the development of robust markers for an improved patient stratification.
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Survival differences and associated 
molecular signatures 
of DNMT3A‑mutant acute myeloid 
leukemia patients
Chris Lauber1, Nádia Correia2, Andreas Trumpp2, Michael A. Rieger3, Anna Dolnik4, 
Lars Bullinger4, Ingo Roeder1,5 & Michael Seifert 1,5*

Acute myeloid leukemia (AML) is a very heterogeneous and highly malignant blood cancer. Mutations 
of the DNA methyltransferase DNMT3A are among the most frequent recurrent genetic lesions 
in AML. The majority of DNMT3A‑mutant AML patients shows fast relapse and poor survival, but 
also patients with long survival or long‑term remission have been reported. Underlying molecular 
signatures and mechanisms that contribute to these survival differences are only poorly understood 
and have not been studied in detail so far. We applied hierarchical clustering to somatic gene mutation 
profiles of 51 DNMT3A‑mutant patients from The Cancer Genome Atlas (TCGA) AML cohort revealing 
two robust patient subgroups with profound differences in survival. We further determined molecular 
signatures that distinguish both subgroups. Our results suggest that FLT3 and/or NPM1 mutations 
contribute to survival differences of DNMT3A‑mutant patients. We observed an upregulation of 
genes of the p53, VEGF and DNA replication pathway and a downregulation of genes of the PI3K‑
Akt pathway in short‑ compared to long‑lived patients. We identified that the majority of measured 
miRNAs was downregulated in the short‑lived group and we found differentially expressed microRNAs 
between both subgroups that have not been reported for AML so far (miR-153-2, miR-3065, miR-95, 
miR-6718) suggesting that miRNAs could be important for prognosis. In addition, we learned gene 
regulatory networks to predict potential major regulators and found several genes and miRNAs with 
known roles in AML pathogenesis, but also interesting novel candidates involved in the regulation 
of hematopoiesis, cell cycle, cell differentiation, and immunity that may contribute to the observed 
survival differences of both subgroups and could therefore be important for prognosis. Moreover, 
the characteristic gene mutation and expression signatures that distinguished short‑ from long‑lived 
patients were also predictive for independent DNMT3A‑mutant AML patients from other cohorts 
and could also contribute to further improve the European LeukemiaNet (ELN) prognostic scoring 
system. Our study represents the first in‑depth computational approach to identify molecular factors 
associated with survival differences of DNMT3A‑mutant AML patients and could trigger additional 
studies to develop robust molecular markers for a better stratification of AML patients with DNMT3A 
mutations.

Acute myeloid leukemia (AML) is a highly malignant cancer of myeloid blood cells affecting about one million 
people globally in  20151,2. It most frequently occurs in older adults and shows a relatively poor five-year survival 
rate of about 25%, which is worsening with increasing age of a patient at  diagnosis3. AML is characterized by 
a rapid growth of abnormal, immature myeloblasts that lost their ability to differentiate, which replace normal 
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cells in the bone marrow and blood. At the level of underlying genetic aberrations, AML is very heterogeneous. 
Mutations in several genes are required for leukemic transformation affecting multiple steps of the differentia-
tion  pathway4,5. In addition, different cytogenetic abnormalities of significant prognostic relevance, ranging 
from translocations (t(8;21), t(15;17)) and inversions (inv(16)) with relatively good prognosis to deletions of 
whole chromosomes (5, 7) or chromosomal arms (5q) and abnormalities on the q-arm of chromosome 3 (3q) 
associated with high risk, have been observed in AML  patients6–8.

The first genome of a cytogenetically normal AML patient was sequenced in  20089. The Cancer Genome Atlas 
(TCGA) Research Network made enormous efforts to perform whole-genome or exome sequencing, transcrip-
tome and microRNA (miRNA) sequencing, and DNA methylome analysis of a large cohort of adult AML cases 
in  201310. These and other sequencing-based studies (e.g.11–14) enabled the identification of several genetic and 
genomic alterations acquired during AML pathogenesis. Subtypes of AML are associated with distinctive patterns 
of altered gene expression (e.g.15–17). Likewise, a prognostic and functional role of widespread dysregulation of 
miRNAs has  emerged18,19. Regarding somatic mutations, it was found that only about a dozen genes are affected 
on average in an AML patient, which is considerably less than in most other human  cancers10. The by far top-
ranking recurrently mutated genes in AML are FLT3, NPM1 and DNMT3A10.

The DNA methlytransferase 3A (DNMT3A) forms a gene family of DNA methyltransferases together with 
DNMT3B and DNMT1, where the encoded proteins DNMT3A and DNMT3B add methyl groups to unmodi-
fied DNA by conversion of cytosine to 5-methylcytosine, while DNMT1 maintains existing DNA methylation 
after cell  division20. DNMT3A is highly expressed in embryonic stem  cells21,22. A DNMT3A deletion in mouse 
hematopoietic stem cells has been shown to inhibit  differentiation23 and a deletion of DNMT3A in human 
hematopoietic stem cells resulted in increased self-renewal and blockage of  differentiation24. This importance of 
DNMT3A for normal hematopoiesis is in line with its high frequency of somatic mutations in AML, which are 
found in about 20% of  patients9,25. It is assumed that DNMT3A mutations are acquired months or years before a 
potential onset of AML from hematopoietic stem cells or multipotent precursor cells leading to a pre-leukemic 
state that potentially leads to the development of  AML26,27. In addition, significant associations of DNMT3A 
mutations with IDH1/2 mutations, FLT3 internal tandem duplications (ITD) and tyrosine kinase domain muta-
tions (TKD), and NPM1 mutations have been  reported9,28.

Notably, around two-thirds of the DNMT3A mutations affect the R882 codon in the methyltransferase domain 
of DNMT3A9,25. Moreover, DNMT3A mutations in general or those affecting the R882 residue have been linked 
to shorter survival rates of  patients9,14,25,29–31, but there is also an ongoing debate about the prognostic values of 
R882 and non-R882 DNMT3A mutations. This debate is fueled by the fact that, in contrast to generally poor 
prognosis, some DNMT3A-mutant patients show relatively long survival or even go into long-term remission 
with DNMT3A mutations remaining  stable32,33. Molecular characteristics associated with such prognosis differ-
ences of DNMT3A-mutant patients have not been intensively studied so far.

Here, we initially analyzed genome-wide somatic mutation profiles of DNMT3A-mutant patients from the 
TCGA AML cohort by hierarchical clustering. Our analysis revealed two patient subgroups with profound dif-
ferences in overall survival rates. Additional analyses of gene and miRNA expression data in combination with 
inference of gene regulatory networks enabled us to identify molecular patterns of expression dysregulation as 
well as gene modules that distinguish both subgroups. The characteristic gene mutation and expression signa-
tures also enabled to separate DNMT3A-mutant AML patients of two independent cohorts into a short- and 
long-lived group. The results of our computational analysis point toward several genetic regulators and cellular 
processes that are potentially involved in a manifestation of apparent survival differences of AML patients with 
DNMT3A mutations.

Results
Two subgroups of DNMT3A‑mutated AML patients differ in overall survival. Considering the 
gene mutation data from TCGA for all 197 AML patients, we found that 51 of them had a DNMT3A mutation. 
We observed in total 5 frame-shift, 43 missense, 6 nonsense and 3 splice site DNMT3A mutations including 6 
patients that had two of these mutations. For 29 (57%) of the patients, the mutation affected the R882 codon 
at second (n=22) or first (n=7) codon position (Supplementary Table 1). The 51 DNMT3A-mutated patients 
had on average 13.3 mutated genes (min=2, max=24) from 1,890 genes analyzed in total. Hierarchical cluster-
ing of the 51 DNMT3A-mutated patients based on binary mutational profiles of the 1,890 genes revealed two 
well-separated subgroups of nearly equal size (24 vs. 27 patients; Fig. 1A). Importantly, the two subgroups of 
DNMT3A-mutant patients showed a significant difference in overall survival (P < 0.013; Fig. 1B, Supplementary 
Table 2). Compared to 138 AML patients without a DNMT3A mutation, only the subgroup with shorter overall 
survival (short-lived subgroup from here on) showed a statistically significant difference in survival (P < 0.0001), 
while the other (long-lived subgroup) did not (P < 0.345), although a considerable deviation of its survival curve 
from that of the non-mutated patients was observed (Fig. 1B). Generally, DNMT3A-mutant patients showed 
significantly shorter survival than patients without a DNMT3A mutation (Fig. 1B, P = 0.004). Further, the short-
lived subgroup was enriched with patients harboring a R882 DNMT3A mutation (n=17, 71%) compared to 
patients with non-R882 mutations (n=7, 29%), while the long-lived subgroup was composed of 12 patients with 
R882 (44%) and 15 patients with non-R882 mutations (56%). However, this difference in the proportion of R882 
mutations of both subgroups was not significant (Chi-squared test, P = 0.106). We further compared the num-
ber of mutated genes and cytogenetic abnormalities between the short- and long-lived subgroup. The median 
number of mutated genes of short-lived patients was significantly smaller than for long-lived patients (Supple-
mentary Fig. 5; U-Test: P < 0.004; short-lived: 10.5; long-lived: 17). The majority of short- (71%) and long-lived 
patients (59%) had normal cytogenetic profiles. Interestingly, the long-lived group contained 7 patients (26%) 
with duplications or rearrangements of chromosome 8 that have not been observed in the short-lived group.

4. Original works

70



3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12761  | https://doi.org/10.1038/s41598-020-69691-8

www.nature.com/scientificreports/

To evaluate the robustness of the grouping of the 51 DNMT3A-mutated patients into two subgroups that 
differ in survival, we repeated the clustering for data subsets obtained by excluding different randomly selected 
fractions of patients considering 10,000 repetitions of this procedure (see Methods for details). For the vast 
number of subsets, the difference in patient survival between the subgroups remained significant or stayed close 
to the level of significance obtained for the full data set, although p-values of the log-rank tests increased with 
increasing number of excluded patients (Fig. 1C). The latter is not unexpected considering the limited number 
of DNMT3A-mutated AML patients.

For the analysis in which two patients were excluded at random, we observed that few subsets showed excep-
tionally high p-values of the corresponding log-rank tests. The patients excluded from these subsets exclusively 
belonged to a set of in total 4 members of the short-lived subgroup (TCGA case identifiers: TCGA-AB-2931-03, 
TCGA-AB-2824-03, TCGA-AB-2896-03, TCGA-AB-2945-03). Each of these four patients died, and their sur-
vival times were, respectively, 0, 30, 214, and 243 days after diagnosis. The four patients showed mutations in 13, 
5, 3 and 13 genes, respectively; all four had an NPM1 and two of them an FLT3 mutation, while the remaining 
mutations were found only once among the four patients.

Frequent FLT3 and NPM1 mutations distinguish short‑ and long‑lived DNMT3A‑mutated 
patients. In order to understand whether and how patients from the two identified subgroups differ at the 
molecular level, we first searched for somatic mutations of specific genes that were enriched in one subgroup 

Figure 1.  Clustering of DNMT3A-mutated AML patients into two subgroups that differ in survival. (A) 
Hierarchical clustering of 51 DNMT3A-mutated AML patients; tip labels indicate TCGA identifiers (left subtree: 
short-lived, right subtree: long-lived). (B) Kaplan-Meier survival curves for the patients from (A) (black) and 
the two subgroups (short-lived: red, left subtree in A, survival data available for all 24 patients; long-lived: 
blue, right subtree in A, survival data available for 23 of 27 patients) as well as for 138 AML patients without a 
DNMT3A mutation (gray). Log-rank tests: P < 0.013 for red vs. blue, P < 0.0001 for red vs. grey, P = 0.345 for 
blue vs. grey, P = 0.004 for black vs. grey. (C) Robustness of clustering the DNMT3A-mutated patients into two 
subgroups that differ in survival, as assessed by randomly excluding patients and performing a hierarchical 
clustering and subsequent log-rank test on the data subset. Each boxplot shows the distributions of p-values of 
the log-rank tests for 10,000 data subsets. (D) Kaplan-Meier survival curves analyzing the impact of FLT3 and 
NPM1 co-mutations for all 17 affected patients of the short-lived subgroup (red) and all 12 affected patients of 
the 138 patients without a DNMT3A-mutation (grey). Log-rank test: P < 0.094.
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compared to the other. We found that each patient of the short-lived subgroup had at least one of either FLT3 
(20 of 24 patients) or NPM1 (21 of 24 patients) mutated, with 17 (71%) of them showing mutations in both of 
these genes. In sharp contrast, FLT3 and NPM1 were mutated in only one and seven patients of the 27 patients 
from the long-lived subgroup, respectively. We did not find any gene with strong enrichment of mutations in 
patients from the long-lived subgroup. Instead, we only observed slightly increased numbers of five IDH2 and 
four MT-CYB mutations in this subgroup. These two genes were not mutated in any of the patients from the 
short-lived subgroup.

To test whether or not the short survival of patients from the short-lived subgroup is mainly driven by FLT3-
NPM1 co-mutations, we separately analyzed a subset of in total 29 AML patients from the TCGA AML cohort, 
which had these two genes mutated. Seventeen of them also had a DNMT3A mutation and showed a considerably 
shorter survival compared to the remaining 12 patients without a DNMT3A mutation (Fig. 1D; Log-rank test, 
P < 0.094). Although not statistically significant but considering the small sample size, this points towards an 
effect of DNMT3A mutations on survival that is independent of FLT3 and NPM1 co-mutations.

Also patients either having a FLT3 mutation or a NPM1 mutation in combination with a DNMT3A mutation 
showed shorter overall survival than patients without a DNMT3A mutation (Supplementary Fig. 2). Further, 
the overall survival of patients with NPM1-DNMT3A co-mutations was very similar to those of patients with 
FLT3-NPM1-DNMT3A co-mutations. Co-mutations of DNMT3A with FLT3, NPM1 or both genes were gener-
ally associated with poor survival.

In addition, we determined the specific type of FLT3 mutation for each patient and analyzed if FLT3-ITD and 
FLT3-TKD differ in their impact on survival of DNMT3A-mutant AML patients from TCGA (Supplementary 
Table 1, Supplementary Fig. 6). The 20 FLT3 mutations in the short-lived subgroup were split into 11 FLT3-ITD 
and 9 FLT3-TKD mutations. The one FLT3 mutation in the long-lived group was a FLT3-ITD mutation. There 
was no significant difference in survival of DNMT3A-mutant AML patients distinguished by their type of FLT3 
mutation. Both groups did also not significantly differ in survival in comparison to DNMT3A-mutant AML 
patients without FLT3 mutations.

We further analyzed the gene mutation profiles within the short- and long-lived group by additionally dividing 
each corresponding subtree in Fig. 1A into its two major patient subgroups (Supplementary Fig. 3). Both derived 
short-lived subgroups strongly differed in the number of co-mutations of DNMT3A with FLT3 or NPM1. The 
two derived long-lived subgroups strongly differed in the number of co-mutations of DNMT3A with IDH1 or 
IDH2 and also in the number of NPM1 mutations.

Since DNMT3A-R882 mutations were increased in the short-lived group, we analyzed if mutations of FLT3 
or/and NPM1 are found more frequently in AML patients with DNMT3A-R882 mutations compared to patients 
with other DNMT3A mutations. We therefore considered a large independent cohort of AML  patients34 and 
found a significant enrichment of DNMT3A-R882 and NPM1 co-mutations and a significant enrichment of 
concurrent DNMT3A-R882, NPM1, FLT3 mutations compared to the corresponding groups of patients with 
other DNMT3A mutations (Supplementary Fig. 4, Fisher’s exact test: P < 0.01), whereas no significant difference 
in the proportion of FLT3 mutations was found. We also observed systematic differences considering the per-
centage of peripheral blood blasts, white blood cell counts, platelet counts, and the hemoglobin level indicating 
that differentiation capabilities of AML cells with R882 and non-R882 DNMT3A mutations may differ at least 
to some extent (Supplementary Fig. 4).

A gene expression signature discriminates short‑ and long‑lived DNMT3A‑mutated 
patients. Next, we used RNA-Seq gene expression data from TCGA for the 51 DNMT3A-mutated patients 
and conducted a differential gene expression analysis to search for genes that differ in their expression levels 
between the short- and long-lived subgroup. We identified 260 differentially expressed genes (DEGs) using an 
FDR-corrected p-value (q-value) cut-off of 0.1 (Fig. 2A, Supplementary Table 3).

When grouping the 260 DEGs into different functional categories (transcription factors, oncogenes, tumor 
suppressor genes, kinases, phosphatases, signaling and metabolic pathway genes, etc.35), we only found a sig-
nificant enrichment for known cancer-relevant signaling pathway genes. This included four genes involved in 
cytokine receptor interactions (CCL23, FAS, KITLG, TSLP) that were upregulated in the short-lived relative to 
the long-lived subgroup, two genes of the p53 signaling pathway (FAS, TP53I3) that were also upregulated, six 
genes involved in PI3K-Akt signaling (EFNA1, FGF9, GNG11, GNG2, GNG7, ITGA6) that were downregulated, 
two genes of the VEGF signaling pathway (PIK3CB, PLA2G4A) that were upregulated, and two genes involved 
in DNA replication (POLE4, RNASEH2C) that were also found to be upregulated in the short-lived subgroup 
(Fig. 2B).

Since we compared expression profiles of two relatively large groups, individual genes can also vary in their 
expression within a group while still being differentially expressed between both groups. This can result in 
additional subgroups that are masked by the global differential expression analysis. We therefore performed 
a hierarchical clustering of the patients based on expression profiles of the 260 DEGs, which resulted in four 
expression groups (EGs, Supplementary Table 2) of patients with characteristic large-scale expression differ-
ences for the 260 genes (Fig. 2C). EG1 exclusively contained 15 patients from the long-lived subgroup, while 
EG3 included 16 short-lived and a single long-lived patient (Fig. 2C, Table 1). These two groups with evident 
differences in gene expression thus strongly resemble the long- and short-lived subgroup clustering based on 
the somatic mutation data. The other two groups of patients (EG2a and EG2b) represented a mixture of in total 
five patients from the short-lived and ten patients from the long-lived subgroup with intermediate expression 
levels for most of the 260 DEGs (Fig. 2C, Table 1).

When inspecting additional meta-information from TCGA for the patients of the different expression groups, 
we observed no systematic differences regarding cytogenetic abnormality types. Instead, there was a notable 
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tendency that patients of EG2b and EG3, the two groups with a high or very high fraction of short-lived patients, 
were more frequently classified to have FAB type M4 (acute myelomocytic leukemia) or M5 (acute monoblastic 
leukemia or acute monocytic leukemia) (Table 1). The FAB types M4 and M5 have previously been associated 
with a high mutational burden at  diagnosis36. This was not confirmed for our cohort, where the median number 
of mutated genes for patients within EG2b and EG3 was significantly smaller than for patients within EG1 and 
EG2a (U-Test: P < 0.002; EG2b and EG3: 11; EG1 and EG2a: 17; Supplementary Fig. 1).

A miRNA expression signature discriminates short‑ and long‑lived DNMT3A‑mutated 
patients. To further analyze differences between the short- and the long-lived subgroup with respect to gene 
regulation, we considered miRNA expression data from TCGA available for 42 of the 51 DNMT3A-mutated 
AML patients. As for the gene expression data, we conducted a differential expression analysis and identified 25 
differentially expressed miRNAs discriminating patients from the two subgroups using a q-value cut-off of 0.1 
(Fig. 3A, Supplementary Table 3).

Interestingly, the relative fractions of up- and downregulated miRNAs in the short-lived compared to the 
long-lived subgroup were highly uneven. The large majority of miRNAs (21 out of 25) were downregulated in the 
short-lived subgroup, while only four miRNAs were upregulated. An altered miRNA expression can have different 
reasons: (i) it could be caused by the altered expression of a host gene that contains the affected miRNA, or (ii) the 
expression of a miRNA can be altered directly and independent of its host gene or in the absence of a host gene 
(e.g. a miRNA encoded in an intergenic chromosomal region). Therefore, we tested whether or not the expression 
of a miRNA is significantly correlated with the expression of its host gene across all DNMT3A-mutant patients.

Figure 2.  Genes differentially expressed between patient subgroups and enrichment analysis. (A) Volcano plot 
showing the relative expression change of the 15,623 genes between patients from the short-lived and long-lived 
subgroup. Genes with a significant change in expression (q < 0.1) are in black, others in gray. (B) Signaling 
pathways enriched with genes that are differentially expressed between the short- and the long-lived subgroup; 
separately shown for genes upregulated (red) and downregulated (blue), respectively, in the short-lived relative 
to the long-lived subgroup. (C) Gene expression heatmap of 260 differentially expressed genes. Rows are Z 
score-scaled. Column coloring indicates patients from the short-lived (red) and the long-lived (blue) subgroup. 
Row coloring highlights known transcription factors (yellow), genes involved in signaling pathways (green) and 
genes showing both of these annotations (black).
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Based on this correlation analysis, we found that the first category, e.g. miRNAs with significant host gene 
expression correlation, contained 6 of the 25 differentially expressed miRNAs (Fig. 3B). The expression of miR-
199a-2, whose gene co-localizes with the dynamin gene DNM3, was positively correlated with DNM3 expres-
sion (r = 0.432, P = 0.004). Also the expression of miR-3154 and miR-199a-1, which co-localize with the other 
two dynamin genes, were positively correlated with the expression of their host genes (miR-3154 vs. DNM1: 
r = 0.390, P = 0.011; miR-199a-1 vs. DNM2: r = 0.266, P = 0.089), although not statistically significant after 
correction for multiple testing (i.e., q > 0.1). Comparing short- to long-lived patients, the expression of DNM1 
and DNM3 was moderately decreased, whereas the expression of DNM2 did not differ between both subgroups 
(Supplementary Table 3). The other five miRNAs that had significantly positive expression correlations with 
their host genes were miR-10a (host gene HOXB3), miR-126 (EGFL7), miR-362 (CLCN5), miR-26a-1 (CTDSPL) 
and miR-551b (EGFEM1P).

The second category contained 19 of 25 differentially expressed miRNAs that did not show coexpression 
with their host genes or are encoded in inter-genic regions and do not have a host gene (Fig. 3B). An associa-
tion with AML has been reported previously for 13 of them (Supplementary Table 4). For instance, miR-181a-2, 
miR-181b-2 and miR-30a are known to be associated with a favorable prognosis upon up-regulation of their 
 expression19,37, which is in line with a strong down-regulation of these three miRNAs in the short-lived relative 
to the long-lived subgroup. Similarly, we could reconfirm an up-regulation of let-7b in the context of NPM1 
mutations and a down-regulation of miR-130a in the context of FLT3  mutations37 in the short-lived subgroup. 
Further, we found a down-regulation of miR-331 in the short-lived subgroup, which differs  from19 reporting 
that the up-regulation of miR-331 was associated with poor prognosis. We also observed decreased expression 
of miR-98 in the short-lived subgroup, which differs from previous findings that miR-98 is up-regulated in the 
background of NPM1 mutations (Supplementary Table 4). In addition, no direct associations with AML have 
been reported so far for the 4 miRNAs (miR-153-2, miR-3065, miR-6718, miR-95) (Supplementary Table 4), but 
associations with other types of cancer suggest that differences in their expression between short- and long-lived 
DNMT3A-mutant AML patients could also be important for prognosis (see “Discussion”).

Regulatory networks reveal potential molecular major regulators distinguishing short‑ from 
long‑lived DNMT3A‑mutated patients. In order to investigate the combined effect of gene and miRNA 
expression on gene regulation we integrated these two types of data using a regulatory network-based approach. 
We started by reconstructing a signature gene-specific network to reveal potential regulators that distinguish 
short- from long-lived patients. Considering the 260 differentially expressed genes observed between both 
groups (Fig. 2A, Supplementary Table 3), we modeled the expression of a signature gene as a linear combina-
tion of the expression levels of the other 259 signature genes distinguishing short- from long-lived patients 

Table 1.  Assignment of short- and long-lived patients to our revealed gene expression groups in combination 
with meta-information about cytogenetic abnormality types and FAB types of the DNMT3A-mutant AML 
patients from TCGA. See also Supplementary Fig. 1 for an overview of the number of mutated genes per 
subgroup.

Expression group

EG1 EG2a EG2b EG3

Group composition

Short-lived patients 0 2 3 16

Long-lived patients 15 7 3 1

Cytogenetic abnormality types

n.a. 1 1 0 2

8+ 3 1 0 0

7q- 1 1 0 0

Complex 1 0 0 1

Complex 5p- 1 0 0 0

Normal 7 6 4 14

Normal 8+ 1 0 1 0

Normal 7q- 0 0 1 0

FAB types

n.a. 0 1 0 0

M0 2 0 0 0

M1 5 3 0 3

M2 4 3 0 3

M3 0 0 0 1

M4 3 2 1 6

M5 0 0 5 4

M7 1 0 0 0
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(see “Methods” for details). The prediction of robust links between genes during reconstruction of the network 
was complicated due to the small number of DNMT3A-mutated patients. Therefore, we repeated the network 
inference 100 times with different, randomly selected training sets of patients to identify network links that 
robustly occurred in at least two-thirds of the networks with a q-value of 0.1 or smaller. This enabled to predict 
the expression values of on average 18.3% of the 260 signature genes. In a second step, we further added the 
expression values of all 514 miRNAs as additional predictors to the network model and repeated the analysis. 
This slightly improved the fraction of signature genes with predictable expression levels to 21.9%. The predic-
tion accuracy of those genes, quantified by computing correlation coefficients between measured and predicted 
expression levels on the network-specific test sets, was high and significantly shifted into the positive range 
(mean correlation: 0.805, Wilcoxon signed rank test: P < 0.0001, Supplementary Fig. 5).

The resulting consensus network included 76 genes and 9 miRNAs (Fig. 4, Supplementary Table 5). This 
network consisted of several modules that were composed of two to eight genes. Two of the larger network 
modules were up-regulated in the short-lived subgroup and contained, respectively, four HOXA and three HOXB 
genes which are well-known major regulators of cell development and that have frequently been reported to be 
dysregulated in cancers including  AML38–40. Six additional network modules with at least three genes and their 
components are summarized in Table 2. Each of the potential regulators in these network modules (labeled nodes 
in Fig. 4) was down-regulated in the short-lived compared to the long-lived subgroup. Interestingly, two of the 
six modules (network modules 1 and 4) contained genes that code for proteins expressed in erythrocytes or other 
blood components (HBM, RHD, GYPA, GYPC, CA1), or have been implicated in blood-associated diseases like 
anemia (GYPA) (Table 2). In addition, RPS19 of network module 6, encoding a ribosomal protein, has been 
linked to anemia, too (Table 2). Genes of the remaining three modules (network modules 2, 3, and 5) are involved 
in innate or adaptive immunity (ZAP70, CD3D, IFITM1, TNFRSF17, IGKV4-1, IGKC, C1QTNF4) (Table 2).

We further analyzed the protein-coding genes that were directly connected to one of the nine miRNAs in the 
network representing potential targets for miRNA-based post-transcriptional regulation (Fig. 4). Among them 
were five genes with known transcription factor activity (PBX3, HOXB3, LEF1, HOXA7, LBH) and three genes 
with oncogenic potential (PAPD7, PBX3, LEF1) for which a role in other cancers has been suggested previously 
(Table 3). Interestingly, a role during leukemogenesis and/or implications for clinical prognosis in AML has 
been reported for eight of the nine miRNAs (Supplementary Table 4). This included the differential regulation 
of let-7b and miR-130a already mentioned above as well as of miR-10a and miR-486 in the context of NPM1 or 
FLT3 mutations, effects on prognosis upon differential regulation of miR-128-1 and miR-150, an increased cell 
survival and proliferation prompted by expression changes of miR-196b targeting HOXB8, and regulation of 
miR-628 by  cytokines18,19,37,41,42.

Table 2.  Non-HOX network modules and potential major regulators.

Regulator gene GeneCards annotation summary

Network module 1

SLC4A1 Anion exchanger; role in O2/CO3 exchange in erythrocytes

HBM Hemoglobin subunit Mu; iron ion and oxygen binding

RHD Rh blood group D antigen; ammonium transmembrane transporter activity

GYPA erythrocyte membrane protein; MN blood group receptor; hematopoietic stem cell differentiation; associated with 
Anemia, Autoimmune Hemolytic

CA1 Carbonate dehydratase and hydro-lyase activity; highest concentration in erythrocytes; nitrogen metabolism

Network module 2

ZAP70 T cell receptor associated kinase; T cell development; lymphocyte activation

CD3D Part of T cell receptor/CD3 complex; associated with immunodeficiencies

EVL Enhances actin nucleation and polymerization; actin and profilin binding

IFITM1 Interferone-induced transmembrane protein; antiviral activity; cell adhesion and control of cell growth and migra-
tion; regulates osteoblast differentiation

Network module 3

TNFRSF17 TNF receptor of major B lymphocytes; autoimmune response; transduces signals for cell survival and proliferation

IGKV4-1 V segment of variable domain of immunoglobulin light chain

IGKC Constant region of immunoglobulin heavy chains

Network module 4

GYPC Erythrocyte membrane protein; Gerbich blood group; response to elevated platelet cytosolic Ca2+; regulation of 
mechanical cell stability

MREG Melanoregulin; incorporation of pigments into hair; membrane fusing

Network module 5

SORL1 Transmembrane signaling receptor activity; low-density lipoprotein binding

C1QTNF4 Pro-inflammatory cytokine; activation of NF-kappa-B; IL6 up-regulation

Network module 6

RPS3 Ribosomal protein; mRNA activation

RPS19 Ribosomal protein; mRNA activation; associated with anemia
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Validation based on independent DNMT3A‑mutant AML patients. We considered gene muta-
tion and gene expression data of independent DNMT3A-mutated AML patients from the German-Austrian 
AML Study  Group34,43–45 to analyze whether the characteristic gene mutation and expression profiles that dis-
tinguished short- and long-lived DNMT3A-mutated TCGA AML patients are also of potential prognostic rel-
evance for other patients.

To analyze the transferability of the prognostic relevance of our initial grouping of gene mutation profiles 
of DNMT3A-mutated TCGA AML patients into a short- and long-lived subgroup (Fig. 1A, Supplementary 
Table 1), we considered gene mutation data of 208 DNMT3A-mutant AML patients from the German-Austrian 
AML Study Group that were initially treated in a similar manner followed by a bone marrow transplantation. We 
determined for each of these new patients the most similar DNMT3A-mutated TCGA AML patient and assigned 
its corresponding label (short- or long-lived) to the new patient. We found that the gene mutation profiles of 
short- and long-lived DNMT3A-mutated TCGA AML patients enabled to separate the 208 DNMT3A-mutant 
AML patients from the German-Austrian AML Study Group into a short- and long-lived subgroup that differed 
significantly in survival (Fig. 5A, log-rank test: P < 0.003).

Table 3.  Network miRNAs and potentially directly or indirectly regulated protein-coding genes. The logFC-
column quantifies the expression level of the miRNA within the short-lived subgroup relative to the long-lived 
subgroup.

miRNA logFC Connected gene GeneCards annotation summary

hsa-let-7b 1.01 PAPD7 Poly(A) RNA polymerase; oncogenic MAPK signaling; DNA repair; sister chromatin adhe-
sion

hsa-mir-10a 2.97 PBX3 Astrocytoma association; misregulation in cancer; transcription factor activity

hsa-mir-10a 2.97 HOXB3 Transcription factor in development, host gene of hsa-mir-10a

hsa-mir-128-1 − 0.54 ARPP21 cAMP-regulated phosphoprotein; nucleic acid and calmodulin binding; enriched expression 
in CNS

hsa-mir-130a − 1.88 FAM69B Cysteine-rich type II transmembrane protein of unknown function

hsa-mir-150 − 0.81 LEF1 T cell receptor binding; Wnt signaling, cancer association; transcription factor activity

hsa-mir-196b 1.16 HOXA7 Transcription factor in development

hsa-mir-486 − 0.93 LBH transcriptional activator in mitogen-activated protein kinase signaling pathway

hsa-mir-628 − 0.60 BEND2 participation in protein and DNA interactions during chromatin restructuring or transcrip-
tion

hsa-mir-6718 2.61 LRMDA Leucin-rich; melanocyte differentiation

Figure 3.  Differentially expressed miRNAs and co-expression of miRNAs and their host genes. (A) Volcano 
plot showing the relative expression change of 514 miRNAs between patients from the short-lived and long-
lived subgroup. miRNAs with a significant change in expression (q < 0.1) are colored, others in gray. (B) 
Correlation of miRNA and corresponding host gene expression values across 42 DNMT3A-mutated patients. 
Pearson correlation coefficients were set to zero (dashed vertical line, yellow coloring) for miRNAs without a 
protein-coding host gene. For both figure panels, triangles indicate miRNAs that show (white) or do not show 
(turquoise) a significant coexpression (positive correlation) with their respective host gene (q < 0.1).
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In addition, we also analyzed the transferability of the prognostic relevance of the characteristic gene expres-
sion signature that distinguished short- and long-lived DNMT3A-mutated TCGA AML patients (Fig. 2A, Sup-
plementary Table 2, q < 0.1). We therefore considered gene expression data of 63 DNMT3A-mutant AML patients 
from the University Hospital of Ulm that were also part of two clinical trials of the German-Austrian AML Study 
 Group44, 45. The majority of these patients received a bone marrow transplantation (47 of 63). We determined for 
each of these new patients the similarity to the TCGA-based short- and long-lived signature and assigned to each 
patient the label of the most similar class (short- or long-lived). We found that the characteristic gene expres-
sion signature that distinguished short- and long-lived DNMT3A-mutated TCGA AML patients also enabled to 
separate the 63 DNMT3A-mutant AML patients from the University Hospital of Ulm into a short- and long-lived 
subgroup that differed significantly in survival (Fig. 5B, log-rank test: P < 0.03). This separation significance 
was further improved when we only considered the 47 patients that received a bone marrow transplantation 
(log-rank test: P < 0.016).

Further, we also analyzed if our short- and long-lived classification of DNMT3A-mutant AML patients can 
help to improve the widely considered European LeukemiaNet (ELN) prognostic scoring  systems46,47. Risk clas-
sifications according to the ELN 2010  system46 were publicly available for 192 of 208 patients of the German-
Austrian AML Study Group considered for the gene mutation-based  validation34. Our additional stratification 
into short- and long-lived patients significantly improved the risk stratification of patients of the ELN 2010 

Figure 4.  Gene and miRNA regulatory network. Nodes represent either genes that are differentially expressed 
between the two patient subgroups or miRNAs selected as predictors during network inference. Nodes are 
colored according to whether a gene/miRNA shows an increase or decrease in expression in the short-lived 
relative to the long-lived patient subgroup. Gene/miRNA names are shown for putative regulator nodes (out-
degree > 0) with node sizes being proportional to their out-degree. Potential activating and repressing links 
are shown in yellow and green color, respectively; only links present in at least two-thirds of the networks were 
considered. Note that links can represent direct or indirect regulatory dependencies or may only represent 
correlations.
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intermediate-1 risk category (Fig. 6A, log-rank test: P = 0.0008). Also patients of the ELN 2010 adverse risk 
group could potentially benefit from our additional stratification (Supplementary Fig. 7). Further, our additional 
stratification had no impact on the stratification of patients of the ELN 2010 intermediate-2 or favorable risk 
categories (Supplementary Fig. 7). We also analyzed the impact of our short- and long-lived stratification on 
the revised ELN 2017 risk  classification47. This was possible for 134 of 208 patients, but excluded patients with 
a FLT3-ITD mutation, because the FLT3-ITD-to-wild-type allelic ratios required for a reclassification were not 
publicly  available48. In this limited analysis, we found that our additional stratification had no impact on the 
ELN 2017 favorable risk category, but there were too few patients to interpret the additional stratification of the 
other risk categories (Supplementary Fig. 9A-B).

In addition, the ELN 2010 risk classification was also available for 62 of 63 patients of the Ulm cohort con-
sidered for the gene expression-based  validation34. We found that our additional stratification into short- and 
long-lived patients again significantly improved the risk stratification for patients of the ELN 2010 intermediate-1 
risk category (Fig. 6B, log-rank test: P = 0.0011). Interestingly, there was also a clear tendency that patients of 
the ELN 2010 favorable risk category could potentially benefit from our additional stratification (Supplementary 
Fig. 8). Further, our additional stratification had no impact on patients of the ELN 2010 intermediate-2 or adverse 
risk categories (Supplementary Fig. 8). We also analyzed the impact of our additional stratification on the revised 
ELN 2017 risk classification that was available for 37 of 63  patients48. We observed that patients of the ELN 2017 
favorable risk group can potentially benefit from our additional stratification (Supplementary Fig. 9C,D). Similar 
trends were also present for the ELN 2017 intermediate and adverse risk categories. However, there were too few 
patients within the different ELN 2017 risk categories to analyze the significance of these trends.

Nevertheless, all these results round off our different computational studies for the TCGA cohort and indicate 
that the characteristic discriminative gene mutation and expression signatures that distinguished short- from 
long-lived DNMT3A-mutated TCGA AML patients are also predictive for other independent patient cohorts 
and potentially useful to improve patient stratification.

Discussion
A somatic mutation of DNMT3A occurs in about one fourth of adult AML cases. Mutations of this gene have 
frequently been associated with poor  survival9,14,25,30,31, but also substantially longer survival or long-term remis-
sions have been reported for some DNMT3A-mutant AML  patients32,33. Detailed molecular differences that 
may contribute to these survival differences have not been characterized so far. This motivated us to analyze all 
DNMT3A-mutant patients of the TCGA AML cohort with the help of well-established computational tools. We 
identified two robust subgroups of DNMT3A-mutant patients purely based on clustering of somatic gene muta-
tion profiles and further found that both subgroups showed significant survival differences.

Further comparisons showed that the short-lived subgroup had a strong enrichment of mutations of the R882 
codon of the catalytic methyltransferase domain of DNMT3A, whereas the number of R882 and non-R882 muta-
tions was nearly equal within the long-lived subgroup. This mutation type-specific effect on prognosis has been 

Figure 5.  Validation based on independent DNMT3A-mutant AML patients. (A) Gene mutation based 
validation. Kaplan-Meier curves for an independent cohort of 208 DNMT3A-mutated AML with bone marrow 
transplantation from the German-Austrian AML Study Group. For each of these patients, the most similar 
DNMT3A-mutated AML patient of the TCGA cohort was determined by counting mismatches between the 
corresponding gene mutation profiles. Each patient was assigned to the short-lived or to the long-lived group 
based on the class label of the most similar TCGA patient (short-lived: red, 79 patients; long-lived: blue, 129 
patients). Log-rank test for short- vs. long-lived: P < 0.003. (B) Gene expression based validation. Kaplan-Meier 
curves for an independent cohort of 63 DNMT3A-mutated AML patients from the University Hospital of Ulm 
that were also part of the German-Austrian AML Study Group. For each of these patients, correlations between 
its signature gene expression profile with the average short-lived and long-lived signature gene expression 
profiles of the DNMT3A-mutated AML patients from TCGA were computed. Each patient was assigned to the 
short-lived or to the long-lived group based on the maximum of both correlations (short-lived: red, 43 patients; 
long-lived: blue, 20 patients). Log-rank test for short- vs. long-lived: P < 0.03.

