
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) / 

This is a self-archiving document (accepted version):  

Diese Version ist verfügbar / This version is available on:  

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-805474 

Mikhail Zarubin, Patrick Damme, Thomas, Kissinger, Dirk Habich, Wolfgang Lehner, 
Thomas Willhalm 

Integer Compression in NVRAM-centric Data Stores – Comparative 
Experimental Analysis to DRAM 

Erstveröffentlichung in / First published in: 

SIGMOD/PODS '19: International Conference on Management of Data, Amsterdam 
01.07.2019. ACM Digital Library, Art. Nr. 11. ISBN 978-1-4503-6801-8. 

DOI: https://doi.org/10.1145/3329785.3329923 

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-805474
https://doi.org/10.1145/3329785.3329923


Integer Compression in NVRAM-centric Data Stores —
Comparative Experimental Analysis to DRAM

Mikhail Zarubin, Patrick Damme, Thomas
Kissinger, Dirk Habich, Wolfgang Lehner

Database Systems Group
Technische Universität Dresden

first.last@tu-dresden.de

Thomas Willhalm
Intel Deutschland GmbH, Germany

thomas.willhalm@intel.com

ABSTRACT
Lightweight integer compression algorithms play an important
role in in-memory database systems to tackle the growing gap
between processor speed and main memory bandwidth. Thus, there
is a large number of algorithms to choose from, while different
algorithms are tailored to different data characteristics. As we show
in this paper, with the availability of byte-addressable non-volatile
random-access memory (NVRAM), a novel type of main memory
with specific characteristics increases the overall complexity in this
domain. In particular, we provide a detailed evaluation of state-
of-the-art lightweight integer compression schemes and database
operations on NVRAM and compare it with DRAM. Furthermore,
we reason about possible deployments of middle- and heavyweight
approaches for better adaptation to NVRAM characteristics. Finally,
we investigate a combined approach where both volatile and non-
volatile memories are used in a cooperative fashion that is likely to
be the case for hybrid and NVRAM-centric database systems.
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1 INTRODUCTION
Data compression is a well-known optimization technique in data-
base systems [1, 15, 17, 18, 34]. On the one hand, data compression
has been extensively used to optimize the disk access bottleneck in
disk-centric database systems [15, 34] using classical or so-called
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Figure 1: Possible data flows in hybrid main memories: (1)-
(2) intra-memory and (3)-(4) inter-memory data flows.

heavyweight generic data compression schemes such as Lempel-
Ziv [44], Huffman [19] or arithmetic coding [39]. On the other
hand, lightweight integer compression algorithms are heavily used
to optimize the in-memory processing in DRAM-located column
store systems [1, 7, 17, 18, 24]. The difference between heavy- and
lightweight compression algorithms is their computational com-
plexity.

With the long-awaited availability of non-volatile random-access
memory (NVRAM) – i.e., Intel Optane DC Persistent Memory [20] –
a novel player between disk and main memory has finally turned up.
Due to the mixture of DRAM-like characteristics (e.g., low latencies,
direct load/store access semantics, higher bandwidth compared
to flash memory) and non-volatility in a single device, significant
changes on the architectural level of database systems have been
proposed. NVRAM is primarily expected to complement or replace
block-based secondary storage (e.g., HDDs or SSDs) for storing
the primary data [3, 4, 23, 29, 32] which can be at the same time
the working copy. Despite the fact that persistent memory can
potentially provide higher (up to 4x of DRAM) capacities [20], data
compression is still reasonable due to the following reasons: (1) the
amount of data to be stored still can be large even for NVRAM-
offered volumes, (2) the NVRAM bandwidth is significantly lower
than that of DRAM and data compression is a way to increase the
effective throughput.

Contributions and Outline
Our main focus in this paper is on integer compression in NVRAM-
centric and hybrid data stores, which has not been investigated be-
fore. These storage architectures implicitly assume that for certain
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Figure 2: Schematic view of a single socket of our platform.

scenarios data can be located and processed not only in NVRAM
but also in DRAM (before actually being placed in persistent mem-
ory) and vice versa since these mediums are only distinguished on
virtual addressing level and both are accessed via load/store instruc-
tions. This allows intra-memory and inter-memory data flows as
schematically shown in Figure 1. The following four combinations
are possible: (1) both source and destination buffers are accommo-
dated by DRAM, (2) both source and destination buffers are placed
in NVRAM, (3) source is located in DRAM, while destination in
NVRAM (one possible use case is flushing the primary data or delta
to storage in compressed form), (4) source is located in NVRAM,
while destination in DRAM (one use case is compressing the bulk
NVRAM data to fit in the DRAM volumes). While the flow (1) is
traditional and can be projected on persistent memory as flow (2),
the flows (3)-(4) are only enabled for the hybrid DRAM-NVRAM
data stores. Using these data flows, we will analyze and discuss the
behavior of different data compression algorithms in this paper. In
detail, we make the following contributions:
(1) We provide a thorough evaluation of state-of-the-art light-

weight compression schemes on NVRAM with respect to their
single- and multi-threaded performance and compare it with
DRAM.

