
Certificates and Witnesses for
Probabilistic Model Checking

Dissertation

eingereicht zur Erlangung des akademischen Grades

Doctor Rerum Naturalium (Dr. rer. nat.)

vorgelegt an der

Technischen Universität Dresden
Fakultät Informatik

eingereicht von

Simon Jantsch
geboren am 23. September 1992 in Wien

verteidigt am 6.7.2022

Begutachtet von

Prof. Dr. Christel Baier
Technische Universität Dresden

Prof. Dr. Nils Jansen
Radboud University Nijmegen





i

Abstract

The ability to provide succinct information about why a property does, or does not, hold in a
given system is a key feature in the context of formal verification and model checking. It can
be used both to explain the behavior of the system to a user of verification software, and as a
tool to aid automated abstraction and synthesis procedures. Counterexample traces, which are
executions of the system that do not satisfy the desired specification, are a classical example.
Specifications of systems with probabilistic behavior usually require that an event happens with
sufficiently high (or low) probability. In general, single executions of the system are not enough
to demonstrate that such a specification holds. Rather, standard witnesses in this setting are
sets of executions which in sum exceed the required probability bound.

In this thesis we consider methods to certify and witness that probabilistic reachability
constraints hold in Markov decision processes (MDPs) and probabilistic timed automata (PTA).
Probabilistic reachability constraints are threshold conditions on the maximal or minimal
probability of reaching a set of target-states in the system. The threshold condition may
represent an upper or lower bound and be strict or non-strict. We show that the model-checking
problem for each type of constraint can be formulated as a satisfiability problem of a system of
linear inequalities. These inequalities correspond closely to the probabilistic transition matrix
of the MDP. Solutions of the inequalities are called Farkas certificates for the corresponding
property, as they can indeed be used to easily validate that the property holds.

By themselves, Farkas certificates do not explain why the corresponding probabilistic reach-
ability constraint holds in the considered MDP. To demonstrate that the maximal reachability
probability in an MDP is above a certain threshold, a commonly used notion are witnessing
subsystems. A subsystem is a witness if the MDP satisfies the lower bound on the optimal reach-
ability probability even if all states not included in the subsystem are made rejecting trap states.
Hence, a subsystem is a part of the MDP which by itself satisfies the lower-bounded threshold
constraint on the optimal probability of reaching the target-states. We consider witnessing sub-
systems for lower bounds on both the maximal and minimal reachability probabilities, and show
that Farkas certificates and witnessing subsystems are related. More precisely, the support (i.e.,
the indices with a non-zero entry) of a Farkas certificate induces the state-space of a witnessing
subsystem for the corresponding property. Vice versa, given a witnessing subsystem one can
compute a Farkas certificate whose support corresponds to the state-space of the witness.

This insight yields novel algorithms and heuristics to compute small and minimal witnessing
subsystems. To compute minimal witnesses, we propose mixed-integer linear programming
formulations whose solutions are Farkas certificates with minimal support. We show that
the corresponding decision problem is NP-complete even for acyclic Markov chains, which
supports the use of integer programs to solve it. As this approach does not scale well to large
instances, we introduce the quotient-sum heuristic, which is based on iteratively solving a
sequence of linear programs. The solutions of these linear programs are also Farkas certificates.
In an experimental evaluation we show that the quotient-sum heuristic is competitive with
state-of-the-art methods. A large part of the algorithms proposed in this thesis are implemented
in the tool Switss.

We study the complexity of computing minimal witnessing subsystems for probabilistic
systems that are similar to trees or paths. Formally, this is captured by the notions of tree width
and path width. Our main result here is that the problem of computing minimal witnessing
subsystems remains NP-complete even for Markov chains with bounded path width. The



ii

hardness proof identifies a new source of combinatorial hardness in the corresponding decision
problem.

Probabilistic timed automata generalize MDPs by including a set of clocks whose values
determine which transitions are enabled. They are widely used to model and verify real-time
systems. Due to the continuously-valued clocks, their underlying state-space is inherently
uncountable. Hence, the methods that we describe for finite-state MDPs do not carry over
directly to PTA. Furthermore, a good notion of witness for PTA should also take into account
timing aspects. We define two kinds of subsystems for PTA, one for maximal and one for
minimal reachability probabilities, respectively. As for MDPs, a subsystem of a PTA is called a
witness for a lower-bounded constraint on the (maximal or minimal) reachability probability, if
it itself satisfies this constraint. Then, we show that witnessing subsystems of PTA induce Farkas
certificates in certain finite-state quotients of the PTA. Vice versa, Farkas certificates of such a
quotient induce witnesses of the PTA. Again, the support of the Farkas certificates corresponds
to the states included in the subsystem. These insights are used to describe algorithms for the
computation of minimal witnessing subsystems for PTA, with respect to three different notions
of size. One of them counts the number of locations in the subsystem, while the other two take
into account the possible clock valuations in the subsystem.



iii

Acknowledgements
First and foremost I would like to thank my supervisor Christel Baier. Your experience and
expertise have been invaluable for my work towards this thesis throughout the last years. I
am grateful for your guidance and support in all parts of academic life. Your commitment to
research and teaching is an inspiration for me.

I would like to thank all of my colleagues at the chair for Algebraic and Logic Foundations
of Computer Science in Dresden for the friendly and lively atmosphere, which I enjoyed a
lot. It is a real pity that office life changed so drastically half way into my PhD. In particular,
many thanks to Clemens Dubslaff, Nikolai Käfer, Jakob Piribauer and Patrick Wienhöft for your
valuable comments after reading parts of this thesis, and to Max Korn for your help and support
with the server setup for the experiments!

In the last years, I was lucky to get the chance to work with many inspiring people. I would
like to thank my coauthors for the fruitful collaborations from which I have learned a lot. Special
thanks go to Florian Funke for the energy and skill that you bring to every project, and to Hans
Harder for your work on the implementation of Switss.

I am indebted to my friends and colleagues from QuantLA, for all the seminars, workshops,
discussions and trips. The same thanks goes out to my friends and colleagues in CPEC, including
for your hospitality when we visited in Saarbrücken. I am also grateful to the DFG for supporting
me financially through these projects.

Of course, there is life outside of uni. I am extremely grateful for the support and love that I
have always received from my friends and family.



Contents

1 Introduction 1

1.1 Counterexamples, witnesses and certificates . . . . . . . . . . . . . . . . . . . 2
1.2 Outline and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 12

2.1 Linear algebra and linear programming . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Markov decision processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Reachability probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Expected total reward . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Expected number of visits . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Probabilistic timed automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Difference bounds matrices . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Farkas certificates 30

3.1 Farkas certificates for probabilistic reachability constraints . . . . . . . . . . . 33
3.1.1 End-component-free Markov decision processes . . . . . . . . . . . . . 34
3.1.2 Farkas certificates and expected number of visits . . . . . . . . . . . . 42
3.1.3 MDPs with proper end components . . . . . . . . . . . . . . . . . . . . 48
3.1.4 Certifying the decomposition into maximal end components . . . . . . 51

3.2 Farkas certificates for expected rewards . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Computing and validating Farkas certificates . . . . . . . . . . . . . . . . . . . 57

3.3.1 Computing Farkas certificates using linear programs . . . . . . . . . . 57
3.3.2 Computing Farkas certificates using value- or policy iteration . . . . . 58
3.3.3 Validating Farkas certificates . . . . . . . . . . . . . . . . . . . . . . . 60

4 New techniques for witnessing subsystems 62

4.1 Witnessing subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.1 The witness problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.2 Complexity of the witness problem . . . . . . . . . . . . . . . . . . . . 70
4.1.3 The core-problem for Markov chains . . . . . . . . . . . . . . . . . . . 72

4.2 Farkas certificates and witnessing subsystems . . . . . . . . . . . . . . . . . . 73
4.2.1 Mixed-integer programming formulations . . . . . . . . . . . . . . . . 76

iv



Contents v

4.2.2 Computing upper bounds on u𝑒𝑣 . . . . . . . . . . . . . . . . . . . . . 84
4.2.3 A heuristic based on linear programming . . . . . . . . . . . . . . . . 87
4.2.4 The tool Switss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Witnessing subsystems for the expected total reward . . . . . . . . . . . . . . 106
4.4 Witnessing subsystems for invariants . . . . . . . . . . . . . . . . . . . . . . . 110

5 Probabilistic systems with low tree width 116

5.1 The witness problem for Markov chains with tree structure . . . . . . . . . . . 118
5.1.1 An algorithm for tree structured Markov chains and unary weights . . 118
5.1.2 NP-hardness with labels or binary weights . . . . . . . . . . . . . . . . 122

5.2 Directed tree- and path-partition width . . . . . . . . . . . . . . . . . . . . . . 124
5.3 The witness problem for Markov chains with bounded path width . . . . . . . 127

5.3.1 Hardness of the matrix-pair chain problem . . . . . . . . . . . . . . . . 128
5.3.2 Hardness of the witness problem . . . . . . . . . . . . . . . . . . . . . 132

5.4 A dedicated algorithm for MDPs with low directed tree-partition width . . . . 137
5.4.1 The domination relation . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.4.2 An algorithm based on the domination relation . . . . . . . . . . . . . 142
5.4.3 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6 Explications for probabilistic timed automata 148

6.1 Witnessing subsystems for probabilistic timed automata . . . . . . . . . . . . 150
6.1.1 Subsystems for probabilistic timed automata . . . . . . . . . . . . . . . 150
6.1.2 Zone closure for difference bounds matrices . . . . . . . . . . . . . . . 154
6.1.3 From Farkas certificates to witnessing subsystems . . . . . . . . . . . 155

6.2 Minimal witnessing PTA subsystems . . . . . . . . . . . . . . . . . . . . . . . 158
6.2.1 Notions of minimality for PTA subsystems . . . . . . . . . . . . . . . . 158
6.2.2 Computing minimal witnesses . . . . . . . . . . . . . . . . . . . . . . 161

7 Conclusion 170





Chapter 1

Introduction

The question of how to establish whether or not a program satisfies fundamental properties
such as correctness, safety and termination has accompanied the field of computer science since
its birth. Today, several large research areas including testing [Kin76, GKS05], (higher-order)
theorem proving [NPW02, BC04] and model checking [BK08, CES09, CHVB18] approach it from
very different angles. It is clear that a diverse toolkit is essential to tackle the problems at hand,
given the fast and enormous growth in complexity, size, scope and diversity that computing
technology has gone through in the last decades.

Model checking arose in the 1980’s in pioneering work by Clarke and Emerson [EC82] and
Queille and Sifakis [QS82]. It is a fully automated verification methodology, which is based
on modeling programs as transition systems and properties they should satisfy using temporal
logics such as linear temporal logic (LTL) and computation tree logic (CTL). This framework
allows precise mathematical definitions and builds on the long tradition of logic-based methods
in computer science. Prominent innovations that have shaped the field of model checking
since include the automata-theoretic approach to model checking [VW86], abstraction-based
methods [CGL94, CGJ+03], symbolicmodel checking [BCM+92] and the introduction of methods
from Boolean satisfiability- [BCCZ99] and satisfiability-modulo-theories checking [AMP09]. A
number of software tools implementing various model checking algorithms, both for software
and hardware systems, have been built [LPY97, BHJM07, Ben08, BLR11, KT14]. Especially in
the area of hardware design, model checking is by now an established and mature technology
widely used in the industry.

An important line of research in the area of model checking has been to extend its scope to
new kinds of systems and programs. In this spirit, a theory of timed automata [ACD93, AD94]
was developed, which allowsmodeling and verifying real-time systems. Pushing this idea further
yields hybrid automata [Hen96], which include continuously-valued variables whose behavior
is described using differential equations. These models have been proven to be extremely useful
for applying automated verification techniques to dynamical and cyber-physical systems.

At the same time, the study of model checking for probabilistic systems [Var85, Han91, CY95]
was initiated. Such systems arise in various contexts, where probabilities may represent failure
probabilities of physical components or unreliable communication channels, assumptions or

1



2 1.1. Counterexamples, witnesses and certificates

knowledge on the likelihood of events (e.g., input sequences) or intrinsic probabilistic behavior of
programs or protocols as utilized by, e.g., randomized consensus algorithms [AH90]. The theory
covers continuous-time [BHHK03] and parametrized [LMT07] probabilistic models. Several
successful tools have been developed for probabilistic model checking, including Prism [KNP11],
Storm [DJKV17] and others [CB06, KZH+11, HLS+14].

The standard discrete-time models that are used for probabilistic model checking areMarkov
chains andMarkov decision processes. AMarkov chain consists of a set of states and a probabilistic
transition function. This function assigns to each state a probability distribution over the possible
successor states. While in classical transition systems a linear-time property is either satisfied
or not, in Markov chains it is satisfied with some probability. Markov decision processes (MDPs)
add a layer of complexity by including nondeterministic branching. The execution of an MDP
proceeds as follows. In a given state, one out of a set of possible probability distributions over
the successor states is picked. Then, this distribution determines the probabilities of the next
state in the same way as for Markov chains. The probability of a property in an MDP depends
on how the choice of distributions is resolved. This is done by a scheduler, which maps each
finite path of the MDP to one of the possible probability distributions. The nondeterminism in
MDPs is crucial to model asynchronous concurrent systems, where the order of executions of
different participating processes is not known beforehand.

1.1 Counterexamples, witnesses and certificates

One feature of many classical model checking algorithms is that if they establish that the system
at hand does not satisfy the property, then they also provide a counterexample. For linear-time
properties, a counterexample is typically an execution of the system which violates the property.
In practice, counterexamples are extremely useful because they provide succinct information
about why the property is violated. What exactly constitutes a counterexample depends on the
kind of systems and properties that are considered [CJLV02, CV03].

Apart from providing useful information to the user of a verification tool, counterexamples
are a key ingredient in the counterexample-guided abstraction refinement method [CGJ+03]. The
idea is to start with a coarse abstraction of the system, which is iteratively refined until it is fine
enough to provide a proof that the considered property holds in the system. The refinement is
guided by spurious counterexamples, which exist in the current abstraction but not in the actual
system.

Counterexamples serve as explications or witnesses for the violation of a property in a
system. It is as desirable, but usually more difficult, to provide explications in case the property
is satisfied. For example, for model checking of linear-time properties this amounts to showing
that all executions satisfy the property. Common techniques to achieve this include deriving
deductive proofs for positive model checking results [Nam01, PPZ01, BMS+17] or using rank-
based certificates [KV04].

Witnesses in probabilistic model checking

In probabilistic model checking, individual executions often carry low probability and hence,
in general, do not by themselves serve as an explication for most properties. To show that
linear-time property 𝜑 holds with probability at least 𝜆 in a Markov chainM, an explication
has to demonstrate (intuitively speaking) that a set of executions ofM satisfying 𝜑 exists, whose



1. Introduction 3

total probability is at least 𝜆. Dually, 𝜑 holds with probability at most 𝜆 if a set of executions
violating 𝜑 exists with total probability exceeding 1−𝜆. This shows that the conceptual difference
between explications for positive and negative model checking results is not as pronounced in
the probabilistic case.

For this reason we will henceforth use the positive terms witness, explication or certificate
and say explicitly which property is meant. These notions will be distinguished as follows. A
witness should carry information about why a given property holds in a system, in terms of the
given system description. For example, execution traces, individual components or subsystems
are possible witnesses. On the other hand, a certificate is any (mathematical) token which can
be used to easily validate that the property holds. Here, “easily” means that an independent
and “simple” computer program should be able to check the certificate. In particular, this check
should be simpler than verifying the property in the first place. This meaning of certificate is
proposed and used by the acknowledged theory of certifying algorithms [MMNS11].

The term explication includes witnesses and certificates and in general any object which
carries information about whether or why a given property holds in a system. We use the term
explication rather than explanation, because our emphasis lies on the mathematical objects
which can be used to describe the behavior of a system, and the algorithmic questions of how
to compute them. To provide a useful explanation to a user of a verification tool, usually further
processing steps are required such as visualization and the selective presentation of parts of the
explication [KNVG22].

We now give an overview of the state-of-the-art on witnesses (usually called counterexam-
ples) in the context of probabilistic model checking. The distinction between counterexamples
and witnesses is only a matter of terminology, as counterexamples are just witnesses for the
negated property. A survey discussing many of these works can be found in [ÁBD+14]. More
specific comparisons of the work presented in this thesis and existing literature will be given in
the beginning of each chapter.

Path-based witnesses. The first notion of witnesses for probabilistic properties were path-
based. As observed above, the fact that the probability of a reachability property exceeds 𝜆
in a Markov chain can be witnessed by a set of finite paths satisfying the property with total
probability larger than 𝜆 [AHL05, AL06, HK07a]. Informative witnesses in this context are
those which include few paths. The problem of finding a minimal witness in this sense has
been addressed using a reformulation of the problem in terms of finding shortest paths in a
weighted graph [HK07a, HKD09]. The work covers bounded and unbounded until properties,
and bounds on the expected total reward. As the size of a minimal witness can be arbitrarily
large with growing threshold 𝜆, techniques to succinctly represent path-based witnesses using
regular expressions have been proposed [DHK08, HKD09].

Heuristic approaches to compute small path-based witnesses were studied in [AL06, AL10]
and applied to continuous-time Markov chains [AHL05, HK07b] and MDPs [AL09]. For MDPs,
witnesses for lower-bounded (resp. upper-bounded) threshold constraints on the maximal
(resp. minimal) reachability probabilities were considered. These properties can be witnessed
by a scheduler whose induced reachability probability satisfies the threshold constraint. Two
strategies were proposed to compute suchwitnesses. One is to first compute an optimal scheduler
for the property, and then to apply known methods for Markov chains. The second is based on
directly enumerating paths of theMDP. Notably, the algorithms described in [AL09, AL10] return
so called diagnostic subgraphs, which are subsystems including all states that appear on some path



4 1.1. Counterexamples, witnesses and certificates

in the computed path-based witness. However, the optimization objective of these algorithms
is not to produce small subgraphs, but rather to compute small (i.e., including few paths)
path-based witnesses. These approaches have been implemented in the tool Dipro [ALLS11].

To tackle the problem that the number of paths in a minimal path-based witness may be
huge, symbolic methods based on bounded model checking using binary decision diagrams
(BDDs) [WBB09] and satisfiability-modulo-theories (SMT) [BWB+11] have been proposed.
A different approach to deal with large numbers of paths is to collapse strongly connected
components and compute witnesses in the resulting acyclic model [ADvR09, ÁJW+10].

Witnessing subsystems. While earlier work had already represented path-based witnesses
using (a kind of) subsystems, it was proposed later to define witnesses as subsystems in the first
place [JÁK+11]. In particular, this changed the optimization criterion. For subsystems, natural
criteria include the number of included states or transitions (or both), but not the number of
paths it includes.

Several heuristics to compute small witnessing subsystems for Markov chains were intro-
duced [JÁK+11] and implemented in the tool Comics [JÁV+12]. They are based on iteratively
extending subsystems until they satisfy the required lower bound on the reachability probability.
BDD-based symbolic algorithms for these heuristics were developed in [JÁZ+13, JWÁ+14].
The problem of computing minimal subsystems for Markov chains and MDPs was addressed
in [WJÁ+12], using mixed-integer linear programs (MILPs) and SMT-based methods. The prop-
erties considered in these works are lower bounds on the reachability probability (of the
maximizing scheduler, for MDPs). A related definition of witnessing subsystem for MDPs has
been introduced using simulation relations [CV10]. Computing minimal witnesses for MDPs is
NP-complete for both notions [CV10, WJÁ+12].

High-level witnesses. Probabilistic systems are typically not specified directly as MDPs,
but rather using some higher-level formalism. A standard modeling language is the one of
Prism [KNP11], which is based on the reactive modules paradigm [AH99].

In this setting, witnessing subsystems of the concrete state-based models may not be very
informative, or simply prohibitively large. For this reason, notions of witnesses on the level
of Prism code in terms of critical command sets have been studied [DJW+14, KÁJW15]. To
compute minimal critical command sets, the notion of label-minimal witnessing subsystems for
MDPs was introduced [KÁJW15]. Rather than minimizing the number of states occurring in a
witnessing subsystem, the idea is to minimize the number of participating labels in a witnessing
subsystem of a transition-labeled MDP.

Computing the minimal critical command set of a Prism program reduces to finding label-
minimal witnesses in the corresponding labeled MDP, where the labels of a concrete transition
correspond to the high-level commands that participate to form it. As computing minimal
critical command sets using MILPs does not scale very well [KÁJW15], an approach which
iteratively extends the command set until the induced MDP satisfies the lower bound on the
maximal reachability probability has been proposed [DJW+14]. It leverages dependencies
between commands which can be deduced from the Prism-modules, and uses MAX-SAT [FM06]
to find minimal command sets satisfying these dependencies.

Applications of witnesses in probabilistic model checking. As for non-probabilistic model
checking, an important application of witnesses is to provide information of why certain proper-



1. Introduction 5

ties hold or fail to hold. For example, a case study describing how probabilistic counterexamples
can be used in the industrial design of an airbag controller is described in [AFG+09]. In this
work, special visualization methods for probabilistic counterexamples are used [AL08]. Another
approach to represent the information included in a witness for a probabilistic property is to
compile it into a fault tree [KLL11].

A second important use case of witnesses are automated approaches such as counterexample-
guided abstraction refinement (CEGAR) and counterexample-guided inductive synthesis (CEGIS).
Both have been applied successfully in the context of probabilistic model checking. CEGAR
for probabilistic systems has been proposed in [CHJM05], which also extends to two-player
stochastic games under partial information, and in [HWZ08], which is based on predicate
abstraction and uses path-based witnesses for lower bounds on the reachability probability
to guide the abstraction-refinement. Another incarnation of CEGAR is proposed in [CV10],
which considers the safety fragment of probabilistic computation tree logic (PCTL) and uses
subsystems of MDPs as witnesses. A CEGAR-based approach has also been developed for
probabilistic hybrid automata [LP19].

The goal of counter-example guided inductive synthesis (CEGIS) is to automatically synthesize
(i.e., construct) a program satisfying a given specification out of a syntactically specified family
of programs. In [ČHJK19], witnessing subsystems for Markov chains are used in a CEGIS-loop
to prune the search space of possible program instances. Smaller witnessing subsystems are
preferable as they witness the violation of the property in a larger part of the family. The
approach is developed further in [AČJK21], where in particular novel heuristics for computing
witnessing subsystems with few labels in Markov chains are proposed. They are based on
greedily adding labels to (not-yet-witnessing) subsystems and using information of the program
family to get smaller witnesses. This CEGIS framework forms a part of the tool Paynt [AČJ+21].

Beyond reachability. The problem of computing minimal witnessing subsystems for lower
bounds on the maximal probability of satisfying an 𝜔-regular property given as a deterministic
Rabin automaton (DRA) was solved using a MILP-based approach in [WJÁ+14]. This work
enables the computation of witnesses for LTL specifications by first applying a translation from
LTL to DRA. Witnesses for a safety fragment of PCTL are considered in [CV10]. They show
that computing state-minimal witnesses is NP-hard, and therefore present a polynomial-time
algorithm which computes a witness such that removing any further state would break the
witness property. Heuristics to compute small witnesses for PCTL properties have not been
considered, to the best of our knowledge.

Another important class of properties measure the (optimal) expected utility or cost which
can be achieved in a probabilistic system. In this setting, typically states (or state-action pairs)
are paired with a numerical gain or cost in that state. One can now consider the expected value of
several random variables such as the total accumulated value before reaching a designated state,
the long-run average value, etc. Witnessing subsystems for the expected total (accumulated)
reward have been studied in [QJD+15].

Other kinds of witnesses. A notable exception to the path-based and subsystem-based wit-
nesses described above is proposed in [SVV09]. Here, witnesses for lower bounds on the
probability of satisfying an LTL formula in a Markov chain are presented as a pair of two sets
of path fragments (𝑊,𝑅). Intuitively,𝑊 consists of a set of finite initial paths whose total
probability exceeds the lower bound, and 𝑅 consists of path fragments such that any path,



6 1.2. Outline and contributions

which extends a path in𝑊 and sees a path fragment in 𝑅 infinitely often, satisfies the LTL
formula. Using these sets, a mechanism of validating witnesses is proposed as an interactive
game between with the model checker and a user [SVV09]. In [BCC+15] a witness is defined
to be a scheduler which satisfies the desired property, and the paper proposes strategies to
represent such schedulers concisely, and to compute them using learning algorithms.

1.2 Outline and contributions

The topic of this thesis is the generation of certificates and witnesses for probabilistic model
checking, in particular for probabilistic reachability constraints in Markov decision processes
and probabilistic timed automata. A probabilistic reachability constraint is a bound (lower or
upper, strict or non-strict) on the optimal (that is, maximal or minimal) probability of reaching
a dedicated state from the initial state of the system. Our emphasis is on defining appropriate
notions of explications for these properties and describing algorithms to compute them precisely
and heuristically with respect to different optimization criteria. Furthermore, we study the
complexity of the associated decision problems. We now give an overview of the structure of
the thesis, and mention specific contributions made in each chapter.

In Chapter 2 we introduce our notation and the models that we work with throughout the
thesis. Additionally, standard results from the literature which will be used are presented using
our notations.

Farkas certificates. Chapter 3 is concerned with certifying algorithms for model checking of
probabilistic reachability constraints in MDPs. The main contribution is the following.

Contribution 1. We establish certificate conditions and certifying algorithms for all types of

probabilistic reachability constraints in MDPs.

The introduced certificates are named Farkas certificates, as they are derived using Farkas’
Lemma [Far02]. This is a standard result in linear algebra which provides for each system of
linear inequalities Γ another system Γ′ such that Γ is unsatisfiable if and only if Γ′ is satisfiable.
Hence, solutions of Γ′ are certificates for the unsatisfiability of Γ.

Our starting point is the well-known characterization of optimal reachability probabilities in
MDPs using linear programming [Kal83]. We observe that this characterization yields certificates
for those probabilistic reachability constraints which state that all schedulers satisfy a given
bound. These certificates are solutions of certain systems of linear inequalities. To derive
certificate conditions for the remaining cases (which state that some scheduler satisfies a threshold
condition), we apply variants of Farkas’ lemma.

Then, we study how Farkas certificates which certify the existence of a scheduler satisfying
a threshold condition can be transformed into a witnessing scheduler, and vice versa. An
important insight here is that these Farkas certificates are related to the expected number of
visits of state-action pairs in the MDP under some scheduler.

We consider the general case of MDPs with proper end components, which are parts of the
MDP in which a scheduler may remain forever1. To construct the systems of linear inequalities
defining Farkas certificates for bounds on the minimal reachability probabilities, one has to

1Usually, we consider MDPs with dedicated absorbing states “target” and “exit”, and we distinguish whether the
MDP has proper end components apart from these two.



1. Introduction 7

compute the proper end components beforehand.

Contribution 2. We describe a method to certify the result of algorithms for the maximal

end component decomposition.

As discussed above, some of the proposed certificate conditions depend on knowing which
state is included in a proper end component. Hence, the certificate condition is only correct if
these states have been computed correctly. We introduce techniques to certify that a given set
of sub-MDPs indeed equals the maximal end components of the MDP. These techniques are
based on certificates for strong connectedness of directed graphs, and a Farkas-like certificate
which certifies that the corresponding quotient MDP has no proper end components.

Finally, we show that Farkas certificates for threshold constraints on the expected total reward
can be defined in a very similar fashion to those for probabilistic reachability constraints. Here
we allow arbitrary integer rewards, but restrict the MDPs to have no proper end components
apart from one absorbing state, in which the reward is collected.

New techniques for witnessing subsystems. Chapter 4 considers the notion of witnessing
subsystem, as introduced in [JÁK+11] (where they were called critical subsystems). In contrast to
other works on subsystems for MDPs, we define them both for lower bounds on themaximal and
minimal reachability probabilities. Technically, the same definition of witnessing subsystem can
be used for both properties. The definition must ensure that the set of enabled actions remains
the same for all states in subsystems, however, which is not the case if one only considers lower
bounds on the maximal probability.

Our first contribution on witnessing subsystems is to show that the (associated decision-)
problem of computing minimal witnessing subsystems is NP-complete for acyclic Markov
chains. While membership in NP is clear (this holds for all related problems that we will
consider), NP-hardness for Markov chains was left as an open problem in [WJÁ+12, WJÁ+14].
NP-hardness for the full class of MDPs was established in [CV10, WJÁ+14].

Contribution 3. Computing minimal witnessing subsystems for lower-bounded probabilistic

reachability constraints in acyclic Markov chains is NP-complete.

We use this result to show NP-hardness of finding a minimal 𝜖-core [KM20] in Markov
chains. An 𝜖-core is a kind of subsystem, with the property that the maximal probability of ever
leaving it is at most 𝜖 . Finding minimal 𝜖-cores was shown to be NP-hard for MDPs, but it was
left open whether the same holds for the subclass of Markov chains [KM20, Remark 3.7]. The
main contribution of Chapter 4 is the following.

Contribution 4. We show that Farkas certificates and witnessing subsystems for the same

property are strongly related.

More precisely, the support (i.e., the non-zero entries) of a Farkas certificate induces a
witnessing subsystem for the corresponding property, and, vice versa, for every witnessing
subsystem we find a Farkas certificate whose support corresponds to the states (or state-
action pairs) included in the subsystem. Moreover, a Farkas certificate also certifies that the
corresponding subsystem is a witness.

This insight yields new algorithms to compute minimal and small witnessing subsystems.
We describe mixed-integer linear programs (MILPs) whose solutions correspond to minimal-
support Farkas certificates, both for lower-bounded threshold constraints on the minimal and



8 1.2. Outline and contributions

maximal reachability probabilities. These results carry over to the case of expected total reward
properties, and, with minor extensions, can also be used to find label-minimal and weight-
minimal witnesses. Furthermore, we show how witnessing subsystems for lower bounds on
the optimal probability of satisfying an invariance condition in MDPs can be computed using
methods based on Farkas certificates. Such properties correspond to probabilistic reachability
constraints with upper-bounded threshold conditions.

Contribution 5. We introduce the quotient-sum heuristic which computes small witnessing

subsystems by iteratively solving a sequence of LPs.

The k-step quotient-sum heuristic computes Farkas certificates with small support by solving
a sequence of linear programs (LPs), where the solution of the 𝑖-th LP is used to define the
objective function of the 𝑖+1-th LP. In principle, this heuristic can be applied to compute vectors
with small support in any polytope included in the nonnegative orthant. By applying the
relation between Farkas certificates and witnessing subsystems, the heuristic can be used to
compute small witnessing subsystems.

Experimental studies show that this heuristic is competitive with state-of-the-art methods
to generate witnessing subsystems. Usually, it finds small witnesses after few (typically between
two and three) iterations, whichmeans that the same number of LPs have to be solved. Hence, the
overhead of running the quotient-sumheuristic as opposed to computing the optimal reachability
probabilities (which can be done by solving a single LP) is a small constant multiplicative factor.
The heuristic can also be applied to find witnesses with few labels.

We want to emphasize that all the considered algorithms (including both heuristic and
exact approaches) produce Farkas certificates, which means that they are certifying. This is
not obvious, as to check whether a subsystem is indeed witnessing is, in general, as hard as
checking whether the corresponding constraint holds in the original system. On the other hand,
to check the validity of a Farkas certificate one merely has to verify that the certificate (which
is a vector) is a solution of a linear system of inequalities. This can be done in linear time.

Contribution 6. An implementation of most presented algorithms on Farkas certificates and

witnessing subsystems in the tool Switss.

All experiments we report on were conducted using the tool Switss, which implements most
of the algorithms described in this thesis. It is written in python and uses modern mathematical
optimization solvers in the back end to solve (MI)LPs. Furthermore, it includes modules to
compute and validate Farkas certificates, visualize subsystems and methods supporting the
automated execution and evaluation of experiments. Many of the examples described in this
thesis have been implemented in a Jupyter notebook1 powered by Switss [Jan22a]. With it,
one can validate the calculations made in the examples and experiment with them by changing
the models or parameters that were used.

Probabilistic systems with low tree width. In Chapter 5 we study probabilistic systems
with low tree width. The tree width of a graph is a number which, intuitively, quantifies
how close the graph is to being a tree. Considering classes of graphs with bounded tree
width is a widely used restriction in graph theory and often makes computational problems
easier to solve [Bod97]. In particular, a number of NP-complete problems on graphs become
tractable if the tree width is considered to be constant (one example is three-colorability). These

1https://jupyter.org/

https://jupyter.org/


1. Introduction 9

results rely on dynamic programming techniques and make use of the underlying tree structure.
Several works have considered algorithmic questions under restrictions on the tree width for
probabilistic systems [CŁ13, CIP15, ACG+20].

We say that a Markov chain is tree structured if its underlying graph is a tree. An indication
that restrictions on the tree width could be useful for the problem of computing minimal wit-
nessing subsystems is the following result.

Contribution 7. Computing witnessing subsystems with minimal weight can be done in

pseudo-polynomial time in tree structured Markov chains.

In the above statement, the size of a subsystem is taken to be the sum of weights of the
included states, for some predefined weight function. It follows that the problem of computing
witnessing subsystems with a minimal number of states is solvable in polynomial time for tree
structured Markov chains. However, we also show that the problem becomes NP-hard for tree
structured Markov chains in the binary representation of weights and if the goal is to find
label-minimal witnessing subsystems.

Inspired by the above result, we go on to study whether suitable restrictions on the tree
width of the underlying graph of Markov chains can be exploited to compute minimal witnessing
subsystems. To this end, we introduce a novel notion of tree width for directed graphs.

Contribution 8. We introduce the directed tree- and path-partition width for directed graphs.

The directed tree-partition width of a directed graph is at most 𝐾 if its vertices can be
partitioned into sets of size at most 𝐾 such that the induced quotient under the partition is a
(directed) tree. For directed path-partition width the definition is analogous. We show that
deciding whether a graph has directed path- (or tree-) partition width at most 𝐾 is NP-complete.
This notion of tree width is rather strong, in the sense that classes of bounded directed tree-
partition width have bounded width with respect to all notions of tree width that we are aware
of in the literature. The main contribution of Chapter 5 is the proof of the following result.

Contribution 9. Computing minimal witnessing subsystems is NP-complete in Markov

chains with bounded directed path-partition width.

Hence, computing minimal witnesses is NP-hard even for classes of Markov chains which
are (asymptotically) very close to paths. The proof is fundamentally different from the other
NP-hardness proofs in the thesis, and exhibits a new source of hardness in the problem of
computing minimal witnesses. To prove it, we introduce an auxiliary matrix problem, called
the d-dimensional matrix-pair chain problem. It takes as input a starting vector and 𝑛 pairs of
𝑑 × 𝑑 matrices, for some fixed 𝑑 . The question is whether one can reach a specified halfspace in
𝑛 steps, where in the 𝑖-th step one can multiply one of the two matrices of the 𝑖-th pair to the
current vector. In a chain of polynomial reductions, we first show NP-hardness for the above
problem with 𝑑 = 2 and arbitrary matrices and then for 𝑑 = 3 and nonnegative matrices. Finally,
this problem is reduced to the problem of computing minimal witnesses in Markov chains with
path-partition width at most six.

This means that, unfortunately, we cannot hope to find algorithms that compute minimal
witnesses in polynomial time in arbitrary Markov chains with bounded path or tree width.
Nevertheless, in Chapter 5 we also develop an algorithm which utilizes the tree structure of a
probabilistic system to find a witnessing subsystem. In an experimental study we show that it
outperforms the MILP-based approach in certain benchmarks. An example where such tree



10 1.2. Outline and contributions

structure appears is if the system includes a counter which is never decremented. Then, the
possible values of the counter induce a path partition of the state space.

Explications for probabilistic timed automata. Chapter 6 considers explications for proba-
bilistic reachability constraints in PTA. The definition of subsystems along with timing-sensitive
notions of size for subsystems are the main contributions of this chapter.

Contribution 10. Timing-sensitive notions of minimal witnessing subsystems for probabilis-

tic timed automata.

The types of minimality for witnesses we consider are location-minimality, invariant-
minimality and volume-minimality. Whereas location-minimality counts the number of partici-
pating locations and hence corresponds to state-minimality for MDPs, the other two notions
take the timing constraints into consideration. Invariant-minimality measures the logical
strength of the location invariants, which are given as clock constraints. If no location invariant
can be strengthened without breaking the property, the witnessing subsystem is called inv-
minimal. As many subsystems may be incomparable with respect to the inv-order, we introduce
volume-minimality, which measures the combined volume of location invariants viewed as
polytopes.

We describe algorithms for computing minimal witnessing subsystems under these three
notions. They are based on a relation between minimal witnesses of PTA and label-minimal
MDP-subsystems in quotient-MDPs induced by probabilistic time-abstracting bisimulations of the
PTA. Hence, the algorithms and heuristics described in Chapter 4 for computing label-minimal
witnessing subsystems for MDPs can be applied here.

Related publications
This thesis is mainly based on the following peer-reviewed publications.

[FJB20] Florian Funke, Simon Jantsch, and Christel Baier. Farkas Certificates and Minimal
Witnesses for Probabilistic Reachability Constraints. In Tools and Algorithms for the Con-
struction and Analysis of Systems - 26th International Conference (TACAS), Lecture Notes in
Computer Science, pages 324-245. 2020.

[JHFB20] Simon Jantsch, Hans Harder, Florian Funke, and Christel Baier. SWITSS: Computing
Small Witnessing Subsystems. In Proceedings of the 20th Conference on Formal Methods in
Computer-Aided Design (FMCAD), Tu Wien Academic Press, pages 236-244. 2020.

[JFB20] Simon Jantsch, Florian Funke, and Christel Baier. Minimal Witnesses for Probabilistic
Timed Automata. In Automated Technology for Verification and Analysis - 18th International
Symposium (ATVA), Lecture Notes in Computer Science, pages 501-517. 2020.

[JPB21] Simon Jantsch, Jakob Piribauer, and Christel Baier. Witnessing Subsystems for Proba-
bilistic Systems with Low Tree Width. In Proceedings of the 12th International Symposium
on Games, Automata, Logics, and Formal Verification (GandALF), Electronic Proceedings in
Theoretical Computer Science, pages 35-51. 2021.



1. Introduction 11

Further, the thesis extends the work published in these papers by

• considering MDPs with proper end components throughout,

• providing details on the relationship between Farkas certificates and the expected number
of visits of state-action pairs under certain schedulers of an MDP,

• considering certification of algorithms that compute the maximal end components,

• transferring the results on Farkas certificates and witnessing subsystems to threshold
constraints on the expected total reward,

• considering witnessing subsystems for lower-bounded threshold constraints on the prob-
ability of satisfying an invariant property, and

• generalizing many results to the computation of label- and weight-minimal witnessing
subsystems.

The relation to published work is stated more precisely in the beginning of each chapter.



Chapter 2

Preliminaries

This chapter collects all preliminary definitions that are needed in the sequel, introduces the
notions that are used and states standard results from the literature.

2.1 Linear algebra and linear programming

Vectors of the form x ∈ R𝑛 are written in lowercase and boldface, matrices M ∈ R𝑚×𝑛 are
written in uppercase and boldface, and scalars 𝑎 ∈ R are written in lowercase. When working
with vectors we will often use finite index sets 𝐼 and write x ∈ R𝐼 instead of x ∈ R |𝐼 | . To
represent a vector x ∈ R𝐼 we will sometimes use the notation

x =
(︁
𝑖1 ↦→ 𝑎1, 𝑖2 ↦→ 𝑎2, . . . , 𝑖𝑛 ↦→ 𝑎𝑛

)︁
,

with 𝐼 = {𝑖1, . . . , 𝑖𝑛}. In this case x(𝑖𝑘 ) denotes the corresponding entry 𝑎𝑘 of x. The support
of a vector x ∈ R𝐼 is the set supp(x) = {𝑖 ∈ 𝐼 | x(𝑖) ≠ 0}. For a given 𝑖 ∈ 𝐼 we define the dirac
vector 𝛿𝑖 ∈ R𝐼 to be 𝛿𝑖 (𝑖) = 1 and 𝛿𝑖 (𝑖′) = 0 for all 𝑖′ ∈ 𝐼 \ {𝑖}. The vectors 0𝑛 and 1

𝑛 denote the
constant zero and one vectors of dimension 𝑛, and if the dimension is clear from the context we
simply write 0 and 1. LetM ∈ R𝐼1×𝐼2 be a matrix of dimension |𝐼1 | × |𝐼2 |, where again 𝐼1, 𝐼2 are
used as index sets. For any 𝐼 ′1 ⊆ 𝐼1 and 𝐼 ′2 ⊆ 𝐼2, we define the restriction of M to 𝐼 ′1 × 𝐼 ′2, denoted
byM|𝐼 ′1×𝐼 ′2 ∈ R

𝐼 ′1×𝐼 ′2 , to be: M|𝐼 ′1×𝐼 ′2 (𝑎1, 𝑎2) = M(𝑎1, 𝑎2) for all (𝑎1, 𝑎2) ∈ 𝐼 ′1 × 𝐼 ′2. The restriction of
vectors is defined analogously.

Polyhedra and linear inequalities. A halfspace in R𝑛 is a set {v ∈ R𝑛 | a · v ≤ 𝑏} for some
a ∈ R𝑛, 𝑏 ∈ R such that a ≠ 0 and 𝑏 ≠ 0. The intersection of finitely many halfspaces is called a
polyhedron, and a polytope is a bounded polyhedron. A face of a polyhedron 𝑃 is a subset 𝐹 ⊆ 𝑃

of the form 𝐹 = {x ∈ 𝑃 | a · x = max{a · y | y ∈ 𝑃}} for some a ∈ R𝑛 , i.e., it is the “boundary” of
𝑃 in some direction. Faces consisting of only one point are called vertices.

Vectors of variables will be used to define (systems of) linear inequalities. If x = (𝑥1, . . . , 𝑥𝑛)
is a vector of variables of dimension 𝑛, then a · x ≤ 𝑏, where a ∈ R𝑛, 𝑏 ∈ R, represents the linear
inequality

∑︁
1≤𝑖≤𝑛 𝑎𝑖𝑥𝑖 ≤ 𝑏. Similarly, a system of linear inequalities can be represented using a

12



2. Preliminaries 13

matrix M ∈ R𝑚×𝑛 and vector b ∈ R𝑚 by writing M · x ≤ b. This system consists of𝑚 linear
inequalities, which are formed using the𝑚 rows of M together with the corresponding entries
of b. The set of solutions of a linear inequality forms a halfspace, and the set of solutions of a
system of linear inequalities forms a polyhedron. We will often use the same name for a variable
vector x = (𝑥1, . . . , 𝑥𝑛) and for some concrete solution x ∈ R𝑛 of a system of linear inequalities.

(Mixed-integer) linear programming. A linear program (LP) is formed by a system of linear
inequalities and a linear optimization function. If x is a variable vector of dimension 𝑛, o ∈
R𝑛,M ∈ R𝑚×𝑛 and b ∈ R𝑚 , then the corresponding linear program is written as: maximize
o · x such that Mx ≤ b. We say that x ∈ R𝑛 is a feasible solution of this LP if it is a solution of
M · x ≤ b and it is an optimal solution if o · x = max{o · x′ | x′ ∈ R𝑛,Mx

′ ≤ b}. If this maximum
does not exist, we say that the LP is unbounded. In this case, no optimal solution exists.

Solving a system of linear inequalities is a special case of computing the optimal solutions
of a linear program (by setting o = 0). Furthermore, given a linear program one can compute
in linear time a system of linear inequalities such that the optimal solutions of the former
correspond to the solutions of the latter [Sch99, Theorem 10.4]. Both problems are hence very
closely connected, and it turns out that both can be solved in polynomial time [Kha79, GL81],
see also [Sch99, Chapter 13].

A mixed-integer linear program is a linear program in which a subset of the variables are
declared to be integer- (or binary-) variables. That is, the feasible solutions are restricted to those
in which the specified variables take integer values. In contrast to standard linear programming,
solving mixed-integer linear programs is NP-complete [Sch99, Theorem 18.1].

Farkas’ Lemma. Farkas’ Lemma [Far02] is a fundamental duality theorem in polyhedra theory
and linear programming. It shows that for each system of linear inequalities one can compute a
dual system such that the former is satisfiable if and only if the latter is unsatisfiable. Hence, a
solution of one system certifies the unsatisfiability of the other, and vice versa. We will use it in
the following two versions.

Lemma 2.1 (Farkas’ Lemma, cf. [Sch99, Corollary 7.1e]). Let M ∈ R𝑚×𝑛 and b ∈ R𝑚 . Then there
exists z ∈ R𝑛 withMz ≤ b if and only if there does not exist y ∈ R𝑚≥0 with yM = 0 ∧ yb < 0.

Lemma 2.2 (Farkas’ Lemma (variant), cf. [Sch99, Corollary 7.1f]). LetM ∈ R𝑚×𝑛 and b ∈ R𝑚 .
Then there exists z ∈ R𝑛≥0 with Mz ≤ b if and only if there does not exist y ∈ R𝑚≥0 with
yM ≥ 0 ∧ yb < 0.

2.2 Markov decision processes
The most important model which is considered in this thesis are Markov decision processes.
They are used to analyze probabilistic systems which appear in a wide range of contexts, from
operations research over biological models to verification. We introduce our notation along
with standard results which we will use throughout the thesis. For more details, we refer
to [Put94, BK08].



14 2.2. Markov decision processes

2.2.1 Definitions
Definition 2.3. A Markov decision process (MDP) is a tuple M = (𝑆,Act, 𝜄, 𝑃), where

• 𝑆 is a countable set of states,

• Act is a finite set of actions,

• 𝜄 : 𝑆 → [0, 1] is the initial distribution where we require
∑︁
𝑠∈𝑆 𝜄 (𝑠) = 1,

• 𝑃 : 𝑆 × Act× 𝑆 → [0, 1] is the transition probability function, satisfying
∑︁
𝑠′∈𝑆 𝑃 (𝑠, 𝛼, 𝑠′) ∈

{0, 1} for all 𝑠 ∈ 𝑆 and 𝛼 ∈ Act.

When considering properties based on rewards, we extend the tuple by

• a reward function rew : 𝑆 × Act → Z.

We say that action 𝛼 ∈ Act is enabled in state 𝑠 ∈ 𝑆 if
∑︁
𝑠′∈𝑆 𝑃 (𝑠, 𝛼, 𝑠′) = 1, and denote by Act(𝑠)

the set of such actions. The set of enabled state-action pairs is defined to be E = {(𝑠, 𝛼) ∈
𝑆 × Act | 𝛼 ∈ Act(𝑠)}. We require that Act(𝑠) ≠ ∅ for all 𝑠 ∈ 𝑆 .

Size of an MDP. In this thesis we will almost exclusively consider finiteMDPs, in which the set
of states 𝑆 is finite. If not stated otherwise, we will assume MDPs to be finite. For all algorithmic
questions we additionally assume that all numbers in the ranges of 𝜄 and 𝑃 are rational. Under
these assumptions we define the size of an MDP to be the sum of the cardinalities of 𝑆 and Act
and the lengths of the binary encoding of all numbers in the ranges of 𝜄 and 𝑃 .

The initial state, finite and infinite paths. If the initial distribution is a Dirac distribution on
a single state 𝑠𝑖𝑛 ∈ 𝑆 , then we may also write M = (𝑆,Act, 𝑠𝑖𝑛, 𝑃).

An infinite path ofM is an infinite sequence 𝑠1𝛼1𝑠2𝛼2 . . . ∈ (𝑆×Act)𝜔 such that 𝑃 (𝑠𝑖 , 𝛼𝑖 , 𝑠𝑖+1) >
0 for all 𝑖 ≥ 1. A finite path is a finite sequence 𝑠1𝛼1𝑠2𝛼2 . . . 𝑠𝑛 ∈ (𝑆 × Act)∗ 𝑆 satisfying
𝑃 (𝑠𝑖 , 𝛼𝑖 , 𝑠𝑖+1) > 0 for all 1 ≤ 𝑖 < 𝑛. If 𝜋 is a finite path, we define last(𝜋) = 𝑠𝑛 . The set of infinite
paths of M is denoted by Paths(M), and the set of finite paths is denoted by Pathsfin(M).
Often we will use the set of (in)finite paths restricted to a certain starting state 𝑠 ∈ 𝑆 , defined
as follows. The set Paths(M, 𝑠) = {𝑠1𝛼1𝑠2𝛼2 . . . ∈ Paths(M) | 𝑠1 = 𝑠} includes all paths of M
starting in 𝑠 , and the analogous notation is used finite paths. The length of a path is defined by
len(𝑠1𝛼1 . . . 𝑠𝑛) = 𝑛 for finite paths, and len(𝜋) = ∞ if 𝜋 is an infinite path. We call a state 𝑠 ∈ 𝑆
absorbing if 𝑃 (𝑠, 𝛼, 𝑠) = 1 for all 𝛼 ∈ Act(𝑠).

When defining sets of paths, wewill use notations borrowed from linear temporal logic (LTL).
In particular, given a set of states 𝑅 ⊆ 𝑆 , we let ♢𝑅 denote the set {𝑠1𝛼1𝑠2𝛼2 . . . ∈ Paths(M) |
𝑠𝑖 ∈ 𝑅 for some 𝑖 ≥ 1} and □𝑅 denote the set {𝑠1𝛼1𝑠2𝛼2 . . . ∈ Paths(M) | 𝑠𝑖 ∈ 𝑅 for all 𝑖 ≥ 1}.
If 𝑅 = {𝑠} is a singleton, we may write ♢𝑠 or □𝑠 , and we will also use the notations 𝑅 = 𝑆 \ 𝑅,
¬𝑅 = 𝑅 and ¬𝑠 = {𝑠} for 𝑠 ∈ 𝑆 .

Markov chains and the underlying probability measure. A (discrete-time) Markov chain
(DTMC) is an MDP in which exactly one action is enabled in every state. For DTMCs we will
omit the action set in the defining tuple and write M = (𝑆, 𝜄, 𝑃). In this case the probability
transition function is of type 𝑃 : 𝑆 × 𝑆 → [0, 1] and is required to satisfy

∑︁
𝑠′∈𝑆 𝑃 (𝑠, 𝑠′) = 1 for

all 𝑠 ∈ 𝑆 . Consequently, finite paths of the DTMC M are sequences 𝑠1𝑠2 . . . 𝑠𝑛 ∈ 𝑆∗ such that
𝑃 (𝑠𝑖 , 𝑠𝑖+1) > 0 for all 1 ≤ 𝑖 ≤ 𝑛, and analogously for infinite paths.



2. Preliminaries 15

IfM is a DTMC, then Paths(M) carries a probability measure. Its associated 𝜎-algebra is
generated by the cylinder sets Cyl(𝜏) = {𝜋 ∈ Paths(M) | 𝜋 has prefix 𝜏}, where 𝜏 is a finite
path of M. If 𝜏 = 𝑠1𝑠2 . . . 𝑠𝑛 , then the probability of Cyl(𝜏) is given by

Pr(Cyl(𝜏)) = 𝜄 (𝑠1) · 𝑃 (𝑠1, 𝑠2) · 𝑃 (𝑠2, 𝑠3) · . . . · 𝑃 (𝑠𝑛−1, 𝑠𝑛).

For more details, see [BK08, Section 10.1].
We denote by PrM (Π) the probability of a measurable set Π ⊆ Paths(M). If we are

interested in the probability of an event when starting in some starting state 𝑠 ∈ 𝑆 of M, we
consider the probability measure as defined above for the DTMC M𝑠 = (𝑆, 𝑠, 𝑃) with unique
initial state 𝑠 . This DTMC corresponds to M except for the initial distribution, which is now a
Dirac distribution on 𝑠 . We will often write PrM,𝑠 (Π) instead of PrM𝑠

(Π). In the following we
denote for a finite set 𝑋 the set of probability distributions on 𝑋 by Dist(𝑋 ).
Remark 2.4 (Measurability of events). Measurability of all 𝜔-regular sets (these are the sets
definable by a nondeterministic Büchi automaton) of paths in the described 𝜎-algebra can be
proved, and hence this holds in particular for reachability properties and all properties definable
in linear temporal logic. Hence, we will not be concerned further with the measurability of
events in the thesis and refer to [BK08, Chapter 10] for further details. △

Structural properties of Markov decision processes. The underlying graph of MDP M =

(𝑆,Act, 𝜄, 𝑃) is the directed graphU(M) = (𝑆, 𝐸) with vertices 𝑆 and edges defined by: (𝑠1, 𝑠2) ∈
𝐸 if and only if there exists 𝛼 ∈ Act(𝑠1) such that 𝑃 (𝑠1, 𝛼, 𝑠2) > 0. Let U = (𝑆, 𝐸) be the
underlying graph of a finite DTMC M = (𝑆, 𝜄, 𝑃) and 𝑆1, . . . , 𝑆𝑛 be the strongly connected
components (SCCs) of U. If all states contained in an SCC 𝑆𝑖 have only edges to other states in
𝑆𝑖 , we say that 𝑆𝑖 is a bottom strongly connected component (BSCC). We call states which belong
to a BSCC recurrent, and all others transient. In caseM consists of only one SCC, we callM
irreducible.

A sub-MDP of M is a pair (𝐸,𝐴), where 𝐸 ⊆ 𝑆 is a set of states and 𝐴 : 𝐸 → 2Act is a
function such that {𝑡 ∈ 𝑆 | 𝑃 (𝑠, 𝛼, 𝑡) > 0} ⊆ 𝐸 holds for all 𝑠 ∈ 𝐸, 𝛼 ∈ 𝐴(𝑠). The induced graph
of a sub-MDP (𝐸,𝐴) is the directed graph with vertices 𝐸 and edges

{(𝑠, 𝑡) ∈ 𝐸 × 𝐸 | there exists 𝛼 ∈ 𝐴(𝑠) such that 𝑃 (𝑠, 𝛼, 𝑡) > 0}.

An end component of M is a sub-MDP whose induced graph is strongly connected. We say
that an end component (𝐸,𝐴) is maximal if there is no other end component (𝐸′, 𝐴′) such that
𝐸 ⊆ 𝐸′ and 𝐴(𝑠) ⊆ 𝐴′(𝑠) for all 𝑠 ∈ 𝐸. The end component (𝐸,𝐴) is called proper if there exists
𝑠 ∈ 𝐸 such that 𝐴(𝑠) ≠ ∅. If (𝐸,𝐴) is not proper, then it can only contain a single state. Each
state 𝑠 is included in a unique (possibly non-proper) maximal end component.

Schedulers. A scheduler for M is a function 𝔖 : Pathsfin(M) → Dist(Act) assigning to
each finite path 𝜋 of M a probability distribution over the actions, where we require that
supp(𝔖(𝜋)) ⊆ Act(last(𝜋)) holds for each finite path 𝜋 . In other words,𝔖 is only allowed to
assign non-zero values to actions that are enabled in the last state of 𝜋 . If the chosen probability
distribution is always a Dirac distribution we call the scheduler deterministic, and otherwise
randomized. Given a scheduler𝔖 for M and a path (finite or infinite) 𝜋 = 𝑠1𝛼1𝑠2𝛼2 . . . of M
we say that 𝜋 is an𝔖-path if 𝛼𝑖 ∈ supp(𝔖(𝑠1𝛼1 . . . 𝑠𝑖)) for all 1 ≤ 𝑖 < len(𝜋). The scheduler



16 2.2. Markov decision processes

𝔖 is called memoryless if for all finite paths 𝜋 we have𝔖(𝜋) = 𝔖(last(𝜋)). In this case the
decision of𝔖 always depends only on the last state of the given finite path. A scheduler is called
finite-memory if it can be realized by a finite state machine. Memoryless and deterministic
schedulers will be abbreviated as MD-schedulers, and memoryless randomized schedulers will
be called MR-schedulers.

A scheduler𝔖 for M induces an infinite Markov chain M𝔖 = (Pathsfin(M), 𝜄, 𝑃𝔖) defined
as follows. For all 𝜋, 𝜋 ′ ∈ Pathsfin(M) we have:

𝑃𝔖
(︁
𝜋, 𝜋 ′)︁ = {︄

𝔖(𝜋, 𝛼) · 𝑃 (𝑠, 𝛼, 𝑠′) if last(𝜋) = 𝑠 and 𝜋 ′ = 𝜋𝛼𝑠′,

0 otherwise.

This construction can be used as a basis to associate probabilities to events in the MDP M
under a given scheduler𝔖. The set of infinite paths ofM𝔖 is in bijection with the set of infinite
𝔖-paths ofM. For a set of infinite𝔖-paths Π ⊆ Paths(M), let Π′ be the set of corresponding
infinite paths of M𝔖. Then, we define the probability Pr𝔖M (Π) of Π under scheduler𝔖 as

Pr𝔖M (Π) = PrM𝔖
(Π′),

provided that Π′ is measurable in the probability measure of M𝔖. As for DTMCs, we will also
consider the probabilities when starting in some state 𝑠 ∈ 𝑆 , denoted by Pr𝔖M,𝑠

(Π).
If𝔖 is a memoryless scheduler we may use a simpler and finite (provided that M is finite)

induced Markov chain M′
𝔖

= (𝑆, 𝜄, 𝑃 ′
𝔖
) where 𝑃 ′

𝔖
(𝑠, 𝑡) =

∑︁
𝛼∈Act(𝑠 ) 𝔖(𝑠, 𝛼) · 𝑃 (𝑠, 𝛼, 𝑡) for all

𝑠, 𝑡 ∈ 𝑆 . As the behavior of all states 𝜋𝑠 of M𝔖 that agree on their last state 𝑠 is identical to
the behavior of state 𝑠 inM′

𝔖
, the probability measure of any path property inM′

𝔖
and (the

corresponding path property in)M𝔖 agree. When considering memoryless schedulers𝔖 we
will always refer to M′

𝔖
as the induced Markov chain and simply write M𝔖.

When considering MDPs one is often interested in best-case or worst-case outcomes when
ranging over the possible resolutions of the nondeterminism. The nondeterminism is resolved by
a scheduler, and hence the task corresponds to finding schedulers which maximize or minimize
the value of some outcome. For a given 𝜔-regular set Π ⊆ Paths(M) we define

Pr
max
M (Π) = sup

𝔖

Pr𝔖M (Π) and Pr
min
M (Π) = inf

𝔖
Pr𝔖M (Π),

where 𝔖 ranges over all schedulers of M. The notation max and min is supported by the
classical result that for 𝜔-regular properties there exist (even finite-memory) schedulers which
achieve the supremum, respectively infimum [Var85]. As before, if we are interested in the
optimal probabilities from some state 𝑠 ∈ 𝑆 , we write Prmax

M,𝑠
(Π) and Pr

min
M,𝑠

(Π). If M is clear
from the context we will write Prmax(Π) and Pr

min(Π).

2.2.2 Reachability probabilities

For an MDPM = (𝑆,Act, 𝜄, 𝑃) and a set of states𝑇 ⊆ 𝑆 we denote the set of infinite paths ofM
which reach 𝑇 by ♢𝑇 . The vectors

(︁
Pr

max
M,𝑠

(♢𝑇 )
)︁
𝑠∈𝑆 and

(︁
Pr

min
M,𝑠

(♢𝑇 )
)︁
𝑠∈𝑆 containing the optimal

reachability probabilities in each state can be characterized as the solutions of certain linear
programs, and hence computed in polynomial time [CY90, BdeA95, deA97]. As these linear
programs and the underlying systems of linear inequalities will be used extensively throughout
the thesis, we will now explain how they are constructed.



2. Preliminaries 17

Linear program for maximal reachability probabilities. To compute the maximal reachability
probabilities for target set 𝑇 we first compute the set of states 𝑆max=0 ⊆ 𝑆 whose maximal
probability to reach 𝑇 is zero. This holds for state 𝑠 exactly if there is no path from 𝑠 to any
state in 𝑇 in the underlying graph ofM. Hence, 𝑆max=0 can be computed in linear time using
standard graph algorithms. For each remaining state 𝑠 in 𝑆? = 𝑆 \ 𝑆max=0 we introduce a variable
𝑥𝑠 and consider the linear program: minimize

∑︁
𝑠∈𝑆? 𝑥𝑠 such that

𝑥𝑠 ≥
∑︂
𝑠′∈𝑆?

𝑃 (𝑠, 𝛼, 𝑠′) · 𝑥𝑠′ for all 𝑠 ∈ 𝑆? \𝑇, 𝛼 ∈ Act(𝑠),

𝑥𝑠 = 1 for all 𝑠 ∈ 𝑇 .

Intuitively, the linear inequalities require that the value in each state 𝑠 should be at least as high
as the value which is achievable by choosing any of the enabled actions. The minimization
makes sure that the value in 𝑥𝑠 actually corresponds to the value achieved by one of its actions,
and is not artificially high. The vector

(︁
Pr

max
M,𝑠

(♢𝑇 )
)︁
𝑠∈𝑆? is the unique optimal solution of this

linear program [Kal83, BK08].

Linear program for minimal reachability probabilities. A similar linear program can be
given to compute

(︁
Pr

min
M,𝑠

(♢𝑇 )
)︁
𝑠∈𝑆 . Apart from computing 𝑆max=0 we now also compute the set

of states whose minimal probability to reach 𝑇 is zero, which we call 𝑆min=0. This set can be
computed in linear time using graph algorithms [BK08, Lemma 10.110]. Again, we introduce a
variable 𝑥𝑠 for all states 𝑠 in 𝑆? = 𝑆 \ 𝑆max=0 and consider the linear program: maximize

∑︁
𝑠∈𝑆? 𝑥𝑠

such that

𝑥𝑠 ≤
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · 𝑥𝑠′ for all 𝑠 ∈ 𝑆? \𝑇, 𝛼 ∈ Act(𝑠),

𝑥𝑠 = 1 for all 𝑠 ∈ 𝑇,
𝑥𝑠 = 0 for all 𝑠 ∈ 𝑆min=0.

The vector
(︁
Pr

min
M,𝑠

(♢𝑇 )
)︁
𝑠∈𝑆? is the unique optimal solution of the above linear program [BK08].

Reachability form. We will now define a standard form which can be used when considering
reachability properties in MDPs. It comprises several base assumptions that we will make for
MDPs throughout the thesis, and which can always be ensured by a linear time preprocessing.
We will assume the existence of a dedicated state called “target”, which represents the target
set, and a dedicated state called “exit”, which represents all states which cannot reach target at
all. Hence, once “exit” is reached, the future computation is of no interest for the property of
reaching “target”. This is formalized in the following definition.

Definition 2.5 (Reachability form). Let M = (𝑆 ∪ {target, exit},Act, 𝜄, 𝑃) be an MDP. We say
that M is in reachability form for “target” if

• for all 𝑠 ∈ 𝑆 we have Prmax
M,𝑠

(♢{target}) > 0,

• the states “target” and “exit” are absorbing.

When we say that M is in reachability form we will implicitly assume the existence of
states named “target” and “exit” as above. Any MDPM can be transformed into reachability



18 2.2. Markov decision processes

form in linear time by first collapsing all target-states of a given reachability objective into a
single, absorbing state called “target”. Now, the states 𝑠 satisfying Pr

max
𝑠 (♢{target, exit}) = 0

can be computed in linear time, and their incoming transitions can be redirected to the state
“exit”. These transformations clearly preserve both Pr

min
𝑠 (♢ target) and Pr

max
𝑠 (♢ target) for all

remaining states 𝑠 .
The vectors containing the optimal reachability probabilities will be abbreviated by prmax and

pr
min. More precisely, we define prmax

M =
(︁
Pr

max
M,𝑠

(♢ target)
)︁
𝑠∈𝑆 and pr

min
M =

(︁
Pr

min
M,𝑠

(♢ target)
)︁
𝑠∈𝑆 .

If the MDP is clear from the context, we will drop the subscript.

Definition 2.6 (End-component-freeness). An MDPM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) is called
free of end components or EC-free if no state in 𝑆 is included in a proper end component.

Being EC-free is equivalent to satisfying Pr
min
𝑠 (♢{target, exit}) = 1 in each state 𝑠 ∈ 𝑆 , and

in our setting states “target” and “exit” will always be absorbing.

System matrix and target vector. To work conveniently with the linear programs for optimal
reachability probabilities, we now introduce a matrix notation of the underlying systems of
inequalities which is tailored for MDPs with dedicated states “target” and “exit”. For such MDPs
we will consider E to be the enabled state-action pairs of all states excluding these two states.

Definition 2.7 (System matrix and target vector). Let M = (𝑆 ∪ {target, exit},Act, 𝜄, 𝑃) be an
MDP and E ⊆ 𝑆 ×Act its enabled state-action pairs, excluding those of states “target” and “exit”.
The matrix AM ∈ RE×𝑆 , henceforth called the system matrix ofM, is defined as follows:

AM ((𝑠, 𝛼), 𝑡) =
{︄
1 − 𝑃 (𝑠, 𝛼, 𝑠) if 𝑠 = 𝑡,
−𝑃 (𝑠, 𝛼, 𝑡) if 𝑠 ≠ 𝑡 .

The vector tM = (tM (𝑠, 𝛼)) (𝑠,𝛼 ) ∈E ∈ RE , called the target vector ofM, is defined by: tM (𝑠, 𝛼) =
𝑃 (𝑠, 𝛼, target). IfM is clear from the context we will omit the subscripts and write A and t.

LetM = (𝑆 ∪{target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form and A, t be its system
matrix and target-vector. Consider the system of inequalities

Az ≥ t

where z is a column vector of variables of dimension |𝑆 |. It contains the following linear
inequality for each enabled state-action pair (𝑠, 𝛼) :

z(𝑠) ≥ t(𝑠, 𝛼) +
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · z(𝑠′) .

Hence, these inequalities correspond to those of the linear program that characterizes prmax

(after substituting the variable for the state “target” by one). Here we use that all states in 𝑆
have positive maximal probability of reaching target, by assumption that M is in reachability
form.

By similar reasoning, the underlying inequalities of the linear program which characterizes
the minimal reachability probabilities are Az ≤ t together with z(𝑠) = 0 for all 𝑠 ∈ 𝑆min=0. The
following lemma shows that the latter condition is satisfied for all solutions of Az ≤ t if the
MDP is EC-free and in reachability form.



2. Preliminaries 19

Lemma 2.8. LetM = (𝑆 ∪ {target, exit},Act, 𝜄, 𝑃) be an MDP in reachability form and EC-free
and let z ∈ R𝑆 satisfy Az ≤ t. Then, for all 𝑠 ∈ 𝑆 such that Prmin

𝑠 (♢ target) = 0 we have z(𝑠) = 0.

Proof. Take any state 𝑠 satisfying Pr
min
𝑠 (♢ target) = 0 and let𝔖 be a deterministic and memo-

ryless scheduler such that Pr𝔖𝑠 (♢ target) = 0. Such a scheduler exists as optimal reachability
probabilities are always attained by some MD-scheduler [BK08]. Let 𝑅 be the set of states that
lie on some𝔖-path which starts in 𝑠 , but excluding the state “exit”. As Pr𝔖𝑠 (♢ target) = 0 holds,
we have target ∉ 𝑅. Let E𝑅 = {(𝑟,𝔖(𝑟 )) | 𝑟 ∈ 𝑅} be the actions chosen by𝔖 in states 𝑅, and
A
′ = A|E𝑅×𝑅 be the restriction of A to the given dimension. By construction of A, we have

A
′ = I − P

′ for some substochastic matrix P
′ ∈ R𝑅×𝑅≥0 and the identity matrix I of matching

dimension. The value (P′)𝑛 (𝑢, 𝑡) corresponds to the probability of reaching 𝑡 ∈ 𝑅 from 𝑢 ∈ 𝑅
in exactly 𝑛 steps inM under𝔖, for all 𝑛 ≥ 0. AsM is EC-free, the probability of eventually
reaching the set {exit, target} from any state is one under any scheduler. This implies that (P′)𝑛
converges to the zero matrix as 𝑛 goes to infinity, because the states “target” and “exit” are not
included in 𝑅. Let z′ = z|𝑅 be the restriction of z onto 𝑅 and observe that t|𝑅 = 0, as no𝔖-path
from 𝑠 reaches target. This implies that we have z′ ≤ P

′
z
′ (by the assumption Az ≤ t) and thus,

by induction, z′ ≤ (P′)𝑛z′ for all 𝑛 ≥ 1. It follows that z′ is zero in all entries.