4. Original works

78



11

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12761  | https://doi.org/10.1038/s41598-020-69691-8

www.nature.com/scientificreports/

noted  before25, but was not sufficient for a full discrimination of our two subgroups. Thus, additional molecular 
factors are likely to contribute to the observed survival differences.

Mutated DNMT3A has been shown to induce genomic instability in a human leukemic cell line  model49. We 
therefore compared the short- and long-lived subgroup in terms of mutated genes and cytogenetic rearrange-
ments. Interestingly, the number of mutated genes was significantly smaller in the short-lived subgroup. In addi-
tion, the majority of patients of both subgroups had normal cytogenetic profiles, but especially some patients of 
the long-lived subgroup showed duplications or rearrangements of chromosome 8 that have not been observed 
within the short-lived subgroup. Thus, the overall shorter survival of patients in the short-lived group cannot be 
explained by a greater mutational burden or increased rates of abnormal cytogenetic profiles.

We found NPM1 and/or FLT3 mutations in every short-lived patient but only in few long-lived patients. This 
overrepresentation of NPM1 and/or FLT3 mutations in the short-lived subgroup is not unexpected, because 
DNMT3A, NPM1, and FLT3 are the most frequently mutated genes found in  AML10. The co-occurrence of muta-
tions of all three genes has previously been suggested to define a specific subtype of AML with unique epigenetic 
 features10 and frequent mutations of NPM1 and FLT3 in DNMT3A-mutant patients have also been observed in 
other AML  studies9,25,50. Importantly, NPM1 and FLT3 are both established prognostic markers in routine clinical 
 practice47. FLT3 mutations (ITD: internal tandem duplication of the juxtamembrane region, TKD: point muta-
tions in the second tyrosine kinase domain) have been associated with increased relapse risk and poor outcome 
of AML  patients51,52. The frequency of FLT3-ITD and FLT3-TKD mutations was nearly identical in the short-
lived subgroup and an additional stratification according to the specific type of FLT3 mutation did not further 
improve our classification of DNMT3A-mutant AML patients from TCGA. NPM1 mutations frequently co-occur 
together with FLT3-ITD mutations, which counteracts a favorable prognosis that is observed for AML patients 
that only have a NPM1 mutation but no FLT3  mutation12,47,53. This is also supported by our two subgroups. The 
majority of short-lived patients had co-mutations of NPM1 and FLT3, whereas long-lived patients did not show 
NPM1 mutations in the background of FLT3 mutations. Thus, our study clearly indicates that NPM1 and/or 
FLT3 mutations are likely to contribute to the prognosis of DNMT3A-mutant patients. This is supported by the 
previous findings that DNMT3A mutations jointly act with FLT3 and NPM1 mutations to promote resistance 
to anthracycline  chemotherapy54 and that concurrent mutations of DNMT3A, FLT3, and NPM1 have also been 
associated with poor prognosis of AML  patients55. In addition, all our survival analyses in combination with 
the presence or absence of DNMT3A mutations further support that DNMT3A mutations have an additional 
negative impact on survival that is independent of FLT3 and/or NPM1 mutations or co-mutations of both genes. 

Figure 6.  Improvement of ELN 2010 risk classification by additional short- and long-lived stratification. (A) 
Gene mutation-based validation of the 81 independent validation patients from the German-Austrian AML 
Study Group of the ELN 2010 risk category intermediate-1 (Inter-1). For each of these patients, the most similar 
DNMT3A-mutated AML patient of the TCGA cohort was determined by counting mismatches between the 
corresponding gene mutation profiles. Each patient was assigned to the short-lived or to the long-lived subgroup 
based on the class label of the most similar TCGA patient. Kaplan-Meier curves of this additional stratification 
are shown in red for the 49 Inter-1-short-lived patients and in blue for the 32 Inter-1-long-lived patients. The 
basic Kaplan-Meier curve without additional stratification of these patients is shown in grey. Log-rank test 
for Inter-1-short- vs. Inter-1-long-lived: P = 0.0008. A global overview of the additional stratification of all 
ELN 2010 risk categories is shown in Supplementary Fig. 7. (B) Gene expression based validation of the 35 
independent validation patients from the Ulm cohort of the ELN 2010 risk category intermediate-1 (Inter-1). 
For each of these patients, correlations between its signature gene expression profile with the average short-lived 
and long-lived signature gene expression profiles of the DNMT3A-mutated AML patients from TCGA were 
computed. Each patient was assigned to the short-lived or to the long-lived subgroup based on the maximum 
of both correlations. Kaplan-Meier curves of this additional stratification are shown in red for the 25 Inter-1-
short-lived patients and in blue for the 10 Inter-1-long-lived patients. The basic Kaplan-Meier curve without 
additional stratification of these patients is shown in grey. Log-rank test for Inter-1-short- vs. Inter-1-long-
lived: P = 0.0011. A global overview of the additional stratification of all ELN 2010 risk categories is shown in 
Supplementary Fig. 8.
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This is supported by findings for the presence or absence of DNMT3A mutations in AML patients with FLT3 
 mutations50. Additional experiments should be done to elucidate whether the DNMT3A mutation cooperates 
with FLT3 and NPM1 co-mutations.

Since an increased rate of DNMT3A-R882 mutations was observed for our short-lived subgroup, we also 
analyzed a large independent cohort of AML  patients34 and observed an enrichment of DNMT3A-R882 and 
NPM1 co-mutations and an enrichment of concurrent DNMT3A-R882, NPM1, and FLT3 mutations compared 
to AML patients with DNMT3A mutations that did not affect the R882 codon. Interestingly, the blood composi-
tion of these groups differed in dependency of the type of the DNMT3A mutation indicating an impact on the 
differentiation capabilities of AML cells. Additional experiments are required to validate the accumulation of 
NPM1 and/or FLT3 mutations and to analyze the differentiation capabilities of AML cells in the background of 
specific DNMT3A mutations.

We further compared the gene expression profiles of the short- and long-lived subgroup revealing a molecular 
signature of 260 protein-coding genes that distinguished both subgroups. This signature included many transcrip-
tion factors and genes of cancer-associated pathways like p53, VEGF and PI3K-Akt signaling and DNA replica-
tion. Importantly, a clustering of the patients based on these signature genes largely recapitulated the short-lived 
and long-lived subgroup and further revealed a set of patients with mixed expression levels. This indicates that 
at least three different transcriptional programs are associated with survival differences of DNMT3A-mutant 
AML patients. Further, it is important to note that NPM1 or FLT3 mutations or co-mutations of both genes that 
were observed for each short-lived patient also contribute to the observed expression differences. Therefore, 
our comparison of short- and long-lived gene expression profiles does not allow to disentangle the individual 
contributions of DNMT3A, FLT3, or NPM1 mutations. Still, all our survival analyses comparing the presence or 
absence of DNMT3A mutations in the background of NPM1 and/or FLT3 mutations suggest an additional contri-
bution of DNMT3A mutations. This additional contribution is also included in the gene expression signature and 
further supported by our gene expression-based classification of independent DNMT3A-mutant AML patients.

Alterations of miRNA expression profiles play an important role in  AML18,19. We therefore compared the 
miRNA expression profiles of the short- and long-lived subgroup. We revealed a dominant trend of miRNA 
downregulation in the short-lived subgroup suggesting a wide-spread activation of otherwise repressed protein-
coding genes, including known AML oncogenes and other oncogenes that were not associated with AML before. 
Further, associations with AML prognosis and/or mutation of NPM1 and FLT3 have already been reported for 
most miRNAs, but we also identified four miRNAs that have not been reported for AML so far. This included 
three miRNAs that were downregulated in the short-lived subgroup (i) miR-153-2 implicated in brain, lung, 
liver and epithelial  cancers56–59, (ii) miR-3065 for which an association with altered gene expression regulation 
in breast tumors was  suggested60, and (iii) miR-95 known to be differentially expressed in different human 
 cancers61–63 with shown impacts on cell proliferation, invasion, migration, and apoptosis in a pancreatic tumor 
cell line and in hepatocellular  carcinoma61,63. We did not find cancer-associated reports for the fourth miRNA 
miR-6718, but its strong 2.6-fold upregulation in the short-lived subgroup and the selection by our regulatory 
network approach suggests an association with prognosis. In addition, we discovered a downregulation of all 
three dynamin genes in the short-lived subgroup based on their co-localized miRNAs. This may have an impact 
on endocytosis, asymmetric cell divisions, and blockage of immune  signals64–67. This suggests that these miRNAs 
could represent important biomarker candidates to discriminate between short- and long-lived DNMT3A-mutant 
AML patients. Additional experimental studies should be done to validate these potential markers and to better 
understand how they alter molecular mechanisms in DNMT3A-mutant AML patients.

We also learned gene regulatory networks to identify potential major regulators and to delineate modules 
of protein-coding and miRNA genes that were altered between the short- and long-lived subgroup. Due to the 
relatively small number of AML patients with DNMT3A mutations, our consensus network contained only rela-
tively few genes compared to networks from similar studies of other  cancers68,69. Still, those genes present in the 
network and the links between them were inferred with high confidence. It is important to note that the inferred 
links between genes can reflect direct or indirect regulatory dependencies or only represent correlations, because 
our network reconstruction method is based on correlations between gene expression levels. Yet, larger sub-
networks can still point toward cellular pathways that are altered between both subgroups. Our revealed modules 
suggest alterations of several cellular processes in short-lived relative to long-lived patients. This included genes 
of the PI3K-Akt and p53 signaling pathway involved in  AML70,71 and an upregulation of HOX genes altered in 
 leukemia38,40. In addition, we also identified genes that are expressed in different blood components. This included 
three genes downregulated in the short-lived subgroup - SLC4A1, GYPA and RPS19 - that have previously been 
associated with  anemia72–74. Notably, SLC4A1 and its co-factor GYPA play a major role in oxygen and carbon 
dioxide exchange in  erythrocytes75,76 and their downregulation in the short-lived subgroup could be associated 
with less differentiated leukemic cells. Further, we found three gene modules with immunity-related functions 
downregulated in the short-lived subgroup and an increased number of differentially expressed cytokine receptor 
signaling pathway genes suggesting that immune evasion might be more effective in the short-lived subgroup, 
but immunosuppression in AML is still poorly  understood77. The identified putative major regulators potentially 
represent important candidates for the development of biomarkers that could distinguish between short- and 
long-lived patients. Additional experimental validation studies are required to test their prognostic potential 
and to further characterize their functional role in DNMT3A-mutant AML patients.

Moreover, we also showed that the characteristic gene mutation and expression signatures that distinguished 
short- from long-lived DNMT3A-mutant TCGA AML patients contain relevant information that can be used 
to classify other independent DNMT3A-mutant AML patients as short- or long-lived. We demonstrated this for 
DNMT3A-mutant AML patients from the German-Austrian AML Study Group. Thus, our revealed molecular 
signatures could potentially provide a useful basis to enable a better stratification of DNMT3A-mutant AML 
patients to more precisely identify patients that are of high risk for a fast relapse. This is also supported by the 
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interpretation of our results with respect to the cytogenetic and molecular risk classification provided by TCGA, 
which assigned more than 82% of the DNMT3A-mutant patients to the intermediate risk group, whereas the 
remaining patients were assigned to the poor risk group, except one unclassified patient. Since our approach 
significantly improved the stratification of these TCGA patients, this also clearly indicates that our approach can 
improve this cytogenetic and molecular risk classification. The value of our approach is further supported by 
the significant improvement of the stratification of patients that were assigned to intermediate-1 risk category 
according to the ELN 2010 prognostic scoring  system46. Further, we also observed potential benefits of our 
additional stratification for the ELN 2010 risk categories favorable and adverse, but more patients would have 
been required for a robust significance analysis. In addition, an analysis of the revised ELN 2017 risk  categories47 
indicated that the favorable and intermediate risk groups could potentially benefit from our additional stratifica-
tion, but this should be taken with caution, because this analysis was only possible for a subset of our validation 
patients. Additional validation studies are necessary to analyze how our findings generalize to other patient 
cohorts and how they impact on patient outcome. Future studies should include an extended comparison to the 
revised ELN 2017 scoring system. This was only partly possible in our study, because molecular data such as the 
FLT3-ITD-to-wild-type allelic ratio required for a reclassification were not publicly available for the patients 
considered in our study. However, a recent study has shown that DNMT3A-mutant AML patients have a worse 
prognosis than DNMT3A wild type patients for individual ELN 2017 risk  categories48. Our study indicates that 
an improved stratification of individual risk categories might even be possible within the group of DNMT3A-
mutant AML patients.

Our study represents the first in-depth computational approach to identify molecular factors associated with 
survival differences of DNMT3A-mutant AML patients. This may provide a basis to develop molecular markers 
for improved patient stratification. Future studies are required to further analyze and validate the findings of 
our computational study.

Methods
Molecular data. Gene and miRNA expression data and somatic mutations of patients from the TCGA AML 
cohort were obtained from the TCGA data portal (gdc.cancer.gov). After excluding lowly expressed genes with 
a counts per million value smaller one in two-thirds or more of the patients, we normalized the raw expression 
data using the R/Bioconductor package limma with normalization method cyclic  loess78. By using information 
on the DNMT3A mutational status from the somatic mutation data, we determined 51 DNMT3A-mutated AML 
patients and derived corresponding gene expression (47 of 51 patients, 15,623 genes) and miRNA (42 of 51 
patients, 514 miRNAs) data sets. Details to DNMT3A-mutations and processed data sets are provided in Sup-
plementary Table 1.

Clustering based on somatic mutation data. We considered each of the 51 AML patients with a 
DNMT3A mutation and created for each patient its binary gene mutation profile by setting the entry of each 
gene to one (mutated) or to zero (not mutated) in dependency of the patient-specific gene mutation status. 
Next, we performed a hierarchical clustering of tumors based on binary profiles of the somatic mutation data 
using R with 1 minus Pearson correlation as distance measure with distances ranging from zero (two completely 
identical mutation profiles) to one (two completely different mutation profiles) in combination with Ward’s 
clustering method (ward.D2)79. Note that the Pearson correlation coefficient of two binary variables is equal 
to the phi  coefficient80. Hierarchical clustering initially considers each patient as a separate cluster and then 
repeats the following two steps until all clusters are merged together: (i) identification of the two clusters with 
the smallest distance followed by (ii) merging of these two clusters into a joint cluster. These iterative merging 
steps enable to reveal the hierarchical relationships between the clusters that are stored in a tree-structure called 
dendrogram. Two tumor subgroups were derived by cutting the resulting clustering dendrogram into two sub-
trees. These subgroups were named ’short-lived’ and ’long-lived’ according to survival differences between the 
subgroups (see below). The TCGA identifiers for patients of the short- and long-lived subgroup are provided 
in Supplementary Table 2. To assess the robustness of this patient clustering, we excluded k randomly selected 
patients, repeated the clustering into two groups as described above, and performed a log-rank test for survival 
differences between the groups (see below). We tested k = 2, 4, 6, 8, 10 , and repeated the analysis 10,000 times 
for each k. We did not test larger values of k owing to the relatively small number of DNMT3A-mutated AML 
patients in the data set.

Survival analysis. Information about days to death (for patients with status ’Dead’) or days to last follow-up 
(for patients with status ’Alive’) was taken from the TCGA clinical data (Supplementary Table 2). Last follow-up 
events were considered as non-informative censoring events. We generated survival curves and performed log-
rank tests using the R package survival81.

Identification of differentially expressed genes and miRNAs. Differential gene and miRNA expres-
sion analysis between the short- and long-lived subgroup was done following limma’s standard  workflow78. 
Results of the gene and miRNA expression analysis are provided in Supplementary Table  3. Differentially 
expressed (signature) genes or miRNAs were selected using an FDR-adjusted p-value (q-value) cut-off of 0.1.

Gene and pathway annotation enrichment analysis. Gene, signaling pathway, and metabolome 
annotations were obtained  from35. The number of signature genes per annotation category was counted sepa-
rately for up- and downregulated genes and their significance of enrichment per category was calculated using 
Fisher’s exact test.
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Signature‑specific regulatory network inference. We inferred transcriptional regulatory networks 
that model the expression of a signature gene as a linear combination of weighted expression values of the other 
signature genes and, optionally, of miRNAs. Mathematical details to the underlying linear model are provided 
 in35,82. This approach has further been applied in similar studies of other human  cancers68,69,83,84. We learned 
two types of networks using (i) the expression values of signature genes and (ii) the expression values of signa-
ture genes and miRNAs as predictors. miRNA expression values were set to zero for patients without available 
miRNA profiles. Lasso  regression85 in combination with a significance test for  lasso86 were used to estimate 
the coefficients and their corresponding significance of the predictors for each signature gene-specific linear 
 model82. This sparse regression approach selects the most relevant predictors that best explain the observed 
expression levels of a signature gene across the DNMT3A-mutant AML patients.

Both network approaches were validated through cross-validation by repeated random sub-sampling. To this 
end, the data was randomly partitioned into a training set constituting three-quarter of the DNMT3A-mutated 
AML patients and a test set constituting the remaining one-fourth of patients. A network was constructed on 
the training data, and the expression of the signature genes was predicted and compared to the experimentally 
measured expression for the test data. This procedure was repeated 100 times. To assess prediction accuracy, we 
calculated Pearson correlation coefficients of predicted and measured gene expression averaged over the 100 
networks. A consensus network was constructed by including all links with q-values of 0.1 or smaller that were 
predicted in at least two-thirds of the 100 networks.

Validation based on independent DNMT3A‑mutant AML patients. To validate the separation 
capability of the characteristic gene mutation profiles of short- and long-lived DNMT3A-mutant AML patients 
from TCGA, we downloaded publicly available gene mutation profiles and clinical data of AML patients from 
https ://githu b.com/gerst ung-lab/AML-multi stage /tree/maste r/data34. We considered all 208 DNMT3A-mutated 
AML patients from the German-Austrian AML Study Group (AMLSG)43–45 that received a bone marrow trans-
plantation to obtain a large validation cohort of patients that were treated similarly. The majority of these patients 
(204 of 208) were part of two clinical trials (AMLHD98A:  7744; AMLSG0704:  12745) focusing on AML patients 
in the age range of 18 to 65. The other four patients were part of the AMLHD98B trial that considered AML 
patients of age 61 or  older43. Considered patients from AMLHD98A received an induction chemotherapy with 
idarubicin, cytarabine and etoposide (ICE) followed by allogeneic transplants. Treatment of considered patients 
form AMLSG0704 and AMLHD98B was similar, but patients were randomly assigned to receive ICE or ICE 
plus all-trans retinoic acid (ATRA) as induction therapy before  transplantation12. We computed the most similar 
DNMT3A-mutated TCGA AML patient for each of these 208 patients by counting mismatches between each 
corresponding pair of gene mutation profiles. We had to focus on 31 genes that overlapped with the mutated 
genes of DNMT3A-mutated TCGA AML patients, because the data  from34 was obtained by targeted sequenc-
ing of selected cancer genes. We assigned each of the 208 patients either to the short- or to the long-lived group 
based on the class label of the most similar TCGA patient and performed a survival analysis as described in the 
section ’Survival analysis’ above (Supplementary Table 6). Further, we also considered the European Leukemi-
aNet (ELN) 2010 risk  classification46 available for 192 of 208 patients to analyze if an additional stratification of 
each individual ELN 2010 risk category based on our short- and long-lived classification can improve this prog-
nostic scoring system (Supplementary Table 6). We realized this by an extended survival analysis for the patients 
of an individual risk category in comparison to our corresponding short- and long-lived classifications of these 
patients. Similarly, we also analyzed our stratification into short- and long-lived patients considering the revised 
ELN 2017 risk  classification47. This was only possible for 134 of 208 validation patients that were reclassified  in48 
(Supplementary Table 6). The other validation patients could not be considered, because FLT3-ITD-to-wild-type 
allelic ratios required for a reclassification were not publicly available.

To validate the separation capability of the gene expression signature of short- and long-lived DNMT3A-
mutant AML patients from TCGA, we considered a cohort of 218 AML patients from the University Hospital 
of Ulm of which 63 had a DNMT3A mutation. The majority of these 63 patients were part of the AMLSG0704 
clinical  trial45 (59) and the remaining 4 patients were part of the AMLHD98A clinical  trial44 of the German-
Austrian AML Study Group. The majority of these patients received a bone marrow transplantation (47 of 63). 
The AML gene expression profiles of these patients were measured on Affymetrix HG-U133 Plus 2 microar-
rays. We normalized the gene expression data set using  GCRMA87 in combination with a BrainArray design file 
(HGU133Plus2_Hs_ENTREZG 15.0.0). We focused on the 257 signature genes of the 260 signature genes from 
our TCGA analysis (Fig. 2A, Supplementary Table 3, q < 0.1) that were measured on the Affymetrix arrays. We 
computed for each of the 63 DNMT3A-mutated patients rank-based correlations (Kendall’s tau) between its 
signature gene expression profile and the average short-lived and long-lived signature gene expression profiles 
of the DNMT3A-mutated AML patients from TCGA. We assigned each patient either to the short-lived or to 
the long-lived group based on the maximum of both correlations and performed a survival analysis as described 
above (Supplementary Table 7). We also repeated this analysis only focusing on the 47 patients that received a 
bone marrow transplantation. Further, we again considered the ELN 2010 risk  classification46 available for 62 of 
63 patients (Supplementary Table 7) and performed an additional survival analysis to analyze if our short- and 
long-lived classification can improve the individual risk categories. Similarly, we analyzed our short- and long-
lived stratification considering the revised ELN 2017 risk  classification47 for the subset of 37 of 63 validation 
patients that could be reclassified  in48 (Supplementary Table 7).

Ethical approval and informed consent. Not applicable. No ethical approval was required for this study. 
All utilized public omics data sets were generated by otherswho obtained ethical approval.
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Data availability
Molecular data and meta-information of all considered TCGA AML patients are publicly available from The 
Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov/). Additional files attached to this manu-
script contain considered molecular data, survival information, and learned network links. Basic implementa-
tions of the algorithms considered for network inference are publicly available from GitHub (https://github.
com/seifemi/regNet).
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Placement and summary of the publication

Copy number alterations (CNAs) of large genomic regions are frequent in many tumor types,
but only few of them are assumed to be relevant for the cancerous phenotype. It had proven
exceedingly difficult to ascertain rare mutations that might have strong effects in individual
patients. At the time when we developed the computational framework that is underlying this
study, most existing methods focused on the analysis of somatic single nucleotide variants
(SNVs) and either considered mutation frequencies in a cancer population or the distribution
of mutations along the gene body to predict cancer driver genes. Virtually none of the existing
approaches for the identification of driver mutations was able to actually quantify the clinical risk
associated with individual DNA copy number alterations (e.g. Vogelstein et al. (2013); Hofree
et al. (2013); Davoli et al. (2013); Tamborero et al. (2013); Ding et al. (2015)). In addition, the
vast majority of theses studies only contained little validation of findings on independent patient
cohorts leaving the clinical relevance of large-scale predictions in doubt.

In this study, we demonstrated that a genome-wide transcriptional regulatory network learned
from gene expression and gene copy number data of 768 human cancer cell lines can be
used to quantify the impact of individual patient-specific gene CNAs on cancer-specific survival
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signatures. This network was highly predictive for gene expression in 4,548 clinical samples
originating from 13 different tissues. Focused analysis of tumors from six tissues revealed
that in an individual patient a combination of up to 100 gene CNAs directly or indirectly affect
the expression of clinically relevant survival signature genes. Importantly, rare patient-specific
gene CNAs (less than 1% in a given cohort) often had stronger effects on signature genes than
frequent gene CNAs. Such novel insights cannot be gained using basic single-gene tests or
CNA-frequency driven approaches. Subsequent integration with genomic data suggested that
frequency variation among high-impact genes was mainly driven by gene location rather than
gene function. Survival analyses on independent tumor cohorts revealed tumor-type specific
trends indicating that rare gene CNAs can be as important as frequent gene CNAs for the
prediction of patient survival. Further, an in-depth comparison to a related network-based
approach showed that the integration of indirectly acting gene CNAs significantly improved
the survival analysis.

The developed computational framework contributes to a personalized quantification of can-
cer risk, along with determining individual key risk factors and their downstream targets. In
addition, the key computational concepts for network inference and network propagation de-
veloped in this study formed the basis of my R package regNet (Seifert and Beyer (2018); see
Section 4.5). This paved the way to realize the search for driver gene candidates within the
region of the 1p/19q co-deletion of oligodendrogliomas (Gladitz et al. (2018)) and the search
for potential drivers involved in the regulation of radioresistance of prostate cancer (Seifert
et al. (2019)). Both studies are also part of this habilitation thesis (see Sections 4.6 and 4.7).
The value of our novel computational approach was also highlighted by the selection for a late
breaking research presentation at the joint conference on Intelligent Systems for Molecular Bi-
ology (ISMB) / European Conference on Computational Biology (ECCB) 2015 in Dublin given
by Prof. Dr. Andreas Beyer. Moreover, I received a prize for the best poster out of more than
130 posters at the conference of Systems Biology of Mammalian Cells (SMBC) 2016 in Munich.
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Abstract

It has proven exceedingly difficult to ascertain rare copy number alterations (CNAs) that may have strong effects in
individual tumors. We show that a regulatory network inferred from gene expression and gene copy number data of
768 human cancer cell lines can be used to quantify the impact of patient-specific CNAs on survival signature genes. A
focused analysis of tumors from six tissues reveals that rare patient-specific gene CNAs often have stronger effects on
signature genes than frequent gene CNAs. Further comparison to a related network-based approach shows that the
integration of indirectly acting gene CNAs significantly improves the survival analysis.

Keywords: Cancer genomics, Bioinformatics, Computational systems biology, Network biology, Network inference,
Network propagation, Gene copy number mutations

Background
Tumor cells harbor combinations of mutations that
together impair molecular pathways, which results in neo-
plastic transformation. Although only a relatively small
fraction of all mutations in any given cancer cell con-
tributes to tumorigenesis, it is emerging that many more
genes than previously thought determine clinically rel-
evant endpoints such as proliferation rates, metastatic
potential, or drug resistance [1, 2]. Clearly, hundreds of
genes have the potential to contribute to tumor pheno-
types [3], but we are still far from being able to quantify
individual cancer risks. The frequency at which specific
genes are mutated in a certain cancer cohort is an indi-
cator of clinical importance. Even though frequent muta-
tions (i.e. mutations that are more frequent than expected
by chance in a specific cohort) are more likely to have
tumor-related effects, individual cancer risks are most
likely not fully explained by frequent mutations alone
[1, 2]. Rare mutations could act in combination with fre-
quent mutations or they may, entirely independent from

*Correspondence: michael.seifert@tu-dresden.de
1Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden,
Institute for Medical Informatics and Biometry, Fetscherstr. 74, 01307, Dresden,
Germany
2National Center for Tumor Diseases (NCT), Dresden, Germany
Full list of author information is available at the end of the article

frequent mutations, establish a significant risk for the
patient on their own. Quantifying the risks associated
with rare mutations has been complicated by the follow-
ing reasons: (1) by definition, only a few patients carry
these mutations, which reduces the probability of observ-
ing them in clinical studies, (2) even if they are observed,
it is often difficult to quantify cancer risks statistically
by comparing carriers with non-carriers due to insuffi-
cient statistical power, (3) complex interactions with other
mutations (epistasis) may hide effects when analyzing sin-
gle mutations in isolation, and (4) rare mutations of indi-
vidual genes may have weak effects, but the co-occurrence
of a sufficient number of such mutations in the same cell
could significantly increase cancer risks. For example, a
set of oncogenes with small individual effects but residing
on the same chromosomal arm may establish a significant
selective advantage if this chromosomal arm is amplified
[3]. Essentially, we do not know how important rare muta-
tions are in comparison to frequently observed mutations,
simply because we are lacking the means to quantify their
effects. The specific pattern of small mutations (single
nucleotide variations or SNVs and small indels) in candi-
date genes can be used to prioritize putative driver genes
without using epidemiological information [2–5]. Also, it
has been shown that molecular networks can be used to

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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better stratify patient populations by considering frequent
and rare mutations together [1].
Apart from SNVs, DNA copy number alterations

(CNAs) and chromosomal instability are a hallmark of
cancer [6–8]. Further, CNA-affected genes with altered
expression levels are more likely to be involved in tumori-
genesis than affected genes with unchanged expression
levels [9]. This has been exploited in previous studies
to identify driver genes [10]. However, since CNAs fre-
quently alter the expression levels of directly affected
genes [9], these methods typically make many false posi-
tive predictions and require a large number of samples for
a reliable prediction of potential key drivers. Othermodel-
based approaches for the integrative analysis of gene copy
number and gene expression data have been developed
utilizing genetic linkage analysis [11] or network-based
approaches [12–14] to identify major regulators driving
tumorigenesis. All these methods (and many others) have
greatly contributed to the identification of potential CNA
tumor driver mutations and a better understanding of
tumorigenesis, but none of these methods allows us to
quantify the impact of rare gene CNAs.
Hence, novel computational methods are required to

explore the long tail of rare mutations in cancer. An
important step in this direction was done by [1], which
enables the stratification of tumors that rarely share
the same mutational profile into clinically relevant sub-
types. Recently, another study proposed a network-based
method that enables the identification of rare mutations
involved in the perturbation of pathways and protein
complexes involved in tumorigenesis [15]. This study
predicted significantly mutated sub-networks containing
dozens of genes rarely affected by mutations across dif-
ferent cancer types. Importantly, a common feature of [1]
and [15] is the use of specifically designed network prop-
agation algorithms to identify rarely mutated, but poten-
tially relevant genes. However, we are still lackingmethods
for directly quantifying the impact of rarely affected genes
on clinical endpoints such as survival.
Here, we present an approach exploiting the additional

information contained in gene expression data to quan-
tify potential effects of rare CNAs on clinically relevant
endpoints. Our framework rests on the notion that regu-
latory relationships between genes are fairly robust across
tumors, whereas the specific mutational pattern of a given
tumor is virtually private [1, 16]. Put differently, most
CNAs increase or decrease the activity of genes, while
potentially only a small fraction of them alter the regu-
latory relationships between genes. Hence, by using large
compendia of expression and mutation data sets, we can
establish regulatory relationships between genes in cancer
cells and quantify the effects of CNAs on gene expression.
Such a model can subsequently be used to analyze indi-
vidual tumors with knownmutational patterns to quantify

the impact of specific CNAs on global expression. Further,
by relating those expression changes to clinical endpoints,
we are able to quantify the effects of single CNAs on the
survival of an individual patient. Using this framework,
we can quantify direct (cis) effects and indirect (trans)
effects of CNAs, we can identify key regulators in CNA
regions (driver genes) with a particularly strong impact on
the expression of clinically relevant genes, we can compare
the importance of rarely mutated genes with frequently
mutated genes, and we can quantify the combined effects
of all CNAs on survival risk for an individual patient.
Our analysis shows that usually many gene CNAs together
influence individual patient survival by together impact-
ing on common molecular pathways. At the individual
level, it turns out that rare gene CNAs (less than 1 % fre-
quency in a given cancer cohort) can be as important as
frequent gene CNAs and we are able to specifically pin-
point potential candidate genes that are the most risky
rare and frequent gene CNAs in individual patients.

Results and discussion
Cancer cell transcriptional network
To predict the potential effects of gene CNAs in the
specific environment of tumor cells, we computation-
ally inferred a genome-wide transcriptional regulatory
network from human cancer cell lines of 24 differ-
ent tumor sites (Additional file 1: Figure S1) [17]. We
termed this model the cancer cell transcriptional network
(CCTN, Fig. 1). The input data for CCTN, consisting
of genome-wide gene copy number and gene expression
data, were strongly quality controlled for hybridization
artifacts (e.g. Additional file 1: Figure S2): each microar-
ray of the 991 cell lines wasmanually checked for potential
artifacts and 768 cell lines were kept after this filtering
step (Additional file 2: Table S1). To identify putative reg-
ulator genes for each of the considered 15,942 genes, we
modeled the expression level of each gene (target gene)
as a linear combination of the gene-specific copy number
and the expression levels of all other potential regulator
genes. Sparse regression based on lasso (least absolute
shrinkage and selection operator) [18] was used to select
those variables (target gene-specific copy number and
expression levels of other regulator genes) that best pre-
dict the expression level of a specific target gene, while
keeping the number of variables small. This approach has
previously been shown to perform well in similar tasks
[14, 19, 20]. We quantified the significance of the selected
predictors of each target gene [21] and kept only edges
with p values below 5 × 10−5 (unless stated otherwise).
Further, we removed potentially spurious regulator genes
in the chromosomal proximity of target genes that actu-
ally just reflect the copy number state of the target (see
‘Methods’ for details). This resulted in a sparse transcrip-
tional regulatory network (CCTN) comprising 36,786
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Fig. 1Methodological overview. Left A cancer cell transcriptional regulatory network (CCTN) was inferred from gene expression and corresponding
gene copy number data of 768 cancer cell lines of the Cancer Cell Line Encyclopedia (CCLE) and validated using data of thousands of tumor patients
from The Cancer Genome Atlas (TCGA) and thousands of gene-specific perturbation experiments from the Library of Integrated Network-based
Cellular Signatures (LINCS). Right Signature genes whose expression correlated with patient survival were determined for individual TCGA cohorts
and validated on independent test data. Center CCTN was applied to gene copy number profiles of individual tumor patients of TCGA cohorts to
predict the impacts of individual gene CNAs on cohort-specific survival signature genes and to separate short- from long-lived patients. The impact
prediction was validated using LINCS data, known cancer genes, and data from two independent clinical cohorts and new TCGA patients. CCLE
Cancer Cell Line Encyclopedia, CNA copy number alteration, CCTN cancer cell transcriptional regulatory network, LINCS Library of Integrated
Network-Based Cellular Signatures, TCGA The Cancer Genome Atlas

directed trans-acting edges between regulator and tar-
get genes (Additional file 1: Figure S3; Additional file 3:
Table S2). We refer to all genes affecting the expression
of at least one other gene in CCTN as regulator genes
(i.e. genes with at least one outgoing edge in CCTN).
Note that this regulator definition is driven by the network
inference approach that selects the most relevant predic-
tors of each response gene. Not every regulator gene is
necessarily a direct transcriptional regulator of a corre-
sponding response gene. Genes affected by at least one
regulator gene are regarded as target genes (at least one
incoming edge in CCTN; see ‘Methods’ for details).
In total, 88 % of the genes (14,029 of 15,942) in

CCTN were target genes, 60.6 % of the genes (9654
of 15,942) were selected as trans-acting regulators, and
27.3 % of the genes (4356 of 15,942) had a direct copy
number effect that was always positively correlated with
the underlying gene expression level (Additional file 3:
Table S2). We further characterized the genes in CCTN
based on their number of outgoing and incoming reg-
ulatory edges and found that the number of activator
edges (32,521 of 36,786) is much greater than the num-
ber of repressor edges (4265 of 36,786) (Fig. 2a and b). In
addition, CCTN is characterized by a few central hub
genes that have a large number of incoming and out-
going edges. Well-known cancer genes [2, 22] (e.g.
TNFRSF17, FUS, IKZF1, GATA1, PAX8, SFPQ, IRF4,
KLK2, COL1A1, MSL2, HSP90AB1, PHOX2B, CD79B,

and LYL1) were significantly overrepresented among the
219 hub genes with more than 20 trans-acting regula-
tory edges to or from other genes (Fisher’s exact test:
p < 0.006; Additional file 4: Table S3). Further, regulator
genes with a large number of outgoing edges (i.e. major
regulators) were enriched for known transcription factors
and signaling pathway genes (Fig. 2c and d).
CCTN was derived from cancer cell lines, i.e. in

vitro data. To test the validity of CCTN for in vivo
tumor cells, we used independent data of 13 different
cancer cohorts from The Cancer Genome Atlas (TCGA)
[23]. We downloaded gene expression and correspond-
ing gene copy number data of 4548 tumor patients
(Additional file 5: Table S4) and tested the predictive
power of CCTN on each TCGA cohort separately by
predicting the expression level of each gene for each
tumor using its corresponding copy number and expres-
sion data. To quantify the quality of the prediction, we
computed the correlation between the originally mea-
sured TCGA gene expression levels and the correspond-
ing expression levels predicted by CCTN for each gene
across all patients in a cohort. A strong positive corre-
lation between originally measured and CCTN-predicted
expression levels suggests that the respective gene is well
predictable by CCTN. The vast majority of genes had a
positive median correlation (median across the 13 TCGA
cohorts) between the predicted and measured expression
levels (Fig. 2e): 94.7 % when using CCTN with all
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Fig. 2 Cancer cell transcriptional network (CCTN) characteristics and validation. a, b Node degree distributions. c, d Functional annotation of
network genes with respect to their node degrees. a, c Regulator genes. b, d Target genes. eMedian gene-specific correlations between predicted
and originally measured gene expression levels of individual genes in 13 TCGA cancer cohorts for CCTN including only significant edges (pink),
CCTN using all edges (blue), and for random networks with the same complexity as CCTN with significant edges (gray). CCTN with significant edges
predicts gene expression levels significantly better than CCTN with all edges (p < 6 × 10−169) and random networks (p < 2.2 × 10−308, Wilcoxon
test). CCTN with significant edges was used for all subsequent analyses. f Cumulative p value distributions correlating experimentally measured and
computationally predicted single-gene perturbations pooling results from all 13 TCGA cancer cohorts. Forward: p values of correlations between
computed impacts flowing from a perturbed regulator to its targets and the corresponding experimentally measured impacts. The forward model
specifies the basic CCTN properties that were used to make impact predictions (one-sided correlation test quantifying for each single-gene
perturbation if the observed correlation between predicted and measured impacts is significantly greater than zero). Reverse: p values of correlations
between computed impacts flowing in the reverse direction from the responding targets to their perturbed regulator and experimentally measured
forward impacts. Random: Baseline for non-significant enrichment of small p values. See ‘Results and discussion’ and ‘Methods’ for details of the
forward and backward models. The forward model predicted responses of single-gene perturbations significantly better than the reverse model
(p < 0.015 for each cohort) and than randomly expected (p < 2.1 × 10−23 for each cohort, one-sided Kolmogorov–Smirnov test). CCTN cancer cell
transcriptional regulatory network, sig. significant, TCGA The Cancer Genome Atlas

edges and 95.1 % when reducing CCTN to significant
edges. Restricting CCTN to significant edges had an even
more dramatic effect on the magnitude of the correla-
tion between predicted and observed expression (Fig. 2e;
Wilcoxon–Mann–Whitney test: p < 6 × 10−169, Fig. 3).
An additional comparison of CCTN to random networks
with the same complexity showed that CCTN makes

significantly better predictions of expression levels for the
vast majority of genes (Fig. 2e;Wilcoxon–Mann–Whitney
test: p < 2.2 × 10−308). We further confirmed that both
target gene-specific direct copy number effects and trans-
acting regulator genes contributed to the correct predic-
tion of expression levels (Additional file 1: Figure S4).
Although the predictive power of CCTN was variable
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Fig. 3 CCTN-based prediction of gene expression levels for cancer cell lines and tumor patients. Gene-specific correlations between predicted and
originally measured gene expression levels of individual genes comparing CCTN including only significant edges (pink) to CCTN using all edges (blue). A
greater proportion of positive correlations reflects a better predictive power. a Prediction quality for human cancer cell lines used to train CCTN. As
expected, CCTN using all learned edges is better than CCTN with significant edges only. b–l Prediction quality of CCTN for tumor patients of 11 independent
TCGA cohorts. CCTN including only significant edges reaches strongly improved predictions for the vast majority of cohorts in comparison to CCTN
with all learned edges. See Additional file 1: Figure S5 for all cohorts. AML acute myeloid leukemia, BRCA breast invasive carcinoma, CCLE Cancer Cell
Line Encyclopedia, CCTN cancer cell transcriptional regulatory network, GBM glioblastoma multiforme, HNSC head and neck squamous cell
carcinoma, LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, OV ovarian serous cystadenocarcinoma, sig. significant, SKCM skin
cutaneous melanoma, TCGA The Cancer Genome Atlas, COAD Colon adenocarcinoma, STAD Stomach adenocarcinoma, THCA Thyroid carcinoma

between individual genes and between tumor types, our
model resulted in significant predictions for all consid-
ered patient cohorts (Fig. 3; Additional file 1: Figure S5)
and was also very robust with respect to different p value

cutoffs for including significant edges (Additional file 1:
Figure S6).
We additionally compared CCTN, which was derived

from in vitro cancer cell line data, to two network models
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derived from in vivo data of specific tumor types. These
tumor type-specific network models tended to reach a
slightly or moderately improved predictive power com-
pared to CCTN on independent test data cohorts of the
same tumor type (Additional file 1: Figure S7a and b).
This is expected, because CCTN was trained on a mix-
ture of cancer cell lines and is, therefore, not specific for a
certain tumor type. However, CCTN reached nearly iden-
tical or slightly improved predictive power in comparison
to non-tumor type-specific network models (Additional
file 1: Figure S7c and d). This again suggests that CCTN
can be generalized to different tumor entities.
In conclusion, CCTN works well on independent data

and correctly captures the majority of potential regulatory
relationships between genes in the in vivo tumor situation.