(2) We reason about possible usages of middle- and heavyweight ap-
proaches. Particularly, we deploy cascades of lightweight strate-
gies and one traditional heavyweight algorithm (a variation of
Lempel-Ziv [44]) to better utilize NVRAM characteristics.

(3) We consider the approach specific for hybrid DRAM-NVRAM
data stores where both volatile and persistent memories are
used in a cooperative way to support inter-memory data oper-
ations and show that we can bridge the performance gap be-
tween DRAM- and NVRAM-only setups. Moreover, we demon-
strate that moving data inter-memory can be accelerated by
(de)compressing it on-the-fly.

(4) We investigate the impact of the SIMD extension employed by
the lightweight compression algorithms, depending on the kind
of memory.

(5) We show that aggregations directly on the compressed data
are even more beneficial on NVRAM than on DRAM, while
the selection scan speed is weakly correlated with the memory
performance.

The remainder of the paper is structured as follows: Section 2 pro-
vides a general comparison of related NVRAM and DRAM metrics.
Subsequently, Section 3 introduces our investigated data compres-
sion algorithms in more detail, followed by Section 4 providing an
in-depth analysis of their single- and multi-threaded behavior on
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Figure 3: Read and write bandwidths for a sequential access
pattern on DRAM and NVRAM.

DRAM, NVRAM and hybrid cases. Afterwards, we consider the
performance of important database operations on compressed data
in Section 5. Finally, Section 6 briefly summarizes related work and
Section 7 concludes the paper.

2 HARDWARE PLATFORM
In this paper, we use a novel dual-socket system equipped with
(1) a second generation Intel Xeon Scalable processor (codenamed
Cascade Lake) clocked at 2600MHz and (2) a hybrid main mem-
ory consisting of 384 GiB DDR4 DRAM memory and 1.5 TiB Intel
Optane DC Persistent Memory as a foundation. This is pre-release
hardware and performance measurements may differ from the final
product. Each processor has 24 physical cores (48 with Hyper-
Threading). The persistent memory modules (PMMs) are plugged
into the system in a shared fashion meaning that each of the three
channels of an integrated memory controller (IMC) is attached to
both DRAM and NVRAM memory modules as shown in Figure 2.
We run a Fedora 27 with kernel version 4.15.

To better understand this hardware with respect to integer com-
pression, we now provide a general comparison of DRAM and
NVRAM. In particular, we focus on sequential read and write band-
width, since for most of the data compression algorithms, the input
data is loaded sequentially, processed and then stored sequentially
as well. For the purpose of comparison, we use synthetic, but ap-
propriate workloads generated by our internal benchmark tool.

ReadBandwidth. Figure 3 shows themaximum read bandwidth
achieved by single and multiple threads on local sockets using a
sequential memory access pattern for both DRAM and NVRAM.
We observe that the sequential read access DRAM bandwidth is
2.25x and 2.75x higher compared to the NVRAM bandwidth for
the single-threaded and multi-threaded scenario respectively.

Write Bandwidth. Figure 3 also depicts the write bandwidth for
a sequential access pattern for DRAM and NVRAM measurements.
Similar to the read workload, the peak bandwidth for both memory
types is reached using a multi-threaded access pattern. While the
DRAM write throughput is about 74% of the peak read through-
put, this asymmetry amounts to a 3.4x lower write bandwidth on
NVRAM compared to the readmeasurements.With regard to single-
threaded performance, we measured only a few percent difference
between DRAM and NVRAM. Surprisingly, the single-threaded
NVRAM write bandwidth outperforms its read counterpart by ap-
proximately 15 %.
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Figure 4: Shared DRAM and NVRAM read and write band-
width for a sequential access pattern.

Concurrent DRAM-NVRAM Access. To figure out whether
the two memory types can be used simultaneously with the same
maximum performance, we performed the measurements reflected
for the 48-threaded case by Figure 4. This experiment revealed
that concurrent accesses to both memories are not able to exceed
the maximum reachable bandwidth (independently of the NVRAM
thread count) of stand-alone DRAMworkloads and actually hurt the
performance of both involved components compared to separate
results. We expected this since both memory types in our platform
share the same memory controllers and channels.

Conclusions. From the read and write bandwidth experiments
we can conclude that NVRAM is 2.75x (read) to 7x (write) slower
compared to DRAM and exhibits a high read-write asymmetry of
up to 3.4x . Interestingly, single-threaded measurements show only
a small difference in the case of writes. From the concurrent DRAM-
NVRAM access experiments we infer that intensive simultaneous
usage of both memories is not favoured by the shared IMCs.

3 INTEGER COMPRESSION
As already mentioned, there is a large variety of data compres-
sion algorithms available ranging from lightweight to heavyweight
algorithms. Based on the different read and write bandwidths of
DRAM and NVRAM, we decided to investigate the whole spectrum
of algorithms in our experimental study. Moreover, we focus our
study on the (de)compression of integer data since most in-memory
column store systems encode values of each column as a sequence
of integers using some type of dictionary encoding [6].

3.1 Investigated Algorithms
To cover the whole spectrum, we focus on three different categories:
light-, middle-, and heavyweight algorithms.