It follows that if M is in reachability form and EC-free, then any solution of the system of
inequalities

Az ≤ t

is a feasible solution of the linear program for prmin, and vice versa.
A well-known property of Az ≤ t and Az ≥ t is that their solutions provide point-wise

bounds on the vectors prmin and pr
max, respectively. We recall the argument here for complete-

ness.

Lemma 2.9. Let M = (𝑆 ∪ {target, exit},Act, 𝜄, 𝑃) be an MDP in reachability form. Then, for all
z ∈ R𝑆 :

1. Az ≥ t implies z ≥ pr
max, and

2. if M is EC-free, then Az ≤ t implies z ≤ pr
min.

Proof. We first show (1.) and assume that Az ≥ t holds. Consider the sequence of vectors
z1, z2, . . . (all in R𝑆 ) generated by setting z1 = z and

z𝑖+1(𝑡) = max
𝛼∈Act(𝑡 )

{︁
t(𝑡, 𝛼) +

∑︂
𝑡 ′∈𝑆

𝑃 (𝑡, 𝛼, 𝑡 ′) · z𝑖 (𝑡 ′)
}︁

for all 𝑡 ∈ 𝑆.

One can show by induction that z𝑖+1 ≤ z𝑖 and Az𝑖 ≥ t holds for all 𝑖 ≥ 1.
The limit lim𝑖→∞ z𝑖 is a solution of the equation system

𝑥𝑡 = max
𝛼∈Act(𝑡 )

{︁
t(𝑡, 𝛼) +

∑︂
𝑡 ′∈𝑆

𝑃 (𝑡, 𝛼, 𝑡 ′) · 𝑥𝑡 ′
}︁

for all 𝑡 ∈ 𝑆,

where there is a variable 𝑥𝑡 for each 𝑡 ∈ 𝑆 . It is known that Prmax(♢ target) is the least solution
of this equation system (see [deA97, Theorem 3.9] and [BK08, Theorem 10.100]). Here we use
the assumption that Prmax

𝑡 (♢ target) > 0 holds for each 𝑡 ∈ 𝑆 as M is in reachability form. We
can conclude that z ≥ pr

max.



20 2.2. Markov decision processes

The statement (2.) is shown in essentially the same way. We can apply [BK08, Theo-
rem 10.109] which shows that the corresponding equation system for minimal reachability
probabilities has a unique solution, under the assumption that for all states 𝑠 ∈ 𝑆 satisfying
Pr

min
𝑠 (♢ target) = 0 we have z(𝑠) = 0. But this is guaranteed by Lemma 2.8.

An important property in the context of reachability probabilities is that optimal probabilities
are always attained by some MD-scheduler [BK08, Lemmas 10.102 and 10.113].

Proposition 2.10. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form.
Then, there exist memoryless and deterministic schedulers𝔖min and𝔖max such that(︁

Pr𝔖min
M,𝑠

(♢ target)
)︁
𝑠∈𝑆 = pr

min and
(︁
Pr𝔖max

M,𝑠
(♢ target)

)︁
𝑠∈𝑆 = pr

max,

and, furthermore,𝔖max additionally satisfies Pr𝔖max
M,𝑠

(♢{target, exit}) = 1 for all 𝑠 ∈ 𝑆 .

Proof. The fact that optimal memoryless and deterministic schedulers exist follows from [BK08,
Lemmas 10.102 and 10.113]. We now argue that when considering maximal reachability prob-
abilities, then every optimal scheduler also reaches {target, exit} with probability one from
each state. Let𝔖 be a scheduler satisfying

(︁
Pr𝔖M,𝑠

(♢ target)
)︁
𝑠∈𝑆 = pr

max and assume, for contra-
diction, that Pr𝔖M,𝑠

(♢{target, exit}) < 1 for some 𝑠 ∈ 𝑆 . It follows that there exists an𝔖-path
from 𝑠 to a state 𝑠′ such that Pr𝔖M,𝑠′ (♢{target, exit}) = 0. As M is in reachability form it sat-
isfies Prmax

M,𝑠′ (♢ target) > 0 and hence also Pr
max
M,𝑠′ (♢{target, exit}) > 0. This contradicts the

assumption that Pr𝔖M,𝑠′ (♢ target) = pr
max(𝑠′).

Quotient of maximal end components. We now introduce variants of the quotient of maximal
end components [deA97, CBGK08] in the specific way that we will need them. As before, let
M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP and assume that states “target” and “exit” are
both absorbing. The proper end components induced by these two states will be considered
explicitly in the below construction.

LetD = {(𝐸1, 𝐴1), . . . , (𝐸𝑘 , 𝐴𝑘 )} be a set of end components ofM such that 𝐸1, . . . , 𝐸𝑘 forms
a partition of 𝑆 . We define two versions of the quotient ofM byD which only differ in whether
proper end components get a direct transition to “target” or a direct transition to “exit”. For
𝔱 ∈ {target, exit}, the 𝔱-directed quotient of M by D is the MDP

M𝔱
/D = ({𝐸1, . . . , 𝐸𝑘 , target, exit}, (𝑆 × Act) ∪ {𝜏}, [𝑠𝑖𝑛]D, 𝑃D),

where [𝑠𝑖𝑛]D is the unique 𝐸 such that (𝐸,𝐴) ∈ D and 𝑠𝑖𝑛 ∈ 𝐸, and for all 1 ≤ 𝑖, 𝑗 ≤ 𝑘 :

• 𝑃D
(︁
𝐸𝑖 , (𝑠, 𝛼), 𝐸 𝑗

)︁
=
∑︁
𝑠′∈𝐸 𝑗

𝑃 (𝑠, 𝛼, 𝑠′) if 𝑠 ∈ 𝐸𝑖 and 𝛼 ∈ Act(𝑠) \𝐴𝑖 (𝑠),

• 𝑃D
(︁
𝐸𝑖 , (𝑠, 𝛼), ∗

)︁
= 𝑃 (𝑠, 𝛼, ∗) if 𝑠 ∈ 𝐸𝑖 and ∗ ∈ {target, exit},

• 𝑃D
(︁
𝐸𝑖 , 𝜏, 𝔱

)︁
= 1 if (𝐸𝑖 , 𝐴𝑖) is a proper end component,

• 𝑃D maps to zero in all other cases.

If D is the set of maximal end components, then these are variants of the standard quotient of
maximal end components, and the resulting MDP is EC-free. Internal actions (those that appear
in 𝐴(𝑠), for any 𝑠 ∈ 𝐸) are ignored in the quotient (see the first bullet) and a fresh action 𝜏 is



2. Preliminaries 21

introduced which leads to either “exit” or “target” with probability one and is enabled in each
state corresponding to a proper end component.

If 𝔱 = exit, then optimal probabilities of reaching target are preserved, and if 𝔱 = target,
then optimal probabilities of avoiding exit forever are preserved, in the sense laid out by the
following lemma. This is a standard observation, see for example [deA97, CBGK08].

Lemma 2.11. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) where target and exit are absorbing and let
D = {(𝐸1, 𝐴1), . . . , (𝐸𝑘 , 𝐴𝑘 )} be the maximal end components of M.

1. IfM′ = Mexit
/D , then for all 𝑠 ∈ 𝑆 we have:

Pr
min
M,𝑠

(♢ target) = Pr
min
M′,[𝑠 ]D (♢ target) and Pr

max
M,𝑠

(♢ target) = Pr
max
M′,[𝑠 ]D (♢ target).

2. If M′ = Mtarget
/D , then for all 𝑠 ∈ 𝑆 we have:

Pr
min
M,𝑠

(□¬ exit) = Pr
min
M′,[𝑠 ]D (□¬ exit) and Pr

max
M,𝑠

(□¬ exit) = Pr
max
M′,[𝑠 ]D (□¬ exit) .

Proof. Statement (1.) follows from the correctness of the standard MEC quotient (see [CBGK08,
Theorem 2]). Adding transitions to “exit” has the same effect for the minimal probabilities as
making the corresponding states in the quotient absorbing (see [CBGK08, Remark 3]) and does
not change the maximal probabilities. For statement (2.) we observe that

Pr
min
M,𝑠

(□¬ exit) = 1 − Pr
max
M,𝑠

(♢ exit) and Pr
max
M,𝑠

(□¬ exit) = 1 − Pr
min
M,𝑠

(♢ exit)

holds for all 𝑠 ∈ 𝑆 . Hence the statement follows by applying statement (1.) after interchanging
the roles of “target” and “exit”.

2.2.3 Expected total reward
We will now consider the total expected reward criterion before reaching some dedicated set
of states. An integer reward is associated with each state-action pair (𝑠, 𝛼), which, intuitively,
represents the value that is gained (or lost) each time action 𝛼 is taken in state 𝑠 . In contrast
to the setting of probabilistic reachability we are not interested in what proportion of paths
reaches “target” rather than “exit”, but how much reward is collected in total before leaving the
set of states in which a reward can be collected.

Hence, the distinction between “target” and “exit” is not important and we will only assume
that the state “exit” exists and is reached with probability one by all schedulers. This is equivalent
to requiring that “exit” induces the only proper end component. The choice of using the state
“exit” here rather than “target” will be useful later to provide a unified definition of subsystems
for probabilistic reachability constraints and constraints on the total expected reward.

Definition 2.12 (Reward reachability form). LetM = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃, rew) be an MDP
such that

• state “exit” is absorbing and gives zero reward for all its enabled actions, and

• the only proper end component of M is induced by “exit”.

If rew(𝑠, 𝛼) ≥ 0 holds for all (𝑠, 𝛼) ∈ 𝑆 ×Act, thenM is in nonnegative reward reachability form.



22 2.2. Markov decision processes

LetM = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃, rew) be an MDP in reward reachability form. We define the
reward of a path 𝜋 = 𝑠1𝛼1𝑠2𝛼2 . . . to be rew(𝜋) = ∑︁

1≤𝑖 rew(𝑠𝑖 , 𝛼𝑖). Given 𝑇 ⊆ 𝑆 , consider the
random variable 𝑇 : Paths(M) → Z defined as follows:

𝑇 (𝜋) =
{︄
rew(𝜋) if 𝜋 |= ♢𝑇
undefined otherwise.

In most cases we will have 𝑇 = {exit} and write exit instead of {exit}. Observe that if 𝜋
reaches the state “exit”, then the value rew(𝜋) is finite as “exit” is absorbing.

IfM is a Markov chain, we define the expected total reward as the expected value of exit
in M (when starting in 𝑠𝑖𝑛). IfM is an MDP we define, as in the case of probabilities:

Emax
M ( exit) = sup

𝔖

E𝔖M ( exit) and Emin
M ( exit) = inf

𝔖
E𝔖M ( exit),

where 𝔖 ranges over all schedulers for M. Given a scheduler 𝔖 for M we will use the
abbreviation ex

𝔖
M =

(︁
E𝔖M,𝑠

( exit)
)︁
𝑠∈𝑆 , and in analogous fashion we define the vectors exmax

M =(︁
Emax
M,𝑠

( exit)
)︁
𝑠∈𝑆 and ex

min
M =

(︁
Emin
M,𝑠

( exit)
)︁
𝑠∈𝑆 . If M is clear from the context, we will

sometimes drop the subscripts. The system matrix A for MDPs in reward reachability form is
defined as before (see Definition 2.7). It is not important for this definition that the MDP does
not have a dedicated “target” state.

The following linear program characterizes exmax: minimize
∑︁
𝑠∈𝑆 𝑥𝑠 such that

𝑥𝑠 ≥ rew(𝑠, 𝛼) +
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · 𝑥𝑠′ for all 𝑠 ∈ 𝑆, 𝛼 ∈ Act(𝑠) .

Similarly, exmin is characterized by the linear program: maximize
∑︁
𝑠∈𝑆 𝑥𝑠 such that

𝑥𝑠 ≤ rew(𝑠, 𝛼) +
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · 𝑥𝑠′ for all 𝑠 ∈ 𝑆, 𝛼 ∈ Act(𝑠) .

These results follow from [deA97, Theorem 3.4], see also [BT91, deA99]. If we define the vector
r ∈ RE

≥0 as r(𝑠, 𝛼) = rew(𝑠, 𝛼) for all (𝑠, 𝛼) ∈ E, we may write the above inequalities as

Ax ≥ r and Ax ≤ r,

where A is as defined in Definition 2.7. Vectors satisfying the above systems of inequalities
yield point-wise bounds on the vectors exmax and exmin. The proof is essentially the same as for
the analogous statement for reachability probabilities (Lemma 2.9). Here one uses the fact that
if M is EC-free, then the corresponding Bellman operator has a unique fixpoint (see [BT91]).

Lemma 2.13. Let M = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃, rew) be an MDP in reward reachability form, and
let A and r be defined as above. Then for all z ∈ R𝑆 we have:

• Az ≥ r implies z ≥ ex
max • Az ≤ r implies z ≤ ex

min.

As for reachability probabilities, it is also true that the optimal expected total reward is
attained by memoryless and deterministic schedulers (see [deA97, Theorem 3.4]).



2. Preliminaries 23

Proposition 2.14. Let M = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃, rew) be an MDP in reward reachability form.
Then, there exist memoryless and deterministic schedulers𝔖min and𝔖max such that(︁

E𝔖min
M,𝑠

( exit)
)︁
𝑠∈𝑆 = ex

min and
(︁
E𝔖max
M,𝑠

( exit)
)︁
𝑠∈𝑆 = ex

max.

2.2.4 Expected number of visits

Consider a DTMCM = (𝑆 ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃) such that states “target” and “exit” are absorb-
ing, all states in 𝑆 are reachable from 𝑠𝑖𝑛 in the underlying graph of M, and the probability of
reaching the set {target, exit} from 𝑠𝑖𝑛 is one (i.e., we have Pr𝑠𝑖𝑛 (♢{target, exit}) = 1). In this
section we consider in the following question: if we start in 𝑠𝑖𝑛 , how often will any given state
𝑠 ∈ 𝑆 be visited on average before the process reaches a state in {target, exit}? More formally,
given a state 𝑠 ∈ 𝑆 let us denote by 𝑉𝑠 : Paths(M) → N the random variable which counts how
often a path visited 𝑠 . That is, we define 𝑉𝑠 (𝑠1𝑠2 . . .) = |{𝑖 ∈ N | 𝑠𝑖 = 𝑠}|.

The vector ev ∈ R𝑆 is defined as the vector containing the expected values of 𝑉𝑠 for each
state, more precisely we let ev(𝑠) = EM,𝑠𝑖𝑛 (𝑉𝑠). Our assumptions on M guarantee that ev(𝑠) is
finite for each 𝑠 ∈ 𝑆 , as the probability of visiting 𝑠 infinitely often is zero. We now recall how
the expected number of visits can be computed. Consider the following matrix :

⎛⎜⎝
1 0 0 · · · 0
0 1 0 · · · 0
t e T

⎞⎟⎠
where t ∈ R𝑆 is the target vector (defined by t(𝑠) = 𝑃 (𝑠, target) for all 𝑠 ∈ 𝑆), e contains one-step
probabilities to “exit” (defined by e(𝑠) = 𝑃 (𝑠, exit) for all 𝑠 ∈ 𝑆) and T ∈ R𝑆×𝑆 contains the
probabilities of moving from 𝑠 to 𝑠′ in one step for all pairs of states 𝑠, 𝑠′ ∈ 𝑆 .

By assumption, 𝑆 includes exactly the transient states of M. It follows by standard Markov
chain theory (see, for example, [KS76, Theorem 3.2.1]) that the sequence (T𝑖)𝑖∈N tends to the
zero matrix, and, as a consequence, that I − T has an inverse and satisfies

(I − T)−1 = I + T
1 + T

2 + . . . =
∑︂
𝑖≥0

T
𝑖 .

The matrix F = (I − T)−1 is called the fundamental matrix of M. For any pair of states 𝑠,𝑢 ∈ 𝑆 ,
the entry F(𝑠,𝑢) is exactly the expected number of visits of 𝑢 when starting in state 𝑠 [KS76,
Theorem 3.2.4]. Hence, in particular, we have ev(𝑠) = F(𝑠𝑖𝑛, 𝑠) for all 𝑠 ∈ 𝑆 .

As a consequence, the vector ev can be characterized as follows. The matrix F is the unique
matrix satisfying F(I − T) = I. Then the row of F which corresponds to state 𝑠𝑖𝑛 is the unique
vector satisfying the equation system y(I − T) = 𝛿𝑠𝑖𝑛 , where y = (𝑦𝑠)𝑠∈𝑆 is a vector of variables.
(Recall that 𝛿𝑠𝑖𝑛 is the dirac vector for 𝑠𝑖𝑛 .) This shows the following lemma.

Lemma 2.15. LetM = (𝑆 ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃) be a Markov chain with transient states 𝑆 , and
let T ∈ R𝑆×𝑆 be defined by T(𝑠, 𝑠′) = 𝑃 (𝑠, 𝑠′) for all 𝑠, 𝑠′ ∈ 𝑆 . Then, the vector ev ∈ R𝑆 is the
unique vector satisfying ev(I − T) = 𝛿𝑠𝑖𝑛 .

Writing out the equation system y(I − T) = 𝛿𝑠𝑖𝑛 yields:

𝑦𝑠 = 𝛿𝑠𝑖𝑛 (𝑠) +
∑︂
𝑠′∈𝑆

𝑃 (𝑠′, 𝑠) · 𝑦𝑠′ for all 𝑠 ∈ 𝑆.



24 2.3. Probabilistic timed automata

These equations express that the value in state 𝑠 should be the sum of the values of the prede-
cessors of 𝑠 multiplied by the probabilities on the corresponding edges. Additionally, the value
in state 𝑠𝑖𝑛 is increased by one. This reflects that 𝑠𝑖𝑛 is the starting state and hence has one
guaranteed visit.

The probability of reaching state “target” when starting in 𝑠𝑖𝑛 can be expressed directly in
terms of the values ev(𝑠) as follows:

PrM,𝑠𝑖𝑛 (♢ target) =
∑︂
𝑠∈𝑆

ev(𝑠) · t(𝑠) .

This can be shown formally by first observing that the vector
(︁
PrM,𝑠 (♢ target)

)︁
𝑠∈𝑆 is the unique

solution of the equation system (I−T)x = t. Hence, we have
(︁
PrM,𝑠 (♢ target)

)︁
𝑠∈𝑆 = (I−T)−1 t =

F · t. Now it suffices to observe that the row of F which corresponds to 𝑠𝑖𝑛 is exactly given by
the vector ev, and hence PrM,𝑠𝑖𝑛 (♢ target) = ev · t.

Expected number of visits in MDPs. For MDPs M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) with
enabled actions E we will consider the expected number of visits of state-action pairs (𝑠, 𝛼) ∈ E.
If 𝔖 is a scheduler satisfying Pr𝔖M,𝑠𝑖𝑛

(♢{target, exit}) = 1, then these values can be defined
analogously to the case of Markov chains. That is, we let 𝑉(𝑠,𝛼 ) (𝑠1𝛼1𝑠2𝛼2 . . .) = |{𝑖 ∈ N |
(𝑠𝑖 , 𝛼𝑖) = (𝑠, 𝛼)}| and define ev𝔖 (𝑠, 𝛼) = E𝔖M,𝑠𝑖𝑛

(𝑉(𝑠,𝛼 ) ). For MDPs in reachability form which
are EC-free, and forMDPs in reward reachability form, all schedulers satisfy the above assumption.
This is because the only proper end components are induced by the absorbing states “target”
and “exit” in those cases.

As for Markov chains, the probability of reaching target can be expressed directly in terms
of values ev𝔖 (𝑠, 𝛼). We have:

Pr𝔖M,𝑠𝑖𝑛
(♢ target) =

∑︂
(𝑠,𝛼 ) ∈E

ev
𝔖 (𝑠, 𝛼) · t(𝑠, 𝛼),

where t ∈ RE
≥0 is the target vector as defined in Definition 2.7. Similarly, if M is equipped with

a reward function rew : E → Z, then the expected total reward from 𝑠𝑖𝑛 under scheduler𝔖 is
given by:

E𝔖M,𝑠𝑖𝑛
( {target, exit}) =

∑︂
(𝑠,𝛼 ) ∈E

ev
𝔖 (𝑠, 𝛼) · rew(𝑠, 𝛼) .

2.3 Probabilistic timed automata

Probabilistic timed automata are a model of computation which extend Markov decision pro-
cesses by incorporating continuous time. This is done using a set of real-valued clock variables,
which can be reset to zero and used in transition guards.

2.3.1 Definitions

We fix a finite set of clocks Cl = {𝑐0, 𝑐1, ..., 𝑐𝑛}, where by convention 𝑐0 is a designated clock
always representing the value 0. This allows encoding absolute and relative time bounds in a
uniform manner. A valuation of Cl is a map 𝑣 : Cl → R≥0 such that 𝑣 (𝑐0) = 0. The set of all
valuations of Cl is denoted by Val(Cl). For a valuation 𝑣 and 𝑡 ∈ R≥0 we denote by 𝑣 + 𝑡 the



2. Preliminaries 25

valuation satisfying (𝑣 + 𝑡) (𝑐) = 𝑣 (𝑐) + 𝑡 for all 𝑐 ∈ Cl \ {𝑐0}. Given 𝐶 ⊆ Cl we let 𝑣 [𝐶 := 0] be
the reset valuation defined by 𝑣 [𝐶 := 0] (𝑐) = 0 for 𝑐 ∈ 𝐶 and 𝑣 [𝐶 := 0] (𝑐) = 𝑣 (𝑐) for 𝑐 ∉ 𝐶 .

The set of clock constraints CC(Cl) is formed according to the following grammar:

𝑔 ::= true | false | 𝑐 − 𝑐′ ∼ 𝑥 | 𝑔 ∧ 𝑔,

where 𝑐, 𝑐′ ∈ Cl, 𝑥 ∈ Z∪{∞,−∞}, and ∼ ∈ {≤, <, ≥, >}. A valuation 𝑣 satisfies a clock constraint
𝑔, written as 𝑣 |= 𝑔, if replacing every clock variable 𝑐 in 𝑔 with the value 𝑣 (𝑐) leads to a true
formula. We define Val(𝑔) = {𝑣 ∈ Val(Cl) | 𝑣 |= 𝑔} and write 𝑔1 ⊩ 𝑔2 if Val(𝑔1) ⊆ Val(𝑔2) holds,
and 𝑔1 ≡ 𝑔2 if Val(𝑔1) = Val(𝑔2) holds. A subset 𝑍 ⊆ Val(Cl) is called a zone if 𝑍 = Val(𝑔) for
some clock constraint 𝑔.

Definition 2.16. A probabilistic timed automaton (PTA) is a tuple T = (Loc,Cl,Act, inv,𝑇 , 𝑙𝑖𝑛),
where

• Loc, Cl and Act are finite sets of locations, clocks and actions, respectively,

• inv : Loc → CC(Cl) is the invariant condition,

• 𝑇 : Loc×Act → CC(Cl) × Dist(2Cl × Loc) is the transition function, and

• 𝑙𝑖𝑛 is the initial location, for which we assume that 0 |= inv(𝑙𝑖𝑛). Here 0 is the valuation in
which each clock is mapped to zero.

We will assume that inv(𝑙) ≢ false holds for all 𝑙 ∈ Loc.

An action 𝛼 ∈ Act is said to be enabled in location 𝑙 ∈ Loc if𝑇 (𝑙, 𝛼) = (𝑔, 𝜇) implies𝑔 ≢ false.
We denote by Act(𝑙) the actions enabled in 𝑙 and we assume that Act(𝑙) ≠ ∅ for each 𝑙 ∈ Loc.
Given a PTA T , we let Loc(T ) be the locations of T . A transition𝑇 (𝑙, 𝛼) = (𝑔, 𝜇) is also denoted
by 𝑙

𝛼 : 𝑔
−→ 𝜇 and the clock constraint 𝑔 is called the guard. We say that a location 𝑙 ∈ Loc is

absorbing if for all 𝛼 ∈ Act and𝑇 (𝑙, 𝛼) = (𝑔, 𝜇) the support of 𝜇 contains no other locations than
𝑙 . That is, an execution of T can never leave 𝑙 after entering this location. The semantics of a
PTA is given in terms of a timed probabilistic system, which is introduced next.

Timed probabilistic systems. A timed probabilistic system (TPS) is a tuple S = (𝑆,Act′,𝑇 , 𝑠𝑖𝑛),
where 𝑆 is a (possibly infinite) set of states, Act′ = Act∪ R>0 is a set of actions (Act is assumed
to be finite and disjoint with R>0), 𝑇 : 𝑆 × Act′ → Dist(𝑆) ∪ {0} is the probabilistic transition
function, and 𝑠𝑖𝑛 the initial state. We say that 𝛼 ∈ Act′ is enabled in 𝑠 if 𝑇 (𝑠, 𝛼) ≠ 0 holds, and
denote by Act′(𝑠) the set of enabled actions in state 𝑠 .

We assume that 𝜇 has finite support whenever 𝑇 (𝑠, 𝛼) = 𝜇 for some 𝛼 ∈ Act′(𝑠). Instead
of writing 𝑇 (𝑠, 𝛼) = 𝜇, we will sometimes use the notation 𝑠 𝛼−→ 𝜇 ∈ 𝑇 . Transitions whose
action is in R>0 are called time delays and transitions with actions in Act are called discrete
actions. Timed probabilistic systems can be viewed as a kind of MDP with possibly uncountable
state space, and schedulers for them are defined precisely as for MDPs. A scheduler𝔖 for S is
said to be time-divergent if for almost every path compatible with𝔖 the corresponding series
of time delays is divergent. Optimal reachability probabilities Pr𝔪S,𝑠 (♢𝐺), for 𝔪 ∈ {min,max}
and 𝐺 ⊆ 𝑆 , are defined as for MDPs, but with the quantification restricted to time-divergent
schedulers.



26 2.3. Probabilistic timed automata

The semantics of PTA. We now present the semantics of PTA in terms of timed probabilistic
systems, which is tailored to the special context of reachability queries. A pointed PTA T is
a PTA T = (Loc,Cl,Act, inv,𝑇 , 𝑙𝑖𝑛) which includes the two distinguished absorbing locations
target, exit ∈ Loc. The semantics of a pointed PTA is the TPS S(T ) = (𝑆,Act′,𝑇sem, 𝑠𝑖𝑛) with
𝑆 = {(𝑙, 𝑣) ∈ Loc×Val(Cl) | 𝑣 |= inv(𝑙)}, Act′ = Act∪R>0, 𝑠𝑖𝑛 = (𝑙𝑖𝑛, 0), and 𝑇sem : 𝑆 × Act′ →
Dist(𝑆) ∪ {0} is the function defined by the inference rules

𝑡 ∈ R>0, ∀𝑡 ′ ≤ 𝑡 . 𝑣 + 𝑡 ′ |= inv(𝑙)
(𝑙, 𝑣) 𝑡−→ 𝛿 (𝑙, 𝑣+𝑡 ) ∈ 𝑇sem

and
𝑙
𝛼 : 𝑔
−→ 𝜇 ∈ 𝑇, 𝑣 |= 𝑔

(𝑙, 𝑣) 𝛼−→ 𝜇sem ∈ 𝑇sem
, where

𝜇sem(𝑙 ′, 𝑣 ′) =
∑︂
(𝐶,𝑙 ′ )

𝑣′=𝑣 [𝐶 :=0]

𝜇 (𝐶, 𝑙 ′) for 𝑙 ′ ≠ exit and 𝑣 ′ |= inv(𝑙 ′), and (2.1)

𝜇sem(exit, 𝑣 ′) =
∑︂

(𝐶,exit)
𝑣′=𝑣 [𝐶 :=0]

𝜇 (𝐶, exit) +
∑︂

(𝐶,𝑙 ′ ), 𝑙 ′≠exit
𝑣′=𝑣 [𝐶 :=0] ̸ |=inv(𝑙 ′ )

𝜇 (𝐶, 𝑙 ′) . (2.2)

If
(︁
(𝑙, 𝑣), 𝛼

)︁
∈ Loc×Val(Cl) × Act′ does not satisfy any precondition of the rules above, we

require 𝑇sem
(︁
(𝑙, 𝑣), 𝛼

)︁
= 0.

Typically, the semantics of a PTA is only defined if it is well-formed, which means that no
transition leads to a violation of the invariant condition of the successor location. We relax this
condition and, in the case that 𝑣 ′ = 𝑣 [𝐶 := 0] ̸|= inv(𝑙 ′) holds, add the probability of (𝐶, 𝑙 ′) to
the edge (𝑙, 𝑣) 𝛼−→ (exit, 𝑣 ′) (this is the second sum in Equation (2.2)). The intuition is that if
an edge is taken which leads to a state which does not satisfy the invariant of the successor
location, then that should be counted as failure, which in our context can be represented by
redirecting the transition to “exit”.

We define the set of target-states in S(T ) to be targetS(T) = {(𝑙, 𝑣) ∈ 𝑆 | 𝑙 = target}. For
𝔪 ∈ {min,max} the probability to reach target in T is defined as

Pr
𝔪
T,𝑙𝑖𝑛 (♢ target) = Pr

𝔪
S(T),𝑠𝑖𝑛 (♢ targetS(T) ) .

Probabilistic time-abstracting bisimulation. A probabilistic time-abstracting bisimulation
(PTAB) on a TPS S = (𝑆,Act∪R>0,𝑇 , 𝑠𝑖𝑛) is an equivalence relation ∼ on 𝑆 such that if 𝑠 ∼ 𝑠′
we have:

1. for any time delay 𝑠 𝑡→ 𝑢 there exists a time delay 𝑠′ 𝑡 ′→ 𝑢′ such that 𝑢 ∼ 𝑢′;

2. for any discrete action 𝑠 𝛼→ 𝜇, there exists a discrete action 𝑠′ 𝛼→ 𝜇′ such that for all
𝐸 ∈ 𝑆/∼ we have

∑︁
𝑡 ∈𝐸 𝜇 (𝑡) =

∑︁
𝑡 ∈𝐸 𝜇

′(𝑡).

See [CHK08] for additional details. We let [𝑠] be the equivalence class of ∼ which includes 𝑠 .
For the next definition we need the following notion: An equivalence class [𝑠] of ∼ is called

unbounded if there exists a path through [𝑠] which takes only time delay transitions and is time
divergent (i.e., the induced series of time delays diverges). The quotient of S by ∼ is the Markov
decision process S/∼= (𝑆/∼, Act∪{𝜏𝐸 | 𝐸 ∈ 𝑆/∼}, [𝑠𝑖𝑛], 𝑃) where 𝑃 is defined as follows. For



2. Preliminaries 27

any transition 𝑇 (𝑠, 𝛼) = 𝜇 of S such that 𝜇 ≠ 0, we define:

𝑃 ( [𝑠], 𝛼, [𝑠′]) =
∑︂
𝑡 ∈[𝑠′ ]

𝜇 (𝑡) .

If 𝑇 (𝑠, 𝛼) = 0, then 𝑃 ( [𝑠], 𝛼, [𝑠′]) = 0 for all [𝑠′] ∈ 𝑆/∼. Furthermore, we let:

𝑃 ( [𝑠], 𝜏[𝑠′ ], [𝑠′]) =

{︄
1 if ∃𝑡 ∈ R>0 s.t. 𝛿𝑠′ ∈ 𝑇 (𝑠) and ( [𝑠] ≠ [𝑠′] or [𝑠] is unbounded )
0 otherwise

The above definitions are well-defined as ∼ is a time-abstracting bisimulation. Excluding 𝜏-
transitions satisfying [𝑠] = [𝑠′] if [𝑠] is bounded is supported by the fact that only time-divergent
schedulers are considered in timed probabilistic systems. If [𝑠] is bounded, then time-divergent
schedulers cannot stay forever in [𝑠] by taking only time delays.

Let us assume that S is the semantics of a pointed PTA and therefore has states of the type
𝑆 = {(𝑙, 𝑣) ∈ Loc×Val(Cl) | 𝑣 |= inv(𝑙)} with distinguished locations target, exit ∈ Loc. Then
we say that a PTAB ∼ on S respects target and exit if whenever (𝑙, 𝑣) ∼ (target, 𝑣 ′) holds, then
so does 𝑙 = target, and likewise for exit. If ∼ has this property, we denote by “target” the set
of states [𝑠] of S/∼ such that 𝑠 = (target, 𝑣) for some 𝑣 ∈ Val(Cl), and analogously for “exit”.
More generally, the bisimulation ∼ is said to distinguish locations if whenever (𝑙, 𝑣) ∼ (𝑙 ′, 𝑣 ′)
holds, then 𝑙 = 𝑙 ′. We say that ∼ is PTAB on the PTA T if ∼ is a PTAB on S(T ). The following
is a standard result on probabilistic time-abstracting bisimulation [CHK08].

Lemma 2.17. Let S be a TPS and ∼ a PTAB on S which respects target and exit. Then for all 𝑠 ∈ 𝑆
and 𝔪 ∈ {min,max} we have

Pr
𝔪
S,𝑠 (♢ target) = Pr

𝔪
S/∼,[𝑠 ] (♢ target) .

Region equivalence. A special PTAB is the region equivalence [AD94, BK08]. Let T be a
PTA over clocks Cl, and 𝐾 be the largest number which appears in any clock constraint in the
description of T . For the following definition, let frac(𝑎) denote the fractional part of 𝑎 ∈ R,
i.e., frac(𝑎) = 𝑎 − ⌊𝑎⌋. Then, clock valuations 𝑣1, 𝑣2 ∈ Val(Cl) are called region-equivalent if one
of the two following conditions hold:

• for all 𝑐 ∈ Cl \ {𝑐0} we have 𝑣1(𝑐) > 𝐾 and 𝑣2(𝑐) > 𝐾 , or
• for all 𝑐, 𝑐′ ∈ Cl all of the following hold:

– ⌊𝑣1(𝑐)⌋ = ⌊𝑣2(𝑐)⌋,
– frac(𝑣1(𝑐)) = 0 if and only if frac(𝑣2(𝑐)) = 0, and
– frac(𝑣1(𝑐)) ≤ frac(𝑣1(𝑐′)) if and only if frac(𝑣2(𝑐)) ≤ frac(𝑣2(𝑐′)).

The region equivalence is a PTAB [CHK08], and the number of its equivalence classes is
exponential in the size of the PTA [AD94].

2.3.2 Difference bounds matrices

A common data structure to represent clock constraints are difference bounds matrices (DBMs).
A DBM is a Cl × Cl-matrix𝑀 over (Z ∪ {∞,−∞}) × {<, ≤}. The entry𝑀𝑖 𝑗 = (𝑎, ⊳) represents



28 2.3. Probabilistic timed automata

the constraint 𝑐𝑖 − 𝑐 𝑗 ⊳ 𝑎. For example, consider the following clock constraint over clocks
Cl = {𝑐0, 𝑐1, 𝑐2}:

𝑐1 − 𝑐0 ≤ 5 ∧ 𝑐2 − 𝑐1 ≤ −2 ∧ 𝑐1 − 𝑐2 < 3

It corresponds to the DBM: ⎛⎜⎝
(∞, <) (∞, <) (∞, <)
(5, ≤) (∞, <) (3, <)
(∞, <) (−2, ≤) (∞, <)

⎞⎟⎠
As 𝑐0 is mapped to zero in every valuation, the above constraints represents the formula

𝑐1 ≤ 5 ∧ 2 ≤ 𝑐1 − 𝑐2 < 3.

In general, a DBM𝑀 with entries𝑀𝑖 𝑗 = (⊳𝑖 𝑗 , 𝑎𝑖 𝑗 ) corresponds to the clock constraint⋀︂
0≤𝑖, 𝑗≤𝑛

𝑐𝑖 − 𝑐 𝑗 ⊳𝑖 𝑗 𝑎𝑖 𝑗 .

We define Val(𝑀) to be the set of valuations which satisfy the clock constraint one gets in this
way from𝑀 .

To compare DBMs and their entries, we define ⪯ to be the lexicographic order on (Z ∪
{∞,−∞}) × {<, ≤} in which < is strictly less than ≤. This order can be extended naturally to a
partial order on DBMs by entry-wise comparison.

Operations on difference bounds matrices. All min and max operators in this section use the
order ⪯ as defined above. The operations + and ⊓ on (Z ∪ {∞,−∞}) × {<, ≤} are defined as
follows (see [Dil90]):

(𝑎, ⊳1) + (𝑏, ⊳2) = ( 𝑎 + 𝑏, min{⊳1, ⊳2} )
(𝑎, ⊳1) ⊓ (𝑏, ⊳2) = min{ (𝑎, ⊳1), (𝑏, ⊳2) }

The operations are lifted to DBMs by letting ⊓ be the entry-wise application of ⊓ and + be a
matrix multiplication which uses the scalar operations ⊓ (for addition) and + (for multiplication).
More precisely, given two DBMs𝑀 and 𝑁 over a set of clocks Cl = {𝑐0, 𝑐1, . . . 𝑐𝑛} we define:(︁

𝑀 ⊓ 𝑁
)︁
𝑖 𝑗

= 𝑀𝑖 𝑗 ⊓ 𝑁𝑖 𝑗 , and(︁
𝑀 + 𝑁

)︁
𝑖 𝑗

=
⨅︁

0≤𝑘≤𝑛
(𝑀𝑖𝑘 +𝑀𝑘 𝑗 ),

for all 0 ≤ 𝑖, 𝑗 ≤ 𝑛.

Canonical difference bounds matrices. The same zone can be represented using different
DBMs. In particular it can happen that some constraint can be tightened in a DBM without
changing the set of accepting valuations, as the tighter bound was already implied by the other
constraints. To get a canonical representation for a DBM𝑀 , [Dil90] defines

𝑀∗ = 𝑀0 ⊓𝑀1 ⊓ . . . , where 𝑀𝑖 = 𝑀 +𝑀 + . . . +𝑀⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑖-times

.



2. Preliminaries 29

We have Val(𝑀) = Val(𝑀∗) for all DBMs M. Furthermore, two DBMs𝑀 and 𝑁 with Val(𝑀) =
Val(𝑁 ) ≠ ∅ satisfy𝑀∗ = 𝑁 ∗ and𝑀∗ can be computed in polynomial time given𝑀 [Dil90].

To an arbitrary nonempty set of clock valuations 𝑅 ⊆ Val(Cl) we also associate a canonical
DBM𝑀𝑅 . It’s entries are defined as follows for all 𝑐𝑖 , 𝑐 𝑗 ∈ Cl:

(𝑀𝑅)𝑖 𝑗 =
(︁
sup {𝑣 (𝑐𝑖) − 𝑣 (𝑐 𝑗 ) | 𝑣 ∈ 𝑅}, ⊳

)︁
,

where ⊳ = ≤ exactly if the supremum is attained in 𝑅, and otherwise ⊳ = <. The following
lemma shows that𝑀𝑅 is the smallest zone which includes 𝑅 and satisfies𝑀∗

𝑅
= 𝑀𝑅 .

Lemma 2.18. Let 𝑅 ⊆ Val(Cl) be a nonempty set of valuations. Then the following hold:

1. 𝑅 ⊆ Val(𝑀𝑅),
2. 𝑀∗

𝑅
= 𝑀𝑅 ,

3. Val(𝑀𝑅) is the smallest zone in Val(Cl) which contains 𝑅, and

4. for any DBM𝑀 with𝑀 = 𝑀∗ and Val(𝑀) ≠ ∅, we have𝑀 = 𝑀Val(𝑀 ) .

Proof. (1.) It is clear from the definition that all valuations in 𝑅 satisfy the clock constraint
induced by𝑀𝑅 , so we have 𝑅 ⊆ Val(𝑀𝑅).

(2.) Suppose for contradiction that𝑀𝑅 ≠ 𝑀∗
𝑅
. Since𝑀∗ ⪯ 𝑀 holds for any DBM, we must

have a strict inequality 𝑀∗
𝑅
≺ 𝑀𝑅 . Hence there exists a pair of indices 𝑖, 𝑗 such that (𝑀∗

𝑅
)𝑖 𝑗 ≺

(𝑀𝑅)𝑖 𝑗 . Let 𝑖, 𝑗 be such a pair, which means that we have (𝑀∗
𝑅
)𝑖 𝑗 = (𝑏1, ⊳1) < (𝑏2, ⊳2) = (𝑀𝑅)𝑖 𝑗 .

We first consider the case that 𝑏1 < 𝑏2. Take 𝜖 > 0 small enough such that 𝑏1 + 𝜖 < 𝑏2. By
the definition of 𝑀𝑅 we have 𝑏2 = sup{𝑣 (𝑖) − 𝑣 ( 𝑗) | 𝑣 ∈ 𝑅}, so there exists 𝑣 ∈ 𝑅 such that
𝑣 (𝑖) − 𝑣 ( 𝑗) > 𝑏2 − 𝜖 = 𝑏1. This would entail 𝑣 ∉ Val(𝑀∗

𝑅
) = Val(𝑀𝑅), which contradicts

𝑅 ⊆ Val(𝑀𝑅). Now consider the case that 𝑏1 = 𝑏2, ⊳1 = < and ⊳2 = ≤. There must exist 𝑣 ∈ 𝑅
such that 𝑣 (𝑖) − 𝑣 ( 𝑗) = 𝑏1 = 𝑏2. But this point will not be contained in Val(𝑀∗

𝑅
) due to the strict

inequality, which results once more in a contradiction. This concludes the proof of𝑀𝑅 = 𝑀∗
𝑅
.

(3.) First consider the case that 𝑅 itself is a zone, so 𝑅 = Val(𝑔) for some clock constraint 𝑔.
Let 𝑀𝑔 be the associated DBM. One proves along similar lines as in (2.) that 𝑀𝑅 ⪯ 𝑀𝑔 holds.
This implies that 𝑅 ⊆ Val(𝑀𝑅) ⊆ Val(𝑀𝑔) = Val(𝑔) = 𝑅, and hence 𝑅 = Val(𝑀𝑅).

For general 𝑅, let 𝑍 ⊆ Val(Cl) be any zone with 𝑅 ⊆ 𝑍 . Then 𝑍 = Val(𝑀𝑍 ) holds for the
canonical DBM 𝑀𝑍 of 𝑍 , as shown in the previous paragraph. From 𝑅 ⊆ 𝑍 , we clearly have
𝑀𝑅 ⪯ 𝑀𝑍 and thus Val(𝑀𝑅) ⊆ Val(𝑀𝑍 ) = 𝑍 . Therefore, any zone containing 𝑅 must also
contain Val(𝑀𝑅).

(4.) Let 𝑍 = Val(𝑀). Since 𝑍 is a zone, by part (3) we have Val(𝑀𝑍 ) = 𝑍 = Val(𝑀). It
follows then from part (2) that𝑀𝑍 = 𝑀∗

𝑍
= 𝑀∗ = 𝑀 .

Time closure operation on DBMs. The time closure on DBMs is the unary operation ↑ defined
by (↑𝑀)𝑖 𝑗 = 𝑀𝑖 𝑗 if 𝑗 ≠ 0 and (↑𝑀)𝑖0 = (∞, <) otherwise. In words, the time closure removes
absolute time bounds on the clocks in Cl. It reflects the semantic time closure operation on
subsets 𝑅 ⊆ Val(Cl) defined by ↑𝑅 = {𝑣 + 𝑡 ∈ Val(Cl) | 𝑣 ∈ 𝑅 and 𝑡 ≥ 0} [BY04].

Lemma 2.19. For any DBM𝑀 with𝑀 = 𝑀∗ and Val(𝑀) ≠ ∅, we have Val(↑𝑀) = ↑Val(𝑀).



Chapter 3

Farkas certificates

As modern software and hardware systems grow more and more complex, they inevitably
become harder to understand and analyze. This is a phenomenon that applies both to the
ability of human users to judge the correctness of an implementation and to the applicability
of automated verification methods. In the context of machine learning, usually no classical
description exists at all of the algorithms which are deployed. In such cases the challenge of
guaranteeing correctness of its results is even bigger. When applying complex algorithms to
formally verify systems, it is even more important that the results of a concrete implementation
can be trusted.

A well-knownmethodology to tackle this problem is that of certifying algorithms [MMNS11].
Certifying algorithms produce, along with the result of the computation, a certificate which
proves that the result is correct. In this way, arbitrarily complex implementations can be used
to solve a problem, while maintaining a high level of assurance in the results. If certifying
algorithms are employed, a user of verification technology can independently ensure themselves
that the outcome of the computation is valid. This greatly increases the trust that can be put
into the system, and decreases the impact of bugs.

This chapter considers the problem of certifying that a probabilistic reachability constraint
is satisfied by a Markov decision process. Probabilistic reachability constraints are threshold
constraints on the optimal reachability probabilities in some distinguished state, and allow
expressing properties such as “in the worst case, the failure probability of the system is at most
𝜖”, or, “there exists a scheduler which ensures reaching a good state with probability at least 𝜆”.
Here by “optimal” we always mean either minimal or maximal, depending on the constraint
one wants to specify.

While computing the optimal reachability probabilities (and hence also verifying probabilis-
tic reachability constraints) can be done in polynomial time, doing so efficiently for very large
systems is not trivial. A technique which scales well and is used by modern model checkers is to
approximate the optimal values using value iteration [Put94, FKNP11]. An issue in this context
is that it is hard to decide when the approximation is good enough, and it has been demon-
strated that using naïve stopping criteria can lead to results which are far from the optimal
value [HM14]. This issue has been addressed in multiple works [HM14, BKL+17, QK18, HK20].

30



3. Farkas certificates 31

Table 3.1: Overview of Farkas certificates for the different types of probabilistic reachability
constraints (here ≲ ∈ {≤, <} and ≳ ∈ {≥, >}) in an EC-free MDP M in reachability form with
system matrix A and target vector t. Here E denotes the enabled state-action pairs of M and 𝑆
its states excluding the dedicated states “target” and “exit”.

constraint certificate dimension certificate condition

Pr
min
𝑠𝑖𝑛

(♢ target) ≳ 𝜆 z ∈ R𝑆≥0 Az ≤ t ∧ z(𝑠𝑖𝑛) ≳ 𝜆

Pr
max
𝑠𝑖𝑛

(♢ target) ≳ 𝜆 y ∈ RE
≥0 yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≳ 𝜆

Pr
min
𝑠𝑖𝑛

(♢ target) ≲ 𝜆 y ∈ RE
≥0 yA ≥ 𝛿𝑠𝑖𝑛 ∧ yt ≲ 𝜆

Pr
max
𝑠𝑖𝑛

(♢ target) ≲ 𝜆 z ∈ R𝑆≥0 Az ≥ t ∧ z(𝑠𝑖𝑛) ≲ 𝜆

In view of these complications which come up when solving the model checking problems in
practice, it becomes clear that the ability to independently validate the results of a probabilistic
model checker is extremely valuable.

To define certificate conditions for all types of probabilistic reachability constraints, we
build upon the well-known characterizations of optimal reachability probabilities using linear
programming [Kal83, Kal94]. Consequently, the certificates that we introduce are solutions
of systems of linear inequalities. A key tool which we use to cover all cases is Farkas’ lemma
and variants thereof, and hence the certificates are named Farkas certificates. Table 3.1 gives
an overview of how Farkas certificates are defined using the system matrix A and the target
vector t of an MDP in reachability form. The definition as stated in Table 3.1 hold only for
end component free MDPs. The structure of the definition stays the same for arbitrary MDPs
in reachability form, but it requires computing the maximal end components beforehand and
uses the restriction of the system matrix to states not included in proper end components
(see Definition 3.23).

Farkas certificates can be used to design certifying model checking procedures for prob-
abilistic reachability constraints as follows. Given a constraint, say Pr

min
𝑠𝑖𝑛

(♢ target) ≥ 𝜆, one
can check whether it holds in the system using two methods. Either, one checks whether
Az ≤ t∧ z(𝑠𝑖𝑛) ≥ 𝜆 is satisfiable, or whether yA ≥ 𝛿𝑠𝑖𝑛 ∧yt < 𝜆 is unsatisfiable. The first method
is certifying for positive answers (i.e., it provides a certificate for Prmin

𝑠𝑖𝑛
(♢ target) ≥ 𝜆), while

the second is certifying for negative answers (by providing a certificate for Prmin
𝑠𝑖𝑛

(♢ target) < 𝜆).
Validating certificates produced in this way is simple: one only has to check whether the vector
indeed satisfies the linear inequalities. This can be done in linear time and, in particular, is
considerably easier than computing the optimal reachability probability, which requires solving
a linear program.

Related work

Certifying algorithms. The idea of certifying algorithms as a means for reliable software was
first developed within the Leda-platform [MN99], in particular in the papers [MN98, MNS+99].
Later, the name certifying algorithm was coined in [KMMS06] and a comprehensive survey
can be found in [MMNS11]. A key result of these works is that even for problems which are
solvable in polynomial time it is hugely beneficial to produce a certificate which is easy to
validate independently (usually this means “in linear time”). For linear programming, [MMNS11,



32

Section 8.2] describes a certifying algorithm which is based on solving the primal and the dual
program. A pair of solutions to both programs yields an easy-to-validate certificate. In contrast,
the Farkas certificates introduced in this section are based on either the primal or the dual
formulation of a linear program (but not both) and allow many more solutions, in general. Their
derivation is based on MDP-specific properties of the considered systems of linear inequalities.
See also [And01] for a discussion on certifying LP-solver results.

In the model checking context, counterexamples can be viewed as witnesses for negative
model checking results and have been studied extensively in various domains [CV03], including
for probabilistic systems [HK07a, AL09, ÁBD+14,WJÁ+14, Jan15]. The counterexamples studied
for probabilistic systems are, in general, not certificates, in the sense that validating them is not
significantly easier than checking that the property is violated in the original system. To certify
a positive (non-probabilistic) model checking result the main approaches either construct a
proof of the property [Nam01, PPZ01, BMS+17, GRT18] or provide rank-based certificates, for
example to certify emptiness of an automaton [KV04].

Farkas-based certificates. Farkas’ lemma and its numerous generalizations (see [DJ14]) are a
well-known source of certificates and have been applied in many contexts. A notable application
in computer science is the automatic generation of inductive invariants. This line of work was
kicked off by [CSS03, SSM04], which use Farkas’ lemma to encode the synthesis problem of
a linear inductive invariant for linear transition systems as a satisfiability problem of a set of
non-linear constraints. The approach has also been used for invariant generation of probabilistic
programs [KMMM10, CNŽ17].

Linear-programming based solutions for MDPs. Linear programming is one of the main
approaches to tackle optimization problems arising in MDPs, and the method has been studied
extensively [Kal83, Kal94, Put94, deA97]. Many of our results use fundamental techniques
that have been established in this area. The correspondence between (certain types of) Farkas
certificates and schedulers is based on the standard correspondence between the dual LP for
reachability probabilities and transient memoryless schedulers described in [Kal83]. Our results
differ mainly in the following ways. First, we lift the assumption that all states are in the
support of the initial distribution, and this implies that certain solutions no longer correspond
to a scheduler. Second, we consider also solutions of a version of the dual program in which
equalities are replaced by inequalities (see Lemma 3.17). Third, we analyze in detail the role
that end components play in this correspondence. In general, our work puts an emphasis on
certifying algorithms, which have not been studied before in this context.

Reliable probabilistic model checking. As linear programming based approaches to solve
MDP model checking do not scale to very large systems at the moment [FKNP11] and do not
work well for symbolically represented systems, modern probabilistic model checkers such
as Prism [KNP11] and Storm [DJKV17] include algorithms based on value iteration. It was
shown in [HM14] that naïve stopping criteria can lead to results which are far off from the
optimum, which motivated interval iteration [HM14]. Interval iteration is an algorithm based
on value iteration which returns an interval which is guaranteed to contain the optimal value.
Further techniques on making algorithms based on value iteration both efficient and reliable
were developed in [QK18, HK20], and [BKL+17] considers the same problem for the expected
total reward.



3. Farkas certificates 33

Outline

We start by defining probabilistic reachability constraints and relating them to threshold prop-
erties on the probability achieved by schedulers of the MDP, which are either existentially or
universally quantified. Section 3.1.1 defines Farkas certificates for EC-free MDPs, first for the
universal statements and then for the existential statements. The certificates for the universal
statements are derived using the linear programming characterization (Proposition 3.1). Using
this fact together with a variant of Farkas’ lemma, certificates for the existential statements are
derived in Proposition 3.4. In Section 3.1.2, a correspondence between Farkas certificates for
existential statements and the expected number of visits under certain schedulers is established.
Then, Section 3.1.3 lifts the results to MDPs which are not EC-free, and gives the general
definition of Farkas certificates (Definition 3.23) and the proof that they indeed certify the corre-
sponding properties (Theorem 3.24). As computing the maximal end components is necessary to
derive the defining inequalities of Farkas certificates in the general case, Section 3.1.4 proposes
a certifying algorithm for this problem. Finally, Section 3.2 discusses how similar results can be
obtained for constraints on the total expected reward, and Section 3.3 is concerned with how to
compute and validate Farkas certificates in practice.

Relation to published work

Farkas certificates were introduced in [FJB20], which is joint work with Florian Funke and
Christel Baier, and has been published at TACAS 2020. This chapter extends the results of [FJB20]
by also considering MDPs with proper end components (Section 3.1.3), discussing how the
computation of maximal end components can be certified (Section 3.1.4) and considering the
expected total reward criterion (Section 3.2). Section 3.3 on computing and validating Farkas
certificates partly builds on [JHFB20], which is joint work with Hans Harder, Florian Funke
and Christel Baier, and was published at FMCAD 2020. The discussion on how to use value- or
policy-iteration to compute Farkas certificates is novel.

3.1 Farkas certificates for probabilistic reachability constraints

Throughout this section we will consider an MDPM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) in reacha-
bility form (see Definition 2.5) with a single initial state 𝑠𝑖𝑛 . The aim is to establish certificates
for all types of probabilistic reachability constraints. These are statements of the following
form, where ≲ ∈ {≤, <}, ≳ ∈ {≥, >} and 𝜆 ∈ [0, 1]:

I. All schedulers𝔖 forM satisfy Pr𝔖𝑠𝑖𝑛 (♢ target) ≳ 𝜆 (i.e., Pr
min
𝑠𝑖𝑛

(♢ target) ≳ 𝜆).

II. All schedulers𝔖 forM satisfy Pr𝔖𝑠𝑖𝑛 (♢ target) ≲ 𝜆 (i.e., Pr
max
𝑠𝑖𝑛

(♢ target) ≲ 𝜆).

III. Some scheduler𝔖 forM satisfies Pr𝔖𝑠𝑖𝑛 (♢ target) ≳ 𝜆 (i.e., Pr
max
𝑠𝑖𝑛

(♢ target) ≳ 𝜆).

IV. Some scheduler𝔖 forM satisfies Pr𝔖𝑠𝑖𝑛 (♢ target) ≲ 𝜆 (i.e., Pr
min
𝑠𝑖𝑛

(♢ target) ≲ 𝜆).

The basis of our construction is the LP-based characterization of the vectors prmin and prmax

containing the optimal reachability probabilities in each state and, crucially, Farkas’ Lemma.
We will first consider the case thatM is EC-free (Definition 2.6), and then show in Section 3.1.3
how one can handle arbitrary MDPs.



34 3.1. Farkas certificates for probabilistic reachability constraints

sin

s1

s2

s3

target

exit

1/4

3/4

α

β

1/2

α

1/2

1/2

1/4α

1/4

2/5

3/5

α

β

Figure 3.1: The MDPM1 as considered in Example 3.2.

3.1.1 End-component-free Markov decision processes

Certificates for the universal statements
To establish certificates for the statements (I.) and (II.), both of which require all schedulers of
M to satisfy a certain probabilistic reachability constraint, we will use Lemma 2.9. It says that
if a vector z ∈ R𝑆 satisfies Az ≥ t, then z is a point-wise upper bound of prmax. Furthermore, if
it satisfies Az ≤ t, then it is a point-wise lower bound of prmin. The second statement requires
the assumption that M is EC-free. This observation yields the following proposition.

Proposition 3.1. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an EC-free MDP in reachability form
with system matrix A and target vector t. Then for all ≳ ∈ {≥, >} and ≲ ∈ {≤, <} we have:

1. There exists z ∈ R𝑆 satisfying Az ≤ t and z(𝑠𝑖𝑛) ≳ 𝜆 if and only if Pr
min
𝑠𝑖𝑛

(♢ target) ≳ 𝜆
holds.

2. There exists z ∈ R𝑆 such that Az ≥ t and z(𝑠𝑖𝑛) ≲ 𝜆 if and only if Pr
max
𝑠𝑖𝑛

(♢ target) ≲ 𝜆
holds.

Proof. The linear programs characterizing the optimal reachability probabilities (see Section 2.2.2)
use the systems of inequalities Az ≤ t and Az ≥ t, and hence clearly the vectors prmin and prmax

are solutions of the corresponding inequalities. This shows the direction from right to left. The
other direction follows from Lemma 2.9.

Proposition 3.1 provides a formulation of statements (I.) and (II.) which can be used to certify
their validity, where the solution vectors z of the system of inequalities function as certificates.
To check whether statement (I.) or (II.) holds, given a candidate certificate z, one must merely
check whether z is a solution of the correponding system of inequalities. While the vectors
pr

min and pr
max are valid certificates for statements (I.) and (II.) respectively, provided that the

property is satisfied in M, many more vectors may also be.
Example 3.2. Consider the MDP M1 with states 𝑆 ∪ {target, exit} as shown in Figure 3.1.
Outgoing transitions belonging to the same action are drawn together and action labels are



3. Farkas certificates 35

indicated at the root of outgoing transitions or directly before the probabilities. For example,
states 𝑠1 and 𝑠2 have a single enabled action 𝛼 and states 𝑠𝑖𝑛 and 𝑠3 have two enabled actions 𝛼
and 𝛽 . Consider the vector

z1 =
(︁
𝑠𝑖𝑛 ↦→ 2/5, 𝑠1 ↦→ 2/5, 𝑠2 ↦→ 2/5, 𝑠3 ↦→ 2/5

)︁
.

This vector can be used to verify that Prmin
𝑠𝑖𝑛

(♢ target) ≥ 2/5 holds by applying Proposition 3.1.
We need to check that Az1 ≤ t holds, where A and t are the system matrix and target vector of
M1. This amounts to checking the following condition for each enabled state-action pair (𝑠, 𝛼):

z1(𝑠) ≤ t(𝑠) +
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · z1(𝑠′) .

In state 𝑠𝑖𝑛 we have

𝛼 : z1(𝑠𝑖𝑛) = 2/5 ≤ 3/4 · z1(𝑠2) + 1/4 · z1(𝑠3) = 3/4 · 2/5 + 1/4 · 2/5 = 2/5, and
𝛽 : z1(𝑠𝑖𝑛) = 2/5 ≤ 1 · z1(𝑠1) = 2/5.

Similarly, this condition can be checked for all other states, which shows that Az1 ≤ t indeed
holds. By Proposition 3.1, this implies Prmin

𝑠𝑖𝑛
(♢ target) ≥ 2/5. One can check that any vector

z which assigns a constant value in the range [0, 2/5] to all states in 𝑆 satisfies the condition
Az ≤ t. Another solution of this system of inequalities, which is a certificate for the stronger
statement Prmin

𝑠𝑖𝑛
(♢ target) ≥ 1/2, is given by:

z2 =
(︁
𝑠𝑖𝑛 ↦→ 1/2, 𝑠1 ↦→ 1/2, 𝑠2 ↦→ 3/5, 𝑠3 ↦→ 2/5

)︁
.

Let us now consider the system of inequalities Az ≥ t. A solution, which additionally
satisfies z(𝑠𝑖𝑛) ≤ 𝜆, for some 𝜆 ∈ [0, 1], certifies Prmax

𝑠𝑖𝑛
(♢ target) ≤ 𝜆. One can check that

Pr
max
𝑠𝑖𝑛

(♢ target) = 1 holds, and consequently, there exists no solution of Az ≥ t ∧ z(𝑠𝑖𝑛) ≤ 𝜆 for
any 𝜆 < 1. △

Indicators on how many certificates exist (as measured by the volume of the set of valid
certificates, for example) are the amount of nondeterminism (in the sense of multiple enabled
actions in a single state) of the system and how far away the threshold 𝜆 is from the actual optimal
value in 𝑠𝑖𝑛 . If we consider a connected Markov chain M and set 𝜆 to be the actual probability
of reaching “target” inM, then the only vector satisfying the inequalities Az ≤ t ∧ z(𝑠𝑖𝑛) ≥ 𝜆

is the vector containing the reachability probabilities pr = (PrM,𝑠 (♢ target))𝑠∈𝑆 .

Example 3.3. Consider theMarkov chainM2 in Figure 3.2. The vector pr = (PrM2,𝑠 (♢ target))𝑠∈𝑆
containing the probability to reach “target” for each state of M2 is:

pr =
(︁
𝑠𝑖𝑛 ↦→ 8/15, 𝑠1 ↦→ 2/5, 𝑠2 ↦→ 2/3

)︁
.

This vector is the only solution of Az ≤ t ∧ z(𝑠𝑖𝑛) ≥ 8/15 (thereby providing a certificate for
PrM (♢ target) ≥ 8/15), and also the only solution of Az ≥ t ∧ z(𝑠𝑖𝑛) ≤ 8/15 (thereby providing
a certificate for PrM (♢ target) ≤ 8/15). Intuitively, only a single solution exists in this case is
because all states have to contribute exactly their probability in order to achieve the optimal
value in 𝑠𝑖𝑛 .

For MDPs, multiple solutions may exist even for such “tight” thresholds. To see this, consider



36 3.1. Farkas certificates for probabilistic reachability constraints

sin

s1

s2

exit

target

1/3

1/3

1/3

3/5

2/5

1/3

2/3

Figure 3.2: An example Markov chainM2, used in Example 3.3.

again the MDP M1 of Figure 3.1. The minimal reachability probability in states 𝑠𝑖𝑛 and 𝑠1 is
11/20 and 23/40 respectively. However, it is irrelevant for the value in 𝑠𝑖𝑛 by how much the
minimal probability in 𝑠1 exceeds 11/20. This is because in this case the minimizing action in
𝑠𝑖𝑛 will be the one which does not visit 𝑠1. The two following vectors are both solutions to
Az ≤ t ∧ z(𝑠𝑖𝑛) ≥ 11/20:

z4 =
(︁
𝑠𝑖𝑛 ↦→ 11/20, 𝑠1 ↦→ 11/20, 𝑠2 ↦→ 3/5, 𝑠3 ↦→ 2/5

)︁
z5 =

(︁
𝑠𝑖𝑛 ↦→ 11/20, 𝑠1 ↦→ 23/40, 𝑠2 ↦→ 3/5, 𝑠3 ↦→ 2/5

)︁
△

Certificates for the existential statements

The next aim is to define certificates for statements (III.) and (IV.), both of which ask about
the existence of a scheduler satisfying some threshold property. As for the cases (I.) and (II.)
given in Proposition 3.1, we would like certificates to be solutions of some system of linear
inequalities. To this end, we use the following observation: Every instance of the statements
(III.) and (IV.) is equivalent to the negation of an instance of either statement (I.) or (II.). For
example, a scheduler𝔖 satisfying Pr𝔖𝑠𝑖𝑛 (♢ target) ≥ 𝜆 exists (III., with ≳ = ≥) if and only if it is
not true that all schedulers𝔖 satisfy Pr𝔖𝑠𝑖𝑛 (♢ target) < 𝜆 (II., with ≲ = <).

Proposition 3.1 provides formulations of statements (I.) and (II.) in terms of satisfiability of
certain systems of linear inequalities. Hence the negations of these statements are equivalent to
the unsatisfiability of the corresponding systems of linear inequalities. This is where we can
use Farkas’ Lemma. Broadly speaking, it tells us how to construct one set of linear inequalities
from another one such that exactly one of them is satisfiable. In other words, the question of
unsatisfiability of a set of linear inequalities can be reduced to the question of satisfiability
of another set of linear inequalities, and thereby solutions of the latter are certificates for the
unsatisfiability of the former.

There are two main obstacles in applying Farkas’ Lemma directly. One is that many standard
formulations (see Lemma 2.1) have a system of linear inequalities on one side, and a set of
equations on the other. This is undesirable for our purposes because the set of certificates
(defined by the equations) may be very restricted. To overcome this we will use a variant of
Farkas’ Lemma (Lemma 2.2) which is formulated using systems of inequalities on both sides
but, on the other hand, includes a nonnegativity constraint on both sides. One can deal with
this using the observation that if the systems of inequalities of Proposition 3.1 have a solution,
then they have a nonnegative one due to their special structure. The second obstacle is the
combination of strict and non-strict inequalities, which we overcome by reformulating the



3. Farkas certificates 37

systems of inequalities and applying Lemma 2.2 in both directions.

Proposition 3.4. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an EC-free MDP in reachability form
with enabled state-action pairs E, system matrix A and target vector t. Then for ≳ ∈ {≥, >},
≲ ∈ {≤, <} and 𝜆 ∈ [0, 1] we have:

1. There exists a row vector y ∈ RE
≥0 satisfying yA ≥ 𝛿𝑠𝑖𝑛 and yt ≲ 𝜆 if and only if

Pr
min
𝑠𝑖𝑛

(♢ target) ≲ 𝜆 holds.
2. There exists a row vector y ∈ RE

≥0 satisfying yA ≤ 𝛿𝑠𝑖𝑛 and yt ≳ 𝜆 if and only if
Pr

max
𝑠𝑖𝑛

(♢ target) ≳ 𝜆 holds.
Proof. We first prove (1.) with ≲ = <. If Az ≤ t ∧ z(𝑠𝑖𝑛) ≥ 𝜆 has a solution, then it has a
nonnegative one, namely the vector prmin. Using this observation together with Proposition 3.1
yields:

Pr
min
M (♢ target) < 𝜆 ⇐⇒ ¬∃z ∈ R𝑆≥0. Az ≤ t ∧ z(𝑠𝑖𝑛) ≥ 𝜆.