Quantifying CNA impact on gene expression
Next we devised a method to quantify the impact of indi-
vidual regulator genes on all other genes in the network
(Fig. 1). This framework creates an impact matrix quanti-
fying for each gene pair (a, b) the direct and indirect effect
of gene a on the expression of gene b according to all
existing directed regulatory network paths that link a to b
in CCTN. The scoring also accounts for how well CCTN
can predict the effects of mutations, i.e. CNA–target gene
relationships that are poorly predicted get lower weights.
Here, we operationally define the impact of a copy number
change of gene a as its contribution to expression changes
of gene b. That is, the impact is the (predicted) fraction of
variance in the expression of a target gene caused by a spe-
cific gene CNA (see ‘Methods’ for details). The resulting
impact matrix also accounts for the possibility of feed-
back cycles in CCTN, which could amplify (or dampen)
the CNA effects.
We validated the correct prediction of impacts using

individual gene perturbation data (LINCS L1000; see
‘Methods’ for details) [24, 25]. In these experiments, 933
genes (representatives of the human transcriptome) over-
lapped with CCTN genes and were perturbed on aver-
age 54 times and the expression responses of all other
representative genes were measured, resulting in a total
of 50,306 perturbation experiments (Additional file 6:
Table S5). Note that the perturbations were repressing
(knock-down) and increasing (overexpression) the tran-
script levels, which functionally mimics the effects of
CNAs. We determined the significance of positive corre-
lations between predicted and observed impacts across all
13 TCGA cancer types (see ‘Methods’) and found a strong
enrichment of small p values (Fig. 2f; Additional file 1:
Figure S8), confirming that the impact score is predictive
for direct and indirect effects (one-sided Kolmogorov–
Smirnov test comparing the p value distribution under the
forward model to a uniform distribution expected under
a random model: p values across TCGA cohorts ranging

from 1.2× 10−45 for thyroid carcinoma to 2.1× 10−23 for
skin cutaneous melanoma). The perturbation-expression
data also allowed us to validate the direction of predicted
effects: the correlated expression of two genes does not
reveal which of the two genes is affecting which or if
they are together under the control of a third gene. Since
for perturbation experiments the direction of effects is
known, we can use these data to assess the correct pre-
diction of directional effects. We, therefore, compared the
quality of CCTN predictions using a forward model (i.e. a
model with correctly pointing interactions) with those of
a reverse model (i.e. a model with inverted interactions).
If the directionality information in CCTN is not mean-
ingful, we would expect both models to perform equally
well on the LINCS L1000 data. However, we observed that
the forward model performed significantly better than the
reverse model (Fig. 2f; Additional file 1: Figure S8: for-
ward model contains more small p values than the reverse
model: p values across TCGA cohorts ranging from 0.0004
for stomach adenocarcinoma to 0.015 for skin cutaneous
carcinoma), suggesting that CCTN mostly correctly pre-
dicts the direction of effects.

Identification of tumor type-specific survival signatures
The CCTN-derived impact matrix has the ability to pre-
dict how a CNAof a gene affects the expression of all other
genes in the network. To quantify the clinical relevance
of individual gene CNAs, we determined genes whose
expression levels are predictive of patient survival (Fig. 1).
We developed an approach based on a random forest
(RF) [26] to determine genes whose expression levels were
significantly correlated with patient survival in individ-
ual TCGA cohorts (see ‘Methods’ for details). We chose
RF for this task, because RF is particularly robust against
overfitting, can handle complex non-additive relation-
ships between predictor variables, and is able to exploit
the molecular heterogeneity within a tumor cohort, which
is essential for robust survival prediction and the char-
acterization of survival-associated genes. In addition, an
in-depth model comparison has previously shown that RF
is among the best methods for the prediction of patient
survival from gene expression data [27].
We initially tested our RF approach on all cohorts with

more than 20 patients with survival information (8 of 13
TCGA cohorts; Additional file 5: Table S4). Testing of
the resulting models on held-out patient samples (cross-
validation) revealed that at least 100 patients with survival
information were required to reach modest or more sig-
nificant survival predictions (Additional file 1: Figure S9),
which is in good accordance with previous findings for
selected TCGA cohorts [28]. Correlations between RF-
predicted and real patient survival on held-out samples
were in the range of 0.12 to 0.35 for six TCGA cohorts
(Additional file 1: Figure S9) with corresponding modest
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significance (p < 0.1) for acute myeloid leukemia (AML)
and skin cutaneous melanoma (SKCM), and stronger
significance (p < 0.013) for head and neck squamous
cell carcinoma (HNSC), glioblastoma multiforme (GBM),
lung adenocarcinoma (LUAD), and ovarian serous
cystadenocarcinoma (OV). The RF approach was not predic-
tive for breast invasive carcinoma (BRCA) and lung squa-
mous cell carcinoma (LUSC) (Additional file 1: Figure S9),
possibly due to limited numbers of tumor samples or inad-
equate follow-up time. In addition, we also compared our
RF approach to random survival forest (RSF) [29]. RSF can
handle right-censored data to gain additional information
from patients that were alive. However, our RF approach
consistently reached better predictions of patient survival
on held-out patient samples than RSF with and without
censoring except for slightly improved survival predic-
tions for AML (Additional file 1: Figure S10). RSF was
also not predictive for BRCA and LUSC (Additional file 1:
Figure S10). We further validated the RF-based survival
prediction on GBM data from an independent patient
cohort that was not part of the TCGA initiative [30]. The
prediction of survival was highly significant, indicating
that our RF model can make robust, potentially clinically
relevant predictions (Additional file 1: Figure S11, r =
0.52, p < 0.0006, 36 patients). Thus, we focused on our
RF approach and only kept the six cohorts (AML, GBM,
HNSC, LUAD, OV, and SKCM) in all subsequent analyses,
but note that the performance on held-out patients indi-
cates a potentially greater clinical utility for HNSC, GBM,
LUAD, and OV than for AML and SKCM.
Next, we ranked all genes based on their importance

for predicting patient survival and filtered for the most
important genes (signature genes) in each cohort by con-
sidering gene-specific contributions to the average corre-
lation between RF-predicted and real patient survival (see
‘Methods’ and Additional file 1: Figure S12). The number
of selected signature genes for the six cohorts ranged from
eight for AML to 199 for GBM for a correlation cutoff
of greater than 0.1 (Additional file 7: Table S6; Additional
file 1: Figure S12). As expected, a complex clinical end-
point such as survival cannot be predicted from a small
number of genes. Accordingly, the correlation of individ-
ual gene expression levels with survival was weak, thus
underlining the need to consider multiple marker genes
in combination to obtain significant predictions of patient
survival (Additional file 1: Figure S13, p < 0.004 for all
cohorts except for a more modest significance for genes
positivelycorrelated with HNSC survival reaching p<0.043).
We further analyzed the obtained survival signatures

for known cancer genes [22]. We found, for example, that
the tumor suppressor NF1, a marker for mesenchymal
GBMs [31], and the oncogene DNMT3A, a DNA methyl-
transferase impacting on proliferation and cell survival
under hypoxic conditions [32], were part of the GBM

survival signature. Interestingly, the transcription factor
HOXD13 [33], which has been recently associated with
poor survival of breast cancer patients [34], was part of
the LUAD survival signature. Further, the tumor sup-
pressor CAMTA1, a transcription factor involved in the
regulation of cell growth and differentiation of neuroblas-
tomas [35], and the tumor suppressor NIPBL, a cohesin
regulator involved in developmental regulation, growth
delay, and DNA repair [36], were part of the OV survival
signature.We finally note that signature genes are not nec-
essarily directly affected by CNAs. They should rather be
considered as targets of driver mutations.

Impact of individual gene CNAs on survival signature genes
Using the CCTN-derived impact measures as defined
above, we next quantified the contribution of each gene’s
copy number state on the expression of survival signa-
ture genes in each individual tumor (Fig. 1). First, we
performed an integrated validation of the entire impact
computation pipeline observing a significant positive cor-
relation between patient-specific cumulative impacts of
all individual gene CNAs and patient survival using an
independent GBM cohort [30] that was not used for
learning of any of our models for network effect quantifi-
cation and survival signature prediction (Additional file 1:
Figure S14a, Spearman rank correlation test: rho = 0.33,
p = 0.024, 36 patients, see ‘Methods’ for details). This
significant correlation between our impact scores and sur-
vival was not necessarily expected, as it does not account
for mutations other than CNAs. In addition, these patient-
specific impact scores further enabled a significant classi-
fication into short and long survival groups using Kaplan–
Meier curves (Additional file 1: Figure S14b, p < 0.02).
After validating our impact scoring, we focused on the

TCGA cohorts. For each mutated gene, we averaged its
corresponding impact scores across all signature genes,
yielding a single impact score that quantifies the contri-
bution of this specific gene CNA on the expression of all
survival signature genes. We selected high-impact gene
CNAs for each of the six TCGA cohorts and corrected
for multiple testing by comparing the originally obtained
gene CNA-specific impact scores against corresponding
gene-specific impact scores obtained under ten random
networks of the same complexity as CCTN (Additional
file 1: Figure S15, q < 0.006 for all cohort-specific selected
genes, see ‘Methods’ for details). We further confirmed
that these genes were enriched for known cancer genes
[22] (Fisher’s exact tests: p < 0.03 except for AML and
SKCM).
In addition, our impact scoring identified many genes

with established roles in the respective tumor classes
(Fig. 4). For example, TAL1 had the greatest impact score
among all LUAD-associated genes and had previously
been identified as a hub transcriptional regulator in LUAD
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Fig. 4 Chromosomal locations of gene CNAs with high impact on survival signatures. a Glioblastoma multiforme (GBM). b Ovarian serous
cystadenocarcinoma (OV). c Lung adenocarcinoma (LUAD). Genes are colored based on their observed mutation frequency (light red: rare, black:
frequent). Heights of the peaks reflect the impact on survival signature genes. Selected gene names are displayed depending on their impact
strength. Gene names of known cancer genes are underlined. Colored dots above or below genes additionally indicate the positions of previously
reported cancer genes that were predicted as high-impact genes by CCTN. Only genes with significant impacts on survival signatures are shown
(q < 0.006 for all cohort-specific genes, one-sided Wilcoxon test comparing the gene-specific impact score obtained under CCTN against
corresponding impact scores obtained under random networks of the same complexity as CCTN, see ‘Methods’ and Additional file 1: Figure S15 for
details). The cohort-specific genes shown are further significantly enriched for known cancer genes (p < 0.03 for each cohort, Fisher’s exact test).
GBM glioblastoma multiforme, LUAD lung adenocarcinoma, OV ovarian serous cystadenocarcinoma
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with effects on TGF-beta signaling [37]. Another example
is TNNC1, which is involved in the metastatic potential
of ovarian cancer cells [38] and was among the top-
ranking OV impact genes. Further, histone deacetylases
(HDAC) have a well-established role in tumorigenesis
and serve as important cancer drug targets. We cor-
rectly detected HDAC6 as a high-impact gene in GBM
[39, 40]. The predicted high-impact gene CNAs impacting
onAML, HNSC, and SKCM survival signatures are shown
in Additional file 1: Figure S16. Apart from just confirm-
ing well-known tumor markers, our CCTN approach also
provides supporting evidence for previously reported can-
didate genes and has the potential to reveal novel candi-
date genes impacting on survival. Both are demonstrated
by the following examples.

Different gene CNAs putatively impact on the same survival
signature gene
For example, HAX1 has been suggested to be involved
in lung cancer [41]. We confirm that an increased HAX1
copy number contributes to an increased HAX1 expres-
sion level with downstream effects on the expression of
TSEN15 (Additional file 3: Table S2). TSEN15, a LUAD
survival signature gene, is involved in the tRNA splicing
required for cell growth and division [42]. Our impact
analysis further predicts TSEN15 as a downstream tar-
get of two other high-impact gene deletions of PLXNB2
and CHAC1 that both strongly impact on the expression
of TSEN15. PLXNB2 is involved in cell proliferation and
migration [43]. CHAC1 is a negative regulator of Notch
signaling [44], involved in apoptosis [45] and known to
function in other cancers [46, 47]. Thus, these three genes
impact on a common molecular endpoint that is corre-
lated with patient survival.

Duplication of chromosome 7 in GBM suggests further driver
genes in addition to EGFR
It has previously been suggested that the clustering of
driver genes on chromosomal arms may explain frequent
amplifications or deletions of large chromosomal regions
[3]. Our results support this notion and assist in the
understanding of specific large deletions and amplifica-
tions. For example, the duplication of chromosome 7 is
one of themost prominent chromosomalmutations found
in GBMs [48] (Fig. 4a). Despite the frequency of this
event, we have only an incomplete understanding about
the genes in this region driving the cancerous phenotype.
The amplification of the oncogene EGFR [49] on chromo-
some 7 is involved in GBM etiology. However, most likely
additional genes on chromosome 7 contribute to GBM
development and prognosis [50]. This is supported by our
finding that patient-specific cumulative impact scores of
all genes on chromosome 7 explain survival significantly
better than the EGFR impact score alone (Meng’s t-test

on independent GBM cohort [30]: p < 0.005). We identi-
fied additional candidate genes on chromosome 7 with a
high impact on GBM survival signature genes (Additional
file 8: Table S7), including genes involved in (1) cell adhe-
sion and migration, cytoskeletal organization, and neurite
outgrowth (ARHGEF5, BAIAP2L1, MICALL2, SEMA3C,
and TNS3), (2) transcriptional regulators and chromatin
remodelers (ACTL6B, EZH2, H2AFV, IKZF1, andMLL3),
and (3) cell proliferation, apoptosis, and DNA dam-
age response (GIMAP6, HBP1, MCM7, PAXIP1, PPIA,
SAMD9, and TBRG4). That EZH2 and MLL3 were found
to be affected by small somaticmutations further supports
their potential role in GBM etiology [48, 51].

Amplifications of tumor suppressors can contribute to longer
survival
Interestingly, we also observed several high-impact genes
that were amplified in some patients and deleted in oth-
ers. The effect of an amplification or deletion may be
conditional on other concurrent mutations, which is one
possible explanation for this observation. However, we
also detected some instances of positive gene CNAs where
the respective CNA was associated with increased sur-
vival. For example, amplifications of the tumor suppressor
genes WAC in GBM (97 tumors with amplifications vs
218 tumors with normal gene copy number, Fig. 4a, chro-
mosome 10, p-arm) and CDH1 in OV (61 tumors with
amplifications vs 174 tumors with normal gene copy num-
ber, Fig. 4b, chromosome 16, q-arm) were associated with
significantly prolonged survival (t-test p values 0.0005 and
0.009, respectively).

Rare patient-specific gene CNAs strongly impact on survival
signatures
After having established confidence in the impact scoring,
we next determined the number of genes that have to be
considered in combination to explain a certain fraction
of survival risk in a given patient (Additional file 1:
Figure S17). We revealed considerable variation between
patients with respect to how many and to what extent
gene CNAs affect survival signature genes. Up to 100 gene
CNAs contributed together to the individually explained
risk. Next, we focused on the relationship between impact
and frequency at which gene CNAs occur in a tumor
cohort (Fig. 5 for GBM, OV, and LUAD; Additional file 1:
Figure S18 for AML, HNSC, and SKCM). As expected,
more frequently mutated genes are more likely high-
impact genes (Fig. 5a and b, correlation tests: p < 0.03)
and accordingly, the median impact of frequently mutated
genes tends to be higher than that of rarely mutated genes
(Fig. 5c and d). Also, known tumor suppressor and onco-
genes are enriched among more frequently mutated genes
with high impact (Fig. 5e and f, correlation tests: p < 0.005
except LUADdeletions). However, even though frequently
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Fig. 5 Cohort-specific characterization of gene CNAs with a high impact on survival signature. All gene deletions and amplifications in each TCGA
cohort (GBM, OV, and LUAD) with a high impact on the corresponding survival signature were grouped based on their mutation frequency shown
in log-scale along the x-axes. a, b Percentage of genes in each bin belonging to the cohort-specific genes with a high impact on survival signature
genes. More frequently mutated genes are more likely high-impact genes (p < 0.03 for each cohort, one-sided correlation test). c, dMedian impact
of high-impact genes in each frequency bin. The median impact quantifies the contribution of all high-impact gene CNAs in a bin to the variation of
the expression levels of all cohort-specific survival signature genes. Average percentages of explained variance of survival signature expression
computed for all high-impact gene CNAs were used to determine the median impact per bin. e, f Proportion of known cancer genes among the
high-impact genes in each bin. Known tumor suppressor and oncogenes are enriched among more frequently mutated genes with high survival
impact (p < 0.005 except for LUAD deletions, one-sided correlation test). CNA copy number alteration, GBM glioblastoma multiforme, LUAD lung
adenocarcinoma, OV ovarian serous cystadenocarcinoma

mutated genes had on average larger impacts on signature
genes, a substantial number of rarely mutated genes (fre-
quency <1 %) also had strong impacts (Fig. 6 for GBM,
OV, and LUAD; Additional file 1: Figure S19 for AML,
HNSC, and SKCM). Importantly, some of these genes
with CNAs in only one, two, or three individuals per
cohort had impacts that were larger than those of many
frequently mutated genes (Fig. 6a–f; Additional file 1:
Figure S19a–f; Additional file 8: Table S7). In addition,
a significant fraction of the low-frequency high-impact
genes in GBM, OV, and LUAD have previously been

reported as cancer genes [22] in other tissues (Fisher’s
exact tests: p < 0.009). In conclusion, the patient-specific
expression pattern of survival signature genes can sub-
stantially be driven by individual rare gene CNAs, which
is consistent with recent findings that patient-specific
mutation patterns impact on survival [1].

Number of gene CNAs alone or single-gene tests do not allow
to quantify survival impacts
The previous examples have shown that CCTN allows
us to pinpoint rare and frequent gene CNAs that act on
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Fig. 6 Individual impact of rare and frequent gene CNAs with high impact on survival signatures. Characterization of TCGA cohorts GBM, OV, and
LUAD. a–f Average impact of gene deletions (a–c) and amplifications (d–f) on the expression of cohort-specific survival signature genes. The
average impact value of each specific gene CNA quantifies the average contribution of this gene CNA to the variation of the expression levels of all
cohort-specific survival signature genes in percentage of explained variance. The vertical gray dashed line at 1 % of patients defines the cutoff used
to separate rare from frequent CNAs. The x-axes are in logarithmic scale. g–i Corresponding joint functional annotation of deleted and amplified
impact genes. Genes were classified as rarely (CNA frequency <1 %) or frequently (CNA frequency ≥1 %) mutated. The proportion of genes in
selected functional classes are shown. Significant enrichment of an individual category is shown above bars as * (p < 0.05) and ** (p < 0.01, Fisher’s
exact test). Note that the height of the bars doses not necessarily correlate with significance due to the different sizes of the functional classes. CC
cell cycle, CI cell–cell interaction, CNA copy number alteration, DR DNA replication, GBM glioblastoma multiforme, GL glycolysis, KC known cancer
genes, KP kinases and phosphatases, LUAD lung adenocarcinoma,MPmetabolic pathways, OP oxidative phosphorylation, OV ovarian serous
cystadenocarcinoma, SP signaling pathways, TCGA The Cancer Genome Atlas, TF transcription factors, TM telomere maintenance

patient survival. We further analyzed if similar results can
also be obtained using two alternative approaches. First,
we considered the gene CNA burden of each patient, but
we did not find any significant correlation between the
number of CNA-affected genes (rare, frequent, or both
together) and survival in any of the six TCGA cohorts
(see Additional file 1: Text S2 for details). Second, we con-
sidered single-gene tests to determine if patients with a
specific gene CNA had significant differences in survival
compared to patients without this gene CNA. Considering
the six TCGA cohorts, we were able to detect only some
gene CNAs for AML that were significantly associated

with survival, but as expected there were no rare gene
CNAs among those genes (Additional file 1: Figure S20;
see Additional file 1: Text S3 for details). Thus, our CCTN-
based impact scoring approach allows us to gain novel
insights into the putative impacts of specific gene CNAs.

Chromosomal location instead of gene function explains
CNA frequency
Genes with very similar survival impact scores can have
very distinct CNA frequencies in the same tumor class
(Fig. 6a–f). We sought to identify factors explaining why
some of those gene CNAs are observed much more rarely
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than others. A first hypothesis was that rare high-impact
mutations occur later in the tumor etiology and affect
different endpoints than frequent gene CNAs. For exam-
ple, frequent mutations might primarily drive the neo-
plastic transformation and thus affect proliferation, DNA
damage response, and apoptosis, whereas rare CNAs
might affect angiogenesis, metastatic potential, or drug
resistance. However, functional classification of rare and
frequent gene CNAs did not yield striking differences
between the two CNA groups (Fig. 6g–i). Instead of
function, the chromosomal location of genes seems to
explain variable gene CNA frequencies better. The close
placement of two tumor-relevant genes with antagonistic
effects reduces the frequency of observing the respective
CNAs [3]. For example, an oncogene and a tumor suppres-
sor gene located in close chromosomal proximity reduce
the chance that a CNA in that region will be beneficial
for the tumor. We observed similar effects that distin-
guished rare from frequent gene CNAs in our data (Fig. 7;
Additional file 1: Figure S19). For example in LUAD,
frequent gene deletions are on average significantly fur-
ther away from oncogenes [2, 3] and essential genes [52]
than rare gene deletions (Fig. 7a and b, one-sided
Wilcoxon tests: p < 0.003, average distance from onco-
genes: 14.5 vs 6.3 Mbp, average distance from essential
genes: 3.8 vs 2.9 Mbp), while gene amplifications are typ-
ically significantly further away from tumor suppressor
genes [2, 3] (Fig. 7c, one-sided Wilcoxon test: p < 0.002,
average distance from tumor suppressor genes: 7.2 vs

3.7 Mbp). Our data further show that the distance to
fragile genomic sites [53] is correlated with the observed
frequency of gene CNAs impacting on survival signatures.
For example, in GBM, frequently amplified genes are sig-
nificantly closer to fragile sites than rarely amplified genes
(Fig. 7d, one-sided Wilcoxon test: p < 5 × 10−5, average
distance from fragile sites: 4.7 vs 10.7 Mbp). Finally, the
distance to frequently observed germ-line copy number
variations (CNVs) [54] is correlated with the observed fre-
quency of high-impact gene CNAs acting on survival sig-
natures. For example, frequently amplified genes in GBM
and OV are significantly closer to known germ-line CNV
sites than rarely amplified genes (Fig. 7e and f, one-sided
Wilcoxon tests: p < 0.016, average distance from tumor
germ-line CNV sites for GBM is 0.98 vs 1.7Mbp and 1.4 vs
1.7Mbp for OV). Interestingly, these correlations between
CNA frequency and genomic positioning were indepen-
dent of survival impact, but highly specific for tumor type
(Fig. 4; Additional file 1: Figure S21), suggesting that the
molecular mechanisms leading to and maintaining CNAs
are tissue-specific. Taken together, these analyses sup-
port that the chromosomal location of a gene rather than
its function determines variable CNA frequencies among
genes with similar impact.

Indirectly acting tumor-specific gene CNAs clearly improve
survival prediction
Our CCTN-based impact quantification approach utilizes
all patient-specific gene CNAs that directly or indirectly

Fig. 7 Distances of rare and frequent high-survival-impact gene CNAs from genomic features. Selected examples for LUAD, GBM, and OV
considering chromosomal distances of all gene CNAs with a high impact on cohort-specific survival signature genes from genomic features. See
Additional file 1: Figure S21 for distance distributions of all tumor cohorts. a Distances of rare and frequent LUAD gene CNAs from known
oncogenes. b Distances of rare and frequent LUAD gene CNAs from known essential genes. c Distances of rare and frequent LUAD gene CNAs from
known tumor suppressor genes. d Distances of rare and frequent GBM gene CNAs from known fragile sites. e Distances of rare and frequent GBM
gene CNAs from known frequently occurring germ-line CNVs. f Same as (e), but for OV. Significant differences in distances of rare and frequent CNAs
from genomic features are represented by * (p < 0.05) and ** (p < 0.01, Wilcoxon test). CNA copy number alteration, GBM glioblastoma multiforme,
LUAD lung adenocarcinoma, OV ovarian serous cystadenocarcinoma
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act on patient survival to distinguish between short- and
long-lived patients (Additional file 1: Figure S14). We fur-
ther analyzed the value of integrating indirectly acting
gene CNAs by comparing our approach to a basic ver-
sion that only considers CNAs of genes in the direct
network neighborhood of survival signature genes. Both
impact scoring approaches utilize CCTN as the basis for
enabling a fair comparison (see Additional file 1: Text S4
for details). To compare both approaches, we considered
five independent test cohorts [Rembrandt: GBM [30];
Clinical Lung Cancer Genome Project (CLCGP): LUAD
[55]; newly added TCGA patients: LUAD, SKCM, and
HNSC; Additional file 5: Table S4]. First, we determined
the numbers of patients that could be assigned to the
short or long survival group based on their individual gene
CNAs. We found that the integration of indirectly act-
ing gene CNAs led to significantly increased numbers of
classifiable patients for four out of five cohorts (Fig. 8a,
p < 2.2 × 10−16, Fisher’s exact test). This is explained
by the observation that many patients did not have gene
CNAs in the direct network neighborhood of survival
signature genes, which prohibits a classification by the

basic version. Second, we compared the separation qual-
ity between patients classified as short- and long-lived
by both impact scoring approaches. In two out of five
cohorts (Rembrandt and CLCGP), we did not find a sig-
nificant difference in the separation between short- and
long-lived patients (Fig. 8b). For all other cohorts (LUAD,
SKCM, andHNSC), including indirect effects significantly
improved the survival prediction compared to considering
only direct effects (Fig. 8b). For example, this significant
performance improvement is also observedwhen compar-
ing the survival curves of short- and long-lived CLCGP
and SKCM patients utilizing only frequent or all gene
CNAs (Fig. 8c and d). Thus, the integration of indirectly
acting gene CNAs into the prediction of short or long
patient survival is an important factor to improve the
classification of patients.

Frequent and rare tumor-specific gene CNAs contribute to
survival prediction
We have already shown that individual frequent and rare
tumor type-specific gene CNAs can have strong impacts
on survival signature genes (Fig. 4). This motivated us

Fig. 8Model comparison highlighting the importance of indirectly acting gene CNAs for survival analysis. Comparison of our standard survival
impact quantification (CCTN) to a basic version (CCTN: direct neighbors only). The standard approach considers all gene CNAs that directly or
indirectly impact on survival signature genes, whereas the basic version accounts only for directly acting gene CNAs to realize a classification into
short- and long-lived patients. a Percentage of patients per cohort that can be classified by both approaches. CCTN reaches significantly increased
numbers of classifiable patients compared to the basic version (p < 2.2 × 10−16, Fisher’s exact test). b Separation quality of patients classified as
short- or long-lived by both approaches. Corresponding p values quantify the separation between patients classified as short- or long-lived with
respect to differences of the short- and long-lived Kaplan–Meier curve obtained for each approach under consideration of all tumor-specific gene
CNAs. The y-axis is plotted in negative logarithmic scale. CCTN reaches a clearly improved patient separation for the majority of cohorts in
comparison to the basic version. c Kaplan–Meier curves for separation of CLCGP patients into short and long survival based on frequent gene CNAs.
CCTN reaches a significantly improved patient separation. d Like (c), but here for SKCM patients considering all patient-specific gene CNAs. CNA
copy number alteration, CCTN cancer cell transcriptional regulatory network, HNSC head and neck squamous cell carcinoma, LUAD lung
adenocarcinoma, SKCM skin cutaneous melanoma
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to analyze further if tumor-specific gene CNAs of indi-
vidual patients can be used to distinguish between short
and long survival. A slight modification of our impact
quantification algorithm enabled us to compute person-
alized impacts for each gene CNA in a patient-specific
tumor (see ‘Methods’ and Additional file 1: Text S1 for
details). This personalized impact score quantifies if the
corresponding gene CNA has an inhibitory impact (nega-
tive impact value) or an activating impact (positive impact
value) on a tumor type-specific survival signature gene.
To account for the direction of the survival association of
each signature gene, we multiplied this regulatory impact
with the corresponding sign of the correlation observed
between the expression levels of the signature gene and
the survival of patients. This resulted in a personalized
score that quantifies the impact of each tumor-specific
gene CNA on survival. The score captures, for example,
that a gene CNA with an inhibitory impact on a signa-
ture gene that is negatively correlated with survival has a
potential positive impact on survival (may increase sur-
vival), whereas a gene CNA with an inhibitory impact
on a positively correlated survival signature gene has a
potential negative impact on survival (may decrease sur-
vival). To get an integrated survival score for all gene
CNAs of a patient-specific tumor, we summarized the
tumor-specific gene CNA scores to an average patient-
specific survival impact score. Based on the score deriva-
tion, negative scores are expected to be associated with
shorter patient survival than positive scores. We used
these patient-specific average survival impact scores to
analyze if the CCTN-based impact quantification allows
us to distinguish between short and long survival coupled
with a systematic analysis to quantify how frequent and
rare gene CNAs contribute to the discrimination. In total,
we utilized data of 292 tumor patients from five indepen-
dent tumor cohorts including GBM patients from Rem-
brandt [30], LUAD patients from CLCGP [55] and newly
added TCGA patients from LUAD, SKCM, and HNSC
(Additional file 5: Table S4; no new GBM and AML
patients were added to TCGA and only too few new
OV patients were available from TCGA) that were not
involved in any step of the CCTN inference nor in any
step of the survival signature gene prediction before. To
analyze these new patient samples, we used CCTN as
derived from the cancer cell lines in combination with
the corresponding tumor type-specific survival signature
genes derived for the TCGA cohorts representing the
same tumor entity to perform patient-specific impact
quantification. An analysis of the contributions of (1) all
patient-specific gene CNAs, (2) only patient-specific fre-
quent gene CNAs, and (3) only rare patient-specific gene
CNAs to the separation of long- and short-lived patients
is shown in Fig. 9 for selected cohorts (Rembrandt: GBM;
CLCGP: LUAD and SKCM; new TCGA patients). Results

obtained for the other cohorts are shown in Additional
file 1: Figure S22 (new LUAD and HNSC patients from
TCGA). Importantly, this patient stratification was better
than using random networks of the same complexity as
CCTN, which led to a collapse of the impact quantifica-
tion system (Fig. 9; Additional file 1: Figure S23), implying
that our scoring is able to prioritize successfully gene
CNAs with strong impacts on individual patient survival.
In more detail, for Rembrandt GBMs and new SKCM

patients from TCGA, we observed a significant stratifi-
cation into long- and short-lived patients (Fig. 9a and i,
p < 0.02). Interestingly, rare gene CNAs (frequency <1 %
in the training cohort) strongly contributed to the cor-
rect impact scoring for GBM and SKCM (Fig. 9c and k).
In contrast to GBM and SKCM, the full scoring based
on all patient-specific gene CNAs was not predictive for
LUAD samples from CLCGP (Fig. 9e), whereas a scoring
based only on frequent gene CNAs (frequency≥1 % in the
training cohort) was predictive for long and short survival
(Fig. 9f, p < 0.05). Rare gene CNAs did not improve the
LUAD patient stratification (Fig. 9g). These trends were
also confirmed by an independent analysis of new LUAD
patients from TCGA (Additional file 1: Figure S22a–c,
p < 0.01 for frequent gene CNAs). Finally, we note that
our impact scoring was not predictive for HNSC patients
(Additional file 1: Figure S22i–l, Figure S23q–t), possibly
due to the great molecular heterogeneity of HNSC tumors
containing subtypes with only very few CNAs [56, 57].
In summary, frequent and rare gene CNAs are both

important for the prediction of survival impacts. Over-
all there is no general trend that frequent gene CNAs
tend to be more important than rare gene CNAs for
the prediction of patient survival. The contributions of
patient-specific rare and frequent gene CNAs tend to be
rather tumor type-specific.

Conclusions
Multiple mutational patterns can perturb molecular path-
ways in similar ways leading to clinically almost indistin-
guishable phenotypes [1]. Thus, although the number of
cellular endpoints that have to be altered is limited [6], the
space of possible mutational patterns affecting the aggres-
siveness of a tumor (and ultimately patient survival) is
practically unlimited. As a corollary of that, frequency-
based approaches for detecting clinically relevant muta-
tions will be capable only of detecting the mountains,
leaving much of the phenotypic variation unexplained [2].
This study demonstrates the feasibility of an alternative
strategy: the impact of gene CNAs on the expression of
signature genes can be predicted using large compendia
of independent data. Importantly, gene–gene relation-
ships inferred from such data are largely conserved across
multiple tumor types and enable statistically significant
predictions of in vivo expression levels of most genes.
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Fig. 9 Impact of rare and frequent patient-specific gene CNAs on survival. Kaplan–Meier curves for patients with negative (blue) and positive (red)
average impact of their corresponding tumor-specific gene CNAs on cancer type-specific survival signature genes. Shown are results for
independent tumor cohorts (Rembrandt: GBM; CLCGP: LUAD; TCGA: SKCM new patients) that were not involved in any step of CCTN network
inference or RF-based prediction of survival signature genes. CCTN derived from cancer cell lines and cancer type-specific survival signature genes
identified from TCGA cohorts were used to investigate the impact of rare and frequent gene CNAs on patient survival for these cohorts. Separation
of long- and short-lived patients by CCTN is expected to be predictive if patients with positive average survival impact scores (red) tend to survive
longer than patients with negative impact scores (blue). The corresponding p value quantifies if the red curve is significantly above the blue curve in
comparison to random class label permutations. a–d GBM results. a Patients with positive average impact scores on survival signature genes (red)
tend to survive significantly longer than patients with negative impact scores (blue). b Frequent patient-specific gene CNAs (frequency ≥1 % in
corresponding training cohort) alone cannot explain the significant difference in (a). c Rare patient-specific gene CNAs (frequency <1 %)
significantly contribute to the observed significant differences in (a). d Loss of patient separation into short and long survival for patient-specific
survival impact scores computed based on all patient-specific gene CNAs under a random network. e–h LUAD results. Similar to GBM, but in
contrast to GBM, frequent mutations alone contribute to a significant separation between long- and short-lived patients. i–l SKCM results. Overall
trends are comparable with those observed for GBM. CLCGP Clinical Lung Cancer Genome Project, CCTN cancer cell transcriptional regulatory
network, CNA copy number alteration, GBM glioblastoma multiforme, LUAD lung adenocarcinoma, RF random forest, SKCM skin cutaneous
melanoma, TCGA The Cancer Genome Atlas

Thus, although the expression variation of individual reg-
ulators changes the activity of molecular sub-networks,
the topology of regulatory relationships as such turns out
to be remarkably robust across cell types [58]. Because
of that, we were able to quantify the importance of gene
CNAs for individual tumor risks leading to the observa-
tion that rare variants can be as important as frequent
variants. Although this observation is not unexpected in
light of recent research [1–3, 15], our framework allows
us to specifically identify individual CNA-affected genes
with a potentially high impact on survival. Importantly,
the frequency at which a high-impact gene gets mutated
seems to be determined by factors that are indepen-
dent of its function or impact. Thus, the fact that some

high-impact genes have higher CNA frequencies may sim-
ply be due to their placement in genomic regions that
are more amenable for CNAs than others. Because of the
higher CNA frequency in those regions, these genes will
preferentially be selected during tumor evolution leading
to increased average impacts of high-frequency CNAs.
In short, impact does not affect frequency, but high fre-
quency still correlates with high impact.
In addition, we noticed striking differences between

tissues and between tumor types. For example, the cor-
relation between CNA frequencies and genomic features
was highly dependent on the tumor type. In addition, the
importance of rare and frequent gene CNAs to distin-
guish between short and long patient survival was also
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highly tumor type-specific. Further, we found many sur-
vival impact genes that are well-established cancer genes
in one tissue to be also mutated (with a large predicted
impact) in other tumors. However, the CNA frequency in
those new tissues was mostly low, explaining why many
of these genes have not been detected as being relevant
in those tumors before. These observations imply that
tissue-specific factors such as chromatin state, cell-cycle
rates, exposure to DNA-damaging agents, number of stem
cell divisions, or even the expression of specific genes
could considerably impact on mutational mechanisms
[59–61] that in the end affect patient survival.
Our conclusions rest on two computational models: the

first, CCTN, describes transcriptional regulatory relation-
ships between genes in a tumor context, i.e. in fast pro-
liferating cells, but independent of a specific tumor type.
The second model predicts signature genes associated
with patient survival given cohort-specific expression and
survival data. Three lines of evidence suggest that these
models are robust and predictive. First, CCTN was pre-
dictive on a large set of in vitro perturbation-expression
measurements. Second, CCTN was predictive on in vivo
tumor data from all TCGA cohorts that we tested. Third,
the impact scoring (which integrates both models) was
predictive for survival in four out of five independent
clinical cohorts that were not used for any of the previ-
ous analyses, revealing the tumor type-specific contribu-
tions of rare and frequent gene CNAs for the separation
into long- and short-lived patients. However, despite our
efforts to validate the models using a wide range of exter-
nal data, this study is just a proof of principle. Obviously,
improved models will have to account for a much wider
range of mutation types, consider epigenetic effects, and
include non-coding genes. Further, CCTN was learned
from cancer cell lines to exclude variations in tumor cell
purity between tumor samples that may have caused spu-
rious dependencies between genes. Clearly, the usage of
cancer cell line data has also disadvantages in compari-
son to tumor samples. Cell lines may not always correctly
reflect the in vivo situation in tumors due to limitations
set by cell cultures. We have designed the CCTN-based
impact computation such that only those genes whose
expression can adequately be predicted in the respective
tumor entity contribute to the impact estimate. Thus, our
framework makes no statement about genes whose regu-
latory networks differ significantly between cell lines and
tumors. The list of genes that can be included in this
analysis is further restricted by the use of different experi-
mental platforms that did not cover identical gene sets. In
addition, the quality of the predicted survival signatures
varied greatly between the different tumor types, which is
in agreement with previous reports on the limited usabil-
ity of TCGA gene expression data for the prediction of
patient survival [28]. This variability is in part due to the

different sizes of patient cohorts or inadequate follow-up
time. Further, the complexity of the mutational patterns
and the relevance of CNAs in particular for the etiology of
a tumor entity may further contribute to the differences in
the predictive power of CCTN.
Our study provides clear indications that personalized

analyses of patient-specific gene CNA profiles are feasi-
ble. The potential impacts of each patient-specific rare
and frequent gene CNA on clinically relevant signature
genes can be determined. So far we have only analyzed
the impacts of rare and frequent gene CNAs on sur-
vival, but our framework is much more general, enabling,
for example, other studies that may focus on impacts
of rare and frequent gene CNAs on cancer-relevant sig-
naling pathways or molecular signatures associated with
treatment resistance. In addition, our framework also
allows us to pinpoint potential high-impact genes in large
chromosomal regions or on chromosomes that are recur-
rently affected by deletions or amplifications. We have
demonstrated this potential for the recurrent duplica-
tion of chromosome 7 in glioblastomas, suggesting addi-
tional driver genes apart from the known role of EGFR.
Further, comparative analyses of single-gene tests and a
related network-based approach clearly demonstrated the
value of our approach. Thus, our framework enables us
to study the impacts of rare and frequent gene CNAs.
Since copy number changes play a role in many other dis-
eases or genetic disorders (e.g. trisomy 21), we anticipate
applications of our framework beyond other interesting
applications in cancer research.
Future work yet has to establish the value of accounting

for rare gene CNAs to improve diagnostic and therapeu-
tic measures. Fortunately, the availability of a regulatory
model facilitates the detection of genes that are com-
monly affected by different rare gene CNAs, which might
open a window of opportunity for developing therapeutic
strategies against such rare mutations.