Lightweight Algorithms. This category of algorithms is usually
used to optimize query processing of in-memory column stores.
These algorithms are not only optimized for compression rate, but
also for performance and processing capabilities [11]. We already
conducted an exhaustive experimental survey for this category
on DRAM and we showed that the performance and compression
rate of these algorithms vary greatly depending on the underly-
ing data properties [11, 13]. Based on that, we decided to consider

two representatives of the state-of-the-art of Null Suppression al-
gorithms which aim at representing each integer value using a
minimal number of bits.

SIMD-BP128 [25] subdivides the data into blocks of 128 32-
bit integers each and encodes all data elements in a block using
the number of bits required for the block’s largest data element.
Thus, this algorithm profits from small integers. In fact, among all
algorithms we consider, SIMD-BP128 is the one investing the least
effort into compressing the data. In [11, 13], we have shown that
SIMD-BP128 is a very good choice regarding both compression
rate and performance if the data contains no or only few outliers.
However, if the data contains many outliers, these dominate the
block bit widths and, thus, lead to a degradation of the compression
rate [11, 13]. In contrast, SIMD-FastPFOR [25] is able to adapt to
outliers by choosing a bit width suitable for most data elements in
a block and storing the remaining exceptions separately. While this
special treatment improves the compression rate in the presence of
outliers, it can also yield a degradation of the performance due to
the extra effort spent on the outliers [11, 13].

Middleweight Algorithms. SIMD-BP128 and SIMD-FastPFOR
only achieve good compression rates if the data consists of small
integers. In practice, this might not always be the case, which mo-
tivates a preprocessing of the data to obtain small integers. We
consider two well known and frequently used representatives of
such preprocessing techniques: delta coding [34] and frame-of-
reference [15], which replace each data element by the difference to
its predecessor or to the minimum data element, respectively. The
actual compression of the preprocessed data can be achieved by cas-
cading the preprocessing with a Null Suppression algorithm [11, 13].
We call such cascades middleweight algorithms since the computa-
tional effort increases compared to lightweight algorithms, but it
may improve the compression rate significantly on suitable data
sets. In particular, we employ DELTA + SIMD-BP128 and FOR +
SIMD-BP128. Our cascades subdivide the data into pages of 4096
32-bit integers each (which fits into the L1 data cache of our ma-
chine) and apply for each page first the preprocessing and then
SIMD-BP128 (compression) or vice versa (decompression).

Heavyweight Algorithms. While the previous two categories
were mainly designed for in-memory (DRAM) systems, the dif-
ferent characteristics of NVRAM motivate us to also investigate
general-purpose heavyweight data compression algorithms. Thus,
we also employ LZ4 [10] and Snappy [16] as two state-of-the-art
representatives. Both LZ4 and Snappy belong to the LZ77 family of
byte-oriented compression schemes. The LZ4 source code we use
offers a recommended standard version, which we refer to as LZ4
in this paper. Besides that, it also provides a number of variants
targeting different trade-off levels between compression speed and
rate. We also employ a variant optimized for highest speed, which
we call LZ4s, and a variant for maximum compression, which we
call LZ4c. We applied these algorithms on our integer data without
any modification.
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# 32-bit ints sorted data distribution
D1 100 M no normal(µ = 25, σ = 20)
D2 100 M no normal(µ = 225, σ = 20)
D3 100 M yes uniform(min = 0,max = 106 − 1)
D4 100 M no 90% normal(µ = 25, σ = 20)

10% normal(µ = 225, σ = 20)
Table 1: The synthetic data sets used in our evaluation.

3.2 Implementation Remarks
All algorithms are written in C/C++ and compiled using g++-7.1
with the -O3 optimization flag. Our considered light- and mid-
dleweight algorithms are vectorized using Intel’s SIMD instruction
set extension SSE working on 128-bit vector registers. For SIMD-
BP128 and SIMD-FastPFOR, we used the implementations from
the FastPFor-library [26]. For the cascades, we used our own hand-
tuned and vectorized implementations of DELTA and FOR [11, 13].
Moreover, we utilized the original source for the heavyweight al-
gorithms. To enable the correct NVRAM usage, we modified all
algorithms using two aspects: first, we provisioned an access to
persistent memory via memory mapped files on a DAX-enabled
file system (where DAX stands for Direct Access, meaning that
physical NVRAM regions are mapped into the virtual address space
of an application while bypassing kernel page cache), second, we
used a combination of CLFLUSHOPT plus SFENCE to ensure persis-
tency [43]. Due to the DAX feature, no system calls are required
to propagate the modifications to NVRAM. However, the presence
of CPU caches requires explicit cache line flushes to guarantee the
persistency of store operations.

4 COMPRESSION EVALUATION
In this section, we present the evaluation results of our investigated
compression algorithms on DRAM and NVRAM. Previous works
have shown that the data characteristics determine which algo-
rithm is the most suitable one [11, 13]. Thus, we experiment with
several synthetic data sets being summarized in Table 1. We used
our compression benchmark framework as a solid execution envi-
ronment [12, 14]. Figure 5—we use short names such as BP128 for
SIMD-BP128 or DELTA for DELTA+SIMD-BP128 in all our figures—
reports the compression rates achieved by each algorithm on each
data set and clearly shows that there are significant differences
even within each of the categories light-, middle-, and heavyweight
algorithms. Obviously these compression rates are independent of
the type of memory as well as of the number of threads used, so
they serve as a reference throughout our evaluation.