Let us assume that the first column of A (resp. the first row of z) corresponds to the state
𝑠𝑖𝑛 . Then, transforming the latter statement into matrix notation and applying Farkas’ Lemma
(Lemma 2.2) from left to right yields:

¬∃z ∈ R𝑆≥0.
(︃

A

−1 0 . . . 0

)︃
z ≤

(︃
t

−𝜆

)︃
⇐⇒ ∃y ∈ RE

≥0 ∃𝑦∗ ≥ 0. (y, 𝑦∗)
(︃

A

−1 0 . . . 0

)︃
≥ 0 ∧ (y, 𝑦∗)

(︃
t

−𝜆

)︃
< 0. (†)

The statement (†) is equivalent to the left hand side of (1.), which can be seen as follows. First,
(†) can be equivalently written as yA ≥ (𝑦∗, 0, . . . , 0) ∧ yt < 𝑦∗𝜆. If there exists y ∈ RE

≥0
satisfying yA ≥ 𝛿𝑠𝑖𝑛 ∧ yt < 𝜆, then this vector y together with 𝑦∗ = 1 is a solution of (†). For
the other direction, if (y, 𝑦∗) is a solution of (†), then y

′ = 1/𝑦∗ · y is nonnegative and satisfies
y
′
A ≥ 𝛿𝑠𝑖𝑛 ∧ y

′
t < 𝜆. Observe that 𝑦∗ > 0 holds in this case, as yt < 𝑦∗𝜆 holds and all of t, y and

𝜆 are nonnegative.
Now we prove (1.) with ≲ = ≤. As before we have (by Proposition 3.1):

Pr
min
M (♢ target) ≤ 𝜆 ⇐⇒ ¬∃z ∈ R𝑆≥0. Az ≤ t ∧ z(𝑠𝑖𝑛) > 𝜆.

We claim that the latter statement is equivalent to

¬∃z ∈ R𝑆≥0 ∃𝑧∗ ≥ 0.
(︁
−A t

)︁ (︃ z
𝑧∗

)︃
≥ 0 ∧

(︁
−𝛿𝑠𝑖𝑛 𝜆

)︁ (︃ z
𝑧∗

)︃
< 0. (‡)

A solution of Az ≤ t∧z(𝑠𝑖𝑛) > 𝜆 yields a solution of (‡) by setting 𝑧∗ = 1. For the other direction,
let (z, 𝑧∗) be a solution of (‡). We make a case distinction on whether 𝑧∗ = 0 holds. If 𝑧∗ > 0,
then it again suffices to choose z′ = 1/𝑧∗ · z, as we then have Az′ ≤ t ∧ z

′(𝑠𝑖𝑛) > 𝜆 and z
′ ≥ 0.

If 𝑧∗ = 0, then z satisfies Az ≤ 0 and z(𝑠𝑖𝑛) > 𝑧∗𝜆 = 0. Pick a 𝛾 > 𝜆/z(𝑠𝑖𝑛) and set z′ = 𝛾z. We
have Az′ ≤ 0 ≤ t and z

′(𝑠𝑖𝑛) = 𝛾z(𝑠𝑖𝑛) > 𝜆.
Applying Lemma 2.2 from right to left to (‡) yields the equivalent statement

∃y ∈ RE
≥0. y

(︁
−A t

)︁
≤

(︁
−𝛿𝑠𝑖𝑛 𝜆

)︁
.

This can now be rewritten into ∃y ∈ RE
≥0. yA ≥ 𝛿𝑠𝑖𝑛 ∧ yt ≤ 𝜆, which is the left hand side of (1.).



38 3.1. Farkas certificates for probabilistic reachability constraints

Case (2.) can be proved analogously, and we only summarize the chain of calculations here
for completeness. We start with the case ≳ = >.

Pr
max
M (♢ target) > 𝜆

Prop. 3.1
⇐⇒ ¬∃z ∈ R𝑆≥0. Az ≥ t ∧ z(𝑠𝑖𝑛) ≤ 𝜆

⇐⇒ ¬∃z ∈ R𝑆≥0.
(︃

−A
1 0 . . . 0

)︃
z ≤

(︃
−t
𝜆

)︃
Lem. 2.2⇐⇒ ∃y ∈ RE

≥0 ∃𝑦∗ ≥ 0. (y, 𝑦∗)
(︃

−A
1 0 . . . 0

)︃
≥ 0 ∧ (y, 𝑦∗)

(︃
−t
𝜆

)︃
< 0

⇐⇒ ∃y ∈ RE
≥0. yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt > 𝜆

For ≳ = ≥ we calculate:

Pr
max
M (♢ target) ≥ 𝜆

Prop. 3.1
⇐⇒ ¬∃z ∈ R𝑆≥0. Az ≥ t ∧ z(𝑠𝑖𝑛) < 𝜆

⇐⇒ ¬∃z ∈ R𝑆≥0 ∃𝑧∗ ≥ 0.
(︁
A −t

)︁ (︃ z
𝑧∗

)︃
≥ 0 ∧

(︁
𝛿𝑠𝑖𝑛 −𝜆

)︁ (︃ z
𝑧∗

)︃
< 0

Lem. 2.2⇐⇒ ∃y ∈ RE
≥0. y

(︁
A −t

)︁
≤

(︁
𝛿𝑠𝑖𝑛 −𝜆

)︁
⇐⇒ ∃y ∈ RE

≥0. yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≥ 𝜆

The above shows that solutions of the system of linear inequalities yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≳ 𝜆
yield certificates for Prmax

M (♢ target) ≳ 𝜆 (statement III.), and solutions of yA ≥ 𝛿𝑠𝑖𝑛 ∧ yt ≲ 𝜆

yield certificates for Prmin
M (♢ target) ≲ 𝜆 (statement IV.). We will call the vectors satisfying

Propositions 3.1 and 3.4 Farkas certificates for the corresponding probabilistic reachability
constraints.

Example 3.5. Consider again the MDP M1 in Figure 3.1. The vector y1 defined by

y1 =
(︁
(𝑠𝑖𝑛, 𝛼) ↦→ 2, (𝑠𝑖𝑛, 𝛽) ↦→ 0, (𝑠1, 𝛼) ↦→ 2, (𝑠2, 𝛼) ↦→ 3, (𝑠3, 𝛼) ↦→ 0, (𝑠3, 𝛽) ↦→ 2

)︁
is a solution of the system of inequalities yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≥ 1/2. To verify this one has to check
that the following inequality holds for each state 𝑠:∑︂

𝛼∈Act(𝑠 )
y(𝑠, 𝛼) ≤ 𝛿𝑠𝑖𝑛 (𝑠) +

∑︂
(𝑠′,𝛼 ) ∈E

𝑃 (𝑠′, 𝛼, 𝑠𝑖𝑛) · y(𝑠′, 𝛼) .

For example, for state 𝑠𝑖𝑛 and vector y1 we have
∑︁
𝛼∈Act(𝑠𝑖𝑛 ) y1(𝑠𝑖𝑛, 𝛼) = y1(𝑠𝑖𝑛, 𝛼) = 2 and

𝛿𝑠𝑖𝑛 (𝑠𝑖𝑛) +
∑︂

(𝑠′,𝛼 ) ∈E
𝑃 (𝑠′, 𝛼, 𝑠) · y1(𝑠′, 𝛼) = 1 + 1/2 · y1(𝑠1, 𝛼) = 1 + 1 = 2.

For state 𝑠2 we have
∑︁
𝛼∈Act(𝑠2 ) y1(𝑠2, 𝛼) = 3 and

𝛿𝑠𝑖𝑛 (𝑠2) +
∑︂

(𝑠′,𝛼 ) ∈E
𝑃 (𝑠′, 𝛼, 𝑠2) · y1(𝑠′, 𝛼) = 0 + 3/4 · y1(𝑠𝑖𝑛, 𝛼) + 1/2 · y1(𝑠1, 𝛼) + 1/4 · y1(𝑠2, 𝛼)

= 3/2 + 1 + 3/4 = 13/4 ≥ 3.

The corresponding inequality in state 𝑠3 can be checked similarly. Additionally to the above
constraints,

∑︁
(𝑠,𝛼 ) ∈E y1(𝑠, 𝛼) · t(𝑠, 𝛼) ≥ 1/2 must hold. We have

∑︁
(𝑠,𝛼 ) ∈E y1(𝑠, 𝛼) · t(𝑠, 𝛼) =



3. Farkas certificates 39

sin

u

target

exit

1/3

1/3

1/3

1/2

1/4

1/4

(a)

0.5 1

0.5

1

z(sin)

z
(u
)

(b)

1 2

1

2

y(sin)

y
(u
)

(c)

Figure 3.3: A Markov chain (a) together with the polyhedra defining certain sets of Farkas
certificates. If A, t are system matrix and target vector of the Markov chain in (a), then (b) shows
the individual inequalities given by Az ≤ t ∧ z(𝑠𝑖𝑛) ≥ 𝜆 and indicates their intersection, for
𝜆 = 1/4. Similarly, (c) shows the inequalities defining yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≥ 𝜆. The inequalities which
include 𝜆 are drawn in orange. See also Example 3.7.

y1(𝑠2, 𝛼) · 1/4 = 3/4 ≥ 1/2. As y1 is a solution of yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≥ 1/2, it is a certificate for
Pr

max
M (♢ target) ≥ 1/2 by Proposition 3.4.
Another vector satisfying this system of inequalities is y2, defined by

y2 =
(︁
(𝑠𝑖𝑛, 𝛼) ↦→ 0, (𝑠𝑖𝑛, 𝛽) ↦→ 4, (𝑠1, 𝛼) ↦→ 6, (𝑠2, 𝛼) ↦→ 4, (𝑠3, 𝛼) ↦→ 0, (𝑠3, 𝛽) ↦→ 2

)︁
.

The stronger constraint y2t = 1 is satisfied here, which certifies Prmax
M (♢ target) ≥ 1. △

For Markov chainsM, we have Prmin
M (♢ target) = Pr

max
M (♢ target), and hence certificates for

Pr
min
M (♢ target) ⊲⊳ 𝜆 and certificates for Prmax

M (♢ target) ⊲⊳ 𝜆 can be interchanged. In this case
the system matrix A is a square matrix, as there exists as many states as state-action pairs, and
hence solutions z of Az ⊲⊳ t and solutions y of yA ⊲⊳ 𝛿𝑠𝑖𝑛 have the same dimension. However, the
two types of certificates do differ also for Markov chains, as shown in the following example.

Example 3.6. Consider the Markov chain M2 in Figure 3.2, and let A, t be its system matrix
and target vector. One can check that the vector

z =
(︁
𝑠𝑖𝑛 ↦→ 1/3, 𝑠1 ↦→ 2/5, 𝑠2 ↦→ 2/3

)︁
is a solution of Az ≤ t. This vector is not a solution of yA ≤ 𝛿𝑠𝑖𝑛 , which in particular requires
y(𝑠1) ≤ 1/3 · y(𝑠𝑖𝑛). On the other hand, the vector

y =
(︁
𝑠𝑖𝑛 ↦→ 1, 𝑠1 ↦→ 1/3, 𝑠2 ↦→ 1/2

)︁
is a solution of yA ≤ 𝛿𝑠𝑖𝑛 . This vector is not a solution of Az ≤ t, which in particular requires
z(𝑠1) ≤ 3/5 · z(𝑠2). We have z(𝑠𝑖𝑛) ≥ 1/3 and yt ≥ 1/3, and hence both vectors are valid certificates
for PrM (♢ target) ≥ 1/3, using Proposition 3.1 and Proposition 3.4 respectively. △

Example 3.7. Consider the Markov chain shown in Figure 3.3a and let A, t be its system matrix



40 3.1. Farkas certificates for probabilistic reachability constraints

and target vector. Spelling out the inequalities Az ≤ t ∧ z(𝑠𝑖𝑛) ≥ 1/4 yields

z(𝑠𝑖𝑛) ≤ 1/3 + 1/3 · z(𝑠𝑖𝑛) + 1/3 · z(𝑢) z(𝑢) ≤ 1/4 + 1/2 · z(𝑠𝑖𝑛) z(𝑠𝑖𝑛) ≥ 1/4.

The system of linear inequalities yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≥ 1/4 is:

y(𝑠𝑖𝑛) ≤ 1 + 1/3 · y(𝑠𝑖𝑛) + 1/2 · y(𝑢) y(𝑢) ≤ 1/3 · y(𝑠𝑖𝑛) 1/3 · y(𝑠𝑖𝑛) + 1/4 · y(𝑢) ≥ 1/4.

These systems of linear inequalities define two polyhedra in R2≥0, which are depicted in Fig-
ure 3.3b and Figure 3.3c. △

Before turning toMDPswhich are not EC-free, wewill study some properties of the solutions
of the systems of inequalities considered in the above propositions. In particular, we will show
how solutions of the systems of inequalities yA ≤ 𝛿𝑠𝑖𝑛 and yA ≥ 𝛿𝑠𝑖𝑛 relate to the expected
number of visits under schedulers which do not realize any proper end components (for EC-free
MDPs, all schedulers satisfy this property).

We start by observing that there is a correspondence between solutions of yA ≤ 0 and
proper end components ofM. This will turn out to be useful at several places later. For EC-free
MDPs, this result can be used to show boundedness of some of the sets of Farkas certificates
(see Proposition 3.9). To make the correspondence precise, we say that a set of enabled state-
action pairs E′ ⊆ E induces proper end components if there exists a partition 𝑆1, . . . , 𝑆𝑘 of the
set {𝑠 | ∃𝛼. (𝑠, 𝛼) ∈ E′} and, for all 1 ≤ 𝑖 ≤ 𝑘 , a function 𝐴𝑖 : 𝑆𝑖 → 2Act such that (𝑆𝑖 , 𝐴𝑖) is a
proper end component and for all 𝑠 ∈ 𝑆𝑖 and 𝛼 ∈ 𝐴𝑖 (𝑠) we have (𝑠, 𝛼) ∈ E′.

Lemma 3.8. LetM = (𝑆 ∪{target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP with system matrix A and enabled
state-action pairs E. Then:

1. For all y ∈ RE
≥0: If yA ≤ 0 holds, then supp(y) induces proper end components in M.

2. If E′ ⊆ E induces proper end components, then there exists y ∈ RE
≥0 such that yA = 0 and

supp(y) = E′.

Proof. (1.) First we show that yA ≤ 0 implies yA = 0 for all y ∈ RE
≥0. If yA ≤ 0 holds, then so does

yA 1 ≤ 0. By construction we have A ·1 ≥ 0, as A ·1 is the vector containing 1−∑︁
𝑠′∈𝑆 𝑃 (𝑠, 𝛼, 𝑠′)

for each (𝑠, 𝛼) ∈ E. Hence it follows from y ≥ 0 that yA 1 ≥ 0 holds. But then yA 1 = 0 follows
and hence also yA = 0. From yA 1 = 0 it also follows that whenever y(𝑠, 𝛼) > 0 holds, then we
have

∑︁
𝑠′∈𝑆 𝑃 (𝑠, 𝛼, 𝑠′) = 1 and therefore 𝑃 (𝑠, 𝛼, target) = 𝑃 (𝑠, 𝛼, exit) = 0.

For all 𝑞, 𝑞′ ∈ 𝑆 let 𝑣 (𝑞, 𝑞′) =
∑︁
𝛼∈Act(𝑞) 𝑃 (𝑞, 𝛼, 𝑞′) · y(𝑞, 𝛼). Consider the directed graph

𝐺 = (𝑆, 𝐸) in which (𝑞, 𝑞′) ∈ 𝐸 holds whenever 𝑣 (𝑞, 𝑞′) > 0 is true. For all 𝑞 ∈ 𝑆 we get∑︂
𝑞′∈𝑆

𝑣 (𝑞′, 𝑞) =
∑︂
𝑞′∈𝑆

∑︂
𝛼∈Act(𝑞′ )

𝑃 (𝑞′, 𝛼, 𝑞) · y(𝑞′, 𝛼) (†)
=

∑︂
𝛼∈Act(𝑞)

y(𝑞, 𝛼)

(‡)
=

∑︂
𝛼∈Act(𝑞)

y(𝑞, 𝛼) ·
∑︂
𝑞′∈𝑆

𝑃 (𝑞, 𝛼, 𝑞′) =
∑︂
𝑞′∈𝑆

∑︂
𝛼∈Act(𝑞)

𝑃 (𝑞, 𝛼, 𝑞′) · y(𝑞, 𝛼) =
∑︂
𝑞′∈𝑆

𝑣 (𝑞, 𝑞′) .

In the above calculation the equivalence (†) follows from yA = 0, and (‡) follows from the fact
that

∑︁
𝑞′∈𝑆 𝑃 (𝑞, 𝛼, 𝑞′) = 1 holds for all (𝑞, 𝛼) satisfying y(𝑞, 𝛼) > 0, which was argued above. If

we interpret𝐺 as a weighted graph with edge weights 𝑣 (𝑞, 𝑞′) for all (𝑞, 𝑞′) ∈ 𝐸, then the above
expresses a flow constraint. Namely, that the total weight of incoming edges should equal the
total weight of outgoing edges for all vertices.



3. Farkas certificates 41

Consider a strongly connected component C of𝐺 which has no incoming edges from outside
of C. The total weights on outgoing edges from C-states equals the total weights of incoming
edges to C-states. As C has no incoming edges from outside of C, we have∑︂

𝑞∈C

∑︂
𝑞′∈𝑆

𝑣 (𝑞, 𝑞′) =
∑︂
𝑞∈C

∑︂
𝑞′∈𝑆

𝑣 (𝑞′, 𝑞) =
∑︂
𝑞∈C

∑︂
𝑞′∈C

𝑣 (𝑞′, 𝑞).

Hence, the weight of edges from C to a state outside of C is zero which means that there is no
such edge by definition of 𝐺 . As a consequence, all SCCs of 𝐺 are disjoint. Let 𝑆1, . . . , 𝑆𝑘 be the
sets of states in 𝑆 which induce non-trivial SCCs in𝐺 (that is, containing at least one edge). For
each 𝑆𝑖 let 𝐴𝑖 : 𝑆𝑖 → 2Act be defined by 𝐴𝑖 (𝑠) = {𝛼 ∈ Act(𝑠) | y(𝑠, 𝛼) > 0}. By construction of
𝐺 , the pair (𝑆𝑖 , 𝐴𝑖) forms an end component of M, which concludes the proof.

(2.) Suppose that E′ induces the proper end components (𝑆1, 𝐴1), . . . , (𝑆𝑘 , 𝐴𝑘 ). Let E𝑖 =
{(𝑠, 𝛼) | 𝑠 ∈ 𝑆𝑖 and 𝛼 ∈ 𝐴𝑖 (𝑠)}, i.e., the state-action pairs which form the end component (𝑆𝑖 , 𝐴𝑖).
We show that there exists y𝑖 satisfying y𝑖A = 0 and supp(y𝑖) = E𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 . It follows
that y =

∑︁
1≤𝑖≤𝑘 y𝑖 satisfies yA = 0 and supp(y) = E′, which is what we need to show.

So let 1 ≤ 𝑖 ≤ 𝑘 and define 𝑎𝑠 = |𝐴𝑖 (𝑠) | for each 𝑠 ∈ 𝑆𝑖 , which is the number of enabled
actions in 𝑠 in the end component (𝑆𝑖 , 𝐴𝑖). Consider the matrix𝑀 ∈ R𝑆𝑖×𝑆𝑖 defined by𝑀𝑠,𝑠′ =
1/𝑎𝑠 ·

∑︁
𝛼∈𝐴𝑖 (𝑠 ) 𝑃 (𝑠, 𝛼, 𝑠′). As (𝑆𝑖 , 𝐴𝑖) is a proper end component, the matrix𝑀 is the probability

matrix of an irreducible Markov chain. Hence, there exists a unique row vector 𝜋 ∈ R𝑆𝑖
satisfying 𝜋 ·𝑀 = 𝜋 , and 𝜋 additionally satisfies 𝜋 (𝑠) > 0 for all 𝑠 ∈ 𝑆𝑖 (see [KS76, Theorems
4.1.4 and 4.1.6]). Let y𝑖 (𝑠, 𝛼) = 1/𝑎𝑠 · 𝜋 (𝑠) for all 𝑠 ∈ 𝑆𝑖 and 𝛼 ∈ 𝐴𝑖 (𝑠), and zero otherwise. Then
for all 𝑠 ∈ 𝑆𝑖 we have∑︂

𝛼∈Act(𝑠 )
y𝑖 (𝑠, 𝛼) =

∑︂
𝛼∈𝐴𝑖 (𝑠 )

1
𝑎𝑠

· 𝜋 (𝑠) = 𝜋 (𝑠) (†)
=

∑︂
𝑠′∈𝑆𝑖

1
𝑎𝑠′

·
∑︂

𝛼∈Act(𝑠′ )
𝑃 (𝑠′, 𝛼, 𝑠) · 𝜋 (𝑠′)

=
∑︂
𝑠′∈𝑆

∑︂
𝛼∈Act(𝑠′ )

𝑃 (𝑠′, 𝛼, 𝑠) · y𝑖 (𝑠′, 𝛼)

The statement (†) follows from 𝜋 · 𝑀 = 𝜋 . The equality between the first term and the last
is exactly what is required to prove y𝑖A = 0 and we have supp(y𝑖) = E𝑖 . This concludes the
proof.

Using this lemma one can prove that the sets of solutions of both systems of inequalities
Az ≤ t and yA ≤ 𝛿𝑠𝑖𝑛 are bounded, given that the MDP under consideration is EC-free.

Proposition 3.9. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an EC-free MDP with enabled state-
action pairs E, system matrix A and target vector t.

Then the sets {z ∈ R𝑆≥0 | Az ≤ t} and {y ∈ RE
≥0 | yA ≤ 𝛿𝑠𝑖𝑛 } are both bounded.

Proof. The set {z ∈ R𝑆≥0 | Az ≤ t} is bounded because, by Lemma 2.9, prmin is a point-wise
upper bound on all vectors z satisfying Az ≤ t.

Now assume that the set U = {y ∈ RE
≥0 | yA ≤ 𝛿𝑠𝑖𝑛 } is unbounded. Then there exists y0, y1

such that y1 ≠ 0 and for all 𝑡 ≥ 0 we have y0 + 𝑡 y1 ∈ U. It follows that y1 ≥ 0, 𝑡 · y1A ≤ 𝛿𝑠𝑖𝑛
for all 𝑡 ≥ 0 and supp(y1) ⊆ E′. This implies that y1A ≤ 0 must hold. By Lemma 3.8, supp(y1)
induces proper end components, and as y1 ≠ 0 holds, this set is not empty. But this contradicts
our assumption that M is EC-free.



42 3.1. Farkas certificates for probabilistic reachability constraints

Remark 3.10. The statement on boundedness of {y ∈ RE
≥0 | yA ≤ 𝛿𝑠𝑖𝑛 } in the above lemma is

very similar to the statement of boundedness of a related linear program in [Kal83, Theorem
3.2.4]. While the theorem in [Kal83] is stated with the precondition that the initial distribution
is strictly positive in each state, the argument remains the same. △
Remark 3.11. The sets {z ∈ R𝑆≥0 | Az ≥ t ∧ z(𝑠𝑖𝑛) ≤ 𝜆} and {y ∈ RE

≥0 | yA ≥ 𝛿𝑠𝑖𝑛 ∧ yt ≤ 𝜆}
are not bounded in general. For the first set, consider an MDP M in reachability form and a
state 𝑠 which has no incoming transitions. If z is a solution of Az ≥ t and z(𝑠𝑖𝑛) ≤ 𝜆, then
multiplying the entry z(𝑠) by any positive number yields another solution. For the second set,
letM be the simple MDP in which the initial state is the only state and has one action 𝛼 leading
to “target” with probability one, and one action 𝛽 leading to “exit” with probability one. Then
the vector

(︁
(𝑠𝑖𝑛, 𝛼) ↦→ 0, (𝑠𝑖𝑛, 𝛽) ↦→ 1

)︁
is a solution of yA ≥ 𝛿𝑠𝑖𝑛 and yt ≤ 0. Furthermore, any

positive multiple of that vector remains a solution of this system of inequalities. △
First and foremost, Farkas certificates are objects which provide simple proofs of the corre-

sponding property. We will now discuss how they can be interpreted within the given MDP. The
Farkas certificates defined in Proposition 3.1 are solutions of the systems of inequalities Az ≤ t

and Az ≥ t respectively, and represent point-wise bounds on pr
min and pr

max by Lemma 2.9.
In the following we discuss an interpretation of Farkas certificates defined as solutions of the
inequalities yA ≤ 𝛿𝑠𝑖𝑛 and yA ≥ 𝛿𝑠𝑖𝑛 . It was shown in Proposition 3.4 that they certify the
existence of a scheduler satisfying certain threshold properties. Now we will discuss how such a
scheduler can be computed from a given Farkas certificate, and vice versa.

3.1.2 Farkas certificates and expected number of visits

As before, let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form, let A be its
system matrix, t its target vector and E its enabled state-action pairs. The systems of linear
inequalities used in Proposition 3.4 are either of the form yA ≥ 𝛿𝑠𝑖𝑛∧yt ≲ 𝜆 or yA ≤ 𝛿𝑠𝑖𝑛∧yt ≳ 𝜆.
Consider the equation system yA = 𝛿𝑠𝑖𝑛 . Spelling it out yields:∑︂

𝛼∈Act(𝑠 )
y(𝑠, 𝛼) = 𝛿𝑠𝑖𝑛 (𝑠) +

∑︂
(𝑠′,𝛼 ) ∈E

𝑃 (𝑠′, 𝛼, 𝑠) · y(𝑠′, 𝛼) for all 𝑠 ∈ 𝑆. (3.1)

This equation can be interpreted as a “flow equation”. It says that the value of a state 𝑠
(represented by sum of the values of its enabled state-action pairs) should equal the weighted sum
of the values of its “predecessor” state-action pairs, i.e., those which have positive probability
to move to 𝑠 . For Markov chains, where each state has exactly one enabled action, this is
exactly the equation system characterizing the expected number of visits of a transient state
(see Lemma 2.15).
Remark 3.12. The correspondence between solutions of Equation (3.1) and schedulers ofM
has been studied before, in particular by Kallenberg [Kal83, Kal94, Kal16]. It is shown in [Kal83,
Theorem 3.3.3] that the solutions of Equation (3.1) are in one-to-one correspondence with the
memoryless schedulers of M which reach {target, exit} with probability one (called transient
stationary policies in [Kal83]). The mapping is the one that we will also use. However, the
one-to-one correspondence depends on the fact that the initial distribution is strictly positive
in each state (see [Kal83, Remark 3.3.9]). As we drop this restriction, we will be concerned
with states that are not reachable under a given scheduler (given the initial distribution) in the
following. Furthermore, we will also consider variants of Equation (3.1) using inequalities, rather



3. Farkas certificates 43

than equalities. It should also be pointed out that the interpretation of solutions of Equation (3.1)
as the expected number of visits under the corresponding scheduler is well-known (see [Kal83,
Equation 3.3.12]). △

This interpretation can be generalized to MDPs, where some additional care has to be
taken with respect to proper end components (a scheduler realizing a proper end component
has infinite expected number of visits in the corresponding states) and states which become
unreachable under a given scheduler. The following two propositions make the correspondence
between solutions of yA = 𝛿𝑠𝑖𝑛 and certain schedulers forM precise. Here, the vector ev𝔖 ∈ RE

≥0
contains the expected number of visits of all enabled state-action pairs in M under scheduler
𝔖 when starting in 𝑠𝑖𝑛 (see Section 2.2.4 for a precise definition). Henceforth we will use the
notation y(𝑠) = ∑︁

𝛼∈Act(𝑠 ) y(𝑠, 𝛼) for vectors of the form y ∈ RE and states 𝑠 ∈ 𝑆 .

Proposition 3.13. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP, E its enabled state-action
pairs and A its system matrix. Furthermore, let𝔖 be a memoryless scheduler for M satisfying
Pr𝔖𝑠𝑖𝑛 (♢{target, exit}) = 1, and let 𝑅 ⊆ 𝑆 be the states in 𝑆 reachable in M from 𝑠𝑖𝑛 under𝔖.

Then, ev𝔖 is the unique solution of yA = 𝛿𝑠𝑖𝑛 which satisfies

• y(𝑠, 𝛼) = y(𝑠) ·𝔖(𝑠, 𝛼) for all 𝑠 ∈ 𝑅 and 𝛼 ∈ Act(𝑠), and

• y(𝑠, 𝛼) = 0 for all (𝑠, 𝛼) ∈ E with 𝑠 ∈ 𝑆 \ 𝑅.

Proof. Let ev𝔖 (𝑠) =
∑︁

(𝑠,𝛼 ) ∈E ev
𝔖 (𝑠, 𝛼) denote the expected number of visits of state 𝑠 ∈

𝑆 under 𝔖 in M before reaching {target, exit}. Consider the Markov chain M𝑅 = (𝑅 ∪
{target, exit}, 𝑠𝑖𝑛, 𝑃𝑅), where 𝑃𝑅 (𝑠, 𝑡) =

∑︁
𝛼∈Act(𝑠 ) 𝔖(𝑠, 𝛼) · 𝑃 (𝑠, 𝛼, 𝑡). Due to our assumptions, 𝑅

is the transient part of M𝑅 , and, by construction, the expected number of visits of 𝑠 ∈ 𝑅 in M𝑅

when starting in 𝑠𝑖𝑛 is given by ev𝔖 (𝑠). Hence,
(︁
ev

𝔖 (𝑠)
)︁
𝑠∈𝑆 ∈ R𝑆 is the unique vector satisfying

ev
𝔖 (𝑠) =

{︄
𝛿𝑠𝑖𝑛 (𝑠) +

∑︁
𝑠′∈𝑅

∑︁
𝛼∈Act(𝑠′ ) 𝑃 (𝑠′, 𝛼, 𝑠) ·𝔖(𝑠′, 𝛼) · ev𝔖 (𝑠′) if 𝑠 ∈ 𝑅

0 if 𝑠 ∈ 𝑆 \ 𝑅.
(†)

Here we have used Lemma 2.15 and the fact that
∑︁
𝛼∈Act(𝑠′ ) 𝑃 (𝑠′, 𝛼, 𝑠) ·𝔖(𝑠′, 𝛼) is the probability

to move from 𝑠′ to 𝑠 in the Markov chainM𝑅 . Observe that we have ev𝔖 (𝑠, 𝛼) = ev
𝔖 (𝑠) ·𝔖(𝑠, 𝛼),

as the expected number of times that (𝑠, 𝛼) is seen equals the expected number of times that 𝑠
is visited times the probability of choosing 𝛼 in 𝑠 . Hence we have

ev
𝔖 (𝑠) = 𝛿𝑠𝑖𝑛 (𝑠) +

∑︂
(𝑠′,𝛼 ) ∈E

𝑃 (𝑠′, 𝛼, 𝑠) · ev𝔖 (𝑠′, 𝛼),

for all 𝑠 ∈ 𝑆 , which, in matrix form, equals the equation system ev
𝔖 · A = 𝛿𝑠𝑖𝑛 . Here we have

used that if 𝑠 ∈ 𝑆 \ 𝑅, then 𝑠 ≠ 𝑠𝑖𝑛 and for all 𝑠′ such that 𝔖(𝑠′, 𝛼) · 𝑃 (𝑠′, 𝛼, 𝑠) > 0 for some
𝛼 ∈ Act(𝑠′) we have 𝑠′ ∈ 𝑆 \ 𝑅.

Now suppose there existed a different vector y′ ∈ RE satisfying y
′
A = 𝛿𝑠𝑖𝑛 , y′(𝑠, 𝛼) =

y
′(𝑠) ·𝔖(𝑠, 𝛼) for all 𝑠 ∈ 𝑅, and y

′(𝑠, 𝛼) = 0 otherwise. Then
(︁
y
′(𝑠)

)︁
𝑠∈𝑆 is a solution of (†)

which differs from
(︁
ev

𝔖 (𝑠)
)︁
𝑠∈𝑆 , but this contradicts the fact that (†) has a unique solution.

This shows that for each memoryless scheduler𝔖 satisfying Pr𝔖𝑠𝑖𝑛 (♢{target, exit}) = 1, we
find a corresponding solution of yA = 𝛿𝑠𝑖𝑛 .



44 3.1. Farkas certificates for probabilistic reachability constraints

Example 3.14. Consider the MDP M1 from Figure 3.1 and the vector

y2 =
(︁
(𝑠𝑖𝑛, 𝛼) ↦→ 0, (𝑠𝑖𝑛, 𝛽) ↦→ 4, (𝑠1, 𝛼) ↦→ 6, (𝑠2, 𝛼) ↦→ 4, (𝑠3, 𝛼) ↦→ 0, (𝑠3, 𝛽) ↦→ 2

)︁
,

which was shown to satisfy y2A ≤ 𝛿𝑠𝑖𝑛 in Example 3.5. It even satisfies y2A = 𝛿𝑠𝑖𝑛 and
corresponds to the memoryless deterministic scheduler𝔖 which chooses 𝛽 in states 𝑠𝑖𝑛 and 𝑠3,
and 𝛼 otherwise. One can check that the expected number of visits of all states before reaching
{target, exit} in the induced Markov chain under𝔖 is given by the vector(︁

𝑠𝑖𝑛 ↦→ 4, 𝑠1 ↦→ 6, 𝑠2 ↦→ 4, 𝑠3 ↦→ 2
)︁
. △

Let y ∈ RE
≥0 be a solution of yA = 𝛿𝑠𝑖𝑛 . We say that y is self-supporting if there exists a

subset E′ ⊆ supp(y) such that the vector y′ defined by

y
′(𝑠, 𝛼) =

{︄
y(𝑠, 𝛼) if (𝑠, 𝛼) ∈ E′

0 otherwise

satisfies y′A = 0. The next proposition shows that each non-self-supporting solution of yA = 𝛿𝑠𝑖𝑛
equals the expected number of visits of a corresponding memoryless deterministic scheduler.

Proposition 3.15. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP, E its enabled state-action
pairs and A its system matrix. Furthermore, let y ∈ RE

≥0 be a non-self-supporting solution of
yA = 𝛿𝑠𝑖𝑛 . Let𝔖 be a memoryless scheduler satisfying𝔖(𝑠, 𝛼) = y(𝑠, 𝛼)/y(𝑠) for all (𝑠, 𝛼) ∈ E
such that y(𝑠) > 0.

Then,𝔖 satisfies Pr𝔖M,𝑠𝑖𝑛
(♢{target, exit}) = 1 and we have y = ev

𝔖.

Proof. We first show (1) that the set of states reachable from 𝑠𝑖𝑛 in M under𝔖 (henceforth
called 𝑅) is exactly the set {𝑠 ∈ 𝑆 | y(𝑠) > 0}. Then we show (2) that Pr𝔖M,𝑠𝑖𝑛

(♢{target, exit}) = 1,
which lets us apply Proposition 3.13 to show the claim.

(1.) First, we prove that 𝑅 ⊆ {𝑠 ∈ 𝑆 | y(𝑠) > 0} holds. For all 𝑛 ≥ 0, we show that states
𝑠 ∈ 𝑆 reachable within 𝑛 steps from 𝑠𝑖𝑛 under𝔖 inM satisfy y(𝑠) > 0. For the initial state 𝑠𝑖𝑛 ,
y(𝑠𝑖𝑛) ≥ 1 follows from yA = 𝛿𝑠𝑖𝑛 . If state 𝑠 is reachable in 𝑛 + 1 steps, then there exists a state
𝑠′ reachable in 𝑛 steps such that𝔖(𝑠′, 𝛾) · 𝑃 (𝑠′, 𝛾, 𝑠) > 0 holds for some 𝛾 ∈ Act(𝑠′). Using the
assumption that yA = 𝛿𝑠𝑖𝑛 holds, we get∑︂

𝛼∈Act(𝑠 )
y(𝑠, 𝛼) = 𝛿𝑠𝑖𝑛 (𝑠) +

∑︂
(𝑡,𝛽 ) ∈E

𝑃 (𝑡, 𝛽, 𝑠) · y(𝑡, 𝛽) ≥ 𝑃 (𝑠′, 𝛾, 𝑠) · y(𝑠′, 𝛾)

= 𝑃 (𝑠′, 𝛾, 𝑠) ·𝔖(𝑠′, 𝛾) · y(𝑠′) > 0.

Here we used that y(𝑠′) > 0 holds by induction hypothesis.
To show {𝑠 ∈ 𝑆 | y(𝑠) > 0} ⊆ 𝑅, assume that there exists some 𝑡 with y(𝑡) > 0 and 𝑡 ∉ 𝑅.

Let 𝑆 ′ be the set of states that reach 𝑡 inM under𝔖. We have 𝑠𝑖𝑛 ∉ 𝑆 ′ by assumption, and for
all 𝑠 ∈ 𝑆 ′:∑︂
𝛼∈Act(𝑠 )

y(𝑠, 𝛼) =
∑︂
𝑠′∈𝑆

∑︂
𝛼∈Act(𝑠′ )

𝑃 (𝑠′, 𝛼, 𝑠) ·y(𝑠′, 𝛼) =
∑︂
𝑠′∈𝑆 ′

∑︂
𝛼∈Act(𝑠′ )

𝑃 (𝑠′, 𝛼, 𝑠) ·𝔖(𝑠′, 𝛼) ·y(𝑠′) .

Here we used that if 𝑠 ∈ 𝑆 ′, then all states 𝑠′ satisfying 𝑃 (𝑠′, 𝛼, 𝑠) · 𝔖(𝑠′, 𝛼) > 0 for some
𝛼 ∈ Act(𝑠′) must be in 𝑆 ′. Define y′ ∈ RE

≥0 by y
′(𝑠, 𝛼) = y(𝑠, 𝛼) if 𝑠 ∈ 𝑆 ′, and y

′(𝑠, 𝛼) = 0



3. Farkas certificates 45

otherwise. It follows that y′A = 0 holds which contradicts our assumption that y is non-self-
supporting. This concludes the proof of 𝑅 = {𝑠 ∈ 𝑆 | y(𝑠) > 0}.

(2.) Now we show that all states in 𝑅 have a path to the set {target, exit} in M under𝔖.
Assume that this was not the case and let 𝑆 ′ ⊆ 𝑅 be the set of states in 𝑅 which do not reach
{target, exit}. It follows that for all (𝑠, 𝛼) ∈ E such that 𝑠 ∈ 𝑆 ′ we have y(𝑠, 𝛼) ·∑︁𝑠′∈𝑆 ′ 𝑃 (𝑠, 𝛼, 𝑠′) =
y(𝑠, 𝛼) and therefore∑︂

𝑠∈𝑆 ′

∑︂
𝛼∈Act(𝑠 )

y(𝑠, 𝛼) =
∑︂
𝑠,𝑠′∈𝑆 ′

∑︂
𝛼∈Act(𝑠 )

𝑃 (𝑠, 𝛼, 𝑠′) · y(𝑠, 𝛼). (†)

By summing over the rows of yA = 𝛿𝑠𝑖𝑛 which correspond to states in 𝑆 ′ we get:∑︂
𝑠∈𝑆 ′

𝛼∈Act(𝑠 )

y(𝑠, 𝛼) =
∑︂
𝑠∈𝑆 ′

(︂
𝛿𝑠𝑖𝑛 (𝑠) +

∑︂
𝑠′∈𝑆 ′

𝛼 ′∈Act(𝑠′ )

𝑃 (𝑠′, 𝛼 ′, 𝑠) · y(𝑠′, 𝛼 ′) +
∑︂
𝑠′∉𝑆 ′

𝛼 ′∈Act(𝑠′ )

𝑃 (𝑠′, 𝛼 ′, 𝑠) · y(𝑠′, 𝛼 ′)
)︂

=
∑︂
𝑠∈𝑆 ′

𝛿𝑠𝑖𝑛 (𝑠) +
∑︂
𝑠∈𝑆 ′

∑︂
𝛼∈Act(𝑠 )

y(𝑠, 𝛼) +
∑︂
𝑠∈𝑆 ′

∑︂
𝑠′∉𝑆 ′

𝛼 ′∈Act(𝑠′ )

𝑃 (𝑠′, 𝛼 ′, 𝑠) · y(𝑠′, 𝛼 ′)

The last equation uses the equality (†) from right to left as a substitution rule for the second
summand. It follows that∑︂

𝑠∈𝑆 ′
𝛿𝑠𝑖𝑛 (𝑠) +

∑︂
𝑠∈𝑆 ′

∑︂
𝑠′∉𝑆 ′

𝛼 ′∈Act(𝑠′ )

𝑃 (𝑠′, 𝛼 ′, 𝑠) · y(𝑠′, 𝛼 ′) = 0,

which means that 𝑠𝑖𝑛 ∉ 𝑆 ′ and for all 𝑠 ∈ 𝑆 ′, 𝑠′ ∉ 𝑆 ′ and 𝛼 ∈ Act(𝑠′) we have

𝑃 (𝑠′, 𝛼, 𝑠) ·𝔖(𝑠′, 𝛼) · y(𝑠′) = 0.

But this contradicts the fact that all states in 𝑆 ′ are reachable from 𝑠𝑖𝑛 .
We have shown that the set of states reachable inM under𝔖 from 𝑠𝑖𝑛 is 𝑅 = {𝑠 | y(𝑠) > 0},

and all states in 𝑅 have a path to {target, exit} under𝔖 in M. The latter statement implies
Pr𝔖M (♢{target, exit}) = 1. Applying Proposition 3.13 yields the claim.

To sum up, the above propositions show that

• if 𝔖 is a memoryless scheduler for M satisfying Pr𝔖𝑠𝑖𝑛 (♢{target, exit}) = 1, then the
expected number of visits ev𝔖 under𝔖 satisfy ev

𝔖
A = 𝛿𝑠𝑖𝑛 (Proposition 3.13), and

• if y is a non-self-supporting solution of yA = 𝛿𝑠𝑖𝑛 , then there exists a corresponding (and
easily computable) memoryless scheduler𝔖 satisfying y = ev

𝔖 (Proposition 3.15).

Both propositions hold also for MDPs which are not EC-free.
Example 3.16. Consider the MDPM3 in Figure 3.4 and let A be its system matrix. Let y1 be
defined by (︁

(𝑠𝑖𝑛, 𝛼) ↦→ 1, (𝑠1, 𝛽) ↦→ 1, (𝑠2, 𝛼) ↦→ 4/3, (𝑠3, 𝛼) ↦→ 2/3
)︁
,

and y1(𝑞,𝛾) = 0 for all remaining enabled state-action pairs (𝑞,𝛾). It satisfies y1A = 𝛿𝑠𝑖𝑛 , but
does not correspond to the expected number of visits under any memoryless scheduler (by the
correspondence used in Proposition 3.15). This is because if action 𝛽 is chosen with probability



46 3.1. Farkas certificates for probabilistic reachability constraints

sin

s1

s2

s3

target

exit

1/4

3/4

α

β

1/2

α

1/2

β

1/2

1/4α

1/4

β 2/5

3/5

α

Figure 3.4: An example MDPM3 which differs fromM1 (see Figure 3.1) by including additional
actions 𝛽 in states 𝑠1 and 𝑠2 and by excluding the action 𝛽 in 𝑠3. In contrast toM1,M3 is not
EC-free as the sets {𝑠1} and {𝑠𝑖𝑛, 𝑠1, 𝑠2} induce proper end components.

zero in 𝑠𝑖𝑛 , then the expected number of visits to state 𝑠1 must be zero. Nevertheless, y1(𝑠1) > 0
holds. The solution y1 is self-supporting because the vector y′ which is defined as y′(𝑠1, 𝛽) = 1
and zero otherwise satisfies y′A = 0. Intuitively, the value y1(𝑠1) supports itself using the self
loop under action 𝛽 . △

The previous propositions considered linear equation systems of the form yA = 𝛿𝑠𝑖𝑛 . Using
the intuition of flow equations, using ≥ (respectively ≤) instead means that states may have
a higher (respectively lower) “out-flow” than is supported by their incoming edges (see Equa-
tion (3.1) for comparison). We start with the observation that if y is a solution to one of these
systems of inequalities, then there exists a vector y′ satisfying the corresponding equation
system. Additionally, y′ is either a point-wise lower bound (in the case ≤) or a point-wise upper
bound (in the case ≥) of y.

Lemma 3.17. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an EC-free MDP with system matrix A.
For all y ∈ RE

≥0 we have:

• if yA ≥ 𝛿𝑠𝑖𝑛 , then there exists y′ ∈ RE
≥0 such that y′A = 𝛿𝑠𝑖𝑛 , y

′ ≤ y and y′(𝑠, 𝛼)/y′(𝑠) =
y(𝑠, 𝛼)/y(𝑠) for all (𝑠, 𝛼) ∈ E such that y(𝑠) > 0,

• if yA ≤ 𝛿𝑠𝑖𝑛 , then there exists y′ ∈ RE
≥0 such that y′A = 𝛿𝑠𝑖𝑛 , y

′ ≥ y, supp(y′) = supp(y)
and y′(𝑠, 𝛼)/y′(𝑠) = y(𝑠, 𝛼)/y(𝑠) for all (𝑠, 𝛼) ∈ E such that y(𝑠) > 0.

Proof. We only prove the second claim, the first one is proven similarly. Consider the sequence
of vectors in RE

≥0 defined by y1 = y and

y𝑖+1(𝑠, 𝛼) =
y𝑖 (𝑠, 𝛼)
y𝑖 (𝑠)

·
(︁
𝛿𝑠𝑖𝑛 (𝑠) +

∑︂
(𝑠′,𝛼 ) ∈E

𝑃 (𝑠′, 𝛼, 𝑠) · y𝑖 (𝑠′, 𝛼)
)︁
, (∗)

for all (𝑠, 𝛼) ∈ E such that y𝑖 (𝑠) > 0, and y𝑖+1(𝑠, 𝛼) = 0 otherwise.



3. Farkas certificates 47

Our aim is to show by induction that y𝑖+1 ≥ y𝑖 , supp(y𝑖+1) = supp(y𝑖), y𝑖A ≤ 𝛿𝑠𝑖𝑛 and
y𝑖 (𝑠, 𝛼)/y𝑖 (𝑠) = y(𝑠, 𝛼)/y(𝑠) for all 𝑖 ≥ 1 and (𝑠, 𝛼) ∈ E such that y(𝑠) > 0. The base case
follows by assumption. We first show y𝑖+1 ≥ y𝑖 and supp(y𝑖+1) = supp(y𝑖). For 𝑠 ∈ 𝑆 such that
y𝑖 (𝑠) = 0 we have y𝑖+1(𝑠, 𝛼) = 0 ≥ y𝑖 (𝑠, 𝛼) for all 𝛼 ∈ Act(𝑠) by definition. This also shows
supp(y𝑖+1) ⊆ supp(y𝑖). For all other 𝑠 ∈ 𝑆 we can use the hypothesis y𝑖A ≤ 𝛿𝑠𝑖𝑛 , which implies

y𝑖 (𝑠) ≤ 𝛿𝑠𝑖𝑛 (𝑠) +
∑︂

(𝑠′,𝛼 ) ∈E
𝑃 (𝑠′, 𝛼, 𝑠) · y𝑖 (𝑠′, 𝛼),

for all 𝑠 ∈ 𝑆 and hence, by (∗), y𝑖+1(𝑠, 𝛼) ≥ y𝑖 (𝑠, 𝛼). This also shows supp(y𝑖+1) ⊇ supp(y𝑖), and
therefore supp(y𝑖+1) = supp(y𝑖).

To show that y𝑖+1A ≤ 𝛿𝑠𝑖𝑛 holds we calculate:∑︂
𝛽∈Act(𝑠 )

y𝑖+1(𝑠, 𝛽) =
∑︂

𝛽∈Act(𝑠 )

y𝑖 (𝑠, 𝛽)
y𝑖 (𝑠)

·
(︁
𝛿𝑠𝑖𝑛 (𝑠) +

∑︂
(𝑠′,𝛼 ) ∈E

𝑃 (𝑠′, 𝛼, 𝑠) · y𝑖 (𝑠′, 𝛼)
)︁

= 𝛿𝑠𝑖𝑛 (𝑠) +
∑︂

(𝑠′,𝛼 ) ∈E
𝑃 (𝑠′, 𝛼, 𝑠) · y𝑖 (𝑠′, 𝛼)

≤ 𝛿𝑠𝑖𝑛 (𝑠) +
∑︂

(𝑠′,𝛼 ) ∈E
𝑃 (𝑠′, 𝛼, 𝑠) · y𝑖+1(𝑠′, 𝛼),

where the last inequality follows from y𝑖+1(𝑠′, 𝛼) ≥ y𝑖 (𝑠′, 𝛼), which holds for all (𝑠′, 𝛼) ∈ E.
Finally, we show that y𝑖+1(𝑠, 𝛼)/y𝑖+1(𝑠) = y(𝑠, 𝛼)/y(𝑠) holds for all (𝑠, 𝛼) ∈ E such that y(𝑠) > 0.
Expanding the definition yields

y𝑖+1(𝑠, 𝛼)
y𝑖+1(𝑠)

=

y𝑖 (𝑠,𝛼 )
y𝑖 (𝑠 ) ·

(︁
𝛿𝑠𝑖𝑛 (𝑠) + . . .

)︁∑︁
𝛽∈Act(𝑠 )

y𝑖 (𝑠,𝛽 )
y𝑖 (𝑠 ) ·

(︁
𝛿𝑠𝑖𝑛 (𝑠) + . . .

)︁ =
y𝑖 (𝑠, 𝛼)
y𝑖 (𝑠)

,

where (𝛿𝑠𝑖𝑛 (𝑠) + . . .) represents the sum in brackets from (∗).
As M is EC-free, the set {y′ ∈ RE

≥0 | y′A ≤ 𝛿𝑠𝑖𝑛 } is bounded by Proposition 3.9. Hence, the
limit of the constructed sequence y∞ = lim𝑖→∞ y𝑖 exists and satisfies y∞A = 𝛿𝑠𝑖𝑛 , y∞ ≥ y and
y∞(𝑠, 𝛼)/y∞(𝑠) = y(𝑠, 𝛼)/y(𝑠) for all (𝑠, 𝛼) ∈ E such that y(𝑠) > 0.

The assumption of EC-freeness was used in the above proof only to guarantee that the set
{y′ ∈ RE

≥0 | y′A ≤ 𝛿𝑠𝑖𝑛 } is bounded. For the first statement this is not needed, as the constructed
sequence y1, y2, . . . is point-wise non-increasing and all vectors remain nonnegative. Hence,
boundedness of the sequence holds without the assumption of EC-freeness.

Together with Proposition 3.15, the above lemma shows that for EC-free MDPs, solutions
of the systems of inequalities yA ≤ 𝛿𝑠𝑖𝑛 and yA ≥ 𝛿𝑠𝑖𝑛 , provide point-wise lower, respectively
upper, bounds on the expected number of visits of some memoryless scheduler.
Proposition 3.18. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an EC-free MDP with system matrix
A and enabled state-action pairs E. Take y ∈ RE

≥0 and let𝔖 be a memoryless scheduler satisfying
𝔖(𝑠, 𝛼) = y(𝑠, 𝛼)/y(𝑠) whenever y(𝑠) > 0. Then:

• if yA ≥ 𝛿𝑠𝑖𝑛 , then y ≥ ev
𝔖, and • if yA ≤ 𝛿𝑠𝑖𝑛 , then y ≤ ev

𝔖.

Proof. If yA ≥ 𝛿𝑠𝑖𝑛 holds, then by Lemma 3.17 we find y
′ such that y′A = 𝛿𝑠𝑖𝑛 , y′ ≤ y and

y
′(𝑠, 𝛼)/y′(𝑠) = y(𝑠, 𝛼)/y(𝑠) for all 𝑠 ∈ 𝑆 such that y(𝑠) > 0. The vector y′ is non-self-



48 3.1. Farkas certificates for probabilistic reachability constraints

supporting, as otherwise we could construct a vector y′′ ∈ RE
≥0 satisfying y

′′ ≠ 0 and y
′′
A = 0.

But this would contradict EC-freeness of M by Lemma 3.8.
Now we can apply Proposition 3.15 to conclude that y′ = ev

𝔖 holds. The other case can be
shown analogously.

Recall that the probability of reaching the state “target” under a scheduler 𝔖 satisfying
Pr𝔖M (♢{target, exit}) = 1 can be expressed in terms of its expected number of visits ev𝔖 (see Sec-
tion 2.2.4). Concretely, we have Pr𝔖𝑠𝑖𝑛 (♢ target) =

∑︁
(𝑠,𝛼 ) ∈E ev

𝔖 (𝑠, 𝛼) · t(𝑠, 𝛼) = ev
𝔖 · t, where t

is the target vector of M. Now if we are given a solution of yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≳ 𝜆, then by Propo-
sition 3.18 we find a scheduler𝔖 such that y ≤ ev

𝔖. It follows that ev𝔖t ≳ 𝜆, and hence indeed
𝔖 is a scheduler which witnesses that Prmax

𝑠𝑖𝑛
(♢ target) ≳ 𝜆 holds. The analogous observation

holds for solutions of yA ≥ 𝛿𝑠𝑖𝑛 ∧ yt ≲ 𝜆.
This yields another proof that solutions to these systems of inequalities are valid certificates

of the corresponding probabilistic reachability constraint (see Proposition 3.4) for EC-free MDP.
The proof of Proposition 3.4 using Farkas’ Lemma is certainly more direct, and extends directly
to MDPs which are not EC-free for maximal reachability probabilities, which is discussed in the
following section.

3.1.3 MDPs with proper end components

In Section 3.1.1 certificates for all kinds of probabilistic reachability constraints were introduced
for EC-free MDPs. This assumption implies that a vector z satisfying Az ≤ t is indeed a point-
wise lower bound on pr

min (Lemma 2.9) which was used in Proposition 3.1 to characterize
certificates for Prmin

𝑠𝑖𝑛
(♢ target) ≳ 𝜆. Using Farkas’ Lemma, this characterization then led to a

definition of certificates for Prmin
𝑠𝑖𝑛

(♢ target) ≲ 𝜆 in Proposition 3.4
On the other hand, the proofs of statements (2.) of Propositions 3.1 and 3.4, which concern

the maximal probability of reaching target, do not depend on this assumption. This is because
the part of Lemma 2.9 concerning prmax does not rely on EC-freeness. Hence, these statements
hold also for MDPs which are not EC-free. This is not true for the statements of Propositions 3.1
and 3.4 concerning minimal reachability probabilities, which fail for MDPs that are not EC-free.
Example 3.19. Consider the MDP M3 in Figure 3.4 and let A be its system matrix and t its
target vector. The vector

z1 =
(︁
𝑠𝑖𝑛 ↦→ 2/5, 𝑠1 ↦→ 2/5, 𝑠2 ↦→ 2/5, 𝑠3 ↦→ 2/5

)︁
defined in Example 3.2 satisfies Az1 ≤ t and z(𝑠𝑖𝑛) ≥ 2/5. However, Prmin

M3
(♢ target) = 0 holds,

as 𝑠𝑖𝑛 is included in a proper end component (which does not contain target), and hence there
exists a scheduler which avoids target forever from 𝑠𝑖𝑛 . This example shows that solutions of
Az ≤ t cannot be used to certify Pr

min
M (♢ target) ≥ 𝜆 in the same way as for EC-free MDPs.

On the other hand, consider the system of inequalities yA ≥ 𝛿𝑠𝑖𝑛 ∧ yt ≤ 𝜆, which was used
to certify Pr

min
M (♢ target) ≤ 𝜆 for EC-free MDPs in the previous section. One can check that the

minimum value of yt when ranging over all solutions y of yA ≥ 𝛿𝑠𝑖𝑛 is 11/20. In particular, there
is no solution y of this system of inequalities satisfying yt = 0. Hence, there is no certificate for
the statement Prmin

M (♢ target) ≤ 0 of the form introduced for EC-free MDPs. △
The above example shows that for MDPs which are not EC-free, solutions of the system of

inequalities Az ≤ t ∧ z(𝑠𝑖𝑛) ≳ 𝜆 may be “spurious” in the sense that the system is satisfiable



3. Farkas certificates 49

but the property Pr
min
M (♢ target) ≳ 𝜆 does not hold. Dually, the system of inequalities yA ≥

𝛿𝑠𝑖𝑛 ∧ yt ≲ 𝜆 may be unsatisfiable although Pr
min
M (♢ target) ≲ 𝜆 is satisfied. The other directions

hold, however. That is, if Prmin
M (♢ target) ≳ 𝜆 holds, then Az ≤ t ∧ z(𝑠𝑖𝑛) ≥ 𝜆 has a solution,

and if yA ≥ 𝛿𝑠𝑖𝑛 ∧ yt ≲ 𝜆 is satisfiable, then Pr
min
M (♢ target) ≲ 𝜆 holds.

Proposition 3.20. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form, A be
its system matrix and t be its target vector. Then for all ≳ ∈ {≥, >}, ≲ ∈ {≤, <} and 𝜆 ∈ [0, 1]:

• If Pr
min
M (♢ target) ≳ 𝜆 holds, then there exists z ∈ R𝑆≥0 satisfying Az ≤ t ∧ z(𝑠𝑖𝑛) ≳ 𝜆.

• If y ∈ RE
≥0 satisfies yA ≥ 𝛿𝑠𝑖𝑛 ∧ yt ≲ 𝜆, then Pr

min
M (♢ target) ≲ 𝜆 holds.

Proof. By the linear-programming based characterization of prmin it follows that prmin satisfies
A · prmin ≤ t. If Prmin

M (♢ target) ≳ 𝜆 holds, then additionally we have prmin(𝑠𝑖𝑛) ≳ 𝜆.
For the second claim, let y ∈ RE

≥0 be a solution of yA ≥ 𝛿𝑠𝑖𝑛 ∧yt ≲ 𝜆. By Lemma 3.17 we find
a vector y′ ∈ RE

≥0 such that y′A = 𝛿𝑠𝑖𝑛 and y
′ ≤ y. Here we use that EC-freeness is not actually

required for the first statement of Lemma 3.17, as the set {y′ ∈ RE
≥0 | y′ ≤ y} is bounded for all

y ∈ RE
≥0.

If y′ is non-self-supporting, then there exists a scheduler 𝔖 for M such that ev𝔖 = y
′

by Proposition 3.15. It follows that Pr𝔖M (♢ target) = ev
𝔖 · t ≤ yt ≲ 𝜆.

If y′ is self-supporting, then, by definition, we find y1, y2 such that y1A = 0, y1 + y2 = y
′,

supp(y1) ∩supp(y2) = ∅ and y2 is non-self-supporting. By Lemma 3.8, supp(y1) induces proper
end components, and hence if (𝑠, 𝛼) ∈ supp(y1), then t(𝑠, 𝛼) = 0. But this implies yt = y2t. The
vector y2 is non-self-supporting and we have y2A = (y1 + y2)A = y

′
A = 𝛿𝑠𝑖𝑛 . Then, by the same

reasoning as above, we may conclude that Prmin
M (♢ target) ≲ 𝜆.

Our next aim is to define certificate conditions which are sound and complete for minimal
reachability probabilities in MDPs with proper end components, thereby dealing with the issues
presented in Example 3.19. We propose to first determine the set of states which can only reach
the state “target” in M by passing through some proper end component, and exclude them
from further considerations. This is supported by the fact that the minimal probability to reach
target from such a state is zero. We call states that do not satisfy this property min-relevant.

Definition 3.21 (min-relevant states). Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in
reachability form. We denote by 𝑆𝑅 the states ofM from which there exists a path to target in
the underlying graph of M that does not pass through a proper end component. Formally:

𝑆𝑅 = {𝑠 ∈ 𝑆 | there exists 𝑠0𝑠1 . . . 𝑠𝑛 target ∈ Pathsfin(M, 𝑠) such that
𝑠𝑖 is not included in a proper end component for all 𝑖 ∈ {0, . . . , 𝑛}.}

States in 𝑆𝑅 are called min-relevant. Furthermore, let E∗ = {(𝑠, 𝛼) | 𝑠 ∈ 𝑆𝑅}, A∗ = A|E∗×𝑆𝑅 and
t
∗ = t|𝑆𝑅 be the restrictions of the corresponding matrices/vectors defined in Definition 2.7 to
states in 𝑆𝑅 .

Observe that each state 𝑠 ∈ 𝑆 has some path to the state “target” if M is in reachability
form, by the assumption that Prmax

𝑠 (♢ target) > 0 holds for all 𝑠 ∈ 𝑆 (see Definition 2.5).
Remark 3.22. If the initial state 𝑠𝑖𝑛 is not included in the min-relevant states 𝑆𝑅 , then this
proves that there exists a scheduler which avoids target with probability one from 𝑠𝑖𝑛 . Hence,
in this case we have Pr

min
M (♢ target) = 0. This holds, for example, for the MDP M3 defined



50 3.1. Farkas certificates for probabilistic reachability constraints

in Figure 3.4, where the only min-relevant state is 𝑠3 (i.e., we have 𝑆𝑅 = {𝑠3}). When considering
Farkas certificates for minimal reachability probabilities, we will assume that 𝑠𝑖𝑛 ∈ 𝑆𝑅 holds. △

Another way to define A∗ and t
∗ is to consider the MDP M∗ one gets by identifying all

states in 𝑆 \ 𝑆𝑅 with “exit”, and then taking the matrices as defined by Definition 2.7 for M∗.
The MDP M∗ will be defined precisely in the proof of Theorem 3.24, and will appear again
in Chapter 4 in the context of witnessing subsystems (see Definition 4.9). As 𝑆 \ 𝑆𝑅 includes
all proper end components (except for those induced by {target, exit}), M∗ is EC-free and,
furthermore, preserves minimal reachability probabilities for all states 𝑠 ∈ 𝑆𝑅 . We will use
this fact later in the proof that Farkas certificates, as defined next for all cases of probabilistic
reachability constraints, indeed certify that the corresponding properties are satisfied.

Definition 3.23 (Farkas certificates). Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in
reachability form, let A, t be the system matrix and target vector ofM (Definition 2.7) and E be
the set of enabled state-action pairs. Furthermore, let 𝑆𝑅 be the min-relevant states of M, and
E∗,A∗, t∗ be the corresponding restrictions to states in 𝑆𝑅 (Definition 3.21).

The sets of Farkas certificates ofM are defined as follows:

• Fmin
M,≳

(𝜆) = {z ∈ R𝑆𝑅≥0 | A∗
z ≤ t

∗ ∧ z(𝑠𝑖𝑛) ≳ 𝜆}

• Fmax
M,≲

(𝜆) = {z ∈ R𝑆≥0 | Az ≥ t ∧ z(𝑠𝑖𝑛) ≲ 𝜆}

• Fmin
M,≲

(𝜆) = {y ∈ RE∗
≥0 | yA∗ ≥ 𝛿𝑠𝑖𝑛 ∧ yt

∗ ≲ 𝜆}

• Fmax
M,≳

(𝜆) = {y ∈ RE
≥0 | yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≳ 𝜆}

IfM is clear from the context we will omit it from the subscripts.

If M is EC-free, then 𝑆𝑅 = 𝑆 and therefore A∗ = A and t
∗ = t hold. Hence, in this case

the Farkas certificates as defined above correspond exactly to the nonnegative solutions of
the systems of inequalities appearing in Propositions 3.1 and 3.4. Observe that the proof
of Proposition 3.1 shows that one always finds a nonnegative certificate for the corresponding
property. For the other direction of Proposition 3.1 the stronger statement holds: Any solution
of the inequalities (even those with negative entries) can be used as a certificate for the property.
But we will, in the following, restrict ourselves to nonnegative Farkas certificates.

As a consequence of Propositions 3.1 and 3.4, the following theorem, which states that
Farkas certificates indeed certify the corresponding conditions, follows directly for EC-free
MDPs. For MDPs with proper end components we use the following: First, the statements of
Propositions 3.1 and 3.4 which concern Pr

max actually do not require EC-freeness. And, second,
the MDP M∗, which identifies all states in 𝑆 \ 𝑆𝑅 with the state “exit”, is EC-free and preserves
the minimal reachability probabilities in all states that are not in 𝑆𝑅 . Furthermore, the sets of
Farkas certificates for M andM∗ concerning minimal reachability probabilities coincide.

Theorem 3.24. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form (but not
necessarily EC-free). Then, for all 𝔪 ∈ {min,max}, ⊲⊳ ∈ {≤, <, ≥, >} and 𝜆 ∈ [0, 1] we have

F𝔪
M,⊲⊳

(𝜆) is not empty if and only if Pr
𝔪
𝑠𝑖𝑛

(♢ target) ⊲⊳ 𝜆 holds.

Proof. If M is EC-free, then 𝑆𝑅 = 𝑆 and all statements follow from Propositions 3.1 and 3.4.
Here we use that the proof of the direction from right to left of Proposition 3.1 shows that
indeed nonnegative certificates always exist.



3. Farkas certificates 51

IfM is not EC-free, then we first observe that the statements (2.) of Propositions 3.1 and 3.4,
which concern Pr

max, do not depend on EC-freeness of the MDP. The only point where this
assumption is used in the proofs is to apply Lemma 2.9. But Lemma 2.9 requires EC-freeness
only for the statement corresponding to Pr

min.
It remains to show that the cases with 𝔪 = min hold if M is not EC-free. Consider the

MDP M∗ = (𝑆𝑅 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃∗) where for all 𝑠 ∈ 𝑆𝑅 and 𝛼 ∈ Act(𝑠) we have
𝑃∗(𝑠, 𝛼, 𝑡) = 𝑃 (𝑠, 𝛼, 𝑡) if 𝑡 ∈ 𝑆𝑅 , 𝑃∗(𝑠, 𝛼, target) = 𝑃 (𝑠, 𝛼, target) and 𝑃∗(𝑠, 𝛼, exit) = 𝑃 (𝑠, 𝛼, exit) +∑︁
𝑡 ∈ (𝑆\𝑆𝑅 ) 𝑃 (𝑠, 𝛼, 𝑡). It follows by the definition of 𝑆𝑅 that M∗ is EC-free and in reachability

form. Hence, by reduction to the case of EC-free MDPs which we have already proved, we get:
Fmin
M∗,⊲⊳ (𝜆) is not empty iff Pr

min
M∗,𝑠𝑖𝑛

(♢ target) ⊲⊳ 𝜆 holds. Furthermore, Fmin
M,⊲⊳

(𝜆) = Fmin
M∗,⊲⊳ (𝜆) and

Pr
min
M∗,𝑠𝑖𝑛

(♢ target) = Pr
min
M,𝑠𝑖𝑛

(♢ target) hold by construction, which concludes the proof.

In order to apply the above theorem for minimal probabilities in MDP that are not EC-free,
one has to first compute the set 𝑆𝑅 of min-relevant states. This can be done using standard
methods to compute maximal end components [deA97, BK08]. Farkas certificates produced
using these methods can only be trusted if the computation of the maximal end components is
sound, which by itself is not a trivial procedure. Ideally, a Farkas certificate for min-properties
should always be paired with a certificate that the set 𝑆𝑅 has been computed correctly. Certifying
the correctness of a computation returning the set of maximal end components is the topic of
the next section.
Remark 3.25. The only properties of 𝑆𝑅 that the above proof depends on is that 𝑆 \ 𝑆𝑅 includes
all proper end components and is included in the set of states 𝑠 satisfying Pr

min
𝑠 (♢ target) = 0.

Our definition of 𝑆𝑅 additionally satisfies that identifying all states in 𝑆 \ 𝑆𝑅 with “exit” yields
an MDP in reachability form (i.e., all states have a path to “target” in the resulting MDP) and
for EC-free MDPs we have 𝑆𝑅 = 𝑆 . Another choice which also yields correct certificates is to set
𝑆𝑅 = {𝑠 ∈ 𝑆 | Prmin

𝑠 (♢ target) > 0}. △

3.1.4 Certifying the decomposition into maximal end components

The aim of this section is to define a certificate that can be returned along with a set of sub-MDPs
which proves, in a simple-to-check way, that the returned sub-MDPs are indeed the maximal end
components of the given MDP. Several algorithms (some of them quite elaborate) for computing
the set of maximal end components exist [deA97, HC11, CŁ13].

We will build on the following characterization, which says that a set of sub-MDPsD equals
the set of maximal end components of M if all sub-MDPs are end components and the induced
quotient is EC-free. Here we use the target-directed quotient Mtarget

D as defined in Section 2.2.2
(at this point it doesn’t matter, we could also have used the exit-directed quotient).