Methods
Cancer cell line data for CCTN inference
We initially considered all 991 human cancer cell lines
from the Cancer Cell Line Encyclopedia (CCLE) [17]
and reconstructed hybridization images of corresponding
gene expression and aCGH microarrays to systematically
screen for and remove all cancer cell lines with hybridiza-
tion artifacts. This resulted in a cancer cell line data set
of 768 cell lines from 24 primary tumor sites (Additional
file 2: Table S1). We normalized the gene expression
experiments using GCRMA [62] in combination with
a BrainArray design file (HGU133Plus2_Hs_ENTREZG
15.0.0). The resulting gene expression levels of each can-
cer cell line were further standardized by subtracting the
corresponding average gene-specific expression level of all
cell lines leading to log-ratios. We removed genes that did
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not show any variation in gene expression across all cancer
cell lines leading to 15,942 genes that were finally con-
sidered. The corresponding gene copy number data of all
cancer cell lines were taken from CCLE. The copy num-
ber of a gene in a cell line was given by the log-ratio of
the gene-specific copy number measured in the cell line in
comparison to a normal reference.

CCTN inference
We divided the genome-wide transcriptional regula-
tory network inference problem into independent gene-
specific sub-network inference tasks to obtain CCTN. For
each target gene i ∈ {1, . . . ,N}, we assume that the expres-
sion level eid of gene i in a cancer cell line d ∈ {1, . . . ,D}
can be predicted by a linear combination,

eid = aii · cid +
∑

j �=i
aji · ejd, (1)

of the gene-specific CNA cid and the expression levels ejd
of other potential regulator genes j �= i. The unknown
parameters of this gene-specific linear model are speci-
fied by �ai := (a1i, . . . , aNi)T ∈ R

N . Here, aii quantifies
the direct local gene copy number effect and aji with
j �= i specifies the impact of the expression level of
gene j on the expression level of gene i. The integration
of gene-specific copy number data into the linear model
extends gene expression-based correlation network infer-
ence approaches [19] and contributes to predicting the
directionality of regulatory effects.We assume that a CNA
of a regulator gene can lead to an altered expression of
the regulator. This altered regulator expression can fur-
ther lead to expression changes of target genes of the
mutated regulator. Thus, each model parameter aji has a
straightforward interpretation: (1) aji < 0 implies that the
putative regulator j is associated with the repression of tar-
get i, (2) aji > 0 implies that the putative regulator j is
associated with the activation of target i, and (3) aji = 0
implies that no putative regulatory edge between j and i
exists.
All unknown parameters of the gene-specific linear

model can be learned from the gene expression and gene
copy number data of the 768 curated CCLE cancer cell
lines. The use of cancer cell line data (which is free of
normal cells) circumvented the variation in tumor cell
purity between tumor samples that could lead to a spu-
rious correlation between CNAs and expression levels of
affected genes. Obviously, using cell line data also has
disadvantages compared to data from tumors. For exam-
ple, cell lines may incorrectly reflect the in vivo situation.
However, our in-depth validation on TCGA tumor data
suggests that the regulatory relationships are strongly
conserved between cancer cell lines and patient-specific
tumors (Fig. 2e and f; Additional file 1: Figures S4, S5).
We utilized lasso regression [18] to compute a sparse

solution for the linear model in Eq. (1). Lasso minimizes
the residual sum of squares,

�a∗
i = argmin

�ai

D∑

d=1

⎛

⎝eid −
⎛

⎝aii · cid +
∑

j �=i
aji · ejd

⎞

⎠

⎞

⎠
2

+ λi

N∑

j=1
|aji|,

(2)

of the measured expression eid of gene i and the model-
based predicted expression of gene i under consideration
of all cancer cell lines in dependency of a fixed complexity
parameter λi ≥ 0. The complexity parameter λi deter-
mines the amount of shrinkage of the individual model
parameters aji toward zero, where larger values of λi lead
to greater shrinkage. This also enables us to select relevant
predictors (gene-specific copy number impact and regula-
tor genes) that best explain the expression of the response
gene, because irrelevant model parameters can be shrunk
to zero. The values of the fitted model parameters depend
on the choice of the gene-specific complexity parame-
ter. We utilized the R package glmnet [63] to determine
an optimal gene-specific complexity parameter and corre-
sponding optimalmodel parameters.We determined λi by
averaging the optimal complexity parameters (cv.glmnet:
lambda.min) obtained from ten independent repeats of
a tenfold cross-validation across all cancer cell lines. We
then used this gene-specific complexity parameter λi to
compute the corresponding optimal model parameters �a∗

i
considering all cancer cell lines. We further determined
the significance of model parameters when they first enter
the lasso model in Eq. (2) using a recently developed sig-
nificance test for lasso [21]. This provides an efficient way
to get p values instead of using computationally expensive
permutation strategies. To realize this, we first computed
the lasso solution paths for the active predictors (model
parameters in �a∗

i that are unequal to zero) with respect to
all cancer cell lines using the R package lars [64]. These
results were then evaluated using the R package covTest
[65] to obtain p values that characterize the importance
of individual active predictors in the gene-specific linear
model.
The p value distributions of active predictors and a

quantile–quantile plot are shown in Additional file 1:
Figure S24a and b for ten learned CCTN instances. We
observed a strong enrichment of non-significant p val-
ues close to one and a smaller peak for highly significant
p values with values close to zero. p values between these
two extremes tended to be uniformly distributed. This
highly left-skewed p value distribution (strong enrich-
ment of non-significant p values) favors the parsimony of
the model and is expected from the mathematical theory
behind the significance test for lasso [21] (see Additional
file 1: Text S5 and Figure S24c and d for details). Thus,
as expected for lasso-based network inference, only very
few predictor genes are required for the prediction of
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the expression levels of specific response genes, whereas
the majority of predictors shrink to zero. Note that the
selected predictors remained significant after correction
for multiple testing (Additional file 1: Figure S24e). Thus,
regularization via lasso (reduction of the potential predic-
tor test space) followed by additional filtering based on the
significance of individually selected predictors represents
an appropriate strategy to account for multiple testing.
We further removed all potentially selected local chro-

mosomal regulator genes that were 50 genes upstream or
downstream of each target gene to avoid the inclusion of
genes that may simply reflect the copy number state of
the target gene rather than regulatory dependencies. The
choice of the local predictor cutoff is motivated by the
observation that local chromosomal correlations of gene
expression levels quickly approach zero with increasing
distance between genes (Additional file 1: Figure S25a).
Further, the structure of CCTN was hardly affected by
varying local gene predictor cutoffs considering 20, 50, or
80 genes upstream or downstream of each response gene
(Additional file 1: Figure S25b and c). Importantly, removing
local chromosomal predictors did not affect the CCTN
prediction accuracy, which was stable for the varying
local predictor cutoffs (Additional file 1: Figure S25d–f).
We just note that one could replace the fixed cutoff by
a nucleotide distance cutoff to account for differences
in local gene density, but as shown in Additional file 1:
Figure S25, this will not have a strong influence on the
results of our study.
We further tested if our network inference approach

was affected by the multicollinearity of predictors by
computing variance inflation factors (Additional file 1:
Figure S26). Collinearity is present when two or more of
the response gene-specific predictors have highly corre-
lated measurements. The vast majority of variance infla-
tion factors were close to one. Only 0.16 % of the predictor
combinations had a variance inflation factor greater than
ten, which is considered as an indicator of high multi-
collinearity [66]. Thus, CCTN is not affected by multi-
collinearity.
We repeated the learning of each gene-specific linear

model ten times to evaluate the stability of our approach.
We observed only very little variation of the gene-specific
optimal complexity parameter, the gene-specific root
mean square error, and the selected gene-specific predic-
tors across the ten independent runs (Additional file 1:
Figure S27a–c). We further selected for each target gene
only those gene-specific predictors that had p < 5× 10−5

(standard numerical precision limit of the R package cov-
Test) in all ten runs (Additional file 1: Figure S25d and e).
This corresponds to a q value cutoff of 0.0032. Note
that also other cutoffs can be used, but we specifically
focused on the resulting most parsimonious network,
which reached substantially better predictive power than

more complex network instances. In more detail, the pre-
diction accuracy of the resulting ten instances of the gene-
specific linear model was highly similar considering the
CCLE data (Additional file 1: Figure S27f). The resulting
reduced gene-specific linear models also showed signifi-
cantly improved prediction accuracies for all independent
TCGA patient cohorts compared to the initially obtained
linear models, which also included non-significant pre-
dictors (Fig. 2e; Additional file 1: Figures S4–S6). Further,
these predictions were also significantly better than the
predictions of ten random networks of the same complex-
ity as CCTN derived by degree-preserving permutations
obtained by randomly exchanging predictors between the
reduced gene-specific linear models while keeping the
number of incoming and outgoing regulatory links con-
stant for each gene (Fig. 2e). All subsequent analysis was
based on average predictions done by an ensemble of
ten CCTN instances focusing on significant predictors.
The computation of a CCTN instance was computation-
ally demanding and could not be realized on a standard
desktop computer. It took on average 13.03 ± 3.06 min
to learn the parameters of a gene-specific linear model
from the 768 CCLE cancer cell lines (AMDOpteron 6274,
2.2 GHz, 2 GB RAM). Thus, it would take more than
140 days to obtain the whole network for the 15,942
genes in a sequential approach. We, therefore, solved the
independent regression problems in parallel on a high-
performance computing cluster (HPC Atlas Cluster TU
Dresden, AMD Opteron 6274).
Generally, the network inference is very time-

consuming because of the large number of potential
gene-specific regulators and the large number of samples
that should be considered to obtain robust networks. So
far, we have removed only genes with constant expression
levels among all cancer cell lines to reduce the number
of potential predictors. This could be further extended
by removing genes that show only little variation of
expression levels for all cancer cell lines. Additionally,
a preselection of potential gene-specific predictors via
a correlation analysis could further help to reduce the
predictor space to reduce the global computation time.
However, such potential future preselection steps should
be done carefully to avoid the loss of predictive power,
because in our final network, about 61 % of all genes were
selected as potential regulators of other genes.

Tumor data for validation, survival signature prediction
and CNA impact studies
We downloaded gene expression and gene copy number
data of 13 different tumor cohorts (4548 tumor patients
in total) from TCGA [23]. Additional file 5: Table S4 con-
tains all patient identifiers and dates of data freezes for
the individual cohorts. We reorganized these data sets to
obtain for each patient the corresponding gene expression
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levels and gene copy numbers for the 15,942 genes con-
sidered in the CCLE cancer cell line data set. To obtain
gene-specific copy number log-ratios for each tumor
patient, we mapped the tumor-specific aCGH segments
to the corresponding genes. If segment breaks occurred
within a gene, we used the average log-ratio of the
involved segments as a gene-specific copy number mea-
surement. If a gene was not covered by at least one
aCGH segment, we assumed that this gene was not
affected by a copy number change and set its corre-
sponding gene copy number measurement to zero. Note
that personal normal aCGH controls were not available
from TCGA. Instead, copy number signals were normal-
ized against a universal reference. Thus, it is not possible
to distinguish germ-line gene CNVs from somatic gene
CNAs. This, however, does not affect our impact esti-
mates, since our estimates do not require any enrichment
of somatic mutations at driver genes. Microarray gene
expression data were already reported by TCGA as log-
fold changes against a universal reference. For RNA-seq
data, we computed log-fold changes by normalizing to
the average expression of the given gene in a cohort.
Generally, genes that were measured in the CCLE data
set used for CCTN inference, but which were not mea-
sured in some TCGA cohorts due to different exper-
imental platforms, were always included with artificial
measurements of zero, which did not provide any infor-
mation for CCTN. This was done to enable a standardized
application of CCTN to the different cohorts. We finally
added corresponding patient survival information (sta-
tus: dead or alive; survival time; and follow-up time) from
TCGA.
We further downloaded gene expression, gene copy

number, and survival data of five additional tumor cohorts
(292 tumor patients in total) to validate the whole CCTN
impact scoring pipeline based on tumor data that were
not used in any analysis before. We considered inde-
pendent GBM patients from the Rembrandt repository
[30], curated and standardized in [67]. We downloaded
processed data of independent LUAD patients form the
CLCGP cohort [55]. We further downloaded newly added
patients for the TCGA cohorts HNSC, LUAD, and SKCM
and processed them as described above. Corresponding
patient identifiers and dates of data freezes of all cohorts
are provided in Additional file 5: Table S4.

CCTN-based impact computation
We developed a two-step approach to predict the impact
of a specific gene CNA on the expression of a target gene
of interest (here, signature genes) using CCTN, which
represents regulatory relationships between genes learned
from CCLE data. We now use CCTN to infer a cohort-
or patient-specific impact matrix by propagating effects
through CCTN using its regulatory paths between genes.

Importantly, the resulting impact score is corrected for
the variance that can be explained by CCTN at each
node (gene) on the paths from the CNA gene to the tar-
get. An alternative naive approach would have been to
correlate CNA states of genes directly with the expres-
sion of target genes of interest. Such an approach, how-
ever, has several disadvantages. First of all, such a model
would be unable to predict the effects of CNAs that
were not already contained in the training data, render-
ing it basically useless to investigate the effects of rare
CNAs. Our approach can predict the effects of CNAs that
were not seen in the specific patient cohort before. Sec-
ond, the naive correlation model would lack mechanistic
detail about how effects are propagated through the net-
work, which is important for the interpretation of the
results.

Basic network propagation algorithm
For all these reasons, we developed a network propagation
algorithm that utilized CCTN to compute the informa-
tion flow between genes in the network. This allowed us
to compute the impact of patient-specific gene CNAs on
survival signature genes. We considered a given TCGA
cancer cohort of D patients for which gene expression
and gene copy number profiles were measured for N
genes. For each patient d ∈ {1, . . . ,D}, we took its gene
expression and gene copy number profile to predict the
expression level eid of each gene i ∈ {1, . . . ,N} using the
corresponding gene-specific linear model in Eq. (1) with
optimal parameters �a∗

i from CCTN. Next, we computed
each gene-specific correlation coefficient ri between the
predicted and the originally measured expression levels
of gene i across all D patients of that cohort. Subse-
quently, we analyzed only genes with a positive corre-
lation between predicted and observed expression levels
(ri > 0), and we termed those genes predictable. The
fraction of predictable genes varied between tumors types
(Additional file 1: Figure S5). Note that poorly predictable
genes (i.e. genes with small positive ri) will contribute only
very little to the total impact score (see below). Thus, it is
not necessary to further increase the minimal ri for calling
predictable genes. Next, we computed the correspond-
ing variance R2

i = ri · ri explained for predictable genes
that was covered by the underlying linear model in Eq. (1)
and set R2

i := 0 for unpredictable genes (ri < 0). Thus,
R2
i directly reflects the network-based prediction accuracy

for the expression level of gene i under CCTN by quantify-
ing to what extent CCTN can explain the variance of gene
i in a specific cancer cohort. Next, we considered each reg-
ulator gene j of gene i and determined for each regulator
its direct contribution to the observed explained variance
R2
i of gene i. Therefore, we computed the average propor-

tion of each regulator j on the prediction of the expression
of target gene i by
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pji = 1
D

D∑

d=1

|aji · ejd|
|aii · cid| + ∑

v�=i |avi · evd|
and determined the direct average copy number contribu-
tion of target gene i by

pii = 1
D

D∑

d=1

|aii · cid|
|aii · cid| + ∑

v�=i |avi · evd|
under consideration of the D patients. We used absolute
values in the computation of pij (and pii) to account for
regulator genes that act as either inhibitors or activators
of target gene i. If a gene j is not a direct regulator of gene
i (aji = 0), then pji is set to zero. In analogy, if target gene
i does not have a direct copy number effect (aii = 0), then
pii is set to zero. Based on that, we defined a basic network
flow matrix,

F = (
fji

)
1≤j,i≤N := pji · R2

i ,

by weighting the explained variance R2
i of target gene i

with the average proportion pji of its direct predictors
(gene copy number and regulator genes) j. Thus, each col-
umn i of F contains the explained variance of a target gene
i split into average proportions according to the contribu-
tions of its copy number and its target gene-specific regu-
lators. The prediction of gene expression levels in tumors
is of good quality, but of course not perfect (Additional
file 1: Figure S5). For that reason, the explained variance
fulfills 0 ≤ R2

i < 1 and, thus, the column sum norm of F is
strictly less than one.We utilized this to compute the indi-
rect effects of gene CNAs on other genes (i.e. the network
flow) via:

F∗ =
∞∑

k=1
Fk ,

which sums over the contributions of all network paths
of increasing length k. Here, Fk specifies the kth matrix
power obtained by a k-fold matrix multiplication of F. An
element f kji of Fk represents the impact of a trans-acting
regulator gene j on the explained variance of a target gene
i via all directed network paths from j to i of length k.
Since the basic network flow matrix F has a column sum
norm that is strictly less than one, the network flow F∗
will converge to its limit (I − F)−1 − I (geometric series of
matrix F starting at one), where I is the identitymatrix and
(I − F)−1 specifies the inverse of matrix I − F . However,
the computation of the inverse of a large matrix is very
time-consuming (I−F has dimensionN×N). In addition,
due to the sparsity of F (the majority of entries are zero
because CCTN utilizes only the most relevant predictors)
and its entries in [ 0, 1), we also know that the values of
the elements in Fk quickly approach zero. Thus, it is more
efficient to approximate F∗ by adding only an additional
Fk if the obtained difference of the sum over Fk up to k

and the previous sum up to k − 1 is greater than a pre-
defined threshold. We stopped the approximation of F∗ if
the sum of the differences of the column sums of the cur-
rent and the previous approximated matrix was less than
10−3. Starting with a TCGA cohort-specific sparse ini-
tial basic flow matrix F, we typically reached convergence
after less than 50 iterations for most of the 13 different
TCGA cohorts. The resulting network flowmatrix F∗ rep-
resents the impact values for each gene pair. All impact
values in F∗ are equal to or greater than zero. We fur-
ther standardized each column of F∗ by dividing each
column-specific impact entry by the total sum of column-
specific impacts followed by multiplication by 100 to get
impact values in percentages. The impact of a gene j on
the variation of expression of a gene i is given by f ∗

ji .
By considering the corresponding entries of F∗, we were
able to quantify the impact of each patient-specific gene
CNA on the predicted TCGA cohort-specific survival
signature genes.

Identification of gene CNAs with a high impact on survival
We applied the basic network propagation algorithm to all
TCGA cohorts for which we obtained survival signature
genes that were significantly associated with patient sur-
vival (AML, GBM, HNSC, LUAD, OV, and SKCM). This
resulted in a cohort-specific impact matrix F∗ for each
cohort. We next determined for each patient in a cohort
all of their tumor-specific gene CNAs (genes with abso-
lute aCGH log-ratio ≥0.75; Additional file 1: Figure S17:
results obtained for a more stringent absolute aCGH log-
ratio cutoff ≥1 were highly similar) and computed the
frequency of all gene-specific deletions or duplications
in the whole cohort. We then took each mutated gene
and considered the cohort-specific impact matrix F∗ to
compute the average impact that a mutated gene had
on all cohort-specific survival signature genes (Additional
file 1: Figure S12: selection of a stringent set of signa-
ture genes using a correlation cutoff >0.1; Additional
file 1: Figure S13; and Additional file 1: Figure S17: results
obtained for a less stringent correlation cutoff >0.05 were
highly similar). We next considered for each cohort all
genes that had at least one deletion or duplication, sorted
all these genes in increasing order of their impacts, com-
puted the cumulative impact across all mutated genes,
and plotted this cumulative impact clearly highlighting
cohort-specific gene CNAs with a high impact on patient
survival (Additional file 1: Figure S15). We next used a
cumulative impact cutoff of greater than one to select
high-impact gene CNAs for each cohort (Additional file 1:
Figure S15: black dashed line close to zero). We further
ensured that the impact of each selected high-impact gene
on the survival signature genes was significantly greater
than the corresponding gene-specific impacts obtained
under ten random networks of the same complexity as
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CCTN (degree-preserving network permutations). There-
fore, we computed for each CNA gene in a cohort the
difference between its CCTN-based impact score and
each corresponding impact score under a random net-
work leading to ten gene-specific impact score differences
per gene. We then tested for each gene if the gene-specific
differences between the original and the random impact
scores were greater than zero using a one-sided Wilcoxon
test. We further corrected the resulting p values for mul-
tiple testing by computing false-discovery-rate-adjusted
p values (q values) for all genes [68]. We recognized that
also very small impacts close to zero can be highly sig-
nificant, because the observed impacts obtained under
random networks were even closer to zero. However, such
genes with very small impact are less likely to be bio-
logically or clinically relevant. Therefore, we decided to
focus only on stringent selections of cohort-specific high-
impact genes based on Additional file 1: Figure S15 as
described above instead of using a fixed q value cutoff.
The q values of the selected high-impact genes were less
than 0.006 for all TCGA cohorts (q value cutoffs: AML <

0.0053, GBM < 0.0048, HNSC < 0.0058, LUAD < 0.0056,
OV < 0.0046, and SKCM < 0.0049).

Extension to patient-specific impact scores
Further, we note that the proportions pji and pii
used to construct the basic network flow matrix F
are cohort-specific averages using the basic network
propagation algorithm described above. One can easily
modify the computation to get specific proportions
for each individual tumor patient (Additional file 1:
Text S1: Patient-specific absolute impact scores) to con-
struct a patient-specific basic network flow matrix F,
but these computations and the later network propaga-
tion steps are even more time- and resource-consuming
because one now has to apply the network propagation
algorithm to each individual patient. This takes about
24 hours on an AMDOpteron 6274 with 2.2 GHz, requir-
ing up to and more than 80 GB RAM for one patient. A
compressed basic network flow matrix F required about
1 MB of disk storage for one patient, but the resulting
compressed final impact matrix F∗ required about 1 GB
of hard disk space. To compare both approaches, we ran-
domly selected 100 patients from each of the six TCGA
cohorts (AML, GBM, HNSC, LUAD, OV, and SKCM)
and found that the obtained patient-specific impact val-
ues acting on survival signature genes or all network genes
are strongly correlated with the corresponding cohort-
specific impact values (Additional file 1: Figure S28). For
that reason, we decided to work with cohort-specific
impact scores in Figs. 4, 5, 6 and 7 and the corresponding
Additional file 1: Figures S15–S20. We did notice, how-
ever, that in some cases the patient-specific impact matrix
significantly deviated from the cohort average (Additional

file 1: Figure S28), suggesting that in the future, it might
even be worthwhile to use personalized impact matrices.
In addition to this absolute quantification of impacts of

patient-specific gene CNAs, one can further slightly mod-
ify the computation of the specific proportions pji and pii
to obtain relative proportions that enable us to propagate
patient-specific repressive and activating impacts through
the network (Additional file 1: Text S1: Patient-specific
relative impact scores). We used these scores to com-
pute patient-specific survival impact scores considering
all corresponding tumor-specific gene CNAs as described
in ‘Results and discussion’. These patient-specific survival
impact scores enabled us to distinguish between long- and
short-lived patients and to investigate the contributions of
all, frequent, or rare tumor-specific gene CNAs on patient
survival (Fig. 9; Additional file 1: Figures S14, S22, and
S23). This approach was as time and resource intensive as
described above.

Perturbation data for CCTN-based impact validation
We used the L1000 data set of the Library of Integrated
Network-based Cellular Signatures (LINCS) [24] to val-
idate our CCTN-derived impact scores. The L1000 data
set provides information about gene expression changes
of different human cell lines in response to chemical
(small molecule) or genetic (shRNA) perturbations. We
focused on perturbation experiments done for the about
1000 landmark genes defined by the LINCS consortium
as representatives of the human transcriptome. We found
that 933 of these landmark genes were part of CCTN.
We next considered all gold standard perturbation experi-
ments performed for these 933 genes and downloaded for
each perturbation experiment the corresponding acces-
sible top 100 response genes (top 50 up- and top 50
down-regulated landmark genes) via the application pro-
gramming interface accessible under http://api.lincscloud.
org/. Overall, we obtained the top 100 response genes
of 50,306 perturbation experiments leading to on aver-
age 54 perturbation experiments for each of the 933
genes (Additional file 6: Table S5). We used this infor-
mation to create a response gene frequency statistic for
each perturbed gene by taking into account all corre-
sponding gene-specific perturbation experiments, i.e. we
counted how frequently each of the 933 landmark genes
was observed among the top 100 response genes. Next,
we compared the ranks of the corresponding impact
scores from the CCTN-derived impact matrix with these
independently obtained response scores. CCTN-derived
impact scores and LINCS-derived response scores were
correlated gene-wise. The distribution of p values result-
ing from a pan-cancer analysis of the individual impact
matrices obtained for the 13 different TCGA cohorts was
significantly shifted towards small values [Fig. 2f, one-
sided Kolmogorov–Smirnov test comparing the p value
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distribution of the forwardmodel (see below) to a uniform
distribution representing the baseline for non-significant
enrichment: p < 2.1 × 10−23 for each TCGA cohort],
confirming the overall significant predictive power of
our impact scores. Importantly, such a significant shift
towards small p values was also observed for each indi-
vidual impact matrix of a TCGA cohort (Additional file 1:
Figure S8).
In addition, for the perturbation experiments, the direc-

tionality of effects is known. Thus, we utilized the LINCS
data to validate the correct prediction of the directionality
of effects by CCTN. Therefore, we compared the stan-
dard forward model, which quantifies the significance of
correlations between computed impacts flowing from a
perturbed regulator to its targets and the corresponding
experimentally measured impacts, to the reverse model,
which quantifies the significance of correlations between
computed impacts flowing in the reverse direction from
the responding targets to their perturbed regulator and
experimentally measured forward impacts. That means
that in the forward model, both compared impacts flow
in the same direction, whereas in the reverse model, the
compared impacts flow in opposite directions. If CCTN
contained only information about pairwise correlations of
gene expression levels, we would expect that the forward
and the reverse models would perform equally well on the
LINCS data. We found that the forward model reached
a stronger enrichment of small p values than the reverse
model for a pan-cancer analysis of the individual impact
matrices obtained for the 13 different TCGA cohorts
(Fig. 2f, one-sided Kolmogorov–Smirnov test compar-
ing the p value distribution of the forward model to the
p value distribution of the reverse model: p < 0.015 for
each TCGA cohort). This was also found for the impact
matrix of each individual TCGA cohort (Additional file 1,
Figure S8a–m) and further supported by direct gene-
specific comparisons of the forward and backwardmodels
(Additional file 1: Figure S8o). This suggests that CCTN
is mostly able to correctly predict the directionality of
effects.

Identification of survival signature genes
We used random forest (RF) [26] to identify genes that
were associated with the survival of patients in TCGA
cohorts. RF was previously found to be one of the best
performing methods for the prediction of patient survival
based on gene expression data [27]. All analyses were per-
formed on uncensored data using the R package random-
Forest [69] with standard settings. We initially applied RF
to patient-specific gene expression profiles of each TCGA
cohort containing more than 20 patients with survival
information (Additional file 5: Table S4: AML, BRCA,
GBM, HNSC, LUAD, LUSC, OV, and SKCM) to evaluate
howmany patients are required for significant predictions

of patient survival. Validations of each cohort-specific
RF on corresponding out-of-the-bag data (patient-specific
gene expression profiles that a specific tree of the RF
has not seen during its construction) showed that for six
TCGA cohorts with more than 100 patients (AML, GBM,
HNSC, LUAD, OV, and SKCM), significant predictions of
patient survival were possible (one-sided correlation tests:
p < 0.1; Additional file 1: Figure S9).
Next, we focused on these six cohorts and developed

an RF-based approach to determine genes that are associ-
ated with patient survival. For each of the selected TCGA
cohorts, we standardized the expression levels of each
gene to a mean of zero and a standard deviation of one
across all patients. We next randomly selected 90 % of the
patients for the training of an RF and utilized the remain-
ing patients as independent test sets for the evaluation of
the performance of survival prediction and the character-
ization of relevant genes.We trained an RF on the training
set and determined the corresponding gene-specific selec-
tion frequencies (SFs) that quantify how frequently each
gene was chosen as a relevant survival predictor. We
repeated the separation into training and test data 100
times and trained the corresponding RFs to evaluate the
stability of the obtained SFs. We found that the standard
deviations of the SFs were close to zero also for genes with
SFs clearly greater than zero. Thus, the RF-based asso-
ciation of genes with patient survival was robust. Next,
we computed the average SF for each gene based on the
100 RFs and corrected them for selection biases. This was
done by subtracting average gene-specific SFs obtained
from 100 corresponding RFs that were trained using ran-
domly permuted survival information. To obtain a ranking
of genes with respect to their strength of association with
patient survival, we ranked all genes in decreasing order
of their average corrected SFs. This allowed us to quan-
tify their importance for the prediction of patient survival
utilizing the independent test data set that we had ini-
tially put aside. Therefore, we considered each of the 100
RFs and its corresponding test data set and predicted the
survival of the test patients with respect to successively
increasing numbers of permuted expression levels (per-
mutation of gene-specific expression levels across all test
patients) for the previously determined top-ranking pre-
dictor genes. For each of these successive permutation
steps, we computed the correlation between the originally
observed test patient survival and the RF-predicted test
patient survival to quantify the importance of the top-
ranking genes associated with survival. We repeated this
procedure ten times for each of the 100 RFs leading to
1000 permutation runs in total. We did this in steps of
single genes for the first 1000 top-ranking predictors fol-
lowed by steps of 100 genes for the remaining top-ranking
predictors. We finally averaged the obtained correlation
profiles for successively permuted top-ranking predictors
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across the 1000 permutations. We found that the average
correlation profile of the top-ranking predictors quickly
approached zero, enabling us to set a cutoff to select the
most relevant genes associated with survival (Additional
file 1: Figure S12). We subsequently considered all predic-
tor genes above a stringent correlation cutoff of 0.1 (also
later used in our in-depth studies) and a less stringent
cutoff of 0.05 as TCGA cohort-specific survival signature
genes and confirmed that the expression of these genes
was correlated with patient survival.
Therefore, we used standard hierarchical clustering

to group the top-ranking predictor genes revealing two
major groups: (1) survival signature genes negatively asso-
ciated with survival and (2) survival signature genes
positively associated with survival. We finally computed
average patient-specific gene expression levels for these
two clusters and confirmed that these average expression
profiles are significantly correlated with patient survival
(one-sided correlation tests: p < 0.05; Additional file 1:
Figure S13), suggesting that our RF approach is well suited
for the identification of survival signature genes.
In addition, we also compared our RF approach to

random survival forest (RSF) [29], which can handle right-
censored data to gain additional information for the pre-
diction of patient survival. We used the corresponding R
package randomForestSRC to determine RSFs. We found
that our RF approach reached clearly better predictions of
patient survival than RSF without and with censoring for
the initially considered TCGA cohorts (Additional file 1:
Figure S10). See ‘Results and discussion’ for more details.

Gene annotations and genomic features
Lists of human transcription factors and co-factors, phos-
phatases, kinases, signaling and metabolic pathway genes,
essential genes, tumor suppressor and oncogenes, and
known cancer genes were compiled from different pub-
lic resources (see Additional file 9: Table S8 for genes
and references). Fragile genomic sites [53] were extracted
and lifted over to hg19 (Additional file 10: Table S9). Fre-
quently observed CNV sites [54] were available for hg19
(Additional file 11: Table S10).
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Placement and summary of the publication

Hundreds or even thousands of genes are typically altered in their expression comparing dis-
ease to normal tissue. Gene expression changes and potentially underlying gene copy num-
ber alterations can be measured routinely by wet lab experiments (e.g. Pollack et al. (2002);
Hastings et al. (2009); Henrichsen et al. (2009)), but the quantification of individual impacts of
altered genes on clinically relevant characteristics (e.g. cell proliferation, altered signaling path-
ways, patient survival) is still very challenging. Frequently altered genes can be determined by
comparing disease to normal samples using standard statistical tests (e.g. Ritchie et al. (2015)),
but contributions of individual sample-specific gene expression alterations on clinically relevant
characteristics cannot be determined by such approaches. A promising strategy to address this
is the analysis of altered genes with the help of protein or gene interaction networks utilizing
network propagation (Hofree et al. (2013); Leiserson et al. (2015); Seifert et al. (2016)).

I have developed the R package regNet to provide user-friendly implementations of our
network inference and network propagation algorithms that we established in our prior work
(Seifert et al. (2016)). regNet utilizes gene expression and gene copy number data to learn
gene regulatory networks to quantify potential impacts of individual gene expression alterations
on user-defined target genes via network propagation. regNet provides an excellent starting
point for the analysis of transcriptome data in the context of gene regulatory networks.

We demonstrated the value of regNet by identifying putative major regulators that distinguish
pilocytic astrocytomas from diffuse astrocytomas using data of my prior study (Seifert et al.
(2015)). We revealed that especially the downregulation of TBR1, a transcription factor ex-
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pressed in post-mitotic cells and required for normal brain development (Bulfone et al. (1995)),
could strongly contribute to the increased malignancy of diffuse astrocytomas. Further, we
used regNet to predict putative impacts of glioblastoma-specific gene copy number alterations
on known cell cycle pathway genes and patient survival. Interestingly, long-lived glioblastoma
patients tended to show more gene copy number alterations that impact on the cell cycle than
short-lived patients. Several of these genes had important functions in the regulation of cell
growth, migration and proliferation indicating that at least some of these genes may counteract
fast tumor growth.

regNet contributes to the quantification of individual impacts of sample-specific gene expres-
sion alterations on user-defined target genes. regNet can identify potential key drivers and can
quantify combined impacts of altered genes on clinically relevant characteristics. Moreover,
regNet has been used to realize my joint study with Gladitz et al. (2018) and my study Seifert
et al. (2019) that are both part of this habilitation thesis (see Sections 4.6 and 4.7).

Author contribution

I developed the R package and designed its key structure. I implemented all methods for data

handling, network inference and network flow analysis. I designed the two application studies.

I wrote the manuscript and performed the revision of the manuscript. I trained the testers Josef

Gladitz, who was a MD student in my group, and Xiaohui Wu, who was a visiting postdoc in the

group of Andreas Beyer, on how to use regNet and how to implement algorithmic extensions.

Andreas Beyer supported the writing and the revision of the manuscript.
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Abstract

Summary: Gene expression alterations and potentially underlying gene copy number mutations

can be measured routinely in the wet lab, but it is still extremely challenging to quantify impacts of

altered genes on clinically relevant characteristics to predict putative driver genes. We developed

the R package regNet that utilizes gene expression and copy number data to learn regulatory net-

works for the quantification of potential impacts of individual gene expression alterations on user-

defined target genes via network propagation. We demonstrate the value of regNet by identifying

putative major regulators that distinguish pilocytic from diffuse astrocytomas and by predicting pu-

tative impacts of glioblastoma-specific gene copy number alterations on cell cycle pathway genes

and patient survival.

Availability and implementation: regNet is available for download at https://github.com/seifemi/

regNet under GNU GPL-3.