We measured the performance of an algorithm by running it on
a data set for few seconds and counting how many times it could
process the entire data set. This procedure is especially important
to guarantee that all threads execute simultaneously in the multi-
threaded scenarios. Thus, loading/storing data and computations
are included in the measurement. We report (i) performances in
million integers per second (mis) referring to the underlying num-
ber of logical data elements, not to the physical data size and (ii)
throughput/bandwidth in GiB/s. We omit Snappy in our evalua-
tion, since its results were mostly similar to those of standard LZ4.

However, we additionally include LZ4s and LZ4c, which are pre-
configured for higher execution speed and for better compression
rate, respectively, by the developers.

4.1 Single-Threaded Experiments
Figure 6 presents the performances of the single-threaded execution
of all algorithms on all data sets. First, we compare the performance
on NVRAM to that on DRAM. Figure 6(a-b) shows the speeds
achieved on NVRAM relative to those on DRAM. As a general ob-
servation, the performance on NVRAM is never better than that on
DRAM. As a consequence of the lower bandwidth of NVRAM com-
pared to DRAM, the algorithms reach only between 25 % and 100 %
in case of compression, or 17 % and 39 % of the DRAM performance
in case of decompression.

In the following, we focus on the impact of the memory type on
the choice of the most suitable compression algorithm. This topic
has already been investigated in detail for DRAM [13]. However, the
lower bandwidth of NVRAM suggests to prefer algorithms investing
more cycles for computation if this can improve the compression
rate appropriately, since that way, the effective bandwidth may
be improved. We check this hypothesis by comparing the DRAM
and NVRAM performances of the low-effort SIMD-BP128 to those
of the other more compute-intensive algorithms. We focus on the
compression in Figure 6(c), since it is generally more compute-
intensive than decompression as shown in Figure 6(d).

On data set D1 (small integers), no algorithm achieves a signifi-
cantly better compression rate than SIMD-BP128 and in fact, this
algorithm achieves the best compression speed on both DRAM and
NVRAM. However, on data set D2 (large integers in a narrow range),
the situation changes. Here, FOR + SIMD-BP128 achieves by far the
best compression rate. While on DRAM this cascade achieves only
87 % of the speed of SIMD-BP128, it is 72 % faster than SIMD-BP128
on NVRAM. The heavyweight variants of LZ4 also achieve much
better compression rates than SIMD-BP128. Nevertheless, they fail
to outperform it with respect to compression speed on both medi-
ums, since they are to compute-intensive. On the sorted data set
D3, the three variants of the heavyweight algorithm LZ4 achieve
the best compression rates. However, regarding compression speed,
only the standard LZ4 and LZ4s perform superb: they are fastest
compressors on both DRAM and NVRAM, while LZ4c is the slowest
of all algorithms on both mediums, due to its high computational
effort. Regarding the lightweight algorithms, SIMD-BP128 again is
the fastest on DRAM, but again it is outpaced by up to 83% by the
more compute-intensive cascades on NVRAM. One tenth of data set
D4 are large outliers. Here, the best compression rate is achieved
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Figure 5: Compression rates.
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Figure 6: Single-threaded speeds: NVRAM relative to DRAM
and algorithms relative to SIMD-BP128 on the samemedium.

by SIMD-FastPFor, but LZ4c as almost equally good. Regarding
SIMD-FastPFor, the price for its special treatment of outliers is a
speed of only 35% of that of SIMD-BP128 on DRAM. However, it
achieves a small speed-up of 4 % on NVRAM. On the contrary, LZ4c
has a compression speed close to zero on both mediums.

Conclusions. We conclude that the special characteristics of
NVRAM necessitate a rethinking of the trade-offs involved in the
selection of the fastest compression algorithm. On NVRAM, it is rec-
ommendable to invest more computations for a better compression
rate. However, while the size reduction achieved by general-purpose
heavyweight algorithms does not always balance for their compu-
tational cost, the middleweight cascades of lightweight algorithms
are a good choice.

4.2 Multi-Threaded Experiments
In the following, we present our observations about the DRAM
and NVRAM experiments in the multi-threaded scenario. We show
the compression speeds relative to a single thread in Figure 7(a-b,
e-f) and the respective absolute memory bandwidth consumed per
second in Figure 7(c-d, g-h). However, the latter does not distinguish
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Figure 7: Multi-threaded performances on D1 and D3: speed
relative to single-threaded (dotted line is linear scaling), ab-
solute bandwidths (dotted lines are read and write bounds).

between write and read components, as it was obtained through
the Intel PQoS monitoring tool [21]. The analysis is based on two
selected algorithms and data sets (SIMD-BP128, standard LZ4 on
D1, D3) as the most interesting cases.