Proposition 3.26. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form and
let D = {(𝐸1, 𝐴1), . . . , (𝐸𝑘 , 𝐴𝑘 )} be a set of sub-MDPs of M. Then, D is the set of maximal end
components of M if and only if all of the following hold:

(a) 𝐸1, . . . , 𝐸𝑘 is a partition of 𝑆 ,

(b) (𝐸,𝐴) is an end component, for all (𝐸,𝐴) ∈ D, and

(c) Mtarget
/D is EC-free.



52 3.1. Farkas certificates for probabilistic reachability constraints

Proof. The direction from left to right is clear. So suppose, by contraposition, that D is not the
set of maximal end components ofM. We will additionally assume that (a) and (b) hold, and
show that in this case (c) must be violated, i.e., Mtarget

/D is not EC-free.
First, let us assume that some state set 𝐸𝑖 is strictly included in a bigger end component. Then

there must exist a subset {𝐸𝑐1, . . . , 𝐸𝑐𝑙 } ⊆ {𝐸1, . . . , 𝐸𝑘 } such that 𝑙 > 1 and all states in
⋃︁

1≤𝑖≤𝑙 𝐸𝑐𝑖
belong to the same maximal end component. But then the set of states {(𝐸𝑐1, 𝐴𝑐1), . . . , (𝐸𝑐𝑙 , 𝐴𝑐𝑙 )}
of Mtarget

/D induces a proper end component in Mtarget
/D , and hence Mtarget

/D is not EC-free.
If {𝐸1, . . . , 𝐸𝑘 } is the state partition which induces the maximal end components, then the

only possibility that D is not the MEC decomposition of M is that for some 1 ≤ 𝑖 ≤ 𝑘 and
𝑠 ∈ 𝐸𝑖 the set 𝐴𝑖 (𝑠) is missing an action which is actually internal in the corresponding end
component, by the definition of Mtarget

/D . Such and action 𝛼 would, however, induce a self loop
with probability one inMtarget

/D . More precisely, we would have 𝑃M/D

(︁
(𝐸𝑖 , 𝐴𝑖), 𝛼, (𝐸𝑖 , 𝐴𝑖)

)︁
= 1.

But then Mtarget
/D is not EC-free.

Let us assume that the sequence 𝐸1, . . . , 𝐸𝑘 is provided as a function 𝑆 → N which assigns
to each state the index of its end component (concretely this can be given as a vector in N𝑆 ).
Then, 𝐸1, . . . , 𝐸𝑘 forms a partition of 𝑆 (condition (a)) if each state is assigned exactly one index.
This is easy to check. In the following, we will focus on how to certify conditions (b) and (c)
of Proposition 3.26. By definition, the sub-MDP (𝐸,𝐴) is an end component exactly if for all
𝑞 ∈ 𝐸 and 𝛼 ∈ 𝐴(𝑞), the possible successors of state-action pair (𝑞, 𝛼) are included in 𝐸, and the
induced graph of the sub-MDP (𝐸,𝐴) is strongly connected. The first condition can be easily
checked, and it remains to show how to certify strong connectedness.

Certifying strong connectedness. Here we use the fact that a directed graph is strongly
connected if and only if there exists a state which reaches all other states and which is reachable
from all other states.

Lemma 3.27. Let 𝐺 = (𝑉𝐺 , 𝐸𝐺 ) be a directed graph. 𝐺 is strongly connected if and only if there
exist two functions bwd, fwd : 𝑉𝐺 → N such that:

• there exists a unique vertex 𝑣𝑠 ∈ 𝑉𝐺 such that bwd(𝑣𝑠) = fwd(𝑣𝑠) = 0,

• for each 𝑣 ∈ 𝑉𝐺 \ {𝑣𝑠 } there exists 𝑣 ′ ∈ 𝑉𝐺 such that (𝑣, 𝑣 ′) ∈ 𝐸 and fwd(𝑣 ′) < fwd(𝑣), and

• for each 𝑣 ∈ 𝑉𝐺 \ {𝑣𝑠 } there exists 𝑣 ′ ∈ 𝑉𝐺 such that (𝑣 ′, 𝑣) ∈ 𝐸 and bwd(𝑣 ′) < bwd(𝑣).

Proof. Let us first assume that 𝐺 is strongly connected. Pick an arbitrary vertex 𝑣𝑠 ∈ 𝑉𝐺 and
define fwd, bwd by setting fwd(𝑣𝑠) = bwd(𝑣𝑠) = 0 and for all other vertices 𝑣 ∈ 𝑉𝐺 \ {𝑣𝑠 } set
fwd(𝑣) to be the length of a shortest path from 𝑣 to 𝑣𝑠 in 𝐺 , and bwd(𝑣) to be the length of a
shortest path from 𝑣 to 𝑣𝑠 in the graph 𝐺 ′ one gets by reversing all edges in 𝐺 . As both 𝐺 and
𝐺 ′ are strongly connected, such paths always exist, and both fwd and bwd satisfy the required
properties by construction. If functions fwd and bwd exist satisfying the above properties, then
this guarantees that each vertex has a path to 𝑣𝑠 and is reachable from 𝑣𝑠 , where 𝑣𝑠 is the unique
vertex satisfying fwd(𝑣𝑠) = bwd(𝑣𝑠) = 0. It follows that 𝐺 is strongly connected.

Certifying EC-freeness. To certify that the quotientMtarget
/D is EC-free, we will use the fol-

lowing lemma.



3. Farkas certificates 53

Lemma 3.28. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form and A, t

be the system matrix and target vector ofM. Furthermore, let b ∈ RE
>0 be any vector satisfying

b(𝑠, 𝛼) > 0 for all enabled state-action pairs (𝑠, 𝛼) ∈ E.
Then, M is EC-free if and only if there exists a vector z ∈ R𝑆≥0 such that Az ≥ b holds.

Proof. For the direction from left to right, suppose thatM is EC-free. Consider the MDPM′

one gets by collapsing states “exit” and “target” and adding the reward function rew : E → N
defined as rew(𝑠, 𝛼) = b(𝑠, 𝛼) for all (𝑠, 𝛼) ∈ E. Then M′ is in reward reachability form and
hence the maximal expected total reward is finite for each state. It is characterized by the linear
program: minimize

∑︁
𝑠∈𝑆 𝑥𝑠 such that Ax ≥ b (see Section 2.2.3). Hence, in particular, there

exists a nonnegative vector satisfying these linear inequalities.
For the other direction, suppose that M is not EC-free and there exists a vector z ∈ R𝑆≥0

satisfying Az ≥ b. Then there exists a sub-MDP (𝐸,𝐴) of M which is a proper end component.
We may assume, w.l.o.g., that for each 𝑠 ∈ 𝐸 there exists a single 𝛼𝑠 ∈ 𝐴(𝑠). As for all 𝑠 ∈ 𝐸 the
actions in 𝐴(𝑠) are internal to the end component we have

∑︁
𝑠′∈𝐸 𝑃 (𝑠, 𝛼𝑠 , 𝑠′) = 1 for all 𝑠 ∈ 𝐸.

Hence, from Az ≥ b we get for all 𝑠 ∈ 𝐸

z(𝑠) ≥ b(𝑠, 𝛼𝑠) +
∑︂
𝑠′∈𝐸

𝑃 (𝑠, 𝛼𝑠 , 𝑠′) · z(𝑠′) ≥ b(𝑠, 𝛼𝑠) +min
𝑠′∈𝐸

{z(𝑠′)}.

But for 𝑠 ∈ 𝐸 such that z(𝑠) = min𝑠′∈𝐸{z(𝑠′)} this implies z(𝑠) ≥ b(𝑠, 𝛼𝑠) + z(𝑠) > z(𝑠), which
yields is a contradiction.

Remark 3.29 (Certifying non-EC-freeness). It is worth pointing out that with Farkas’ Lemma,
the above statement can be used to derive a certificate for the property that an MDP is not
EC-free. Applying Farkas’ Lemma (Lemma 2.2) yields that there exists z ∈ R𝑆≥0 such that Az ≥ 1

if and only if there is no y ∈ RE
≥0 such that yA ≤ 0 and y · 1 > 0 (by multiplying the inequalities

with −1). Now the above lemma (Lemma 3.28) implies that M is not EC-free if and only if such
a vector y exists. Compare this with Lemma 3.8, which shows that indeed the support of vectors
satisfying yA ≤ 0 contains only states which are included in proper end components. △

A comparison with the contraction property. In [Kal83] an MDP is defined to be contracting
if there exists 𝛾 ∈ [0, 1) and strictly positive x ∈ R𝑆>0 satisfying

𝛾 · x(𝑠) ≥
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · x(𝑠′)

for all enabled state-action pairs (𝑠, 𝛼). In their model the transition probability function is
assumed to be substochastic, which means that the probabilities of a state-action pair should
sum up to at most one. For a comparison with our setting, we will assume that all remaining
probability is added to a transition to “exit”, and that an absorbing state “target” can be reached
from every state apart from “exit”. It is shown that an MDP is contracting iff all schedulers reach
{target, exit} with probability one (see [Kal83, Theorem 3.2.4]). As before, the states target and
exit are excluded from the set 𝑆 . The latter condition is equivalent to being EC-free. Hence, the
definition of the contraction property yields another certificate condition for EC-freeness.

The two are very closely connected, as we now briefly discuss. Let x, 𝛾 be as defined above



54 3.1. Farkas certificates for probabilistic reachability constraints

and satisfying the contraction property. Then

x(𝑠) >
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · x(𝑠′)

holds for all (𝑠, 𝛼) ∈ E, and hence we can find b ∈ RE
>0 such that Ax ≥ b holds. Thereby x is

also a certificate by the condition of Lemma 3.28. Now let b ∈ RE
>0 be strictly positive, and let

z ∈ R𝑆≥0 satisfy Az ≥ b. This means that

z(𝑠) ≥ b(𝑠, 𝛼) +
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · z(𝑠′)

holds for all (𝑠, 𝛼) ∈ E. It follows that z is strictly positive in all entries. Now define

𝛾 = max
(𝑠,𝛼 ) ∈E

{︃ ∑︁
𝑠′∈𝑆 𝑃 (𝑠, 𝛼, 𝑠′) · z(𝑠′)

z(𝑠)

}︃
.

One can check that 0 < 𝛾 < 1 holds and z, 𝛾 satisfy the contraction property.
Two algorithms to check EC-freeness are proposed in [Kal83, page 48]. The first (Algorithm

IV ) checks that all states have a positive minimal probability of leaving 𝑆 within |𝑆 | steps. The
second algorithm (Algorithm V ) checks whether the linear program characterizing the expected
number of visits is unbounded. None of these algorithms is certifying, as they do not directly
yield a solution of the inequality which defines contraction.

Certifying the MEC decomposition. We now use the above lemmas to provide a certificate
condition for the fact that the decomposition into maximal end components was computed
correctly. Combining Proposition 3.26 with Lemmas 3.27 and 3.28 yields the following theorem.

Theorem 3.30. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form, and
D = {(𝐸1, 𝐴1), . . . , (𝐸𝑘 , 𝐴𝑘 )} be a set of sub-MDPs ofM. Then, D equals the set of maximal end
components of M if and only if:

• for each (𝐸𝑖 , 𝐴𝑖) ∈ D there exist functions fwd𝑖 , bwd𝑖 which satisfy the conditions of
Lemma 3.27 with respect to the underlying graph of (𝐸𝑖 , 𝐴𝑖), and

• there exists z ∈ R𝑆≥0 such that ADz ≥ 1 holds, where AD is the system matrix of the induced
quotient Mtarget

/D .

Example 3.31. Consider again the MDP M3 in Figure 3.4. If we ignore target and exit, M3
contains two maximal end components, namely (𝐸1, 𝐴1) =

(︁
{𝑠𝑖𝑛, 𝑠1, 𝑠2}, (𝑠𝑖𝑛 ↦→ {𝛽}, 𝑠1 ↦→

{𝛼, 𝛽}, 𝑠2 ↦→ {𝛽})
)︁
and (𝐸2, 𝐴2) =

(︁
{𝑠3}, (𝑠3 ↦→ ∅)

)︁
. Only the first one is proper. To verify that

these two sub-MDPs indeed are precisely the maximal end components ofM3, Theorem 3.30
proposes to provide certificates that the sub-MDPs are maximal end components, and that the
resulting quotient is EC-free.

To show that (𝐸1, 𝐴1) is a maximal end component, we have to check that the induced graph
of (𝐸1, 𝐴1) is strongly connected. Let fwd, bwd be defined as follows:

bwd(𝑠𝑖𝑛) = fwd(𝑠𝑖𝑛) = 0 and bwd(𝑠1) = bwd(𝑠2) = fwd(𝑠1) = fwd(𝑠2) = 1.



3. Farkas certificates 55

These functions satisfy the requirements of Lemma 3.27. For (𝐸2, 𝐴2) it suffices to set fwd(𝑠3) =
bwd(𝑠3) = 0.

Let D = {(𝐸1, 𝐴2), (𝐸2, 𝐴2)}. To certify that Mtarget
3/D is EC-free, observe that the equation

system ADz ≥ 1 as defined in Theorem 3.30 is given by

(𝑠𝑖𝑛, 𝛼) : 1/4 · z(𝐸1) ≥ 1 + 1/4 · z(𝐸2) (𝑠2, 𝛼) : 3/4 · z(𝐸1) ≥ 1 + 1/2 · z(𝐸2) (𝑠3, 𝛼) : z(𝐸2) ≥ 1.

Here the individual constraints correspond to the state-action pairs which are not internal in any
of the sub-MDPs included in D. Any solution of this system of inequalities proves that M/D is
EC-free by Lemma 3.28. For example, z(𝐸2) = 1 and z(𝐸1) = 5 is such a solution. Together, z
and the certificates for the individual maximal end components certify that D constitutes the
set of maximal end components of M3. △

3.2 Farkas certificates for expected rewards
The previous section introduced Farkas certificates for probabilistic reachability constraints
which were derived from the linear programming characterization of optimal reachability
probabilities and Farkas’ Lemma. In the following we will consider how these methods can be
used to define certificates for constraints on the optimal expected total reward that is achievable
in an MDP.

Consider an MDPM = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃, rew) in reward reachability form (as defined
in Section 2.2.3), which implies that all schedulers𝔖 for M satisfy Pr𝔖𝑠 (♢ exit) = 1 for all states
𝑠 ∈ 𝑆 . In particular,M is also EC-free. We will consider the following constraints on the optimal
expected reward achievable in M:

I. All schedulers𝔖 forM satisfy E𝔖M,𝑠𝑖𝑛
( exit) ≳ 𝜆 (i.e., Emin

M,𝑠𝑖𝑛
( exit) ≳ 𝜆).

II. All schedulers𝔖 forM satisfy E𝔖M,𝑠𝑖𝑛
( exit) ≲ 𝜆 (i.e., Emax

M,𝑠𝑖𝑛
( exit) ≲ 𝜆).

III. Some scheduler𝔖 for M satisfies E𝔖M,𝑠𝑖𝑛
( exit) ≳ 𝜆 (i.e., Emax

M,𝑠𝑖𝑛
( exit) ≳ 𝜆).

IV. Some scheduler𝔖 for M satisfies E𝔖M,𝑠𝑖𝑛
( exit) ≲ 𝜆 (i.e., Emin

M,𝑠𝑖𝑛
( exit) ≲ 𝜆).

These are defined completely analogously to the probabilistic reachability constraints. To derive
Farkas certificates for these constraints on the achievable expected reward, we make use of the
fact that the optimal reachability probabilities and expected rewards are characterized by very
similar linear programs.

Let A be the system matrix ofM (Definition 2.7) and r ∈ RE be the vector containing the
reward of each state-action pair (henceforth called the reward vector), i.e., r(𝑠, 𝛼) = rew(𝑠, 𝛼) for
all enabled state-action pairs (𝑠, 𝛼) ∈ E. By Lemma 2.13, vectors z ∈ R𝑆 satisfying the systems
of inequalities Az ≥ r or Az ≤ r yield point-wise bounds on the vectors exmax and exmin. These
vectors contain the optimal values for the expected total reward in each state (see Section 2.2.3).
As a direct consequence we get the following proposition.

Proposition 3.32. Let M = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃, rew) be in reward reachability form, A, r be
defined as above and ≳ ∈ {≥, >}, ≲ ∈ {≤, <}. Then for all 𝜆 ≥ 0:

1. There exists z ∈ R𝑆 satisfying Az ≤ r and z(𝑠𝑖𝑛) ≳ 𝜆 if and only if Emin
𝑠𝑖𝑛

( exit) ≳ 𝜆 holds.
2. There exists z ∈ R𝑆 satisfying Az ≥ r and z(𝑠𝑖𝑛) ≲ 𝜆 if and only if Emax

𝑠𝑖𝑛
( exit) ≲ 𝜆 holds.



56 3.2. Farkas certificates for expected rewards

To derive certificates for statements III. and IV., which require the existence of a scheduler
meeting the bound, we again use Farkas’ Lemma. The proof is very similar to the one of the
corresponding proposition for reachability probabilities (Proposition 3.4).

One difference is that we cannot assume the vectors exmax and ex
min to be nonnegative, in

contrast to the vectors containing optimal reachability probabilities. This dissallows using the
version of Farkas’ Lemma (Lemma 2.2) used in Proposition 3.4. However, we can use the main
formulation of Farkas’ Lemma (Lemma 2.1) and the observation that the systems of inequalities
yA = 𝛿𝑠𝑖𝑛 ∧ yr ≲ 𝜆 and yA ≥ 𝛿𝑠𝑖𝑛 ∧ yr ≲ 𝜆 are equisatisfiable if M is EC-free, which is
a consequence of Lemma 3.17. The analogous statement holds for yA = 𝛿𝑠𝑖𝑛 ∧ yr ≳ 𝜆 and
yA ≤ 𝛿𝑠𝑖𝑛 ∧ yr ≳ 𝜆.

Proposition 3.33. Let M = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃, rew) be an MDP in reward reachability form,
E be the enabled state-action pairs ofM, A its system matrix and r its reward vector. Then, for
≳ ∈ {≥, >}, ≲ ∈ {≤, <} and 𝜆 ∈ [0, 1]:

1. There exists a row vector y ∈ RE
≥0 satisfying yA ≥ 𝛿𝑠𝑖𝑛 and y r ≲ 𝜆 if and only if

Emin
𝑠𝑖𝑛

( exit) ≲ 𝜆 holds.

2. There exists a row vector y ∈ RE
≥0 satisfying yA ≤ 𝛿𝑠𝑖𝑛 and y r ≳ 𝜆 if and only if

Emax
𝑠𝑖𝑛

( exit) ≳ 𝜆 holds.

Proof. The proof is essentially analogous to the proof of Proposition 3.4. Hence, we will only
consider the statement (1.) with ≲ = <. Using Proposition 3.32 we get:

Emin
𝑠𝑖𝑛

( exit) < 𝜆 ⇐⇒ ¬∃z ∈ R𝑆 . Az ≤ r ∧ z(𝑠𝑖𝑛) ≥ 𝜆.

Applying Farkas’ Lemma (Lemma 2.1) yields that the latter is equivalent to

∃y ∈ RE
≥0 ∃𝑦∗ ≥ 0. (y, 𝑦∗)

(︃
A

−1 0 . . . 0

)︃
= 0 ∧ (y, 𝑦∗)

(︃
r

−𝜆

)︃
< 0.

We assume here that the first row of z corresponds to 𝑠𝑖𝑛 . Now it follows by the same argument
as in the proof of Proposition 3.4 that this statement is equivalent to yA = 𝛿𝑠𝑖𝑛 ∧ y r < 𝜆. As M
is EC-free, it follows from Lemma 3.17 that there exists y ∈ RE

≥0 satisfying yA = 𝛿𝑠𝑖𝑛 ∧ y r < 𝜆 if
and only if there exists y ∈ RE

≥0 satisfying yA ≥ 𝛿𝑠𝑖𝑛 ∧ y r < 𝜆, which concludes the proof of
this case.

The certificate one gets from the two propositions above can be interpreted in an analogous
way as the Farkas certificates for reachability probabilities. In particular, the y-vectors in the last
proposition inducememoryless randomized schedulers whose expected number of visits for each
state-action pair is bounded by the corresponding entries of the y-vector (see Proposition 3.18).
As we have seen, the expected total reward achieved by a scheduler is equivalent to the expected
number of visits of each state times the reward in this state (see also Section 2.2.4). But this is
exactly the expression y r in the above proposition.

Remark 3.34 (Expected discounted reward). In contrast to the expected total reward, the expected
discounted reward adds a discount factor which exponentially benefits rewards achieved early.
For an MDPM = (𝑆,Act, 𝑃, 𝑠𝑖𝑛, rew) and a discount factor 𝛾 ∈ (0, 1) define the random variable



3. Farkas certificates 57

drew𝛾 : Paths(M) → R by

drew𝛾 (𝑠1𝛼1𝑠2𝛼2 . . .) =
∑︂
1≤𝑖

𝛾𝑖 · rew(𝑠𝑖 , 𝛼𝑖) .

We define E𝔖M (drew𝛾 ) to be the expected discounted reward under𝔖, and as the above series
converges this value is always finite. Minimal and maximal expected discounted rewards can
be defined as for the expected total reward.

It is shown in [Kal83, Remark 3.4.4] that considering the expected total reward criterion
in EC-free MDPs is essentially the same thing as considering the expected discounted reward
in arbitrary MDPs. In particular, if we are interested in the discounted problem sketched
above, we can construct an MDP M′ = (𝑆 ∪ {exit},Act, 𝑃 ′, 𝑠𝑖𝑛, rew) in reward reachability
form by setting 𝑃 ′(𝑠, 𝛼, 𝑠′) = 𝛾 · 𝑃 (𝑠, 𝛼, 𝑠′) for all 𝑠, 𝑠′ ∈ 𝑆 and 𝛼 ∈ Act, and additionally
𝑃 ′(𝑠, 𝛼, exit) = 1−𝛾 ∑︁𝑠′∈𝑆 𝑃

′(𝑠, 𝛼, 𝑠′). The resultingMDPM′ is clearly EC-free. Furthermore, the
expected total reward in M′ equals the expected discounted reward in M under all schedulers,
and hence, in particular, Farkas certificates for constraints on the former model can be used as
Farkas certificates for constraints on the latter. △

3.3 Computing and validating Farkas certificates
This section is concerned with the computation of Farkas certificates as defined in Defini-
tion 3.23 for probabilistic reachability constraints and for constraints on the expected reward in
Propositions 3.32 and 3.33. We will first show how to do this using linear programs, and then
discuss how to obtain Farkas certificates using value iteration or policy iteration.

3.3.1 Computing Farkas certificates using linear programs
All types of Farkas certificates can be computed by finding a solution to a system of linear
inequalities. It is well-known that this problem is computationally very close to the problem
of solving a linear program [Sch99, Theorem 10.4]. We will distinguish whether the threshold
condition is a strict inequality, where the certificate condition can be written in the form

Mx ≥ b ∧ c x < 𝜃, (3.2)

or a non-strict inequality, where we simply have a polyhedron described by linear inequalities
such as

Mx ≥ b. (3.3)

Here M ∈ R𝑚×𝑛, b ∈ R𝑚, c ∈ R𝑛 and 𝜃 ∈ R are generic matrices, vectors and numbers meant to
describe any of the Farkas certificate conditions, and x is a vector of variables of dimension 𝑛.
To find a solution of Equation (3.2) one can in a first step solve the linear program: minimize c x
under the condition Mx ≥ b, and then check whether the solution vector satisfies c x < 𝜃 . In
this case the solution vector satisfies the condition, and otherwise no solution of Equation (3.2)
exists.

Checking satisfiability of a set of non-strict linear inequalities such as Equation (3.3) may be
seen as a simple instance of a linear programming problem. Algorithms aimed at solving it are
often referred to as phase 1 methods, because standard algorithms for linear programming such
as the simplex method apply them as a first step (see [CLRS09, Section 29.5]). Still, as shown



58 3.3. Computing and validating Farkas certificates

in [Sch99], the problem of solving a linear program reduces in linear time to the problem of
solving a set of linear inequalities, and hence the latter cannot be considered much simpler
theoretically. A straight forward method to solve a system of non-strict linear inequalities is to
solve a linear program over this system with an arbitrary objective function.

Robust certificates

In most cases, especially when efficiency is a concern, computer programs are based on floating
point arithmetic and do not use exact rational arithmetic. This is true in particular for most
optimization software, including many linear programming solvers. Optimal solutions of a
linear program are always attained on the boundary of the feasible region. Hence, approaches
to compute Farkas certificates using linear programming as described above will generally
yield Farkas certificates on the boundary of the corresponding polyhedra. Such certificates
are susceptible to rounding errors, as slight deviations of the vector may no longer be valid
certificates. Similarly, if the tool validating the certificate uses floating point arithmetic it may
return a false negative, even though the certificate is valid. The challenges and caveats of using
floating point arithmetic in LP-solvers are discussed in [ACDE07].

This raises the question of how to efficiently compute Farkas certificate which are not on
the boundary of the corresponding polyhedron. Let M ∈ R𝑚×𝑛 and b ∈ R𝑚 and consider the
system of linear inequalities given byMx ≥ b. To compute an interior solution of this system
one can use the following trick. Let 𝑠 be an additional variable and s = (𝑠, . . . , 𝑠) be the vector
of dimension𝑚 containing 𝑠 in each entry. Consider the linear program

maximize 𝑠 under the condition Mx ≥ b + s.

If the optimal value 𝑠∗ of this LP satisfies 𝑠∗ > 0, then the x-variables of the corresponding
solution yield a strictly feasible solution of Mx ≥ b. If, on the other hand 𝑠∗ = 0 holds, then
Mx ≥ b is satisfiable but there is no solution which is strictly feasible in all constraints. Finally,
if 𝑠∗ < 0 holds, then Mx ≥ b is infeasible. This is a standard trick in mathematical optimization
(see [BV14, Section 11.4]) and can be used to compute strictly feasible Farkas certificates.

3.3.2 Computing Farkas certificates using value- or policy iteration

Two classes of algorithms which can be applied to a wide range of problems in the con-
text of probabilistic model checking are value iteration and policy iteration. In particular,
both can be used to compute the optimal reachability probabilities in Markov decision pro-
cesses [Put94, FKNP11]. Value iteration offers the advantage that it can usually be implemented
in a straight-forward manner for systems encoded symbolically using multi-terminal binary
decision diagrams [deAKN+00], which is not true for linear programming based approaches.

Value iteration. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an EC-free Markov decision pro-
cess in reachability form with system matrix A and target vector t. To compute (or rather
approximate) the minimal probabilities of reaching “target” inM using value iteration, we start
with the vector z1 = 0 and then iteratively compute:

z𝑖+1(𝑠) = min
𝛼∈Act(𝑠 )

{ t(𝑠, 𝛼) +
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · z𝑖 (𝑠′) }.



3. Farkas certificates 59

One can show that for all 𝑖 ≥ 1we haveAz𝑖 ≤ t and that the sequence converges to prmin [deA97,
BK08] (here we use that the MDP is in reachability form thus has positive probability to reach
“target” from any state, and we have assumed EC-freeness). It follows that all the vectors z𝑖 are
Farkas certificates for the property Pr

min
𝑠𝑖𝑛

(♢ target) ≥ z𝑖 (𝑠𝑖𝑛) (see Definition 3.23). To compute a
Farkas certificate for Prmin

𝑠𝑖𝑛
(♢ target) ⊲ 𝜆, for a given 𝜆 ∈ [0, 1] and ⊲ ∈ {≥, >}, one can repeat

the value iteration until a vector z𝑖 is computed such that z𝑖 (𝑠𝑖𝑛) ⊲ 𝜆 holds. Unless 𝜆 equals
the minimal reachability probability in 𝑠𝑖𝑛 , and ⊲ = ≥, this process will eventually terminate.
The fact that intermediate solutions obtained during value iteration are lower bounds on the
optimal value is well-known, and it follows directly from Lemma 2.9.

For maximal reachability probabilities, one can start with z1 = 1 and use the update rule

z𝑖+1(𝑠) = max
𝛼∈Act(𝑠 )

{ t(𝑠, 𝛼) +
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · z𝑖 (𝑠′) }.

Analogously to the previous case, we have Az𝑖 ≥ t for all 𝑖 ≥ 1 and the sequence converges to
pr

max. Hence, the intermediate vectors are all Farkas certificates for Prmax
𝑠𝑖𝑛

(♢ target) ≤ z(𝑠𝑖𝑛).
This again depends on EC-freeness, as the sequence may not converge to pr

max otherwise.
The standard way of applying value iteration differs from the above description in that for

both minimal and maximal probabilities one would use z1 = 0 as initial vector. While this is
also correct, the intermediate vectors are no longer Farkas certificates in the case of maximal
probabilities. Using different starting vectors for value iteration has been considered in the
literature. In particular, interval iteration uses two value iterations, from above and from below,
to provide sound stopping criteria [HM14]. In their terminology, our above description matches
value iteration from below for minimal probabilities, and from above for maximal probabilities.

We now comment on the case that M is not EC-free. The minimal reachability probability
of all states included in proper end components is zero, and it is necessary to compute these
states a priori. They can be identified with “exit”, which yields an EC-free MDP. Then the above
arguments can be applied. Now let us consider maximal reachability probabilities. While value
iteration from below (i.e., using z1 = 0 as initial vector) does converge to pr

max, this is not
true for value iteration from above (using z1 = 1) [HM14]. Hence, one has to first compute
the quotient of maximal end components (see Section 2.2.2, and also the max-reduced MDP
in [HM14]). Then the above arguments again apply, as the resulting MDP is EC-free. Having
computed a Farkas certificate z for Prmax

𝑠𝑖𝑛
(♢ target) ≤ 𝜆 in the MEC-quotient, one can derive a

Farkas certificate in terms of the original system by setting z′(𝑠) = z( [𝑠]), where [𝑠] denotes
the maximal end component of 𝑠 .

The main obstacle of applying this approach to Farkas certificates for expected total rewards
is the computation of initial vectors z1 satisfying Az1 ≤ r (for Emin

𝑠𝑖𝑛
( exit) ≥ 𝜆), respec-

tively Az1 ≥ r (for Emax
𝑠𝑖𝑛

( exit) ≤ 𝜆). For nonnegative reward functions and certificates for
Emin
𝑠𝑖𝑛

( exit) ≥ 𝜆, one can choose z1 = 0. But in general, it is not clear how to find such initial
vectors. While computing upper bounds z on ex

max as starting points for value iteration has
been studied [BKL+17], these are not guaranteed to satisfy Az ≥ r. Such upper bounds are
called inductive in [HK20].

We have shown how one can use value iteration to compute Farkas certificates for reachabil-
ity constraints of the form Pr

min
𝑠𝑖𝑛

(♢ target) ≥ 𝜆 and Prmax
𝑠𝑖𝑛

(♢ target) ≤ 𝜆. These are the properties
which assert that all schedulers satisfy a certain threshold condition. Farkas certificates for the
properties which assert that some scheduler satisfies a bound can be computed more naturally
in the context of policy iteration.



60 3.3. Computing and validating Farkas certificates

Policy iteration In policy iteration a sequence of memoryless deterministic schedulers (some-
times also called policies) is computed whose induced reachability probabilities increase (if
computing the maximal probability) or decrease (if computing the minimal probability). The
resulting algorithms are usually exponential (as is the set of MD-schedulers) but belong to
the main approaches of solving MDPs and have been proved useful in various context [Put94,
FKNP11, KM17].

The following describes a simple policy iteration scheme for computing Pr
max
𝑠𝑖𝑛

(♢ target).
First, pick arbitrary MD-scheduler𝔖1. Construct a sequence of MD-schedulers𝔖1,𝔖2, . . . as
follows, starting with 𝑖 = 1:

• Let

v𝑖 (𝑠) = Pr𝔖𝑖
𝑠 (♢ target) and v𝑖 (𝑠, 𝛼) = t(𝑠, 𝛼) +

∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · v𝑖 (𝑠′),

for all 𝑠 ∈ 𝑆 and 𝛼 ∈ Act(𝑠).
• Let 𝛼𝑠 = argmax𝛼∈Act(𝑠 ) { v𝑖 (𝑠, 𝛼) } and set

𝔖𝑖+1(𝑠) =
{︄
𝛼𝑠 if v𝑖 (𝑠, 𝛼𝑠) > v𝑖 (𝑠,𝔖𝑖 (𝑠))
𝔖𝑖 (𝑠) otherwise.

This process is repeated until𝔖𝑖 = 𝔖𝑖+1 holds, which implies that𝔖𝑖 is a scheduler satisfying
Pr𝔖𝑖
𝑠 (♢ target) = Pr

max
𝑠 (♢ target) for all 𝑠 ∈ 𝑆 . If𝔖𝑖 is the resulting scheduler, then the vector

ev
𝔖𝑖 containing the expected number of visits inM under𝔖𝑖 from 𝑠𝑖𝑛 forms a Farkas certificate

for Prmax
𝑠𝑖𝑛

(♢ target) ≥ 𝜆, for any 𝜆 which is indeed a lower bound on the maximal probability.
This follows directly from Proposition 3.13 and the fact that ev𝔖𝑖 · t = Pr𝔖𝑖

𝑠𝑖𝑛 (♢ target) holds. We
may assume that𝔖𝑖 satisfies Pr𝔖𝑖

𝑠 (♢ target) > 0 from every state 𝑠 ∈ 𝑆 , as M is in reachability
form and hence every state 𝑠 ∈ 𝑆 has a path to target. Computing ev

𝔖𝑖 amounts to solving a
system of linear equalities, as discussed in Section 2.2.4.

An analogous algorithm can be used for minimal reachability probabilities. If the MDP is
not EC-free, one has to collapse all states which do not reach {target, exit} in M𝔖𝑖 and identify
them with “exit”. Then, the expected number of visits under𝔖𝑖 in the resulting MDP yield a
Farkas certificate for Prmin

𝑠𝑖𝑛
(♢ target) ≤ 𝜆, for any 𝜆 ≥ Pr

min
𝑠𝑖𝑛

(♢ target).
Remark 3.35. For EC-free MDP, the policy iteration scheme is polynomial in the number of
states and actions of the MDP, if one uses the right pivoting rule [Ye11, Corollary 5.1]. The
upper bound on the number of required iterations given in this paper is, however, exponential
in the values of the transition probabilities (when encoded in binary). △

3.3.3 Validating Farkas certificates
To validate a Farkas certificate, by which we mean checking that a given vector x indeed is a
Farkas certificate for some property, it suffices to check whether Mx ≥ b (or Mx ≥ b ∧ cx < 𝜃 )
holds for the system of linear inequalities which defines the corresponding set of Farkas
certificates. Both of these checks can be done in linear time by computing Mx (and additionally
cx, in case of strict inequalities), and checking whether each value of the result satisfies the
corresponding threshold condition. Hence, validating Farkas certificate is significantly simpler
than finding a Farkas certificate, which requires solving a linear program in general.



3. Farkas certificates 61

It was mentioned above that the linear programming based approaches to compute Farkas
certificates cannot be easily realized if the system is encoded symbolically using multi-terminal
binary decision diagrams, which is a common representation for probabilistic systems. How-
ever, this representation still allows validating Farkas certificates efficiently, because matrix
multiplication is an operation which can be computed efficiently in this setting [FMY97].



Chapter 4

New techniques for witnessing
subsystems

Given a system M and a property 𝜙 which is satisfied by M, it is natural to ask: Which part of
M contributes most towards the satisfaction of 𝜙? Being able to answer such questions can
be extremely useful to increase the understanding of the system by a user, to aid debugging of
programs or to assign responsibility to software components or particular code fragments if
something goes wrong. It can also help the automated analysis of systems, by restricting the
analysis to relevant parts.

In order to approach this question one has to formalize what constitutes a “part” of the
system and when such a part is relevant or important with respect to a given specification.
For probabilistic reachability constraints in Markov decision processes, the notion of subsys-
tem [JÁK+11] achieves this purpose. If M is an MDP in reachability form, then a subsystem of
M is any MDP obtained from M by redirecting a subset of its transitions to the state “exit”. As
“exit” cannot reach the target state by definition, redirecting a transition 𝑡 to “exit” effectively
means making a worst case assumption for 𝑡 . The underlying question is: What happens to the
global probability of reaching “target” in M if we assume that 𝑡 contributes zero probability?

A subsystem M′ of M is called a witness for the probabilistic reachability constraint
Pr

𝔪
M (♢ target) ≥ 𝜆, if M′ itself satisfies this constraint (with 𝔪 ∈ {min,max}). As the optimal

probability of reaching “target” in a subsystem cannot be higher than in M by construction,
the name witness is justified. However, checking whether a subsystem is a witness is as hard as
checkingwhetherM satisfies the property in general, which distinguishes witnesses from Farkas
certificates. In the foundational work on witnessing subsystems [JÁK+11, WJÁ+12, WJÁ+14]
they were called critical subsystems, as the main intention was to provide counterexamples for
properties of the form Pr

min
M (♢ target) < 𝜆. This is only a matter of naming, however, and we

use the term witnessing subsystem as it is more in line with the idea of certification and lets us
avoid artificially introducing a negation in many cases.

A witnessing subsystem is more useful the smaller it is. Small witnessing subsystems
correspond to small parts of the system which by themselves contain enough probability to
achieve the required threshold. Hence the essential algorithmic question is to compute minimal

62



4. New techniques for witnessing subsystems 63

witnessing subsystems with respect to some notion of size.
This chapter describes a tight connection between Farkas certificates and witnessing subsys-

tems. It is based on the observation that entries in Farkas certificates with value zero correspond
to states (or state-action pairs) which can be removed to form a witnessing subsystem. More pre-
cisely, from a Farkas certificate cwe can derive a witnessing subsystem whose states correspond
to the non-zero entries of c, and vice versa.

The presented framework extends naturally to witnessing subsystems for lower bounds
on both the maximal and minimal reachability probabilities in MDPs. Previously, only wit-
nessing subsystems for lower bounds on the maximal probability were considered [WJÁ+12].
A witnessing subsystem for lower bounds on the minimal reachability probability gives the
guarantee that all schedulers of M satisfy the given lower bound. Furthermore, the framework
extends directly to witnessing subsystems for lower bounds on the expected total accumulated
reward before reaching “exit”, under a nonnegative reward function.

The connection to Farkas certificates gives rise to new algorithms and heuristics for comput-
ing minimal witnessing subsystems. They are shown to be competitive with existing approaches
through an experimental evaluation. A further contribution of the chapter is to show that (the
decision version of) computing minimal witnessing subsystems is NP-hard already for acyclic
Markov chains. This settles the question of the precise complexity of this problem for Markov
chains, which was raised in [WJÁ+12].

Related work
Large parts of the literature on witnesses for probabilistic systems have been described in Chap-
ter 1. We focus here on the works which are most closely related the results of this chapter.

The notion of subsystems as witnesses for probabilistic reachability constraints in Markov
chains was first defined in [JÁK+11], which includes heuristics aimed at computing witnessing
subsystems with few states. They are based on iteratively extending subsystems which do not
yet satisfy the lower bound on the probability by adding paths. Each iteration includes a model
checking step, to check whether the current subsystem is a witness. The tool Comics [JÁV+12]
implements these heuristics. They are fundamentally different from the quotient-sum heuristic
which we describe, as the latter does not rely on iteratively expanding a subsystem.

This approach was extended to lower bounds on the maximal reachability probability in
MDPs, to 𝜔-regular properties and high-level counterexamples [WJÁ+12, WJV+13, WJÁ+14,
Jan15]. Exact algorithms based on mixed-integer linear programs (MILPs) to compute (state-)
minimal witnessing subsystem were presented in [WJÁ+12]. The objective functions of these
MILPs aim at finding vectors with many zero-entries, similarly to our approach. One of the two
MILP-formulations which we give for DTMCs coincides with the one in [WJÁ+12], whereas
the MILPs for MDPs differ. The idea of minimizing subsystems with respect to the number of
labels they include was proposed in [WJV+13]. Our MILPs computing label-minimal witnesses
use similar ideas as described there.

A related notion of witnessing subsystem for MDPs has been studied in [CV10]. They
considered a safety-fragment of PCTL, and only witnesses for lower bounds on the maximal
probability of satisfying a path formula. Computing minimal witnessing subsystem for reacha-
bility in MDPs (rather, the associated decision problem) is determined to be NP-complete [CV10],
but the precise complexity for Markov chains has so far been open [WJÁ+12, WJÁ+14].

Witnessing subsystems for constraints on the expected total reward for Markov chains were
first considered in [QJD+15]. This work introduces two kinds of witnessing subsystems, and



64 4.1. Witnessing subsystems

one of them fits very naturally into our framework. The heuristics introduced in [QJD+15] are
based on the known techniques for computing small witnessing subsystems for probabilistic
reachability constraints [AL06, JÁK+11]. In contrast, we consider also witnessing subsystems
for constraints on the expected total reward in MDPs, and show that the connection to Farkas
certificates, and the resulting algorithms, extend naturally to this case.

The MILP we introduce to compute minimal witnesses for lower bounds on the maximal
reachability probability in MDPs depends on an upper bound on the expected number of visits of
state-action pairs under all deterministic and memoryless schedulers which reach {target, exit}
with probability one. Computing such bounds is not trivial, and [BKL+17] considers this problem
for EC-free MDPs. In particular, they leverage the structure of the underlying graph to compute
better bounds.

Outline

The chapter starts by defining subsystems (Definition 4.1) and showing that their minimal
and maximal probability cannot increase with respect to the original system (Proposition 4.4).
Witnessing subsystems are defined in Definition 4.5. Section 4.1.1 considers several notions of
size of subsystems and Section 4.1.2 shows that computing minimal witnessing subsystems is
NP-complete already for acyclic Markov chains (Theorem 4.16). Then, Section 4.2 discusses
the connection between Farkas certificates and witnessing subsystems for the same properties
(Theorem 4.23). This connection leads to mixed-integer linear programs for computing minimal
witnessing subsystems, which are described in Section 4.2.1. Section 4.2.3 introduces the
quotient-sum heuristic which computes Farkas certificates with small support by solving a
sequence of linear programs. Section 4.3 describes the correspondence of Farkas certificates
and witnessing subsystems for the expected total reward criterion, and Section 4.4 discusses
how witnessing subsystems for invariants can be computed.

Relation to published work

The main results of this chapter have been published in [FJB20], which is joint work with
Florian Funke and Christel Baier. In comparison to [FJB20], all results are extended to MDPs
with proper end components, which pose additional challenges as the maximal number of
expected visits in a state may now be unbounded. Furthermore, we consider label-based and
weighted minimization problems, witnessing subsystems for constraints on the expected total
reward, and witnessing subsystems for invariants, all of which were not discussed in [FJB20].
The discussion of the quotient-sum heuristic has also been extended significantly, and is partly
based on [JHFB20]. This paper is joint work with Hans Harder, Florian Funke and Christel
Baier and introduces the tool Switss. Finally, the chapter includes experimental studies which
in parts were also presented in [JHFB20].

4.1 Witnessing subsystems

We start with the definition of a subsystem. Given an MDPM with dedicated states “target”
and “exit”, a subsystem of M is any MDP one may get by taking M and redirecting some of its
transitions to the state “exit”. Formally we define it as follows.



4. New techniques for witnessing subsystems 65

sin

u

v

target

exit

1/2

1/2

α

1/4

3/4

α

9/10

1/10

α
β

M

sin

v

target

exit

1/2

1/2

α

9/10

1/10

α
β

M1

sin

u target

exit

1/2

1/2

α

1/4

3/4

α

M2

Figure 4.1: An MDP M together with two subsystems M1 and M2. The subsystem M1 is
induced by states {𝑠𝑖𝑛, 𝑣} andM2 is induced by states {𝑠𝑖𝑛, 𝑢}.

Definition 4.1 (Subsystem). Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP. An MDP
M′ = (𝑆 ′ ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃 ′) is a subsystem of M if 𝑠𝑖𝑛 ∈ 𝑆 ′ ⊆ 𝑆 , target and exit are
absorbing in M′ and for all 𝑠, 𝑠′ ∈ 𝑆 ′ ∪ {target} and 𝛼 ∈ Act:

1. 𝑃 ′(𝑠, 𝛼, 𝑠′) ∈ { 0, 𝑃 (𝑠, 𝛼, 𝑠′) }, and

2. 𝛼 is enabled in 𝑠 inM′ if and only if 𝛼 is enabled in 𝑠 inM.

The fact that 𝑠′ ranges only over 𝑆 ′ ∪ {target} in the above definition makes sure that
whenever 𝑃 ′(𝑠, 𝛼, 𝑠′) = 0 and 𝑃 (𝑠, 𝛼, 𝑠′) > 0 hold (i.e., some transition of the original MDP is
removed), then the missing probability is added to the transition towards exit in M′. (The
outgoing probabilities of an enabled state-action pair must add up to one.) This matches the
intuitive description that a subsystem is produced by redirecting transitions to the state “exit”.

Definition 4.2 (Induced subsystems). Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP and
𝑆 ′ ⊆ 𝑆 . The subsystem induced by 𝑆 ′ is the MDPM𝑆 ′ = (𝑆 ′ ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃 ′) where
for all 𝑠, 𝑠′ ∈ 𝑆 ′ ∪ {target} and 𝛼 ∈ Act we have:

𝑃 ′(𝑠, 𝛼, 𝑠′) = 𝑃 (𝑠, 𝛼, 𝑠′) and 𝑃 ′(𝑠, 𝛼, exit) = 𝑃 (𝑠, 𝛼, exit) +
∑︂

𝑠′∈𝑆\𝑆 ′
𝑃 (𝑠, 𝛼, 𝑠′) .

Observe that not all subsystems are induced by a set of states 𝑆 ′, as a subsystem may exclude
individual transitions without excluding any states.

Assume thatM = (𝑆∪{target, exit},Act, 𝑠𝑖𝑛, 𝑃) is an MDP in reachability form and consider
a set of states 𝑆 ′ ⊆ 𝑆 and E′ = {(𝑠, 𝛼) ∈ E | 𝑠 ∈ 𝑆 ′}. Then, the system matrix A

′ ∈ RE′×𝑆 ′

(as defined in Definition 2.7) for the subsystem M𝑆 ′ induced by 𝑆 ′ ⊆ 𝑆 is the restriction of
the system matrix A of M to 𝑆 ′ (i.e., A′ = A|E′×𝑆 ′ ). Similarly, the target vector t′ of M𝑆 ′ is
the restriction of the target vector t of M to 𝑆 ′ (i.e., t′ = t|𝑆 ′ ). This follows directly from the
definition of the transition matrix of the induced subsystem and will be used later in the chapter
to relate Farkas certificates of induced subsystems to Farkas certificates of the original system.
Example 4.3. Consider the MDPM defined in Figure 4.1 together with the two subsystemsM1
and M2. While M1 has nondeterministic choice (in state 𝑣), M2 is purely probabilistic. The



66 4.1. Witnessing subsystems

optimal probabilities in these three MDPs are given as follows:

Pr
min
M (♢ target) = 1/4 Pr

max
M (♢ target) = 23/40

Pr
min
M1

(♢ target) = 0 Pr
max
M1

(♢ target) = 9/20
Pr

min
M2

(♢ target) = 1/8 Pr
max
M2

(♢ target) = 1/8 △

The crucial property of subsystems is that their maximal and minimal reachability prob-
abilities do not increase when compared with the original system. For minimal probabilities
point (2.) of Definition 4.1 is important, as it makes sure that all actions remain available for
schedulers to choose. It is important that the considered MDP is in reachability form for the
following proposition, as it relies on the fact that paths which have reached “exit” can no longer
reach “target” thereafter.

Proposition 4.4. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form andM′

be a subsystem of M with states 𝑆 ′ ∪ {target, exit}. Then for all states 𝑠 ∈ 𝑆 ′ we have

Pr
min
M′,𝑠 (♢ target) ≤ Pr

min
M,𝑠

(♢ target) and Pr
max
M′,𝑠 (♢ target) ≤ Pr

max
M,𝑠

(♢ target) .

Proof. For both statements we use the fact that the finite paths ofM′ which have not yet visited
exit form a subset of the corresponding paths in M. More precisely:

{𝜋 ∈ Pathsfin(M′) | last(𝜋) ≠ exit} ⊆ {𝜋 ∈ Pathsfin(M) | last(𝜋) ≠ exit}.

To prove Prmin
M′,𝑠 (♢ target) ≤ Pr

min
M,𝑠

(♢ target) we show that for any scheduler𝔖 forM we find a
scheduler𝔖′ forM′ such that Pr𝔖′

M′,𝑠 (♢ target) ≤ Pr𝔖M,𝑠
(♢ target). We define𝔖′ to choose the

same action as chosen by𝔖 for all paths which have not yet visited exit. This is possible, because
every action which is enabled in a state in M is also enabled in the same state in M′ (point (2.)
of Definition 4.1). Then any finite𝔖′-path in M′ from 𝑠 that visits target is also an𝔖-path in
M carrying the same probability, which shows that Pr𝔖′

M′,𝑠 (♢ target) ≤ Pr𝔖M,𝑠
(♢ target) holds.

To prove Prmax
M′,𝑠 (♢ target) ≤ Pr

max
M,𝑠

(♢ target) we show that for any scheduler𝔖′ for M′ we
find a scheduler𝔖 for M such that Pr𝔖′

M′,𝑠 (♢ target) ≤ Pr𝔖M,𝑠
(♢ target). We define𝔖 to choose

the same action as𝔖′ for all paths which are also𝔖′-paths in M′, and arbitrary otherwise.
Then Pr𝔖′

M′,𝑠 (♢ target) ≤ Pr𝔖M,𝑠
(♢ target) follows as in the other case.

Due to the above property we may call a subsystem a witness for a lower-bounded proba-
bilistic reachability constraint if it already satisfies the bound, as the existence of such a witness
implies that the original MDP satisfies the constraint.

Definition 4.5 (Witnessing subsystems). Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in
reachability form, M′ be a subsystem ofM, 𝜆 ∈ [0, 1] and ≳ ∈ {≥, >}. We say that

• M′ is a witness for Pr
min
M,𝑠𝑖𝑛

(♢ target) ≳ 𝜆 if Pr
min
M′,𝑠𝑖𝑛

(♢ target) ≳ 𝜆 holds, and

• M′ is a witness for Pr
max
M,𝑠𝑖𝑛

(♢ target) ≳ 𝜆 if Pr
max
M′,𝑠𝑖𝑛

(♢ target) ≳ 𝜆 holds.

Remark 4.6 (Witnesses for upper-bounded threshold properties). Witnessing subsystems are
only defined above for lower-bounded probabilistic reachability constraints. For upper-bounds,
one can use a dual definition in which transitions are redirected to target. This guarantees
that the optimal probability of reaching “target” in subsystem can never decrease. As the



4. New techniques for witnessing subsystems 67

problem of computing witnessing subsystems is different in this case, we consider it separately
in Section 4.4. However, for EC-free MDPs (and therefore also for Markov chains) the problem
of computing witnesses for upper-bounded thresholds can be reduced to the lower-bounded
case by changing the meaning of “target” and “exit” and using the equations

Pr
max
M (♢ target) = 1−Prmin

M (♢ exit) and Pr
min
M (♢ target) = 1−Prmax

M (♢ exit),

which hold for EC-free MDPs M in reachability form. △
Remark 4.7 (Purely probabilistic and nondeterministic systems). If M is a Markov chain, then
Pr

max
M (♢ target) = Pr

min
M (♢ target) holds and hence witnesses for the two types of properties

defined in Definition 4.5 coincide. Now consider the case that M is purely nondeterministic
(i.e., it is a transition system). This means that for all states 𝑠 and enabled actions 𝛼 ∈ Act(𝑠)
there exists a unique successor state 𝑠′ satisfying 𝑃 (𝑠, 𝛼, 𝑠′) = 1. Then, all subsystems M′ of M
satisfy Pr

𝔪
M′ (♢ target) ∈ {0, 1} (with 𝔪 ∈ {min,max}). We have Prmin

M (♢ target) = 1 iff “exit” is
not reachable from 𝑠𝑖𝑛 in M, and for all subsystems M′ of M, apart from M itself, we have
Pr

min
M′ (♢ target) = 0. In other words, the only potential witness for Prmin

M (♢ target) ≥ 1 is M
itself. On the other hand, a subsystem M′ of M is a witness for Prmax

M (♢ target) ≥ 1 iff “target”
is reachable from 𝑠𝑖𝑛 in M′. Hence, all paths from 𝑠𝑖𝑛 to “target” in M induce witnesses for
Pr

max
M (♢ target) ≥ 1. △

Example 4.8. Consider again the MDPsM,M1 andM2 as shown in Figure 4.1. The subsystem
M1 is a witness for Prmax

M (♢ target) ≥ 9/20, but does not witness any non trivial lower bound on
the minimal reachability probability (as we have Prmin

M1
(♢ target) = 0). On the other hand,M2 is

a witness for both Pr
max
M (♢ target) ≥ 1/8 and Pr

min
M (♢ target) ≥ 1/8. △

As the minimal probability to reach “target” is zero in all states which are part of some proper
end component, these states can always be removed when considering witnessing subsystem
for Prmin

M (♢ target) ≥ 𝜆. This motivates the following definition.
Definition 4.9 (Largest min-relevant subsystem). Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an
MDP in reachability form and 𝑆𝑅 its min-relevant states (see Definition 3.21). We callM∗ = M𝑆𝑅 ,
i.e., the subsystem of M induced by 𝑆𝑅 , the largest min-relevant subsystem ofM.

One can check thatM∗ is identical to the MDP with the same name defined in the proof
of Theorem 3.24. There, it was used to argue that the existence of a Farkas certificate for
Pr

min
M (♢ target) ≥ 𝜆 indeed proves that the constraint holds inM. As argued there, A∗ and t

∗,
which were defined in Definition 3.21 as the restrictions of A, t to states in 𝑆𝑅 , are identical to
the system matrix and target vector ofM∗. The following proposition shows that when looking
for witnesses for lower bounds on the minimal reachability probability, it is enough to consider
subsystems of M∗.
Proposition 4.10. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃),M∗ be its largest min-relevant subsys-
tem and 𝜆 ∈ [0, 1]. Then, for all subsystems M′ of M satisfying Prmin

M′ (♢ target) ≥ 𝜆, there exists
a subsystem M′′ of bothM∗ and M′ which satisfies Prmin

M′′ (♢ target) ≥ 𝜆.

Proof. LetM′ = (𝑆 ′∪{target, exit},Act, 𝑠𝑖𝑛, 𝑃 ′) be a subsystem ofM such that Prmin
M′ (♢ target) ≥

𝜆 holds and let M′′ be the subsystem one gets by taking M′ and redirecting all incoming
transitions to states in 𝑆 \ 𝑆𝑅 to “exit”. As we have Pr

min
M′,𝑠 (♢ target) = 0 for all 𝑠 ∈ 𝑆 \ 𝑆𝑅 it

follows that Prmin
M′′ (♢ target) = Pr

min
M′ (♢ target) ≥ 𝜆. The MDP M′′ is a subsystem of both M∗

and M′, which proves the claim.



68 4.1. Witnessing subsystems

4.1.1 The witness problem

Any MDP M in reachability form is a subsystem of itself, and hence it is also a witnessing
subsystem for any lower-bounded probabilistic reachability constraint which is satisfied by M.
But the entire system M is clearly not very informative as a witness. Rather, useful witnessing
subsystems should highlight a restricted part of the system which by itself carries enough
probability to satisfy the given constraint. Hence the important computational problem in this
context is to compute small (or minimal) witnessing subsystems.

Definition 4.11 (Witness problem). Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in
reachability form, 𝜆 ∈ [0, 1] ∩ Q and 𝑘 ∈ N, both encoded in binary.

• The min-witness problem asks whether a subsystemM′ = (𝑆 ′ ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃 ′)
ofM exists such that Prmin

M′,𝑠𝑖𝑛
(♢ target) ≥ 𝜆 and |𝑆 ′ | ≤ 𝑘 .

• Themax-witness problem asks whether a subsystemM′ = (𝑆 ′ ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃 ′)
ofM exists such that Prmax

M′,𝑠𝑖𝑛
(♢ target) ≥ 𝜆 and |𝑆 ′ | ≤ 𝑘 .

A polynomial time algorithm for the witness problem directly yields a polynomial time
algorithm to compute a minimal witnessing subsystem. IfM is a Markov chain the two problems
coincide as Prmin

M,𝑠𝑖𝑛
(♢ target) = Pr

max
M,𝑠𝑖𝑛

(♢ target) holds.
Remark 4.12 (Handling multiple target states). In many cases it is useful to consider a set
𝑇 of target-states, rather than a single state “target”. One way to get an equivalent MDP in
reachability form is to collapse the states included in 𝑇 into a single state. However, as a result
one would only consider subsystems in which all states of 𝑇 are included, which may not
always be desired. To reason about subsystems in which 𝑇 may be partially included one can
transform the MDP into reachability form by adding a fresh state “target” and adapting all states
in 𝑇 such that they have only one transition to “target”, carrying probability one. △

Notions of size for subsystems

Thewitness problem as defined above implicitly considers a specific notion of size for subsystems,
namely the number of states that the subsystem includes. However, depending on the situation,
other notions might be useful. We first consider two generalizations of the witness problem
where one is allowed to specify either a weight function, or a labeling function, which both
induce a specific notion of size for subsystems. Labels can be used to group states which, for
example, belong to the same component of a compositional system, or to the same statement
in a high-level description of the model. The weighted version of the problem associates with
each state a natural number which represents the cost of including that state in a subsystem.

A weight function for an MDPM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) is a function wgt : 𝑆 → N.
The weight of a subsystem M′ of M with states 𝑆 ′ ∪ {target, exit} is defined to be wgt (M′) =∑︁
𝑠∈𝑆 ′ wgt (𝑠). A labeling function for M into a finite set of labels 𝐿 is of the form Λ : 𝑆 → 2𝐿 ,

and, for a given subsystemM′ ofM with states 𝑆 ′ ∪ {target, exit}, we define the set of labels
that M′ hits as Λ(M′) = {𝑙 ∈ 𝐿 | there exists 𝑠 ∈ 𝑆 ′ such that 𝑙 ∈ Λ(𝑠)}.

Definition 4.13 (label-based and weighted versions). Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃)
be an MDP in reachability form, 𝜆 ∈ [0, 1] ∩ Q and 𝑘 ∈ N. Furthermore, let wgt be a weight
function for M and Λ be a labeling function for M into the set of labels 𝐿.



4. New techniques for witnessing subsystems 69

• The label-based max-witness problem asks whether a subsystem M′ of M with states
𝑆 ′ ∪ {target, exit} exists such that Prmax

M′,𝑠𝑖𝑛
(♢ target) ≥ 𝜆 and |Λ(M′) | ≤ 𝑘 hold.

• The weighted max-witness problem asks whether a subsystem M′ of M with states
𝑆 ′ ∪ {target, exit} exists such that Prmax

M′,𝑠𝑖𝑛
(♢ target) ≥ 𝜆 and wgt (M′) ≤ 𝑘 hold.

The min-versions of the two problems are defined analogously by replacing Pr
max by Pr

min.
The above definitions all take a state-based view. Other natural ways of measuring the

size of subsystems include counting the transitions included in the subsystem rather than
the states, or counting both transitions and states. The transitions of an MDP M = (𝑆 ∪
{target, exit},Act, 𝑠𝑖𝑛, 𝑃) are defined as 𝑇M = {(𝑠, 𝛼,𝑢) ∈ 𝑆 × Act×𝑆 | 𝑃 (𝑠, 𝛼,𝑢) > 0}. We do
not consider transitions in which states “target” and “exit” participate. If one wants to count
transitions of “target”, one can first apply a reduction as described in Remark 4.12.

Both the weighted and labeled witness problems can be adapted canonically to take the
transition-based (or combined) view, simply by considering weight functions (respectively the
labeling functions) with domain 𝑇M or 𝑇M ∪ 𝑆 . Such weight- or labeling functions are called
transition-based (respectively combined). We now show that the resulting problems can be
reduced in polynomial time to the corresponding state-based versions. The combined view
generalizes both state-based and transition-based views, as states, respectively transitions, can
be zero-weighted or have no labels. Hence it is enough to provide a reduction from the combined
setting to the state-based setting. Using it, any algorithm for the state-based problem can be
transferred to solve the corresponding problem under the combined or transition-based view.
Proposition 4.14. The label-based and weighted witness problems under the combined view can
be reduced in polynomial time to the corresponding state-based witness problems.

Proof. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP and wgt,Λ be combined weight
and labeling functions for M. The proof proceeds by constructing an MDP M𝑠 together
with state-based weight and labeling functions wgt𝑠 ,Λ𝑠 for M𝑠 such that the subsystems
of M and the state-induced subsystems of M𝑠 are in a one-to-one correspondence which
preserves probabilities, weights and labels. We will use the notation 𝑆all = 𝑆 ∪ {target, exit},
𝑇all = {(𝑠, 𝛼, 𝑡) ∈ 𝑆all × Act×𝑆all | 𝑃 (𝑠, 𝛼, 𝑡) > 0} and 𝑇 = 𝑇M as defined above. Observe that 𝑇all
includes transitions with end-points in {target, exit}, which are not included in 𝑇 , and recall
that E ⊆ 𝑆 × Act are the enabled state-action pairs of M.

Consider the MDPM𝑠 = (𝑆 ∪𝑇all∪ {target, exit},Act′, 𝑠𝑖𝑛, 𝑃 ′) whose probabilistic transition
function 𝑃 ′ is defined such that the states “target” and “exit” are absorbing, and additionally
including the following transitions:

𝑠
𝛼−→ (𝑠, 𝛼,𝑢) with probability 𝑃 (𝑠, 𝛼,𝑢) for all (𝑠, 𝛼) ∈ E,

(𝑠, 𝛼,𝑢) 𝛼−→ 𝑢 with probability 1 for all (𝑠, 𝛼,𝑢) ∈ 𝑇all.

Furthermore, we define wgt𝑠 (𝑥) = wgt𝑠 (𝑥) and Λ𝑠 (𝑥) = Λ(𝑥) for all 𝑥 ∈ 𝑇 ∪𝑆 , and wgt𝑠 (𝑥) = 0
and Λ𝑠 (𝑥) = ∅ otherwise. Note that in M𝑠 , wgt𝑠 and Λ𝑠 are indeed state-based weight,
respectively labeling, functions. There is a bijection between paths inM and M𝑠 given by

𝑠0𝛼0𝑠1𝛼1𝑠2 . . . corresponds to 𝑠0𝛼0(𝑠0, 𝛼0, 𝑠1)𝛼0𝑠1𝛼1(𝑠1, 𝛼1, 𝑠2)𝛼1𝑠2 . . .

and this bijection preserves probabilities. This immediately implies that a subsystem M′ of
M including exactly states 𝑆 ′ ⊆ 𝑆all and transitions 𝑇 ′ ⊆ 𝑇all is a witness if and only if the



70 4.1. Witnessing subsystems

subsystem M′
𝑠 of M𝑠 induced by states 𝑆 ′ ∪ 𝑇 ′ is a witness. Also it follows directly that

wgt𝑠 (M′
𝑠) = wgt (M′) and Λ𝑠 (M′

𝑠) = Λ(M′), which concludes the proof.

4.1.2 Complexity of the witness problem

All variants of the witness problem that we have introduced are included in NP. This has been
observed for the versions of the problems which have been studied previously in the literature,
namely the max-versions of the standard [WJÁ+12] and label-based [KÁJW15] witness problems.
The proof for the other cases is exactly the same, however: one can guess a subset of the states
of the given MDP and check (1) whether the size of the induced subsystem (which is either the
combined weight of the participating states, or the number of labels that appear) is at most 𝑘 and
(2) whether the subsystem is a witness, i.e., whether it satisfies the corresponding probabilistic
reachability constraint. Both checks can be done in polynomial time.

Proposition 4.15 ([WJÁ+12, KÁJW15]). The weighted and label-based max- and min-witness
problems are in NP.

In sections 4.2.1 and 4.2.3 we will discuss practical approaches to solve the optimization
versions of these problems, i.e., for computing minimal witnesses with respect to the different
size measures. Now we turn to the question of whether the problems are NP-hard. It is known
that the max-witness problem is NP-hard (see [WJÁ+14, Theorem 7], whose proof is based on a
result in [CV10]). However, the precise complexity for the restricted case of Markov chains was
open so far, as noted in [WJÁ+14, Jan15]. We now show that the problem remains NP-hard even
for acyclic Markov chains. In particular, this shows that the min-witness problem is NP-hard for
MDPs. The proof goes by reduction from the clique problem which asks, given an undirected
graph𝐺 and a natural number𝐶 , whether𝐺 contains a complete (i.e., fully connected) subgraph
with 𝐶 vertices [Kar72].

Theorem 4.16. The witness problem for acyclic Markov chains is NP-hard.

Proof. Let an instance of the clique problem be given by the undirected graph 𝐺 = (𝑉 , 𝐸) and
the natural number 𝐶 . We will assume that 𝐶 ≥ 3 holds and that no vertex has a self loop.
Consider the Markov chainM = (𝑉 ∪ 𝐸 ∪ {𝑠𝑖𝑛, target, exit}, 𝑠𝑖𝑛, 𝑃) containing a state for each
vertex and edge of 𝐺 , and additional states {𝑠𝑖𝑛, target, exit}, where 𝑠𝑖𝑛 is the initial state. The
probability transition function 𝑃 is defined as follows, where 𝑛 = |𝑉 |:

• 𝑃 (𝑠𝑖𝑛, 𝑣) = 1/𝑛 for all 𝑣 ∈ 𝑉 ,

• 𝑃 (𝑣, {𝑣,𝑤}) = 1/𝑛 for all 𝑣 ∈ 𝑉 and edges {𝑣,𝑤} ∈ 𝐸 in which 𝑣 participates,

• 𝑃 ({𝑣,𝑤}, target) = 1 for all {𝑣,𝑤} ∈ 𝐸,

• the remaining probability in each state is added to a transition to exit.

So each state ofM corresponding to a vertex of 𝐺 has as many outgoing transitions as it has
neighbors in 𝐺 , and each state corresponding to an edge has exactly two incoming transitions.
A sketch of the construction can be seen in Figure 4.2.

Let 𝜆 =
𝐶 (𝐶−1)
𝑛2 and 𝑘 = 𝐶 + 𝐶 (𝐶−1)

2 + 1. We claim that there exists a subsystem M′ =

(𝑆 ′ ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃 ′) of M such that PrM′ (♢ target) ≥ 𝜆 and |𝑆 ′ | ≤ 𝑘 if and only if 𝐺 has
a clique of size 𝐶 .