Contact: michael.seifert@tu-dresden.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene expression alterations play a central role in many complex

genetic diseases. Molecular alterations such as DNA copy number

mutations can trigger expression changes of directly affected genes

that further influence the expression of other genes (Hastings et al.,

2009; Henrichsen et al., 2009). Typically, many genes (hundreds or

even thousands) are differentially expressed between disease and

healthy samples. This still puts great challenges on the identification

of potential key disease drivers. Standard statistical tests only allow

to identify frequently altered genes, but contributions of individual

sample-specific gene expression alterations on clinically relevant sig-

natures cannot be quantified routinely so far. Generally, network-

based analyses represent promising strategies to overcome this

(Hofree et al., 2013; Leiserson et al., 2015; Seifert et al., 2016).

Here, we present the R package regNet that utilizes gene regula-

tory networks to quantify impacts of gene-specific expression

changes on clinically relevant signature genes. regNet propagates

expression changes through networks. Thereby it becomes possible

to predict the impact of alterations of specific genes (e.g. mutations)

on other, disease-related genes. The mathematical framework be-

hind regNet has been described in great detail along with in-depth

validation studies in Seifert et al. (2016). The basic regNet workflow

is illustrated in Figure 1a. First, regNet learns a regulatory network

from a large collection of paired gene expression and copy number

profiles. Next, regNet utilizes this network to quantify impacts of

sample-specific gene expression changes (source genes, e.g. differen-

tially expressed genes with underlying copy number mutations in a

tumor specified by the user) on other clinically relevant target genes

(e.g. known disease markers) using network propagation. This en-

ables to identify potential key drivers. regNet enables user-friendly

access to the network inference algorithm and the network propaga-

tion algorithms described in Seifert et al. (2016).

After providing details to the implementation, we demonstrate

the basic usage and value of regNet in two case studies. First, we
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analyze the potential interplay of transcription factors that were dif-

ferentially expressed between pilocytic and diffuse astrocytomas

suggesting that underexpression of TBR1 may contribute to

increased malignancy of diffuse astrocytomas. Next, we predict po-

tential impacts of glioblastoma-specific gene copy number mutations

on cell cycle pathway genes and show that tumor-specific gene copy

number mutations enable to distinguish between short and long

survival.

2 Implementation

regNet is divided into four main modules enabling data loading, net-

work inference, network-based predictions of gene expression levels,

and network propagation. regNet uses a fixed folder structure to en-

able a user-friendly storage and loading of results. A comprehensive

summary about the underlying mathematical models is given in

Text S1. Detailed information about the individual modules and the

fixed folder structure are provided in Text S2. A basic demonstra-

tion of regNet code usage is outlined in Text S3.

2.1 Data loader
regNet requires gene expression profiles and corresponding gene

copy number profiles as input data for network inference, network

predictions and network propagation. regNet can handle tab-

delimited datasets with a fixed column-structure. regNet also allows

to transform datasets to apply a learned network for the analysis of

Fig. 1. regNet workflow (a) and case study results (b–g). (a) Basic regNet workflow (grey box). Paired gene expression and copy number data are loaded (data

loader) and used to learn a regulatory network (network inference) followed by testing the predictive power of the network on different samples (network valid-

ation) and the quantification of impacts (network propagation) of sample-specific gene expression alterations (source genes, e.g. differentially expressed genes

with underlying copy number mutations in a tumor specified by the user) on user-defined target genes (e.g. clinically relevant signature genes). (b) Out-degree

distribution of TF network considering activator (red) and inhibitor (blue) links. (c) Correlations between TF network predicted and originally measured gene-spe-

cific expression levels of three independent astrocytoma test cohorts (GBM, LGG, PA) in comparison to average predictions obtained by ten random networks of

the same complexity (Random). (d) Average impacts of major regulators on other TFs comparing the learned (orange) TF network to 100 random networks of the

same complexity (grey). (e) Predictive power of the learned cancer cell line network on glioblastoma patients for different network instances. The network in-

stance that only considers the most relevant links (green) is significantly better than the instance that considers all learned links (red) and than random networks

of the same complexity (grey). (f) Genome-wide characterization of patient-specific differentially expressed genes with directly underlying gene copy number mu-

tations on cell cycle pathway genes for a selected long-lived glioblastoma patient (TCGA-06-6693). Shown are relative average impacts that can be inhibitory

(negative impact score) or activating (positive impact score) for underexpressed genes affected by deletions (green) or overexpressed genes affected by amplifi-

cations (red). (g) Kaplan–Meier curve distinguishing short from long-lived glioblastoma patients utilizing patient-specific survival impact scores
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new datasets with different numbers of genes than the initial dataset

that was used to learn the network. This is done by removing add-

itional genes and by setting expression measurements of missing

genes to zero (no contribution to analysis).

2.2 Network inference
regNet splits the global network inference problem into independent

gene-specific sub-network inference tasks. regNet models the expres-

sion of each gene as a linear combination of its own copy number

and the expression of other putative regulators. A detailed descrip-

tion of the underlying mathematical model and in-depth validation

studies were done in Seifert et al. (2016). See Text S1 for an over-

view of the underlying mathematical model. Lasso (least absolute

shrinkage and selection operator) regression (Tibshirani, 1996) fol-

lowed by a significance test for lasso (Lockhart et al., 2014) is used

to learn for each gene those predictors (gene copy number and/or ex-

pression levels of other genes) that best predict the expression level

of the gene in a given dataset. Corresponding FDR-adjusted P-values

(Benjamini and Hochberg, 1995) can be used to obtain user-defined

network instances. regNet stores all P-values for learned gene-gene

associations (links) and enables the user to choose different P-value

cutoffs to create and test network instances of variable confidence

and complexity. A specific network instance consists of a subset of

the links at a user-defined P-value cutoff. Network inference is usu-

ally very time-consuming. In order to speed up the computation, net-

work inference can be split across multiple compute cores. Further,

random network instances of a learned network can be obtained by

degree-preserving network permutations.

2.3 Network-based prediction of gene expression levels
In order to evaluate the quality of a previously learned network,

regNet can be used to predict the expression levels of genes in a

given dataset. regNet quantifies the prediction quality of each indi-

vidual gene by computing correlations between predicted and ori-

ginally measured expression levels. See Text S1 for more details.

Ideally, this evaluation should be done using an independent test

dataset that was not used for network inference. Different instances

of a network can be analyzed by setting a global P-value cutoff and

a local gene cutoff (excludes genes in close chromosomal proximity

as gene-specific predictors, because such predictors may only repre-

sent the underlying local DNA copy number instead of potential

regulatory dependencies) to only consider the most relevant network

links. The obtained gene-specific correlations enable to evaluate the

predictive power of the underlying network. regNet stores these cor-

relations and corresponding P-values in a tab-delimited file for fur-

ther analysis. This functionality is also available for random

networks enabling comparisons to baseline models. Further, correl-

ations between predicted and measured expression levels provide

the basis to integrate the quality of the predictions of individual

genes into the impact computations via the network propagation

module (Text S1).

2.4 Network propagation
regNet quantifies for a given dataset the impact of individual regula-

tor genes on all other genes utilizing a previously learned network.

This algorithm quantifies for each gene pair (a, b) the direct and in-

direct contribution of gene a on the expression of gene b under con-

sideration of all existing network paths from a to b, the prediction

quality of individual genes along the paths, and possibly existing

feedback loops. These impact scores can be computed over all pa-

tients in a cohort or for each individual patient. regNet can also

integrate contributions of genes acting as potential inhibitors or acti-

vators for individual patients. This is done by accounting for the

sign of effects (activating, positive sign or inhibiting, negative sign)

of individual network links. regNet implements different functions

to utilize these possibilities (Suppelmentary Table S1). The statistical

significance of individual impact scores can be determined by com-

parisons to impact scores obtained under corresponding random

networks. This enables to identify those genes that have the greatest

impact on user-defined target genes. An overview of the underlying

mathematical models is provided in Text S1. Implementation details

are given in Text S2. Code usage examples are shown in Text S3.

Further details on the impact computation and an in-depth valid-

ation are provided in Seifert et al. (2016).

3 Application

We demonstrate the basic functionality and the potential of regNet

in two case studies.

3.1 Identification of hub regulators distinguishing

pilocytic from diffuse astrocytomas
We analyzed the potential interplay and activity of transcription fac-

tors (TFs) that distinguish pilocytic astrocytomas (PA) in children

from diffuse astrocytomas (AS) in adults. This study requires less

than ten minutes on a standard computer enabling to become famil-

iar with the basic regNet functionality. Details of individual regNet

function calls of this case study are provided in Text S3. We used

regNet to learn a putative TF-TF interaction network of 171 TFs

based on gene expression and copy number data of 124 different

astrocytomas (47 PA and 77 AS samples) from Seifert et al. (2015).

Characteristics of the network are summarized in Figure 1(b–d) and

Supplementary Figure S2. The network contained more putative ac-

tivator (269 of 341) than inhibitor links (72 of 341) (Fig. 1b). Only

few TFs had more than four outgoing links (Supplementary Fig.

S2b). Some of these potential major regulators are known to be

involved in the development of the central nervous system (PAX6,

THRB, TBR1), cell proliferation (MEOX2), apoptosis (CCNL2), or

histone acetylation (RBBP4) (Safran et al., 2010). We further used

the network to predict the expression of genes in three independent

cohorts. The network reached a significantly better prediction of

gene expression levels than random networks of the same complex-

ity (Fig. 1c, Text S3). Finally, we determined which potential major

regulators had great impact on other TFs in the network. We found

that TBR1 has by far the strongest impact on other TFs (Fig. 1d).

TBR1 is expressed in post-mitotic cells and required for normal

brain development (Bulfone et al., 1995). We found that the expres-

sion of TBR1 was clearly reduced in AS compared to normal brain

and PA suggesting that TBR1 may contribute to the strongly

increased malignancy of AS compared to PA.

3.2 Impacts of glioblastoma gene copy number

mutations on cell cycle pathway genes and patient

survival
We used regNet to predict glioblastoma-specific gene copy number

mutations that influence the expression of cell cycle genes and pa-

tient survival. This study required about 6.3 computing hours using

400 cores of a compute server [Bull HPC-Cluster (Taurus), Intel(R)

Xeon(R) CPU E5-2680 v3 2.50 GHz, ZIH TU Dresden]. Most time

was used for network inference, which generally scales linearly with

the number of cores making such a study also feasible on a compute

server with less cores. More details to this study are provided in

regNet 3
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Text S4. We learned a genome-wide transcriptional regulatory net-

work from gene expression and copy number data of 15 811 genes

in 768 human cancer cell lines (Barretina et al., 2012). This network

contained much more activator (46 366 of 53 955) than inhibitor

(7589 of 53 955) links and 4938 genes had a direct copy number ef-

fect. This observation was not unexpected (e.g. synchronous activa-

tion of target genes of a TF will lead to activator links). We used this

network to predict gene expression of glioblastomas (TCGA, 2008).

In accordance with Seifert et al. (2016), we found that the predictive

power of this network was significantly better than for random net-

works of the same complexity and a corresponding more complex

network that utilized all learned links without filtering for signifi-

cant links (Fig. 1e, Supplementary Fig. S3, Supplementary Text S4).

Next, we determined the impact of differentially expressed genes

with underlying copy number mutations on the expression of cell

cycle pathway genes for patients with very short (8 patients: less

than 20 days) or very long (10 patients: more than 2000 days)

survival. We found that genes with significant impact on cell cycle

were not disjoint between short and long-lived patients (Fig. 1f,

Supplementary Fig. S4). Interestingly, there was a tendency that

long-lived patients tend to contain more gene copy number muta-

tions that impact on the expression of cell cycle pathway genes than

short-lived patients (Supplementary Fig. S5). Several of these genes

play important roles in the regulation of cell growth, migration and

proliferation (Text S4). This suggests that some of the observed gene

copy number mutations in long-lived patients may counteract fast

tumor growth with benefits for patient survival. Finally, we com-

puted the impacts of differentially expressed genes with underlying

copy number mutations on known survival signature genes for each

of the short and long-lived patients. regNet was able to separate the

selected glioblastoma patients into a short and long-lived group (Fig.

1g, Supplementary Fig. S6).

4 Conclusion

regNet predicts the impact of gene expression alterations on user-

defined target genes, while accounting for direct and indirect net-

work effects. regNet can identify potential key drivers and quantify

combined impacts of altered genes on clinically relevant characteris-

tics. Since network inference and propagation are typically very time

and resource consuming for large datasets, we recommend to use

regNet on a compute server. regNet currently exploits information

contained in gene expression and copy number data for network

inference, but the underlying mathematical model is flexible enough

to enable the integration of additional omics layers. We finally note

that applications of regNet are not necessarily limited to cancer.
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Placement and summary of the publication

Oligodendrogliomas represent a specific class of human brain tumors that are characterized
by a joint loss of one copy of the p-arm of chromosome 1 and the q-arm of chromosome
19 (1p/19q co-deletion) in combination with a heterozygous point mutation of the isocitrate
dehydrogenase gene (IDH1/2) (Labussiere et al. (2010); Louis et al. (2016)). The IDH mutation
is known to induce an epigenetic reprogramming of the tumor cells (Noushmehr et al. (2010);
Turcan et al. (2012)) and the 1p/19 co-deletion is of important clinical relevance to distinguish
oligodendrogliomas from closely related astrocytomas (Louis et al. (2016)). The 1p/19q co-
deletion develops most likely from an unbalanced translocation (Jenkins et al. (2006)). On the
one hand, this suggested that driver genes could be located in close chromosomal proximity
to the fusion point, but no oncogenic fusion genes have been discovered so far. On the other
hand, the recurrently occurring 1p/19q co-deletion suggest that tumor suppressors are located
on the 1p and 19q arm. Inactivating point mutations of FUBP1 on 1p and of CIC on 19q have
been identified (Bettegowda et al. (2011); Eisenreich et al. (2013)), but they were not present
in each oligodendroglioma (The Cancer Genome Atlas Research Network (2015)) suggesting
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that both genes are not responsible for the initial development of oligodendrogliomas. Thus,
despite the important clinical relevance of the 1p/19q co-deletion, the underlying pathology still
remains elusive since many years.

This motivated us to search for potential driver genes by focusing on gene expression
changes that were induced by the 1p/19q co-deletion. The loss of one allele of each gene
on 1p and 19q could directly contribute to the development of oligodendrogliomas by reduced
expression or indirectly by alterations of regulatory networks of the tumor cells. Since hundreds
of genes on 1p and 19q are downregulated and because the 1p/19q co-deletions are nearly
identical in different oligodendrogliomas, we could not utilize standard statistical approaches
for differential gene expression analysis to distinguish between potential driver and passenger
genes. We addressed this challenge by developing a network-based strategy for the identi-
fication of putative driver genes within the region of the 1p/19q co-deletion by utilizing my R
package regNet (Seifert and Beyer (2018)).

In our study, we learned oligodendroglioma-specific gene regulatory networks based on pub-
licly available gene expression and copy number data from The Cancer Genome Atlas Re-
search Network (2015). We utilized these networks to quantify potential impacts of differentially
expressed genes within the 1p/19q region on cancer-relevant signaling and metabolic path-
ways. We predicted 8 genes with strong impact on signaling pathways and 14 genes with strong
impact on metabolic pathways. In-depth literature analysis suggested that many of these genes
probably push and others may counteract oligodendroglioma development. Among these can-
didates was ELTD1, a key player of tumor angiogenesis (Masiero et al. (2013)) and function-
ally validated glioblastoma oncogene (Towner et al. (2013); Ziegler et al. (2017)), which was
overexpressed despite the loss of one copy of the 1p arm. Further, we found that the glioblas-
toma tumor suppressor SLC17A7 (Lin et al. (2015)) on 19q was underexpressed. Moreover,
we found that SDHB, which triggers epigenetic alterations in paragangliomas (Letouzé et al.
(2013); Aspuria et al. (2014); Baysal and Maher (2015)), was underexpressed and may support
and possibly enhance the epigenetic reprogramming of oligodendrogliomas that is induced by
the IDH mutation (Cohen et al. (2013); Louis et al. (2016)). In addition, we analyzed other rarely
observed chromosomal deletions and amplifications and identified putative drivers within these
regions that could contribute to the development of specific oligodendroglioma subgroups.

Generally, our unique in-depth computational study contributes to a better understanding
of the oligodendroglioma pathology and may open the possibility to develop new therapeutic
strategies in the future. Unfortunately, functional validations of our findings by wet lab exper-
iments were not possible, because oligodendroglioma cells do not grow in cell culture and
mouse models of oligodendrogliomas did not exist, but future progress may enable this.
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Network-based analysis of
oligodendrogliomas predicts novel cancer
gene candidates within the region of the
1p/19q co-deletion
Josef Gladitz1, Barbara Klink2,3 and Michael Seifert1,3*

Abstract

Oligodendrogliomas are primary human brain tumors with a characteristic 1p/19q co-deletion of important
prognostic relevance, but little is known about the pathology of this chromosomal mutation. We developed a
network-based approach to identify novel cancer gene candidates in the region of the 1p/19q co-deletion. Gene
regulatory networks were learned from gene expression and copy number data of 178 oligodendrogliomas and
further used to quantify putative impacts of differentially expressed genes of the 1p/19q region on cancer-relevant
pathways. We predicted 8 genes with strong impact on signaling pathways and 14 genes with strong impact on
metabolic pathways widespread across the region of the 1p/19 co-deletion. Many of these candidates (e.g. ELTD1,
SDHB, SEPW1, SLC17A7, SZRD1, THAP3, ZBTB17) are likely to push, whereas others (e.g. CAP1, HBXIP, KLK6, PARK7, PTAFR)
might counteract oligodendroglioma development. For example, ELTD1, a functionally validated glioblastoma
oncogene located on 1p, was overexpressed. Further, the known glioblastoma tumor suppressor SLC17A7 located on
19q was underexpressed. Moreover, known epigenetic alterations triggered by mutated SDHB in paragangliomas
suggest that underexpressed SDHB in oligodendrogliomas may support and possibly enhance the epigenetic
reprogramming induced by the IDH-mutation. We further analyzed rarely observed deletions and duplications of
chromosomal arms within oligodendroglioma subcohorts identifying putative oncogenes and tumor suppressors
that possibly influence the development of oligodendroglioma subgroups. Our in-depth computational study
contributes to a better understanding of the pathology of the 1p/19q co-deletion and other chromosomal arm
mutations. This might open opportunities for functional validations and new therapeutic strategies.

Keywords: Oligodendrogliomas, 1p/19q co-deletion, Network biology, Network inference, Network propagation,
Cancer genomics, Bioinformatics, Computational systems biology

Introduction
Between 4 and 8 percent of all primary human brain
tumors are classified as oligodendrogliomas [80]. Oligo-
dendrogliomas belong to the class of diffuse gliomas that
typically show infiltrative growth into the surrounding
brain tissue, relapse, and progression to more aggres-
sive tumors [54]. Histological similarities to normal
oligodendrocytes were used for many years to diagnose
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1Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of
Medicine, Technische Universität Dresden, Dresden, Germany
3National Center for Tumor Diseases, Dresden, Germany
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oligodendrogliomas [47], but pure histological classifica-
tions can vary considerably between neuropathologists
[14, 76]. Therefore, molecular markers for a more robust
classification of oligodendrogliomas have been explored.
First, it has been revealed that the majority of oligoden-
drogliomas showed a recurrent loss of heterozygosity of
the chromosomal arms 1p and 19q (1p/19q co-deletion)
associated with improved chemotherapy response and
longer relapse-free survival [9, 28, 60]. Further, the
1p/19q-co-deletion is always accompanied by heterozy-
gous somatic point mutations of the isocitrate dehydroge-
nase gene (IDH1/2) [37]. These IDH-mutations are known
to induce the glioma-CpG island methylator phenotype

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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(G-CIMP) [53, 75]. Both characteristic molecular mark-
ers (1p/19q co-deletion and IDH mutation) have recently
been included into the new 2016 World Health Organiza-
tion (WHO) classification system for tumors of the central
nervous system [48]. This new classification utilizes histo-
logical features in combination with the co-occurrence of
the 1p/19q co-deletion and the IDH-mutation to diagnose
oligodendrogliomas.
So far, the clinical relevanceof theoligodendroglioma-specific

1p/19qco-deletionhasbeenwell-studied [9, 10, 28, 33, 69, 78],
but the pathogenesis of the recurrent 1p/19q co-deletion
still remains elusive. The 1p/19q co-deletion is likely to
emerge from an unbalanced translocation between the 1q
and 19p arm [29]. This suggests that driver genes could
be located in close proximity to the fusion points, but
no oncogenic fusion genes have been reported. On the
other hand, the recurrent 1p/19q co-deletion suggests
that tumor suppressors could be located on the 1p and
19q arm. According to the classical two hit hypothesis,
both alleles of a tumor suppressor must be mutated to
contribute to oncogenesis [36]. The search for inactivat-
ing point mutations on the remaining copies of the 1p
and 19q arm identified FUBP1 located on 1p and CIC
located on 19q as potential tumor suppressors [8, 20].
But FUBP1 mutations are only observed in about 29%
and CIC mutations in about 62% of oligodendrogliomas
[69]. This implies that these mutations occur later dur-
ing tumor development and are therefore not responsible
for the initial development of oligodendrogliomas. More-
over, it is likely that haploinsufficiency [16, 63] induced
by the 1p/19q co-deletion may contribute to the devel-
opment of oligodendrogliomas. The loss of one allele of
each gene on 1p and 19q could directly contribute to
oncogenesis by reduced expression levels or indirectly by
alterations of regulatory networks. However, standard sta-
tistical approaches are not suited to identify differentially
expressed driver genes on 1p/19q, because hundreds of
genes are down-regulated on both chromosomal arms
due to the co-deletion making it impossible to distinguish
between driver and passenger genes. Further, the recur-
rence of virtually identical 1p/19q co-deletions in different
oligodendrogliomas does not allow to narrow down chro-
mosomal regions on 1p and 19q where driver genes might
be located.
Novel computational strategies are required to search

for putative cancer candidate genes located within the
region of the 1p/19q co-deletion. Generally, the analysis
of gene mutations in the context of gene interaction net-
works represents a promising strategy to address this chal-
lenge [24, 39, 65]. Importantly, we recently showed that
gene regulatory networks inferred from gene expression
and copy number data can be used to quantify impacts
of gene copy number mutations on cancer-relevant tar-
get genes [64, 65]. The key idea behind this approach is

the propagation of gene expression alterations through
a gene regulatory network to determine how individual
gene copy number mutations influence the expression of
other genes in the network. Utilizing such an approach,
each individual gene located within the region of the
1p/19q co-deletion can be analyzed offering the unique
possibility to search for novel cancer candidate genes that
influence the development of oligodendrogliomas.
Here, we develop a network-based approach to iden-

tify novel putative cancer gene candidates for oligoden-
drogliomas (Fig. 1). We utilized gene expression and
copy number data of 178 histologically classified oligo-
dendrogliomas from The Cancer Genome Atlas (TCGA)
to learn gene regulatory networks. We used these net-
works to determine impacts of differentially expressed
genes with underlying copy number mutations on known
cancer-relevant signaling and metabolic pathway genes
utilizing network propagation. We screened the region of
the recurrent 1p/19q co-deletion and other rarely mutated
chromosomal arms revealing several interesting novel
putative cancer candidate genes that have the potential to
be involved in the development of oligodendrogliomas.

Materials andmethods
Gene copy number and expression data
DNA copy number profiles (aCGH), gene expression data
(RNA-seq), and clinical annotations of 178 histologically
classified oligodendrogliomas (133 with and 45 without
1p/19q co-deletion) of the TCGA lower grade glioma
(LGG, gdc.cancer.gov) cohort and gene expression data
(RNA-seq) of three commercially available normal brain
samples (StrataGen, BioChain, and Clonetech) from [38]
were considered. The tumors represent the 1p/19q and
IDHme subgroups described in [38]. Gene copy number
profiles of individual tumors were determined from aCGH
profiles as described in [65]. Gene expression counts of
tumor and normal samples were jointly normalized with
the cyclic loess method using the R function voom of
the limma package [61]. We finally included gene copy
number and gene expression measurements of 12,285
genes in our data set after excluding all genes with very
low expression values (less than 1 read count per million
reads mapped) in at least 50% of samples. Further, aCGH
and gene expression data of 118 histologically classified
oligoastrocytomas (34 with and 84 without 1p/19q co-
deletion) of the TCGA LGG cohort were processed in the
same way and considered for independent network valida-
tion. All processed data are contained in Additional file 1:
Table S1 and Additional file 2: Table S2.

Identification of chromosomal aberrations and gene copy
number mutations
Hierarchical clustering of gene copy number profiles of
the 178 histologically classified oligodendrogliomas was
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Fig. 1Methodological overview. Gene copy number and expression data of 178 histologically classified oligodendrogliomas from The Cancer
Genome Atlas (TCGA) were randomly split into training (two-thirds) and corresponding test (one-third) samples. Oligodendroglioma-specific gene
regulatory networks were learned based on gene expression and copy number data of each training set. The obtained networks were validated on
their corresponding oligodendroglioma test sets and independent data of closely related oligoastrocytomas from TCGA. Network propagation was
applied to genes within the region of the 1p/19q co-deletion to identify those genes that had a strong impact on the expression of known
cancer-relevant signaling and metabolic pathways

done using the R function heatmap.2 (euclidean distance,
complete linkage) of the R package gplots [79]. We found
that 133 tumors had the characteristic 1p/19q co-deletion
(Additional file 3: Figure S1, see [38] for all tumors). We
considered each of these tumors with 1p/19q co-deletion
and determined deleted and duplicated genes. To realize
this, we computed the average copy number log2-ratio ri
(ri < 0) of tumor to normal DNA within the 1p/19q co-
deletion region for tumor i ∈ {1, · · · , 133}. We marked
each gene in tumor i as deleted if its gene-specific copy
number log-ratio was less than 0.5 · ri. In analogy, we
marked each gene as duplicated if its log-ratio was greater
than − 0.5 · ri. We considered a scaling factor of 0.5 to
account for the fact that gene copy number measurements
are typically noisy depending on the individual tumor con-
tent of the patient samples. This enabled us to specify for
each tumor all genes and chromosomal regions (e.g. dele-
tion of 4q, duplication of 7p) affected by deletions or
duplications that were visible in the heatmap in addition
to the 1p/19q co-deletion (Additional file 3: Figure S1).

Identification of differentially expressed genes
Differentially expressed genes between oligodendro-
gliomas with 1p/19q co-deletion and normal brain sam-
ples were derived by moderated t-tests using limma’s
standard workflow [61]. P-values were adjusted for
multiple testing by computing q-values (R package
qvalue) [68]. Under- and overexpressed genes in oligo-
dendrogliomas in comparison to normal brain were
selected using a q-value cutoff of 0.05 (Additional file 4:
Table S3).

Gene and pathway annotation analysis
Gene annotations (transcription factors/cofactors,
kinases, phosphatases, oncogenes, tumor suppressors)
and genes included in cancer-relevant signaling and
metabolic pathways were obtained from [65]. The number
of differentially expressed genes per annotation category
was determined separately for under- and overexpressed
genes and the significance of gene enrichment in each
category was quantified using Fisher’s exact test.
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Inference of gene regulatory networks
Gene expression (log2-ratios of tumor to average normal
brain) and gene copy number (log2-ratios of tumor to
normal DNA) data of all histologically classified oligoden-
drogliomas were used to learn gene regulatory networks
using the R package regNet [64]. Histologically classi-
fied oligodendrogliomas without 1p/19q co-deletion were
included to increase the variation of gene expression
within the region of the 1p/19q co-deletion to support
the selection of relevant links between genes. We ran-
domly divided the oligodendrogliomas into a training set
containing two-thirds of the tumors (119) for network
inference and a test set containing the remaining one-
third of tumors (59) for network validation. For each of the
12,285 genes in our data set, regNet models the expres-
sion of each gene as a linear combination of its own
gene copy number and the expression of all other genes
to determine the most relevant predictors (gene-specific
copy number and expression of putative regulators) of
each gene [64]. To solve each gene-specific linear model,
regNet uses lasso regression [70] in combination with
a significance test for lasso [46] to estimate the coeffi-
cient and corresponding significance (q-value) for each
gene-specific predictor. Lasso regression selects the most
relevant predictors of each gene and automatically shrinks
the coefficients of other irrelevant predictors to zero. To
avoid the inclusion of spurious predictors that only rep-
resent the local copy number state but not putative reg-
ulatory dependencies between genes, we removed local
gene-specific predictors 50 genes down- and up-stream
of each gene as done in [65]. We finally only considered
the most significant predictors of each gene with a q-
value equal or less than 0.01. Network inference was very
time consuming (390h CPU time per network). Neverthe-
less, we repeated the genome-wide network inference ten
times with different training sets to integrate evidences
from different networks into the prediction of novel tumor
gene candidates.

Identification of major regulators
To determine major regulators with many outgoing links
to other genes, we defined a scoring scheme that inte-
grates the learned networks. We assume that links that
are present in more networks are also more relevant than
links that are only found in some networks. First, we
counted for each gene g ∈ {1, . . . , 12285} the number of
outgoing links cgi that were observed in i ∈ {1, . . . , 10} of
the 10 networks resulting in a count matrix C := (cgi).
Next, we standardized each column sum of C to 1 to
account for different numbers of outgoing links involved
in counting. Finally, we determined for each gene its
score by summing up the corresponding gene-specific
row values of the standardized count matrix C. Genes
with greater score values have more stable outgoing links

across the learned networks than genes with lower scores.
This ranking of genes enabled to determine major regula-
tors across the networks and to test if genes of a specific
annotation class have greater scores than genes that were
not part of this class (Wilcoxon rank sum test).

Validation of learned networks
To assess the prediction quality of individual gene expres-
sion levels by each network, we computed correlations
between network-based predicted and experimentally
measured gene expression levels for each of the ten net-
works considering the corresponding network-specific
oligodendroglioma test set. We further utilized each net-
work to predict the expression levels of 118 histologically
classified oligoastrocytomas (34 with 1p/19q co-deletion,
84 without 1p/19q co-deletion), a tumor type that is
closely related to oligodendrogliomas [38, 48]. In addi-
tion, to have baseline models for the different validation
data sets, we computed 25 random networks (degree-
preserving network permutations) for each of the ten
learned networks using regNet [64] to compare their pre-
diction quality to those of the ten original networks. To
summarize the prediction results of the different net-
works, we computed median correlations between pre-
dicted and measured expression levels and we further
analyzed if the obtained median correlation distribution
of the original networks was significantly shifted into the
positive range compared to the correlation distribution of
the random networks using a Wilcoxon rank sum test.

Network-based impact quantification of gene copy
number mutations on signaling andmetabolic pathways
We considered all oligodendrogliomas with 1p/19q co-
deletion to analyze how differentially expressed genes
between tumor and normal brain tissue located within
the region of the 1p/19q co-deletion impact on cancer-
relevant signaling and metabolic pathways. We used the
network propagation algorithm implemented in regNet
[64] to realize this. This algorithm considers a learned
network and the prediction quality of individual genes to
compute direct and indirect impacts between each pair
of genes considering all possible network paths (Fig. 1).
We have previously shown that this algorithm can cor-
rectly predict downstream impacts of gene perturbation
experiments [65].
We first computed the total strength of impacts that

flow from a differentially expressed gene located within
the region of the 1p/19q co-deletion to individual sig-
naling and metabolic pathway genes for each of the ten
learned networks. To compare the obtained impacts to
random baseline models, we considered the 25 random
network instances computed for each of the ten networks
to determine the corresponding average impacts of each
differentially expressed gene of the 1p/19q region on all
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signaling and metabolic genes. We next compared the
median impact of each gene under the ten original net-
works to the corresponding average impacts of this gene
under the random networks using a paired one-sided
Wilcoxon rank sum test and further corrected for multi-
ple testing by computing q-values [68]. We used a paired
test to account for the fact that the random networks that
belong to each of the ten individual networks were derived
by degree-preserving network permutations. We consid-
ered a one-sided test because only genes with greater
impact obtained under corresponding randommodels are
of interest. We considered differentially expressed genes
within the region of the 1p/19q co-deletion as high-impact
genes if they had significantly greater impacts on signaling
or metabolic pathways than under corresponding random
networks using a q-value cutoff of 0.05.
Moreover, we also analyzed impacts of differentially

expressed genes in chromosomal regions that were much
less frequently affected by deletions or duplications in
oligodendrogliomas. We specifically focused on aberra-
tions of whole chromosomal arms in addition to the
characteristic 1p/19q co-deletion. To account for noisy
gene copy number measurements, we defined a chro-
mosomal arm to be mutated if at least 80% of its genes
were duplicated or deleted, respectively. To validate the
considered mutated chromosomal arms, we compared
our predictions to those reported for oligodendrogliomas
of the POLA cohort [33] and found that they have
been previously described (Table 1). We considered each
chromosomal arm that was mutated in at least six oligo-
dendrogliomas with 1p/19q co-deletion and defined a cor-
responding subcohort of oligodendrogliomas that showed
these mutations. We considered each subcohort and com-
puted for all differentially expressed genes located on
the mutated chromosomal arm corresponding impacts
on signaling and metabolic pathway genes as described
above.

Results and discussion
Many under- and several overexpressed genes are
observed within the region of the 1p/19q co-deletion
We considered all oligodendrogliomas with 1p/19q co-
deletion and compared their gene expression profiles
to normal brain references to identify differentially

expressed genes. We observed 3,068 (23.8%) under- and
3204 (24.9% of genes) overexpressed genes in oligoden-
drogliomas (q-value < 0.05, Additional file 4: Table S3).
Only few strongly underexpressed tumor suppressors
(log-ratio < −2: ANO3 and CDH1), but several strongly
overexpressed oncogenes (log-ratio > 2: MYC, EGFR,
PDGFRA, PIK3CA, PRRX1, ASCC3, ZNF117, CRISPLD1,
CSMD3, ALDH1L2, MDGA2, TSHR and H3F3A) were
among these genes.
Considering chromosomal locations, we found that 524

underexpressed genes (45.2% of genes on 1p/19q) and
interestingly also 130 overexpressed genes (11.2% of genes
on 1p/19q) were located within the region of the 1p/19q
co-deletion. We observed strong underexpression for 74
of the 524 underexpressed genes on 1p/19q (log-ratio
< −2). The ten most strongly underexpressed genes
on 1p/19q were LC17A7, PRKCG, RIMS3, KIAA1324,
AK5, SLC6A17, CD22, HPCA, MAG and CHD5. We also
observed strong overexpression for 10 of the 130 over-
expressed genes on 1p/19q (log-ratio > 2: SAMD11,
SLC35E2, HES5, GRHL3, RCC1, SPOCD1, HFM1, DLL3,
IL4I1 and CACNG6). Interestingly, DLL3 and HES5 are
part of the Notch signaling pathway involved in oligoden-
drocyte specification [56] restricting cell proliferation and
tumor growth in glioma mouse models [22].
We further analyzed all differentially expressed genes

in the context of known cancer-relevant signaling path-
ways (Fig. 2). We observed that especially the Notch and
Hedgehog signaling were strongly enriched for overex-
pressed genes, whereas MAPK signaling was enriched
for underexpressed genes (Fig. 2a). In addition, also ErbB
signaling and the Adherens junction pathway tended to
show an enrichment of underexpressed genes. Consider-
ing metabolic pathways, we found that the oxidative phos-
phorylation pathway was enriched for underexpressed
genes (Fig. 2b). Also the pyrimidine, purine and pentose
phosphate pathway tended to show some enrichment of
differentially expressed genes.

Transcriptional regulatory networks predict tumor gene
expression levels
To provide the basis for the impact quantification of gene
copy number mutations on cancer-relevant pathways, we
used regNet [64] to learn genome-wide transcriptional

Table 1 Statistics of rarely mutated chromosomal arms

Deletions Duplications

Chromosomal arm 4q 9q 13q 15q 18q 7p 7q 11q

TCGA: OD II + III 9.8% 4.5% 10.5% 9.0% 15.0% 6.0% 9.0% 4.5%

TCGA: OD III 13.8% 5.2% 10.3% 12.1% 20.7% 6.9% 10.3% 6.9%

POLA: OD III 16.2% 14.7% 5.9% 14.7% 8.8% 4.4% 7.3% 19.1%

Chromosomal arms affected by deletions (4q, 9q, 13q, 15q and 18q) and duplications (7p, 7q and 11q) in subsets of oligodendrogliomas in addition to the characteristic
1p/19q co-deletion. Percentages of affected oligodendrogliomas are shown for the TCGA cohort (TCGA: OD II + III comprised 133 oligodendrogliomas of WHO grades II and
III, TCGA: OD III comprised 58 oligodendrogliomas of WHO grade III) and the POLA cohort [33] (POLA: OD III comprised 68 oligodendrogliomas of WHO grade III)
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Fig. 2 Signaling and metabolic pathway analysis of differentially expressed genes. Differentially expressed genes between oligodendrogliomas and
normal brain references (q-value < 0.05, Additional file 4: Table S3) were mapped to known cancer-relevant signaling (a) and metabolic pathways
(b). The number of over- and underexpressed genes are shown for each pathway. Asterisks symbols highlight pathways enriched for over- or
underexpressed genes (Fisher’s exact test with ’*’ for P < 0.1 and ’**’ for P < 0.05)

regulatory networks based on gene copy number and
expression data of 178 histologically classified oligoden-
drogliomas with and without 1p/19q co-deletion. We
repeated the genome-wide network inference ten times
utilizing different training and test data sets (see
“Materials and methods” section for details). The result-
ing networks had on average 67,900 ± 1080 directed links
between regulators and target genes (Additional file 3:
Figure S3). More than three quarters of these links were
activator links (78%) and the others were inhibitor links.
Next, we integrated the outgoing links of each gene

across the ten networks to derive a connectivity score
that accounts for the co-occurrence of links (see
“Materials and methods” for details). This score is higher
for genes with more stable outgoing links across n of

networks than for genes with less co-occurring links. We
utilized these scores and found that tumor suppressor
genes, oncogenes, essential genes and signaling path-
way genes had significantly greater connectivity scores
than genes that were not included in these categories
(Wilcoxon rank sum tests: P = 0.035 for tumor supp
ressors, P = 0.028 for oncogenes, P = 5.39 · 10−9

for essential genes, P = 0.01 for signaling pathway
genes). The ten genes with the greatest connectiv-
ity score were (GARS, CCDC85B, NDUFA1, SPRED2,
BIRC6, MRPL45, EDA2R, HMGCS1, SLC17A7, RAB40B;
Additional file 3: Figure S4). CCDC85B is a known down-
stream target of p53 signaling with reported function as
tumor suppressor [26]. Also SPRED2 is a known tumor
suppressor that induces autophagy [32]. SLC17A7 has
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been observed as a tumor suppressor in a glioblastoma
stem cell line [44]. BIRC6 can inhibit apoptosis in glioblas-
toma cell lines [11]. RAB40B is a member of the RAS
oncogene family potentially involved in the remodeling of
the extracellular matrix during invasion of breast cancer
[27]. Other genes like GARS, NDUFA1, HMGCS1, and
SLC17A7 have known functions in cellular metabolism.
This clearly indicates that major regulators in our net-
works are known to have important cancer-relevant
functions.
We further tested the capability of each network to

predict the expression level of each of the 12,285 genes
in independent oligodendroglioma (59 randomly selected
tumors left out from network learning) and closely related
oligoastrocytoma (118 samples including 34 tumors with
and 84 tumors without 1p/19q co-deletion) test sets that
were not considered for network inference. To realize this,
we computed correlations between originally measured
gene expression levels and corresponding network-based
predicted gene expression levels across all tumor samples
in each test set for each of the ten networks to ana-
lyze the prediction quality. Corresponding median gene-
specific correlations integrating the prediction results of
the ten networks are summarized in Fig. 3 (see Additional
file 3: Figure S5 for individual networks). Overall, the
vast majority of genes showed strong positive correlations
between measured and predicted expression values with a
median correlation of 0.75 for the oligodendroglioma test
sets and a median correlation of 0.73 for the oligoastro-
cytoma test set. We also compared these results to pre-
dictions of gene expression levels that were obtained from

random networks of same complexity as the originally
learned networks (degree-preserving network permuta-
tions). We found that our networks made significantly
better predictions of originally measured gene expres-
sion levels than corresponding random networks (Fig. 3,
Wilcoxon rank sum test: P < 2.2 · 10−16 for each of both
test sets).