As mentioned above, the compression rate, of course, is not af-
fected by the number of threads. The performance on NVRAM is
never better than that on DRAM for the same number of threads.
A further observation is that both compression algorithms exhibit
different scalability behaviors on DRAM and NVRAM. The LZ4
DRAM performance grows nearly linearly until 16 and 12 threads
on D1 and D3, respectively. For SIMD-BP128 this result is lower,
which is explained by the fact that the corresponding consumed
bandwidth increases faster: 8 threads on both data sets. However,
both approaches demonstrate a stable speed growth up to 20 threads
independently of the data characteristics. At this point the DRAM
bandwidth limitations are actually reached (cf. Section 2). One ex-
ception here is the LZ4 (de)compression on D1, which demonstrates
a constant growth up to 24 threads (and even further until 48), and is,
in contrast to the others, not memory-bound, but compute-bound.
The NVRAM scalability diverges from its ideal linear case at 8 (D1)
and 4 (D3) threads for heavyweight LZ4 compression and already
at 2 for the lightweight SIMD-BP128, while a certain performance
increase is still observed until 16 and 8 threads, respectively.

Regarding the decompression, we observe a mostly similar situa-
tion with a certain degradation of the thread count: on DRAM, the
linear scalability is bounded by 4 threads (except for LZ4 as men-
tioned above) and stable growth hits the limit at around 16 threads,
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while on NVRAM, even 2 threads cannot achieve a linear scaling 
anymore after 8 threads. There is no further performance increase 
because decompression is more write-intensive than compression 
and, therefore, is more dependent on write bandwidth boundaries, 
which are lower than that of the read counterpart on both mediums. 

Overall, we detected the following accelerations via the deploy-
ment of multiple threads (best performance in a range from 1 to 24 
threads) for DRAM compression/decompression: SIMD-BP128 on 
D1 – 11.5x / 5.3x , SIMD-BP128 on D3 – 7x / 6x , LZ4 on D1 – 18.5x / 
14x , LZ4 on D3 – 11.9x / 6.7x . For NVRAM the following numbers 
are observed: SIMD-BP128 on D1 – 3.7x / 1.2x , SIMD-BP128 on D3
– 2.1x / 1.4x , LZ4 on D1 – 11.2x / 1.8x , LZ4 on D3 – 9.5x / 1.2x .

Conclusions. Our general outcome is that the multi-threaded
scalability of (de)compression algorithms is much better on DRAM,
due to higher throughput limits, though there is an exception – the
compute-intensive standard LZ4 compression, which scales well
also on NVRAM. Moreover, the scalability property depends not
only on the medium but also on the algorithm and input data.

4.3 Interplayed NVRAM-DRAM Placement
In the following series of experiments we investigate the influ-
ence of interplayed data placement on the performance of our
(de)compression workloads. Again we provide the results only for
two data sets – D1 and D3. The thread count is set to 24 as the gener-
ally most performable configuration for all participating algorithms.
Figure 8(a-b) shows the execution speed relative to the DRAM-only
case for the three other possible data placements: NVRAM-only and
the two interplayed cases DRAM→NVRAM and NVRAM→DRAM,
where the left side of “→“ corresponds to the input buffer location
and the right side to the output buffer location.

From Figure 8(a), we see that the compression speed of the in-
terplayed setups fills the gap between DRAM- and NVRAM-only
allocations, whereby NVRAM→DRAM usually incurs the least
slowdown by reaching between 41% and 99% of the DRAM-only
performance. This workload leverages the high write bandwidth
of DRAM and is not required to flush the caches of a volatile out-
put buffer. Further, we observe that the compression speed of the
DRAM→NVRAM scenario, though it is quite close to NVRAM-
only, still outperforms it in all but one experiment due to the
higher DRAM read bandwidth. The only exception to this is LZ4c,
whose high computational effort causes the combination of medi-
ums to have no visible effect on its performance. Moreover, the
middleweight DELTA + SIMD-BP128 and the heavyweight standard
LZ4 and LZ4s prefer this placement to NVRAM→DRAM for D3.
The decompression results in Figure 8(b) generally demonstrate a
similar trend, however NVRAM→DRAM converges closer to the
DRAM-only and DRAM→NVRAM closer to the NVRAM-only set-
tings, since the decompression has a higher sensitivity to the write
throughput of the output medium than the compression.

In hybrid DRAM-NVRAM-systems, moving data between medi-
ums is a natural idea. Assuming uncompressed data on the source
medium, a trivial approach is to copy the data as-is. In the following,
we investigate if it is beneficial to use a compressed format on the
destination medium, i.e., to include compression into the transfer
to increase the effective bandwidth, and to include decompression
into the back-transfer to restore the original data format. Such data
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Figure 8: Interplay setups: 24-thread speeds relative to
DRAM and relative to copying uncompressed data.

flows are easily enabled by allocating the input and output buffers
of a (de)compression algorithm on different mediums. Figure 8(c-d)
shows the speed of (de)compression relative to copying uncom-
pressed data between the mediums. When the data is moved from
NVRAM to DRAM, using a suitable compression algorithm can
result in speed-ups of up to 4 % (D1) and 23 % (D3). However, when
moving the data back to NVRAM, a decompression achieves only
44 % of the performance of copying uncompressed data. The reason
is that the low write bandwidth of NVRAM is saturated in both
cases, while the decompression adds its computational overhead
on top. On the contrary, when the data is moved from DRAM to
NVRAM, the use of a suitable compression algorithm can yield
significant speed-ups of up to 2.2x (D1) and even 15x (D3). Due
to the low write bandwidth of NVRAM, extra computations for
compression are able to increase the effective bandwidth. However,
too heavyweight algorithms such as LZ4c fail to achieve the right
balance and are, thus, not beneficial in such settings. Moreover,
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even for the back-transfer of the data to DRAM, decompression 
achieves speed-ups of up to 1.2x (D1) and 1.5x (D3) compared to 
copying back uncompressed data. While both cases materialize 
the same data in DRAM, reading compressed data is less costly 
than reading uncompressed data due to the low read bandwidth of 
NVRAM.