4. New techniques for witnessing subsystems 71

Figure 4.2: A sketch of the reduction from
the clique problem to the witness problem
for acyclic Markov chains. The state “exit”
together with transitions to it are omitted.

sin

v w · · ·

{v, w} {v, u} · · ·

target

1/n 1/n 1/n

1/n 1/n
1/n

1 1

1

1/n

“⇐=”: Let 𝑉 ′ ⊆ 𝑉 be a set of vertices which form a clique in 𝐺 such that |𝑉 ′ | = 𝐶 . Let
𝐸′ = {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉 ′} ⊆ 𝐸 be the edges between vertices in 𝑉 ′ and consider the subsystem
M′ of M induced by 𝑉 ′ ∪ 𝐸′ ∪ {𝑠𝑖𝑛}. We have |𝑉 ′ | = 𝐶 and |𝐸′ | = 𝐶 (𝐶−1)

2 , and hence the
number of states of M′ is exactly 𝑘 . For each state {𝑢, 𝑣} ∈ 𝐸′ there exist two paths in M′

from 𝑠𝑖𝑛 to target visiting {𝑢, 𝑣}. As each such path has probability 1/𝑛2 we can conclude that
PrM′ (♢ target) = 𝐶 (𝐶−1)

𝑛2 = 𝜆.
“=⇒”: LetM′ = (𝑆 ′∪{target, exit}, 𝑠𝑖𝑛, 𝑃 ′) be a subsystem ofM such that PrM′ (♢ target) ≥

𝜆 and |𝑆 ′ | ≤ 𝑘 . Consider the partitioning 𝑆 ′ = 𝑉 ′ ∪ 𝐸′ ∪ {𝑠𝑖𝑛} of 𝑆 ′ such that 𝑉 ′ ⊆ 𝑉 and
𝐸′ ⊆ 𝐸, and define 𝑎 = |𝑉 ′ | and 𝑏 = |𝐸′ |. We have: 𝑎 + 𝑏 ≤ 𝑘 − 1 = 𝐶 + 𝐶 (𝐶−1)

2 . Let us
denote by 𝑇 the number of transitions between sets 𝑉 ′ and 𝐸′ that exist in the subsystem
M′. As PrM′ (♢ target) ≥ 𝜆 =

𝐶 (𝐶−1)
𝑛2 there must be at least 𝐶 (𝐶 − 1) such transitions, i.e.,

𝑇 ≥ 𝐶 (𝐶 − 1). Since each state in 𝐸′ has at most two incoming transitions from states in 𝑉 ′ we
have 2𝑏 ≥ 𝑇 ≥ 𝐶 (𝐶 − 1). By invoking 𝑎 + 𝑏 ≤ 𝐶 + 𝐶 (𝐶−1)

2 it now follows that 𝑎 ≤ 𝐶 must hold.
Now let us partition 𝐸′ into those states that have exactly one, respectively two, incoming

transition from 𝑉 ′, called 𝐸′1 and 𝐸′2. The set 𝐸′2 is bounded from above by 𝑎 (𝑎−1)
2 , which is the

possible number of edges with both endpoints in 𝑉 ′. We have:

𝑇 = 2𝐸′2 + 𝐸′1 ≤ 2 · 𝑎(𝑎 − 1)
2 + 𝑏 − 𝑎(𝑎 − 1)

2

=
𝑎(𝑎 − 1)

2 + 𝑏
(I.)
≤ 𝑎(𝑎 − 1)

2 +𝐶 + 𝐶 (𝐶 − 1)
2 − 𝑎

=
𝑎(𝑎 − 3)

2 + 𝐶 (𝐶 + 1)
2

(II.)
≤ 𝐶 (𝐶 − 3)

2 + 𝐶 (𝐶 + 1)
2 = 𝐶 (𝐶 − 1) ≤ 𝑇

Inequality (I.) uses 𝑎 +𝑏 ≤ 𝐶 + 𝐶 (𝐶−1)
2 , and for (II.) we use 𝑎 ≤ 𝐶 and our assumption that𝐶 ≥ 3

holds. In summary, we have equality for all the above expressions. By rewriting the equality
between the left and right hand side of the inequality (II.) we get 𝑎(𝑎 − 3) = 𝐶 (𝐶 − 3), which,
given that 𝐶 ≥ 3 and 𝑎 ≥ 0 hold, implies 𝑎 = 𝐶 . It follows that 𝐸′2 = 𝑏 =

𝐶 (𝐶−1)
2 and hence all

states in 𝐸′ have two incoming transitions from 𝑉 ′. This implies that 𝑉 ′ forms a clique in 𝐺 of
size 𝐶 , which concludes the proof.



72 4.1. Witnessing subsystems

Remark 4.17 (Complexity for fixed 𝜆). The above proof can be adapted to the situation where
𝜆 ∈ (0, 1) is fixed and not part of the input. To this end choose 𝑛 ≥ |𝑉 | such that

𝜆 ≥ 𝐶 (𝐶 − 1)
𝑛2

and 𝜆 − 𝐶 (𝐶 − 1)
𝑛2

+ |𝑉 |
𝑛

≤ 1.

Then, add a transition to the constructed Markov chain which goes directly from 𝑠𝑖𝑛 to “target”
carrying probability 𝜆 − 𝐶 (𝐶−1)

𝑛2 . The other parts of the construction and proof remain the same,
after substituting 𝜆 in the proof by 𝜆′ = 𝐶 (𝐶−1)

𝑛2 . Here 𝜆 − 𝐶 (𝐶−1)
𝑛2 + |𝑉 |

𝑛
≤ 1 ensures that the

construction yields a legal Markov chain (any superfluous probability is redirected to exit). Such
an 𝑛 can be found as we have assumed 𝜆 < 1. △
Remark 4.18 (Strong NP-hardness). From the proof of Theorem 4.16 it also follows that the
witness problem is NP-complete in the strong sense, that is, even if all numbers are encoded in
unary. This is because 𝜆 =

𝐶 (𝐶−1)
𝑛2 and all transition probabilities (which are either 1/𝑛 or 1) are

polynomial in the size of the clique instance, even if encoded in unary. △

4.1.3 The core-problem for Markov chains
The core of a Markov decision process is a concept introduced in [KM20] which is similar to the
notion of a subsystem. A major difference, however, is that cores are defined independently of
any property and require only that the maximal probability of ever leaving the core is small. On
the other hand, witnessing subsystems are defined relative to some fixed reachability query.

Definition 4.19 ([KM20]). LetM = (𝑆,Act, 𝑠𝑖𝑛, 𝑃) be an MDP and 𝜖 ∈ Q>0. A set 𝑆𝜖 ⊆ 𝑆 is an
𝜖-core ofM if Pr

max
M (♢(𝑆 \ 𝑆𝜖 )) < 𝜖 .

We will call the problem of deciding whether an 𝜖-core with at most 𝑘 states exists the core-
problem, where 𝑘 and 𝜖 are part of the input. This problem is NP-complete in general [KM20,
Theorem 3.6], but NP-hardness was open for the restricted class of Markov chains [KM20,
Remark 3.7]. We now show that the witness problem for Markov chains can be reduced
to the core-problem for Markov chains. This, together with Theorem 4.16, implies that the
core-problem is NP-hard for Markov chains.

Proposition 4.20. The core-problem for Markov chains is NP-hard.

Proof. Consider an instance of the witness problem for Markov chains, given by a Markov chain
M = (𝑆 ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃) in reachability form, a natural number 𝑘 and a 𝜆 ∈ (0, 1] ∩ Q.
The problem asks whether a witnessing subsystem for PrM (♢ target) ≥ 𝜆 exists with at most 𝑘
states, and we can assume that 𝑘 ≤ |𝑆 |. We describe a polynomial reduction from this problem
to the core-problem for Markov chains.

Let M′ = (𝑆 ∪ {target, exit} ∪ 𝐿, 𝑠𝑖𝑛, 𝑃 ′) be a Markov chain which is constructed by adding
a self loop involving |𝑆 | + 1 fresh states to the state “exit” ofM. Formally, let 𝐿 = {𝑙0, . . . , 𝑙 |𝑆 |}
and define:

• 𝑃 ′(𝑠,𝑢) = 𝑃 (𝑠,𝑢) if 𝑠,𝑢 ∈ 𝑆 ,
• 𝑃 (exit, 𝑙0) = 1, 𝑃 (𝑙𝑖 , 𝑙𝑖+1) = 1 for all 0 ≤ 𝑖 < |𝑆 |, and 𝑃 (𝑙 |𝑆 | , exit) = 1.

We claim thatM has a 𝜆-core of size at most 𝑘 + 1 if and only ifM has a witnessing subsystem
for PrM (♢ target) ≥ 𝜆 of size at most 𝑘 . The one state difference stems from the fact that target
does not count towards the size of a witnessing subsystem, by convention.



4. New techniques for witnessing subsystems 73

If N = (𝑆 ′ ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃N) is a subsystem of M and satisfies PrN (♢ target) ≥ 𝜆,
then clearly 𝑆 ′∪{target} is a 𝜆-core ofM′ and has exactly |𝑆 ′ | +1 states. For the other direction,
we first observe that we may assume that any given 𝜆-core of M′ includes either all states
in 𝐿 ∪ {exit}, or none of them. This is because if the set is partially included in the core,
then each of the included states has probability one of leaving the core, and can hence be
removed. So let 𝑆𝜆 be a 𝜆-core of M′ with this property and such that |𝑆𝜆 | ≤ 𝑘 + 1. As M is
in reachability form, the only bottom strongly connected components of M′ are induced by
{target} and {exit} ∪ 𝐿. Hence we have {target} ⊆ 𝑆𝜆 or {exit} ∪ 𝐿 ⊆ 𝑆𝜆 . The latter can be
excluded as |𝑆𝜆 | ≤ 𝑘 + 1 ≤ |𝑆 | + 1 and |𝐿 | = |𝑆 | + 1. Hence, we have target ∈ 𝑆𝜆 and exit ∉ 𝑆𝜆
which implies, by the core-property, that the subsystem induced by 𝑆𝜆 in M is a witness for
PrM (♢ target) ≥ 𝜆.

Remark 4.21. As the witness problem remains NP-hard in acyclic Markov chains for fixed 𝜆
(see Remark 4.17), the core-problem remains NP-hard for fixed 𝜖 using the same proof. △

4.2 Farkas certificates and witnessing subsystems
Farkas certificates were introduced in Chapter 3 as a means to certify the result of model
checking algorithms for probabilistic reachability constraints. As such they are tokens which
can be used to derive a simple proof showing that the given property holds in an MDP. However,
at first sight it is not clear whether they contain any information that can be used to intuitively
explain why the constraint is satisfied.

This section establishes a connection between Farkas certificates and witnessing subsystems
for lower-bounded probabilistic reachability constraints. The correspondence relates zero-
valued entries in a Farkas certificate to states (or state-action pairs) which can be removed to
form a witnessing subsystem. This allows us to derive a witnessing subsystem from a Farkas
certificate, and vice versa. Furthermore, we use this connection to develop new algorithms to
compute minimal or small witnessing subsystems. All these algorithms are based on finding
small (i.e., with few non-zero entries) Farkas certificates for the corresponding property, and
rely on (mixed-integer) linear programming techniques.

We first show a technical lemma which relates solutions of the linear inequalities defin-
ing Farkas certificates to solutions of “reduced” systems of linear inequalities, in which some
rows and columns in the matrix representation are omitted. Such reduced systems are related
to the corresponding inequalities of subsystems of M, as was pointed out directly follow-
ing Definition 4.2. For a given vector y ∈ RE

≥0, where E is the set of enabled state-action
pairs of an MDP M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃), we define the state support of y as the
set of states such that at least one action has non-zero value in y. More formally, we have
state-supp(y) = {𝑠 ∈ 𝑆 | ∑︁𝛼∈Act(𝑠 ) y(𝑠, 𝛼) > 0}.

Lemma 4.22. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP, E its enabled state-action pairs
and A its system matrix. Fix b ∈ RE

≥0 and 𝜆 ≥ 0.

1. Let z ∈ R𝑆≥0, 𝑆 ′ ⊆ 𝑆 be a set of states such that supp(z) ⊆ 𝑆 ′ and E′ = {(𝑠, 𝛼) | 𝑠 ∈ 𝑆 ′, 𝛼 ∈
Act(𝑠)}. We assume that 𝑠𝑖𝑛 ∈ 𝑆 ′. Furthermore, let A′ = A|E′×𝑆 ′ , b′ = b|E′ and z′ = z|𝑆 ′ be
the corresponding restrictions. Then:

Az ≤ b ∧ z(𝑠𝑖𝑛) ≥ 𝜆 holds if and only if A
′
z
′ ≤ b

′ ∧ z
′(𝑠𝑖𝑛) ≥ 𝜆 holds.



74 4.2. Farkas certificates and witnessing subsystems

2. Let y ∈ RE
≥0, 𝑆

′ ⊆ 𝑆 be such that state-supp(y) ⊆ 𝑆 ′ and E′ = {(𝑠, 𝛼) | 𝑠 ∈ 𝑆 ′, 𝛼 ∈ Act(𝑠)}.
Furthermore, let y′ = y|E′ , A′ = A|E′×𝑆 ′ and b′ = b|E′ . Then:

yA ≤ 𝛿𝑠𝑖𝑛 ∧ y b ≥ 𝜆 holds if and only if y
′
A
′ ≤ 𝛿𝑠𝑖𝑛 ∧ y

′
b
′ ≥ 𝜆 holds.

Proof. (1.) As 𝑠𝑖𝑛 ∈ 𝑆 ′ and by definition of z′ we directly get z(𝑠𝑖𝑛) ≥ 𝜆 if and only if z′(𝑠𝑖𝑛) ≥ 𝜆.
The set 𝑆 ′ contains all states 𝑠 ∈ 𝑆 such that z(𝑠) > 0, and hence we have for all (𝑠, 𝛼) ∈ E:

b(𝑠, 𝛼) +
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · z(𝑠′)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑅 (𝑠,𝛼 )

= b(𝑠, 𝛼) +
∑︂
𝑠′∈𝑆 ′

𝑃 (𝑠, 𝛼, 𝑠′) · z(𝑠′)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
𝑅′ (𝑠,𝛼 )

.

By construction, Az ≤ b is equivalent to z(𝑠) ≤ 𝑅(𝑠, 𝛼) for each (𝑠, 𝛼) ∈ E, and A
′
z
′ ≤ b

′ is
equivalent to z′(𝑠) ≤ 𝑅′(𝑠, 𝛼) for each (𝑠, 𝛼) ∈ E′. Hence, the direction from left to right follows
immediately from the above equality. For the other direction, we additionally observe that
z(𝑠) = 0 for all 𝑠 ∈ 𝑆 \𝑆 ′ and hence z(𝑠) ≤ 𝑅(𝑠, 𝛼) trivially holds for all (𝑠, 𝛼) ∈ E with 𝑠 ∈ 𝑆 \𝑆 ′.

(2.) As each non-zero entry of y is also an entry of y′, we directly get y b = y
′
b
′. By similar

reasoning as above it follows that for all 𝑠 ∈ 𝑆 we have:

𝛿𝑠𝑖𝑛 (𝑠) +
∑︂

(𝑠′,𝛼 ′ ) ∈E
𝑃 (𝑠′, 𝛼 ′, 𝑠) · y(𝑠′, 𝛼 ′)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑅 (𝑠 )

= 𝛿𝑠𝑖𝑛 (𝑠) +
∑︂

(𝑠′,𝛼 ′ ) ∈E′
𝑃 (𝑠′, 𝛼 ′, 𝑠) · y(𝑠′, 𝛼 ′)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑅′ (𝑠 )

.

By construction yA ≤ 𝛿𝑠𝑖𝑛 amounts to requiring
∑︁
𝛼∈Act(𝑠 ) y(𝑠, 𝛼) ≤ 𝑅(𝑠) for all 𝑠 ∈ 𝑆 , and

y
′
A
′ ≤ 𝛿𝑠𝑖𝑛 is equivalent to

∑︁
𝛼∈Act(𝑠 ) y(𝑠, 𝛼) ≤ 𝑅′(𝑠) for all 𝑠 ∈ 𝑆 ′. Now the claim follows in

the same way as above.

Now we are in a position to state the main theorem of the section, which says that the
existence of a Farkas certificate whose support is included in some subset of states 𝑆 ′ implies
that the induced subsystem M𝑆 ′ is a witness for the corresponding property, and vice versa.
This insight will be used throughout this chapter to devise novel algorithms to compute small
witnessing subsystems by searching for Farkas certificates with small support.

Theorem 4.23. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form, 𝜆 ∈ [0, 1]
and 𝑆 ′ ⊆ 𝑆 . Then:

1. There exists z ∈ Fmin
M,≥ (𝜆) such that supp(z) ⊆ 𝑆 ′ if and only if Pr

min
M𝑆′

(♢ target) ≥ 𝜆 holds.

2. There exists y ∈ Fmax
M,≥ (𝜆) such that state-supp(y) ⊆ 𝑆 ′ if and only if Prmax

M𝑆′
(♢ target) ≥ 𝜆

holds.

Proof. Let 𝑆𝑅 be the min-relevant states of M and E′ = {(𝑠, 𝛼) ∈ E | 𝑠 ∈ 𝑆 ′}.
(1.) For this part of the proof, let us fix 𝑆 ′′ = 𝑆 ′ ∩ 𝑆𝑅 and E′′ = {(𝑠, 𝛼) ∈ E | 𝑠 ∈ 𝑆 ′′}.
“=⇒”. From z ∈ Fmin

M,≥ (𝜆) we get by definition that A∗
z ≤ t

∗ ∧ z(𝑠𝑖𝑛) ≥ 𝜆 holds (see Defini-
tion 3.23). We have already observed that A∗ is the system matrix of the largest min-relevant
subsystemM∗ ofM (see Definition 4.9), and t

∗ is its target vector. If we take A′ = A
∗ |E′′×𝑆 ′′ ,

t
′ = t

∗ |𝑆 ′′ and z
′ = z|𝑆 ′′ we may conclude that A′

z
′ ≤ t

′ holds by point (1.) of Lemma 4.22. We
also know that A′ is the system matrix of the induced subsystemM𝑆 ′′ , and t′ is its target vector.
From 𝑆 ′′ ⊆ 𝑆𝑅 it follows that M𝑆 ′′ is EC-free. Hence, from A

′
z
′ ≤ t

′ and z
′(𝑠𝑖𝑛) = z(𝑠𝑖𝑛) ≥ 𝜆



4. New techniques for witnessing subsystems 75

we may conclude that z′ is a Farkas certificate for the corresponding property in M𝑆 ′′ (i.e.,
z
′ ∈ Fmin

M𝑆′′ ,≥
(𝜆)) and hence Pr

min
M𝑆′′

(♢ target) ≥ 𝜆 holds by Theorem 3.24. As 𝑆 ′′ ⊆ 𝑆 ′ holds,
M𝑆 ′′ is a subsystem of M𝑆 ′ and hence we also have Prmin

M𝑆′
(♢ target) ≥ 𝜆 by Proposition 4.4.

“⇐=”. As states in 𝑆 ′ \ 𝑆 ′′ have minimal probability zero of reaching target in all subsystems
of M, we have Prmin

M𝑆′′
(♢ target) ≥ 𝜆. Hence we find a Farkas certificate z′ ∈ Fmin

M𝑆′′ ,≥
(𝜆), which

satisfies A′
z
′ ≤ t

′ and z
′(𝑠𝑖𝑛) ≥ 𝜆, where A′, t′ are the system matrix and target vector of M𝑆 ′′ .

At the same time, A′, t′ are the restrictions of A∗, t∗ to domains E′′ × 𝑆 ′′ and 𝑆 ′′ respectively.
Then it follows by Lemma 4.22 that the vector z ∈ R𝑆𝑅≥0 one gets by setting the missing entries
in z

′ to zero satisfies A∗
z ≤ t

∗ and z(𝑠𝑖𝑛) = z
′(𝑠𝑖𝑛) ≥ 𝜆. But this shows that z ∈ Fmin

M,≥ (𝜆) holds.
(2.) Let A′ = A|E′×𝑆 ′ and t

′ = t|𝑆 ′ . As we have seen, A′ and t
′ are the system matrix and

target vector of MDP M𝑆 ′ .
“=⇒”. Let y ∈ Fmax

M,≥ (𝜆) be such that state-supp(y) ⊆ 𝑆
′ holds and y′ = y|E′ be the restriction

of y to E′. By Lemma 4.22 we have y′A′ ≤ 𝛿𝑠𝑖𝑛 and y
′
t
′ ≥ 𝜆. Hence, y′ is a Farkas certificate

for Prmax
M𝑆′

(♢ target) ≥ 𝜆 and therefore Prmax
M𝑆′

(♢ target) ≥ 𝜆 holds by Theorem 3.24.
“⇐=”. If Prmax

M𝑆′
(♢ target) ≥ 𝜆 holds, then we find a Farkas certificate y′ for this property

by Theorem 3.24, which satisfies y′A′ ≤ 𝛿𝑠𝑖𝑛 ∧ y
′
t
′ ≥ 𝜆. Define y ∈ RE

≥0 by y(𝑠, 𝛼) = y
′(𝑠, 𝛼)

for (𝑠, 𝛼) ∈ E′, and y(𝑠, 𝛼) = 0 otherwise. Now Lemma 4.22 yields that yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≥ 𝜆 must
hold, and therefore we have y ∈ Fmax

M,≥ (𝜆). This concludes the proof.

Example 4.24. Consider again the MDPM defined in Figure 4.1 along with subsystemsM1
and M2. Since Prmax

M1
(♢ target) = 9/20 holds, there must exist a Farkas certificate y ∈ Fmax

M,≥ (𝜆)
for 𝜆 = 9/20 satisfying state-supp(y) ⊆ {𝑠𝑖𝑛, 𝑣} by the above theorem. Such a certificate is given,
for example, by

y =
(︁
(𝑠𝑖𝑛, 𝛼) ↦→ 1, (𝑢, 𝛼) ↦→ 0, (𝑣, 𝛼) ↦→ 1/2, (𝑣, 𝛽) ↦→ 0

)︁
.

Similarly, since Prmin
M2

(♢ target) = 1/8 holds, there must exist a Farkas certificate z ∈ Fmin
M,≥ (𝜆)

for 𝜆 = 1/8 satisfying supp(z) ⊆ {𝑠𝑖𝑛, 𝑢}. An example for such a certificate is

z =
(︁
𝑠𝑖𝑛 ↦→ 1/8, 𝑢 ↦→ 1/4, 𝑣 ↦→ 0

)︁
. △

A direct consequence of Theorem 4.23 is that minimal witnessing subsystems and Farkas
certificates with a maximal amount of zero-entries are related. Given some set P, we say that a
vector v ∈ P has minimal support if |supp(v) | = min{ |supp(v′) | : v′ ∈ P } holds and minimal
state-support if |state-supp(v) | = min{ |state-supp(v′) | : v

′ ∈ P } holds. The latter is only
defined for vectors whose domain is a subset of the state-action pairs of some MDP.

Corollary 4.25. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form, and
𝜆 ∈ [0, 1]. Then for all 𝑆 ′ ⊆ 𝑆 :

1. There exists v ∈ Fmin
M,≥ (𝜆) with minimal support satisfying 𝑆 ′ = supp(v) if and only if M𝑆 ′

is a minimal witnessing subsystem of M for Pr
min
M (♢ target) ≥ 𝜆.

2. There exists v ∈ Fmax
M,≥ (𝜆) with minimal state-support satisfying 𝑆 ′ = state-supp(v) if and

only ifM𝑆 ′ is a minimal witnessing subsystem of M for Prmax
M (♢ target) ≥ 𝜆.

Proof. We only prove (1.) as (2.) is proven analogously.
(1.) “=⇒”. Suppose, for contradiction, that there exists a witnessing subsystem M′ =

(𝑆 ′′∪{target, exit},Act, 𝑠𝑖𝑛, 𝑃 ′) such that |𝑆 ′′ | < |𝑆 ′ |. We may assume, without loss of generality,



76 4.2. Farkas certificates and witnessing subsystems

that M′ = M𝑆 ′′ . Then, by Theorem 4.23, there exists a vector v′ ∈ Fmin
M,≥ (𝜆) such that

supp(v′) ⊆ 𝑆 ′′, but this contradicts the support-minimality of v.
“⇐=”. By Theorem 4.23, there exists a vector v ∈ Fmin

M,≥ (𝜆) such that supp(v) ⊆ 𝑆 ′. If v is not
support-minimal or supp(v) ⊂ 𝑆 ′ holds, then we find v

′ ∈ Fmin
M,≥ (𝜆) such that |supp(v′) | < |𝑆 ′ |.

But then, again by Theorem 4.23, Msupp(v′ ) is a witnessing subsystem, which contradicts
minimality of M𝑆 ′ .

Finally, we show that it suffices to inspect the vertices of the set of Farkas certificates (viewed
as a polyhedron) to find a minimal witness.

Proposition 4.26. Let M be an MDP in reachability form, 𝔪 ∈ {min,max}, ≳ ∈ {≥, >} and
𝜆 ∈ [0, 1]. Then, for each point p ∈ F𝔪

M,≳
(𝜆) there exists a vertex v ∈ F𝔪

M,≳
(𝜆) such that

supp(v) ⊆ supp(p).

Proof. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form and p ∈ Fmin
M,≳

(𝜆).
Consider the set H = {x ∈ R𝑆≥0 | x(𝑠) = 0 for all 𝑠 ∉ supp(p)} ⊆ R𝑆≥0. The inequalities
x(𝑠) ≥ 0 (for 𝑠 ∈ 𝑆) are part of the defining system of linear inequalities of Fmin

M,≳
(𝜆) and we

have p ∈ Fmin
M,≳

(𝜆) ∩ H . This implies that Fmin
M,≳

(𝜆) ∩ H is a face of Fmin
M,≳

(𝜆). Furthermore, as
Fmin
M,≳

(𝜆) ∩ H is contained in the nonnegative orthant, it must include a vertex v. As v ∈ H
holds, we have supp(v) ⊆ supp(p), which concludes the proof. The case 𝔪 = max is proven
analogously.

The last proposition shows that one way of computing minimal witnessing subsystems is to
enumerate all vertices of the corresponding set of Farkas certificates, and return the witnessing
subsystem which corresponds to a vertex with a maximal amount of zeros. Vertex enumeration
algorithms have been studied extensively [AF92, AF96] in the literature and implemented in
state-of-the-art tools such as the Parma Polyhedra Library [BHZ08]. The implementations
of vertex enumeration that we are aware of focus on exact numerical computations and do
not scale well in the dimension (which in our case corresponds to the number of states of
the system). We will now explore another approach to compute minimal witnesses based on
(mixed-integer) linear programming. Mixed-integer linear programs have already been used in
previous works to compute minimal witnesses [WJÁ+12, WJÁ+14], and the following section
also contains a comparison with those approaches.

4.2.1 Mixed-integer programming formulations

This section considers how the relation between Farkas certificates and witnessing subsystems
can be used to derive novel mixed-integer linear programming (MILP) formulations for the
problem of computing minimal witnessing subsystems. Here we use that minimal witnesses
correspond to Farkas certificates with a maximal number of zero entries, by Corollary 4.25.

It is known that finding a solution to a system of linear inequalities having at least 𝑘 zero
entries is NP-complete [GJ90]. Indeed, it is not even approximable in polynomial time within
any constant factor unless 𝑃 = 𝑁𝑃 [AK98]. We generalize the problem by adding a labeling
function which labels each dimension with a (possibly empty) set of labels. The problem asks
for a solution such that the number of labels induced by its non-zero entries is minimal. This
generalization will allow us to handle the label-based witness problem naturally.



4. New techniques for witnessing subsystems 77

Lemma 4.27. Let𝑀 ∈ Q𝑚×𝑛 , b ∈ Q𝑚 , u ∈ Q𝑛 , P = {x ∈ R𝑛 | Mx ≤ b ∧ x ≥ 0} and assume that
for all p ∈ P we have p ≤ u. Furthermore, let Λ : {1, . . . , 𝑛} → 2𝐿 be a labeling function into a
finite set of labels 𝐿 and define Λ(x) = {𝑙 ∈ 𝐿 | there exists 𝑖 such that x(𝑖) > 0 and 𝑙 ∈ Λ(𝑖)}, for
x ∈ R𝑛 .

Consider the following MILP: minimize
∑︁
𝑙∈𝐿 𝜎 (𝑙) such that 𝜎 ∈ {0, 1}𝐿 and

Mx ≤ b, x ≥ 0, and x(𝑖) ≤ 𝜎 (𝑙) · u(𝑖) for all 1 ≤ 𝑖 ≤ 𝑛 and 𝑙 ∈ Λ(𝑖) .

Then for all x ∈ R𝑛≥0: there exists 𝜎 ∈ {0, 1}𝐿 such that (𝜎, x) is an optimal solution of this
MILP if and only if x is a point in P such that |Λ(x) | is minimal among all points in P.

Proof. “=⇒”. Suppose that (𝜎, x) ∈ {0, 1}𝐿 × Q𝑛 is an optimal solution of the MILP, and x
′ is a

point in P with |Λ(x′) | < |Λ(x) |. Let 𝜎 ′ ∈ {0, 1}𝐿 be the vector such that 𝜎 ′(𝑙) = 1 iff 𝑙 ∈ Λ(x′).
Clearly (𝜎 ′, x′) is a solution of the MILP with a better objective value, which contradicts the
assumption.

“⇐=”. Suppose that x is a point in P such that |Λ(x) | is minimal, and let 𝜎 ∈ {0, 1}𝑛 be the
vector such that 𝜎 (𝑙) = 1 iff 𝑙 ∈ Λ(x), for all 1 ≤ 𝑖 ≤ 𝑛 and 𝑙 ∈ 𝐿. Assume, for contradiction,
that (𝜎, x) is not an optimal solution of the MILP. Then we find a solution (𝜎 ′, x′) with better
objective value. This implies |Λ(x′) | < |Λ(x) | and thereby contradicts our assumption.

By taking 𝐿 = {1, . . . , 𝑛} and Λ(𝑖) = {𝑖} for all 𝑖 ∈ {1, . . . , 𝑛} in the above lemma we get
exactly the problem of maximizing the number of zero entries.

The min-witness program

The above lemma can be used to derive MILPs whose solutions correspond to Farkas certificates
with a maximal number of zero entries and thereby, using Corollary 4.25, to minimal witnessing
subsystems. To define the MILPs more concisely, we will use expressions of the form x ∈
F𝔪
M,⊲⊳

(𝜆) as placeholders for the defining linear inequalities of the corresponding set of Farkas
certificates (Definition 3.23).

Definition 4.28 (min-witness MILP). Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in
reachability form with min-relevant states 𝑆𝑅 and 𝜆 ∈ [0, 1] ∩ Q.

The min-witness MILP for (M, 𝜆) is defined as follows:

minimize
∑︂
𝑠∈𝑆𝑅

𝜎 (𝑠) such that z ∈ Fmin
M,≥ (𝜆), z ≤ 𝜎, and 𝜎 ∈ {0, 1}𝑆𝑅 .

Proposition 4.29. Let M be an MDP in reachability form, 𝑆𝑅 its min-relevant states and 𝜆 ∈
[0, 1] ∩ Q.

Then, for all 𝑆 ′ ⊆ 𝑆𝑅 : there exists an optimal solution (𝜎, z) of the min-witness MILP for (M, 𝜆)
with supp(z) = 𝑆 ′ if and only ifM𝑆 ′ is a minimal witnessing subsystem for Prmin

M (♢ target) ≥ 𝜆.

Proof. Our goal is to apply Lemma 4.27, which introduces a generic MILP to find points from a
nonnegative polytope P with a maximal amount of zeros. We let P = Fmin

M,≥ (𝜆) (recall that all
points in Fmin

M,≥ (𝜆) are nonnegative by definition) and Λ(𝑠) = {𝑠} for each 𝑠 ∈ 𝑆𝑅 . That is, each
state is labeled by a unique label and hence the minimization objective in Lemma 4.27 amounts
to minimizing the number of non-zero entries over all points in P, i.e., we have Λ(z) = supp(z)



78 4.2. Farkas certificates and witnessing subsystems

Figure 4.3: An example MDP M with two enabled ac-
tions 𝛼 and 𝛽 in the initial state. The expected number
of visits of 𝑠𝑖𝑛 can be made arbitrarily large with random-
ized schedulers. For a similar reason, the set of Farkas
certificates Fmax

M,≥ (𝜆) is unbounded for any 𝜆 ≥ 1/2 (see Ex-
ample 4.30). sin

target

exit

1/2

1/2
β

α

(where Λ(z) is defined as in Lemma 4.27) for all vectors z ∈ R𝑆𝑅≥0. By additionally setting u(𝑠) = 1
for each 𝑠 ∈ 𝑆𝑅 , we have exactly the min-witness MILP as defined above.

To apply Lemma 4.27 we need to show that u(𝑠) = 1 is indeed an upper bound on x(𝑠),
for all vectors x ∈ Fmin

M,≥ (𝜆). Let M
∗ be the largest min-relevant subsystem of M, as defined

in Definition 4.9. As the MDPM∗ is EC-free by construction, prmin
M∗ is a point-wise upper bound

on all vectors in Fmin
M∗,≥ (𝜆) by Lemma 2.9. Furthermore we have Fmin

M,≥ (𝜆) = Fmin
M∗,≥ (𝜆). As

pr
min
M∗ ≤ 1, it follows that all vectors in Fmin

M,≥ (𝜆) are point-wise bounded from above by one.
Now we are in a position to apply Lemma 4.27 and thereby show the claim.
“=⇒”. If (𝜎, z) is an optimal solution of the min-witness MILP with supp(z) = 𝑆 ′, then

z has minimal support by Lemma 4.27 and hence M𝑆 ′ is a minimal witnessing subsystem
by Corollary 4.25.

“⇐=”. IfM𝑆 ′ is a minimal witnessing subsystem, then by Corollary 4.25 there exists a vector
z ∈ Fmin

M,≥ (𝜆) with minimal support satisfying supp(z) = 𝑆 ′. But then, by Lemma 4.27, there
exists 𝜎 such that (𝜎, z) is an optimal solution of the min-witness MILP.

The max-witness program
We turn to the definition of a correspondingMILP for minimal witnesses with respect to maximal
reachability probabilities. An issue which arises here is that the corresponding set of Farkas
certificates may be unbounded in the presence of proper end components (see Example 4.30).
This is in contrast to the case of EC-free MDPs, where the set of solutions of yA ≤ 𝛿𝑠𝑖𝑛 is
always bounded (Proposition 3.9). Hence, a vector u as required by the generic MILP defined
in Lemma 4.27 may not exist at all.
Example 4.30. Consider the MDP M as shown in Figure 4.3. If A, t are the system matrix and
target vector of M, then the system of linear inequalities yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≥ 𝜆 is given by

y(𝑠𝑖𝑛, 𝛼) + y(𝑠𝑖𝑛, 𝛽) ≤ 1 + y(𝑠𝑖𝑛, 𝛼) ∧ 1/2 · y(𝑠, 𝛽) ≥ 𝜆.

If 𝜆 = 1/2, then for any 𝑎 ∈ R the vector y =
(︁
(𝑠𝑖𝑛, 𝛼) ↦→ 𝑎, (𝑠𝑖𝑛, 𝛽) ↦→ 1) is a solution. Hence

the set Fmax
M,≥ (𝜆) is not bounded, as it contains precisely the solutions of the above system of

linear inequalities.
For a given𝑎 ∈ R, consider thememoryless randomized scheduler𝔖𝑎 defined by𝔖𝑎 (𝑠𝑖𝑛, 𝛼) =

𝑎
𝑎+1 and𝔖𝑎 (𝑠𝑖𝑛, 𝛽) = 1

𝑎+1 . The expected number of visits of state-action pair (𝑠𝑖𝑛, 𝛼) under𝔖𝑎 is
𝑎. This shows that we can give no upper bound on the expected number of visits when ranging
over all memoryless randomized schedulers, if proper end components are present. △



4. New techniques for witnessing subsystems 79

If a scheduler𝔖 reaches {target, exit} with probability one, then the vector ev𝔖 containing
the expected number of visits of𝔖 satisfies ev𝔖A = 𝛿𝑠𝑖𝑛 (Proposition 3.13). Hence, ev𝔖 is poten-
tially a Farkas certificate contained in Fmax

M,≥ (𝜆) (the definition of Fmax
M,≥ (𝜆) requires additionally

that ev𝔖t ≥ 𝜆 should hold). As we now deal with MDPs which are not necessarily EC-free,
the set of vectors ev𝔖 one gets when ranging over all such schedulers𝔖 may be unbounded.
This holds even if we consider only memoryless randomized schedulers (see Example 4.30).
However, for the sake of proving that a subsystem is a witness, it is enough to consider only
memoryless deterministic schedulers which satisfy the above property (see Proposition 2.10).

For an MDPM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) in reachability form, let us define for each
enabled state-action pair (𝑠, 𝛼) ∈ E:

u𝑒𝑣 (𝑠, 𝛼) = max
𝔖∈𝑀𝐷 (M),

Pr𝔖M (♢{target,exit})=1

ev
𝔖 (𝑠, 𝛼) (4.1)

This vector contains for each (𝑠, 𝛼) the maximum expected number of visits of (𝑠, 𝛼) when
ranging over all memoryless and deterministic schedulers which reach {target, exit} with
probability one. For the MDP defined in Figure 4.3, we have u𝑒𝑣 (𝑠𝑖𝑛, 𝛼) = 0 and u𝑒𝑣 (𝑠𝑖𝑛, 𝛽) = 1,
since no memoryless deterministic scheduler which reaches {target, exit} with probability one
can choose action 𝛼 .

The set Fmax
M,≥ (𝜆) restricted to vectors which are bounded from above by u𝑒𝑣 still contains

enough points to find all minimal witnessing subsystems, as the following lemma shows.

Lemma 4.31. Let M be an MDP in reachability form and 𝜆 ∈ [0, 1]. Then for all y ∈ Fmax
M,≥ (𝜆)

there exists y′ ∈ Fmax
M,≥ (𝜆) satisfying y

′ ≤ u𝑒𝑣 , |supp(y′) | ≤ |supp(y) | and state-supp(y′) ⊆
state-supp(y).
Proof. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) with enabled state-action pairs E, y ∈ Fmax

M,≥ (𝜆)
and consider 𝑆 ′ = state-supp(y). By statement (2.) of Theorem 4.23, the subsystemM′ = M𝑆 ′

induced by 𝑆 ′ is a witness for Prmax
M (♢ target) ≥ 𝜆. Then, there exists a memoryless and determin-

istic scheduler𝔖′ forM′ which satisfies Pr𝔖′

M′,𝑠𝑖𝑛
(♢{target, exit}) = 1 and Pr𝔖′

M′ (♢ target) ≥ 𝜆

(see Proposition 2.10). Let E′ = {(𝑠, 𝛼) ∈ E | 𝑠 ∈ 𝑆 ′}, A′ = A|E′×𝑆 ′, t′ = t|E′ be the systemmatrix
and target vector ofM′, and ev

𝔖′ ∈ RE′ be the expected number of visits inM′ under𝔖′. It
follows that Pr𝔖′

𝑠𝑖𝑛
(♢ target) = ev

𝔖′ · t′ ≥ 𝜆 holds, and, from Proposition 3.13, that ev𝔖′ ·A′ = 𝛿𝑠𝑖𝑛
holds. Hence, by definition, we have ev𝔖′ ∈ Fmax

M′,≥ (𝜆). Observe that state-supp(ev
𝔖′) ⊆ 𝑆 ′

holds trivially, as the domain of ev𝔖′ is E′.
Let y′ ∈ RE

≥0 be defined by y
′(𝑠, 𝛼) = ev

𝔖′ (𝑠, 𝛼) if (𝑠, 𝛼) ∈ E′, and y
′(𝑠, 𝛼) = 0 otherwise. It

follows from Lemma 4.22 that y′ ∈ Fmax
M,≥ (𝜆). In particular, this implies

|supp(y′) | = |supp(ev𝔖′) | ≤ |𝑆 ′ | ≤ |supp(y) |,

as ev𝔖′ has at most one non-zero entry per state of M′, which follows from the fact that𝔖′ is
memoryless and deterministic. Furthermore, we have

state-supp(y′) = state-supp(ev𝔖′) ⊆ 𝑆 ′ = state-supp(y) .

It remains to show that y′ ≤ u𝑒𝑣 holds. Consider any memoryless and deterministic scheduler
𝔖 for M which satisfies𝔖(𝑠) = 𝔖′(𝑠) for all 𝑠 ∈ 𝑆 ′. Clearly we have y′ ≤ ev

𝔖′ ≤ ev
𝔖, and

hence also y
′ ≤ u𝑒𝑣 by definition.



80 4.2. Farkas certificates and witnessing subsystems

To define the mixed-integer linear program which computes minimal witnessing subsystems
for Prmax

M (♢ target) ≥ 𝜆, we depend on an upper bound u of u𝑒𝑣 which has to be computed a
priori. Having computed such a bound one can use the above lemma, which shows that it is
enough to consider Farkas certificates bounded by u𝑒𝑣 .

Definition 4.32 (max-witness MILP). Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in
reachability form, 𝜆 ∈ [0, 1] ∩ Q and E the enabled state-action pairs ofM. Furthermore, let
u ∈ QE be such that u𝑒𝑣 ≤ u, where u𝑒𝑣 is as defined in Equation (4.1).

The max-witness MILP for (M, 𝜆) using u is defined as follows:

minimize
∑︂
𝑠∈𝑆

𝜎 (𝑠) such that y ∈ Fmax
M,≥ (𝜆), 𝜎 ∈ {0, 1}𝑆 and

y(𝑠, 𝛼) ≤ u(𝑠, 𝛼) · 𝜎 (𝑠) for all (𝑠, 𝛼) ∈ E .

Proposition 4.33. Let M, E, 𝜆 and u be as in Definition 4.32.
Then, for all 𝑆 ′ ⊆ 𝑆 : there exists an optimal solution (𝜎, y) of the max-witness MILP for (M, 𝜆)

using u such that state-supp(y) = 𝑆 ′ if and only if M𝑆 ′ is a minimal witnessing subsystem for
Pr

max
M (♢ target) ≥ 𝜆.

Proof. Let us define the labeling function Λ : E → 2𝑆 which maps each state-action pair to
the corresponding state (i.e., Λ(𝑠, 𝛼) = {𝑠}, for all (𝑠, 𝛼) ∈ E). The max-witness MILP indeed
corresponds to the generic MILP defined in Lemma 4.27 under labeling Λ, if we choose

P = Fmax
M,≥ (𝜆) ∩ { y′ ∈ RE

≥0 | y
′ ≤ u }.

Observe that under labeling Λ we have Λ(y) = state-supp(y) for all y ∈ RE
≥0, where Λ(y) is

defined as in Lemma 4.27.
“=⇒”. Let (𝜎, y) be an optimal solution of themax-witnessMILP such that state-supp(y) = 𝑆 ′.

By Lemma 4.27, y has minimal state-support among all vectors in P. From Lemma 4.31 it follows
that y also has minimal state-support among all vectors in Fmax

M,≥ (𝜆). But then,M𝑆 ′ is a minimal
witnessing subsystem for Prmax

M (♢ target) ≥ 𝜆 by Corollary 4.25.
“⇐=”. LetM𝑆 ′ be a minimal witnessing subsystem. Then, there exists y ∈ Fmax

M,≥ (𝜆) ∩ { y′ ∈
RE
≥0 | y

′ ≤ u } with minimal state-support satisfying 𝑆 ′ = state-supp(y), by Corollary 4.25
and Lemma 4.31. But then, by Lemma 4.27, there exists 𝜎 such that (𝜎, y) is an optimal solution
of the max-witness MILP.

To use the above MILP one has to first compute an upper bound on u𝑒𝑣 . This problem is
looked at more carefully in Section 4.2.2, where we show that for the special case of EC-free
MDPs (and hence also for Markov chains), u𝑒𝑣 can be computed precisely in polynomial time.
The following remark discusses a way to circumvent the computation of u𝑒𝑣 by adding certain
disjunctive constraints to the MILP.
Remark 4.34 (bigM technique and indicator constraints). The generic MILP to find vectors with
a maximal number of non-zero entries (Lemma 4.27) uses constraints of the form

x(𝑖) ≤ 𝜎 (𝑖) · u(𝑖),

where u(𝑖) is a known upper bound on x(𝑖) over all feasible solutions x. This idea of “charging”
(if 𝜎 (𝑖) = 0) or “discharging” (if 𝜎 (𝑖) = 1) the constraint x(𝑖) ≤ 0 is a well-known technique in



4. New techniques for witnessing subsystems 81

integer programming, and is often referred to as the bigM-technique. Here𝑀 (used instead of
u(𝑖)) is meant to be an upper bound on all entries of all feasible solutions. A way to specify this
type of constraints without knowledge of𝑀 has been introduced under the name of indicator
constraints, which allows formulating the above constraint as follows:

𝜎 (𝑖) = 0 =⇒ x(𝑖) ≤ 0.

Essentially, indicator constraints allowmodeling a form of disjunctions, and dedicated procedures
to solve MILPs with such constraints present have been studied [BLTW15, BBF+16]. Modern
mathematical optimization solvers such as Gurobi and Cplex support indicator constraints. △

Markov chains
For Markov chains, the min-witness MILP and the max-witness MILP can both be used to
compute minimal witnessing subsystems. This is because Pr

min
M (♢ target) = Pr

max
M (♢ target)

holds ifM is a Markov chain. Although the two sets of Farkas certificates Fmax
M,≥ (𝜆) and F

min
M,≥ (𝜆)

do not coincide (see Example 3.6), the max- and min-witness MILPs will return the same optimal
objective value (namely, the size of a minimal witnessing subsystem). However, as we will see
when introducing heuristic approaches based on computing Farkas certificate, algorithms based
on the two formulations may behave differently. For Markov chains, u𝑒𝑣 equals the expected
number of visits for each state when starting in 𝑠𝑖𝑛 (see Equation (4.1)). Hence, u𝑒𝑣 can be
computed by solving a linear equation system (see Lemma 2.15).

Comparison to known methods using MILPs
The problem of finding minimal witnessing subsystems for Prmax

M (♢ target) ≥ 𝜆 has been
considered in [WJÁ+14], where a formulation of the problem as a MILP is given. It uses
a variable 𝑝𝑠 for each state 𝑠 of M, which represents the probability achieved under some
scheduler, and binary variables 𝜎 (𝑠,𝛼 ) for each enabled state-action pair. The program ensures
that 𝑝𝑠 ≤ ∑︁

𝛼∈Act(𝑠 ) 𝜎 (𝑠,𝛼 ) ≤ 1 for all 𝑠 ∈ 𝑆 , which implies that variables 𝜎 (𝑠,𝛼 ) induce a
memoryless deterministic scheduler. States 𝑠 satisfying

∑︁
𝛼∈Act(𝑠 ) 𝜎 (𝑠,𝛼 ) = 0 are the ones which

are excluded in the corresponding subsystem. The core of the program are the constraints
𝑝𝑠𝑖𝑛 ≥ 𝜆 and

𝑝𝑠 ≤ (1 − 𝜎 (𝑠,𝛼 ) ) +
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · 𝑝𝑠′ for all (𝑠, 𝛼) ∈ E,

where E is the set of enabled state-action pairs. As 𝑝𝑠 ≤ 1 is ensured independently of these
constraints, they are equivalent to the indicator constraints (see Remark 4.34):

(𝜎 (𝑠,𝛼 ) = 1) =⇒ 𝑝𝑠 ≤
∑︂
𝑠′∈𝑆

𝑃 (𝑠, 𝛼, 𝑠′) · 𝑝𝑠′ for all (𝑠, 𝛼) ∈ E .

Intuitively, variables 𝜎 (𝑠,𝛼 ) determine a memoryless deterministic scheduler, and the above
constraints make sure that no value 𝑝𝑠 exceeds the reachability probability that state 𝑠 achieves
under that scheduler. Finally, the number of states 𝑠 such that 𝑝𝑠 is non-zero is minimized in a
similar way as is done in Lemma 4.27.

In order to correctly treat end components, the MILP also includes another |𝑆 |2 binary
variables 𝑡𝑠,𝑠′ , for each pair 𝑠, 𝑠′ ∈ 𝑆 together with constraints which make sure that every
selected state contains a path to {target, exit} under the scheduler induced by 𝜎-variables (see



82 4.2. Farkas certificates and witnessing subsystems

constraints ((8g) - (8i)) in [WJÁ+14]). This MILP is fundamentally different from the max-witness
MILP (Definition 4.32), as the latter uses variables which correspond to the expected number
of visits of state-action pairs, rather than variables for the achieved probability in a state. The
max-witness MILP requires only |𝑆 | binary variables, rather than |E | + |𝑆 |2. A disadvantage of
using the max-witness MILP is that it requires an upper bound u of u𝑒𝑣 .

One should note that the max-witness MILP does not require any special treatment with
respect to end components (once an upper bound on u𝑒𝑣 is known), in contrast to the solution
in [WJÁ+14]. Intuitively, the reason for this is that the “value” (i.e., the maximal probability
achieved) of a solution is determined by expression yt (see the definition of Fmax

M,≥ (𝜆) in Defini-
tion 3.23). But no state-action pair (𝑠, 𝛼) satisfying t(𝑠, 𝛼) > 0 is part of a proper end component.
Hence, in this formulation, artificially increasing values y by staying inside a proper end com-
ponent does not lead to a (spuriously) higher value. The MILP for DTMCs given in [WJÁ+14]
coincides with the min-witness MILP (Definition 4.28) in the special case of DTMCs.

The weighted and labeled witness problems
The max- and min-witness MILPs can be extended to solve the label-based and weighted witness
problems (see Definition 4.13). In the MILPs we have seen, an assignment to the binary vector
𝜎 ∈ {0, 1}𝑆 represents a subsystem. To handle the weighted problem one only needs to adapt
the objective function such that, for each assignment of 𝜎 , it returns the total weight of the
corresponding subsystem. If wgt : 𝑆 → N is a weight function, then the objective function∑︁
𝑠∈𝑆 𝜎 (𝑠) (which counts the number of included states) is replaced by

∑︁
𝑠∈𝑆 wgt (𝑠) · 𝜎 (𝑠).

For the label-based problem, one can use a binary variable per label to count how many
of the labels are “present” in a subsystem. If Λ : 𝑆 → 2𝐿 is a labeling function of the states
into a finite set of labels 𝐿, then the new objective function is

∑︁
𝑙∈𝐿 𝜎 (𝑙) and the constraints

of the MILPs are adapted such that a positive entry of the Farkas certificate in some state 𝑠
(respectively state-action pair (𝑠, 𝛼)) forces all labels in Λ(𝑠) to have a one-entry in 𝜎 .

Definition 4.35. LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form with
min-relevant states 𝑆𝑅 , enabled state-action pairs E, 𝜆 ∈ [0, 1] ∩ Q and u be such that u𝑒𝑣 ≤ u,
where u𝑒𝑣 is defined as in Equation (4.1). Let wgt : 𝑆 → N be a weight function on M and
Λ : 𝑆 → 2𝐿 a labeling of M into a finite set of labels 𝐿.

The weighted min- and max-witness MILPs ((1.) and (3.)), and the label-based min- and
max-witness MILPs ((2.) and (4.)) are defined as follows:

(1.) minimize
∑︂
𝑠∈𝑆𝑅

wgt (𝑠) · 𝜎 (𝑠) such that x ∈ Fmin
M,≥ (𝜆), x ≤ 𝜎 and 𝜎 ∈ {0, 1}𝑆𝑅 .

(2.) minimize
∑︂
𝑙∈𝐿

𝜎 (𝑙) such that x ∈ Fmin
M,≥ (𝜆), 𝜎 ∈ {0, 1}𝐿

and x(𝑠) ≤ 𝜎 (𝑙) for all 𝑠 ∈ 𝑆𝑅 and 𝑙 ∈ Λ(𝑠).

(3.) minimize
∑︂
𝑠∈𝑆

wgt (𝑠) · 𝜎 (𝑠) such that y ∈ Fmax
M,≥ (𝜆), 𝜎 ∈ {0, 1}𝑆

and y(𝑠, 𝛼) ≤ u(𝑠, 𝛼) · 𝜎 (𝑠) for all (𝑠, 𝛼) ∈ E .

(4.) minimize
∑︂
𝑙∈𝐿

𝜎 (𝑙) such that y ∈ Fmax
M,≥ (𝜆), 𝜎 ∈ {0, 1}𝐿

and y(𝑠, 𝛼) ≤ u(𝑠, 𝛼) · 𝜎 (𝑙) for all (𝑠, 𝛼) ∈ E and 𝑙 ∈ Λ(𝑠).



4. New techniques for witnessing subsystems 83

Proposition 4.36. Optimal solutions of the weighted and label-based min-and max-witness MILPs
as defined in Definition 4.35 correspond to minimal witnessing subsystems with respect to the
corresponding notions of size.

Proof. (1.) “=⇒”: Suppose (𝜎, x) ∈ {0, 1}𝑆𝑅 × Q𝑆𝑅 is an optimal solution of the MILP (1.) and let
𝑆1 = {𝑠 ∈ 𝑆𝑅 | 𝜎 (𝑠) = 1}. Suppose, for contradiction, that there exists a witnessing subsystem
M′ of M such that wgt (M′) < wgt (M𝑆1), and let 𝑆2 ⊆ 𝑆𝑅 be such that M𝑆2 = M′ (we may
assume that M′ is of this form). Consider the vector 𝜎 ′ ∈ {0, 1}𝑆𝑅 defined by 𝜎 ′(𝑠) = 1 iff
𝑠 ∈ 𝑆2. As M′ is witnessing, we find a Farkas certificate x′ ∈ Fmin

M,≥ (𝜆) such that supp(x′) ⊆ 𝑆2,
by Theorem 4.23. Clearly (𝜎 ′, x′) is a feasible solution of the MILP, and furthermore we have∑︂

𝑠∈𝑆𝑅
wgt (𝑠) · 𝜎 ′(𝑠) =

∑︂
𝑠∈𝑆2

wgt (𝑠) = wgt (M′) < wgt (M𝑆1) =
∑︂
𝑠∈𝑆𝑅

wgt (𝑠) · 𝜎 (𝑠),

which shows that (𝜎 ′, x′) achieves a better value in the objective function and contradicts the
assumption that (𝜎, x) is an optimal solution.

“⇐=”: LetM′ be a witnessing subsystem with states 𝑆1∪{target, exit} such that wgt (M′) is
minimal. By Theorem 4.23 there exists x ∈ Fmin

M,≥ (𝜆) such that supp(x) ⊆ 𝑆1. Define 𝜎 ∈ {0, 1}𝑆𝑅
such that 𝜎 (𝑠) = 1 iff 𝑠 ∈ 𝑆1. Suppose that (𝜎, x) is not an optimal solution of the MILP and let
(𝜎 ′, x′) be a better solution. Let 𝑆2 = {𝑠 ∈ 𝑆𝑅 | 𝜎 ′(𝑠) = 1}. The subsystemM𝑆2 is a witnessing
subsystem, by Theorem 4.23. As in the other case, we have wgt (M𝑆2) =

∑︁
𝑠∈𝑆𝑅 wgt (𝑠) · 𝜎 ′(𝑠) <∑︁

𝑠∈𝑆𝑅 wgt (𝑠) · 𝜎 (𝑠) = wgt (M′). This contradicts the weight-minimality ofM′.
(2.) Observe that the MILP has the structure of the generic MILP defined in Lemma 4.27,

using P = Fmin
M,≥ (𝜆), u = 1 and the labeling function Λ. Hence, by the same lemma, optimal

solutions of the MILP correspond to points x ∈ Fmin
M,≥ (𝜆) such that

|Λ(x) | = |{𝑙 ∈ 𝐿 | there exists 𝑠 s.t. x(𝑠) > 0 and 𝑙 ∈ Λ(𝑠)}|

is minimal. On the other hand, for each 𝑆1 ⊆ 𝑆𝑅 we have: there exists x ∈ Fmin
M,≥ (𝜆) such that

|Λ(x) | is minimal and supp(x) = 𝑆1 if and only ifM𝑆1 is a witnessing subsystem with a minimal
number of appearing labels. This is shown below.

“=⇒”: Consider x as above and suppose, for contradiction, that there exists a witnessing
subsystemM𝑆2 such that |Λ(M𝑆2) | < |Λ(M𝑆1) |. Then, we find x2 ∈ Fmin

M,≥ (𝜆) with supp(x2) ⊆
𝑆2 by Theorem 4.23 and hence |Λ(x2) | ≤ |Λ(M𝑆2) | < |Λ(M𝑆1) | = |Λ(x) |. But this contradicts
the fact that x is a point in Fmin

M,≥ (𝜆) which minimizes |Λ(·) |.
“⇐=”: Assume that M𝑆1 is a witnessing subsystem with a minimal number of appearing

labels. By Theorem 4.23 we find x ∈ Fmin
M,≥ (𝜆) such that supp(x) ⊆ 𝑆1. We claim that x

minimizes |Λ(·) | among all points in Fmin
M,≥ (𝜆). Suppose, for contradiction, that there exists

x
′ ∈ Fmin

M,≥ (𝜆) with |Λ(x′) | < |Λ(x) | and let 𝑆2 = supp(x′). But then, M𝑆2 is a witnessing
subsystem (by Theorem 4.23) and |Λ(M𝑆2) | = |Λ(x′) | < |Λ(x) | = |Λ(M𝑆1) |. This contradicts
our assumption that M𝑆1 minimizes |Λ(·) | over all witnessing subsystems of M.

Hence the solutions of (2.) correspond to witnessing subsystems ofM for Prmin(♢ target) ≥
𝜆 which include a minimal number of labels.

The correctness proofs for MILPs (3.) and (4.) are analogous.



84 4.2. Farkas certificates and witnessing subsystems

4.2.2 Computing upper bounds on u𝑒𝑣

To use the max-witness MILP we need to be able to compute an upper bound u on u𝑒𝑣 (as defined
in Equation (4.1)). The fact that the definition of u𝑒𝑣 ranges over all memoryless deterministic
schedulers which do not realize a proper end component indicates a difference to, e.g., the
computation of maximal expected total reward. In the latter problem choosing a maximizing
action locally in each state is sufficient, but this is not true in the former problem. Rather, there
the choice in any state depends on which actions are chosen in other states in order to avoid
completing a proper end component, and hence this choice is not local.

We first show how a generic bound on u𝑒𝑣 can be computed in polynomial time, which
depends only on the number of states of the MDP and its least non-zero transition probability.
The idea used to derive the bound is well-known, and we spell it out here only for completeness.

Lemma 4.37. Let M = (𝑆 ∪ {target},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form whose least
non-zero transition probability is 𝜖 , 𝑛 = |𝑆 | and let u𝑒𝑣 be defined as in Equation (4.1). Then:

max
(𝑠,𝛼 ) ∈E

u𝑒𝑣 (𝑠, 𝛼) ≤ 𝑛/𝜖2𝑛

Proof. Let 𝑇 = {target, exit} for this proof. We show that 𝑛/𝜖2𝑛 is an upper bound on the ex-
pected number of steps that anymemoryless and deterministic scheduler satisfying Pr𝔖M (♢𝑇 ) = 1
needs before reaching 𝑇 . Then, 𝑛/𝜖2𝑛 is clearly also an upper bound on max(𝑠,𝛼 ) ∈E u𝑒𝑣 (𝑠, 𝛼).

Let 𝔖 be a memoryless and deterministic scheduler for M such that Pr𝔖M (♢𝑇 ) = 1. By
assumption, from each state of M there exists a path reaching 𝑇 of length at most 𝑛 and
probability at least 𝜖𝑛 . Consequently, the probability of not reaching 𝑇 in at most 𝑛 steps
(henceforth denoted Pr𝔖M (□≤𝑛𝑇 )) is at most 1 − 𝜖𝑛 . We will use the notation Pr𝔖M (♢=𝑖 𝑇 ) to
denote the probability of reaching 𝑇 for the first time in exactly 𝑇 steps. Now we calculate:∑︂

𝑖≥1
𝑖 · Pr𝔖M (♢=𝑖 𝑇 ) =

∑︂
𝑖≥0

𝑛∑︂
𝑗=1

(𝑖𝑛+ 𝑗) · Pr𝔖M (♢=(𝑖𝑛+𝑗 ) 𝑇 ) ≤
∑︂
𝑖≥0

𝑛(𝑖 + 1) ·
𝑛∑︂
𝑗=1

Pr𝔖M (♢=(𝑖𝑛+𝑗 ) 𝑇 )

≤
∑︂
𝑖≥0

𝑛(𝑖 + 1) · Pr𝔖M (□≤𝑖𝑛𝑇 ) ≤
∑︂
𝑖≥0

𝑛(𝑖 + 1) · (1 − 𝜖𝑛)𝑖 = 𝑛/𝜖2𝑛 .

In the calculation we use
∑︁𝑛
𝑗=1 Pr𝔖M (♢=(𝑖𝑛+𝑗 ) 𝑇 ) ≤ Pr𝔖M (□≤𝑖𝑛𝑇 ), which follows for all 𝑖 ≥ 0 from

the fact that both states in 𝑇 are absorbing.

It follows that the vector u ∈ QE defined by u(𝑠, 𝛼) = 𝑛/𝜖2𝑛 , where 𝑛 is the number of states
of the given MDP and 𝜖 is its least non-zero transition probability, can be used as an upper
bound for the max-witness MILP. This value may be very large, however, and in practice this
leads to two problems: The MILP may be numerically unstable, and its continuous relaxation
is weaker, which makes it harder to solve. Hence, computing a tighter bound on u𝑒𝑣 is an
important problem in this context.

Computing u𝑒𝑣 in MDPs with small end components

We will now present an algorithm to compute u𝑒𝑣 exactly which runs in time 𝑂 ( |Act|𝐾 ) ·
poly( |M|), where 𝐾 is the maximal number of states of any maximal end component (MEC) in
the MDP M. Using it we can compute u𝑒𝑣 in polynomial time if the size of all end components



4. New techniques for witnessing subsystems 85

is bounded from above by a constant. The algorithm is based on an explicit enumeration of
memoryless and deterministic schedulers inside maximal end components.

LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form with enabled state-
action pairs E, and let (𝐸1, 𝐴1), . . . , (𝐸𝑘 , 𝐴𝑘 ) be the maximal end components of M, excluding
those induced by “target” and “exit”. Our goal is to compute the value u𝑒𝑣 (𝑡, 𝛽), for some
(𝑡, 𝛽) ∈ E. Let (𝐸,𝐴) be the unique maximal end component ofM such that 𝑡 ∈ 𝐸. Let𝔖 be a
memoryless and deterministic scheduler which assigns to each state 𝑠 ∈ 𝐸 an action in Act(𝑠).
We will assume that for all 𝑠 ∈ 𝐸 we have Pr𝔖M,𝑠

(♢¬𝐸) = 1, which means that with probability
one the end component is left from every state in 𝐸 under𝔖. If this condition is satisfied, we
call𝔖 an internal scheduler of (𝐸,𝐴).

Given an internal scheduler𝔖 of (𝐸,𝐴) we construct the MDP N𝔖 as follows. First, we
disable all actions 𝛼 in a state 𝑠 ∈ 𝐸 satisfying 𝛼 ≠ 𝔖(𝑠). By our assumption that each state
leaves (𝐸,𝐴) with probability one under𝔖, and (𝐸,𝐴) is a maximal end component, it follows
that no state in 𝐸 is included in a proper end component after removing these actions. Now
we construct the 𝑔𝑜𝑎𝑙-directed quotient of maximal end components of the resulting MDP
(see Section 2.2.2 for the definition). An example of this construction is given in Figure 4.4. In
the following we will identify states {𝑠} of N𝔖 (which correspond to singleton maximal end
components) with 𝑠 .

To compute u𝑒𝑣 (𝑡, 𝛽) we can enumerate all internal schedulers𝔖 of (𝐸,𝐴), compute the
maximal expected number of visits of (𝑡, 𝛽) in N𝔖 and take the maximum of these values.

Lemma 4.38. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form. For all
enabled state-action pairs (𝑡, 𝛽) ofM we have

u𝑒𝑣 (𝑡, 𝛽) = max
𝔖
Emax
N𝔖 ( {target, exit}),

where𝔖 ranges over all internal schedulers of the maximal end component of 𝑡 and the reward
function assigns one to (𝑡, 𝛽) and zero to all other state-action pairs.

Proof. The proof proceeds by first showing (1) u𝑒𝑣 (𝑡, 𝛽) ≤ max𝔖 Emax
N𝔖

( {target, exit}) and
then (2) u𝑒𝑣 (𝑡, 𝛽) ≥ max𝔖 Emax

N𝔖
( {target, exit}).

(1) Let𝔖1 be a memoryless deterministic scheduler ofM satisfying Pr𝔖1
M (♢{target, exit}) = 1.

First, we construct a scheduler𝔖2 forM such that ev𝔖2 (𝑡, 𝛽) ≥ ev
𝔖1 (𝑡, 𝛽) and for everymaximal

end component of M excluding the one which contains 𝑡 , there is a unique state in which𝔖2
chooses an external action.

To this end, consider a maximal end component (𝐸,𝐴) ofM such that 𝑡 ∉ 𝐸 and𝔖1 chooses
external actions for multiple states in 𝐸. We choose a state 𝑠 ∈ 𝐸 such that𝔖1(𝑠) is external and∑︂

𝑠′∈𝑆
𝑃 (𝑠,𝔖1(𝑠), 𝑠′) · E𝔖1

M,𝑠′ ( {target, exit})

is maximal among all states in 𝐸 for which𝔖1 chooses an external action. We can adapt𝔖1
such that inside the end component (𝐸,𝐴) it chooses internal actions in all states apart from
𝑠 , while maintaining the property that𝔖1 leaves 𝐸 with probability one from all states in 𝐸.
The expected number of times (𝑡, 𝛽) is visited after this transformation is at least as high as
before, as 𝑡 ∉ 𝐸. Applying this to all maximal end components (𝐸,𝐴) such that 𝑡 ∉ 𝐸 yields the
scheduler𝔖2.



86 4.2. Farkas certificates and witnessing subsystems

sin

u

v

t

r s

target

α

β

α

β

α
α

β

α

β

α β

M

sin

u

v

t

{r, s}

target

α

β

β

α
α

β

N𝔖

Figure 4.4: An MDPM with two MECs indicated by the colors. Concrete probabilities are omit-
ted. The bold transitions define an internal scheduler𝔖 for the upper MEC. The corresponding
MDP N𝔖 excludes all actions not chosen by𝔖 in the upper MEC, and collapses all other MECs,
as in the standard quotient construction. The MDP N𝔖 is EC-free.

Now let (𝐸,𝐴) be the maximal end component which includes 𝑡 and let𝔖 be the internal
scheduler of (𝐸,𝐴) one gets by restricting𝔖2 to its choices inside (𝐸,𝐴). The choices of external
actions by𝔖2 in all other MECs (which are unique due to the above transformation) induce a
memoryless deterministic scheduler𝔖3 of N𝔖 such that

ev
𝔖2
M (𝑡, 𝛽) = E𝔖3

N𝔖
( {target, exit}),

which concludes the proof of this case.
(2) Let (𝐸,𝐴) be the maximal end component which includes 𝑡 , let𝔖 be an internal scheduler

of (𝐸,𝐴) and𝔖1 be a memoryless deterministic scheduler of N𝔖. We can restrict ourselves to
such schedulers by Proposition 2.14. Consider the scheduler𝔖2 forM which one gets as follows.
For states in 𝐸,𝔖2 copies the choice of𝔖. In all other maximal end components𝔖2 copies𝔖1 if
the corresponding external action is available in the current state, and otherwise chooses internal
actions (in a memoryless and deterministic way) which make sure that the corresponding
external state is reached with probability one. Then𝔖2 is memoryless and deterministic, and
the expected number of visits to (𝑡, 𝛽) inM under𝔖2 is E𝔖1

N𝔖
( {target, exit}).

The number of internal schedulers (which are deterministic and memoryless by definition)
of a maximal end component (𝐸,𝐴) is bounded by |Act| |𝐸 | . Hence the above lemma yields a
polynomial time procedure to compute u𝑒𝑣 if the number of states in any end component is
bounded from above by a constant.