Genes directly affected by the 1p/19q co-deletion strongly
impact on cancer-relevant signaling pathways
We utilized the learned networks to determine impacts
of differentially expressed genes located within the region
of the 1p/19q co-deletion on known cancer-relevant sig-
naling pathway genes (see Fig. 1 for an illustration). To
realize this, we considered the 654 differentially expressed
genes observed within the 1p/19q region (524 under- and
130 overexpressed genes with q-values <0.05, Additional
file 4: Table S3) and applied regNet [64] to compute
impacts of these genes on the expression of signaling path-
way genes using network propagation. We did this inde-
pendently for each network and computed corresponding
impacts for each gene pair under random networks. We
further integrated the scores of the ten networks and
determined all differentially expressed 1p/19q-genes with
significantly greater impacts on the expression of known
cancer signaling pathway genes than under random net-
works (paired Wilcoxon rank sum tests, q-value < 0.05,
see “Materials andmethods” section for details). Predicted
high-impact genes are shown in Fig. 4a and provided in
Additional file 5: Table S4. We performed in-depth lit-
erature searches and analyzed gene annotations [62] to

Fig. 3 Network-based prediction quality of gene expression levels. The ten learned gene regulatory networks were analyzed for their performance
to predict the expression levels of the 12,285 genes in independent tumor test sets (TCGA OD: 59 network-specific oligodendrogliomas left out
from network inference, TCGA OA: 118 closely related oligoastrocytomas). Corresponding histograms of gene-specific median correlations between
predicted and measured gene expression levels are shown. The strong shift of both histograms (red, blue) into the positive range shows that the
prediction quality of oligodendroglioma-specific networks was significantly better than for random networks (grey) of same complexity (Wilcoxon
rank sum tests: P < 2.2 · 10−16)
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Fig. 4 Genes located in the region of the 1p/19q co-deletion with strong impact on signaling and metabolic pathways. Impacts of differentially
expressed genes of the 1p/19q region on the expression of known cancer-relevant signaling pathway genes (a) and metabolic pathway genes (b).
All shown genes had significantly greater impacts under the oligodendroglioma-specific gene regulatory networks than under corresponding
random networks of same complexity (q-value ≤ 0.05). The high-impact genes are widespread across the region of the 1p/19q co-deletion. Genes
colored in green were underexpressed and genes colored in red were overexpressed in oligodendrogliomas compared to normal brain tissue

characterize cellular functions and known cancer-relevant
impacts of these genes.
The gene with the greatest impact on signaling path-

way genes was ELTD1 located on the 1p arm. ELTD1
encodes for a G-protein coupled receptor. The dele-
tion of one copy of the 1p arm in oligodendrogliomas
did not lead to a reduced expression of ELTD1. We
found ELTD1 significantly overexpressed in oliogoden-
drogliomas compared to normal brain tissue. ELTD1 has
been identified to represent a key player of tumor angio-
genesis [50]. ELTD1 has also been functionally validated
as oncogene in glioblastomas [72, 86]. The microRNA-
139-5p has been reported to act as a tumor suppres-
sor inhibiting ELTD1 expression in glioblastoma cell
lines [15].

The only detected high-impact gene located on the
19q arm with strong impact on signaling pathway genes
was KLK6. KLK6 encodes for a serine-protease and
was strongly underexpressed in oligodendrogliomas com-
pared to normal brain tissue. High expression levels
of KLK6 have been associated with poor prognosis of
intracranial tumors [18] and resistance of glioblastomas to
cytotoxic agents [19]. KLK6 has recently been found to be
involved in the control of metastasis formation in colon
cancer [66].
PTAFR located on the 1p arm encodes for a G-protein

coupled receptor involved in the regulation of cell prolif-
eration and angiogenesis. PTAFR was strongly underex-
pressed in oligodendrogliomas compared to normal brain.
PTAFR is a putative oncogene and has been reported to
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play a role in different types of cancer including the activa-
tion of PI3K-Akt signaling in esophageal cancer [12] or the
support of prostate cancer development via ERK1/ERK2
signaling [30].
ZBTB17 located on the 1p arm was underexpressed

in oligodendrogliomas compared to normal brain tissue.
ZBTB17 encodes a transcriptional regulator interacting
with MYC-genes. Reduced expression of ZBTB17 due to
heterozygous loss of 1p36 has been reported to increase
the aggressiveness of neuroblastomas [25]. This suggests
that ZBTB17 is a putative tumor suppressor gene.
CAP1 located on the 1p arm was underexpressed in

oligodendrogliomas compared to normal brain tissue.
CAP1 is involved in the cyclic AMP pathway and interacts
with the actin cytoskeleton influencing cell adhesion [82].
CAP1 expression has been reported to be positively cor-
related with proliferation, migration, invasion, and WHO
grade of gliomas [3, 21].
So far, no roles in cancer have been reported for the two

overexpressed high-impact genes THAP3 and ZMYM1
located on the 1p arm. Both genes are likely to encode
transcription factors. THAP3 is involved in the regula-
tion of cell proliferation [51]. ZMYM1 could be involved
in the regulation of the cytoskeletal organization and cell
morphology.
Further, we used our network propagation algorithm

to predict potential regulatory downstream effects of
high-impact genes on individual cancer-relevant signal-
ing pathways (Additional file 3: Figure S6a). Especially
the overexpression of ELTD1 and the underexpression
of PTAFR in oligodendrogliomas tend to influence the
expression of several signaling pathways suggesting com-
plex regulatory dependencies that support or counteract
oligodendroglioma growth. Specific impacts of individual
high-impact genes are summarized in Additional file 3:
Texts S1.
In summary, depending on the expression states in

combination with reported roles in cancer, genes like
ELTD1, ZBTB17, or THAP3 are likely to support oligo-
dendroglioma growth, whereas other genes like KLK6,
PTAFR, or CAP1may restrict the speed of tumor growth.
This might contribute to the overall better prognosis
of oligodendroglioma patients in comparison to patients
with other gliomas [69].

Genes directly affected by the 1p/19q co-deletion strongly
impact onmetabolic pathways
Similar to the analysis of signaling pathways, we used net-
work propagation to identify those differentially expressed
genes within the region of the 1p/19q co-deletion that
had strong impacts on the expression of metabolic path-
way genes. We predicted 14 high-impact genes wide-
spread across the 1p/19q region (q-value < 0.05, Fig. 4b,
Additional file 6: Table S5). All genes were underexpressed

in oligodendrogliomas compared to normal brain, except
for overexpressed DPH5. Two genes with strong impact
on signaling pathways (KLK6, PTAFR) were also among
these high-impact genes. In contrast to our previous
impact quantification for signaling pathways that revealed
only one high-impact gene on the 19q arm (Fig. 4a), we
now found six genes (MAG, COX6B1, EIF3K, SEPW1,
SLC17A7, KLK6) with strong impact on the expression
of metabolic pathway genes on 19q (Fig. 4b). We again
performed in-depth gene annotation analyses and litera-
ture searches to summarize known functions and roles in
cancer.
SLC17A7, the gene with the greatest impact on the

expression of metabolic pathways, has been observed
as tumor suppressor in a glioblastoma stem cell line
[44]. SLC17A7 is located on the 19q arm, encodes for a
vesicle-bound, sodium-dependent phosphate transporter
expressed in neuron-rich regions, and was strongly under-
expressed in oligodendrogliomas compared to normal
brain.
SDHB is located on the 1p arm, encodes for the

succinate dehydrogenase complex subunit B, and was
underexpressed in oligodendrogliomas in comparison to
normal brain. Germline mutations of SDHB have been
reported for patients with head and neck paraganglioma
[5] and phaeochromocytomas [7]. Succinate accumu-
lated in SDHB-mutated cells inhibits alpha-ketoglutarate-
dependent enzymes leading to the activation of hypoxia
induced genes and hypermethylation of DNA and his-
tones in paraganglioma [4, 40]. Similarly, a knockdown of
SDHB in mouse ovarian cancer cells enhanced cell pro-
liferation and induced hypermethylation of histones pro-
moting an epithelial-to-mesenchymal transition [2]. All
these findings suggest that reduced expression of SDHB
in oligodendrogliomas may support and possibly enhance
the epigenetic reprogramming via the same pathomech-
anism induced by a heterozygous IDH-mutation that is
found in each oligodendroglioma [13, 48].
PARK7 located on the 1p arm was underexpressed

in oligodendrogliomas compared to normal brain tis-
sue. PARK7 encodes for a peptidase that protects cells
against oxidative stress. Downregulation of PARK7 has
been associated with a reduction of cell proliferation,
migration, and invasion of glioma cell lines [31]. Down-
regulation of PARK7 in clear renal cell carcinoma cells
increased cisplatin-induced apoptosis [73]. PARK7 has
been reported as oncogene in different cancers activating
PI3K-Akt, MAPK, and mTOR signaling to protect cells
against hypoxic stress [77].
HBXIP located on the 1p arm was underexpressed

in oligodendrogliomas compared to normal brain tissue.
HBXIP functions as a cofactor of survivin in the sup-
pression of apoptosis [49]. HBXIP has been reported to
promote the proliferation and migration of breast cancer
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Fig. 5 Genes located on rarely mutated chromosomal arms with strong impact on signaling and metabolic pathways. Impacts of differentially
expressed genes of rarely mutated chromosomal arms (Table 1) on the expression of known cancer-relevant signaling pathway genes (a–f) and
metabolic pathway genes (g–i). All shown genes had significantly greater impacts under the oligodendroglioma-specific gene regulatory networks
than under corresponding random networks of same complexity (q-value ≤ 0.1). Genes colored in green were underexpressed and genes colored
in red were overexpressed in oligodendrogliomas with the corresponding chromosomal arm mutation in comparison to normal brain tissue

cells [45]. Conversely, suppression of HBXIP has been
found to reduce cell proliferation, migration and invasion
of bladder carcinomas [42]. This suggests that the under-
expression ofHBXIP could counteract oligodendroglioma
growth.
SEPW1 is located on 19q, encodes for a selenopro-

tein that functions as an glutathione antioxidant, and was
underexpressed in oligodendrogliomas compared to nor-
mal brain. SEPW1 has been mapped to a putative tumor
suppressor region on the 19q arm of gliomas [67]. SEPW1
has been shown to be involved in the control of cell cycle
progression [23] and to regulate expression, activation and
degradation of EGFR [1].
C1orf144 (SZRD1) located on 1p was underexpressed in

oligodendrogliomas in comparison to normal brain tissue.
C1orf144 has recently been reported as a potential tumor

suppressor in cervical cancer involved in the regulation of
cell cycle arrest in G2 and induction of apoptosis [84].
MAG located on 19q was underexpressed in oligo-

dendrogliomas compared to normal brain tissue. MAG
encodes for a membrane protein involved in myelina-
tion of oligodendrocytes, protection of neurons against
apoptosis, and inhibition of neurite outgrowth [59].
Further, only DPH5 located on 1p was overexpressed

in oligodendrogliomas compared to normal brain. DPH5
encodes for a specific methionine-dependent methyl-
transferase involved in diphthamide synthesis. Diph-
thamide, a post-transcriptionally modified histidine, is
required for eEF-2, which is essential for protein biosyn-
thesis. Further, two underexpressed high-impact genes,
RPL22 and EIF3K, known to be important for protein
synthesis were found. Strong impacts of genes involved
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in protein synthesis might represent a byproduct of
increased transcription in tumors. In addition, COX6B1
located on 19q and ATP5F1 located on 1p were underex-
pressed in oligodendrogliomas in comparison to normal
brain. Both genes have functions in the respiratory chain.
In addition, we also used our network propagation algo-

rithm to further predict potential regulatory downstream
effects of high-impact genes from Fig. 4b on individual
metabolic pathways (Additional file 3: Figure S6b). Inter-
estingly, six genes were predicted to contribute to a down-
regulation of the oxidative phosphorylation. Detailed
information to specific impacts of individual high-impact
genes are summarized in Additional file 3: Text S1.
Again, genes like SLC17A7, SDHB, SEPW1, or SZRD1

may support oligodendroglioma growth and other genes
like PARK7 or HBXIP may restrict the speed of tumor
growth. Such counteracting impacts could contribute to a
better prognosis [69].

Impact of rare gene copy number mutations on
cancer-relevant signaling andmetabolic pathways
We further used our network-based impact quantifica-
tion strategy to determine if potential candidate genes
with high-impact on signaling or metabolic pathways are
located on chromosomal arms that were rarely affected
by deletions or duplications in oligodendrogliomas with
1p/19q co-deletion (Table 1; deletions: 4q, 9q, 13q, 15q,
18q; duplications: 7p, 7q, 11q; Additional file 3: Figure S1).
All these additional mutations have previously been
observed in the POLA cohort [33] and several of these
mutations were also observed in copy number profiles of
single oligodendroglioma cells [71]. These additional copy
number mutations occurred more frequently in oligoden-
drogliomas of WHO grade III than in grade II tumors
suggesting that they are associated with tumor progres-
sion and may impact on survival [35, 74]. See Additional
file 3: Text S2 for further details to subgroups of oligoden-
drogliomas with additional chromosomal arm mutations.
We first determined for each subcohort of oligoden-
drogliomas with a specific chromosomal arm mutation
all differentially expressed genes in comparison to nor-
mal brain tissue (q-value ≤ 0.05). We next analyzed all
differentially expressed genes of a mutated chromosomal
arm to identify those genes that were predicted to have a
strong impact on the expression of cancer-relevant signal-
ing (Additional file 7: Table S6) and metabolic pathways
(Additional file 8: Table S7) utilizing network propaga-
tion. We predicted 15 differentially expressed genes with
strong impact on signaling pathways on the chromoso-
mal arms 4q, 9q, 7p, 7q, 11q, and 18q (Fig. 5a–f) and 12
genes with strong impact on metabolic pathways on the
chromosomal arms 7p, 11q, 15q, and 18q (Fig. 5g–i, 7p
not shown) at a q-value cutoff of 0.1 (less stringent than
before because of much smaller sample sizes). Functional

annotations and literature searches of all predicted high-
impact genes are summarized in Additional file 3: Text S3
for signaling pathways and in Additional file 3: Text S4 for
metabolic pathways. Next, we only briefly highlight some
findings.
Considering genes with high-impact on signaling path-

ways (Fig. 5a–f), we identified several overexpressed genes
in subcohorts of oligodendrogliomas with additional
chromosomal arm mutations that were previously found
to be involved in tumorigenesis. For example, EMCN
located on the q-arm of chromosome 4 was overexpressed
in oligodendrogliomas with 4q deletion. EMCN encodes a
glycoprotein that can inhibit adhesion of cells to the extra-
cellular matrix [34]. EIF3B located on the p-arm of chro-
mosome 7 was overexpressed in oligodendrogliomas with
7p duplication. EIF3B encodes a subunit of the eukary-
otic translation initiation factor. A knockdown of EIF3B
inhibited cell proliferation and increased apoptosis in a
glioblastoma cell line [43].CALD1 located on the q-arm of
chromosome 7 was overexpressed in oligodendrogliomas
with 7q duplication. CALD1 is involved in the regulation
of the neovascularization of gliomas [85] and has been
associated with tamoxifen resistance of breast cancer [17].
Also DNAJB6 located on the q-arm of chromosome 7 was
overexpressed in oligodendrogliomas with 7q duplication.
Overexpression ofDNAJB6 has been reported to promote
invasion of colorectal cancer [83]. In addition to these
putative oncogenes, we also observed two overexpressed
genes with potential tumor suppressor functions that
may counteract oligodendroglioma development.DMTF1
located on 7q encodes a transcription factor with a cyclin
D-binding domain that has been shown to inhibit cell
growth and cell cycle progression in bladder cancer [57].
Further, FAU located on 11q encodes a fusion protein
that has been reported to be involved in the regulation of
apoptosis of breast cancer [58].
Considering genes with high-impact on metabolic path-

ways (Fig. 5g–i), we identified four underexpressed genes
in subcohorts of oligodendrogliomas with additional
chromosomal arm mutations with functions in cellular
energy metabolism and impacts on cell migration, apop-
tosis, or blood vessel development in cancer (deletion of
15q: COX5A, PKM2; deletion of 18q: ATP5A1; duplica-
tion of 11q: PYGM; Additional file 3: Text S4). In addition,
UBXN1 located on the q-arm of chromosome 11 was
overexpressed in oligodendrogliomas. UBXN1 encodes a
ubiquitin-binding protein and has been reported to inhibit
the tumor suppressor BRAC1 [81]. Interestingly, we found
that SDHD located on 11q was overexpressed in oligoden-
drogliomas with 11q duplication. This might represent a
response to the reduced expression of SDHB discussed
before. Further, activation of the expression of the tumor
suppressor CDKN1A in response to the loss of SDHD
expression has been reported [52]. Thus, overexpressed
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SDHD might counteract the expression of CDKN1A to
support cell proliferation.Moreover, alsoACAT1 located on
11q was overexpressed. ACAT1 encodes a mitochondrially
localized acetyl-CoA acetyltransferase. Inhibition ofACAT1
by Avasimibe inhibited cell growth by inducing cell cycle
arrest and apoptosis in glioblastoma cell lines [6, 55]. Fur-
ther, inhibition ofACAT1 has also been shown to suppress
growth and metastasis of pancreatic cancer [41].

In-depth analysis of known potential tumor suppressor
genes FUBP1 and CIC
We also performed a detailed analysis of the expression
behavior and corresponding network-based impacts of
the potential tumor suppressors FUBP1 and CIC reported
for oligodendrogliomas [8]. FUBP1 located on 1p and
CIC located on 19q were both moderately underex-
pressed in oligodendrogliomas with 1p/19q co-deletion
compared to normal brain references (Additional file 4:
Table S3). Further, oligodendrogliomas with additional
small deletions, insertions or point mutations within
FUBP1 or CIC showed moderately reduced expression
of these genes compared to oligodendrogliomas with-
out mutations. This trend was much stronger for tumors
with FUBP1 mutations (average expression 4.58 vs. 5.25
comparing 38 tumors with to 95 tumors without muta-
tion, t-test: P = 0.0001) than for tumors with CIC
mutations (average expression 6.42 vs. 6.60 compar-
ing 85 tumors with to 48 tumors without mutation,
t-test: P = 0.01).
Further, FUBP1 has been reported to negatively regulate

the expression ofMYC [8]. This relationship was also pre-
dicted by our network propagation approach. FUBP1 had
a stronger impact on MYC comparing our networks to
corresponding random networks (paired Wilcoxon rank
test: P < 0.001, see “Materials and methods” for details).
Globally, FUBP1 and CIC underexpression had moder-
ate impacts on different signaling and metabolic pathways
(Additional file 3: Figure S7). Thus, reduced expression of
both genes due to the 1p/19q co-deletion could contribute
to tumor development, but both genes were not among
the predicted putative high impact genes with altered gene
expression levels. Still, other pathomechanisms triggered
by small deletions, insertions or point mutations within
FUBP1 or CIC could play an important role in affected
tumors.

Conclusions
The clinical relevance of the 1p/19q co-deletion has
been known for many years, but detailed insights to
underlying pathomechanisms are not known. Our com-
putational approach provides a novel starting point to
characterize molecular changes induced by the 1p/19q
co-deletion. We predicted several interesting cancer
candidate genes widespread across the region of the

1p/19q co-deletion with strong impact on signaling and
metabolic pathways. These candidate genes are possi-
bly involved in the development of oligodendrogliomas.
Interestingly, several of these genes (e.g. ELTD1, SDHB,
SEPW1, SLC17A7, SZRD1, THAP3, ZBTB17) are likely
to push, whereas other genes (e.g. CAP1, HBXIP, KLK6,
PARK7, PTAFR) might restrict oligodendroglioma devel-
opment. This observation could contribute to the fact
that oligodendrogliomas have an improved prognosis in
comparison to other types of gliomas. Importantly, the
overexpression of ELTD1 in oligodendrogliomas despite
the loss of 1p indicates that this gene may act as
oncogene as reported for closely related glioblastomas.
Similarly, the underexpression of SLC17A7 in oligoden-
drogliomas may counteract its known function as tumor
suppressor reported for glioblastomas. Moreover, the
underexpression of SDHB may contribute to the epi-
genetic reprogramming of oligodendrogliomas via the
same pathomechanism as triggered by the IDH-mutation.
All these findings indicate that several genes located
on 1p/19q may simultaneously influence tumor develop-
ment. Further, we also predicted cancer candidate genes
on rarely mutated chromosomal arms that are likely to
contribute to oligodendroglioma development and tumor
progression in subcohorts of patients. In sum, our compu-
tational predictions contribute to a better understanding
of the pathology of the 1p/19q co-deletion, might open
opportunities for novel experimental studies, and possibly
trigger ideas for the development of targeted treatment
strategies.
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Placement and summary of the publication

Radiotherapy is an important and effective treatment option for prostate cancer. Up to 90% of
prostate cancer patients can be cured by irradiation (Johansson et al. (2012); Pahlajani et al.
(2012); Zietman et al. (2010)), but the delivery of a tumor curative radiation dose is limited
by radiation-induced normal tissue toxicity (Bonkhoff (2012)). Therefore, local recurrence of
prostate cancer after radiotherapy can be attributed to radioresistance of cancer cells (Chang
et al. (2014)). Molecular mechanisms that contribute to radioresistance of prostate cancer
are only partly understood (Di Lorenzo et al. (2011); Chang et al. (2014); Barker et al. (2015);
McAllister et al. (2019)). Thus, the occurrence of radioresistance is highly unpredictable leading
to less effective treatments for many patients supporting local recurrence and metastasis of
prostate cancer (Chaiswing et al. (2018)).

Prostate cancer cell lines are frequently considered as model system to compare radioresis-
tant to radiosensitive cells with the goal to identify genes and molecular mechanisms involved
in radioresistance of prostate cancer (e.g. Cojoc et al. (2015); Peitzsch et al. (2016)). Only
very few radioresistant prostate cancer cell lines are usually analyzed in such studies, but their
genomes are typically characterized by large chromosomal deletions and amplifications as a
consequence of error-prone DNA repair of double strand breaks induced by irradiation (Mateo
et al. (2017)). Thus, hundreds or thousands of genes can be located in these altered DNA
regions that further differ between different radioresistant cells. This complex situation does not
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allow a straightforward prediction of radioresistance driver genes by standard approaches for
gene copy number and expression analysis without prior knowledge about involved molecular
processes (Seifert et al. (2016)).

This motivated us to developed a network-based approach for the analysis of prostate cancer
cell lines with acquired radioresistance to identify clinically relevant marker genes associated
with radioresistance of prostate cancer patients. We utilized my R package regNet (Seifert
and Beyer (2018)) with the underlying mathematical theory for network inference and network
propagation developed in Seifert et al. (2016) to realize this.

In our study, we first compared gene copy number and gene expression profiles of radiore-
sistant and radiosensitive DU145 and LNCaP prostate cancer cell lines that have previously
been established in the Dubrovska laboratory (Cojoc et al. (2015); Peitzsch et al. (2016)). We
observed that radioresistant DU145 showed much more gene copy number alterations than
LNCaP and that their gene expression profiles were highly cell line specific. Next, we learned
a genome-wide prostate cancer-specific gene regulatory network based on publicly available
gene expression and gene copy number profiles of prostate cancer patients from TCGA (Can-
cer Genome Atlas Research Network (2015)). We further used this network to quantify impacts
of differentially expressed genes with directly underlying copy number alterations in radioresis-
tant DU145 and LNCaP on known radioresistance marker genes. This enabled us to reveal ten
potential driver candidates from DU145 (ADAMTS9, AKR1B10, CXXC5, FST, FOXL1, GRPR,
ITGA2, SOX17, STARD4, VGF) and four from LNCaP (FHL5, LYPLAL1, PAK7, TDRD6) that
were able to distinguish irradiated prostate cancer patients into early and late relapse groups.
Moreover, in-depth in vitro validations for VGF showed that siRNA-mediated gene silencing
increased the radiosensitivity of DU145 and LNCaP cells.

Overall, our computational approach enabled to predict novel radioresistance driver gene
candidates for prostate cancer. Additional studies are necessary to further validate the role
of VGF and other candidate genes as potential biomarkers for the prediction of radiotherapy
responses and as potential targets for radiosensitization of prostate cancer.

Author contribution

I developed the concept of the study together with Anna Dubrovska. I realized all computational

analyses, wrote the manuscript, created all figures and revised the manuscript. I discussed the

findings with Claudia Peitzsch and Anna Dubrovska, which supported the biological interpreta-
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periments and provided methodological details for the methods section of the manuscript. Anna
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Abstract

Radiation therapy is an important and effective treatment option for prostate cancer, but

high-risk patients are prone to relapse due to radioresistance of cancer cells. Molecular

mechanisms that contribute to radioresistance are not fully understood. Novel computa-

tional strategies are needed to identify radioresistance driver genes from hundreds of gene

copy number alterations. We developed a network-based approach based on lasso regres-

sion in combination with network propagation for the analysis of prostate cancer cell lines

with acquired radioresistance to identify clinically relevant marker genes associated with

radioresistance in prostate cancer patients. We analyzed established radioresistant cell

lines of the prostate cancer cell lines DU145 and LNCaP and compared their gene copy

number and expression profiles to their radiosensitive parental cells. We found that radiore-

sistant DU145 showed much more gene copy number alterations than LNCaP and their

gene expression profiles were highly cell line specific. We learned a genome-wide prostate

cancer-specific gene regulatory network and quantified impacts of differentially expressed

genes with directly underlying copy number alterations on known radioresistance marker

genes. This revealed several potential driver candidates involved in the regulation of can-

cer-relevant processes. Importantly, we found that ten driver candidates from DU145

(ADAMTS9, AKR1B10, CXXC5, FST, FOXL1, GRPR, ITGA2, SOX17, STARD4, VGF) and

four from LNCaP (FHL5, LYPLAL1, PAK7, TDRD6) were able to distinguish irradiated pros-

tate cancer patients into early and late relapse groups. Moreover, in-depth in vitro valida-

tions for VGF (Neurosecretory protein VGF) showed that siRNA-mediated gene silencing

increased the radiosensitivity of DU145 and LNCaP cells. Our computational approach

enabled to predict novel radioresistance driver gene candidates. Additional preclinical and

clinical studies are required to further validate the role of VGF and other candidate genes as

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007460 November 4, 2019 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Seifert M, Peitzsch C, Gorodetska I,

Börner C, Klink B, Dubrovska A (2019) Network-

based analysis of prostate cancer cell lines reveals

novel marker gene candidates associated with

radioresistance and patient relapse. PLoS Comput

Biol 15(11): e1007460. https://doi.org/10.1371/

journal.pcbi.1007460

Editor: Matthew J. Lazzara, University of Virginia,

UNITED STATES

Received: March 13, 2019

Accepted: October 5, 2019

Published: November 4, 2019

Copyright: © 2019 Seifert et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All used data sets

and algorithms are publicly available. Gene copy

number and gene expression data of DU145 and

LNCaP are contained in S1 Table and in S2 Table,

respectively. Raw aCGH and gene expression data

have been deposited in the Gene Expression

Omnibus (GEO) database, accession no

GSE134500. TCGA prostate cancer data are

available from https://portal.gdc.cancer.gov.

Network-based computations were done using the

4. Original works

139



potential biomarkers for the prediction of radiotherapy responses and as potential targets for

radiosensitization of prostate cancer.

Author summary

Prostate cancer cell lines represent an important model system to characterize molecular

alterations that contribute to radioresistance, but irradiation can cause deletions and

amplifications of DNA segments that affect hundreds of genes. This in combination with

the small number of cell lines that are usually considered does not allow a straight-forward

identification of driver genes by standard statistical methods. Therefore, we developed a

network-based approach to analyze gene copy number and expression profiles of such cell

lines enabling to identify potential driver genes associated with radioresistance of prostate

cancer. We used lasso regression in combination with a significance test for lasso to learn

a genome-wide prostate cancer-specific gene regulatory network. We used this network

for network flow computations to determine impacts of gene copy number alterations on

known radioresistance marker genes. Mapping to prostate cancer samples and additional

filtering allowed us to identify 14 driver gene candidates that distinguished irradiated

prostate cancer patients into early and late relapse groups. In-depth literature analysis and

wet-lab validations suggest that our method can predict novel radioresistance driver

genes. Additional preclinical and clinical studies are required to further validate these

genes for the prediction of radiotherapy responses and as potential targets to radiosensi-

tize prostate cancer.

Introduction

Radiation therapy and surgery with or without anti-androgen treatment are key therapies for

prostate carcinoma. Depending on the stage of tumor and type of applied irradiation, up to

90% of prostate cancer patients can be permanently cured by radiotherapy [1–3]. Nevertheless,

normal tissue toxicity limits the delivery of a tumor curative radiation dose and is therefore

one of the major obstacles to effective external beam radiotherapy [4]. Local recurrence of

prostate cancer after radiotherapy can be attributed to radioresistance of cancer cells [5].

Molecular mechanisms and cellular properties that contribute to radioresistance of prostate

cancer are only partly understood involving activations of signaling pathways such as PI3K/

Akt and mTOR, alterations of DNA repair pathways, autophagy, and epithelial-mesenchymal

transition, and the potential existence of cancer stem cells [5]. Another important factor

involved in radioresistance of prostate cancer is the tumor microenvironment [6, 7]. Tumor

progression and therapy response can be influenced by changes of the tumor microenviron-

ment as a consequence of a radiation therapy [8, 9]. Closely related to this are immunomodula-

tory alterations triggered by radiation therapies that offer possibilities for new treatment

options [10–12]. Also changes of the metabolism of cancer cells after a radiotherapy can alter

the radiosensitivity of cells [13]. Still, the occurrence of radioresistance is highly unpredictable

leading to less effective treatments for many patients supporting local recurrence and metasta-

sis of prostate cancer [14]. Adjuvant therapies to further improve the efficiency of radiation

therapies are urgently needed. Different molecular mechanisms and various agents have

already been identified to improve the radiosensitization of prostate cancer. This includes

androgen deprivation therapy, vascular endothelial growth factor (VEGF) inhibition, mTOR
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inhibition, and cytochrome P450 enzyme CYP17A1 inhibition [15]. Several other potential

adjuvant strategies have also been suggested including the application of a Bcl-2 inhibitor [16],

cytolethal distending toxin [17], PARP inhibition [18], resveratrol [19], and an ATM kinase

inhibitor [20] to improve radiosensitization. However, additional molecular characterizations

and studies are necessary to enable a targeted transfer into the clinics to further improve the

efficiency of radiation therapies.

Still, clinical, pathological and biological factors for the prediction of treatment outcomes

are of great importance for the personalization of prostate cancer treatment. The current pre-

treatment risk stratification system for prostate cancer is based on the analysis of prostate-spe-

cific antigen, clinical T-stage and Gleason scores to guide medical decision making [21]. This

concept for risk assessment of prostate cancer is of a high clinical value, but limited by the het-

erogeneity of patients within disease-risk groups [22]. Therefore, novel prognostic factors are

required to obtain more accurate risk estimations for radioresistance.

Over the last years, different large-scale studies were performed to obtain a better general

characterization of prostate cancer at the molecular level. This has contributed to the identifi-

cation of molecular subtypes, recurrent gene mutations and DNA copy number alterations,

and the characterization of signaling and DNA repair pathways involved in the development

of prostate cancer (e.g. [23–26]). Especially the multi-omics study by The Cancer Genome

Atlas (TCGA) [23] provides omics profiles of different molecular layers along with clinical

information for hundreds of prostate cancer patients. Such data sets represent an important

basis to gain novel insights into genes and molecular mechanisms driving radioresistance, but

this search for novel candidate genes is very challenging comparable to the search for the nee-

dle in the haystack.

Irradiation of prostate cancer cells causes DNA double strand breaks and cells that survive

this highly toxic damage can show complex genomic alterations such as large deletions or

amplifications of chromosomal regions due to error-prone DNA repair [27]. Many genes are

located in such altered regions and these altered regions differ substantially between radiore-

sistant cells. Therefore, an identification of radioresistance drivers by standard statistical

approaches is nearly impossible. Innovative computational concepts are required to separate

potential drivers from passengers. A promising strategy is the analysis of gene dosage effects

triggered by underlying deletions and amplifications with the help of gene regulatory networks

[28–30]. This strategy is related to network-based stratification of gene mutations [31, 32]. We

recently demonstrated that gene regulatory networks learned from gene expression and copy

number profiles of cancer cell lines or cancer patients are capable to predict impacts of gene

copy number alterations on cancer-relevant target genes, signaling pathways and patient sur-

vival [28–30]. The key principle behind this approach is the usage of a specifically designed

network propagation algorithm to propagate gene expression alterations along the edges of a

gene regulatory network to quantify how individual gene copy number alterations influence

the expression of other genes. This concept can be adapted to the analysis of radioresistant

prostate cancer cell lines offering the great opportunity to identify novel candidate genes

involved in radioresistance.

Here, we developed an approach for the network-based analysis of prostate cancer cell lines

with acquired radioresistance to identify clinically relevant marker genes associated with

radioresistance in prostate cancer patients (Fig 1). We considered the existing prostate cancer

cell lines DU145 (androgen-independent with high metastatic potential derived from a brain

metastasis) and LNCaP (androgen-dependent with low metastatic potential derived from a

lymph node metastasis) and analyzed molecular data of radiosensitive parental cells and corre-

sponding radioresistant cells that we had established in [33] and which we had further ana-

lyzed in [34]. We compared gene copy number and expression profiles of the radioresistant
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cell lines to their radiosensitive parental cells and further utilized our network-based approach

to quantify the impact of differentially expressed genes with directly underlying copy number

alterations on known marker genes of radioresistance. We identified several novel gene candi-

dates that are potentially involved in the manifestation of radioresistance enabling to separate

prostate cancer patients treated with radiotherapy into early and late relapse groups. We per-

formed in-depth wet-lab validations of a selected candidate gene (VGF: Neurosecretory pro-

tein VGF) providing further evidence that our computational approach can contribute to the

identification of genes involved in radioresistance.

Results

DU145 shows more gene copy number alterations than LNCaP

We considered radioresistant cell lines of the prostate cancer cell lines DU145 and LNCaP that

were established in [33] and further characterized in [34]. We analyzed corresponding array-

based comparative genomic hybridization (aCGH) experiments to identify gene copy number

alterations distinguishing radioresistant DU145 and LNCaP from their radiosensitive parental

cell line (Fig 1, S1 Table). Generally, radioresistant DU145 showed more copy number alter-

ations than radioresistant LNCaP (Fig 2). In more detail, comparing radioresistant to radio-

sensitive DU145, 24.8% of genes (6,109 of 24,625) had reduced and 38.6% (9,498 of 24,625)

had increased copy numbers (Fig 2a, S2 Table), whereas only 3.1% (765 of 24,625) of genes

had reduced and 1.5% (377 of 24,625) had increased copy numbers comparing radioresistant

to radiosensitive LNCaP (Fig 2b, S2 Table). For DU145, broad segments of gene copy number

alterations across all chromosomes and few focal gene copy number alterations were observed

(Fig 2a). In contrast, LNCaP only showed some broad regions of reduced gene copy numbers

on chromosomes 1, 6, and 20, greater gene copy numbers for a broad region on chromosome

12, and some focal gene copy number alterations on different chromosomes (Fig 2b). Both cell

lines further showed a significant overlap of 389 genes with reduced gene copy numbers

Fig 1. Methodological overview. Left box, Prostate cancer cell lines DU145 and LNCaP were purchased from the American Type Culture Collection and used to

establish radioresistant cell lines. Gene copy number and expression profiles of radioresistant and corresponding age-matched non-irradiated radiosensitive parental

cell lines were measured. Middle box, A prostate cancer-specific gene regulatory network was learned from gene expression and copy number data from 541 prostate

cancer patients from The Cancer Genome Atlas (TCGA) and validated on 768 cancer cell lines of the Cancer Cell Line Encyclopedia (CCLE). This network was used to

quantify putative impacts of genes with differential expression and directly underlying copy number alterations between radioresistant and radiosensitive cell lines

(orange circle) on known marker genes of radioresistance (green circles) utilizing network propagation (red arrows). Right box, Identified potential radioresistance

driver genes were evaluated for their potential to separate irradiated prostate cancer patients from TCGA into early and late relapse groups. In-depth literature analysis

was done for all cell line-based candidate genes that were predictive for the relapse behavior of irradiated prostate cancer patients. Sophisticated experimental

validations were done for the candidate gene VGF by analyzing the impact of siRNA-based VGF knockdowns on radiosensitivity. A detailed technical flow chart is

shown in S1 Fig.

https://doi.org/10.1371/journal.pcbi.1007460.g001
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(mainly on chromosomes 1 and 6, Fisher’s exact test: P = 7.16 � 10-56) and a non-significant

overlap of 47 genes with increased copy numbers widespread across the genome.