Conclusions. We conclude that interplayed allocation is a good 
way to bridge the performance gap between basic settings. More-
over, compression can be employed to accelerate inter-memory 
data flows, especially on the way to NVRAM.

4.4 SIMD Extensions
In recent years, the vectorization of lightweight and middleweight 
compression algorithms has been a main driver in this research 
field. As a consequence, most of these algorithms are tailored to 
a specific SIMD instruction set extension. For instance, the light-
and middleweight algorithms we investigated so far are tailored 
to Intel’s SSE, whose vector registers have a size of 128 bits. In 
fact, many light- and middleweight compression algorithms can 
be ported to more recent SIMD extensions, such as Intel’s AVX2 
and AVX-512. These newer extensions provide 256-bit and 512-
bit vector registers, respectively. An obvious expectation could 
be that these larger vector registers yield speed-ups of 2x or 4x, 
respectively, such that more data elements can be processing in one 
instruction. However, in our recent article [13], we have already 
proven this expectation not to be fulfilled by current hardware, 
since the algorithms quickly become memory-bound as the vector 
size increases. Our setting was an Intel Xeon Phi using only DRAM 
in a single-threaded way. In the following, we extend our scope to 
cover also NVRAM and the multi-threaded case.

For these experiments, we ported the SSE-targeted implementa-
tions of the light- and middleweight algorithms used in this paper 
to AVX2 and AVX-512 in a straightforward way. This means, we 
replaced all SSE intrinsics in the code by their AVX2 or AVX-512 
counterparts for wider vector registers. Furthermore, we adapted 
the storage layouts in a straightforward way to the processing with 
wider vector registers, e.g., by increasing block sizes. We refer to our 
ported implementations using the name of the original algorithm 
followed by the vector width in bits.

In the following, we again focus on data sets D1 and D3. Figure 
9 shows the results. First of all, Figure 9(a) reveals that the com-
pression rates achieved by the different variants of the lightweight 
algorithms SIMD-BP and SIMD-FastPFor differ only insignificantly 
on these data sets, while for DELTA + SIMD-BP on the sorted 
data set D3 the compression rate gets worse as the vector width 
increases.

Next, we compare the speeds achieved using the newer SIMD 
extensions AVX2 and AVX-512 to those achieved with SSE. Figure 
9(b-c) shows the (de)compression speeds relative to those achieved 
by the SSE-variant of the same algorithm. At first glance, we can 
see that the desired speed-ups of 2x and 4x cannot be achieved at 
all, neither on DRAM, nor on NVRAM. Regarding the compression 
speeds, increasing the vector size often results in a slow-down of 
up to 17 % on DRAM and up to 8 % on NVRAM. This is most likely a 
consequence of the fact, that only reads, but not writes can benefit
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Figure 9: Compression rates and single-threaded relative
performances of the light- and middleweight compression
algorithms tailored to different SIMD extensions.

from larger vector registers on our experimentation platform. Con-
sequently, these effects propagate to SIMD-BP, which does only a
little amount of computation compared to load/store operations.
On the contrary, the middleweight cascades do achieve speed-ups
compared to their SSE implementations, since they involve more
computations, which can, indeed, profit from wider vectors. Nev-
ertheless, these speed-ups reach only up to 34 % on DRAM and up
to 8 % on NVRAM. Regarding the decompression, the SSE variant
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achieves the best performance for most algorithms, while AVX-512 
yields slow-downs of up to 19 % on DRAM and 12 % on NVRAM. 
The only exceptions are SIMD-FastPFor and DELTA + SIMD-BP, 
where the AVX2 variant is the fastest on DRAM. We also varied the 
number of threads and recognized that the performance differences 
between the SIMD variants of one algorithm become less significant 
as the number of threads increases.

Finally, we investigate the impact of the employed SIMD ex-
tension on the relative speeds on NVRAM compared to DRAM. 
Figure 9(d-e) provides the results for the compression and decom-
pression, respectively. Regarding the compression, wider vectors 
tend to cause an even stronger slow-down from DRAM to NVRAM. 
This can be explained by the fact that, with accelerated computa-
tions, the impact of the memory access on the overall performance 
grows. Furthermore, especially for the cascades on data set D3, an 
increase of the vector size causes worse compression rates, i.e., more 
compressed data must be written by the algorithm, which clearly 
propagates to the worse relative speeds of the AVX2 and AVX-512 
variants of the cascades compared to their SSE variants. The only 
exception here is SIMD-FastPFor512, which incurs a less severe 
slow-down from DRAM to NVRAM than its SSE and AVX2 coun-
terparts. Regarding the decompression, the differences between the 
SIMD variants of one algorithm are generally insignificant. Again, 
we also experimented with different number of threads and found 
them to further equalize the results of different SIMD variants of 
one algorithm.