Proposition 4.39. Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form and
let 𝐾 be an upper bound on the number of states in any end component of M. Then, u𝑒𝑣 can be
computed in time poly( |M|) · |Act|𝐾 .



4. New techniques for witnessing subsystems 87

Algorithm 1: k-step quotient sum heuristic (QS𝑘 (M, b))
Input: Matrix M ∈ Q𝑚×𝑛 , vector b ∈ Q𝑚 , natural number 𝑘 .
Output: Solution of Mx ≥ b ∧ x ≥ 0 with small support.
/* Check whether Mx ≥ b has a nonnegative solution. */

1 if Mx ≥ b ∧ x ≥ 0 is unsatisfiable then return;
/* Initial objective function. */

2 o1 := (1, . . . , 1);
3 for 𝑖 = 1 to 𝑘 do

/* Find optimal solution of LP under current objective function. */
4 LP𝑖 := min o𝑖 · x such that Mx ≥ b ∧ x ≥ 0;
5 x𝑖 := solve_lp(LP𝑖);

/* Define large constant 𝐶. */
6 Choose 𝐶 such that 𝐶 > max{1/x𝑖 ( 𝑗) | 1 ≤ 𝑗 ≤ 𝑛, x𝑖 ( 𝑗) > 0};

/* Update objective function using previous solution. */
7 for 𝑗 = 1 to 𝑛 do

8 if x( 𝑗) > 0 then o𝑖+1( 𝑗) = 1/x𝑖 ( 𝑗) else o𝑖+1( 𝑗) = 𝐶;
9 end

10 end

11 return x𝑘

If the MDP one considers is EC-free, then the above procedure boils down to simply
computing the maximal expected total reward in the MDP under the reward function which
is one for (𝑡, 𝛽), and zero otherwise. This would require solving a linear program for each
pair (𝑡, 𝛽) ∈ E. An upper bound which holds for all state-action pairs is given by the maximal
expected number of steps taken inM before reaching {target, exit}. Computing this value only
requires solving a single linear program. For Markov chains, u𝑒𝑣 corresponds to the expected
number of visits of the unique scheduler, and can hence be computed precisely by solving a
single linear equation system.

4.2.3 A heuristic based on linear programming

So far we have considered exact methods to compute minimal witnessing subsystems, i.e.,
methods which are guaranteed to find a minimal solution. As the corresponding decision
problem is NP-complete (see Theorem 4.16) already in the case of acyclic Markov chains, we
cannot expect to find efficient algorithms for it. In this section, we present a heuristic which is
based on iteratively solving a sequence of linear programs, whose underlying systems of linear
inequalities are the ones defining Farkas certificates.

The main tool is again Theorem 4.23, which relates Farkas certificates with small support
to witnessing subsystems with few states. We present a generic LP-based heuristic called the
k-step quotient-sum heuristic (Algorithm 1), or simply quotient-sum heuristic, which aims to find
solutions of a given set of linear inequalities with many zeros. It takes as input a system of
linear inequalities described by matrix M and vector b, and a natural number 𝑘 which specifies
the number of iterations that the algorithm should run. In line 2, the initial objective function
coefficients o1 are defined, which assign equal weight to every variable. Then, in the main loop,
the linear program LP𝑖 under the current objective o𝑖 is defined and solved (lines 4-5). This



88 4.2. Farkas certificates and witnessing subsystems

linear program finds a vector minimizing o𝑖 · x under the condition that Mx ≥ b ∧ x ≥ 0 holds.
The produced solution x𝑖 is used to define the new objective function coefficients o𝑖+1

(line 8). In the update, a large value 𝐶 is assigned to all variables which already have value zero
in the current solution (i.e., for 𝑗 satisfying x𝑖 ( 𝑗) = 0). The remaining variables are assigned
a new objective value which is inversely proportional to their value in the previous solution.
The underlying idea is that if a variable has a small value already, then it should be more likely
that a solution exists in which this variable has value equal to zero. A large coefficient in the
new objective function o𝑖+1 means that solutions with even smaller value (in best case with
value zero) of this variable are preferred in the next iteration. Correctness of the procedure does
not depend on the specific choice of 𝐶 , and a large 𝐶 is meant to discourage solutions whose
support includes a dimension which was already zero in a foregoing iteration.

A useful observation in this context is that for all inputs M and b, the LPs constructed
in Algorithm 1 are not unbounded. This follows from the fact that the objective vector o𝑖 is
always nonnegative in all entries.

Lemma 4.40. For allM ∈ R𝑚×𝑛 , b ∈ R𝑛 and o ∈ R𝑛≥0, the linear program

min o · x such that Mx ≥ b ∧ x ≥ 0

either has an optimal solution, or no feasible solution at all.

Proof. Let P = {x ∈ R𝑛≥0 | Mx ≥ b} and suppose that there exists p0, p1 ∈ R𝑛 such that for
all 𝑡 ≥ 0 we have p0 + 𝑡p1 ∈ P. It follows that p0, p1 are nonnegative. But then, as o is also
nonnegative, for all 𝑡, 𝑡 ′ ≥ 0 with 𝑡 ≤ 𝑡 ′ we have o(p0 + 𝑡p1) ≤ o(p0 + 𝑡 ′p1), and thus the
objective value increases along the line defined by p0, p1 with growing 𝑡 . Hence, there is no
infinite line through P with arbitrary low objective value in the linear program.

As the vectors x𝑖 produced in line 5 are always nonnegative, it follows that the coefficient
vector o𝑖 remains nonnegative throughout Algorithm 1. Hence, the above lemma applies to all
linear programs LP𝑖 , which means that an optimal solution is always found in line 4.

Accounting for labels. The quotient-sum heuristic can be adapted to also take labels into
account, as shown in Algorithm 2. Here, a labeling function Λ : {1, . . . , 𝑛} → 2𝐿 into a
finite set of labels 𝐿 is also given as input. An additional vector 𝜎 of variables is introduced
in the constructed linear programs, with the constraint that x(𝑖) ≤ 𝜎 (𝑙) should hold for all
𝑖 ∈ {1, . . . , 𝑛} and 𝑙 ∈ Λ(𝑖). The objective function now minimizes a weighted sum over 𝜎 ,
where the weights are again adapted in each iteration. This implies that in any optimal solution,
𝜎 (𝑙) will be zero exactly if all variables x(𝑖) which satisfy 𝑙 ∈ Λ(𝑖) have value zero.

Applying the heuristic to the witness problems
LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form. Algorithms 1 and 2 can
be applied to find small witnessing subsystems for Prmax

M (♢ target) ≥ 𝜆 and Prmin
M (♢ target) ≥ 𝜆

as follows. For minimal reachability probabilities, we first construct the system of linear
inequalities defining the set of Farkas certificates Fmin

M,≥ (𝜆) (for simplicity, we will also use
Fmin
M,≥ (𝜆) to describe the linear inequalities). Applying Algorithm 1 (with arbitrary natural

number 𝑘) yields a vector z = QS𝑘 (Fmin
M,≥ (𝜆)) which satisfies z ∈ Fmin

M,≥ (𝜆) and, by Theorem 4.23,
the subsystem Msupp(z) induced by the non-zero entries of z is a witnessing subsystem for



4. New techniques for witnessing subsystems 89

Algorithm 2: labeled k-step quotient sum heuristic (QS𝑘 (M, b,Λ))
Input: Matrix M ∈ Q𝑚×𝑛 , vector b ∈ Q𝑚 , natural number 𝑘 , labeling function

Λ : [𝑛] → 2𝐿 .
Output: Solution of Mx ≥ b ∧ x ≥ 0 which hits few labels.
/* initial objective (one coefficient per label in 𝐿) */

1 o1 := (1, . . . , 1) ∈ Q𝐿 ;
2 for 𝑖 = 1 to 𝑘 do

3 LP𝑖 := min o𝑖 · 𝜎 such that Mx ≥ b ∧ x ≥ 0 and x(𝑖) ≤ 𝜎 (𝑙) for all 𝑖 ∈ {1, . . . , 𝑛}
and 𝑙 ∈ Λ(𝑖);

4 (𝜎𝑖 , x𝑖) := solve_lp(LP𝑖);
5 Choose 𝐶 such that 𝐶 > max{1/𝜎𝑖 (𝑙) | 𝑙 ∈ 𝐿, 𝜎𝑖 (𝑙) > 0};
6 for 𝑙 ∈ 𝐿 do

7 if 𝜎𝑖 (𝑙) > 0 then o𝑖+1(𝑙) = 1/𝜎𝑖 (𝑙) else o𝑖+1(𝑙) = 𝐶;
8 end

9 end

10 return x𝑘

Pr
min
M (♢ target) ≥ 𝜆. In the case of maximal reachability probabilities, we can apply the heuristic

in analogous fashion. Recall that vectors in Fmax
M,≥ (𝜆) have dimension |E |, which is the number

of enabled state-action pairs of M. Again, for any natural number 𝑘 , the result of applying
the quotient-sum heuristic y = QS𝑘 (Fmax

M,≥ (𝜆)) satisfies y ∈ Fmax
M,≥ (𝜆) and Mstate-supp(y) is a

witnessing subsystem for Prmax
M (♢ target) ≥ 𝜆, by Theorem 4.23.

Recall that Fmin
M,≥ (𝜆) is unsatisfiable iff Pr

min
M (♢ target) < 𝜆 holds by Theorem 3.24. Hence,

QS𝑘 (Fmin
M,≥ (𝜆)) returns no solution (i.e., it returns in line 1) iff Pr

min
M (♢ target) < 𝜆 holds, and

the analogous statement holds for the maximal reachability probability. As a consequence,
QS𝑘 (Fmin

M,≥ (𝜆)) can also be viewed as a counterexample generating model checking procedure
for the property Pr

min
M (♢ target) < 𝜆. If it holds, the algorithm returns nothing in line 1,

and otherwise a vector is returned from which a (hopefully small) witnessing subsystem for
Pr

min
M (♢ target) ≥ 𝜆 can be produced. In any case, the returned vector is a Farkas certificate

which proves that the property is violated. This algorithm does not produce a certificate in case
the property is satisfied; this would require solving another linear program to find a Farkas
certificate for Prmin(♢ target) ≥ 𝜆 (see Definition 3.23).

We say that the heuristic stabilizes after iteration 𝑖 if QS𝑖
(︁
Fmin
M,≥ (𝜆)

)︁
= QS𝑖+1

(︁
Fmin
M,≥ (𝜆)

)︁
holds. Usually this happens already after two-five iterations and sometimes the solution after
the first iteration already induces a very small witnessing subsystem. See Section 4.2.5 for
further information and the corresponding experimental results.

It should be pointed out that the heuristics as described above do not depend on the
MDP being EC-free (although the maximal end components have to be precomputed to define
Fmin
M,≥ (𝜆), see Definition 3.23). In particular, no upper bound on u𝑒𝑣 (defined in Equation (4.1))

is required, as compared to the MILP formulations to compute minimal witnessing subsystems
for Prmax

M (♢ target) ≥ 𝜆.
The quality of the heuristic is measured by how many non-zero entries the returned solution

has, respectively how many labels are induced by its support. An extensive evaluation of the
heuristic when applied to the witness problems is given in Section 4.2.5, where alternative initial



90 4.2. Farkas certificates and witnessing subsystems

sin

s

t1 . . . tm

target

1/n

1/2

1/2

1 1
1/n

M1

sin

s

t1

...

tm

target

1/2

1/2n

1/2n

m/4n

3/4

1

1

M2

Figure 4.5: Markov chains for which the quotient-sum heuristic runs into a local optimum.
Here, 𝑛 and𝑚 are natural numbers, and we assume that 6 ≤ 2𝑚 < 𝑛 holds. For all states the
missing probabilities are added to a transition to “exit”, which is not drawn.

objective functions (rather than just taking o1 = (1, . . . , 1)) are also considered. In the following,
the limits of this approach are discussed by studying certain constructed instances.

Limitations of the heuristic

Unsurprisingly, the heuristic may get stuck in local optima. We will now consider in more detail
how the heuristic works for the two Markov chains depicted in Figure 4.5. These Markov chains
can also be used to show that the two possible instantiations of the quotient-sum heuristic
for Markov chains (using Fmax

M,≥ (𝜆) and Fmin
M,≥ (𝜆), respectively) may yield results which are

arbitrarily far away from one another.
Consider the Markov chain M1 depicted in Figure 4.5, where 𝑛,𝑚 are natural numbers

satisfying 6 ≤ 2𝑚 < 𝑛. Let A, t be its system matrix and target-vector, and let 𝜆 = 1/2𝑛. The
system of linear inequalities Az ≤ t ∧ z(𝑠𝑖𝑛) ≥ 𝜆, which defines the set of Farkas certificates
Fmin
M1,≥ (𝜆), is given by

z(𝑠𝑖𝑛) ≤ 1/𝑛 · z(𝑠), z(𝑠𝑖𝑛) ≤ 1/2 · z(𝑡1), z(𝑠) ≤ 1/2, z(𝑠𝑖𝑛) ≥ 𝜆

z(𝑡𝑚) ≤ 1/𝑛, z(𝑡𝑖) ≤ z(𝑡𝑖+1) for all 𝑖 ∈ {1, . . . ,𝑚−1}.

The first iteration of the quotient-sum heuristic instantiated by this system of linear inequalities
computes a solution of the linear program: minimize (1, . . . , 1) · z such that Az ≤ t ∧ z(𝑠𝑖𝑛) ≥ 𝜆.
This optimal solution is given by the vector

z1 =
(︁
𝑠𝑖𝑛 ↦→ 1/2𝑛, 𝑠 ↦→ 0, 𝑡1 ↦→ 1/𝑛, . . . , 𝑡𝑚 ↦→ 1/𝑛

)︁
.

The corresponding witnessing subsystem is the one induced by supp(z1) = {𝑠𝑖𝑛, 𝑡1, . . . , 𝑡𝑚}, and
hence has𝑚 + 1 states. Another feasible solution of the LP is

z2 =
(︁
𝑠𝑖𝑛 ↦→ 1/2𝑛, 𝑠 ↦→ 1/2, 𝑡1 ↦→ 0, . . . , 𝑡𝑚 ↦→ 0

)︁
.



4. New techniques for witnessing subsystems 91

It corresponds to the witnessing subsystem induced by {𝑠𝑖𝑛, 𝑠}, which is arbitrarily smaller than
the previous witness with growing𝑚. However, comparing the objective values of vectors z1
and z2 in the linear program above yields:

(1, . . . , 1) · z1 = 𝑚/𝑛 + 1/2𝑛 < 1/2 + 1/2𝑛 = (1, . . . , 1) · z2.

Here we used our assumption that 2𝑚 < 𝑛. This means that in the first iteration of the
heuristic QS𝑘

(︁
Fmin
M1,≥ (𝜆)

)︁
, the vector z1 will be preferred over z2 even though z2 induces a

smaller witnessing subsystem. In the second iteration, the objective function is updated to be
the point-wise inverse of z1, with the exception of the coefficient of 𝑠 , which is assigned a large
number 𝐶 (we assume 𝐶 > 2𝑚 in the following):

o2 =
(︁
𝑠𝑖𝑛 ↦→ 2𝑛, 𝑠 ↦→ 𝐶, 𝑡1 ↦→ 𝑛, . . . , 𝑡𝑚 ↦→ 𝑛

)︁
.

Under this objective function again the feasible solution z1 is preferred over z2, as o2 · z1 =

1 +𝑚 < 1 + 𝐶/2 = o2 · z2. One can check that again z1 is the optimal solution of the new LP,
and hence the heuristic repeats itself and further iterations do not yield any improvement.
Consequently, the witnessing subsystem computed by QS𝑘

(︁
Fmin
M1,≥ (𝜆)

)︁
is the one induced by

{𝑠, 𝑡1, . . . , 𝑡𝑚} for any 𝑘 ≥ 1.
As M1 is a Markov chain, we can also use the algorithm QS𝑘

(︁
Fmax
M1,≥ (𝜆)

)︁
to compute wit-

nesses for PrM1 (♢ target) ≥ 𝜆. In this case, the first iteration solves the linear program: minimize
y · (1, . . . , 1)𝑇 such that yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≥ 𝜆. Spelling out the underlying system of linear in-
equalities yields:

y(𝑠𝑖𝑛) ≤ 1, y(𝑠) ≤ 1/𝑛 · y(𝑠𝑖𝑛), 1/𝑛 · y(𝑡𝑚) + 1/2 · y(𝑠) ≥ 𝜆,

y(𝑡1) ≤ 1/2 · y(𝑠𝑖𝑛), and y(𝑡𝑖+1) ≤ y(𝑡𝑖) for all 𝑖 ∈ {1, . . . ,𝑚−1}.

The minimal solution vector of the above LP is(︁
𝑠𝑖𝑛 ↦→ 1, 𝑠 ↦→ 1/𝑛, 𝑡1 ↦→ 0, . . . , 𝑡𝑚 ↦→ 0

)︁
,

which corresponds to the minimal witnessing subsystem induced by {𝑠𝑖𝑛, 𝑠}. Hence, for the
Markov chain M1 using QS𝑘

(︁
Fmax
M1,≥ (𝜆)

)︁
yields the optimal solution already after one iteration,

while QS𝑘
(︁
Fmin
M1,≥ (𝜆)

)︁
is far away from the optimum for any number of iterations 𝑘 .

TheMarkov chainM2 (also shown in Figure 4.5) represents the opposite situation. LetA, t be
the system matrix and target vector ofM2 and define 𝜆 = 𝑚/2𝑛, again under the assumption that
6 ≤ 2𝑚 < 𝑛 holds. The system of linear inequalities yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≥ 𝜆 used in QS𝑘

(︁
Fmax
M2,≥ (𝜆)

)︁
is:

y(𝑠𝑖𝑛) ≤ 1, 𝑚/4𝑛 · y(𝑠) +
∑︂

1≤𝑖≤𝑚
y(𝑡𝑖) ≥ 𝜆

y(𝑠) ≤ 1/2 · y(𝑠𝑖𝑛) + 3/4 · y(𝑠), and y(𝑡𝑖) ≤ 1/2𝑛 · y(𝑠𝑖𝑛) for all 𝑖 ∈ {1, . . . ,𝑚}.

The minimal solution vector of the linear program minimize y · (1, . . . , 1)𝑇 such that yA ≤
𝛿𝑠𝑖𝑛 ∧ yt ≥ 𝜆 is given by:

y1 =
(︁
𝑠𝑖𝑛 ↦→ 1, 𝑠 ↦→ 0, 𝑡1 ↦→ 1/2𝑛, . . . , 𝑡𝑚 ↦→ 1/2𝑛

)︁
.



92 4.2. Farkas certificates and witnessing subsystems

It corresponds to the witnessing subsystem induced by {𝑠𝑖𝑛, 𝑡1, . . . , 𝑡𝑚}. A Farkas certificate
with smaller support is

y2 =
(︁
𝑠𝑖𝑛 ↦→ 1, 𝑠 ↦→ 2, 𝑡1 ↦→ 0, . . . , 𝑡𝑚 ↦→ 0

)︁
.

However, as in the other example, the objective value of vector y1 (which is 1 +𝑚/2𝑛) is less than
the objective value of vector y2 (which is 3), given our assumption that 2𝑚 < 𝑛 holds. Similarly
to the previous example, one finds that after the first iteration QS𝑘

(︁
Fmax
M2,≥ (𝜆)

)︁
repeats itself.

Now consider the heuristic QS𝑘
(︁
Fmin
M2,≥ (𝜆)

)︁
based on the system of linear inequalities Az ≤

t ∧ z(𝑠𝑖𝑛) ≥ 𝜆. When spelled out, this yields:

z(𝑠𝑖𝑛) ≤ 1/2 · z(𝑠) +
∑︂

1≤𝑖≤𝑚

1/2𝑛 · 𝑡𝑖 , z(𝑠𝑖𝑛) ≥ 𝜆

z(𝑠) ≤ 3/4 · z(𝑠) +𝑚/4𝑛, and z(𝑡𝑖) ≤ 1 for all 𝑖 ∈ {1, . . . ,𝑚}.

A minimal vector of the linear program minimize (1, . . . , 1) · z such that Az ≤ t ∧ z(𝑠𝑖𝑛) ≥ 𝜆 is
given by: (︁

𝑠𝑖𝑛 ↦→ 𝑚/2𝑛, 𝑠 ↦→ 𝑚/𝑛, 𝑡1 ↦→ 0, . . . , 𝑡𝑚 ↦→ 0
)︁
,

and this vector corresponds to the minimal witness induced by {𝑠𝑖𝑛, 𝑠}.
This shows that the two heuristics QS𝑘

(︁
Fmax
M2,≥ (𝜆)

)︁
and QS𝑘

(︁
Fmin
M2,≥ (𝜆)

)︁
based on the two

different sets of Farkas certificates can be arbitrarily better than the other one in the case of
Markov chains.

4.2.4 The tool Switss

Switss1 is a tool which implements a large part of the algorithms presented in this thesis. It
is written in python and uses the PuLP2 library to model linear optimization problems. This
enables easily interfacing with various mathematical optimization solvers in the back end, such
as Gurobi [Gur22], Cplex3, Cbc4 and GLPK5. Alternatively, Switss also allows using Gurobi’s
python interface directly.

The tool includes algorithms for the exact computation of minimal witnessing subsystems
using the MILP-based approaches described in this thesis, an implementation of the quotient-
sum heuristic and a module to compute and validate Farkas certificates. Additionally, it provides
methods to visualize MDPs and MDP-subsystems and to run and evaluate benchmarks. What
has not been implemented is the computation of small and minimal witnessing subsystems
for invariants (see Section 4.4), and the algorithm to compute upper bounds on u𝑒𝑣 for MDPs
which are not EC-free but have only small end components (see Lemma 4.38). Whenever no
upper bound is given and the MDP is not EC-free, we fall back to a formulation using indicator
constraints (see Remark 4.34).

1https://www.github.com/simonjantsch/switss
2https://coin-or.github.io/pulp/
3https://www.ibm.com/analytics/cplex-optimizer
4https://projects.coin-or.org/Cbc
5https://www.gnu.org/software/glpk/

https://www.github.com/simonjantsch/switss
https://coin-or.github.io/pulp/
https://www.ibm.com/analytics/cplex-optimizer
https://projects.coin-or.org/Cbc
https://www.gnu.org/software/glpk/


4. New techniques for witnessing subsystems 93

4.2.5 Experimental results
This section reports on a number of experiments which have been performed using Switss. All
computations were run on a computer with two Intel E5-2680 processors having 8 cores each
at 2.70GHz running Linux, with a total of 378 GBs of RAM. If not specified otherwise, each
computation was assigned 4 cores and ran under a timeout of 20 minutes and a memory out of
30 GBs. We have configured Switss to use Gurobi version 9.5 [Gur22] to solve the underlying
LPs and MILPs. However, the experiments are set up such that one can easily reproduce them
using the open-source solver Cbc (although this might lead to different results, in particular
with respect to the computation times). All experimental data, together with the version of
Switss used to produce the data and all scripts used to run the benchmarks and evaluate the
raw data are available [Jan22b].

The benchmarks we use are standard benchmarks from the Prism benchmark suite [KNP12].
Most of them are parametrized by two parameters 𝑁 and 𝐾 and we will write “protocol-
name_𝑁_𝐾” to distinguish different instances. We use Prism to construct sparse matrix rep-
resentations of the benchmarks. These are loaded into Switss, which converts them into
reachability form with respect to the considered reachability properties. Essentially, this is a
preprocessing step which ensures that there is a single target state, and identifies all states
which cannot reach it with the state “exit”. Tables 4.1 and 4.2 report on the sizes and reachability
probabilities of the resulting models (after transformation into reachability form). We start with
a short description of the benchmarks.

crowds The crowds protocol [RR98] was designed to allow for anonymous usage of the web,
accomplished by routing data randomly through other connected devices. It is modeled
as a Markov chain in the Prism benchmark suite, and parametrized by 𝑁 , the number
of non-adversarial crowd members, and 𝐾 , which is the number of protocol runs. The
property we consider is to reach a state in which a corrupt crowd member directly succeeds
the original sender more than once.

brp The bounded retransmission protocol is designed to transmit a file consisting of 𝑁 chunks
through an unreliable channel [HSV93]. Each chunk is retransmitted at most 𝐾 times. It is
modeled as a Markov chain, and the property we consider is to reach a state in which the
receiver reports an uncertainty on the success of the transmission.

leader Given a ring of 𝑁 processes, the synchronous leader election protocol enables jointly
electing a unique leader among the processes [IR90]. In every round, each process draws a
number uniformly from the range {1, . . . , 𝐾}, where 𝐾 is another parameter of the protocol.
If some number is drawn by exactly one process, then the process with the highest number
satisfying this criterion is selected to be the leader. Otherwise, a new round begins. This
protocol is modeled as a Markov chain, and the property we consider is to reach a state in
which a leader has been elected successfully.



94 4.2. Farkas certificates and witnessing subsystems

Table 4.1: Properties of Markov chain benchmarks, after transformation into reachability form.
Probabilities are rounded to three decimal places.

crowds brp leader

(2,6) (2,8) (5,8) (16,2) (32,2) (1024,2) (6,6)

states 434 832 27 847 499 995 31 747 234 210

Pr(♢ target) 0.375 0.532 0.310 2.645 × 10−5 2.644 × 10−5 2.576 × 10−5 1.000

Table 4.2: Properties of MDP benchmarks, after transformation into reachability form. The
minimal and maximal probabilities of reaching “target” are one in all MDP benchmarks.

cons firewire csma

(2,4) (4,2) (4,4) 3 30 (2,6) (3,2)

states 528 22 656 22 656 4093 138 130 66 718 36 850

state-action pairs 784 60 544 60 544 5519 302 654 66 788 38 456

consensus This benchmark is an MDP model of the randomized consensus algorithm described
in [AH90]. The goal of this protocol is to form consensus quickly between 𝑁 processes on
one out of two possible outcome values. The parameter 𝐾 is any number above one and
is a technical ingredient of the protocol. We consider the property of reaching a state in
which the protocol terminates.

csma The CSMA/CD protocol is a network protocol for transmitting messages in a local area
network which uses collision detection. The parameter 𝑁 indicates the number of stations
in the network and 𝐾 is a technical parameter which determines how long a station waits
on average until attempting to retransmit, in case that a collision was detected. We consider
the property of reaching a state in which all stations delivered their messages.

firewire This benchmark models the Tree Identity Protocol of the IEEE1394 High Performance
Serial Bus, which is also called FireWire. It is a leader election protocol which is run
whenever a new member joins the network. The parameter 𝑁 determines a delay, i.e., the
time needed for a message to be transmitted between members of the network. We consider
the property of reaching a state in which a leader was elected successfully.

Computing minimal witnesses

To compute minimal witnesses (we will focus on state-minimality) we have proposed two formu-
lations based on mixed-integer linear programs, one for minimal probabilities (Definition 4.28),
and one for maximal reachability probabilities (Definition 4.32).

Table 4.3 shows selected experimental results obtained by solving the max- and min-witness
programs for several benchmarks, including both Markov chains and Markov decision processes.
For Markov chains, the min-witness and the max-witness programs can both be used, and as



4. New techniques for witnessing subsystems 95

Table 4.3: Experiments on computing minimal witnessing subsystems using the MILP-based
approaches for different benchmarks and thresholds. The table entries contain the running
times in seconds required to solve the problem and the number of states of the computed
subsystem in brackets. Timeouts (configured to 20 minutes) are indicated by “TO”. The rows
named ltlsubsys present the results of solving the alternative MILP-formulation for maximal
reachability probabilities proposed in [WJÁ+14].

𝜆 = 0.05 0.11 0.33 0.4

crowds_2_8 min-MILP < 1 (29) 3.0 (57) 516.1 (191) TO (-)
max-MILP 2.4 (29) 3.0 (57) 294.2 (191) TO (-)

𝜆 = 2 × 10−6 8 × 10−6 1 × 10−5 1.2 × 10−5

brp_32_2 min-MILP 2.5 (196) 4.0 (215) 1.4 (218) TO (-)
max-MILP < 1 (196) < 1 (215) < 1 (218) TO (-)

𝜆 = 0.1 0.3 0.6 0.9

consensus_2_4
min-MILP 13.6 (166) 4.9 (233) 1.0 (308) 1.4 (420)
max-MILP TO (-) TO (-) TO (-) TO (-)
ltlsubsys (max) TO (-) TO (-) TO (-) TO (-)

𝜆 = 0.1 0.3 0.6 0.9

firewire_3
min-MILP 2.0 (240) 2.2 (479) 2.5 (1619) 1.8 (4093)
max-MILP 10.2 (85) TO (-) TO (-) TO (-)
ltlsubsys (max) 5.5 (85) 903.1 (248) TO (-) TO (-)

expected, they always return the same size for minimal witnesses. All MDP benchmarks are
EC-free, and the required upper bound on u𝑒𝑣 (see Definition 4.32) is computed by solving the
linear program:

maximize
∑︂

(𝑠,𝛼 ) ∈E
y(𝑠, 𝛼) such that yA ≤ 𝛿𝑠𝑖𝑛 ∧ y ≥ 0.

This linear program is bounded by Proposition 3.9 for EC-free MDPs, and its optimal value is
an upper bound on all entries of u𝑒𝑣 . For Markov chains, the vector containing the expected
number of visits per state-action pair yields such an upper bound and can be obtained by solving
a linear equation system. See Section 4.2.2 for details on computing upper bounds on u𝑒𝑣 .

We want to highlight the following observations. First, the computation times may vary
substantially with the threshold 𝜆. In particular, for brp_32_2, we can see that a very small
increase in the threshold may change the computation times from under five seconds to running
into the timeout of 20minutes. Second, in the case of MDPs, the min- and max-witness programs
may behave very differently. It appears from these experiments that the min-witness MILP is
generally easier to solve. Third, the MILP proposed in [WJÁ+14], which computes minimal
witnesses for lower bounds on the maximal reachability probability, performs a bit better than
the max-witness MILP in these experiments, as it solves the firewire_3 benchmark for threshold
0.1.



96 4.2. Farkas certificates and witnessing subsystems

The qotient-sum heuristic

We now turn to an evaluation of the quotient-sum heuristic, which was introduced in Sec-
tion 4.2.3. Figure 4.6 shows the results of applying it to two Markov chain benchmarks. As
observed before, for Markov chains we can instantiate the heuristic with either the inequalities
defining Fmax

M,≥ (𝜆) (plotted on the left in Figure 4.6), or those defining Fmin
M,≥ (𝜆) (plotted on the

right in Figure 4.6). The plot 𝔪-QSHeur𝑖 shows the size of the subsystem returned after 𝑖 itera-
tions of the quotient-sum heuristic for increasing thresholds 𝜆 using the system of inequalities
F𝔪
M,≥ (𝜆). We can see that while the formulation using Fmin

M,≥ (𝜆) produces smaller subsystems
for the benchmark crowds_2_8, the opposite is true (for most 𝜆) in the benchmark brp_1024_2.

The figures shows that running multiple iterations of the heuristic can indeed bring down
the size of the produced subsystem substantially. Furthermore, the heuristic tends to stabilize
already after very few iterations. In Figure 4.6, the difference between QSHeur2 and QSHeur3 is
already very small in most cases.

An interesting phenomenon are the “spikes” in the left plot for crowds_2_8 (using Fmax
M,≥ (𝜆))

and the right plot for brp_1024_2 (usingFmin
M,≥ (𝜆)). Here, increasing the threshold 𝜆 (i.e., the lower

bound on the probability) may produce subsystems with fewer states. This is counterintuitive,
as a witnessing subsystem for threshold 𝜆 is also witnessing for any 𝜆′ ≤ 𝜆. Recall that the size
of the subsystem corresponds to the number of non-zero entries of the vector produced by the
heuristic. Increasing 𝜆 implies moving one of the defining linear inequalities further away from
zero in the underlying system of linear inequalities.

Consider the spike observed in the range of thresholds between 𝜆 = 0.02 and 𝜆 = 0.13
in Figure 4.6a. The results after two or more iterations (plotted as max-QSHeur𝑖 , with 𝑖 ≥ 2)
mostly increase in this range, but decrease again drastically for 𝜆 = 0.15. If we look at the
results of QSHeur1 for the same range (recall that this is the result of the first iteration, which
is used to compute the objective function coefficients for the second iteration), we find that
they remain almost constant. It appears that the initial iteration guides the search into a region
of the polyhedron which is “good” for low thresholds in the range, but not for the larger ones.
When the threshold increases to above 0.13, the initial LP yields another solution (it “jumps”
in the plot), which changes the objective of the second iteration favorably, yielding a smaller
subsystem. From this observation we learn that the “direction” of the initial minimization
objective may affect the outcome of the heuristic significantly. Different alternative initial
objectives are evaluated later in this section.

Comparison with the exact methods. Figure 4.7 compares the results of the quotient-sum
heuristic against the size of a minimal subsystem as computed by the MILP-approach. Here
we use the result of the quotient-sum heuristic after three iterations. One can see that in these
experiments the result of the better performing instances of the heuristic is very close to the
actual minimum.

Comparison with other heuristic approaches. The tool Comics [JÁV+12] also implements
heuristics to compute small witnessing subsystems for Markov chains. They are based on
algorithms which iteratively include more and more paths to a subsystem (starting with the
subsystem including only 𝑠𝑖𝑛) until the threshold condition is met. This ensures that in the
end, the computed subsystem is a witness. To check whether the condition is met, a model
checking step is included in each iteration. Two variants of this idea are implemented in Comics:



4. New techniques for witnessing subsystems 97

0.0 0.1 0.2 0.3 0.4 0.5
threshold 

0

100

200

300

400

500

600

700

800

st
at

es
 o

f s
ub

sy
st

em

crowds_2_8

max-QSHeur1

max-QSHeur2

max-QSHeur3

max-QSHeur4

max-QSHeur5

(a)

0.0 0.1 0.2 0.3 0.4 0.5
threshold 

0

100

200

300

400

500

600

st
at

es
 o

f s
ub

sy
st

em

crowds_2_8

min-QSHeur1

min-QSHeur2

min-QSHeur3

min-QSHeur4

min-QSHeur5

(b)

5.0e-06 1.0e-05 1.5e-05 2.0e-05 2.5e-05
threshold 

20

22

24

26

28

30

32

st
at

es
 o

f s
ub

sy
st

em
 (x

10
00

)

brp_1024_2

max-QSHeur1

max-QSHeur2

max-QSHeur3

max-QSHeur4

max-QSHeur5

(c)

5.0e-06 1.0e-05 1.5e-05 2.0e-05 2.5e-05
threshold 

22

24

26

28

30

32

st
at

es
 o

f s
ub

sy
st

em
 (x

10
00

)

brp_1024_2

min-QSHeur1

min-QSHeur2

min-QSHeur3

min-QSHeur4

min-QSHeur5

(d)

Figure 4.6: Results produced by the quotient-sum heuristic for two Markov chain benchmarks,
with increasing thresholds. Two instances of the heuristic are considered: on the left the
system of inequalities defining Fmax

M,≥ (𝜆) is used, whereas F
min
M,≥ (𝜆) is used on the right. The

plot 𝔪-QSHeur𝑖 contains the result produced by iterating the quotient-sum heuristic 𝑖 times
over F𝔪

M,≥ (𝜆). The plotted value is the size of the subsystem induced by the computed Farkas
certificate (i.e., the size of the support of the certificate).



98 4.2. Farkas certificates and witnessing subsystems

5.0e-06 1.0e-05 1.5e-05 2.0e-05 2.5e-05
threshold 

100

125

150

175

200

225

250

275

300

st
at

es
 o

f s
ub

sy
st

em

brp_16_2

max-QSHeur3

MILPExact
min-QSHeur3

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
threshold 

0

50

100

150

200

250

300

350

st
at

es
 o

f s
ub

sy
st

em

crowds_2_6

max-QSHeur3

MILPExact
min-QSHeur3

Figure 4.7: Comparison of subsystem sizes computed by the quotient-sum heuristic in three
iterations against the minimal witnessing subsystem. Here, 𝔪-QSHeur3 is the quotient-sum
heuristic (running for three iterations) which uses the inequalities defining F𝔪

M,≥ (𝜆), and
MILPExact plots the size of a minimal witness as computed using the MILP approach.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
threshold 

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

st
at

es
 o

f s
ub

sy
st

em
 (x

10
00

)

crowds_5_8

max-QSHeur3

min-QSHeur3

comics-global
comics-local

TO

0.00 0.05 0.10 0.15 0.20 0.25 0.30
threshold 

100

101

102

tim
e 

[s
]

crowds_5_8

max-QSHeur3

min-QSHeur3

comics-global
comics-local

TO

5.0e-06 1.0e-05 1.5e-05 2.0e-05 2.5e-05
threshold 

18

20

22

24

26

28

30

32

st
at

es
 o

f s
ub

sy
st

em
 (x

10
00

)

brp_1024_2

max-QSHeur3

min-QSHeur3

comics-global
comics-local

TO

5.0e-06 1.0e-05 1.5e-05 2.0e-05 2.5e-05
threshold 

101

102

tim
e 

[s
]

brp_1024_2

max-QSHeur3

min-QSHeur3

comics-global
comics-local

TO

Figure 4.8: Sizes (left) and computation times (right) of witnessing subsystems computed using
the quotient-sum heuristic and Comics on two Markov chain benchmarks.



4. New techniques for witnessing subsystems 99

the “global-search” finds preferably short paths to “target” carrying a lot of probability in each
iteration, whereas the “local-search” attempts to connect states already included in the current
subsystem with few additional states.

Figure 4.8 shows the result of Comics as compared with the quotient-sum heuristic for two
different Markov chain benchmarks. On the left, we see the sizes of subsystems returned by
the different heuristics for increasing thresholds, and on the right we see the corresponding
computation times. The results of the quotient-sum heuristics after three iterations are plotted,
using Fmax

M,≥ (𝜆) and Fmin
M,≥ (𝜆) respectively. For Comics, we use the computation time reported

by the tool, and we plot all times under one second on the one-second line.
When considering the sizes of computed subsystems, we can see that the better configuration

of the quotient-sum heuristic performs comparably to the better configuration of Comics. The
only large difference appears for small thresholds of brp_1024_2, where the “global-search”
performs very well in comparison to the other methods. For the computation times, one can see
that while the quotient-sum heuristic is not influenced by increasing thresholds, the computation
times of Comics increase drastically. While Comics is very fast for small thresholds, it runs
into the timeout for thresholds closer to the actual probability of the system. This phenomenon
can be explained by the different nature of the algorithms. With increasing thresholds, Comics
needs to add more paths to generate a witness, which leads to more iterations. As each iteration
includes a model checking phase, it is natural that computation times increase with an increase
in the number of iterations. On the other hand, the threshold 𝜆 is just a number appearing in
the linear programs that the quotient-sum heuristic solves, and does not affect the number of
iterations or the time required to solve the LPs in these experiments.

QS-heuristic with alternative initial objectives. In the quotient-sum heuristic (see Algo-
rithm 1) the coefficients o1 of the initial objective function were chosen to be (1, . . . , 1). There-
fore, the first iteration computes a Farkas certificate with minimal sum-of-entries. This choice
is natural, but it is not necessary for the correctness of the procedure. Any nonnegative vector
of coefficients can be chosen, and it is easy to adapt the initial objective in Switss.

We now evaluate different choices of initial objectives. The idea is to make coefficients
relatively small for states (respectively state-action pairs) whichwe expect to be part of a minimal
witnessing subsystem, i.e., those that are “important” for the property at hand. Coefficients of
states which are not important should be relatively high, because this favors solutions in which
the value of these states equals zero. We will consider two alternative initial coefficient vectors.
For the first one, consider the linear program

maximize yt such that yA ≤ 𝛿𝑠𝑖𝑛 . (4.2)

A solution y of Equation (4.2) corresponds to the expected number of visits of a scheduler that
maximizes the probability of reaching target in EC-free MDPs, and hence state-action pairs with
a high value in a solution of this LP can be considered important. Given an optimal solution y

to the above linear program, we define inve ∈ QE
≥0 by

inve(𝑠, 𝛼) =
{︄

1
y(𝑠,𝛼 ) if y(𝑠, 𝛼) > 0
𝐶 otherwise,

where 𝐶 > max{1/y(𝑠,𝛼 ) | (𝑠, 𝛼) ∈ E, y(𝑠, 𝛼) > 0} is a large constant. Second, we consider the



100 4.2. Farkas certificates and witnessing subsystems

5.0e-06 1.0e-05 1.5e-05 2.0e-05 2.5e-05
threshold 

20

22

24

26

28

30

32

st
at

es
 o

f s
ub

sy
st

em
 (x

10
00

)

brp_1024_2

max-AO1

max-AO2

max-AO3

max-InvE1

max-InvE2

max-InvE3

5.0e-06 1.0e-05 1.5e-05 2.0e-05 2.5e-05
threshold 

20

22

24

26

28

30

32

st
at

es
 o

f s
ub

sy
st

em
 (x

10
00

)

brp_1024_2

min-AO1

min-AO2

min-AO3

min-InvP1

min-InvP2

min-InvP3

0.00 0.05 0.10 0.15 0.20 0.25 0.30
threshold 

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

st
at

es
 o

f s
ub

sy
st

em
 (x

10
00

)

crowds_5_8

max-AO1

max-AO2

max-InvE1

0.00 0.05 0.10 0.15 0.20 0.25 0.30
threshold 

0

1

2

3

4

st
at

es
 o

f s
ub

sy
st

em
 (x

10
00

)

crowds_5_8

min-AO1

min-InvP1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold 

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

st
at

es
 o

f s
ub

sy
st

em
 (x

10
00

)

csma_2_6

max-AO1

max-AO2

max-AO3

max-InvE1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
threshold 

1

2

3

4

5

6

7

st
at

es
 o

f s
ub

sy
st

em
 (x

10
00

)

consensus_4_2

max-AO1

max-AO2

max-InvE1

Figure 4.9: Sizes of witnessing subsystems produced by the quotient-sum heuristic using
different initial objective functions in the first iteration. Results are plotted for the first iteration
after which the heuristic stabilizes.



4. New techniques for witnessing subsystems 101

Table 4.4: Number of labels included in subsystems computed by label-based minimization
approaches for the bounded retransmission protocol benchmark for four thresholds. The result
of the quotient-sum heuristic using either min- or max-formulation after three iterations is
shown along with the minimum achievable (lines called “exact”), as computed by the MILP
approach. For the larger benchmark, using the max-formulation yields suboptimal results, and
runs into timeouts for large thresholds. The min-formulation always produced optimal results.

𝜆 = 0.97 0.978 0.982 0.986 0.994

brp_32_8
min-QSHeur3 2 3 3 3 3
max-QSHeur3 2 3 3 3 3
exact 2 3 3 3 3

brp_1024_8
min-QSHeur3 3 4 4 4 4
max-QSHeur3 3 6 4 4 4
exact 3 4 4 4 4

vector invp ∈ Q𝑆 defined as the point-wise inverse (in the same way as above) of the vector
pr

min containing the minimal reachability probabilities for each state.

Figure 4.9 compares the quotient-sum heuristic under different initial objectives. The
standard initialization is denoted by AO (for “all-ones”), while the results of choosing inve

(respectively invp) as initial objectives are denoted by InvE (respectively InvP). As before,
subscripts (e.g. AO𝑖 ) indicate how many iterations of the heuristic were run, and a prefix
“𝔪-” (e.g. max-AO) indicates that F𝔪

M,≥ (𝜆) is used as underlying system of inequalities (with
𝔪 ∈ {min,max}). In Figure 4.9 we only plot the result of the iteration of the quotient-sum
heuristics after which the results stabilize.

The most interesting observation of Figure 4.9 is that the “spike” phenomenon discussed
before can indeed be relieved by changing the initial objective. While the standard initialization
AO induces such spikes when using Fmin

M,≥ (𝜆) for brp_1024_2 and when using Fmax
M,≥ (𝜆) in

crowds_5_8, this is not the case when initializing with invp or inve, respectively. Furthermore,
the heuristic often stabilizes faster with the alternative initializations. For example, using inve
in the quotient-sum heuristic over Fmax

M,≥ (𝜆) for crowds_5_8, csma_2_6 and consensus_4_2
produces a very small witnessing subsystem already after one iteration, and the heuristic
stabilizes thereafter. Generally, it appears that invpworks better for formulations using Fmin

M,≥ (𝜆),
while inveworks better for formulations using Fmax

M,≥ (𝜆), and hence these are the configurations
which are shown in Figure 4.9.

The lower part of Figure 4.9 showcases two MDP benchmarks. It shows that for MDPs, using
the alternative initializations may yield much better results. For consensus_4_2, the standard
initialization yields large spikes, while, in comparison, initializing with inve yields very small
subsystems for all thresholds. We have only included experiments on the maximal probability
here, as the differences between initializations are not as large for minimal probabilities.



102 4.2. Farkas certificates and witnessing subsystems

0.970 0.975 0.980 0.985 0.990 0.995
threshold 

100

1.25 × 100

1.5 × 100

1.75 × 100

2 × 100

2.25 × 100

2.5 × 100

2.75 × 100

tim
e 

[s
]

brp_32_8

max-QSHeur1

max-QSHeur2

min-QSHeur1

min-QSHeur2

MILPExact-max
MILPExact-min

100

1.25 × 100

1.5 × 100

1.75 × 100

2 × 100

2.25 × 100

2.5 × 100

2.75 × 100

0.970 0.975 0.980 0.985 0.990 0.995
threshold 

101

102

103

tim
e 

[s
]

brp_1024_8

max-QSHeur1

max-QSHeur2

min-QSHeur1

min-QSHeur2

MILPExact-max
MILPExact-min

Figure 4.10: Computation times used for the label-based minimization approaches on the
bounded retransmission protocol benchmark. All algorithms based on the inequalities Fmin

M,≥ (𝜆)
perform significantly better than those based on Fmax

M,≥ (𝜆).

Label-based minimization

The bounded retransmission protocol is designed to send 𝑁 chunks of data with at most 𝐾
attempted retransmissions per chunk. A natural question in this context is the following. For
a given probability 𝜆, what is the least value of 𝐾 which guarantees successfully sending all
chunks with probability at least 𝜆? This question will serve as an inspiration for us to consider
label-based minimization.

LetM be the Markov chain in reachability form one gets from the model brp_𝑁_𝐾 along
with the reachability objective of successfully sending all chunks. Observe that this is not the
same target we considered in other experiments involving the bounded retransmission protocol.
The Prismmodel of the system includes a variable nrtrwhose value corresponds to the number
of retries which have already been attempted for some chunk of data. We consider the labeling
Λ induced by the value of this variable by setting Λ(𝑠) = 𝑖 iff the value of nrtr is 𝑖 in state 𝑠 .

If there exists a witnessing subsystemM′ for PrM (♢ target) ≥ 𝜆 which includes only the
labels {0, . . . , 𝑖}, for some 𝑖 < 𝐾 , then this means that “target” is reached with probability at
least 𝜆 even if the number of attempted retries is bounded by 𝑖 for each chunk. As the label
𝑖+1 is only reached through states with label 𝑖 in this model, any useful subsystem includes
all labels from an interval {0, 1, . . . , 𝑖}. Our algorithms produce only such subsystems and
henceforth we will only speak about the number of labels included in a subsystem. Table 4.4
shows the number of labels included in subsystems produced by the label-based version of the
quotient-sum heuristic (see Algorithm 2) and exact minimization as computed by the MILP
approach (see Definition 4.35). The heuristic based on the system of inequalities Fmin

M,≥ (𝜆) always
produces the minimal result, while the other instance produces the wrong result for the second
threshold in the larger instance of the protocol, where it returns 6, while 4 labels suffice.

Figure 4.10 takes a closer look on the computation times for these instances. We can see that
the algorithms using the min-formulations are always faster, and the exact approaches (which
solve MILPs) do not require more time in general than the heuristic approaches. To explain this,
recall that the number of binary variables in the MILP correspond to the number of labels which
are considered. Hence, these programs contain only eight binary variables, which is much less



4. New techniques for witnessing subsystems 103

than the number of states. On the other hand, the labeled quotient-sum heuristic adds further
variables to the linear program, and includes much fewer non-zero coefficients in the objective
function. As these experiments show, such changes may make the LPs harder to solve.

It follows that while the MILPs do not scale well enough to handle state-based minimization
even for systems with over a few hundred states, they may well be a valuable alternative when
one is interested in label-minimal subsystems and the number of labels is not too large.

Summary of experimental results. To sum up the experimental results, Tables 4.5 and 4.7
present computation times and sizes of computed subsystems of all considered heuristics for
models of various size. The main results of all conducted experiments are as follows.

• The MILP-based approaches to compute minimal witnesses scale to systems with at most
a few hundred states. Their computation time varies significantly with the threshold, and
their performance is comparable to existing approaches.

• The quotient-sum heuristic often computes subsystems which are close to the optimum,
and is competitive with existing approaches. Sometimes, it produces results which are far
off and adapting the initial objective function can help in such cases. Usually, it stabilizes
within a few iterations. Its computation time is largely invariant to the threshold, and it
scales to systems of about 105 states.

• For label-based minimization, the quotient-sum heuristic is able to compute small witness-
ing subsystems but, in the presence of few labels, may require relatively high computation
times. In this case the MILP-based approaches may even be faster.



104 4.2. Farkas certificates and witnessing subsystems

Table 4.5: Results of the different heuristic approaches for MDPs. The table entries include the
time in seconds of computing the result, and the size of the computed subsystem in brackets
(timeouts are marked by -). The results for the quotient-sum heuristic are always those obtained
after three iterations. The thresholds 𝜆𝑖 are defined in Table 4.6.

𝜆1 𝜆2 𝜆3 𝜆4

csma_2_6
|𝑆 | = 66 718
| E | = 66 788

min-qs-ao 24.8 (441) 25.1 (1458) 25.5 (3718) 26.7 (10 012)
min-qs-invp 51.8 (441) 53.9 (1458) 54.2 (3718) 54.2 (10 012)
max-qs-ao 104.0 (768) 109.8 (1637) 89.0 (5408) 103.9 (13 987)
max-qs-inve 68.8 (641) 68.8 (2092) 69.7 (4403) 80.0 (9653)

csma_3_2
|𝑆 | = 36 850
| E | = 38 456

min-qs-ao 17.1 (8170) 17.7 (11 568) 16.9 (23 098) 17.0 (28 535)
min-qs-invp 31.9 (8170) 32.4 (11 568) 34.2 (23 098) 34.0 (28 535)
max-qs-ao 39.5 (1463) 53.4 (1596) 49.1 (1650) 47.1 (1747)
max-qs-inve 40.3 (1607) 40.2 (1754) 43.9 (5061) 43.5 (7847)

consensus_2_4
|𝑆 | = 528
| E | = 784

min-qs-ao < 1 (201) < 1 (292) < 1 (308) < 1 (420)
min-qs-invp < 1 (201) < 1 (292) < 1 (308) < 1 (420)
max-qs-ao < 1 (104) < 1 (106) < 1 (119) < 1 (128)
max-qs-inve < 1 (158) < 1 (166) < 1 (186) < 1 (270)

consensus_4_4
|𝑆 | = 43 136
| E | = 115 840

min-qs-ao 194.1 (9035) 171.6 (13 308) 48.1 (16 692) 202.0 (35 256)
min-qs-invp 222.6 (9035) 171.4 (13 308) 80.9 (16 692) 227.6 (35 256)
max-qs-ao 271.7 (2070) 533.4 (7122) 555.7 (4549) 577.0 (6631)
max-qs-inve 209.5 (2615) 199.5 (2836) 196.9 (3136) 236.3 (4219)

firewire_3
|𝑆 | = 4093
| E | = 5519

min-qs-ao 1.6 (240) 1.7 (479) 1.9 (1619) 2.2 (4093)
min-qs-invp 3.9 (240) 3.9 (479) 4.1 (1619) 4.4 (4093)
max-qs-ao 3.6 (85) 4.6 (251) 4.5 (578) 4.6 (578)
max-qs-inve 4.6 (91) 5.0 (256) 5.0 (422) 5.0 (591)

firewire_30
|𝑆 | = 138 130
| E | = 302 654

min-qs-ao 111.9 (618) 113.2 (1235) 433.1 (36 068) 347.9 (138 130)
min-qs-invp 196.9 (618) 194.8 (1235) 489.6 (36 068) 397.9 (138 130)
max-qs-ao 242.6 (85) 267.8 (249) - -
max-qs-inve 275.5 (98) 260.9 (263) 254.3 (434) 254.8 (618)

Table 4.6: Threshold values used in Tables 4.5 and 4.7.

𝜆1 𝜆2 𝜆3 𝜆4

brp 2.0 × 10−6 1.0 × 10−5 1.8 × 10−5 2.0 × 10−5
crowds 0.05 0.15 0.21 0.29
leader 0.1 0.3 0.7 0.9
csma 0.1 0.3 0.6 0.9
consensus 0.1 0.3 0.6 0.9
firewire 0.1 0.3 0.6 0.9



4. New techniques for witnessing subsystems 105

Table 4.7: Results of the different heuristic approaches for Markov chains. The table entries
include the time in seconds of computing the result, and the size of the computed subsystem
in brackets (timeouts are marked by -). The results for the quotient-sum heuristic are always
those obtained after three iterations. The thresholds 𝜆𝑖 are defined in Table 4.6.

𝜆1 𝜆2 𝜆3 𝜆4

brp_32_2
|𝑆 | = 995

min-qs-ao < 1 (205) < 1 (356) < 1 (627) < 1 (491)
min-qs-invp < 1 (196) < 1 (218) < 1 (447) < 1 (491)
max-qs-ao < 1 (218) < 1 (218) < 1 (446) < 1 (490)
max-qs-inve < 1 (218) < 1 (218) < 1 (446) < 1 (490)
comics-gl < 1 (197) < 1 (219) < 1 (451) < 1 (492)
comics-lo < 1 (197) < 1 (824) < 1 (995) < 1 (995)

brp_1024_2
|𝑆 | = 31 747

min-qs-ao 45.1 (22 461) 46.6 (23 486) 36.5 (26 352) 35.2 (27 938)
min-qs-invp 68.5 (20 357) 56.7 (23 228) 57.3 (26 352) 57.2 (27 938)
max-qs-ao 36.8 (21 221) 39.6 (23 666) 33.7 (26 827) 34.4 (28 418)
max-qs-inve 48.4 (20 089) 52.0 (23 666) 45.1 (26 539) 45.5 (28 125)
comics-gl 10.1 (17 976) 360.9 (22 648) - -
comics-lo - - - -

crowds_2_8
|𝑆 | = 832

min-qs-ao < 1 (31) < 1 (73) < 1 (101) < 1 (148)
min-qs-invp < 1 (31) < 1 (73) < 1 (101) < 1 (188)
max-qs-ao < 1 (73) < 1 (75) < 1 (171) < 1 (210)
max-qs-inve < 1 (33) < 1 (103) < 1 (129) < 1 (207)
comics-gl < 1 (41) < 1 (120) < 1 (177) < 1 (286)
comics-lo < 1 (30) < 1 (74) < 1 (104) < 1 (149)

crowds_5_8
|𝑆 | = 27 847

min-qs-ao 10.4 (113) 10.7 (640) 10.5 (1397) 11.5 (4645)
min-qs-invp 21.2 (113) 21.4 (743) 20.7 (1271) 21.3 (4230)
max-qs-ao 37.8 (801) 43.5 (4838) 36.6 (4735) 40.0 (17 704)
max-qs-inve 32.0 (182) 37.3 (592) 30.3 (1233) 35.8 (4469)
comics-gl < 1 (211) 4.3 (2489) 124.6 (5626) -
comics-lo 3.8 (110) 21.9 (519) 91.5 (1761) 345.7 (5569)

leader_6_6
|𝑆 | = 234 210

min-qs-ao - 454.6 (70 220) 411.2 (165 301) 129.4 (211 242)
min-qs-invp - 539.7 (70 220) 482.0 (165 301) 219.1 (211 242)
max-qs-ao - - - -
max-qs-inve 448.1 (37 811) 454.7 (70 006) 434.2 (163 509) 430.9 (210 524)
comics-gl 11.3 (23 400) 251.0 (70 238) - -
comics-lo - - - -



106 4.3. Witnessing subsystems for the expected total reward

4.3 Witnessing subsystems for the expected total reward
Two notions of witnessing subsystems for threshold properties on the expected total reward in
Markov chains were introduced in [QJD+15]. One of them is analogous to the one for proba-
bilistic reachability constraints as defined in Section 4.1. Again, transitions can be redirected
to “exit” to form subsystems, and for the expected total reward criterion this means that the
possibility of collecting more reward in the future ends. Hence, the expected reward achieved
in a subsystem can never increase with respect to the original Markov chain. If a subsystem
satisfies a lower-bounded threshold constraint on the expected total reward when starting in
𝑠𝑖𝑛 , it is called a witness for the property.

The second type of subsystem considered in [QJD+15] does not alter the transition structure
of the Markov chain, but rather allows altering the reward function which determines how
much reward a state contributes per visit. We will only consider the first notion here, and show
that the correspondence between witnessing subsystems and Farkas certificates which was
studied for probabilistic reachability constraints holds also for constraints on the expected total
reward. Again, this yields novel MILP formulations for the problem of computing minimal
witnesses. We also generalize the work in [QJD+15] by covering MDPs.

As in Section 3.2, where we considered Farkas certificates for constraints on the expected
total reward, we will assume MDPs to be in reward reachability form (see Definition 2.12). This
means that from each state the minimal probability to reach “exit” is one (or equivalently, that
“exit” induces the only reachable proper end component). We use the same notion of subsystems
considered in the previous sections (see Definition 4.1). It is essentially the definition of
subsystems as given in [QJD+15, Definition 7] with the difference that we assume “exit” to be a
single state (rather than a set of states) and allow individual transitions to be redirected, rather
than only allowing all transitions of a state to be redirected together. In contrast to Section 3.2,
we only consider nonnegative reward functions in this section.
Remark 4.41. We can now explain why we use the state “exit” rather than “target” when
defining the expected total reward criterion. Namely, it allows us to use a unified definition
of subsystem. For probabilistic reachability constraints it is important to distinguish the two
states, and to redirect edges to “exit” in the definition of subsystems. For the expected total
reward criterion the distinction is not important, but it is important that we redirect edges to
the state in which rewards are collected. This makes sure that paths escaping this state forever
have maximal probability zero in all subsystems. △

In the same way as for probabilistic reachability constraints the expected total reward cannot
be higher in a subsystem than in the original system. The corresponding lemma can be proved
by minor adaptations to the proof of Proposition 4.4.

Lemma 4.42. Let M be an MDP in nonnegative reward reachability form and M′ be a subsystem
of M. Then:

Emax
M′ ( exit) ≤ Emax

M ( exit) and Emin
M′ ( exit) ≤ Emin

M ( exit) .

Proof. We first make the following observations:

• All finite paths in M′ which do not end in “exit” are also finite paths in M, and
• for all finite paths 𝜋 in M which end in “exit”, there exists a prefix 𝜋 ′ of 𝜋 such that
𝜋 ′ exit is a finite path in M′.



4. New techniques for witnessing subsystems 107

sin

s1

s2

s3 exit
1/4

3/4

α(+1)

β

1/2

α

1/2

1/2 1/4

α(+6)

1/4

α

β

Figure 4.11: An MDP M in nonnegative reward reachability form. The reward function rew is
defined by rew(𝑠𝑖𝑛, 𝛼) = 1, rew(𝑠2, 𝛼) = 6 and zero for all other state-action pairs.

Using these facts one can, in the same way as in Proposition 4.4, extend each scheduler𝔖′ of
M′ to a scheduler𝔖 of M satisfying E𝔖′

M′ ( exit) ≤ E𝔖M ( exit). This relies on the fact that all
states have a scheduler which reaches “exit” with probability one, and the reward function is
nonnegative. Furthermore, each scheduler𝔖 of M can be restricted to form a scheduler𝔖′ of
M′ which again satisfies E𝔖′

M′ ( exit) ≤ E𝔖M ( exit).

Definition 4.43 (Witnesses for expected rewards). LetM be an MDP in nonnegative reward
reachability form. Furthermore, let 𝜆 ≥ 0 and M′ be a subsystem ofM.

• M′ is called a witness for Emax
M,𝑠𝑖𝑛

( exit) ≥ 𝜆 if Emax
M′,𝑠𝑖𝑛

( exit) ≥ 𝜆 holds.

• M′ is called a witness for Emin
M,𝑠𝑖𝑛

( exit) ≥ 𝜆 if Emin
M′,𝑠𝑖𝑛

( exit) ≥ 𝜆 holds.

Example 4.44. Consider the MDP M in Figure 4.11, let A be its system matrix and r ∈ RE
≥0 be

defined by r(𝑠, 𝛼) = rew(𝑠, 𝛼). A Farkas certificate for Emax
M,𝑠𝑖𝑛

( exit) ≥ 7 is given by:

y1 =
(︁
(𝑠𝑖𝑛, 𝛼) ↦→ 1, (𝑠𝑖𝑛, 𝛽) ↦→ 0, (𝑠1, 𝛼) ↦→ 0, (𝑠2, 𝛼) ↦→ 1, (𝑠3, 𝛼) ↦→ 0, (𝑠3, 𝛽) ↦→ 0

)︁
.

This is because it satisfies yA ≤ 𝛿𝑠𝑖𝑛 and yr = y(𝑠𝑖𝑛, 𝛼) + 6 · y(𝑠2, 𝛼) = 7. The corresponding
witnessing subsystem is the one induced by state-supp(y1) = {𝑠𝑖𝑛, 𝑠2}. Indeed, one can check that
even if states 𝑠1 and 𝑠3 were identified with “exit” (i.e., they would contribute zero reward), then
the maximal expect reward from 𝑠𝑖𝑛 would still be 7. A Farkas certificate for Emax

M,𝑠𝑖𝑛
( exit) ≥ 8

is:

y2 =
(︁
(𝑠𝑖𝑛, 𝛼) ↦→ 0, (𝑠𝑖𝑛, 𝛽) ↦→ 2, (𝑠1, 𝛼) ↦→ 2, (𝑠2, 𝛼) ↦→ 4/3, (𝑠3, 𝛼) ↦→ 0, (𝑠3, 𝛽) ↦→ 0

)︁
.

It corresponds to the subsystem induced by {𝑠𝑖𝑛, 𝑠1, 𝑠2} and to the memoryless deterministic
scheduler which chooses 𝛽 in 𝑠𝑖𝑛 .

For the minimal expected reward, any subsystem which does not include 𝑠1 has value zero
due to the scheduler which chooses 𝛽 in 𝑠𝑖𝑛 (recall that all actions remain enabled in subsystems,



108 4.3. Witnessing subsystems for the expected total reward

and “missing” transitions are redirected to “exit”). However, the subsystem {𝑠𝑖𝑛, 𝑠1, 𝑠2} is a
witness for Emin

M,𝑠𝑖𝑛
( exit) ≥ 7, as certified by the following Farkas certificate:

z1 =
(︁
𝑠𝑖𝑛 ↦→ 7, 𝑠1 ↦→ 7, 𝑠2 ↦→ 8, 𝑠3 ↦→ 0

)︁
.

It satisfies Az1 ≤ r and z(𝑠𝑖𝑛) ≥ 7. Observe that the subsystem {𝑠𝑖𝑛, 𝑠1, 𝑠2} is not a witness for
Emin
M,𝑠𝑖𝑛

( exit) ≥ 8, as the scheduler which chooses 𝛼 in 𝑠𝑖𝑛 achieves only value 7. △
The following proposition relates Farkas certificates for the expected total reward criterion

(see Propositions 3.32 and 3.33) to witnessing subsystems which are induced by their support. It
is the analogon of Theorem 4.23 for probabilistic reachability constraints. Its proof is simplified
by the fact that MDPs in reward reachability form are EC-free.

Proposition 4.45. Let M = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃, rew) be an MDP in nonnegative reward
reachability form, A be the system matrix of M, 𝜆 ≥ 0 and r ∈ RE

≥0 be defined by r(𝑠, 𝛼) =

rew(𝑠, 𝛼) for all (𝑠, 𝛼) ∈ E. Fix a subset 𝑆 ′ ⊆ 𝑆 .

1. There exists a vector z ∈ R𝑆≥0 satisfying Az ≤ r ∧ z(𝑠𝑖𝑛) ≥ 𝜆 such that supp(z) ⊆ 𝑆 ′ if and
only if Emin

M𝑆′
( exit) ≥ 𝜆 holds.

2. There exists a vector y ∈ RE
≥0 satisfying yA ≤ 𝛿𝑠𝑖𝑛 ∧ y r ≥ 𝜆 such that state-supp(y) ⊆ 𝑆 ′

if and only if Emax
M𝑆′

( exit) ≥ 𝜆 holds.

Proof. Let E′ = {(𝑠, 𝛼) ∈ E | 𝑠 ∈ 𝑆 ′}. As observed before, the system matrix A′ of the induced
subsystem M𝑆 ′ is the restriction of the system matrix of M to states in 𝑆 ′, i.e., A′ = A|E′×𝑆 ′ .
Additionally, define r′ = r|E′ . We only show (1.), as (2.) can be shown analogously.

(1.) “=⇒”. By Lemma 4.22, the vector z′ = z|𝑆 ′ satisfies A′
z
′ ≤ r

′ ∧ z
′(𝑠𝑖𝑛) ≥ 𝜆, from which

Emin
M𝑆′

( exit) ≥ 𝜆 follows by Proposition 3.32.
“⇐=”. If Emin

M𝑆′
( exit) ≥ 𝜆 holds, then the vector z′ = ex

min ∈ R |𝑆 ′ | containing the expected
total reward achieved starting from any state inM𝑆 ′ is a solution of A′

z
′ ≤ r

′ ∧ z
′(𝑠𝑖𝑛) ≥ 𝜆 (see

also Proposition 3.32). As M is in nonnegative reward reachability form, exmin is nonnegative.
But then the vector z ∈ R𝑆 defined by z(𝑠) = z

′(𝑠) for all 𝑠 ∈ 𝑆 ′, and z(𝑠) = 0 otherwise, satisfies
Az ≤ r ∧ z(𝑠𝑖𝑛) ≥ 𝜆, by Lemma 4.22.

As a corollary, it follows that the (state-)support minimal vectors satisfying these systems of
linear inequalities correspond to minimal witnessing subsystems for the corresponding expected
reward constraints.

Corollary 4.46. Let M = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃, rew) be an MDP in nonnegative reward reacha-
bility form, A be the system matrix of M, 𝜆 ≥ 0 and r ∈ RE

≥0 be defined by r(𝑠, 𝛼) = rew(𝑠, 𝛼) for
all (𝑠, 𝛼) ∈ E. Define

Pmin = {z ∈ R𝑆≥0 | Az ≤ r ∧ z(𝑠𝑖𝑛) ≥ 𝜆} and Pmax = {y ∈ RE
≥0 | yA ≤ 𝛿𝑠𝑖𝑛 ∧ yr ≥ 𝜆}.

Then for all 𝑆 ′ ⊆ 𝑆 we have

1. There exists a vector z ∈ Pmin with minimal support and supp(z) = 𝑆 ′ if and only if M𝑆 ′ is
a minimal witnessing subsystem for Emin

M ( exit) ≥ 𝜆.

2. There exists a vector y ∈ Pmax with minimal state-support and state-supp(y) = 𝑆 ′ if and
only ifM𝑆 ′ is a minimal witnessing subsystem for Emax

M ( exit) ≥ 𝜆.