We also compared the gene copy number alterations of radioresistant and radiosensitive

DU145 and LNCaP to normal male reference DNA to better understand the observed differ-

ences between both cell lines (S2 Fig). We found that radiosensitive DU145 had much more

gene copy number alterations than radiosensitive LNCaP, radioresistant DU145 and LNCaP

were clearly more similar to their corresponding radiosensitive counterpart than to each other,

and radioresistant DU145 had much more gene copy number alterations than radioresistant

LNCaP. These findings indicate that DU145 is generally more prone to DNA copy number

alterations than LNCaP, which could explain the strong differences observed between both cell

Fig 2. Gene copy number alterations of DU145 and LNCaP. Gene copy number profiles of DU145 (a) and LNCaP (b) comparing radioresistant to radiosensitive cell

lines. Gene copy number alterations are quantified by log2-ratios of radioresistant versus radiosensitive and plotted in the chromosomal order of genes. Deviations of

log2-ratios from zero (brown dashed line) indicate the presence of gene copy number alterations. Considered reduced (green dots below blue dashed line: log2-ratios<

-0.1) or increased (red dots above blue dashed line: log2-ratios> 0.1) gene copy numbers in the corresponding radioresistant cell lines of DU145 and LNCaP are

highlighted. Ends of chromosomes are marked by black dotted vertical lines. Unchanged genes on a chromosome are shown by alternating grey and black dots to

further support the visual separation between chromosomes. An additional heatmap representation including comparisons of radioresistant and radiosensitive DU145

and LNCaP to normal reference DNA is shown in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1007460.g002
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lines. An increased radioresistance of DU145 in comparison to LNCaP can also contribute to

these observations [33].

DU145 and LNCaP mainly show cell line specific expression patterns

We analyzed gene expression for DU145 and LNCaP to identify differentially expressed

genes between established radioresistant DU145 and LNCaP and their radiosensitive parental

cell line (Fig 1). We used a Hidden Markov Model to determine differentially expressed

genes [35] (see Methods). We found 857 under- and 835 overexpressed genes in radioresis-

tant DU145 and 855 under- and 670 overexpressed genes in radioresistant LNCaP compared

to their radiosensitive parental cell lines (S3 Table). The overlap of differentially expressed

genes between both cell lines was small but significant (Fig 3a: 81 under- and 51 overex-

pressed genes, P< 7.46 � 10-8, Fisher’s exact test, S3 Table). The majority of these genes was

part of signaling pathways and/or encode for transcription factors/co-factors (Fig 3b). Com-

monly underexpressed genes in radioresistant DU145 and LNCaP included e.g. known

tumor suppressors (e.g. BCL10, EPB41L4A, SPRED1, SERPINB5) and commonly overex-

pressed genes included e.g. SEMA4A involved in cell-cell signaling and migration, NROB1
associated with stem cell pluripotency, and genes involved in cytokine signaling (e.g. IL19,

IL3RA) [36].

We found similar patterns of differential expression among known cancer-relevant signal-

ing pathways for both cell lines (Fig 3). Further, radioresistant DU145 and LNCaP showed an

enrichment of overexpressed PI3K-Akt pathway genes (Fig 3d). DU145 also showed an enrich-

ment of underexpressed genes for the cytokine pathway, the p53 pathway, the PI3K-Akt path-

way, and the Jak-STAT pathway (Fig 3c) and an enrichment of overexpressed genes for the

cytokine pathway, the ECM receptor pathway, the focal adhesion pathway, and the hedgehog

pathway (Fig 3d). LNCaP showed an enrichment of underexpressed TGF-Beta signaling genes

(Fig 3c). Most of these pathways have already been associated with radioresistance of prostate

cancer and other types of cancers (e.g. [5, 14, 37–39]).

Direct impact of copy number alterations on expression of affected genes

We analyzed which genes with copy number alterations showed altered expression. LNCaP

showed more gene expression alterations than gene copy number alterations (1,525 vs. 1,142)

and only 8.9% (102 of 1,142) of genes with copy number alterations showed altered expression.

66 of these 102 genes showed putative direct impacts of the underlying copy number alteration

on the expression level (S4 Table; 49 genes with reduced copy number and decreased expres-

sion; 17 genes with increased copy number and expression). These findings are similar to a

related analysis of radiosensitive and radioresistant subclones of a head and neck squamous

cell carcinoma cell line that only found few differentially expressed genes with directly under-

lying copy number alterations [40]. Further, tumor suppressor genes such as PRDM1 and

RNF217 had a reduced copy number and showed reduced expression in radioresistant com-

pared to radiosensitive LNCaP.

In contrast, we found substantially more gene copy number alterations than gene expres-

sion alterations for DU145 (15,607 vs. 1,692), but only 7.3% (1,144 of 15,607) of genes with

altered copy numbers also showed altered expression. 447 of these 1,144 genes showed expres-

sion changes in the same direction (S4 Table; 191 genes with reduced copy number and

reduced expression; 256 genes with increased copy number and increased expression),

whereas the other genes had expression differences in the opposite direction possibly due to

the complex genomic rearrangements observed for DU145 affecting many transcriptional reg-

ulators (Figs 2a and 3b). These findings are supported by our previous analysis of DU145 [34].
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Further, tumor suppressor genes such as EPB41L4A and TNFAIP3 had a reduced copy number

and showed reduced expression, whereas oncogenes such as ALDH1L2 andWNT11 had an

increased copy number and showed increased expression in radioresistant compared to radio-

sensitive DU145.

Fig 3. Gene expression differences between DU145 and LNCaP. Differentially expressed genes between radioresistant and radiosensitive cell lines were determined

for DU145 and LNCaP. Identified under- (top panels) and overexpressed genes (bottom panels) in the radioresistant cell lines of DU145 and LNCaP were compared

to each other at the single gene level (a) and at the level of cancer-relevant gene annotation categories (b; categories: oncogenes (OG), tumor suppressor genes (TS),

cancer census genes (CC), phosphatases (PH), kinases (KI), metabolic pathway gene (MG), signaling pathway gene (SG), transcriptional regulator (TR)). Significant

overlaps between categories are denoted by ‘�’ (b; grey columns, P< 0.001, Fisher’s exact test). Identified under- (c) and overexpressed genes (d) were further mapped

to known cancer-relevant signaling pathways. Overrepresented pathways were highlighted by ‘�’ (P< 0.05, Fisher’s exact test) and ‘��’ (P< 0.01).

https://doi.org/10.1371/journal.pcbi.1007460.g003
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Generally, all genes with copy number alterations and consistent expression responses in

the same direction represent putative direct driver candidates that could be involved in the

manifestation of radioresistance.

Gene copy number alterations impact on expression of known

radioresistance markers

To determine which of the radioresistance driver candidates with altered expression and

underlying copy number alteration putatively contribute to the manifestation of radioresis-

tance, we computed direct and indirect impacts of these candidates on the expression of

known radioresistance marker genes (Fig 1). To realize this, we first used expression and copy

number data of 14,780 genes of 541 prostate cancer patients from TCGA [23] to learn a pros-

tate cancer-specific gene regulatory network (see Methods for details). This network was able

to predict expression levels of individual genes across 768 independent cancer cell lines [41]

with comparable power as in a previous study with other cancer types [28] (S3 Fig). Next, we

used this network to compute for each putative radioresistance driver candidate (S4 Table) its

potential impact on the expression of known altered radioresistance marker genes utilizing

network propagation [28, 29] (see Methods for details, Fig 1 for an illustration, and S1 Fig for a

detailed work flow illustration). Putative impacts of the DU145 and LNCaP driver candidates

on the expression of differentially expressed cell line specific radioresistance marker genes are

shown in Fig 4.

We found 162 driver candidates for DU145 (Fig 4a) and 27 for LNCaP (Fig 4b) that

strongly impact on the expression of cell line specific radioresistance markers (S5 Table,

q< 0.01). These driver candidates comprise overexpressed genes with increased copy number

and underexpressed genes with decreased copy number. Potential driver candidates were dis-

tributed across the whole DU145 genome, whereas they were more focally distributed in

LNCaP (Fig 4), which is expected because of the strong differences in DNA copy number alter-

ations between both cell lines (Fig 2).

Considering the 162 driver candidates identified from DU145 (S5 Table, Fig 4a), several

overexpressed genes with increased copy numbers encode membrane proteins (e.g. RHBDL2,

FZD7, SEMA5A, IL7R, STAB2, GPR124, NGFR, CAV1) and transcriptional regulators (e.g.

ETV7, FOS, ATXN1, LEF1) [36]. Further, SOX17, a transcription factor important for embry-

onic development and cell fate determination, and the tumor suppressors SEPINB5 and PTRO
were underexpressed with underlying reduced copy number [36]. Generally, these and other

driver candidates were involved in the regulation of diverse cellular processes such as cytoskel-

etal remodeling, cell growth, proliferation, adhesion, or migration.

Considering the 27 driver candidates identified from LNCaP (S5 Table, Fig 4b), most

genes were involved in cell adhesion (underexpressed with reduced copy number: CDH19,

DCC, FERMT1, FYN, VNN2 except CLEC1A and KAL1) [36]. Again genes involved in other

cancer-relevant processes such as cell proliferation, migration, differentiation, apoptosis, or

cytoskeletal remodeling were among the driver candidates (all underexpressed with reduced

copy number: ARHGAP18, DUSP10, PAK7, PDGFC, RNF217) [36]. Further, the known

tumor suppressors DCC and GPRC5A were underexpressed with underlying reduced copy

number.

Only KAL1 located on chromosome X was found as common high impact gene in DU145

and LNCaP (S5 Table, Fig 4), but KAL1 was underexpressed with reduced copy number in

DU145 and overexpressed with increased copy number in LNCaP comparing radioresistant to

radiosensitive cell lines. KAL1 encodes an extracellular matrix protein involved in cell migra-

tion [36]. Downregulation of KAL1 has been associated with increased tumor size and vascular
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invasion of hepatocellular carcinoma [42]. Similarly, silencing of KAL1 squamous cell carci-

noma accelerated the G1 to M phase transition promoting cell proliferation and colony forma-

tion [43].

Generally, the small overlap between DU145 and LNCaP was expected due to strongly dif-

ferent copy number alteration profiles (Fig 2). Still, both sets of cell line specific driver candi-

dates tend to act on the same cellular processes that could contribute to the manifestation of

radioresistance.

Fig 4. Impacts of potential radioresistance driver genes on known radioresistance markers. Impacts of differentially expressed genes with directly underlying copy

number alterations in radioresistant DU145 (a) and radioresistant LNCaP (b) on known markers of radioresistance. The impact score represents the log10-ratio of the

gene-specific impact on known radioresistance marker genes comparing the impact score reached for the prostate cancer specific network to the average impact score

obtained under 10 random networks of same complexity (degree-preserving network permutations). Impact scores of genes with significantly greater impacts under

the original network (q< 0.01) are shown by colored peaks (green: deleted and underexpressed; red: amplified and overexpressed for radioresistant vs. radiosensitive).

The majority of gene names are shown. See S5 Table for names of all putative high impact genes. High impact genes that enabled a separation of TCGA prostate cancer

patients into early and late relapse groups (Fig 5, S5 Fig) are highlighted in blue.

https://doi.org/10.1371/journal.pcbi.1007460.g004

Network-based analysis of prostate cancer cell lines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007460 November 4, 2019 9 / 27

4. Original works

147



Potential radioresistance drivers separate irradiated patients into early and

late relapse groups

Next, we tested which of the identified cell line specific radioresistance driver gene candidates

could potentially be relevant to predict the relapse behavior of prostate cancer patients treated

by radiation therapy. To realize this, we analyzed the expression behavior of the driver candi-

dates within a subgroup of 32 irradiated prostate cancer patients available from TCGA [23]

(S6 Table). To enable relapse predictions for patients, only driver candidates with consistent

expression behavior between radioresistant cell lines and irradiated patients were considered.

Thus, a driver candidate that was underexpressed in radioresistant DU145 or LNCaP shows

consistent behavior when irradiated patients with low expression of this gene tend to show

faster relapses than patients with higher expression. In analogy, a driver candidate that was

overexpressed in radioresistant DU145 or LNCaP shows consistent behavior if irradiated

patients with high candidate gene expression tend to show faster relapses than patients with

lower expression. We applied this consistency filtering to all driver candidates by comparing

the cell line specific candidate gene expression behavior to the corresponding correlation

between candidate expression and time until relapse in patients (see Methods for details). We

found that 61 of 162 candidates from DU145 and 14 of 27 from LNCaP showed consistent

expression behavior between cell lines and irradiated patients (S5 Table).

Next, we analyzed each of these candidate genes for its potential to distinguish between

early and late relapse of irradiated prostate cancer patients by performing a Kaplan-Meier

analysis. Under consideration that the early or late relapse group must contain at least eight

patients, we found that 10 of 61 driver candidates from DU145 and 4 of 14 from LNCaP have

the potential to distinguish between early and late relapse (S5 Table, Log-rank tests: P< 0.05

and corresponding conservative false discovery rates estimated between 14% and 22% [44]

and more liberal estimates between 3% and 5% [45]). We also analyzed if the standard log-

rank p-value computation for our small cohort of 32 patients with its determined different-

sized early and late relapse subgroups had led to biased p-values [46]. We therefore computed

the exact permutational log-rank p-values with the ExaLT method [46] for all DU145 and

LNCaP driver candidates and compared them to the corresponding approximate log-rank p-

values of our initial standard analysis. We found that the approximate log-rank p-values

mostly overestimated the significance of the marker candidates, but this only marginally

affected the ten driver candidates from DU145 (except for FOXL1: log-rank p-value increased

from 0.014 to 0.076) and the four driver candidates from LNCaP and was clearly more pro-

nounced for larger insignificant p-values (S4 Fig). The selected driver candidates are shown in

Fig 5 and S5 Fig and listed in Table 1. Corresponding copy number alteration levels are shown

in S6 Fig.

We found that high expression of AKR1B10 or VGF was associated with patients that had a

faster relapse than patients with lower expression of these genes (Fig 5). Further, low expres-

sion of ADAMTS9, FOXL1, FST, GRPR, SOX17, STARD4, FHL5, LYPLAL1, PAK7, TDRD6,

CXXC5, or ITGA2 was associated with patients that showed a faster relapse than patients with

corresponding higher expression levels (Fig 5, S5 Fig). A detailed discussion of the identified

driver candidates in the context of the existing literature is provided in S1 Text. Since patient-

specific expression profiles were measured before radiation, theses driver candidates poten-

tially represent markers whose expression behavior may allow to decide if a prostate cancer

patient would profit from a radiation therapy or not.

Further, we investigated if the disease status after initial treatment of irradiated patients had

biased the observed separations into early and late relapse groups, but we did not find any sig-

nificant difference with respect to the distribution of patients with complete and non-complete
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remission after initial treatment between both groups (Fisher’s exact tests: P ranged from 0.69

to 1).

Finally, we analyzed how our predicted driver candidates contribute to the modeling of the

disease-free survival in the presence of additional covariates. Therefore, we used Cox regres-

sion [47, 48] to determine the contribution of prognostic factors (age, clinical T-stage, Gleason

score, psa) with and without considering group assignments based on each driver candidate.

We found that the prognostic factors alone were not well-suited to model the disease-free sur-

vival, whereas the driver candidates provided important information for the modeling of the

disease-free survival in the presence of the other factors (S7 Fig).

VGF and FHL5 also tend to predict relapse behavior of non-irradiated

patients

Some of these marker candidates might also be associated with relapse of prostate cancer inde-

pendent of radiation therapy. We therefore further analyzed the expression behavior of the

marker candidates for 182 prostate cancer patients from TCGA that did not receive an adju-

vant radiation therapy (S6 Table) [23]. We again tried to group the patients into early and late

Fig 5. Marker gene-based separation of irradiated prostate cancer patients into early and late relapse groups. Potential radioresistance driver genes revealed from

DU145 (top and middle row) and LNCaP (bottom row) were analyzed for their expression behavior in 32 irradiated prostate cancer patients from TCGA. Expression

levels of each marker gene across the 32 patients were used to determine a marker gene-specific optimal cutoff for disease-free survival risk curves separating patients

with low (blue curve) and high (red curve) marker gene expression with respect to the constraint that at least 8 patients must be assigned to each curve. Log-rank test

p-values indicate that these selected marker genes enable a separation of irradiated prostate cancer patients into early and late relapse groups. Shown are standard

approximate log-rank test p-values that only marginally deviated from exact log-rank p-values determined by exhaustive computations, except for FOXL1 that had a

clearly less significant exact log-rank p-value of 0.076 (see Methods for details and S4 Fig). See S1 Text for a detailed discussion of the driver candidates in the context

of the existing literature.

https://doi.org/10.1371/journal.pcbi.1007460.g005
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relapse groups by performing a Kaplan-Meier analysis using the same driver gene-specific

expression cutoffs determined in the prior analysis. We found that only VGF and FHL5
enabled a similar separation of non-irradiated patients as observed for irradiated patients (S5

Fig, Log-rank test: P< 0.1). As for irradiated patients (Fig 5), high expression of VGF was asso-

ciated with early relapse, whereas high expression of FHL5 was associated with late relapse of

non-irradiated patients (S5 Fig). Thus, both marker genes may also have at least some general

prognostic potential for relapse, but only the increased expression of VGF in early relapse

patients is of greater potential therapeutic relevance, because knockdowns are potentially bet-

ter to realize than knockins.

Validation of VGF by in vitro radiobiological assays

We selected the neuroendocrine factor VGF for in-depth validation studies. This was moti-

vated by our observation that VGF showed increased expression in prostate cancer patients

with early relapse (Fig 5) and further triggered by recent studies that highlighted the impor-

tance of VGF in different types of cancer [49–52].

We found that VGF was significantly upregulated in DU145 and LNCaP prostate cancer

radioresistant cell lines in our genome-wide gene expression analysis (Fig 6a; average expres-

sion difference of 2.85 in DU145 and 1.37 in LNCaP, t-tests: P< 0.01, S7 Table). We further

analyzed the expression of VGF in independent radioresistant clones of DU145 and LNCaP in

comparison to their radiosensitive parental cell lines and found that VGF was also significantly

overexpressed in these clones (Fig 6b, t-test: P< 0.05 for DU145 and P< 0.03 for LNCaP, S7

Table). Interestingly, two of the four radioresistant DU145 clones had VGF expression levels

that were comparable to those of the radioresistant LNCaP clones. These two radioresistant

DU145 clones may not have an increased VGF copy number, but they still showed significantly

increased VGF expression in comparison to the parental radiosensitive DU145 cell line (t-test:

P< 0.04). This is comparable to the overexpression of VGF in radioresistant LNCaP without a

Table 1. Summary of potential radioresistance drivers.

Gene Faster Relapse Annotations

ADAMTS9 low expression protease function, renal tumors

AKR1B10 high expression all-trans-retinaldehyde reductase, detoxification

FOXL1 low expression transcription factor, proliferation, differentiation, metabolism

FST low expression follistatin, sexual hormone

GRPR low expression receptor for gastrin releasing peptide, associated with activation of phosphatidylinositol messenger system

SOX17 low expression transcription factor, inhibits Wnt signaling, key regulator of embryonic development

STARD4 low expression putative role in intracellular transport of sterols and other lipids

VGF high expression nerve growth factor inducible protein, regulation of cell-cell interactions

FHL5 low expression putative role in spermatogenesis, stimulates CREM activity

LYPLAL1 low expression lysophospholipase like 1, no phopholipase activity, able to hydrolyze short chain substrates

PAK7 low expression protein kinase, involved in cytoskeleton regulation, cell migration, cell proliferation, and cell survival

TDRD6 low expression involed in spermatogenesis, chromatin body formation, miRNA expression

CXXC5 high expression required for DNA-damage induced phosphorylation, p53 activation and cell cycle arrest

ITGA2 low expression trans-membrane receptor subunit, cell adhesion

Potential driver genes of radioresistance dividing irradiated prostate cancer patients from TCGA into early and late relapse groups. The column ‘Faster Relapse’ reports

if patients with low or high gene-specific expression levels showed a faster relapse in the corresponding Kaplan-Meier curves shown in Fig 5 and S5 Fig. See S1 Text for a

detailed discussion of the driver candidates in the context of the existing literature.

https://doi.org/10.1371/journal.pcbi.1007460.t001

Network-based analysis of prostate cancer cell lines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007460 November 4, 2019 12 / 27

4. Original works

150



Fig 6. Experimental validation of VGF as regulator of cell radioresistance. (a) Increased VGF expression in radioresistant DU145

and LNCaP in comparison to their radiosensitive parental cell lines in our microarray data. Three biological replicates were

considered for each condition. (b-d) RT-qPCR analysis of VGF expression under different conditions. (b) Increased VGF expression

in four independent radioresistant DU145 and three independent radioresistant LNCaP clones relative to their radiosensitive

parental cell lines. (c) Increased VGF expression in sphere relative to monolayer cultures of parental DU145 and LNCaP cells.
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directly underlying VGF copy number alteration and supports that increased VGF expression

could contribute to increased radioresistance.

We further analyzed the expression behavior of VGF in parental DU145 and LNCaP cells

grown under sphere-forming conditions (see S8 Fig for microscope images) that enrich cancer

stem cell populations [53]. This was motivated by a recent study that showed that VGF is an

important regulator of glioma stem cells [52]. We found that VGF expression was strongly

increased under sphere-forming compared to monolayer conditions (Fig 6c, t-tests: P< 0.06

for DU145 and P< 0.02 for LNCaP, S7 Table). This observation was also supported by an

additional analysis of the prostate cancer cell line PC3 that showed a moderately increased

VGF expression under sphere-forming conditions (S8 and S9 Figs, t-test: P< 0.02, S7 Table).

Next, we considered the parental DU145 and LNCaP cells to determine changes in their

radiosensitivity in response to reduced VGF expression by siRNA-mediated gene silencing.

We first validated the knockdown efficiency by RT-qPCR and found clearly reduced VGF
expression in VGF knockdowns compared to negative controls in both cell lines, where the

efficiency was greater for DU145 than for LNCaP (Fig 6d, t-tests: P< 0.002 for DU145 and

P< 0.02 for LNCaP, S7 Table). We also tried to validate the VGF knockdown by Western

blots, but the two tested VGF antibodies (anti-VGF Santa Cruz sc-365397, B-8 mouse;

St. John’s Laboratory, STJ96661, rabbit, polyclonal) gave unspecific bands that were not consis-

tent with the corresponding RT-qPCR data (S10 Fig). Since we had confirmed VGF knock-

downs by RT-qPCR (Fig 6d), we next performed clonogenic assays to analyze the impact of

VGF knockdowns on radiosensitivity. We found that an inhibition of VGF significantly

increased the radiosensitivity of DU145 and LNCaP in comparison to controls transfected

with scrambled siRNAs (Fig 6e and 6f; e.g. t-tests: P< 0.02 for siRNA VGF #2 vs. negative con-

trol at 4 Gy for DU145 and LNCaP, S7 Table). In addition, clearly lower surviving fractions of

LNCaP cells further suggest that DU145 is more radioresistant than LNCaP, which is in accor-

dance with our prior findings [33, 34].

Finally, we also considered the prostate cancer cell line PC3 and could confirm the effi-

ciency of VGF knockdowns and we also observed a moderately increased radiosensitivity in

response to VGF knockdowns (S9 Fig, e.g. t-test: siRNA VGF #2 vs. negative control: P< 0.03

at 4 Gy, S7 Table). We further estimated linear-quadratic models [54] of the clonogenic sur-

vival data of DU145, LNCaP, and PC3 to obtain functional representations of the individual

survival curves (S11 Fig).

Discussion

Radioresistance of prostate cancer is driven by different cellular processes enabling cancer cells

to survive radiation doses that can safely be delivered to the tumor [4, 5]. Molecular markers

are urgently needed to better predict the clinical outcome of radiotherapies and to develop tar-

geted adjuvant strategies to sensitize radioresistant cells. Radioresistant prostate cancer cell

lines represent an important model system for the identification of novel candidate genes and

the analysis of molecular mechanisms involved in radioresistance, but they typically show

large chromosomal deletions and amplifications that affect many genes. This in combination

with the small number of cell lines that are usually profiled and their cell line specific gene

(d) ReducedVGF expression in parental DU145 and LNCaP cells induced by siRNA-mediated gene silencing relative to negative

controls. (e-f) Increased radiosensitivity of parental DU145 and LNCaP cells induced by siRNA mediated reduction of VGF
expression. Shown are average fractions of surviving cells in log10-scale for increasing radiation dose. Error bars represent the

standard error of the mean and ‘n’ specifies the number of biological replicates. Corresponding linear-quadratic (LQ) model curves

are shown in S11 Fig.

https://doi.org/10.1371/journal.pcbi.1007460.g006
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copy number and expression profiles does not allow a straightforward identification of radio-

resistance drivers by standard statistical approaches for gene copy number and expression

analysis. In this situation, it is almost impossible to derive promising candidates from hun-

dreds or thousands of differentially expressed genes with directly underlying gene copy num-

ber alterations without prior knowledge about genes involved in altered cellular processes that

contribute to radioresistance.

Therefore, we developed a network-based method to jointly analyze the gene copy number

and expression profiles of an individual cell line to distinguish potential drivers from passen-

gers. The essential basis of this approach was the prostate cancer-specific gene regulatory net-

work that we learned from gene expression and copy number data of 541 prostate cancer

patients from TCGA. This network inference was very time and resource consuming requiring

670 hours on a high-performance compute server (Taurus ZIH TUD). Validations on data of

768 cancer cell lines from [28, 41] confirmed that this network can predict the expression

behavior of individual genes in cancer cell lines enabling an analysis of the prostate cancer cell

lines DU145 and LNCaP. This analysis is limited by the fact that the cancer samples from

TCGA and our cell lines were analyzed on different experimental platforms. Both data sets

also showed differences in the number of expressed genes, where more genes were expressed

in our cell line models than in the cancer samples. Thus, it is clear that not all observations

form our in vitro prostate cancer cell lines are transferable to the in vivo situation in prostate

tumors. Nevertheless, we applied network propagation to differentially expressed genes with

directly underlying copy number alterations from DU145 and LNCaP to determine their

impacts on known markers of radioresistance. Comparisons to random networks of same

complexity (degree-preserving network permutations) in combination with further filtering

revealed ten candidates from DU145 (ADAMTS9, AKR1B10, CXXC5, FST, FOXL1, GRPR,

ITGA2, SOX17, STARD4, VGF) and four from LNCaP (FHL5, LYPLAL1, PAK7, TDRD6) that

were able to distinguish irradiated prostate cancer patients from TCGA into early and late

relapse groups. A detailed discussion of these candidate genes is given in S1 Text. These candi-

date genes may allow to develop biomarkers for the analysis of biopsy samples to predict

relapse risk and to adapt treatment for individual prostate cancer patients. Targeted perturba-

tions of these genes may allow to increase the radiosensitivity of prostate cancer cells. Addi-

tional preclinical and clinical studies are required to validate these candidates.

We experimentally validated the novel radioresistance marker gene candidate VGF, a neu-

roendocrine factor, that was highly overexpressed in DU145 and LNCaP radioresistant pros-

tate cancer cell lines and whose high expression was associated with shorter disease-free

survival of irradiated prostate cancer patients. VGF was originally identified in a pheochromo-

cytoma cell line in response to the addition of the nerve growth factor (NGF) [55]. VGF is an

important regulator of metabolism and endoplasmic reticulum (ER) stress in neurons and

endocrine cells [56–58], where it activates pro-survival signaling pathways such as PI3K/AKT/

mTOR and MAPK/ERK1/2 [59, 60], but its role in regulation of cancer cells remained unclear

for a long time. Experimental evidences from in vitromodels, mouse xenografts and analysis

of patient outcomes showed that VGF expression is associated with resistance to EGFR inhibi-

tors and further induces epithelial-mesenchymal transition (EMT) and tumor cell dissemina-

tion [50, 51]. In addition, VGF has been shown to be preferentially expressed in glioblastoma

stem cells promoting glioblastoma stem cell survival and stemness and to further support sur-

vival of differentiated glioblastoma cells to promote tumor growth [52]. Our previous studies

showed that the emergence of radioresistance also triggers EMT, increases migratory proper-

ties, and further results in enrichment of cancer stem cell populations in prostate cancer cells

[33]. In accordance with this, our in vitro validation experiments confirmed an upregulation

of VGF expression in additionally analyzed independent radioresistant DU145 and LNCaP
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clones, showed that VGF is highly expressed under sphere forming conditions, and further

demonstrated that VGF knockdowns lead to increased radiosensitivity. These results suggest

that VGF is involved in radioresistance of prostate cancer. This is also supported by our find-

ings for the prostate cancer cell line PC3.

For Western blotting analysis of VGF in response to siRNA-mediated gene silencing, we

tried two available antibodies (anti-VGF Santa Cruz sc-365397, B-8 mouse; St. John’s Labora-

tory, STJ96661, rabbit, polyclonal) and we additionally performed RT-qPCR analysis of VGF
expression as control in parallel. Although we observed a pronounced knockdown of VGF by

RT-qPCR, we did not observe the specific VGF band by Western blotting, which can be

explained by the observation of substantial background signals. Therefore, we focused on

PCR-based analysis of VGF expression in our validation studies.

We observed that VGF knockdowns were more efficient in DU145 than in LNCaP, but

fewer LNCaP cells survived irradiation. The relation between knockdown efficiency and cell

survival after irradiation is complex. Different factors can contribute to cell line specific radio-

resistance. We already know from our prior studies [33, 34] that DU145 is more radioresistant

than LNCaP. This is in accordance with our observation that DU145 had substantially more

DNA copy number alterations than LNCaP and could explain better survival of DU145 cells in

response to irradiation by a greater tolerance of DNA double strand breaks. Further, the

knockdown efficiency also depends on the protein turnover rate [61] and highly expressed

genes can be more susceptible to siRNA-mediated gene silencing [62]. Thus, the found stron-

ger expression of VGF in DU145 than in LNCaP may also have influenced the VGF knock-

down efficiency observed for both cell lines. Nevertheless, our clonogenic assays clearly

indicate that VGF could be involved in the regulation of radioresistance.

Further, our in vitro characterization of DU145 and LNCaP is limited to the identification

of molecular alterations that are associated with intrinsic cellular radioresistance. Additional

preclinical and clinical studies are necessary to further analyze the revealed marker genes in in
vivo studies. Especially the tumor microenvironment and immune signatures of tumors can be

altered by radiation therapies influencing tumor progression and therapy response [6–12].

Thus, also microenvironmental and immunomodulatory factors, which we could not cover by

our analysis, can strongly influence the response of individual tumors to radiation therapy.

Such and other limitations of in vitro cancer models have been reported over the last years [63]

and special care has to be taken on work with cancer cell lines [64]. For example, in a trans-

genic breast cancer model tumors with similar growth characteristics but different immune

signatures differed in their response to radiation therapy [65]. Therefore, a combination of

radiation and immune therapy is important to improve patient outcomes [11, 66]. Another

example is the treatment of the prostate cancer cell line PC3 with the HIV protease inhibitor

nelfinavir that resulted in a small but significant increase of radiosensitivity in vitro which was

not observed in corresponding PC3 xenografts [67]. Still, our analysis of revealed markers that

distinguished between early and late relapse of irradiated prostate cancer patients provides a

first important hint that these markers have the potential to enable predictions for the in vivo
situation.

In summary, our detailed literature analysis and results of radiobiological assays for the

maker gene VGF suggest that our network-based approach can predict potentially clinically

relevant driver candidates involved in radioresistance of prostate cancer.

Materials and methods

A detailed flow chart of our developed data analysis pipeline is shown in S1 Fig. See Fig 1 for a

high-level overview.
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Identification of gene copy number alterations

Array-based comparative genomic hybridization (aCGH) was used to compare the genomes

of radioresistant to radiosensitive cell lines for DU145 and LNCaP and to compare these

genomes to normal reference DNA (Agilent Euro Male). Experiments were done on Agilent’s

SurePrint G3 Human CGH Microarray Kit 2x400K (Design ID: 028081, Agilent) and per-

formed and standardized as described in [68]. Normalized measurements were used to com-

pute aCGH profiles. An aCGH profile represents for each of the 294,371 genomic probes a

log2-ratio that compares the probe-specific DNA copy number in a radioresistant cell line rela-

tive to its radiosensitive counterpart (or to compare DNA copy numbers of a radioresistant or

radiosensitive cell line to normal DNA). aCGH profiles were sorted according to chromosomal

locations of probes and further segmented into chromosomal regions of constant copy num-

ber using DNAcopy [69]. Corresponding DNA segmentation profiles are provided in S1

Table. Copy number values of 24,625 genes (focusing on genes for which we also measured

expression) were determined by mapping chromosomal locations of genes to the aCGH seg-

ments as described in [28]. The resulting log2-ratio gene copy number values were used to

determine genes with increased or reduced copy number in radioresistant DU145 or LNCaP

relative to their non-resistant counterpart using an absolute log2-ratio cutoff of 0.1 (Fig 2, S2

Table). The choice of this cutoff was motivated by moderately increased or decreased gene

copy number alteration values comparing radioresistant to radiosensitive LNCaP. This choice

did not influence the network inference and the computation of the network propagation

matrix. This cutoff only defines a filter for the selection of candidate genes that were consid-

ered for more in-depth analyses. A heatmap representation that summarizes all gene copy

number comparisons is shown in S2 Fig. aCGH data have been deposited in the Gene Expres-

sion Omnibus (GEO) database, accession no GSE134500.

Identification of differentially expressed genes

Gene expression levels of radioresistant and radiosensitive cell lines of DU145 and LNCaP

were measured in three biological replicates. Experiments were done on Agilent’s SurePrint

G3 Human Gene Expression 8x60K v2 microarrays (Design ID: 039494, Agilent) and per-

formed as described in [34]. Hybridization signals of 24,625 genes of all cell line specific

experiments were quantile normalized [70]. Expression differences between the three radiore-

sistant and the three radiosensitive LNCaP cell lines were not strong enough to enable a pre-

diction of differentially expressed genes by standard t-tests with significant p-values after

correction for multiple testing. Still, the t-test statistic, the p-value or the average log-ratio pro-

vide important information to rank genes according to their expression differences. We there-

fore used a specifically designed three-state Hidden Markov Model (HMM) to identify

differentially expressed genes [35]. We trained two independent HMMs, one for DU145 and

one for LNCaP, on the average gene expression log2-ratio profile comparing radioresistant to

radiosensitive cell lines to account for cell line specific expression characteristics. This training

was done with standard settings and initial state-specific means of -1.25 (underexpressed), 0

(unchanged), and 1.25 (overexpressed). We used state-posterior decoding to assign each gene

to its most likely underlying state (underexpressed, unchanged, or overexpressed) in radiore-

sistant relative to radiosensitive cell lines (S3 Table). Gene expression data have been deposited

in the Gene Expression Omnibus (GEO) database, accession no GSE134500.

Inference of prostate cancer-specific gene regulatory network

We learned a prostate cancer-specific gene regulatory network to predict potential impacts of

gene copy number alterations in DU145 and LNCaP on known radioresistance marker genes.

Network-based analysis of prostate cancer cell lines

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007460 November 4, 2019 17 / 27

4. Original works

155



We downloaded aCGH profiles and gene expression data of 541 prostate cancer patients from

TCGA and processed them as described in [28]. In addition, we removed all genes with very

low constant or nearly non-variable expression across all patients and only kept genes with on

average at least 1 transcription unit (normalized RSEM [71] counts from TCGA) per patient.

Gene copy number and expression measurements of the remaining 14,780 genes were used to

learn a gene regulatory network as outlined in [28] using the R package regNet [29]. Briefly,

the expression of a specific gene was modeled as a linear combination of its copy number and

the expression of all other genes. Lasso regression [72] in combination with cross validation

and a significance test for lasso [73] were used to determine for each gene those predictors

(e.g. gene-specific copy number or expression levels of other genes) that best explained the

expression behavior of the considered gene across all prostate cancer patients. As done in [28],

we focused on the most relevant links (p-values approximately zero) and removed spurious

local regulators (local gene cutoff of 50) resulting in a prostate cancer-specific network with

60,447 activator and 2,105 inhibitor links between genes (S8 Table). We further confirmed

that this network was capable to predict the expression of genes in cancer cell lines outper-

forming random networks of same complexity derived by degree-preserving network permu-

tations (S3 Fig). The predictive power of our network was comparable to the predictive power

of other networks that we had learned with the same lasso approach [28].

Impact quantification of gene copy number alterations on radioresistance

markers

We applied network propagation [28] in combination with the prostate cancer-specific gene

regulatory network to determine impacts of differentially expressed genes with underlying

gene copy number alterations on the expression of known radioresistance marker genes. We

used the R package regNet [29] to compute a specific impact matrix based on the cell line spe-

cific log-ratio gene copy number and expression profiles comparing the radioresistant cell line

to its radiosensitive counterpart for DU145 and LNCaP separately. Each cell line specific

impact matrix quantifies for each gene pair (a, b) how strong gene a acts on the expression of

gene b by computing the impact that flows from gene a to gene b via all possible network paths

in the prostate cancer-specific gene regulatory network connecting both genes under consider-

ation of the predictive power of individual genes. More weight was given to genes with greater

positive correlations than to genes with smaller positive correlations utilizing gene-specific

correlation estimates obtained from cancer cell lines (S3 Fig). Next, we only considered poten-

tial radioresistance driver candidates focusing on genes with increased expression and under-

lying increased copy number and on genes with decreased expression and underlying

decreased copy number in radioresistant versus radiosensitive cell lines (S4 Table). In total,

292 of 447 genes for DU145 and 40 of 66 genes for LNCaP that fulfilled these criteria were also

expressed in prostate cancer samples of TCGA patients. We considered each candidate gene

and determined its average impact on known differentially expressed cell line specific radiore-

sistance markers (DU145: CCL2, CLDN4,MRC2, SNAI2 overexpression; LNCaP: CXCR4
underexpression in radioresistant vs. radiosensitive cell lines; S3 Table) from the cell line spe-

cific impact matrix (S5 Table). Finally, we determined which of the potential radioresistance

driver candidates had significant impacts on these differentially expressed cell line specific

radioresistance markers. Therefore, we computed corresponding average impacts under 10

random networks of same complexity as the original prostate cancer-specific network. These

random networks were derived based on degree-preserving network permutations by

exchanging active predictors between gene-specific linear models while keeping the number of

incoming and outgoing links constant for each gene. We compared the driver gene specific
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random impacts to the corresponding original impact by computing differences between the

original impact and each corresponding random impact and used t-tests to determine which

gene-specific differences in impact scores were significantly greater than zero. Genes with

impacts significantly greater than under random networks were selected based on FDR-

adjusted p-values (q-values) with q< 0.01 [44] leading to 162 potential driver candidates for

DU145 and 27 for LNCaP (S5 Table).