Conclusions. We conclude that, with a single thread, especially 
the compression of the middleweight cascades can benefit from 
newer vector extensions. At the same time, the compression of 
the lightweight algorithms as well as the decompression should 
best be done with SSE. For a high number of threads, however, the 
employed SIMD extension does not make a significant difference.

5 DATABASE OPERATIONS EVALUATION
This section is devoted to the more complex operations that in-
memory DBMSs are able to execute on compressed data. We focus 
on two frequently used operations: column scan aggregation and 
selection.

5.1 Aggregation
As a first example of a database operation, we address a column 
scan aggregating the compressed data.

Implementation. We implemented the aggregation operators 
the following way: For the light- and middleweight algorithms, 
we changed the SSE variant of the decompression, such that it 
adds the decompressed data elements to a running sum, instead 
of storing them to an output buffer. For the standard variant of 
LZ4, we decompress the data in blocks of 16 KiB (which fit into 
the L1 data cache of our experimentation platform) and execute an 
aggregation on the uncompressed data residing in the L1 cache.

Evaluation. In Figure 10(a), we only consider the basic place-
ments, because only a negligible single data element is actually 
written to the output buffer. On NVRAM, the aggregation perfor-
mance can be as low as 36 % of that on DRAM, which shows that the 
effects observed for (de)compression-only workloads also propagate 
to database operations.
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(a) aggregation speed relative to DRAM
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1.0
2.0
3.0
4.0

(b) aggregation speed relative to uncompressed

BP128 FastPFOR DELTA FOR LZ4
DRAM NVRAM

Figure 10: 24-thread aggregation speeds relative to DRAM
and relative to aggregating uncompressed data.

Next, we investigate the speed-up achieved by aggregating com-
pressed data compared to uncompressed data. The results are shown
in Figure 10(b). We observe that the speed-ups achieved by a com-
pression scheme suitable for the data set are higher on NVRAM (up
to 4.1x for the SSE variant of DELTA + SIMD-BP128 on D3) than
on DRAM (only 1.6x for the same algorithm and data set).

Conclusions. We conclude that processing compressed data
directly – while already being reasonable on DRAM – is even more
important on NVRAM and can, at least partially, compensate this
novel medium’s lower bandwidth.

5.2 Selection
As a second example of a database operation, we investigate a
selection using a full column scan over compressed data. One of
the state-of-the-art approaches for this is called BitWeaving [27].
BitWeaving requires an order-preservingmapping of values to fixed-
bit-width codes. This mapping can be obtained from a lightweight
or middleweight compression algorithm, such as SIMD-BP128 or
FOR. The arrangement of these codes in memory follows a spe-
cific layout, which facilitates efficient scan operations. For instance,
with BitWeaving/H, the codes are packed with the selected fixed bit
width, whereby a special delimiter bit is inserted between adjacent
codes. In the following, we focus on BitWeaving/H, since it closely
resembles the storage layout of vertical bit packing, which is used
by all lightweight and middleweight compression algorithms we
consider in this paper. The BitWeaving/H column scan algorithm
reads a sequence of such codes and writes a bit vector indicating
for each logical data element whether it fulfils the selection predi-
cate. All commonly used predicates such as (in)equality and range-
comparisons are supported and can be calculated using full-word
bitwise and arithmetic instructions. Depending on the predicate,
the number of instructions and, thus, the ratio of load/store and
computation differs. For instance, evaluating the equality predicate
requires 4 instructions per (vector)register, while the greater-than
predicate requires only 3 instructions. Furthermore, with smaller
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Figure 11: Execution speeds (absolute and relative to DRAM-only) for different SIMD extensions, bit widths and memory
settings. Particular exemplification of BitWeaving/H algorithm with the “greater-than“ predicate.
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Figure 12: Execution speeds (absolute and relative to DRAM-only) for different SIMD extensions, bit widths and memory
settings. Particular exemplification of BitWeaving/H algorithm with the “equality“ predicate.

bit widths, more logical values can be processed at once, than with
larger bit widths. However, at the same time, with smaller bit widths,
the ratio between physical input and output size is less extreme,
e.g., for a bit width of 1, the output is half as large as the input,
while for a bit width of 31, the output has 1

32 of the input’s size.
Implementation.We obtained a scalar version of the BitWeav-

ing source code from the original authors [27] and vectorized it
using Intel’s SIMD extensions in a straightforward way. The same

general implementation remarks as mentioned in Section 3.2 hold.
For all considered vector extensions the code is implemented in C++
and compiled with g++-7.1 with -O3, and we make use of NVRAM
as mentioned above.

Evaluation. For the BitWeaving/H algorithm we present two
separate sets of single-threaded experiments (Figures 11 and 12)
varying the bit width (e.g., 1, 15 and 31), deployed SIMD vector
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extension (e.g., SSE, AVX2, AVX-512) and input-output buffer alloca-
tion (our four scenarios). The BitWeaving/H algorithm is completely 
agnostic of the data characteristics and depends only on the number 
of bits used to represent a data element. Thus, instead of re-using 
the data sets we used so far, we simply execute the BitWeaving/H 
selection on a 4 GiB input buffer in the BitWeaving/H storage layout 
containing random data elements of the respective bit width. The 
reported execution speeds in MiB/s refer to the input size, while 
the output size differs depending on the bit width.