4. New techniques for witnessing subsystems 109

With the above corollary in place, we can derive MILPs whose optimal solutions correspond
to minimal witnessing subsystems for lower bounds on the expected total reward criterion in an
analogous way as for probabilistic reachability constraints. The assumption that MDPs in reward
reachability form are EC-free simplifies the computation of the upper bound required for the
generic MILP defined in Lemma 4.27. In this setting the minimal expected reward vector serves
as an upper bound for vectors satisfying Az ≤ r, and the vector u𝑒𝑣 , containing the maximal
expected number of visits over all memoryless deterministic schedulers (see Equation (4.1)),
serves as an upper bound for vectors satisfying yA ≤ 𝛿𝑠𝑖𝑛 . As the MDP is EC-free here by
assumption, the latter value can be computed in polynomial time (see Section 4.2.2).

Definition 4.47 (MILPs for expected total reward). LetM = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃, rew) be an
MDP in nonnegative reward reachability form with system matrix A and enabled state-action
pairs E. Furthermore, let r ∈ QE

≥0 be defined by r(𝑠, 𝛼) = rew(𝑠, 𝛼) for all (𝑠, 𝛼) ∈ E and let
𝜆 ≥ 0.

• The min-witness MILP for expected rewards is given by: minimize
∑︁
𝑠∈𝑆 𝜎 (𝑠) such that

Az ≤ r, z ≥ 0, z(𝑠𝑖𝑛) ≥ 𝜆 and z(𝑠) ≤ 𝜎 (𝑠) · exmin(𝑠) for all 𝑠 ∈ 𝑆.

• The max-witness MILP for expected rewards is given by: minimize
∑︁
𝑠∈𝑆 𝜎 (𝑠) such that

yA ≤ 𝛿𝑠𝑖𝑛 , y ≥ 0, y · r ≥ 𝜆 and y(𝑠, 𝛼) ≤ 𝜎 (𝑠) · u𝑒𝑣 (𝑠, 𝛼) for all (𝑠, 𝛼) ∈ E .

In both MILPs, 𝜎 is a vector of binary variables of dimension 𝑆 .

Proposition 4.48. Let M,A, E, r and 𝜆 be as in the above definition, and 𝑆 ∪ {exit} be the states
of M. Then, for all 𝑆 ′ ⊆ 𝑆 :

• There exists an optimal solution (𝜎, z) of the min-witness MILP for expected rewards with
supp(z) = 𝑆 ′ if and only if M𝑆 ′ is a minimal witnessing subsystem for the property
Emin
M ( exit) ≥ 𝜆, and

• There exists an optimal solution (𝜎, y) of the max-witness MILP for expected rewards with
state-supp(y) = 𝑆 ′ if and only ifM𝑆 ′ is a minimal witnessing subsystem for the property
Emax
M ( exit) ≥ 𝜆.

Proof. Consider the first statement. By Lemma 2.13 every solution of Az ≤ r is bounded
from above by the vector exmin. It follows that the max-witness MILP is an instance of the
generic MILP to compute vectors with minimal support (see Lemma 4.27). The claim follows by
combining Corollary 4.46 and Lemma 4.27.

For the second statement, we first observe that as M is EC-free, the maximum expected
number of visits of each state-action pair is attained by a memoryless deterministic scheduler
by Proposition 2.14, and therefore bounded. In particular, this implies that solutions of yA ≤
𝛿𝑠𝑖𝑛 ∧ yr ≥ 𝜆 are point-wise bounded from above by u𝑒𝑣 . Hence the max-witness MILP is an
instance of the generic MILP defined in Lemma 4.27, under the labeling function Λ : E → 2𝑆
whichmaps each state-action pair to the corresponding state (i.e., Λ(𝑠, 𝛼) = {𝑠} for all (𝑠, 𝛼) ∈ E).
It follows from Lemma 4.27 that optimal solutions of the MILP correspond to vectors y with
minimal state support, and the claim follows by applying Corollary 4.46.



110 4.4. Witnessing subsystems for invariants

4.4 Witnessing subsystems for invariants
So far, we have only considered witnessing subsystems for probabilistic reachability constraints
expressing lower bounds on the minimal or maximal reachability probability. Such a witness
shows that the probability of reaching the target is at least as high as the threshold (either for
some, or for all schedulers).

In this section we deal with the question of witnessing lower bounds on the optimal
probability of never reaching a target set (or, equivalently, of staying in a given set of states
forever). Such properties are called invariants. They correspond to standard probabilistic
reachability constraints expressing upper bounds on the optimal reachability probabilities. This
can be seen through the equivalences

Pr
max
M (♢𝑇 ) < 𝜆 ⇐⇒ Pr

min
M (□𝑇 ) ≥ 1−𝜆 and Pr

min
M (♢𝑇 ) < 𝜆 ⇐⇒ Pr

max
M (□𝑇 ) ≥ 1−𝜆,

where M = (𝑆,Act, 𝑠𝑖𝑛, 𝑃) is an MDP, 𝑇 ⊆ 𝑆 and 𝑇 = 𝑆 \𝑇 .
In the following, wewill definewitnessing subsystems for properties of the form Pr

min
M (□𝑇 ) ≥

𝜆 and Pr
max
M (□𝑇 ) ≥ 𝜆, and discuss how they can be computed. We will assume that the set 𝑇 of

states which should be avoided consists of the single, absorbing state “exit”. Apart from that,
we consider arbitrary MDPs.

The standard definition of subsystem (see Definition 4.1), which implicitly redirects edges
to “exit”, does not depend on the existence of the state “target”. Hence, the same notion of
subsystem can be used here. We get a result which is analogous to Proposition 4.4, namely
that the probability of satisfying the property cannot increase when passing to a subsystem.
Intuitively, the idea is that redirecting a transition to “exit” represents a worst case assumption
for the property □¬ exit. Here “¬ exit” represents the set of all states excluding “exit”. The
proposition can be proven in the same way as Proposition 4.4.

Proposition 4.49. LetM = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP andM′ be a subsystem ofM with
states 𝑆 ′ ∪ {exit}. Then, for all 𝑠 ∈ 𝑆 ′ we have:

Pr
min
M′,𝑠 (□¬ exit) ≤ Pr

min
M,𝑠

(□¬ exit) and Pr
max
M′,𝑠 (□¬ exit) ≤ Pr

max
M,𝑠

(□¬ exit).

As supported by the above proposition, we call a subsystem M′ of M a witness for
Pr

min
M (□¬ exit) ≥ 𝜆 (respectively for Prmax

M (□¬ exit) ≥ 𝜆) ifM′ itself satisfies the property.

Remark 4.50. The reachability constraint Prmin(♢ target) < 𝜆 corresponds, by the equivalences
above, to the property Pr

max(□¬ target) ≥ 1 − 𝜆. The reason that we consider witnessing
subsystems for Prmax(□¬ exit) ≥ 𝜆 here (rather than Pr

max(□¬ target) ≥ 𝜆) is that in this
setting we can use the same notion of subsystem (which redirects edges to “exit”). If one is
interested in witnesses for properties of the form Pr

𝔪 (♢ target) < 𝜆, one has to first swap the
roles of “target” and “exit”. △

Now, we turn to the question of computing minimal (or small) witnessing subsystems in
the above sense. Let us first consider the MDPM𝑟 one gets by collapsing all reachable states
which cannot reach “exit” into a state called “target”. If M𝑟 is EC-free, then the problem can be
reduced to the computation of witnesses for standard (lower-bounded) probabilistic reachability
constraints. This is because in this case Pr𝔖M𝑟

(□¬ exit) = Pr𝔖M𝑟
(♢ target) holds for all schedulers

𝔖 ofM𝑟 . Hence, a subsystem is a witness for Pr𝔪M𝑟
(□¬ exit) ≥ 𝜆 if and only if it is a witness

for Pr𝔪M𝑟
(♢ target) ≥ 𝜆, where 𝔪 ∈ {min,max}. In particular, this implies that computing



4. New techniques for witnessing subsystems 111

sin
exit1/21/2

Figure 4.12: An MDP M in which the only probabilistic choice is in the initial state, which
chooses with probability 1/2 between continuing on the left or on the right. All other choices
are nondeterministic. The state “exit” is unreachable in M. The green states (in the left cycle)
indicate a minimal witnessing subsystem for the property Pr

min
M (□¬ exit) ≥ 1/2. On the other

hand, the orange states (on the right) indicate a minimal witnessing subsystem for the property
Pr

max
M (□¬ exit) ≥ 1/2.

minimal witnesses for non-reachability properties remains NP-hard, as the hardness result in
the standard case (Theorem 4.16) applies to Markov chains already.

So the interesting questions arise for MDPs with proper end components. Intuitively the
status of end components changes when considering “□¬ exit” in comparison to “♢ target”:
Whereas realizing a proper end component (which does not include “exit”) is desirable for the
former property, it is not for the latter. Consider the MDP M in Figure 4.12 and the properties
Pr

𝔪
M (□¬ exit) ≥ 1/2, with 𝔪 ∈ {min,max}. For both properties it suffices to demonstrate that

one of the probabilistic choices in the initial state leads to a state which avoids “exit” forever
with (minimal or maximal) probability one. The smallest witnessing subsystem for 𝔪 = min
includes the entire left cycle. On the other hand, for 𝔪 = max we do not have to take into
account all schedulers, and hence the smallest witnessing subsystem in this case is induced
by the shortest path to the rightmost absorbing state. The minimal probability of □¬ exit is
zero in the subsystem induced by the orange states, as there exists a scheduler which leaves the
subsystem with probability one.

The example illustrates that to satisfy □¬ exit a scheduler has to reach and realize proper
end components (which exclude exit). Furthermore, for minimal probabilities, only subsystems
which are “closed under end components” (this will be made precise below) are relevant. In the
following, we will separately consider the cases of minimal and maximal probabilities.

The minimal probability of avoiding “exit” forever

The minimal probability of avoiding “exit” forever is above 𝜆 if 𝜆 is a lower bound on the
probability of this property under all schedulers of M. It follows that if any internal transition
of an end component is redirected to “exit”, then in the resulting subsystem all states in this
end component have minimal probability zero of achieving the property. This is because there
exists a scheduler which ensures that this transition is eventually taken (and therefore “exit” is
reached) with probability one.

This observation implies that it is never useful for a subsystem to partially include an
end component when considering minimal probabilities. Hence, we can consider the quotient



112 4.4. Witnessing subsystems for invariants

of maximal end components and thereby reduce the problem to the case of lower-bounded
probabilistic reachability constraints.

Let M = (𝑆 ∪ {exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in which “exit” is an absorbing state, and
consider the property Pr

min
M (□¬ exit) ≥ 𝜆 for some 𝜆 ∈ [0, 1]. Let D = {(𝐸1, 𝐴1), . . . , (𝐸𝑘 , 𝐴𝑘 )}

be the maximal end components of M excluding the ones induced by “exit”, and let

N = Mtarget
/D = ({𝐸1, . . . , 𝐸𝑘 , exit, target}, (𝑆 × Act) ∪ {𝜏}, [𝑠𝑖𝑛]D, 𝑃D)

be the target-directed MEC-quotient ofM as defined in Section 2.2.2. Here “target” is a fresh
state introduced in the construction.

In N , each maximal end component of M is represented by a state, and all proper end
components have an additional 𝜏-transition which moves to “target” with probability one. The
𝜏-transition represents the fact that by realizing the proper end component, a scheduler indeed
avoids “exit” forever. The MDP N is in reachability form, as Prmax

N,𝑠 (♢ target) > 0 holds for all
states 𝑠 of N (excluding “exit”) and furthermore, it is EC-free.

Our aim is to show that the subsystems M′ of M which satisfy Pr
min
M′ (□¬ exit) ≥ 𝜆 es-

sentially correspond to subsystems N ′ of N which satisfy Pr
min
N′ (♢ target) ≥ 𝜆. To this end,

let us call a subsystemM′ = (𝑆 ′ ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃 ′) ofM useful, if for all proper end
components (𝐸,𝐴) of M we have either 𝑆 ′ ∩ 𝐸 = ∅ or 𝐸 ⊆ 𝑆 ′. Furthermore, if 𝐸 ⊆ 𝑆 ′ holds,
then all transitions of internal actions of (𝐸,𝐴) should be included fully in the subsystem. To
explain this notion, assume that ∅ ⊂ (𝑆 ′ ∩ 𝐸) ⊂ 𝐸 holds for some proper end component (𝐸,𝐴).
Then, for all states 𝑠 ∈ 𝑆 ′ ∩ 𝐸 we have Prmin

M′,𝑠 (□¬ exit) = 0. This is because some transition of
the proper end component 𝐸 is not included in the subsystem, which means that it now leads
to “exit”. The same is true if we have 𝐸 ⊆ 𝑆 ′ but some (formerly) internal action of the end
component has positive probability to reach “exit” in the subsystem. In both cases all remaining
states in the end component can also be removed from the subsystem without decreasing the
minimal probability of avoiding “exit” forever in any state. As a consequence, there is always a
useful (label- or weight-) minimal witnessing subsystem of M.

IfM is equipped with a labeling function Λ : 𝑆 → 2𝐿 or a weight function wgt : 𝑆 → N, we
consider the new labeling and weight functions ΛN and wgtN for N defined by

ΛN (𝐸) =
⋃︂
𝑠∈𝐸

Λ(𝑠) and wgtN (𝐸) =
∑︂
𝑠∈𝐸

wgt (𝑠)

for all 𝐸 ∈ {𝐸1, . . . , 𝐸𝑘 }.

Proposition 4.51. There exists a one-to-one correspondence ℎ between subsystems ofN and useful
subsystems ofM such thatΛN (N ′) = Λ(ℎ(N ′)),wgtN (N ′) = wgt (ℎ(N ′)) and Prmin

N′ (♢ target) =
Pr

min
ℎ (N′ ) (□¬ exit) holds for all subsystems N ′ of N .

Proof. Given a subsystem N ′ of N we construct a useful subsystem ℎ(N ′) of M by including
all states and internal actions of (states representing) maximal end components included in N ′.
Any transitions of external actions which are excluded in N ′ are also excluded in ℎ(N ′). This
construction clearly preserves the labeling and weight functions, and any useful subsystem of
M corresponds uniquely to a subsystem of N via this correspondence. Every scheduler𝔖 of
N ′ naturally induces a scheduler𝔖′ of ℎ(N ′) which satisfies Pr𝔖N′ (♢ target) = Pr𝔖′

ℎ (N′ ) (□¬ exit).
Here, if 𝔖 chooses a 𝜏-action for a proper end component (𝐸,𝐴) in N ′, 𝔖′ simply chooses
to never leave 𝐸. Likewise, a scheduler 𝔖 of ℎ(N ′) induces a scheduler 𝔖′ of N ′ with



4. New techniques for witnessing subsystems 113

Pr𝔖′

N′ (♢ target) = Pr𝔖
ℎ (N′ ) (□¬ exit). As before, if𝔖 chooses to realize an end component, 𝔖′

takes the corresponding 𝜏-action. This concludes the proof.

As we only have to consider useful subsystems of M when looking for minimal witnessing
subsystems for Prmin

M (□¬ exit) ≥ 𝜆, we can instead search for minimal witnessing subsystems
of N for the property Pr

min
N (♢ target) ≥ 𝜆. The latter problem has been treated extensively in

foregoing sections.

The maximal probability of avoiding “exit” forever

In contrast to the previous section, we cannot collapse maximal end components when con-
sidering minimal witnesses for properties of the form Pr

max
M (□¬ exit) ≥ 𝜆. This is because a

scheduler may not have to visit all states of a maximal end component C. Rather, it might
realize an end component strictly included in C, or just pass through C to realize another end
component (see Figure 4.12). In such a case collapsing maximal end components does not
maintain the information of how many states (or labels) have to be included in a witnessing
subsystem.

LetM be anMDP as in the previous section andD = {(𝐸1, 𝐴1), . . . , (𝐸𝑘 , 𝐴𝑘 )} be themaximal
end components ofM which are also proper (i.e., such that𝐴𝑖 (𝑠) ≠ ∅ for all 𝑠 ∈ 𝐸𝑖 ). Furthermore,
let 𝑆𝐸 = {𝑠𝐸 | 𝑠 ∈ ⋃︁

1≤𝑖≤𝑘 𝐸𝑖} be a set of copies of the states ofM which are included in some
proper end component. We will construct an MDP which consists of M plus a copy of each
proper maximal end component. In the copy, only internal actions will be accessible. To enter
the copies, we add new actions 𝛼𝐸 , which are copies of internal actions 𝛼 . The copies of actions
and states will be denoted by a suffix 𝐸 , that is, 𝑠𝐸 ∈ 𝑆𝐸 denotes the copy of state 𝑠 ∈ 𝑆 , and so
on.

A state-action pair (𝑠, 𝛼) is said to be internal, if for some (𝐸𝑖 , 𝐴𝑖) ∈ D we have 𝑠 ∈ 𝐸𝑖 and
𝛼 ∈ 𝐴𝑖 (𝑠). Consider the MDP

N = (𝑆 ∪ 𝑆𝐸 ∪ {exit}, Act∪{𝛼𝐸 | 𝛼 ∈ Act}, 𝑠𝑖𝑛, 𝑃 ′), where

• 𝑃 ′(𝑠, 𝛼, 𝑠′) = 𝑃 (𝑠, 𝛼, 𝑠′) for all 𝑠, 𝑠′ ∈ 𝑆 ∪ {exit} and 𝛼 ∈ Act(𝑠),

• 𝑃 ′(𝑠, 𝛼𝐸, 𝑠′𝐸) = 𝑃 (𝑠, 𝛼, 𝑠′) for all 𝑠, 𝑠′ ∈ 𝑆 and 𝛼 ∈ Act(𝑠), if (𝑠, 𝛼) is internal,

• 𝑃 ′(𝑠𝐸, 𝛼𝐸, 𝑠′𝐸) = 𝑃 (𝑠, 𝛼, 𝑠′) for all 𝑠, 𝑠′ ∈ 𝑆 and 𝛼 ∈ Act(𝑠), if (𝑠, 𝛼) is internal, and

• all other triples are assigned probability zero.

The idea is to model the two choices that a scheduler of M has inside a proper end component.
Either it stays inside the end component forever, in which case action 𝛼𝐸 can be chosen in
N . The remaining path will then remain inside the copy of the corresponding maximal end
component in 𝑆𝐸 thereafter. Or it can choose the original action and stay inside 𝑆 .

We will consider the core of N , denoted by N𝐶 , in which states 𝑆𝐸 of N are identified with
“target”. It is defined as follows:

N𝐶 = (𝑆 ∪ {target, exit},Act∪{𝛼𝐸 | 𝛼 ∈ Act}, 𝑠𝑖𝑛, 𝑃𝐶 ), where

• 𝑃𝐶 (𝑠, 𝛼, 𝑠′) = 𝑃 ′(𝑠, 𝛼, 𝑠′) for all 𝑠, 𝑠′ ∈ 𝑆 ∪ {exit} and 𝛼 ∈ Act, and

• 𝑃𝐶 (𝑠, 𝛼𝐸, target) = 1 for all 𝑠 ∈ 𝑆 and 𝛼 ∈ Act, if (𝑠, 𝛼) is internal.



114 4.4. Witnessing subsystems for invariants

Hence, each state included in a proper end component has an action leading to “target” im-
mediately. The aim is to construct a system of linear inequalities whose solutions (with small
state-support) correspond to (small) witnessing subsystems for Prmax

M (□¬ exit) ≥ 𝜆. To this end
we will use:

1. Farkas certificates which show that “target” is reachable inN𝐶 with probability at least 𝜆.

2. An equation system y𝑖A𝑖 = 0 for each proper maximal end component (𝐸𝑖 , 𝐴𝑖), whose
solutions correspond to different ways of realizing that end component, and

3. Inequalities linking the above two, forcing certain entries in y𝑖 to be non-zero.

The second point above should be compared with Lemma 3.8 and Remark 3.29, which discuss
how solutions of similar systems of linear (in-)equalities relate to proper end components.

Now, let us define this system of linear inequalities precisely. Let A, t be the system matrix
and target vector of N𝐶 , and A𝑖 be the system matrix of the maximal end component (𝐸𝑖 , 𝐴𝑖)
(with 1 ≤ 𝑖 ≤ 𝑘), defined as follows for all 𝑠, 𝑡 ∈ 𝐸𝑖 and 𝛼 ∈ 𝐴𝑖 (𝑠):

A𝑖 ((𝑠, 𝛼), 𝑡) =
{︄
1 − 𝑃 (𝑠, 𝛼, 𝑠) if 𝑠 = 𝑡,
−𝑃 (𝑠, 𝛼, 𝑡) if 𝑠 ≠ 𝑡 .

Let y be a vector of variables of dimension |E | and y𝑖 be a vector containing one entry per enabled,
internal state-action pair of the maximal end component (𝐸𝑖 , 𝐴𝑖). Consider the following system
of linear inequalities:

yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≥ 𝜆,

y𝑖A𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑘, and
y(𝑠, 𝛼𝐸) · 𝑃 (𝑠, 𝛼, 𝑠′) ≤

∑︂
𝛽∈Act(𝑠′ )

y𝑖 (𝑠′𝐸, 𝛽𝐸) for all internal (𝑠, 𝛼) and 𝑠′ ∈ 𝑆, and

y ≥ 0, y𝑖 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑘.

The state-support of a vector Y = (y, y1, . . . , y𝑘 ) is defined as

state-supp(Y) = { 𝑠 ∈ 𝑆 | 𝑠 ∈ supp(y) or 𝑠𝐸 ∈ supp(y𝑖) for some 1 ≤ 𝑖 ≤ 𝑘 }.

Proposition 4.52. For all 𝑆 ′ ⊆ 𝑆 , there exists a solution Y to the above system of linear inequalities
with state-supp(Y) ⊆ 𝑆 ′ if and only if Pr

max
M𝑆′

(□¬ exit) ≥ 𝜆 holds.

Proof. “=⇒”. Let Y be a solution to the above system of linear inequalities and let 𝑆 ′ =

state-supp(Y). We claim that the induced subsystem M𝑆 ′ satisfies Prmax
M𝑆′

(□¬ exit) ≥ 𝜆. Define
Y = {y, y1, . . . , y𝑘 } and consider the two sets

𝑆1 = { 𝑠 ∈ 𝑆 | 𝑠 ∈ state-supp(y) } and 𝑆2 = { 𝑠 ∈ 𝑆 | 𝑠𝐸 ∈
⋃︂

1≤𝑖≤𝑘
state-supp(y𝑖) }.

We have 𝑆1 ∪ 𝑆2 = 𝑆 ′, but the two sets are not necessarily disjoint. As A, t are the system
matrix and target vector of N𝐶 (which is the core of N , defined above), the vector y is a Farkas
certificate for Prmax

N𝐶 (♢ target) ≥ 𝜆 (see Definition 3.23). In N𝐶 , the state “target” represents the
set of states 𝑆𝐸 inN . More precisely, as the only actions which move to 𝑆𝐸 inN are of the form



4. New techniques for witnessing subsystems 115

(𝑠, 𝛼𝐸), we have
yt =

∑︂
(𝑠,𝛼𝐸 )𝑠.𝑡 .
(𝑠,𝛼 ) ∈E

y(𝑠, 𝛼𝐸) · 𝑃 (𝑠, 𝛼, 𝑠′) ≥ 𝜆.

Due to the constraint

y(𝑠, 𝛼𝐸) · 𝑃 (𝑠, 𝛼, 𝑠′) ≤
∑︂

𝛽∈Act(𝑠′ )
y𝑖 (𝑠′𝐸, 𝛽𝐸)

we have 𝑠′ ∈ 𝑆2 whenever y(𝑠, 𝛼𝐸) · 𝑃 (𝑠, 𝛼, 𝑠′) > 0 holds for some (𝑠, 𝛼) ∈ E. Hence, y is a
certificate for the stronger claim that the maximal probability of reaching 𝑆2 is above 𝜆 in
M𝑆 ′ . The constraint y𝑖A𝑖 = 0 implies that the states state-supp(y𝑖) form a disjoint set of
end components, by Lemma 3.8. In particular, this means that after reaching 𝑆2 there exists a
scheduler inM𝑆 ′ which stays inside 𝑆2 forever. Altogether, this lets us construct a scheduler
which avoids “exit” forever in M𝑆 ′ with probability at least 𝜆.

“⇐=”. Suppose that Prmax
M𝑆′

(□¬ exit) ≥ 𝜆 holds and let 𝔖 be a memoryless deterministic
scheduler which achieves this probability. As invariance properties are complements of reach-
ability properties, optimal probabilities to satisfy an invariant are always attained by some
MD-scheduler. Let 𝑆2 ⊆ 𝑆 ′ be the recurrent states (those included in some BSCC) in the induced
Markov chain ofM𝑆 ′ under𝔖, but excluding the state “exit”. The assumption implies that 𝑆2 is
reached under𝔖 inM with probability at least 𝜆. Then, the set 𝑆2, together with the actions
chosen by𝔖 in 𝑆2, induces a disjoint set of end components inM (namely one for each BSCC of
the induced Markov chain). It follows from statement (2.) of Lemma 3.8 that for each maximal
end component (𝐸𝑖 , 𝐴𝑖) which intersects 𝑆2 we find a vector y𝑖 satisfying y𝑖A𝑖 = 0, such that⋃︁

1≤𝑖≤𝑘 state-supp(y𝑖) = 𝑆2.
Let 𝑆1 = 𝑆 ′ \ 𝑆2, which includes all states in 𝑆 ′ which are not part of a BSCC in the Markov

chain induced by𝔖. Consider the scheduler𝔖′ for N𝐶 derived from𝔖 as follows. For states
𝑠 ∈ 𝑆1, we let𝔖′(𝑠) = 𝔖(𝑠), and for states 𝑠 ∈ 𝑆2 we let𝔖′(𝑠) = 𝛼𝐸 , where 𝛼 = 𝔖(𝑠). If 𝑠 ∈ 𝑆2
holds then𝔖(𝑠) is guaranteed to be internal, as 𝑠 is contained in a BSCC under𝔖.

As 𝑆2 is reached with probability at least 𝜆 in M𝑆 ′ under 𝔖, it follows that {target} is
reached with probability at least 𝜆 under𝔖′ in N𝐶

𝑆 ′ (the subsystem of N𝐶 induced by 𝑆 ′). It
follows from Theorem 4.23 that there exists a nonnegative solution of yA ≤ 𝛿𝑠𝑖𝑛 ∧ yt ≥ 𝜆 such
that state-supp(y) ⊆ 𝑆 ′ (recall that A, t are the system matrix and target vector of N𝐶 ). As
𝑆2 is reached with probability at least 𝜆 inM𝑆 ′ under𝔖, such a solution can be found which
additionally satisfies: if y(𝑠, 𝛼𝐸) > 0, then for all 𝑠′ ∈ 𝑆 with 𝑃 (𝑠, 𝛼, 𝑠′) > 0 we have 𝑠′ ∈ 𝑆2, and
therefore 𝑠′ ∈ state-supp(y𝑖) for some 1 ≤ 𝑖 ≤ 𝑘 . But then we can find 𝐾 ≥ 0 such that

y(𝑠, 𝛼𝐸) · 𝑃 (𝑠, 𝛼, 𝑠′) ≤ 𝐾 ·
∑︂

𝛽∈Act(𝑠′ )
y𝑖 (𝑠′𝐸, 𝛽𝐸)

holds for all (𝑠, 𝛼, 𝑠′) ∈ 𝑆 ×Act×𝑆 . It follows that Y = (y, 𝐾 ·y1, . . . , 𝐾 ·y𝑘 ) satisfies the system of
linear inequalities defined above. We have state-supp(Y) ⊆ 𝑆 ′, which concludes the proof.

The above proposition paves the way for algorithms to compute minimal witnessing subsys-
tems for invariant properties in the same way as has been described for the case of reachability.
In particular, the generic mixed-integer linear program defined in Lemma 4.27, whose opti-
mal solutions correspond to the minimal-support solutions of the underlying system of linear
inequalities, can be used. Likewise, the quotient-sum heuristic can be applied.



Chapter 5

Probabilistic systems with low tree width

A standard way of dealing with computationally hard problems is to consider restricted, but
important, classes of instances for which the problems become tractable. In graph theory, a
particularly prominent restriction is to assume that graphs are “similar to trees”. This has been
captured formally by the notion of tree width [RS86, Bod97]. The tree width of a graph is a
number which quantifies how similar to a tree it is. A large class of NP-complete problems
become tractable for classes of graphs of bounded tree width [Cou90, Bod97], and natural
graphs, such as the control flow graphs of many imperative languages, have bounded tree
width [Tho98, GMT02].

The restriction of bounded tree width has been considered for probabilistic systems [CŁ13,
CIP15, ACG+20]. These papers address classical problems in probabilistic model checking
such as computing the maximal end components, the set of states with maximal reachability
probability one, optimal mean-payoff values and reachability probabilities in Markov chains.
For all these problems, algorithms with improved time and space requirements are given for
models with bounded tree width.

This chapter considers the problem of computing minimal witnessing subsystems for prob-
abilistic models whose underlying graph has low tree width. We first study the case that the
underlying graph is a tree (transitions to “target” and “exit” are not included in the underlying
graph structure here). In this case, we show that the problem of computing weight-minimal
witnesses in Markov chains is solvable in polynomial time, given that the weights are encoded
in unary. In particular, this generalizes the problem of computing state-minimal witnesses.

Encouraged by this result, we tackle the problem of computing state-minimal witnesses
in probabilistic systems with low tree width. We introduce a novel notion of tree width, called
directed tree-partition width for directed graphs. It is a strong notion in the sense that classes of
directed graphs with bounded directed tree-partition width have bounded width with respect
to all known notions of tree width for directed graphs.

The main result of this chapter states that the (corresponding decision-) problem of comput-
ing minimal witnesses is NP-complete for a class of Markov chains with directed tree-partition
width six. This complements the hardness result for acyclic Markov chains proved in Theo-
rem 4.16. It follows that we cannot hope for algorithms which run in polynomial time even

116



5. Probabilistic systems with low tree width 117

for Markov chains with constant directed tree-partition width, and hence also not for Markov
chains with bounded width with respected to any other known measure of tree width.

To prove this result, we introduce an intermediate problem called the d-dimensional matrix-
pair chain problem. It can be described geometrically as a one-player game in 𝑛 rounds. Starting
with an initial vector, in every round the player chooses one of two 𝑑 × 𝑑 matrices (which may
be different in each round), which is then multiplied with the current vector. The goal is to
ultimately (that is, after 𝑛 rounds) end up with a point inside a predefined halfspace. We show
that this problem is NP-complete for fixed 𝑑 , and then reduce it to the witness problem for
Markov chains with fixed directed path-partition width. The complexity results proved in this
chapter are summed up in the following list. We will call a Markov chain tree structured if its
underlying graph is a tree (this will be defined precisely later).

• A weight-minimal witnessing subsystem can be computed in polynomial time for tree
structured Markov chains, given that the weights are encoded in unary (Proposition 5.4).

• If weights are encoded in binary, then the weighted witness problem is NP-complete
for tree structured Markov chains. Furthermore, the labeled witness problems is also
NP-complete for tree structured Markov chains (Proposition 5.6).

• The 𝑑-dimensional matrix-pair chain problem is NP-complete for 𝑑 = 2 (Proposition 5.12)
and also for 𝑑 = 3 under the additional restriction that all matrices and vectors in the
input contain only nonnegative values (Proposition 5.13).

• The witness problem is NP-complete for Markov chains with directed path-partition
width six (Theorem 5.18).

It remains open whether the matrix-pair chain problem is NP-hard for 𝑑 = 2 with the
assumption of nonnegative matrices and vectors as input.

While the above results show that polynomial time algorithms cannot be hoped for even for
Markov chains with constant tree width, it is still possible that one can design algorithms which
make use of this special structure of such systems to yield better results in practice, despite
being exponential in worst case. The final part of this chapter describes such an algorithm. It
works bottom-up along the tree structure, computes partial subsystems and remembers only
those which may be necessary to form a (global) witnessing subsystem. An experimental study
shows that this algorithm outperforms the MILP-based approach for certain benchmarks for
which well-structured tree decompositions can be computed easily.

Related work

While for undirected graphs there is one universally accepted and standard notion of tree
width, this is not the case for directed graphs [GHK+16]. Several such notions have been
proposed [Ree99, JRST01, Saf05]. The notion we introduce is most related to the tree-partition
width which has been studied for undirected graphs [See85, Ede86, DO96, Woo09]. However,
the result that deciding whether a tree-partition of a given size exists is NP-hard is not easily
transferable from the undirected to the directed case (the corresponding theorem for undirected
graphs is [Ede86, Theorem 2.2]).

Algorithms in the context of probabilistic model checking for systems with low tree width
are also considered in [CŁ13, CIP15, ACG+20]. The notion of tree width which is used in
these papers is the standard notion for undirected graphs. All problems they address are



118 5.1. The witness problem for Markov chains with tree structure

polynomial-time solvable in the first place, and the contribution lies in providing algorithms
with significantly better running times using the structure provided by systems with small tree
width.

Outline

We start by showing that the weighted witness problem with unary weights is solvable in
polynomial time for tree structured Markov chain (Section 5.1.1). If weights are encoded in
binary, or if the goal is to minimize labels, the problem becomes NP-complete (Section 5.1.2).
Then, we introduce the directed tree- and path-partition width (Section 5.2). We go on to
study the d-dimensional matrix-pair chain problem (Section 5.3.1) and use it to show NP-
completeness of the witness problem for Markov chains with bounded directed path-partition
width (Section 5.3.2). Finally, we describe an algorithm which makes use of a given directed
tree decomposition to compute a minimal witness (Section 5.4).

Relation to published work

A polynomial-time algorithm to compute minimal witnesses in tree structured Markov chains
was described in [FJB20], in joint work with Florian Funke and Christel Baier. The algorithm
given in this chapter is essentially the same, but has been generalized to compute weight-minimal
witnesses in pseudo-polynomial time. Most of the remaining results in this chapter, apart from
the NP-hardness results for weight-minimal (with binary encoding) and label-minimal witnesses
in tree structured Markov chains, have been published in [JPB21]. This paper is joint work with
Jakob Piribauer and Christel Baier, and has been presented at GandALF 2021.

5.1 The witness problem for Markov chains with tree structure

Let M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be an MDP in reachability form. For the purpose of this
chapter, the underlying graph of M will be defined as

UM =
(︁
𝑆, {(𝑠, 𝑡) ∈ 𝑆 × 𝑆 | there exists 𝛼 ∈ Act(𝑠) such that 𝑃 (𝑠, 𝛼, 𝑡) > 0}

)︁
.

Here we do not take into account states target and exit, in contrast to the general definition of
underlying graph. We say thatM has tree structure ifUM is a directed tree, i.e., all vertices have
indegree at most one. The reason for excluding target and exit from the underlying graph is
that we do not want transitions to these states to influence whether a system is tree structured.

First, we give a polynomial time algorithm for the unary weighted witness problem (in
which weights are encoded in unary) for tree structured Markov chains. As a consequence, the
standard witness problem (which asks whether any smallest witnessing subsystem has at most
𝑘 states) is solvable in polynomial time for such Markov chains.

5.1.1 An algorithm for tree structured Markov chains and unary weights

We will first describe an algorithm for Markov chains with binary tree structure, and then show
that the problem for arbitrary tree structure can be reduced to this special case. By binary tree
structure we mean that additionally to being tree structured, each vertex in the underlying
graph has at most two successors. Recall that the weighted witness problem takes as input



5. Probabilistic systems with low tree width 119

a Markov chain M with weight function wgt, a natural number 𝐾 and a rational 𝜆 and asks
whether a subsystem M′ ofM exists such that PrM′,𝑠𝑖𝑛 (♢ target) ≥ 𝜆 and wgt (M′) ≤ 𝐾 .

Let M = (𝑆 ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃) be a Markov chain with binary tree structure, and let
wgt : 𝑆 → N be a weight function for M. For the algorithmic problems in this section, we
assume that wgt is encoded using unary encoding, and we define𝑊 = wgt (M) = ∑︁

𝑠∈𝑆 wgt (𝑠).
We show how, for any rational 𝜆 ∈ [0, 1], one can compute a weight-minimal witnessing
subsystem of M in time polynomial in |M| and𝑊 (given that such a subsystem exists).

LetM𝑞 be the Markov chain one gets by takingM, making state 𝑞 the new initial state and
removing all unreachable states. We define a function ac : 𝑆 × {0, . . . ,𝑊 } → [0, 1] which will
return for state 𝑞 and number𝑤 the maximal reachability probability achievable by a subsystem
of M𝑞 with weight at most𝑤 . Computing the function “ac” is enough to solve the weighted
witness problem, as the size of a minimal witnessing subsystem ofM for threshold 𝜆 is given
by the minimal𝑤 ∈ {0, . . . ,𝑊 } satisfying ac(𝑠𝑖𝑛,𝑤) ≥ 𝜆.

We now give a recursive definition of the function ac, using the fact thatM has binary tree
structure. In Lemma 5.2 we show that this function indeed matches the interpretation given
above. First, we define ac(𝑞,𝑤) = 0 for all 𝑞 ∈ 𝑆 and𝑤 < wgt (𝑞). Now we distinguish whether
𝑞 is a leaf, has a single successor 𝑞′ which is reached with probability 𝜇, or two successors 𝑞1, 𝑞2
reached with probability 𝜇1 and 𝜇2. For all 𝑖 ∈ {0, . . . ,𝑊−wgt (𝑞)} define:

(leaf) : ac(𝑞,wgt (𝑞) + 𝑖) = 𝑃 (𝑞, target)
(single-suc) : ac(𝑞,wgt (𝑞) + 𝑖) = 𝑃 (𝑞, target) + 𝜇 · ac(𝑞′, 𝑖) (5.1)
(double-suc) :

ac
(︁
𝑞,wgt (𝑞) + 𝑖

)︁
= 𝑃 (𝑞, target) +max { 𝜇1 · ac(𝑞1, 𝑗) + 𝜇2 · ac(𝑞2, 𝑖− 𝑗) | 0 ≤ 𝑗 ≤ 𝑖 }

Observe that for all 𝑞 ∈ 𝑆 the function ac(𝑞, ·) is monotonically increasing. More precisely,
if 𝑤1 ≤ 𝑤2, then we have ac(𝑞,𝑤1) ≤ ac(𝑞,𝑤2). This holds by definition for leafs 𝑞, and is
preserved by the recursive definition in Equation (5.1).

Lemma 5.1. Let M = (𝑆 ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃) be a Markov chain with binary tree structure,
wgt : 𝑆 → N be a weight function forM and𝑊 =

∑︁
𝑠∈𝑆 wgt (𝑠). The function ac : 𝑆 ×𝑊 → [0, 1]

as defined in Equation (5.2) can be computed in time polynomial in |M| and𝑊 .

Proof. The function ac can be computed bottom up along the tree order as described in Equa-
tion (5.1). For each state 𝑞 with two successors, and value𝑤 ∈ {0, . . . ,𝑊 }, one has to compute
the maximum from at most𝑊 sums. Hence, to compute all values of ac for state 𝑞 one needs
to compute at most𝑊 2 such sums. Computing the sum can be done in polynomial time in
|M|. This needs to be done for all states in 𝑆 and thus at most |𝑆 | ·𝑊 2 such sums have to be
computed and compared.

Lemma 5.2. Let M = (𝑆 ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃) be a Markov chain with binary tree structure,
wgt : 𝑆 → N be a weight function forM,𝑊 =

∑︁
𝑠∈𝑆 wgt (𝑠) and ac : 𝑆 ×𝑊 → [0, 1] be as defined

above.
Then, for all 𝑞 ∈ 𝑆 , 𝑤 ∈ {0, . . . ,𝑊 } and 𝜆 ∈ [0, 1] we have ac(𝑞,𝑤) ≥ 𝜆 if and only if there

exists a subsystem M′ ofM𝑞 with weight at most𝑤 satisfying PrM′,𝑞 (♢ target) ≥ 𝜆.

Proof. We proceed by induction on the tree order of 𝑆 . It is enough to show the statement for
the case with two successors 𝑞1, 𝑞2 reached with probability 𝜇1 and 𝜇2. This is because both



120 5.1. The witness problem for Markov chains with tree structure

leaf and single-successor cases are special instances thereof, with 𝜇1 = 𝜇2 = 0 (leaf) and 𝜇2 = 0
(single-suc).

”=⇒”: Assume that ac(𝑞,𝑤) ≥ 𝜆 for some𝑤 ∈ {0, . . . ,𝑊 } and 𝜆 ∈ [0, 1]. We may assume
that𝑤 = wgt (𝑞) + 𝑖 for some 𝑖 ≤𝑊−wgt (𝑞), as otherwise ac(𝑞,𝑤) = 0 holds. By Equation (5.1),
we have

ac
(︁
𝑞,wgt (𝑞) + 𝑖

)︁
= 𝑃 (𝑞, target) +max { 𝜇1 · ac(𝑞1, 𝑗) + 𝜇2 · ac(𝑞2, 𝑖− 𝑗) | 0 ≤ 𝑗 ≤ 𝑖 }.

Let 𝑗∗ be such that the maximum is attained in the above expression. By induction hypothesis,
there exists a subsystem ofM𝑞1 with weight at most 𝑗∗ and probability at least ac(𝑞1, 𝑗∗), and a
subsystem of M𝑞2 with weight at most 𝑖− 𝑗∗ and probability at least ac(𝑞2, 𝑗∗). Attaching these
subsystems to state 𝑞 yields a subsystem ofM𝑞 with weight at most wgt (𝑞) + 𝑖 , and probability
at least

𝑃 (𝑞, target) + 𝜇1 · ac(𝑞1, 𝑗∗) + 𝜇2 · ac(𝑞2, 𝑖− 𝑗∗) = ac(𝑞,wgt (𝑞) + 𝑖) .

“⇐=”: LetM′ be a subsystem ofM𝑞 withweightwgt (𝑞)+𝑖′ ≤ wgt (𝑞)+𝑖 = 𝑤 and reachability
probability 𝜆′ ≥ 𝜆. The subsystemM′ can be decomposed into the state 𝑞 plus some subsystems
M1 ofM𝑞1 andM2 ofM𝑞2𝑦 , where both could potentially be empty. Let us assume thatM1
contributes weight 𝑗 and has probability 𝜆1 of reaching target. This implies thatM2 contributes
weight 𝑖′− 𝑗 . Let us assume that M2 achieves probability 𝜆2. By induction hypothesis, we have
ac(𝑞1, 𝑗) ≥ 𝜆1 and ac(𝑞2, 𝑖′− 𝑗) ≥ 𝜆2. Furthermore, ac(𝑞2, 𝑖− 𝑗) ≥ ac(𝑞2, 𝑖′− 𝑗) holds as ac(𝑞2, ·) is
monotonically increasing. From Equation (5.1) follows:

ac(𝑞,wgt (𝑞) + 𝑖) ≥ 𝑃 (𝑞, target) + 𝜇1 · ac(𝑞1, 𝑗) + 𝜇2 · ac(𝑞2, 𝑖− 𝑗)
≥ 𝑃 (𝑞, target) + 𝜇1 · 𝜆1 + 𝜇2 · 𝜆2 = 𝜆′ ≥ 𝜆.

Binarization of Markov chains

The algorithm presented above assumes that its input is a Markov chain with binary tree
structure. We now show that Markov chains with arbitrary tree structure can always be
transformed into this special form, while preserving minimal witnessing subsystems.

Let M = (𝑆 ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃) be a Markov chain with tree structure. The idea is to
apply a local transformation to each state 𝑞 ∈ 𝑆 as follows. Let 𝑞0, . . . , 𝑞𝑘 be the 𝑘 + 1 successors
of 𝑞 in 𝑆 , reachable with probabilities 𝜇0, . . . , 𝜇𝑘 . We add 𝑘−1 fresh states𝑢1, . . . , 𝑢𝑘−1, and define
their transitions as follows. Here we identify 𝑢0 := 𝑞.

𝑃 ′(𝑢 𝑗 , 𝑞 𝑗 ) =
𝜇 𝑗

1 −∑︁
0≤𝑖< 𝑗 𝜇𝑖

, for 0 ≤ 𝑗 < 𝑘

𝑃 ′(𝑢 𝑗 , 𝑢 𝑗+1) = 1 − 𝑃 ′(𝑢 𝑗 , 𝑞 𝑗 ), for 0 ≤ 𝑗 < 𝑘−1

𝑃 ′(𝑢𝑘−1, 𝑞𝑘 ) =
𝜇𝑘

1 −∑︁
0≤𝑖<𝑘−1 𝜇𝑖

The idea is shown in Figure 5.1. We call the result of applying this transformation to all states
of M the binarization ofM, denoted by BM . For 0 ≤ 𝑗 < 𝑘 we have

PrBM ,𝑞 (♢𝑞 𝑗 ) = PrBM (𝑞 𝑢1 . . . 𝑢 𝑗 𝑞 𝑗 ) =
∏︂
0≤𝑙< 𝑗

(︃
1−

(︃
𝜇𝑙

1−∑︁
0≤𝑖<𝑙 𝜇𝑖

)︃)︃
·

𝜇 𝑗

1−∑︁
0≤𝑖< 𝑗 𝜇𝑖

= 𝜇 𝑗 .



5. Probabilistic systems with low tree width 121

q

q0 q1 q2 q3

4/10
3/10 2/10

1/10

(a)

q

q0

u1

q1

u2

q2

q3

4/10

 /10

1/2

1/2

2/3

1/3

(b)

Figure 5.1: A Markov chain (a) and its binarization (b).

This follows from
∏︁

0≤𝑙< 𝑗

(︂
1−

(︂
𝜇𝑙

1−∑︁
0≤𝑖<𝑙 𝜇𝑖

)︂)︂
= 1 −∑︁

0≤𝑖< 𝑗 𝜇𝑖 , which can be shown by induction
on 𝑗 . For 𝑗 = 𝑘 , the corresponding path is 𝑞 𝑢1 . . . 𝑢𝑘−1 𝑞𝑘 and the formula is almost the same.
The number of states that have to be added is bounded by the number of transitions inM. If
M is equipped with a weight function wgt, or a labeling function Λ, we interpret the same
functions as weight (respectively, labeling) functions for B by assigning to all states of B that
are not in 𝑆 weight zero (respectively, the empty set of labels).

Take arbitrary set 𝑆 ′ ⊆ 𝑆 and let𝑈 ′ be the states in BM which lie on some path between
any two states in 𝑆 ′. Consider the induced subsystems M′ = M𝑆 ′ and B′ = B𝑆 ′∪𝑈 ′ . By the
above calculation, we have PrM′,𝑞 (♢ target) = PrB′,𝑞 (♢ target) for all 𝑞 ∈ 𝑆 ′. Furthermore, by
definition, we have wgt (M′) = wgt (B′) and Λ(M′) = Λ(B′). As no fresh state 𝑢 in B has
a direct edge to target, there is always a subsystem of the form B𝑆 ′∪𝑈 ′ among the minimal
witnessing subsystems, which implies the following lemma.
Lemma 5.3. Let M = (𝑆 ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃) be a Markov chain with tree structure, weight
function wgt, labeling function Λ and let B be its binarization.

Then for all 𝜆 ∈ [0, 1] and 𝐾 ∈ N, M has a subsystem M′ satisfying PrM′ (♢ target) ≥
𝜆 and wgt (M′) ≤ 𝐾 (resp. |Λ(M′) | ≤ 𝐾) if and only if B has a subsystem B′ satisfying
PrB′ (♢ target) ≥ 𝜆 and wgt (B′) ≤ 𝐾 (resp. |Λ(B′) | ≤ 𝐾).

Proposition 5.4. Given a tree structured Markov chainM with weight function wgt, 𝜆 ∈ [0, 1]
and 𝐾 ∈ N, a weight minimal witnessing subsystem for PrM (♢ target) ≥ 𝜆 can be computed in
polynomial time in |M| and the sum-of-weights𝑊 .

Proof. Any tree structuredMarkov chain can be transformed into an equivalent one (with respect
to the weighted witness problem) with binary tree structure in polynomial time by Lemma 5.3.
For binary tree structured Markov chains the function ac : 𝑆 × {0, . . . ,𝑊 } → [0, 1] can be
computed in polynomial time in |M| and the sum-of-weights𝑊 (Lemma 5.1) and we know
by Lemma 5.2 that ac(𝑠𝑖𝑛,𝑤) ≥ 𝜆 holds if and only if the Markov chain has a witnessing
subsystem for 𝜆 with weight at most𝑤 .

The standard witness problem, which asks for witnessing subsystem with a minimal amount
of states, is a special instance of the weighted witness problem in which each state is given
weight one. This gives us the following corollary.
Corollary 5.5. The witness problem for tree structured Markov chains can be solved in polynomial
time.



122 5.1. The witness problem for Markov chains with tree structure

sin

q1
wgt : w1

q2
wgt : w2

· · · qn
wgt : wn

target

1/n
1/n

1/n

v1/m
v2/m vn/m

(a)

sin

{︁
u, v

}︁ {︁
v, t

}︁ · · · {︁
p, t

}︁

target

1/|E|
1/|E|

1/|E|

1
1

1

(b)

Figure 5.2: NP-hardness of the labeled and weighted witness problem for tree structured Markov
chains, where weights are encoded in binary. Transitions to “exit” are omitted. As states “target”
and “exit” and their incoming transition are not included in the underlying graph UM (and
hence dashed), both Markov chains are tree structured. In (a), the structure of the reduction from
knapsack to the weighted witness problem is sketched, whereas (b) sketches the reduction from
clique to the labeled witness problem. Here states represent edges of some undirected graph,
and each state is labeled by colors indicating which vertices participate in the corresponding
edge.

5.1.2 NP-hardness with labels or binary weights

We now show that the labeled witness problem is NP-complete for tree structured Markov
chains, and the same holds for the weighted witness problem if weights are encoded in binary.
These problems are already in NP for arbitrary MDPs, so it remains to show NP-hardness.
Let us first recall the definition of the knapsack problem, which is a classical NP-complete
problem [Kar72].

The knapsack problem takes as input a tuple (𝑛,𝑤, 𝑣,𝑊 ,𝑉 ), where 𝑛 ∈ N is the number of
items,𝑤 : {1, . . . , 𝑛} → Q defines the weight of each item, 𝑣 : {1, . . . , 𝑛} → Q defines the value
of each item,𝑊 ∈ Q is the maximum allowed weight and𝑉 ∈ Q is the minimum required value.
All numbers of the input are encoded in binary. The problem is to decide whether there exists a
subset 𝑁 ⊆ {1, . . . , 𝑛} such that∑︂

𝑖∈𝑁
𝑤 (𝑖) ≤𝑊 and

∑︂
𝑖∈𝑁

𝑣 (𝑖) ≥ 𝑉 .

We call a subset 𝑁 ⊆ {1, . . . , 𝑛} satisfying the above property a solution of the knapsack instance.
The following proposition shows how to reduce the knapsack problem in polynomial time to the
weighted witness problem for tree structured Markov chains. It is essential here that the weights
of the Markov chain are encoded in binary. Furthermore, the clique problem is polynomially
reduced to the labeled witness problem for tree structured Markov chains. Sketches for both
reductions are presented in Figure 5.2. As tree structured Markov chains can be transformed
into Markov chains with binary tree structure by Lemma 5.3 while preserving weights, labels
and probabilities, these problems remain hard for binary tree structured Markov chains.

Proposition 5.6. The weighted witness problem (with weights encoded in binary) and the labeled
witness problem are both NP-hard for tree structured Markov chains.



5. Probabilistic systems with low tree width 123

Proof. 1.) We first consider the weighted witness problem with weights encoded in binary
and give a polynomial reduction from the knapsack problem. Let (𝑛,𝑤, 𝑣,𝑊 ,𝑉 ) be an instance
of the knapsack problem and define 𝑚 =

∑︁
1≤𝑖≤𝑛 𝑣 (𝑖). Consider the Markov chain M =

(𝑆 ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃) where 𝑆 = {𝑠𝑖𝑛} ∪ {𝑞𝑖 | 1 ≤ 𝑖 ≤ 𝑛} and for all 1 ≤ 𝑖 ≤ 𝑛:

𝑃 (𝑠𝑖𝑛, 𝑞𝑖) =
1
𝑛
, 𝑃 (𝑞𝑖 , target) =

𝑣 (𝑖)
𝑚

, and 𝑃 (𝑞𝑖 , exit) = 1 − 𝑣 (𝑖)
𝑚

.

Clearly, this Markov chain is tree structured (recall that transitions to “target” and “exit” are
not included in underlying graph in this chapter). Additionally, consider the weight function
wgt : 𝑆 → N defined by wgt (𝑠𝑖𝑛) = 0 and wgt (𝑞𝑖) = 𝑤 (𝑖) for all 1 ≤ 𝑖 ≤ 𝑛.

We claim that there exists a solution 𝑁 ⊆ {1, . . . , 𝑛} of the knapsack instance if and only if
there exists a subsystem M′ of M such that

wgt (M′) ≤𝑊 and PrM′,𝑠𝑖𝑛 (♢ target) ≥
𝑉

𝑚 𝑛
.

Given a solution 𝑁 of the knapsack instance, consider the subsystem M′ of M induced by
states {𝑞𝑖 | 𝑖 ∈ 𝑁 }. We have wgt (M′) =

∑︁
𝑖∈𝑁 wgt (𝑞𝑖) =

∑︁
𝑖∈𝑁 𝑤 (𝑖) ≤𝑊 and

PrM′,𝑠𝑖𝑛 (♢ target) =
∑︂
𝑖∈𝑁

𝑣 (𝑖)
𝑚 𝑛

=
1
𝑚 𝑛

∑︂
𝑖∈𝑁

𝑣 (𝑖) ≥ 𝑉

𝑚 𝑛
.

For the other direction, letM′ be a witnessing subsystem ofM for PrM (♢ target) ≥ 𝑉 /(𝑚 𝑛)
satisfying wgt (M′) ≤𝑊 . Let 𝑁 ⊆ {1, . . . , 𝑛} be such that {𝑠𝑖𝑛} ∪ {𝑞𝑖 | 𝑖 ∈ 𝑁 } are the reachable
states ofM′. We claim that 𝑁 is a solution of the knapsack instance. From PrM′,𝑠𝑖𝑛 (♢ target) ≥
𝑉 /(𝑚 𝑛) we can deduce

∑︁
𝑖∈𝑁 𝑣 (𝑖) ≥ 𝑉 and from wgt (M′) ≤𝑊 we get

∑︁
𝑖∈𝑁 𝑤 (𝑖) ≤𝑊 .

2.) We now give a polynomial reduction from the clique problem to the labeled witness
problem for tree structuredMarkov chains. The clique problem takes as input a graph𝐺 = (𝑉 , 𝐸)
and a natural number𝐶 ≥ 0 and asks whether𝐺 has a clique of size𝐶 . To solve it, we construct
a Markov chainM = (𝑆 ∪ {target, exit}, 𝑠𝑖𝑛, 𝑃), where 𝑆 = {𝑠𝑖𝑛} ∪𝐸. The transition probabilities
are defined by 𝑃 (𝑠𝑖𝑛, 𝑒) = 1/ |𝐸 | and 𝑃 (𝑒, target) = 1 for all 𝑒 ∈ 𝐸. Additionally, we label each
state 𝑒 ∈ 𝑆 \ {𝑠𝑖𝑛} by the vertices of 𝐺 that participate in edge 𝑒 . More precisely, let 𝐿 = 𝑉 and
define the labeling function Λ : 𝑆 → 2𝐿 by Λ(𝑠𝑖𝑛) = ∅ and Λ

(︁
{𝑢, 𝑣}

)︁
= {𝑢, 𝑣}.

We claim that 𝐺 has a clique of size 𝐶 if and only if M has a subsystemM′ satisfying

| labels(M′) | ≤ 𝐶 and PrM′,𝑠𝑖𝑛 (♢ target) ≥ 𝐶 (𝐶 − 1)
2|𝐸 | .

Recall that 𝐶 (𝐶 − 1)/2 is the number of edges in a clique of size 𝐶 . For the direction from
left to right, let 𝑉 ′ ⊆ 𝑉 be a clique of 𝐺 of size 𝐶 . Consider the subsystem M′ of M induced
by the set of labels 𝑉 ′. Hence, | labels(M′) | = |𝑉 ′ | = 𝐶 and, as 𝑉 ′ is a clique, we have
PrM′,𝑠𝑖𝑛 (♢ target) =

𝐶 (𝐶−1)
2 |𝐸 | .

For the other direction, let M′ be a subsystem of M such that | labels(M′) | ≤ 𝐶 and
PrM′,𝑠𝑖𝑛 (♢ target) ≥ 𝐶 (𝐶−1)

2 |𝐸 | . It follows that M′ must include 𝐶 (𝐶 − 1)/2 states 𝑒 ∈ 𝐸, as
otherwise it would not achieve this reachability probability. On the other hand, M′ touches at
most 𝐶 labels. Hence, the 𝐶 (𝐶 − 1)/2 states thatM′ includes induce as many edges in 𝐺 but
with only 𝐶 participating vertices. So, labels(M′) induces a set of vertices of 𝐺 of size 𝐶 with
𝐶 (𝐶 − 1)/2 edges in between them. But then, 𝐺 has a clique of size 𝐶 .



124 5.2. Directed tree- and path-partition width

(a) (b)

Figure 5.3: An example graph 𝐺 (a) together with a tree partition induced by the coloring. The
quotient graph under this partition is a tree and is shown in (b). The directed tree-partition
width of 𝐺 is three, because the presented tree partition is optimal and its largest block is of
size three.

5.2 Directed tree- and path-partition width

This section introduces the directed tree-partition width and the directed path-partition width.
They correspond to the existing notions of tree- and path-partition width for undirected
graphs [See85, Ede86, Woo09]. In what follows, let 𝐺 = (𝑉 , 𝐸) be a fixed finite directed graph.
For a given partition P = {𝑉1, . . . ,𝑉𝑛} of𝑉 we define the quotient of 𝐺 under P to be the directed
graph𝐺P = (P, 𝐸P), where (𝑉𝑖 ,𝑉𝑗 ) ∈ 𝐸P if and only if 𝑖 ≠ 𝑗 and there exist 𝑣 ∈ 𝑉𝑖 , 𝑣 ′ ∈ 𝑉𝑗 such
that (𝑣, 𝑣 ′) ∈ 𝐸.

Definition 5.7 (Directed tree partition). A partition P = {𝑉1, . . . ,𝑉𝑛} of 𝑉 is a directed tree
partition of 𝐺 if the quotient of 𝐺 under P is a tree. We denote by DTP(𝐺) the set of directed
tree partitions of 𝐺 .

We will call max𝑆∈P |𝑆 | the width of a partition P, henceforth denoted by width(P). The
directed tree-partition width of a graph is now defined as the minimal width of all tree partitions
of the graph.

Definition 5.8 (Directed tree-partition width (dtpw)). The directed tree-partition width of graph
𝐺 is defined as

dtpw(𝐺) = min
P∈DTP(𝐺 )

width(P).

Replacing tree by path in the above definitions yields the notions of directed path partition
and directed path-partition width (dppw). An example of a graph and a tree partition is given
in Figure 5.3.

Relation to other notions for directed graphs. While the theory of tree width and related
notions for undirected graphs is very mature, the quest for analogous parameters for directed
graphs is still open [GHK+16]. One option is to simply use the standard tree width of the
underlying undirected graph. A notion called directed tree width has been proposed in [JRST01],
and [Ree99] introduces a very similar parameter with the same name which differs by at most
one from the directed tree width defined in [JRST01]. We will use directed tree width to refer to
the notion defined in [JRST01]. Another parameter called D-width is studied in [Saf05].



5. Probabilistic systems with low tree width 125

If 𝐺𝑢 is an undirected graph, then its tree width equals the directed tree width and D-width
of the directed graph one gets by including both edges (𝑢, 𝑣) and (𝑣,𝑢) whenever 𝑢 and 𝑣 are
connected in𝐺𝑢 . This is not true for the directed tree-partition width. In fact, here any strongly
connected component of a graph needs to be included in a single block of the partition. Hence,
the directed tree-partition width is lower-bounded by the size of any SCC of the graph. The
following proposition confirms that directed tree-partition width is stronger than the width
parameters from [JRST01] and [Saf05], in the sense that a class with bounded dtpw is bounded
with respect to the other parameters as well.

Proposition 5.9. If a class C of finite directed graphs has bounded directed tree-partition width,
then C has bounded directed tree width, bounded D-width, bounded undirected tree width and
bounded undirected tree-partition width.

Proof. Let 𝐺 = (𝑉 , 𝐸) be a directed graph and 𝐺𝑢 be its underlying undirected graph. Let us
denote by utw(𝐺) the (undirected) tree width of 𝐺𝑢 , by dtw(𝐺) the directed tree width of 𝐺 , by
Dw(𝐺) its D-width and by utpw(𝐺) the undirected tree-partition width of 𝐺𝑢 .

Undirected tree (partition) width. A directed tree partition of𝐺 directly yields a tree partition
of 𝐺𝑢 of the same size. Tree partitions for undirected graphs are defined analogously to Defi-
nition 5.7, see [Woo09]. It follows that utpw(𝐺) ≤ dtpw(𝐺). It was shown in [See85, Fact 2.]
that 2 · utpw(𝐺) ≥ utw(𝐺) + 1. Hence, in particular, we have utw(𝐺) ≤ 2 · dtpw(𝐺) − 1.

D-width. The D-width of 𝐺 is defined using 𝑑-decompositions (see [Saf05]), which are pairs
(𝑇,𝑋 ) where 𝑇 is a tree and 𝑋 is a function which labels the nodes of 𝑇 by subsets of 𝑉 such
that

1. all vertices of 𝐺 appear in at least one of the sets and

2. for every strongly connected component S of𝐺 the nodes 𝑡 of 𝑇 such that 𝑋 (𝑡) ∩ S ≠ ∅
form a connected subtree of 𝑇 .

Clearly, a directed tree partition satisfies this property as every strongly connected component
needs to be contained in a single block. Hence every directed tree partition induces a 𝑑-
decomposition of the same size, which implies Dw(𝐺) ≤ dtpw(𝐺).

Directed tree width. It is shown in [Saf05, Corollary 1.] that the directed tree width of any
graph is smaller than its 𝐷-width, that is we have dtw(𝐺) ≤ Dw(𝐺). Hence, it follows from the
discussion on D-width that dtw(𝐺) ≤ dtpw(𝐺) holds.

Computing the directed tree partition width. Our next aim is to show that the problem of
deciding whether a directed tree partition exists whose maximally sized block is bounded by
a given number 𝑘 is NP-complete. The analogous statement holds also in the undirected case
(see [Ede86, Theorem 2.2]). We reduce from the oneway bisection problem [FY03] for directed
graphs, which asks whether there exists a partition of a given graph into two equally-sized
vertex sets 𝑉0,𝑉1 such that all edges go from 𝑉0 to 𝑉1.

Proposition 5.10. The two problems

1. given a directed graph 𝐺 and 𝑘 ∈ N, decide whether dtpw(G) ≤ 𝑘 hold, and

2. given a directed graph 𝐺 and 𝑘 ∈ N, decide whether dppw(G) ≤ 𝑘 holds

are both NP-complete.



126 5.2. Directed tree- and path-partition width

i e

G

V0 V1

Figure 5.4: A sketch for the reduction from the oneway bisection problem to the problem of
computing a directed tree or path partition of certain size. Two fresh states 𝑖 and 𝑒 are added to
the given directed graph 𝐺 , and all vertices of 𝐺 get an additional incoming edge from 𝑖 and an
outgoing edge to 𝑒 .

Proof. For membership in NP observe that one can guess a partition P and check whether it is
a directed tree partition (resp. directed path partition) satisfying width(P) ≤ 𝑘 .

To show NP-hardness we describe a polynomial reduction from the oneway bisection problem
of directed graphs, which was shown to be NP-hard in [FY03]. It asks, given a directed graph
𝐺 , whether there exists a bisection 𝑉0,𝑉1 of the vertices of 𝐺 (that is, a partition of the vertices
into 𝑉0 and 𝑉1 satisfying |𝑉0 | = |𝑉1 |) such that there are no directed edges from 𝑉1 to 𝑉0. To
reduce this problem to the question of whether the directed path-partition width is at most 𝑘 ,
let us fix a graph𝐺 = (𝑉 , 𝐸). We construct a new graph𝐺 ′ = (𝑉 ∪ {𝑖, 𝑒}, 𝐸′) with fresh vertices
𝑖, 𝑒 and edges defined by 𝐸′ = 𝐸 ∪ {(𝑖, 𝑣), (𝑣, 𝑒) | 𝑣 ∈ 𝑉 }. A sketch of the construction is given
in Figure 5.4. We claim that

dppw(𝐺 ′) ≤ 1 + |𝑉 |
2 if and only if 𝐺 has a oneway bisection.

Suppose first that 𝐺 has a oneway bisection 𝑉0,𝑉1. Then ({𝑖} ∪𝑉0, {𝑒} ∪𝑉1) is a directed
path partition of𝐺 ′. This follows directly from the fact that there is no directed edge from𝑉1 to
𝑉0. The width of this path partition is 1 + (|𝑉 |/2), as |𝑉0 | = |𝑉1 | = |𝑉 |/2.

For the other direction, we first observe that any directed path partition of𝐺 ′ has length
between one and three. This can be seen as follows. Vertex 𝑒 must appear in one of the first
three blocks, as any vertex of 𝐺 ′ has a path to 𝑒 of length at most three. This also implies that
all vertices must be part of a block which either contains 𝑒 , or precedes the block containing 𝑒 .

We now show that a path partition of 𝐺 ′ with width at most 1 + (|𝑉 |/2) has length two. It
clearly cannot have length one, so suppose that it has length three. Then the first block, which
must include 𝑖 , cannot include any other vertex 𝑣 ∈ 𝑉 . This is because then 𝑒 must be contained
in the first or second block, as there exists an edge from 𝑣 to 𝑒 . In both cases, the third block
remains empty. At the same time, no vertex 𝑣 ∈ 𝑉 can be included in the third block, as it is
reachable from 𝑖 in a single step. Hence the second block contains all |𝑉 | vertices, contradicting
the fact that the width is at most 1 + (|𝑉 |/2).

So take a path partition of length two with width at most 1 + (|𝑉 |/2). Then, the two blocks
have exactly 1 + (|𝑉 |/2) elements, and hence |𝑉 |/2 vertices from 𝑉 respectively. This partition
of 𝑉 induces a oneway bisection of 𝐺 as there cannot be any directed edges from the second
block to the first one.



5. Probabilistic systems with low tree width 127

Figure 5.5: A geometric interpretation of the
matrix-pair chain problemwith dimension𝑑 = 2.
Starting with 𝜄, one of the matrices𝑀𝑖,1 and𝑀𝑖,2
is multiplied from the right to the current point
in each round 𝑖 . The goal is to generate a point
after𝑛 roundswhich lies in the halfspace defined
by x · 𝑓 ≥ 𝜆.

ι M1,1

M1,2 M2,1

M2,2

M2,1

M2,2

x · f ≥ λ

As 𝑒 is reachable from all vertices, the only directed tree partitions of the graph 𝐺 ′ in
the above reductions are directed path partitions. It follows directly that deciding whether
dtpw(𝐺) ≤ 𝑘 holds is also NP-hard.