Transfer of cell line specific radioresistance driver genes to prostate cancer

patients

We analyzed the expression of potential radioresistance drivers of DU145 and LNCaP in pros-

tate cancer patients from TCGA to identify marker candidates that distinguish between early

and late relapse after adjuvant radiation therapy. Sufficient meta-information about initial

treatment, treatment response and disease free survival were available for 214 of 541 prostate

cancer patients of which 32 patients received radiation and 182 did not (S6 Table). All patients

were either disease free or showed a relapse after initial treatment. In more detail, the majority

of patients showed a complete remission (156 of 214), whereas other patients showed a stable

disease (22 of 214), partial remission (23 of 214), or a progressive disease (13 of 214) after ini-

tial treatment. To determine marker genes that distinguish between early and late relapse, only

genes with consistent expression behavior between radioresistant cell lines and irradiated

patients were considered. Therefore, we translated the observed expression state of a potential

marker candidate from the cell lines into a meaningful interpretation for irradiated tumor

patients. We assumed that if a marker candidate was overexpressed (underexpressed) in the

radioresistant compared to the radiosensitive cell line, then this overexpression (underexpres-

sion) may contribute to radioresistance. Consequently, irradiated patients with high (low)

expression levels of this gene may show a faster relapse than irradiated patients with lower

(higher) expression levels. Thus, a negative (positive) correlation between marker gene-specific

expression in patients and disease free survival is expected.

To realize this, we first considered gene expression profiles of tumors before treatment to

compute correlations between the expression of each potential radioresistance driver gene and

the months until relapse (disease free survival) considering all 12 of 32 irradiated patients that

had a relapse (S6 Table). Next, we compared the obtained gene specific correlations to the cor-

responding expression states observed for the cell lines and only kept those potential marker

genes for further analysis that were in accordance with the transfer of the expression behavior

from cell lines to tumors outlined above (overexpressed in radioresistant cell line vs. negative

correlation between tumor expression and time until relapse, undexpressed in radioresistant

cell line vs. positive correlation between tumor expression and time until relapse). This was ful-

filled by 61 of 162 potential radioresistance driver genes from DU145 and for 14 of 27 from

LNCaP (S5 Table). Finally, we analyzed each of these marker candidates for its potential to dis-

tinguish between early and late relapse of prostate cancer patients that received adjuvant radia-

tion therapy. Therefore, we did a Kaplan-Meier analysis for each marker candidate where we

tried to split the 32 irradiated TCGA prostate cancer patients into an early and late relapse

group under consideration of the marker specific expression (R package ‘survival’ [74]). We

determined an optimal gene expression cutoff for each marker for the separation into early

and late relapse (disease free survival) by computing corresponding log-rank p-values with

respect to the constraint that each group must contain at least eight patients. We selected all

marker candidates with p-values less than 0.05 resulting in 10 markers from DU145 and 4

markers from LNCaP capable to distinguish between early and late relapse of irradiated pros-

tate cancer patients for further analysis (S5 Table). The correlation between predicted and
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experimentally measured expression levels of these 14 candidate markers was significantly

greater than zero (t-test: P< 0.019) and at the level of individual genes also significantly better

than for random networks of same complexity derived by degree-preserving network permu-

tations (paired t-test: P< 0.02). Corresponding estimated conservative false discovery rates

were between 14% and 22% [44] and more liberal estimates between 3% and 5% [45] (S5

Table). Random selections of genes would have resulted on average on 0.90 genes for LNCaP

and 2.25 genes for DU145 with log-rank p-values less than 0.05 (95% confidence interval [0.88,

0.91] for LNCaP and [2.22, 2.27] for DU145), which is significantly less than the number of

driver candidates predicted by our network-based approach.

In addition, we used the ExaLT algorithm [46] to compute exact permutational log-rank p-

values for each optimal candidate gene-specific split between early and late relapse patients.

Our initially computed approximate log-rank p-values (R package ‘survival’) varied only mar-

ginally from the exact permutational p-values, except for FOXL1 (increase in log-rank p-value

from 0.014 to 0.076), supporting that our selection of driver gene candidates based on the

small cohort of irradiated patients was robust (S4 Fig). We also used Cox regression [47, 48] (R

package ‘survival’) to analyze if our driver candidates were still informative for disease-free

survival in the presence of currently used prognostic factors (age, clinical T-Stage, Gleason

score, psa). The grouping information about early or late relapse derived form each individual

driver candidate was important to model disease-free survival and reached more significant

p-values than the other covariates for 13 of 14 candidate genes (S7 Fig, AKR1B10: clinical T-

stage was slightly more significant than the grouping information derived from AKR1B10
expression).

Further, we used the determined optimal marker gene-specific expression cutoffs to analyze

the 182 non-irradiated TCGA prostate cancer patients to determine those markers that were

exclusively associated with relapse of irradiated patients but not with relapse of non-irradiated

patients.

Cell lines and culture conditions

Prostate cancer cell lines DU145, LNCaP and PC3 were purchased from the American Type

Culture Collection (ATCC, Manassas, VA) and cultured according to the manufacturers rec-

ommendations in a humidified 37˚C incubator supplemented with 5% CO2. DU145 and PC3

cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) (Sigma-Aldrich) and

LNCaP cells in RPMI-1640 medium (Sigma-Aldrich) containing 10% fetal bovine serum (FBS,

PAA Laboratories) and 1 mM L-glutamine (Sigma-Aldrich). The analyzed radioresistant cell

lines of DU145 and LNCaP were established in [33] and further analyzed in [34]. In more

detail, radioresistant cell sublines of DU145 and LNCaP had been generated by multiple frac-

tions of 4 Gy X-ray irradiation until a total dose of more than 56 Gy was reached (Fig. 4a in

[33]). Colony assays had been used to demonstrate the enhanced radioresistance of surviving

cells (Fig. 4b in [33]). Corresponding age-matched non-irradiated radiosensitive parental cells

were used as controls for radioresistant cell lines. All cell lines were genotyped using microsat-

ellite polymorphism analysis and tested for mycoplasma directly before the experiments.

Sphere formation assay

To evaluate the self-renewal potential, cells were grown as non-adherent multicellular cell

aggregates (spheres). Cells were plated at a density of 1,000 cells/2 mL/well in 6-well ultra-low

attachment plates (Corning) in MEBM medium (Lonza) supplemented with 4 μg/mL insulin

(Sigma-Aldrich), B27 (Invitrogen), 20 ng/mL EGF (Peprotech), and 20 ng/mL FGF (Pepro-

tech). Media containing supplements were refreshed once a week and spheres with a
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size > 100 μm were assayed after 14 days using Axiovert 25 microscope (Zeiss) or were auto-

matically scanned using the Celigo S Imaging Cell Cytometer (Brooks).

Knockdown of VGF by siRNA transfection

For knockdown of VGF expression, cells were transfected with RNAiMAX (Life Technologies

GmbH) according to the manufacturer’s protocol. The siRNA target sequences were obtained

from the Life Technologies website and corresponding RNA duplexes were synthesized by

Eurofins. The sequences were VGF siRNA 1: sense GGAAGAAGCAGCUGAAGCUdCdT;

antisense AGCUUCAGCUGCUUCUUCCdTdC and VGF siRNA 2: sense GGAGGAGCUG

GAGAAUUACdAdT; antisense GUAAUUCUCCAGCUCCUCCdTdG for targeted knock-

downs of VGF. Scrambled siRNA 1: sense UGCGCUAGGCCUCGGUUGCdTdT; antisense

GCAACCGAGGCCUAGCGCAdTdT, scrambled siRNA 2: sense: AGGUAGUGUAAUCGC

CUUGdTdT; antisense CAAGGCGAUUACACUACCUdTdT, and scrambled siRNA 3: sense

GCAGCUAUAUGAAUGUUGUdTdT; antisense ACAACAUUCAUAUAGCUGCdTdT

were used as negative control. In addition, knockdown efficiencies of VGF siRNA 1 and 2

were analyzed by RT-qPCR in comparison to scrambled siRNAs considering three biological

replicates for DU145 and PC3 and two for LNCaP. Seven technical replicates were done for

each biological replicate.

Clonogenic cell survival assay

Cells were plated at a density of 500 cells/well in 6-well plates in complete medium and irradi-

ated with doses of 2, 4 and 6 Gy of 200 kV X-rays (Yxlon Y.TU 320; dose rate 1.3 Gy/min at 20

mA) filtered with 0.5 mm Cu. The absorbed dose was measured using a Duplex dosimeter

(PTW). After 10 days, the colonies were fixed with 10% formaldehyde (VWR) and stained

with 0.05% crystal violet (Sigma-Aldrich). Colonies containing > 50 cells were counted using

a stereo microscope (Zeiss). The plating efficiency (PE) was calculated as ratio between the

number of colonies and the number of cells plated. The surviving fraction (SF) was calculated

as ration between the PE of irradiated cells divided by PE of corresponding non-irradiated

control cells. We also learned linear-quadratic (LQ) models to obtain a functional representa-

tion of the surviving fraction for each cell line using the R package ‘CFAssay’ [54] with stan-

dard settings (S11 Fig). We did not consider higher irradiation doses of 8 or 10 Gy in our

experiments, because only few cells survived at 6 Gy especially for LNCaP and PC3.
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5 Discussion

My habilitation thesis contains seven selected publications that are all focused on differ-
ent important topics in computational cancer omics data analysis. The overarching link
between these publications is given by the application of a newly developed concept
for gene network inference to identify potential major regulators that distinguish cancer
subtypes in combination with a newly developed concept for network propagation to
quantify impacts of altered genes on clinically relevant characteristics. I started to work
on these topics in 2012 and contributed substantially to all included publications that
were published over the last years.

When I started with this work it was already widely accepted that cancer is a com-
plex genetic disease that is driven by combinations of mutated genes that alter cellu-
lar hallmark pathways that contribute to cancer development (Hanahan and Weinberg
(2011)). Due to great efforts to analyze cancer genomes of thousands of patients,
frequently and rarely mutated genes had largely been cataloged for all major types of
human cancer (Vogelstein et al. (2013); Lawrence et al. (2014); The Cancer Genome
Atlas Research Network (2013b)). One important finding was that the vast majority of
mutated genes only occurred in some patients, whereas generally only few frequently
mutated genes were observed for specific cancer types (Vogelstein et al. (2013); The
Cancer Genome Atlas Research Network (2013b)).

Importantly, functional roles and clinical implications of frequently mutated genes can
be studied within large cancer cohorts with the help of existing statistical methods, but
methods for the analysis of rarely mutated genes were largely missing. It was also not
possible to analyze the impact of all mutated genes of a patient-specific cancer on clin-
ically relevant characteristics. This whole situation was further complicated by the fact
that many cancers also showed DNA copy number alterations, chromosomal instabil-
ity and epigenetic alterations (Berdasco and Esteller (2010); Hanahan and Weinberg
(2011); Ciriello et al. (2013); Zack et al. (2013)). All these alterations can contribute
to the existences of different cancer subtypes and complex alterations of cancer tran-
scriptomes.

This huge complexity of cancer genomes strongly complicates the identification of
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driver mutations from the specific set of mutations that is found in an individual cancer.
Novel computational strategies were urgently required to predict major regulators that
distinguish different cancer subtypes and to determine how these genes impact on
pathogenesis and therapy response. A promising way to realize this was to consider
cancer as a disease of cellular pathways and networks and to utilize this idea to develop
novel computational approaches for the analysis of individual cancer patients (Krogan
et al. (2015)). A first great success in this direction was reached by Chuang et al.
(2007) for the classification of the metastatic potential of breast cancer with the help
of protein interaction networks. Over the years, such approaches for the analysis of
cancer data were more widely used and extended leading to the development of the
research field of network medicine (Barabási et al. (2011)).

An important contribution to computational network medicine was made by Hofree
et al. (2013) utilizing network propagation of individual cancer mutations for the identi-
fication of clinically relevant cancer subtypes that were composed of tumors that only
rarely shared the same gene mutations. Also Leiserson et al. (2015) used network
propagation for a pan-cancer analysis revealing cancer-relevant sub-networks that in-
cluded many genes that were only rarely mutated across different cancer types. Both
approaches utilized existing protein or gene interaction networks to analyze gene muta-
tion data of individual cancers, but they did not include tumor gene expression profiles,
which can provide important information about the structure and activity of gene regu-
latory networks, cancer subtypes or signaling pathway alterations.

To fill this gap, I developed a novel computational approach to directly learn cancer-
specific gene regulatory networks from molecular data of individual cancers or cancer
cells with the goal to use the resulting network for network propagation under consider-
ation of individual tumor expression profiles (Seifert et al. (2016)). This computational
framework enabled for the first time an in-depth analysis of all tumor-specific gene copy
number and expression alterations on clinically relevant characteristics for individual
patients. The focus on the combined analysis of gene copy number and corresponding
gene expression profiles was driven by the specific research questions of the publi-
cations included in this habilitation thesis, but the learned cancer type-specific gene
regulatory networks may also be considered for the propagation of gene mutations as
done in Hofree et al. (2013) and Leiserson et al. (2015).

I started to develop my computational approach for network inference in 2012. In a
first application study, we utilized the network inference approach to identify potential
major regulators within the large gene expression signature that we had determined
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to distinguish astrocytomas in childhood (pilocytic astrocytomas) from those in adult-
hood (diffuse and anaplastic astrocytomas and glioblastomas) (Seifert et al. (2015),
see Section 4.1). The derived signature-specific gene regulatory network had purely
been learned based on gene expression data. Predicted major regulators had known
functions in important biological processes including brain development, cell cycle, pro-
liferation, apoptosis and epigenetic regulation. Expression differences between both
groups of astrocytomas were mainly explained by DNA methylation changes and gene
copy number alterations. Overall, this in-depth study represents one of the first large-
scale computational comparisons of molecular data of all four major astrocytoma types
(Louis et al. (2007)) substantially extending related studies in the early 2000s (Rickman
et al. (2001); Hunter et al. (2002); Rorive et al. (2006)). Moreover, the integration of
the gene network inference approach clearly demonstrated the potential to predict ma-
jor regulators out of hundreds of differentially expressed genes. Such major regulators
can contribute to a better understanding of differences between astrocytoma types and
also provide a basis for additional experimental studies.

Motivated by this first success, I suggested to utilize my network inference approach
for the identification of major regulators that distinguish subtypes of histologically clas-
sified oligodendrogliomas (Lauber et al. (2018), see Section 4.2). In this study, we
learned oligodendroglioma-specific gene regulatory networks that distinguished oligo-
dendrogliomas with a 1p/19q co-deletion and an IDH mutation from those that only had
an IDH mutation. Importantly, we found that networks learned from gene expression
and corresponding gene copy number profiles were clearly better suited to predict the
expression levels of individual signature genes than networks that were only learned
from gene copy number data alone. Focusing on the most significant highly recurrent
links between signature genes, the predicted major regulators had different important
biological functions in cytoskeleton remodeling, apoptosis and neural development.
Interestingly, the obtained network also showed characteristic differences of several
HOX and SOX transcription factors between both oligodendroglioma subgroups. This
suggested that different glioma stemness programs were potentially active in each sub-
group, which was also supported by single cell oligodendroglioma transcriptome anal-
yses that were published during the work on this study (Tirosh et al. (2016); Venteicher
et al. (2017)). Overall, this study demonstrated that gene copy number profiles alone
are sufficient to derive known molecular subgroups of histologically classified oligo-
dendrogliomas. The identified molecular signatures and major regulators provide a
good basis for further studies and experimental validations. Specifically focusing on
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the network approach, this study also showed that the predictive power of the network
inference approach can be improved substantially by the integrative analysis of gene
expression and corresponding gene copy number profiles of signature genes in com-
parison to only using gene copy number data alone. In addition, important method-
ological advancements in comparison to Seifert et al. (2015) were that the network
inference was repeated 100 times on different training sets along with the evaluation
of the prediction quality of the individual networks on their corresponding test sets.
This enabled us to focus on the most stable links between genes to improve the gen-
eralization capacity of the final network. Since network inferences are typically time
consuming (Seifert et al. (2016); Seifert and Beyer (2018)), such large numbers of re-
peated network inferences were only possible for gene expression signatures but not
for the genome-wide network inferences approaches presented in this thesis.

Similarly, I also suggested to utilize my network inference approach to predict ma-
jor regulators that distinguished short- from long-lived DNMT3A-mutant acute myeloid
leukemia patients (Lauber et al. (2020), see Section 4.3). In this study, we learned gene
regulatory networks for the gene expression signature that distinguished both patient
classes. Network inference was done based on gene expression and microRNA pro-
files. The integration of microRNAs as predictors slightly improved the network predic-
tion quality and also slightly increased the number of predictable signature genes. We
again also considered separations into training and test sets and repeated the network
inference 100 times to focus on the most significant stable links. An important improve-
ment compared to Lauber et al. (2018) was that we were now better able to account for
multiple testing in relation to the network links using FDR-adjusted p-values based on
the method by Benjamini and Hochberg (1995) as implemented in regNet (Seifert and
Beyer (2018)). In my two prior studies Seifert et al. (2015) and Lauber et al. (2018), we
could only focus on the most significant network links at the detection limit of the covari-
ance test due to the implicit and undocumented rounding of the p-values to four digits
in the R package covTest by Lockhart et al. (2013). I modified the implementation of
the covariance test to overcome this limitation. The obtained gene regulatory network
contained potential major regulators including several genes and microRNAs that were
already known to be involved in the pathogenesis of acute myeloid leukemia. Interest-
ingly, we also identified novel candidate genes with known functions in the regulation
of hematopoiesis, cell cycle, cell differentiation and immunity. Moreover, we could also
show that our revealed gene mutation and expression signatures were also predictive
for independent DNMT3A-mutant acute myeloid leukemia patients from other cohorts.
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Further, our findings also suggest that our predictions can be used to improve currently
used clinical prognostic scoring systems (Döhner et al. (2010, 2017)). This is in good
accordance and further extends recent findings by Herold et al. (2020).

Thus, the three included publications (Seifert et al. (2015); Lauber et al. (2018, 2020))
clearly showed that network inference enables a more detailed analysis of gene expres-
sion signatures to identify potential major regulators that distinguish cancer subtypes.
Such major regulators are frequently associated with clinically relevant characteristics
and also potentially influence the expression behavior of many other signature genes.
Therefore, major regulators determined by the network inference approach can repre-
sent promising targets for additional perturbation experiments in the wet lab.

In the following, the discussion shifts from networks obtained for gene expression sig-
natures to genome-wide network inference and network propagation. In 2012, I started
to develop the network-based framework for the joint analysis of gene expression and
copy number profiles of individual cancers with the goal to enable a risk stratification of
altered genes on clinically relevant characteristics. The underlying mathematical con-
cepts for network inference and network propagation, which also formed the general
basis of all network-based analysis in the studies that are part of this habilitation thesis,
were published in Seifert et al. (2016) along with applications to different cancer types
and in-depth validation studies (see Section 4.4). In this study, we learned a genome-
wide gene regulatory network based on gene expression and corresponding gene copy
number data of 768 cancer cell lines. Importantly, we demonstrated that this network
was highly predictive for expression of genes of more than 4,500 cancer samples of 13
different cancers. In addition, we further showed that this network can quantify impacts
of patient-specific gene copy number alterations on patient survival with the help of the
newly developed network propagation algorithm. Such patient-specific risk classifica-
tions of individual gene copy number alterations are only possible with the help of the
specifically designed network propagation algorithm and cannot be realized with exist-
ing statistical tests or methods for the analysis of gene copy number data. The value
of our network propagation approach, which integrates direct and indirect impacts of
gene copy number alterations on the expression of clinically relevant target genes, had
also been demonstrated by a comparison to a closely related reduced network ap-
proach that only accounted for direct impacts. This finding also supports that local
network neighborhood approaches should better be replaced by network propagation
algorithms (Cowen et al. (2017)).

Overall, the developed network-based framework (Seifert et al. (2016)) contributes to
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a patient-specific risk classification including the possibility to identify the most impor-
tant altered genes along with their downstream targets. Such a personalized analysis
has not been possible before for the integrative analysis of gene expression and gene
copy number data. Related approaches based on networks (e.g. Akavia et al. (2010);
Carro et al. (2010); Jörnsten et al. (2011)) or genetic linkage analysis (Adler et al.
(2006)) had already been developed before to identify cancer-relevant major regula-
tors, but none of these methods can realize impact quantifications for rarely mutated
genes. Our approach can analyze all altered genes of a patient-specific tumor including
frequent and rare alterations. Further, in contrast to the network propagation studies by
Hofree et al. (2013) and Leiserson et al. (2015), our network approach does not rely on
existing protein or gene interaction networks. Our considered networks were directly
learned for cancer cell lines or specific cancer types that potentially better reflect the
presence and activity of regulatory links between genes in a specific cancer type than
existing networks compiled based on data from cells of different tissues. The required
network inference step increases the computational demands. Genome-wide network
inference and network propagation can only be efficiently done on a compute server
with many cores in parallel (e.g. network inference took in total about 140 days of com-
puting time for one network instance and network propagation analysis took about 24
hours per patient). Nevertheless, the great success of our study showed that it is worth
to invest this to improve predictions for individual patients and to learn more about the
roles of rarely mutated genes.

Focusing on clinically relevant predictions, the application of our network-based ap-
proach (Seifert et al. (2016)) led to the following novel insights. We observed that the
predicted regulatory links between genes were surprisingly well conserved across tu-
mors from different tissues, which had not been reported before. We also found that up
to 100 patient-specific gene copy number alterations influence the survival of a patient.
Interestingly, this number of genes is strongly greater than traditional assumptions that
up to 10 genes contribute to development of a tumor (Vogelstein et al. (2013)). Thus,
many mutated genes can contribute to the aggressiveness of a tumor. This observation
is in accordance with Davoli et al. (2013). We further discovered that some gene copy
number alterations also have beneficial contributions that increased patient survival. I
also made a similar observation within the frame of the glioblastoma case study of my
R package regNet (Seifert and Beyer (2018)). Most important for personalized cancer
medicine is that our study also showed that rare gene copy number alterations can
be as important as frequent gene copy number alterations. Finally, we did not stop at

171



5. Discussion

the descriptive level and found that genomic features explained why certain genes with
high impact were actually rarely affected by gene copy number alterations in specific
cancer types. All these results were obtained from data that underwent rigorous quality
checks. We also performed thousands of computations to analyze the robustness of
our results. We further validated each step and established clinical relevance by the
usage of independent test cohorts.

The great value and the generally broad scope of application of the network-based
approach in Seifert et al. (2016) further contributed to finish the development of the R
package regNet (Seifert and Beyer (2018), see Section 4.5). Initial regNet source code
developments started in 2012. Major parts of this code were used to realize the net-
work analysis that are part of all publications included in this habilitation thesis. regNet
represents a user-friendly tool that implements the basic network inference algorithm
and corresponding network propagation algorithms developed in Seifert et al. (2016).
The implemented data flow management together with the pre-defined automatic nam-
ing scheme of created files allows users to realize their own studies. Since regNet is
open-source, extensions or adaptations of the source code for specific requirements
are easily possible. The two included case studies with code examples demonstrate
how regNet can be used to identify major regulators within a signature of differentially
expressed genes and how regNet can be used to realize impact quantifications on a
genome-wide scale.

The first study that we fully realized with the help of the R package regNet had
the goal to identify novel cancer gene candidates within the region of the 1p/19q co-
deletion of oligodendrogliomas (Gladitz et al. (2018), see Section 4.6). Therefore, we
learned oligodendroglioma-specific gene regulatory networks using publicly available
gene expression and copy number data of 178 patients. We learned 10 genome-wide
networks on different training sets and evaluated their predictive power on the corre-
sponding test sets and independent oligodendroglioma samples from other studies.
We used these networks to compute impacts of differentially expressed genes within
the region of the 1p/19q co-deletion on cancer-relevant signaling and metabolic path-
ways. Comparisons to impacts of random networks of same complexity enabled us to
predict 8 genes with strong impact on signaling pathways and 14 genes with strong im-
pact on metabolic pathways. Literature analysis suggested that many of these genes
have the potential to push or counteract oligodendroglioma development. Overall, this
network-based study suggested novel driver gene candidates that could contribute to
a better understanding of the pathology of the 1p/19q co-deletion.
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The 1p/19q co-deletion, which has been in the main focus of the analysis by Gladitz
et al. (2018), is an important clinically relevant molecular marker for oligodendrogliomas
(Louis et al. (2016)). Nevertheless, only little progress was made in the identification of
potential driver genes within the region of the 1p/19q co-deletion to better understand
alterations of molecular mechanisms that drive oligodendroglioma development (Bette-
gowda et al. (2011); Eisenreich et al. (2013)). The main challenge was that hundreds of
genes on 1p and 19q are affected by the combined loss of one copy of these chromo-
somal arms. Therefore, we could not simply distinguish between driver and passenger
genes utilizing standard statistical tests or bioinformatics methods for gene expres-
sion and copy number data analysis. All oligodendrogliomas show almost identical
co-deletions, which does not allow to narrow down to specific chromosomal regions on
1p or 19q to pinpoint potential driver genes. Further, hundreds of genes on 1p and 19q
are differentially expressed, which does not allow to select driver genes without biolog-
ical prior knowledge about altered molecular processes that drive oligodendroglioma
development. Thus, this complex situation defined an ideal clinically relevant applica-
tion study to further highlight the potential of the underlying network approach (Seifert
et al. (2016)). Network propagation applied to oligodendroglioma-specific gene regu-
latory networks enabled us to predict candidate genes that are potentially associated
with the development of oligodendrogliomas. This greatly extends the prior analysis
of oligodendrogliomas that is part of this habilitation thesis (Lauber et al. (2018)). Our
study also suggests candidate genes for functional validations that could be tested in
wet lab experiments. However, cell cultures or xenografts of oligodendrogliomas did
not exist for experimental validations at the time of our study, but recent progress by
Exner et al. (2019) suggests that oligodendroglioma xenografts might become available
for validation experiments.

In addition, I also considered the R package regNet for the analysis of prostate can-
cer cell lines to identify novel candidate genes associated with radioresistance and re-
lapse of prostate cancer patients (Seifert et al. (2019), see Section 4.7). We learned a
genome-wide prostate cancer-specific gene regulatory network from publicly available
gene expression and copy number profiles of 541 prostate cancer patients. Consider-
ing differentially expressed genes with directly underlying copy number alterations from
two radioresistant prostate cancer cell lines, we used this network to compute impacts
on known radioresistance marker genes. We predicted 14 potential driver genes that
were able to separate irradiated prostate cancer patients into early and late relapse
groups. In-depth experimental validations of one selected candidate gene suggested
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that our network-based approach is able to identify genes that potentially contribute to
radioresistance of prostate cancer.

Radiation therapy is a very effective treatment for many prostate cancer patients, but
patients can relapse due to radioresistance of prostate cancer cells that survive the
maximal radiation dose that can safely be delivered to the tumor (Chang et al. (2014);
Chaiswing et al. (2018)). To identify genes involved in radioresistance, radioresistant
prostate cancer cell lines are typically compared to their radiosensitive parental cells
(Cojoc et al. (2015); Peitzsch et al. (2016)). Since hundreds or thousands of genes are
usually affected by irradiation induced cell line-specific DNA copy number alterations,
the key challenge was to find a strategy how one can distinguish between driver and
passenger alterations. This cannot be realized by existing statistical tests or basic
methods for the analysis of gene expression and copy number profiles, because of
the very low number of cell lines that are typically considered and also because each
cell line has its unique alterations that require an individual analysis of each cell line
to better explore the set of potential radioresistant driver genes. Thus, this was again
an ideal use case for the developed network-based approach (Seifert et al. (2016)).
Network propagation enabled us to predict driver gene candidates with the help of a
prostate cancer-specific gene regulatory network. Together with the study by Gladitz
et al. (2018), this study demonstrated again the great value and broad applicability of
the approaches for network inference and network propagation developed in Seifert
et al. (2016) for the integrative analysis of genome-wide gene expression and copy
number profiles to predict clinically relevant marker candidates.

In summary, the overarching connection between the different manuscripts that form
that basis of this habilitation thesis has been the developed network-based approach
together with its different applications for the integrative analysis of molecular can-
cer data. Still, methodological advancements like the integration of stability selection
(Meinshausen and Bühlmann (2010)) or the modeling of interactions between selected
genes (Lim and Hastie (2015)) could potentially improve the current network approach.
Also a transfer of the network approach to single cell data has great potential. First
studies in these directions have already been done by Leote et al. (2019) to replace
dropouts in single cell RNA-seq data. It would also be very interesting to extend the
oligodendroglioma study by Gladitz et al. (2018) to the single cell level using data from
Tirosh et al. (2016). Obviously, the presented studies are not the end, but just the
starting point of a new strategy for the analysis of molecular cancer data. I have sub-
stantially contributed to these developments with my research over the last years and
hope to continue to further extend and apply this promising approach in future projects.
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English summary

Cancer is a very complex genetic disease driven by combinations of mutated genes.
This complexity strongly complicates the identification of driver genes and puts enor-
mous challenges to reveal how they influence cancerogenesis, prognosis or therapy
response. Thousands of molecular profiles of the major human types of cancer have
been measured over the last years. Apart from well-studied frequently mutated genes,
still only little is known about the role of rarely mutated genes in cancer or the inter-
play of mutated genes in individual cancers. Gene expression and mutation profiles
can be measured routinely, but computational methods for the identification of driver
candidates along with the prediction of their potential impacts on downstream targets
and clinically relevant characteristics only rarely exist. Instead of only focusing on fre-
quently mutated genes, each cancer patient should better be analyzed by using the
full information in its cancer-specific molecular profiles to improve the understanding of
cancerogenesis and to more precisely predict prognosis and therapy response of indi-
vidual patients. This requires novel computational methods for the integrative analysis
of molecular cancer data.

A promising way to realize this is to consider cancer as a disease of cellular networks.
I have developed a novel network-based approach for the integrative analysis of molec-
ular cancer data over the last years. This approach directly learns gene regulatory
networks form gene expression and copy number data and further enables to quan-
tify impacts of altered genes on clinically relevant downstream targets using network
propagation. In this habilitation thesis, I summarize the results of seven publications to
which I have contributed substantially as first or last author. All publications have their
focus on the integrative analysis of molecular data of different cancer types along with
the overarching connection to the application of the newly developed network-based
approach. In the first three included publications, networks were learned to identify
major regulators that distinguish cancer subtypes enabling a more detailed analysis of
characteristic gene expression signatures of known astrocytoma entities, of revealed
oligodendroglioma subtypes, and of subgroups of acute myeloid leukemia patients with
profound survival differences. Next, I introduce the central publication of this habilita-
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tion thesis that combines network inference with network propagation. I demonstrate
the great value of this approach by quantifying potential direct and indirect impacts of
rare and frequent gene copy number alterations on survival of individual cancer pa-
tients. Further, I introduce the publication of my R package regNet that represents a
user-friendly implementation of the network-based approach. Finally, I included two
publications that further strongly highlight the value of the developed network-based
approach for the personalized analysis of individual cancer omics profiles. In more de-
tail, I show how we predicted cancer gene candidates within the region of the 1p/19q
co-deletion of oligodendrogliomas and I introduce how I determined driver candidates
associated with radioresistance and relapse of prostate cancer patients.

All seven publications that form the core of this habilitation thesis are embedded into
a brief introduction that motivates the scientific background and the major objectives
of this thesis. The scientific background is briefly going from the hallmarks of cancer
over the complexity of cancer genomes down to the importance of networks in cancer.
This also includes a short introduction of the mathematical concepts that underlie the
developed network inference and network propagation algorithms that were used in
the different publications. Further, I briefly motivate and summarize my studies before
the presentation of the original publications. The habilitation thesis is completed with
a general discussion of the major results with a specific focus on the utilized network-
based data analysis strategies. Major biologically and clinically relevant findings of
each included publication are also briefly summarized.

In summary, in this habilitation thesis I demonstrate the great value of the applica-
tion of network-based data analysis for the prediction of clinically relevant alterations
in molecular cancer profiles. The underlying methodological developments and the
predictions in the different application studies represent important contributions to the
research field of computational cancer medicine. This is also supported by experimen-
tal validations of predictions that were made by collaboration partners for two included
publications to strengthen the biological relevance our findings and to highlight the
potential of the network-based approach. Overall, the included methodological devel-
opments and the specific application studies represent new promising strategies for
the integrative analysis of molecular data from individual cancer patients.
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Deutsche Zusammenfassung

Krebs ist eine sehr komplexe genetische Krankheit, die durch Mutationen von Genen
im Erbgut ausgelöst wird. Die Vielzahl von Mutationen und deren komplexes Zusam-
menspiel erschwert die Identifizierung von veränderten Genen, die zur Krebsentsteh-
ung beitragen, erheblich. Diese Komplexität macht auch die Ermittlung von genspe-
zifischen Einflüssen auf die Prognose oder das Therapieverhalten zu einer sehr großen
Herausforderung. In den letzten Jahren wurden zwar tausende molekulare Profile der
wichtigsten Krebsarten gemessen, aber abgesehen von meist gut untersuchten häu-
fig mutierten Genen ist bisher kaum etwas über die Bedeutung von selten mutierten
Genen oder deren Zusammenspiel mit anderen mutierten Genen bekannt. Mittlerweile
können Genexpressions- und Mutationsprofile routinemäßig gemessen werden, aber
an innovativen rechnergestützten Verfahren, die diese Daten umfassend analysieren
und aus der Vielzahl an molekularen Veränderungen potenziell ursächliche Gene und
deren Auswirkung auf andere Gene und klinisch relevante Eigenschaften direkt ermit-
teln können, mangelt es bisher noch. Anstatt sich, wie bisher meist üblich, hauptsäch-
lich auf häufig mutierte Gene zu konzentrieren, sollten zukünftig möglichst alle ver-
fügbaren Informationen von krebsspezifischen molekularen Profilen genutzt werden,
um jeden Krebspatienten noch stärker individuell betrachten zu können. Dies kann zu
einem besseren Verständnis der molekularen Ursachen der Krebsentstehung beitra-
gen und darüber hinaus eine präzisere Prognose und bessere Therapieauswahl für
Patienten ermöglichen. Für die Umsetzung dieses Vorgehens ist die Entwicklung von
innovativen rechnergestützten Verfahren für die integrative Analyse von molekularen
Krebsdaten notwendig.

Ein vielversprechender Ansatz zur Realisierung dieses Konzepts ist die Betrachtung
von Krebs als eine Erkrankung von zellulären Regulationsnetzwerken. Ich habe in
diesem Kontext in den letzten Jahren ein netzwerkbasiertes Verfahren für die integra-
tive Analyse von molekularen Krebsdaten entwickelt. Dieses Verfahren lernt Genregu-
lationsnetzwerke direkt aus Tumorexpressions- und Kopiezahldaten von Genen und
ermöglicht darüber hinaus die Quantifizierung von Einflüssen von veränderten Genen
auf klinisch relevante Zielgene durch Netzwerkflussanalysen. Im Rahmen dieser Ha-
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bilitationsschrift fasse ich die Ergebnisse von sieben Publikationen zusammen, zu de-
nen ich als Erst- oder Letztautor maßgeblich beigetragen habe. Der Fokus liegt dabei
auf der integrativen Analyse molekularer Daten für verschiedene Krebsarten, wobei
alle Arbeiten übergreifend durch die spezifische Anwendung des von mir entwickelten
netzwerkbasierten Verfahrens miteinander in Verbindung stehen. In den ersten drei
aufgenommenen Publikationen wurden Netzwerke gelernt, um Hauptregulatoren zu
bestimmen, die Subtypen von Krebserkrankungen gezielt unterscheiden. Dies er-
möglichte uns eine detailliertere Analyse charakteristischer Genexpressionssignaturen
von bereits bekannten Astrozytomentitäten und identifizierten Oligodendrogliomsub-
typen. Weiterhin war es dadurch möglich, Patienten mit akuter myeloischer Leukämie,
die starke Unterschiede in der Überlebenszeit aufwiesen, besser zu charakterisieren.
Im Anschluss daran stelle ich die zentrale Publikation dieser Habilitationsschrift vor, die
Netzwerkinferenz mit Netzwerkflussanalysen verknüpft. Dabei demonstriere ich den
großen Nutzen dieses Ansatzes durch die Quantifizierung von potenziell existierenden
direkten und indirekten Einflüsse von seltenen und häufigen Genkopiezahlveränder-
ungen auf das Überleben von Krebspatienten. Nachfolgend präsentiere ich die Pub-
likation zu dem von mir entwickelten R Paket regNet, das eine nutzerfreundliche Im-
plementierung des netzwerkbasierten Verfahrens beinhaltet. Abschließend habe ich
noch zwei Publikationen aufgenommen, die nochmals stark den großen Nutzen des
entwickelten netzwerkbasierten Verfahrens für die personalisierte Analyse von moleku-
laren Krebsprofilen hervorheben. Dabei zeige ich, wie wir vielversprechende Krebs-
genkandidaten im Bereich der 1p/19q Kodeletion von Oligodendrogliomen bestimmt
haben. Ich demonstriere darüber hinaus auch, wie ich potenzielle Kandidatengene,
die mit der Entwicklung einer Radioresistenz und damit verbundenen Rezidiven von
Prostatakarzinomen in Verbindung stehen können, ermittelt habe.

Alle sieben Publikationen, die den Kern dieser Arbeit bilden, werden zu Beginn der
Habilitationsschrift durch eine Einführung motiviert, die den wissenschaftlichen Hinter-
grund und die Hauptziele der Arbeit darlegt. Dabei führt der wissenschaftliche Hin-
tergrund von einem kurzen Überblick über die Hauptmerkmale der Krebsentstehung
über die Komplexität von Krebsgenomen bis hin zur Bedeutung von zellulären Netz-
werken bei Krebs. Dies beinhaltet auch eine kurze Einführung in die mathematischen
Konzepte, die den entwickelten Netzwerkinferenz- und Netzwerkflussalgorithmen zu
Grunde liegen und im Rahmen der Publikationen angewendet wurden. Zudem werden
die durchgeführten Studien motiviert und deren Resultate kurz zusammengefasst. Die
Habilitationsarbeit wird mit einer allgemeinen Diskussion der wichtigsten Ergebnisse
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abgeschlossen, wobei ein besonderer Schwerpunkt auf den eingesetzten netzwerk-
basierten Datenanalysestrategien liegt. Dabei werden auch die wichtigsten biologisch
und klinisch relevanten Ergebnisse der sieben Publikationen kurz zusammengefasst.

Die Habilitationsschrift demonstriert den großen Nutzen der Anwendung von netz-
werkbasierten Datenanalysestrategien für die Prädiktion klinisch relevanter Veränder-
ungen in molekularen Krebsprofilen. Die durchgeführten methodischen Entwicklung-
en und deren konsequente Anwendung auf spezifische medizinische Fragestellungen
stellen wichtige Beiträge im Forschungsbereich der rechnergestützten Krebsforschung
dar. Dies wird auch durch die experimentelle Validierungen von Prädiktionen gestützt,
die von Kooperationspartnern für zwei Veröffentlichungen durchgeführt wurden, um die
biologische und medizinische Relevanz unserer Ergebnisse zu stärken und das Poten-
zial des netzwerkbasierten Ansatzes noch deutlicher hervorzuheben. Somit stellt diese
Arbeit einen wichtigen Beitrag zur Entwicklung neuer vielversprechender Strategien für
die integrative Analyse molekularer Daten von Krebspatienten dar.
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