The first set of charts is devoted to the BitWeaving/H column 
scan algorithm based on the greater-than selection predicate. As 
demonstrated in Figures 11(a)-11(c) the absolute execution speed 
can be significantly increased via applying larger vector registers 
and actually reaches its peak using the AVX-512 instruction set. 
This observation holds for all memory combinations and bit widths, 
apart from experiments with a bit width equal to 1 writing the 
output to NVRAM. Such configurations feature similar throughput 
for both AVX2 and AVX-512. Overall, the performance increase is 
higher for larger bit widths. To better understand the influence of 
the deployed mediums for input and output buffer placement, we 
show the speeds relative to DRAM→DRAM in Figures 11(d)-11(f). 
Similarly to the compression experiments (cf., Section 4), we observe 
that the performance of NVRAM-only and interplayed schemes is 
never faster than that of DRAM-only allocation. Furthermore, the 
experiments revealed that the NVRAM→DRAM configuration is 
preferable for small bit widths (e.g., 1) as it can reach from 93 % (AVX-
512) to 99 % (SSE and AVX2) of the DRAM→DRAM speed, while 
the other alternatives degrade the performance more significantly 
(possibly to just 50 % of DRAM-only for AVX-512 executed on the 
NVRAM-only setup). This result is explained by the fact that for 
smaller bit widths, more data is being stored to the output, and, 
therefore, the NVRAM→DRAM setup is able to take advantage of 
the lower DRAM latency. On the contrary, for larger bit widths, less 
data is expected to be written and flushed, thus, the performance 
of read operations start to dominate. Indeed, for most of the larger 
bit width experiments (Figures 11(e)-11(f)) the DRAM→NVRAM 
setting provides the best performance (from 91 % to 99 % of the 
DRAM-only allocation).

The second set of experiments investigates the BitWeaving/H col-
umn scan algorithm based on the equality selection predicate (Fig-
ure 12). Generally, most of the first set observations still hold for the 
second group and here we mention only the differences. Comparing 
to the greater-than implementation, the equality predicate requires 
4 instructions instead of 3 for its execution step. Hence, we see that 
the absolute speed (Figures 12(a)-12(c))) is always lower than the re-
spective one of the previous case. Unlike the bit width 1 experiments 
of the greater-then predicate (Figure 11(a)), the equality version 
(Figure 12(a)) reaches the best absolute speed using the AVX2 and 
not the AVX-512 SIMD extension for all buffer allocation settings. Fi-
nally, the performance drop between the DRAM→DRAM setup and 
other schemes is typically lower compared to the greater-than case, 
since the increased weight of the compute component decreases 
the memory accesses and compute ratio.

Conclusions. We conclude that, unlike to most compression 
experiments of Section 4.4, the use of SIMD extensions for the 
selection scans is justified and able t o deliver s ignificantly bet-
ter performance compared to the SSE implementation. Moreover,

the choice of the most practical SIMD variant as well as memory
setting depends on the targeted bit width, as it determines the
memory/compute ratio in the resulting code.

6 RELATED WORK
Since in-memory integer compression was already thoroughly ad-
dressed in Section 3, we omit the respective discussion here and
proceed with NVRAM-related research. For smoothed deployment
of this memory class in the wide range of applications a num-
ber of specialised programming tool-kits, file systems and alloca-
tors [2, 5, 28, 35, 36, 40, 42] were developed. Thus, it is now possible
to adapt traditional in-DRAMDBMSs to NVRAM-centric data stores
via the development of persistent memory-tuned data structures
and algorithms [8, 9, 22, 30, 31, 37, 38, 41, 41]. The existing exam-
ples of such hybrid DRAM-NVRAM engines are SAP HANA [3],
SOFORT [29, 32, 33], FOEDUS [23] and Peloton [4]. However, to the
best of our knowledge, the behavior of data compression algorithms
in such hybrid main memory systems has not been researched so
far and now, with the help of our investigations, they are able to
minimize the memory footprint, accelerate the inter-memory data
flows, and increase the hardware utilization.

7 CONCLUSIONS
In this paper, we addressed the topic of integer data compression for
NVRAM-centric data stores. Similarly to DRAM-backed in-memory
systems, compression is an effective way to reduce the size of
primary data and to overcome the memory bandwidth limitations
(the latter is especially sensible for NVRAM). However, due to
specific features (e.g. asymmetric read-write latencies) of NVRAM,
the behavior of the state-of-the-art compression schemes requires
an analysis to better understand their applicability and to fully
exploit the possible advantages of persistent memory. Thus, we
provided a detailed experimental evaluation of selected light- and
middleweight (using Intel’s vector extensions SSE, AVX2, and AVX-
512) as well as heavyweight data compression schemes in this paper.
Within our evaluation, we revealed that NVRAM provides worse
scalability opportunities than DRAM and prefers middleweight
(cascades of lightweight) compression algorithms. We showed that
compression is an effective way not only to save space but also to
speed up the inter-memory data flows. Moreover, our investigation
of two important database operations, aggregation and selection,
revealed that processing compressed data directly is even more
recommendable on NVRAM than it is on DRAM.
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