5.3 The witness problem for Markov chains with bounded path
width

We have seen that the weighted witness problem for tree structured Markov chains is solvable
in polynomial time if the weights are encoded in unary (Proposition 5.4). A natural question is
whether these ideas extend to Markov chains which are similar to trees, or, more formally, to
Markov chains having low width with respect to one of the tree similarity measures discussed
in the previous section.

We will now show that the witness problem for Markov chains with directed path-partition
width of at most six is already NP-hard. It follows that the problem is also NP-hard for Markov
chains with bounded directed tree-partition width, and, by Proposition 5.9, for Markov chains
of bounded directed tree width and D-width. This shows that, unfortunately, we cannot expect
an efficient algorithm parametrized by tree or path-similarity for witness problem. The proof
will expose a source of combinatorial hardness in the witness problem which is quite different
from what we have seen so far. To capture it we introduce the matrix-pair chain problem.

Definition 5.11 (𝑑-dimensional matrix-pair chain problem). The 𝑑-dimensional matrix-pair
chain problem (𝑑-MCP) takes as input a sequence (𝑀1,1, 𝑀1,2), . . . , (𝑀𝑛,1, 𝑀𝑛,2), where 𝑀𝑖, 𝑗 ∈
Q𝑑×𝑑 , a starting vector 𝜄 ∈ Q1×𝑑 , final vector 𝑓 ∈ Q𝑑×1, and 𝜆 ∈ Q (with all numbers encoded in
binary) and asks whether there exists a tuple (𝜎1, . . . , 𝜎𝑛) ∈ {1, 2}𝑛 such that

𝜄 ·𝑀1,𝜎1 · · ·𝑀𝑛,𝜎𝑛 · 𝑓 ≥ 𝜆.

We call 𝑛 the length of an MCP instance. The nonnegative variant of the problem restricts all
input numbers to be nonnegative.

The problem can also be described using the following game of 𝑛 rounds (see Figure 5.5).
We start with vector 𝜄, and in the first round choose one of the matrices 𝑀1,1 and 𝑀1,2. The
chosen matrix is multiplied to 𝜄 from the right, generating a new point. We continue generating
points in this way for 𝑛 rounds. If the final point p (which we get after applying one of the



128 5.3. The witness problem for Markov chains with bounded path width

Figure 5.6: A sketch for the reduction from
partition to the 2-MCP (Proposition 5.12). It
associates to each number 𝑠 in the partition
problem a matrix pair where one matrix ro-
tates clockwise by 𝛾 · 𝑠 and the other rotates
counterclockwise by 𝛾 · 𝑠 . Then the partition
problem has a solution iff a matrix from each
pair can be chosen such that the joint rotation
is zero. This, in turn, is true iff the final point
lies in the halfspace defined by the blue line.

2γ

−2γ
−3γ

γ

−γ

0.5

0.5

x

y

x/2 + y/2 ≥ 1/2

R(2γ)

ι

matrices𝑀𝑛,1 and𝑀𝑛,2) satisfies p · 𝑓 ≥ 𝜆 (i.e., lies in the halfspace defined by x · 𝑓 ≥ 𝜆) we win.
The question is whether there is a winning strategy in this game.

The 𝑑-MCP is in NP for any 𝑑 ∈ N, as one can guess one matrix from each pair and verify
that the corresponding product is greater or equal to 𝜆. We now show NP-hardness of the
2-MCP by a reduction from the partition problem, and then use this result to show NP-hardness
of the nonnegative 3-MCP. Finally, we reduce the nonnegative 3-MCP to the witness problem for
Markov chains of directed path-partition width at most six. The following picture summarizes
the chain of polynomial reductions that we describe:

partition 2-MCP nonnegative 3-MCP witness problem
dppw = 6

5.3.1 Hardness of the matrix-pair chain problem

NP-hardness of the 2-MCP. To show NP-hardness of the 2-MCP we reduce from the partition
problem, which is another classical NP-complete problem [Kar72]. Given a finite set 𝑆 =

{𝑠1, . . . , 𝑠𝑛} ⊆ Z, whose elements are encoded in binary, it asks to decide whether there exists
𝑊 ⊆ 𝑆 such that

∑︁
𝑊 =

∑︁(𝑆 \𝑊 ). Here we abbreviate∑︁𝑋 =
∑︁
𝑥∈𝑋 𝑥 . For the reduction to the

2-MCP we relate each element 𝑠𝑖 to a pair of matrices𝑀𝑖,1, 𝑀𝑖,2 where𝑀𝑖,1 realizes a clockwise
rotation by an angle proportional to 𝑠𝑖 , and𝑀𝑖,2 realizes the counter-clockwise rotation by the
same angle. We do this in a way which guarantees that for all 𝜎1, . . . , 𝜎𝑛 ∈ {1, 2}𝑛 we have that
𝑊 = {𝑠𝑖 | 𝜎𝑖 = 1} satisfies ∑︁𝑊 =

∑︁(𝑆 \𝑊 ) if and only if the product𝑀1,𝜎1 · · ·𝑀𝑛,𝜎𝑛 equals the
identity matrix.

Additionally, we choose initial vector 𝜄 = (1/2, 1/2), final vector 𝑓 = (1/2, 1/2)𝑇 and threshold
𝜆 = 1/2. All matrices one can generate as products of 𝑀𝑖,1, 𝑀𝑖,2, with 1 ≤ 𝑖 ≤ 𝑛, are rotation
matrices and the only point on the circle around the origin with radius 1/√2 that satisfies x· 𝑓 ≥ 1/2
is 𝜄. Hence, the only way to generate a point which meets the threshold condition is to make
sure that the product of matrices equals the rotation by zero, i.e., the identity matrix. And, by
construction, this will only be possible if the partition problem is a yes-instance. Figure 5.6
illustrates the idea.



5. Probabilistic systems with low tree width 129

Proposition 5.12. The two-dimensional matrix-pair chain problem (2-MCP) is NP-hard.

Proof. We describe a polynomial reduction from the partition problem [Kar72]. Let 𝑆 =

{𝑠1, . . . , 𝑠𝑛} ⊆ Z be an instance of it, where the numbers are encoded in binary, and let
𝑚 = max{∑︁ 𝑆 ∩ Z>0,−

∑︁
𝑆 ∩ Z<0} be the maximal absolute value that can be accumulated

by a subset of 𝑆 . Throughout the proof we will denote by 𝑅(𝜃 ) ∈ R2×2 the rotation matrix
which realizes the rotation by 𝜃 , where 𝜃 ∈ Q represents an angle in radian. Let 𝑅(𝛾) be a
rational rotation matrix which rotates by an angle in radian of 𝛾 < 𝜋/(4𝑚). Such a matrix can
be computed using the results of [CDR92], which shows that for any by angle 𝜑 and 𝜖 ∈ Q>0,
a rotation matrix 𝑅(𝜃 ) with rational entries and such that |𝜑 − 𝜃 | < 𝜖 holds can be computed
in time polynomial in log(1/𝜖). The assumption 𝛾 < 𝜋/(4𝑚) implies that the total rotation in
our construction cannot exceed 𝜋/4. For an integer 𝑎 ∈ Z the rotation by 𝑎 · 𝛾 is given by the
matrix 𝑅(𝑎 · 𝛾) =

(︁
𝑅(𝛾)

)︁𝑎 .
For all 1 ≤ 𝑖 ≤ 𝑛 we first define the pair of matrices𝑀𝑖,1, 𝑀𝑖,2 ∈ R2×2 by𝑀𝑖,1 = 𝑅(𝛾 · 𝑠𝑖) and

𝑀𝑖,2 = 𝑅(−𝛾 · 𝑠𝑖). It follows that for all 𝜎1, . . . , 𝜎𝑛 ∈ {1, 2}𝑛 and𝑊 = {𝑠𝑖 | 𝜎𝑖 = 1} we have

𝑀1,𝜎1 · · · 𝑀𝑛,𝜎𝑛 =
∏︂
𝑖 s.t.
𝜎𝑖=1

𝑅(𝛾 · 𝑠𝑖) ·
∏︂
𝑖 s.t.
𝜎𝑖=2

𝑅(−𝛾 · 𝑠𝑖) = 𝑅(𝛾𝑎1) · 𝑅(−𝛾𝑎2) = 𝑅(𝛾 (𝑎1 − 𝑎2)),

where 𝑎1 =
∑︁
𝜎𝑖=1 𝑠𝑖 and 𝑎2 =

∑︁
𝜎𝑖=2 𝑠𝑖 . As 𝑅(0) = 𝐼 (the zero rotation is the identity matrix)

and 𝛾 was chosen such that𝑚 · 𝛾 < 𝜋/4, which means that no product of 𝑛 matrices𝑀𝑖,1, 𝑀𝑖,2
realizes a rotation by more than 45 degrees, the following holds for all 𝜎1, . . . , 𝜎𝑛 ∈ {1, 2}𝑛 and
𝑊 = {𝑠𝑖 | 𝜎1 = 1}:∑︂

𝑥∈𝑊
𝑥 =

∑︂
𝑥∈ (𝑆\𝑊 )

𝑥 if and only if 𝑀1,𝜎1 · · · 𝑀𝑛,𝜎𝑛 = 𝐼 . (∗)

Now let 𝜄 = (1/2, 1/2), 𝑓 = (1/2, 1/2)𝑇 and 𝜆 = 1/2. The only point p which can be reached by a
rotation from 𝜄 and which satisfies p · 𝑓 ≥ 𝜆 is 𝜄 itself (see Figure 5.6). Hence, the constructed
MCP is a yes-instance iff we find 𝜎1, . . . , 𝜎𝑛 ∈ {1, 2}𝑛 such that𝑀1,𝜎1 · · · 𝑀𝑛,𝜎𝑛 = 𝐼 . But, by (∗),
this holds iff the instance of the partition problem we started with is a yes-instance.

NP-hardness of the nonnegative 3-MCP. To use rotation matrices in the above proof it is
crucial that negative numbers are allowed in the MCP. We now show how the 2-MCP can be
reduced in polynomial time to the nonnegative 3-MCP. Nonnegativity will be important for
our final reduction to the witness problem. The main idea is to map each two-dimensional
matrix to a nonnegative three-dimensional matrix which preserves the original dynamics when
projected onto a certain two-dimensional subspace. A graphical illustration of this idea is given
in Figure 5.7.

More formally, let (𝑀1,1, 𝑀1,2), . . . , (𝑀𝑛,1, 𝑀𝑛,2), with𝑀𝑖, 𝑗 ∈ Q2×2, togetherwith 𝜄 ∈ Q1×2, 𝑓 ∈
Q2×1, 𝜆 ∈ Q be an instance of the 2-MCP. For some 𝜅 ∈ Q≥0, we define

𝑁𝑖, 𝑗 = 𝐵

(︃
𝑀𝑖, 𝑗 0

0 𝜅

)︃
𝐵−1, 𝜄′ =

(︁
𝜄 𝜅

)︁
𝐵−1, 𝑓 ′ = 𝐵

(︃
𝑓

𝜅

)︃
and 𝜆′ = 𝜆 + 𝜅𝑛+2 (5.2)



130 5.3. The witness problem for Markov chains with bounded path width

Figure 5.7: A picture for the reduction from
2-MCP to nonnegative 3-MCP. Each two-
dimensional matrix𝑀 appearing of the 2-MCP
instance is mapped to a three-dimensional ma-
trix 𝑁 which preserves the dynamics of 𝑀
under projection and makes a step towards
(1, 1, 1). If the step is large enough, then 𝑁 is
nonnegative.

x

y

z

(1, 1, 1)

M

N

where we use the matrix

𝐵 =
⎛⎜⎝
1 1 1
−1 1 1
0 −2 1

⎞⎟⎠ with inverse 𝐵−1 = 1/6 · ⎛⎜⎝
3 −3 0
1 1 −2
2 2 2

⎞⎟⎠
to change the basis. The columns of 𝐵 are orthogonal to each other and the third standard basis
vector is mapped to (1, 1, 1) under the change of basis. The proof of the following proposition
shows that the 2-MCP instance is a yes-instance if and only if the constructed 3-MCP instance
is as well. By choosing 𝜅 large enough, we furthermore can make sure that all matrices 𝑁𝑖, 𝑗 are
nonnegative.

Proposition 5.13. The nonnegative three-dimensional matrix-pair chain problem (nonnegative
3-MCP) is NP-hard.

Proof. The proof goes by reduction from the 2-MCP. Let (𝑀1,1, 𝑀1,2), . . . , (𝑀𝑛,1, 𝑀𝑛,2) be a se-
quence of rational 2 × 2 matrices, 𝜄 ∈ Q1×2, 𝑓 ∈ Q2×1 and 𝜆 ∈ Q≥0. For any 𝜅 ≥ 0, consider
the matrices (𝑁1,1, 𝑁1,2), . . . , (𝑁𝑛,1, 𝑁𝑛,2) as defined in Equation (5.2), together with vectors 𝜄′, 𝑓 ′
and rational 𝜆′. Then, for any 𝜎1, . . . , 𝜎𝑛 ∈ {1, 2}𝑛 we have

𝑁1,𝜎1 · · ·𝑁𝑛,𝜎𝑛 = 𝐵

(︃
𝑀1,𝜎1 0

0 𝜅

)︃
𝐵−1 · 𝐵

(︃
𝑀2,𝜎2 0

0 𝜅

)︃
𝐵−1 · · ·𝐵

(︃
𝑀𝑛,𝜎𝑛 0

0 𝜅

)︃
𝐵−1

= 𝐵

(︃
𝑀1,𝜎1 · · ·𝑀𝑛,𝜎𝑛 0

0 𝜅𝑛

)︃
𝐵−1

Applying initial and final weights yields:

𝜄′ · 𝐵
(︃
𝑀1,𝜎1 · · ·𝑀𝑛,𝜎𝑛 0

0 𝜅𝑛

)︃
𝐵−1 · 𝑓 ′ =

(︁
𝜄 𝜅

)︁
· 𝐵−1 · 𝐵

(︃
𝑀1,𝜎1 · · ·𝑀𝑛,𝜎𝑛 0

0 𝜅𝑛

)︃
𝐵−1 · 𝐵 ·

(︃
𝑓

𝜅

)︃
= 𝜄 ·𝑀1,𝜎1 · · ·𝑀𝑛,𝜎𝑛 · 𝑓 + 𝜅𝑛+2

As a consequence, we have

𝜄 ·𝑀1,𝜎1 · · ·𝑀𝑛,𝜎𝑛 · 𝑓 ≥ 𝜆 ⇐⇒ 𝜄′ · 𝑁1,𝜎1 · · ·𝑁𝑛,𝜎𝑛 · 𝑓 ′ ≥ 𝜆 + 𝜅𝑛+2 = 𝜆′.

It remains to find 𝜅 such that all matrices 𝑁𝑖, 𝑗 and vectors 𝜄′, 𝑓 ′ as defined in Equation (5.2) are



5. Probabilistic systems with low tree width 131

nonnegative. To this end, we show that 𝑁𝑖, 𝑗 can be written as

𝑁𝑖, 𝑗 = 𝐴𝑖, 𝑗 +
2𝜅
6 · 13×3,

where 13×3 is the three times three matrix containing just ones. Let us expand the definition of
𝑁𝑖, 𝑗 . Here we will assume that𝑀𝑖, 𝑗 consists of elements 𝑎, 𝑏, 𝑐, 𝑑 ∈ Q.

𝑁𝑖, 𝑗 = 𝐵

(︃
𝑀𝑖, 𝑗 0

0 𝜅

)︃
𝐵−1 =

⎛⎜⎝
1 1 1
−1 1 1
0 −2 1

⎞⎟⎠ · ⎛⎜⎝
𝑎 𝑏 0
𝑐 𝑑 0
0 0 𝜅

⎞⎟⎠ · 1/6 ⎛⎜⎝
3 −3 0
1 1 −2
2 2 2

⎞⎟⎠
= 1/6 ⎛⎜⎝

3(𝑎+𝑐) + 𝑏 + 𝑑 −3(𝑎+𝑐) + 𝑏 + 𝑑 −2(𝑏+𝑑)
3(𝑐−𝑎) − 𝑏 + 𝑑 −3(𝑐−𝑎) − 𝑏 + 𝑑 −2(𝑑−𝑏)

−6𝑐 − 2𝑑 6𝑐 − 2𝑑 4𝑑

⎞⎟⎠ + 1/6 ⎛⎜⎝
2𝜅 2𝜅 2𝜅
2𝜅 2𝜅 2𝜅
2𝜅 2𝜅 2𝜅

⎞⎟⎠
Now we can define 𝐴𝑖, 𝑗 as the first matrix in the last sum. Then, 𝑁𝑖, 𝑗 is nonnegative if 2𝜅/6 is
larger than any entry in 𝐴𝑖, 𝑗 . Observe that the entries of 𝐴𝑖, 𝑗 are all polynomial in the entries of
𝑀𝑖, 𝑗 . The vectors 𝜄′ and 𝑓 ′ have a similar structure. This implies that we can compute a 𝜅 in
polynomial time such that all matrices and vectors defined in Equation (5.2) are nonnegative,
which concludes the proof.

The MCP for nearly equally valued matrices. As a last observation for the MCP, we show
that the nonnegative 3-MCP remains hard even if we assume that the entries in all its matrices
are very similar in terms of their value. For any function 𝜖𝑛 : N → Q and rational number
𝐶 ∈ Qwe call an MCP instance of length 𝑛 (i.e., containing 𝑛 matrix pairs) (𝐶, 𝜖𝑛)-equally valued
if all numbers that it contains apart from the threshold 𝜆 are in the range [𝐶 − 𝜖𝑛,𝐶].

Lemma 5.14. Let 𝑎 ∈ Q>0 and 𝐶 ∈ Q≥0 be fixed and 𝜖𝑛 = 𝑎−𝑛 . Then, the (𝐶, 𝜖𝑛)-equally valued
nonnegative 3-MCP is NP-hard.

Proof. We show that the reduction given in Proposition 5.13 can be adapted to produce (𝐶, 𝜖𝑛)-
equally valuedmatrices. There, we startedwith a 2-MCP instance (𝑀1,1, 𝑀1,2), . . . , (𝑀𝑛,1, 𝑀𝑛,2), 𝜄, 𝑓
and 𝜆, and constructed a 3-MCP instance of the form

𝑁𝑖, 𝑗 = 𝐴𝑖, 𝑗 +
2𝜅
6 · 13×3, 𝑓 ′ = 𝑓 + 2𝜅

6 · 13, 𝜄′ = 𝜄 + 2𝜅
6 · 13, 𝜆′ = 𝜆 + 𝜅𝑛+2,

such that for all 𝜅 ∈ Q and 𝜎1, . . . , 𝜎𝑛 ∈ {1, 2}𝑛 we have

𝜄 ·𝑀1,𝜎1 · · ·𝑀𝑛,𝜎𝑛 · 𝑓 ≥ 𝜆 ⇐⇒ 𝜄′ · 𝑁1,𝜎1 · · ·𝑁𝑛,𝜎𝑛 · 𝑓 ′ ≥ 𝜆′.

From this, we construct a (𝐶, 𝜖𝑛)-equally valued instance. Let 𝜅′ = 2𝜅/6 and 𝑣max and 𝑣min be
the maximal and minimal values appearing in 𝐴𝑖, 𝑗 , 𝑓 and 𝜄. Define

𝑁 ∗
𝑖, 𝑗 =

𝐶

𝑣max + 𝜅′
· 𝑁𝑖, 𝑗 , 𝑓 ∗ =

𝐶

𝑣max + 𝜅′
· 𝑓 ′, and 𝜄∗ =

𝐶

𝑣max + 𝜅′
· 𝜄′.

The largest value appearing in any of the matrices 𝑁 ∗
𝑖, 𝑗 , 𝑓

∗ and 𝜄∗ is 𝐶 , and the smallest one
is (𝐶 (𝑣min + 𝜅′))/(𝑣max + 𝜅′). Consequently, the largest difference between any two entries of
these matrices is 𝐶 (𝑣max − 𝑣min)/(𝑣max + 𝜅′). The resulting MCP is (𝐶, 𝜖𝑛)-equally valued if this



132 5.3. The witness problem for Markov chains with bounded path width

difference is upper bounded by 𝜖𝑛 . This is ensured if 𝜅′ satisfies:

𝜅′ ≥ 𝐶 (𝑣max − 𝑣min)
𝜖𝑛

− 𝑣max.

As 𝜖𝑛 = 𝑎−𝑛 for some constant 𝑎 > 0, we can compute 𝜅′ (and thereby 𝜅), satisfying this equation
in polynomial time. We assume, w.l.o.g., that this 𝜅′ is larger than 𝑣max. If this is not true, then
we can define 𝜅′ to be 𝑣max. This makes sure that the resulting MCP is nonnegative.

Finally, we choose 𝜆∗ =
(︂

𝐶
𝑣max+𝜅′

)︂𝑛+2
· 𝜆′. Then, for all 𝜎1, . . . , 𝜎𝑛 ∈ {1, 2}𝑛 we have

𝜄∗ · 𝑁 ∗
1,𝜎1 · · ·𝑁

∗
𝑛,𝜎𝑛

· 𝑓 ∗ ≥ 𝜆∗

⇐⇒
(︃

𝐶

𝑣max + 𝜅′

)︃𝑛+2
· 𝜄′ · 𝑁1,𝜎1 · · ·𝑁𝑛,𝜎𝑛 · 𝑓 ′ ≥

(︃
𝐶

𝑣max + 𝜅′

)︃𝑛+2
· 𝜆′

⇐⇒ 𝜄′ · 𝑁1,𝜎1 · · ·𝑁𝑛,𝜎𝑛 · 𝑓 ′ ≥ 𝜆′,

which completes the reduction.

5.3.2 Hardness of the witness problem
This section describes a polynomial reduction from the nonnegative 3-MCP to the witness
problem for Markov chains with bounded path-partition width. Let (𝑀1,1, 𝑀1,2), . . . , (𝑀𝑛,1, 𝑀𝑛,2),
𝜄, 𝑓 and 𝜆 be an instance of the nonnegative 3-MCP. For technical reasons explained later, we
assume that all entries of the input matrices and vectors are in the range [1/12 − 𝜖, 1/12] for
some 𝜖 that satisfies:

0 < 12𝜖 < 1/2 ·
(︁
1/12 − 𝜖

)︁𝑛+2 (5.3)

An 𝜖 which satisfies the bound is 𝜖 = 1/(24𝑛+3), which can be seen as follows. First, we insert 𝜖
into the right hand side and derive a lower bound for the expression (assuming 𝑛 ≥ 0).

1
2
(︁ 1
12 − 𝜖

)︁𝑛+2
=
1
2
(︁ 1
12 − 1

24𝑛+3
)︁𝑛+2

=
1

2 · 12𝑛+2
(︁
1 − 1

2𝑛+3 · 12𝑛+2
)︁𝑛+2

>
1

2 · 12𝑛+2
(︁
1 − 1

12𝑛+2
)︁𝑛+2

.

This lower bound is greater than 12𝜖 for all 𝑛 ≥ 0, as the following calculation shows.

1
2 · 12𝑛+2 · (1 − 1

12𝑛+2 )
𝑛+2 > 12𝜖 ⇐⇒

(︁
1 − 1

12𝑛+2
)︁𝑛+2

>
1

2𝑛+2 ⇐⇒
(︁
2 − 2

12𝑛+2
)︁𝑛+2

> 1.

The last inequality holds for all 𝑛 ≥ 0.
We are allowed to make this assumption on the 3-MCP by Lemma 5.14, which shows that

for any fixed 𝐶 ≥ 0 and 𝑎 > 0 the (𝐶, 𝑎−𝑛)-equally valued nonnegative 3-MCP is NP-hard.

Structure of the reduction. The main idea of the reduction is to relate choices of matrices in
the matrix-pair chain problem to choices of subsystems in the witness problem. The structure of
the reduction is shown in Figure 5.9. It consists of 𝑛 main layers, where the 𝑗-th layer includes
two groups of states {𝑥 𝑗,1, 𝑦 𝑗,1, 𝑧 𝑗,1} and {𝑥 𝑗,2, 𝑦 𝑗,2, 𝑧 𝑗,2}. Transitions between layers are formed
using a matrix multiplication gadget, as drawn in Figure 5.8. More precisely, a double arrow
labeled by matrix𝑀 in Figure 5.9 means that transitions as defined by the matrix multiplication
gadget for𝑀 are included between the two groups of states. Transitions in the initial and final
layer are defined analogously. For example, the transition from state 𝑥𝑛+1 to “target” is assigned



5. Probabilistic systems with low tree width 133

Figure 5.8: A gadget to encode matrix mul-
tiplication. Let 𝑀 be a substochastic matrix
with entries (𝑀)𝑖 𝑗 = 𝑎𝑖 𝑗 ∈ Q≥0. If the proba-
bility of states (𝑥 ′, 𝑦′, 𝑧′) to reach some goal
state is (𝑣 ′𝑥 , 𝑣 ′𝑦, 𝑣 ′𝑧), then these probabilities in
states (𝑥,𝑦, 𝑧) are𝑀 · (𝑣 ′𝑥 , 𝑣 ′𝑦, 𝑣 ′𝑧)𝑇 .

x y z

x′ y′ z′

a11

a12

a13 a21

a22

a23 a31

a32

a33

probability 𝑓𝑥 , which is the 𝑥-coordinate of vector 𝑓 . All remaining probability is added to
transitions to a state “exit”, which are omitted in the figure.

By our assumption that all numbers appearing in matrices and vectors of the MCP instance
are nonnegative and have at most value 1/12, the construction yields a valid Markov chain, which
we call M1. The directed path-partition width of M1 is six, and this does not depend on the
MCP instance.

Lemma 5.15. Let M1 be as defined above and assume that 𝑛 ≥ 3. We have dppw(M1) =

dtpw(M1) = 6.

Proof. Partitioning the states of M1 along the 𝑛 + 1 layers yields a directed path partition with
width six. It remains to argue that there is no directed tree partition with a smaller width. Take
any directed tree partition P of M1 and let {𝐵1, . . . 𝐵𝑚} be its blocks. Pick arbitrary state from
the main part of M1, for example 𝑥𝑖,1 for some 1 < 𝑖 < 𝑛, and let 𝐵𝑘 be the block such that
𝑥𝑖,1 ∈ 𝐵𝑘 . As all successors of 𝑥𝑖,1 have a joint successor 𝑥𝑛+1, they either belong to 𝐵𝑘 , or to
some successor block 𝐵𝑘+1 in the tree order. Similarly, all predecessors of 𝑥𝑖,1 belong either to 𝐵𝑘
or to some predecessor block 𝐵𝑘−1. The same holds for all other states in the 𝑖-th layer, which
means that in total 18 states are included in the sets 𝐵𝑘−1, 𝐵𝑘 , 𝐵𝑘+1. But then, one of these three
blocks needs to include at least six states, which shows that the width of P is at least six.

Let left𝑖 = {𝑥𝑖,1, 𝑦𝑖,1, 𝑧𝑖,1} and right𝑖 = {𝑥𝑖,2, 𝑦𝑖,2, 𝑧𝑖,2}. A subsystem ofM1 is called good if it
is induced by a set of states 𝑆 ′ such that {𝑠𝑖𝑛, 𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1} ⊆ 𝑆 ′ and for all 1 ≤ 𝑖 ≤ 𝑛

either left𝑖 ⊆ 𝑆 ′ and right𝑖 ∩ 𝑆 ′ = ∅ or right𝑖 ⊆ 𝑆 ′ and left𝑖 ∩ 𝑆 ′ = ∅.

This means that 𝑆 ′ “chooses” exactly one of the sets left𝑖 and right𝑖 for each layer 1 ≤ 𝑖 ≤ 𝑛. Good
subsystems have size 3𝑛+4 (recall that target and exit are not counted in the size of a subsystem).
Subsystems that are not good are called bad. Clearly, there is a one-to-one correspondence
between good subsystems and matrix sequences in the matrix-pair chain problem. Given a
sequence 𝜋 = 𝜎1, . . . , 𝜎𝑛 ∈ {1, 2}𝑛 , we define

𝑆𝜋 = {𝑠𝑖𝑛, 𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1} ∪
⋃︂{︁

{𝑥𝑖,𝜎𝑖 , 𝑦𝑖,𝜎𝑖 , 𝑧𝑖,𝜎𝑖 } | 1 ≤ 𝑖 ≤ 𝑛
}︁
.

We denote byM𝜋 the induced subsystem of 𝑆𝜋 inM1. The following lemma shows how the
value of the product that arises in the MCP for matrix choices 𝜋 corresponds to the probability
of reaching “target” in M𝜋 .



134 5.3. The witness problem for Markov chains with bounded path width

sin

x1,1

y1,1

z1,1

x1,2

y1,2

z1,2

x2,1

y2,1

z2,1

x2,2

y2,2

z2,2

· · ·

· · ·

· · ·

xn,1

yn,1

zn,1

xn,2

yn,2

zn,2

yn+1

xn+1

zn+1

M1,1

M1,1

M1,2

M1,2

M2,1

M2,1

M2,2

M2,2

Mn,1

Mn,2

target

f

ι

ι

Figure 5.9: The Markov chain M1 constructed for nonnegative 3-MCP instance
(𝑀1,1, 𝑀1,2), . . . , (𝑀𝑛,1, 𝑀𝑛,2), 𝜄 and 𝑓 . The doubled arrows represent instances of the matrix
multiplication gadget as shown in Figure 5.8. A subsystem ofM1 is called good, if it contains
either {𝑥 𝑗,1, 𝑦 𝑗,1, 𝑧 𝑗,1} or {𝑥 𝑗,2, 𝑦 𝑗,2, 𝑧 𝑗,2} for each main layer 𝑗 . Good subsystems correspond to
choices of matrices in the MCP, and their probability to reach target corresponds to the value
of the product achieved by the corresponding choice.

Lemma 5.16. For all 𝜋 = 𝜎1, . . . , 𝜎𝑛 ∈ {1, 2}𝑛 we have PrM𝜋
(♢ target) = 𝜄 ·𝑀1,𝜎1 · · · 𝑀𝑛,𝜎𝑛 · 𝑓 .

Proof. Let 𝜈 (𝑠) be the probability of reaching “target” from state 𝑠 in M𝜋 and define for all
1 ≤ 𝑗 ≤ 𝑛: (𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ) = (𝑥 𝑗,1, 𝑦 𝑗,1, 𝑧 𝑗,1) if 𝜎 𝑗 = 1, and else (𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ) = (𝑥 𝑗,2, 𝑦 𝑗,2, 𝑧 𝑗,2). We show
by induction on 𝑖 that

⎛⎜⎝
𝜈 (𝑥𝑛+1−𝑖)
𝜈 (𝑦𝑛+1−𝑖)
𝜈 (𝑧𝑛+1−𝑖)

⎞⎟⎠ = 𝑀𝑛+1−𝑖,𝜎𝑛+1−𝑖 · · · 𝑀𝑛,𝜎𝑛 · 𝑓 .

This is enough, as PrM𝜋
(♢ target) = 𝜄 · (𝜈 (𝑥1), 𝜈 (𝑦1), 𝜈 (𝑧1))𝑇 . For 𝑖 = 0 it is clear, as the

probability vector to reach target from (𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1) is 𝑓 . For 𝑖 = 𝑖′ + 1, we have

⎛⎜⎝
𝜈 (𝑥𝑛+1−𝑖)
𝜈 (𝑦𝑛+1−𝑖)
𝜈 (𝑧𝑛+1−𝑖)

⎞⎟⎠ = 𝑀𝑛+1−𝑖,𝜎𝑛+1−𝑖 ·
⎛⎜⎝
𝜈 (𝑥𝑛+1−𝑖′)
𝜈 (𝑦𝑛+1−𝑖′)
𝜈 (𝑧𝑛+1−𝑖′)

⎞⎟⎠
by the fact that 𝑥𝑛+1−𝑖′, 𝑦𝑛+1−𝑖′ and 𝑧𝑛+1−𝑖′ are the only states reachable from 𝑥𝑛+1−𝑖 , 𝑦𝑛+1−𝑖 and
𝑧𝑛+1−𝑖 in M𝜋 by definition, and the transition probabilities between these groups of states are
constructed using the matrix multiplication gadget for𝑀𝑛+1−𝑖,𝜎𝑛+1−𝑖 (see Figure 5.8).

It follows that the nonnegative 3-MCP reduces to deciding whether there exists a good
subsystem whose probability to reach goal is at least 𝜆. However, we have not ruled out yet
that the 3-MCP instance is a no-instance, but there exists some bad subsystem of size 3𝑛 + 4
which satisfies the threshold condition. We now show how the construction can be adapted to
rule out this possibility.



5. Probabilistic systems with low tree width 135

xi yi zi

xi+1 yi+1 zi+1

(1−γ) ·M ′

γ γ

γ

M

(a)

xn+1 yn+1 zn+1

target

(1−γ)f ′
x

(1−γ)f ′
y

(1−γ)f ′
z

γ γ

γ

f

(b)

Figure 5.10: A 𝛾-cycle is added to the upper states of the matrix multiplication gadget (see Fig-
ure 5.8) tomake sure that removing any state on the cycle leads to a significant drop in probability.
In (a) we see the construction used in all but the last layer, which is handled by the construction
in (b). In (a), the matrix 𝑀 ′ is chosen such that the probability of reaching (𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1) is
𝜃 ·𝑀 , where 𝜃 is any initial distribution on states (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖).

Interconnecting states. The idea is to make sure that bad subsystems have decisively less
probability to reach “target”, when compared with good subsystems. To this end we adapt the
matrix multiplication gadget from Figure 5.8 such that removing any state leads to a large drop
in probability. This is achieved by adding a cycle which connects the upper states, as shown
in Figure 5.10a. The states 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 represent one of the triples 𝑥𝑖,1, 𝑦𝑖,1, 𝑧𝑖,1 or 𝑥𝑖,2, 𝑦𝑖,2, 𝑧𝑖,2, and
likewise for 𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1. The probability of staying inside the cycle is 𝛾 (whose precise value
will be defined below) in each state. Transitions from states 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 to 𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1 are given
by an instance of the matrix multiplication gadget for (1 −𝛾) ·𝑀 ′. Our aim is to define𝑀 ′ such
that the probabilities of moving from 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 to 𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1 when including the 𝛾-cycles is
equal to some given matrix𝑀 .

The matrix which contains all the pairwise probabilities of reaching a state in 𝑥𝑖+1, 𝑦𝑖+1, 𝑧𝑖+1
from a state in 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 is given by the matrix 𝑅 ·𝑀 ′ defined as follows.

𝑅 ·𝑀 ′ =
1 − 𝛾
1 − 𝛾3 · ⎛⎜⎝

1 𝛾 𝛾2

𝛾2 1 𝛾

𝛾 𝛾2 1

⎞⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝑅

𝑀 ′ (5.4)

For example, the value (𝑅 ·𝑀 ′)11 is equal to the probability of reaching 𝑥𝑖+1 when starting in
state 𝑥𝑖 in Figure 5.10a, which can be checked by solving the corresponding equation system.

Let us assume that 𝑀 is one of the matrices from the input MCP instance with entries
(𝑀)𝑙𝑘 = 𝑎𝑙𝑘 for 1 ≤ 𝑙, 𝑘 ≤ 3. We want to find𝑀 ′ such that the gadget from Figure 5.10a realizes
the matrix multiplication𝑀 . In other words, we want the probability to reach 𝑥𝑖+1 from 𝑥𝑖 to be
exactly 𝑎11, and similarly for the other states. Solving the equation𝑀 = 𝑅 ·𝑀 ′ for𝑀 ′ yields

𝑀 ′ = 𝑅−1 ·𝑀 =
1

1−𝛾
⎛⎜⎝
𝑎11 − 𝛾𝑎21 𝑎12 − 𝛾𝑎22 𝑎13 − 𝛾𝑎23
𝑎21 − 𝛾𝑎31 𝑎22 − 𝛾𝑎32 𝑎23 − 𝛾𝑎33
𝑎31 − 𝛾𝑎11 𝑎32 − 𝛾𝑎12 𝑎33 − 𝛾𝑎13

⎞⎟⎠ (5.5)



136 5.3. The witness problem for Markov chains with bounded path width

To see this, we first compute the inverse of 𝑅, which is given by:

𝑅−1 =
1

1−𝛾
⎛⎜⎝
1 −𝛾 0
0 1 −𝛾
−𝛾 0 1

⎞⎟⎠
We choose 𝛾 to satisfy

12𝜖 < 1 − 𝛾 < 1/2 ·
(︁
3(1/12 − 𝜖)

)︁𝑛+2 (5.6)

which is possible due to the assumption of Equation (5.3). To ensure that the construction yields
a valid Markov chain, we first argue that all entries of𝑀 ′ are in the range [0, 1/6]. Here we use
that the entries of 𝑀 are assumed to be in the range [1/12 − 𝜖, 1/12]. For any pair of entries
𝑎, 𝑎′ of𝑀 we have

1
1 − 𝛾 (𝑎 − 𝛾𝑎

′) ≥ 1
1 − 𝛾 (1/12 − 𝜖 − 𝛾/12) = 1/12 − 𝜖

1 − 𝛾 > 0,

where the last inequality follows from 12𝜖 < 1 − 𝛾 . At the same time, we also have:

1
1 − 𝛾 (𝑎 − 𝛾𝑎

′) ≤ 1
1 − 𝛾 (1/12 − 𝛾 (1/12 − 𝜖)) = 1/12 + 𝛾𝜖

1 − 𝛾 < 1/6,

where the last inequality follows from 𝛾 < 1 and 12𝜖 < 1−𝛾 , which is equivalent to 𝜖/(1−𝛾) <
1/12. The fact that 1/6 is an upper bound on all entries of 𝑀 ′ implies that using the gadgets
from Figure 5.10 in the main reduction yields a valid Markov chain, as all states in Figure 5.9
have at most 6 outgoing edges. The derivation of values 𝑓 ′𝑥 , 𝑓 ′𝑦 and 𝑓 ′𝑧 as used in Figure 5.10b is
done in essentially the same way by setting 𝑓 ′ = 𝑅−1 · 𝑓 .

We letM2 be the Markov chain which is obtained by using the gadgets defined in Figure 5.10
rather than Figure 5.8 to realize the matrix multiplications in the reduction shown in Figure 5.9.
In particular, this means that all groups of states 𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗 , 𝑧𝑖, 𝑗 , for 1 ≤ 𝑖 ≤ 𝑛 and 𝑗 ∈ {1, 2}, are
now connected with a 𝛾-cycle.

As the new matrix multiplication gadget correctly encodes the desired matrix multiplication
by𝑀 (due to our choice of𝑀 ′, see Equation (5.5)), good subsystems (which are defined in the
same way as for M1) have the same probability to reach “target” in M1 and M2. The main
point of adding 𝛾-cycles is to make sure that if one state which participates in such a cycle is
excluded in a subsystem, then the probability of any participating state to reach the next layer
drops significantly. This lets us derive an upper bound on the probability achievable in bad
subsystems.

On the other hand, our assumption that all entries of matrices 𝑀𝑖, 𝑗 (with 1 ≤ 𝑖 ≤ 𝑛 and
𝑗 ∈ {1, 2}) and vectors 𝜄, 𝑓 have value at least 1/12 − 𝜖 implies that

(︁
3(1/12 − 𝜖)

)︁𝑛+2 is a lower
bound on the reachability probability that is achieved by any good subsystem. These arguments
are made precise in the following lemma.

Lemma 5.17. Let N1 and N2 be subsystems of M2 with 3𝑛 + 4 states. If N1 is bad and N2 is good,
then

PrN1 (♢ target) ≤ PrN2 (♢ target) .

Proof. As observed above, each good subsystem achieves at least probability
(︁
3(1/12 − 𝜖)

)︁𝑛+2



5. Probabilistic systems with low tree width 137

of reaching “target” in the initial state. So it suffices to show that the probability achieved by
N1 is less than this value.

SinceN1 is bad, there exists a layer 𝑗 ofN1 such that both𝛾-cycles of this layer are interrupted
(or the single one, if 𝑗 = 𝑛 + 1). Hence, it suffices to show that if there exists a layer in which all
𝛾-cycles are interrupted, then the probability to reach target is less than

(︁
3(1/12 − 𝜖)

)︁𝑛+2. So
assume that all 𝛾 -cycles are interrupted in layer 𝑗 of N1. The probability of reaching the next
layer 𝑗 + 1 from any state in layer 𝑗 is at most (1+𝛾) (1−𝛾) ≤ 2(1−𝛾), as one of the three states
on the corresponding 𝛾-cycle is missing and any transition to the next layer has probability
lower than 1 − 𝛾 (see Figure 5.10a). This implies, in particular, that PrN1 (♢ target) is bounded
from above by 2(1 − 𝛾). Using the assumption that 𝛾 satisfies Equation (5.6) we get:

PrN1 (♢ target) ≤ 2(1 − 𝛾) < (3(1/12 − 𝜖))𝑛+2

Finally, observe that the directed path-partition width and tree-partition width ofM2 is the
same as ofM1, asM2 includes more edges but still allows the directed path-partition which
partitions states along the layers. Hence we have dtpw(M2) = dppw(M1) = 6. Together
with Lemma 5.17, Lemma 5.16 and the fact that the probabilities of good subsystems inM1 and
M2 coincide, this proves the following theorem.

Theorem 5.18. The witness problem is NP-hard for Markov chains with dppw = 6 (and hence also
for Markov chains with dtpw = 6).

By combining this theorem with Proposition 5.9 it follows that the witness problem is also
NP-hard for Markov chains with bounded undirected tree width, bounded undirected tree-
partition width [See85], bounded directed tree width [JRST01] and bounded D-width [Saf05].
Furthermore, the unary weighted witness problem, which generalizes the witness problem, is
also NP-hard for this class of Markov chains.

5.4 A dedicated algorithm for MDPs with low directed tree-
partition width

The results of the previous section show that we cannot expect efficient algorithms which
compute minimal witnessing subsystems even for Markov chains with low tree width. However,
we can still hope for algorithms which use the information provided by a directed tree partition
of the state space to solve the problem faster in practice. In this section we introduce such an
algorithm.

It proceeds bottom-up along the tree order of the given directed tree partition and enumerates
partial subsystems, which are rooted in the currently processed block. For each partial subsystem,
the reachability probability achieved in the interface states of the block is computed. An interface
state is a state which has some incoming edge from the predecessor block of the tree partition.
A domination relation between partial subsystems, which compares the values achieved in the
interface states, is used to prune away partial subsystems which do not need to be remembered,
as they are covered by a better one.

LetM = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be a fixed MDP in reachability form for the rest of
this section, and P = {𝐵1, . . . , 𝐵𝑛} be a directed tree partition of M. We will assume that for
all states 𝑠 ∈ 𝑆 satisfying

∑︁
𝛼∈Act(𝑠 ) 𝑃 (𝑠, 𝛼, target) > 0 there exists a block 𝐵 ∈ P such that



138 5.4. A dedicated algorithm for MDPs with low directed tree-partition width

Pre(B) B

B1

B2

inter(B1)

inter(B2)

out(B) =
inter(B1) ∪ inter(B2)

inter(B)

Figure 5.11: A sketch for the definitions used in this section. Additionally, Post(𝐵) is the set
of successor blocks of 𝐵, in this case {𝐵1, 𝐵2}. Lemma 5.19 shows that to compute the optimal
reachability probability for states in 𝐵 one can first compute the optimal values for states
in 𝐵1 and 𝐵2, then replace transitions of states in out(𝐵) by transitions to “target” with the
corresponding probability, and finally compute the values in 𝐵 in this adapted MDP.

𝐵 = {𝑠}. This condition can be ensured by a preprocessing step which adds a fresh state for
each transition to target and puts it into its own block 𝐵.

We denote by Post(𝐵) ⊆ P the children of 𝐵 ∈ P in the associated tree order, and by
Pre(𝐵) ∈ P the unique parent of 𝐵. Furthermore, we let inter(𝐵) be the interface states of 𝐵,
which are states having some incoming edge from a state in Pre(𝐵), or are initial. Using this
notion we define out(𝐵) = ⋃︁

𝐵′∈Post(𝐵) inter(𝐵′), which represents the states outside of 𝐵 which
are reachable from some state in 𝐵 in one step. See also Figure 5.11.

We will express the reachability probability achieved by states in 𝐵 in some partial subsystem
in terms of the probabilities achieved in the interface states of blocks in Post(𝐵) for the same
partial subsystem. To capture this formally, let 𝑓 be a partial function from 𝑆 to [0, 1] and
𝑆 ′ ⊆ 𝑆 be a subset of states. We define the MDPM 𝑓

𝑆 ′ using the following construction. In the
subsystem M𝑆 ′ of M induced by 𝑆 ′ remove all outgoing edges from states 𝑠 ∈ dom(𝑓 ) (the
domain of 𝑓 ) and replace them by an action with an edge to “target” with probability 𝑓 (𝑠) and
an edge to “exit” with probability 1−𝑓 (𝑠). We writeM 𝑓 as an abbreviation for M 𝑓

𝑆
.

We will use the following abbreviations which describe the value (which is either the
minimal or maximal reachability probability) achieved by a states 𝑞 ∈ 𝑆 ′ in the adapted MDP:

min-val𝑓
𝑆 ′ (𝑞) = Pr

min
M 𝑓

𝑆′,𝑞
(♢ target) and max-val𝑓

𝑆 ′ (𝑞) = Pr
max
M 𝑓

𝑆′,𝑞
(♢ target) .

We write min-val𝑆 ′ or max-val𝑆 ′ for the respective values in the unchanged MDP M𝑆 ′ . The
following lemma shows that to compute the values of states in 𝐵 ∈ P, one can first compute the
values of states in out(𝐵), then replace the edges of those states by an edge to “target” carrying
this value, and finally compute the corresponding optimal value in the adapted MDP.



5. Probabilistic systems with low tree width 139

Figure 5.12: The black points represent three partial
subsystems for 𝐼 = {𝑥,𝑦} using their value points. Par-
tial subsystems with value points in the red area are
dominated by the given three partial subsystems. If the
value point of a partial subsystem lies in the dashed area,
then it is strongly dominated by one of given partial sub-
systems. The weight of the partial subsystems is not
considered here, but is important in general (see Defini-
tion 5.20).

y

x

•

•

•

Lemma 5.19. Let 𝐼 , 𝑆 ′ ⊆ 𝑆 be two subsets of states and val ∈ {max-val,min-val}. Define the
partial function 𝑓 with domain 𝐼 by: 𝑓 (𝑞) = val𝑆 ′ (𝑞) for all 𝑞 ∈ 𝐼 . Then, for all 𝑞 ∈ 𝑆 ′ we have

val𝑆 ′ (𝑞) = val𝑓
𝑆 ′ (𝑞) .

Proof. The optimal solution of the linear program characterizing (minimal or maximal) is a
vector containing the optimal reachability probabilities for each state. The linear program for
MDP M 𝑓

𝑆 ′ differs from the linear program for M𝑆 ′ only by forcing the value for states 𝑞 ∈ 𝐼 to
be 𝑓 (𝑞), which is defined to be the optimal value of 𝑞 in the linear program forM𝑆 ′ . Hence, the
optimal solutions of the two linear programs coincide.

5.4.1 The domination relation

Let val ∈ {max-val,min-val} be fixed for the remainder of this section, 𝐵 ∈ P be a block of
the directed tree partition P and 𝐼 = inter(𝐵) be the interface states of 𝐵. We define reach(𝐼 )
to be the states reachable from 𝐼 in the underlying graph ofM. A partial subsystem for 𝐵 is a
set 𝑇 ⊆ reach(𝐼 ) and the corresponding value point vp𝑇 ∈ Q𝐼 is defined as vp𝑇 (𝑞) = val𝑇 (𝑞)
for all 𝑞 ∈ 𝐼 ∩ 𝑇 , and vp𝑇 (𝑞) = 0 for all 𝑞 ∈ 𝐼 \ 𝑇 . The value point for 𝑇 intuitively is the
vector which assigns the values achieved in partial subsystem 𝑇 to all states in 𝐼 . We will treat
partial functions with domain 𝐼 as vectors in Q𝐼 and use addition, multiplication by scalars and
point-wise inequality checks as one would expect.

Now let us turn to the definition of a domination relation which compares different partial
subsystems for 𝐵. On top of the fixed MDP M we will consider a weight function wgt : 𝑆 → N.
For a partial subsystem 𝑇 for 𝐵 we define wgt (𝑇 ) = ∑︁

𝑠∈𝑇 wgt (𝑠). First, we define the function
𝜋 which collects all possible projections of a vector 𝜃 ∈ Q𝐼 onto a subset of the axes:

𝜋 (𝜃 ) = { 𝜋 (𝜃, 𝐷) | 𝐷 ⊆ 𝐼 } and 𝜋 (𝜃, 𝐷) (𝑥) =
{︄
𝜃 (𝑥) 𝑥 ∈ 𝐷
0 otherwise.

Definition 5.20. Let 𝐵 ∈ P be a block of the partition P, 𝐼 = inter(𝐵) and {𝑇 } ∪ S be a set of
partial subsystems for 𝐵. We say that S dominates 𝑇 if there exists S′ ⊆ S such that

1. for all 𝑇 ′ ∈ S′ we have wgt (𝑇 ′) ≤ wgt (𝑇 ), and

2. the value point vp𝑇 of 𝑇 is a convex combination of
⋃︁
𝑇 ′∈S′ 𝜋 (vp𝑇 ′).

We say that S strongly dominates 𝑇 if there exists 𝑇 ′ ∈ S such that {𝑇 ′} dominates 𝑇 .



140 5.4. A dedicated algorithm for MDPs with low directed tree-partition width

Figure 5.13: An example showing that the standard
domination relation does not suffice for minimal
reachability probabilities. Imagine that 𝑓1, 𝑓2 and 𝑓3
represent value points for different partial subsys-
tems for a block 𝐵 with interface states 𝐼 = {𝑦, 𝑧}.
Clearly, 𝑓3 is a convex combination of 𝑓1 and 𝑓2, but a
partial subsystemwith probabilities 𝑓3 would achieve
a larger minimum value than any partial subsystem
with probabilities 𝑓1 or 𝑓2 in states 𝑦, 𝑧.

x

y z

f1: 0 1/2

f2: 1/2 0

f3: 1/4 1/4

α β

An intuition is given in Figure 5.12. If a partial subsystem is dominated by a set of partial
subsystems, then it is not relevant for the computation of minimal witnesses as it can always be
replaced by one of the dominating partial subsystems without a decrease in probability. This
is formalized in the following lemma. It turns out that for minimal reachability probabilities
we have to use the strong domination relation. An example which highlights this difference is
given in Figure 5.13.

Proposition 5.21. Let 𝐵 ∈ P, 𝐼 = inter(𝐵) and S be a set of partial subsystems for 𝐵. Furthermore,
let M′ = M𝑆 ′ be a subsystem of M induced by the states 𝑆 ′ ⊆ 𝑆 and define 𝑆1 = 𝑆 ′ \ reach(𝐼 )
and 𝑆2 = 𝑆 ′ ∩ reach(𝐼 ).

1. If Prmax
M′ (♢ target) ≥ 𝜆 holds and S dominates 𝑆2, then there exists 𝑇 ∈ S such that

N = M𝑆1∪𝑇 satisfies Prmax
N (♢ target) ≥ 𝜆 and wgt (𝑇 ) ≤ wgt (𝑆2).

2. If Prmin
M′ (♢ target) ≥ 𝜆 holds and S strongly dominates 𝑆2, then there exists𝑇 ∈ S such that

N = M𝑆1∪𝑇 satisfies Prmin
N (♢ target) ≥ 𝜆 and wgt (𝑇 ) ≤ wgt (𝑆2).

Proof. 1. As S dominates 𝑆2, there exists a subset {𝑇1, . . . ,𝑇𝑘 } ⊆ S such that wgt (𝑇𝑖) ≤ wgt (𝑆2)
for all 1 ≤ 𝑖 ≤ 𝑘 and {𝑇1, . . . ,𝑇𝑘 } dominates 𝑆2. Let 𝑓𝑖 = vp𝑇𝑖 ∈ Q

𝐼 be the value point of partial
subsystem 𝑇𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 , and 𝑔 = vp𝑆2 ∈ Q

𝐼 . By definition, 𝑔 is a convex combination of
vectors

⋃︁
1≤𝑖≤𝑘 𝜋 (𝑓𝑖). That is, there exist 𝜉1, . . . , 𝜉𝑚 ∈ Q≥0 such that

𝑔 =
∑︂

1≤ 𝑗≤𝑚
𝜉 𝑗 · 𝛾 𝑗 , with

∑︂
1≤ 𝑗≤𝑚

𝜉 𝑗 ≤ 1 and 𝛾 𝑗 ∈
⋃︂

1≤𝑖≤𝑘
𝜋 (𝑓𝑖) for all 1 ≤ 𝑗 ≤ 𝑚.

Let 𝛾 ′𝑗 = 𝑓𝑖 if 𝛾 𝑗 ∈ 𝜋 (𝑓𝑖) (for 1 ≤ 𝑗 ≤ 𝑚 and 1 ≤ 𝑖 ≤ 𝑘), and if multiple such 𝑓𝑖 exist then take
arbitrary one. As all vectors in 𝜋 (𝑓 ) are point-wise smaller or equal than 𝑓 , we get

𝑔 =
∑︂

1≤ 𝑗≤𝑚
𝜉 𝑗 · 𝛾 𝑗 ≤

∑︂
1≤ 𝑗≤𝑚

𝜉 𝑗 · 𝛾 ′𝑗 .

Let N𝑖 = M𝑆1∪𝑇𝑖 be the subsystem one gets by taking 𝑆 ′ and replacing partial subsystem 𝑆2 by
partial subsystem 𝑇𝑖 , for all 1 ≤ 𝑖 ≤ 𝑘 . By lemma 5.19 we have for all 1 ≤ 𝑖 ≤ 𝑘

Pr
max
N𝑖

(♢ target) = Pr
max
M 𝑓𝑖

𝑆′
(♢ target) and Pr

max
M𝑆′

(♢ target) = Pr
max
M𝑔

𝑆′
(♢ target) .

We claim that one of these N𝑖 satisfies Prmax
N𝑖

(♢ target) ≥ Pr
max
M′ (♢ target). To show this, let𝔖

be a maximizing scheduler for M𝑔

𝑆 ′ . The probability to reach “target” from 𝑠𝑖𝑛 under𝔖 can



5. Probabilistic systems with low tree width 141

be split into two parts: either “target” is reached while passing through states dom(𝑔) = 𝐼 , or
“target” is reached without seeing 𝐼 . By construction ofM𝑔

𝑆 ′ , in which any state in 𝐼 can only be
seen once, we have

Pr𝔖M𝑔

𝑆′
(♢ target) = Pr𝔖M𝑔

𝑆′
(♢ target∧ □𝐼 ) +

∑︂
𝑞∈𝐼

Pr𝔖M𝑔

𝑆′
(♢𝑞) · 𝑔(𝑞) .

Here 𝐼 = 𝑆 \ 𝐼 . Let 𝜃 ∈ Q𝐼 be defined by 𝜃 (𝑞) = Pr𝔖M𝑔

𝑆′
(♢𝑞) for all 𝑞 ∈ 𝐼 . Then the second part of

the above sum can also be written as 𝜃 · 𝑔. Now choose 1 ≤ 𝑙 ≤ 𝑘 such that 𝜃 · 𝛾 ′
𝑙
is maximal

and let 𝑓 ∗ = 𝛾 ′
𝑙
. It follows that

𝜃 · 𝑓 ∗ ≥ 𝜃 ·
∑︂

1≤ 𝑗≤𝑘
𝜉 𝑗 · 𝛾 ′𝑗 ≥ 𝜃 · 𝑔,

where we use
∑︁

1≤ 𝑗≤𝑘 𝜉 𝑗 ≤ 1. Finally, we have

Pr
max
N𝑙

(♢ target) ≥ Pr𝔖
M 𝑓 ∗

𝑆′
(♢ target) = Pr𝔖

M 𝑓 ∗
𝑆′
(♢ target∧ □𝐼 ) + 𝜃 · 𝑓 ∗ ≥ Pr𝔖M𝑔

𝑆′
(♢ target) .

The last inequality follows by 𝜃 · 𝑓 ∗ ≥ 𝜃 · 𝑔 and

Pr𝔖
M 𝑓 ∗

𝑆′
(♢ target∧ □𝐼 ) = Pr𝔖M𝑔

𝑆′
(♢ target∧ □𝐼 ),

which holds becauseM𝑔

𝑆 ′ andM 𝑓 ∗

𝑆 ′ differ only in states 𝑞 ∈ 𝐼 . As𝔖 is a maximizing scheduler
for M𝑔

𝑆 ′ , it follows that Pr
max
N𝑙

(♢ target) ≥ Pr
max
M′ (♢ target).

2. AsS strongly dominates 𝑆2 there exists a partial subsystem𝑇 ∈ S such that {𝑇 } dominates
𝑆2. Hence we have wgt (𝑇 ) ≤ wgt (𝑆2) and vp𝑆2 ≤ vp𝑇 . Let 𝑓 = vp𝑇 , 𝑔 = vp𝑆2 and N = M𝑆1∪𝑇 .
By Lemma 5.19 we have

Pr
min
N (♢ target) = Pr

min
M 𝑓

𝑆′
(♢ target) and Pr

min
M𝑆′

(♢ target) = Pr
min
M𝑔

𝑆′
(♢ target).

We claim that Prmin
N (♢ target) ≥ Pr

min
M𝑆′

(♢ target). Let𝔖 be a minimizing scheduler for M 𝑓

𝑆 ′ . As
in case (1), we can split the probability of reaching “target” under𝔖 by distinguishing whether
𝐼 is reached or not. We calculate

Pr
min
N (♢ target) = Pr𝔖

M 𝑓

𝑆′
(♢ target) = Pr𝔖

M 𝑓

𝑆′
(♢ target∧ □𝐼 ) +

∑︂
𝑞∈𝐼

Pr𝔖
M 𝑓

𝑆′
(♢𝑞) · 𝑓 (𝑞)

≥ Pr𝔖M𝑔

𝑆′
(♢ target∧ □𝐼 ) +

∑︂
𝑞∈𝐼

Pr𝔖M𝑔

𝑆′
(♢𝑞) · 𝑔(𝑞) ≥ Pr

min
M𝑔

𝑆′
(♢ target) = Pr

min
M𝑆′

(♢ target) .

Here we used thatM𝑔

𝑆 ′ andM 𝑓

𝑆 ′ differ only in the transitions of states in 𝐼 , which can only be
reached once and move to “target” directly. Hence𝔖 can be used as a scheduler forM𝑔

𝑆 ′ and
the probabilities of reaching states 𝑞 ∈ 𝐼 coincide in both MDPs under𝔖, as do the probabilities
of reaching “target” without seeing 𝐼 . This concludes the proof.

Computing the domination relation. To compute the domination relation, we propose Algo-
rithm 3 which uses an incremental convex-hull algorithm as a subroutine. It takes as input a set



142 5.4. A dedicated algorithm for MDPs with low directed tree-partition width

of partial subsystems S and returns a non-dominated subset of S. First, the partial subsystems
are grouped by their weight (line 3). The ConvexHull object (see line 5) allows to add points
incrementally, and stores the vertices of the convex hull of points added so far in the field
vertices. The main loop of the procedures goes through all possible weight values 𝑘 , computes
value points and projections of partial subsystems of weight 𝑘 and adds them to the ConvexHull
object H . Then, the convex hull of the resulting set of points is computed (observe that this
includes value points of partial subsystems with weight less than 𝑘 from previous iterations
of the loop). Only the partial subsystems of weight 𝑘 whose value points are vertices of the
corresponding polytope are kept. All others are convex combinations of these vertices, and
hence dominated.

The convex hull of 𝑘 points in dimension 𝑑 can be computed in time 𝑂 (𝑘 · log𝑘 + 𝑘 ⌊𝑑/2⌋)
(see [Cha93]). In our case 𝑑 corresponds to the number |𝐼 | of interface states, as this is the
dimension of the value points. A number of dedicated and fast incremental algorithms exist to
compute the convex hull in low dimensions[Gra72, BDH96, Cha96]. Therefore, tree partitions
with few interface states in each block are desirable.

We now show that Algorithm 3 indeed correctly computes the domination relation.

Lemma 5.22. Let 𝐵 ∈ P, S be a set of partial subsystems for 𝐵 and R be the result of Algorithm 3
on input S. Then,

• for any 𝑇 ∈ S \ R it holds that R dominates 𝑇 , and

• no 𝑇 ∈ R is dominated by R \ {𝑇 }.

Proof. Let𝑚 be the maximal weight of any partial subsystem in S. For each 1 ≤ 𝑘 ≤ 𝑚 the set
H .vertices in line 9 contains the vertices of the convex hull of points

Π𝑘 =
⋃︂

{ 𝜋 (vp𝑆 ′) | 𝑆 ′ ∈ S and wgt (𝑆 ′) ≤ 𝑘 }.

If for some 𝑇 ∈ S[𝑘], vp𝑇 is not in H .vertices at that point it is a convex combination of Π𝑘 .
Hence, 𝑇 is dominated by

⋃︁
1≤ 𝑗≤𝑘 { 𝑆 ′ ∈ S[ 𝑗] | vp𝑆 ′ ∈ H .vertices }, and thereby by R.

For the second claim, suppose that some partial subsystem 𝑇 ∈ R is dominated by R \ {𝑇 }.
Then, in particular 𝑇 is dominated by { 𝑆 ′ ∈ R \ {𝑇 } | wgt (𝑆 ′) ≤ wgt (𝑇 ) }, and hence also by⋃︁

1≤ 𝑗≤wgt (𝑇 ) S[ 𝑗], as the former is a subset of the latter. It follows that vp𝑇 is not a vertex of
the convex hull of

⋃︁
1≤ 𝑗≤wgt (𝑇 ) {𝜋 (vp𝑆 ′) | 𝑆 ′ ∈ S[ 𝑗]}, as it is a convex combination of vectors

therein. But then 𝑇 cannot be in R, as it is not added to R in Line 9 in the loop iteration
corresponding to 𝑘 = wgt (𝑇 ).

5.4.2 An algorithm based on the domination relation

We are now in the position to describe Algorithm 4, which computes minimal witnessing
subsystem of M for Pr𝔪M (♢ target) ≥ 𝜆 (for 𝔪 ∈ {max,min}), using the structure of the tree
decomposition P and the domination relation. It will be described for 𝔪 = max, but can be
used in the same way for 𝔪 = min by using the strong domination relation, rather than the
standard one. It proceeds bottom-up along the tree partition, enumerates all partial subsystems
for the current block 𝐵 and prunes away those that are dominated. The enumeration is done by
enumerating the subsets of states in 𝐵 and combining them in all possible ways with partial
subsystems which have already been computed for the successor blocks.



5. Probabilistic systems with low tree width 143

Algorithm 3: removeDominated
Input: Set of partial subsystems S for 𝐵, with 𝐼 = inter(𝐵).

1 𝑚 := max{ wgt (𝑆 ′) | 𝑆 ′ ∈ S }
/* Group partial subsystems by their weight. */

2 for 𝑘 = 1 to𝑚 do

3 S[𝑘] := { 𝑆 ′ ∈ S | wgt (𝑆 ′) = 𝑘 }
4 end

/* Initialize an empty ConvexHull object */
5 H := ConvexHull( )
6 for 𝑘 = 1 to𝑚 do

/* Compute projections of value vectors in S[𝑘]. */
7 Π :=

⋃︁{ 𝜋 (vp𝑆 ′ ) | 𝑆 ′ ∈ S[𝑘] }
/* Add Π to the incremental ConvexHull object. */

8 H .addPoints(Π)
/* Remember only subsystems in S[𝑘] that are vertices of H. */

9 R := R ∪ { 𝑆 ′ ∈ S[𝑘] | vp𝑆 ′ ∈ H .vertices }
10 end

11 return R

To avoid enumerating all subsets of 𝐵, we apply a filter based on a Boolean condition.
It encodes that there should be no “unnecessary” states, which are states having neither a
successor or predecessor in the subset nor an incoming or outgoing edge to other blocks. This
is realized by the following Boolean formula with variables in 𝑆 :

𝜙 (𝐵) =
⋀︂

𝑠∉inter(𝐵)

⎛⎜⎝𝑠 →
⋁︂

𝑠′∈pre(𝑠 )∩𝐵
𝑠′
⎞⎟⎠ ∧

⋀︂
𝑠∉ex(𝐵)

⎛⎜⎝𝑠 →
⋁︂

𝑠′∈post(𝑠 )∩𝐵
𝑠′
⎞⎟⎠

Here ex(𝐵) = {𝑠 ∈ 𝐵 | post(𝑠) \ 𝐵 ≠ ∅}, and post(𝑠) and pre(𝑠) denote the successors and
predecessors of 𝑠 in the underlying graph of M. Any partial subsystem 𝑆 ′ for 𝐵 such that
𝑆 ′ ∩ 𝐵 is not a model of 𝜙 (𝐵) is dominated by another partial subsystem for 𝐵. The latter can be
obtained by removing unnecessary states from 𝑆 ′.

Let us explain more precisely how Algorithm 4 works. The algorithm keeps a map psubsys
from blocks 𝐵 ∈ P to partial subsystems for 𝐵. This map is populated in a bottom-up traversal
along the tree order of P (Line 1). For a given block 𝐵, the models of 𝜙 (𝐵) (these are subsets
of 𝐵) are enumerated (Line 4). The method successorPoints in Line 5 returns all pairs (𝑆 ′, 𝑓 ),
where 𝑆 ′ is a set which can be obtained by combining partial subsystems in psubsys[𝐵𝑖], for
all 𝐵𝑖 ∈ Post(𝐵), and 𝑓 ∈ Qout(𝐵) is a vector including corresponding values of all states in
out(𝐵). It is defined formally as follows, given that the successors of 𝐵 in the tree order are
Post(𝐵) = {𝐵1, . . . 𝐵𝑘 }:

successorPoints(psubsys, 𝐵) ={︁ (︁ ⋃︂
1≤ 𝑗≤𝑘

𝑆 𝑗 , con
(︁
vp𝑆1, . . . , vp𝑆𝑘

)︁ )︁
| 𝑆1 ∈ psubsys[𝐵1], . . . , 𝑆𝑘 ∈ psubsys[𝐵𝑘 ]

}︁
,

where con(vp𝑆1, . . . , vp𝑆𝑘 ) is the vector one gets by concatenating vectors vp𝑆𝑖 , with 1 ≤ 𝑖 ≤ 𝑘 .
Here we use that the interfaces of blocks 𝐵1, . . . , 𝐵𝑘 are disjoint. These interfaces form the
domains of vectors vp𝑆1, . . . vp𝑆𝑘 . The vectors vp𝑆𝑖 have been computed in a previous iteration



144 5.4. A dedicated algorithm for MDPs with low directed tree-partition width

Algorithm 4: A dedicated algorithm for MDPs using a given directed tree partition.
Input: MDPM, directed tree partition P, rational 𝜆
Output: Minimal witnessing subsystem for Prmax

M (♢ target) ≥ 𝜆.
/* Bottom-up traversal of the tree partition. */

1 for B in reverse(topologicalSort(P)) do

2 𝐼 := inter(𝐵)
3 𝑂 := out(𝐵)

/* Consider only subsets of 𝐵 that satisfy 𝜙 (𝐵) */
4 for 𝑆𝐵 ⊆ 𝐵 such that 𝑆𝐵 |= 𝜙 (𝐵) do

/* Consider each combination of partial subsystems of the children of 𝐵.
*/

5 for (𝑆 ′, 𝑓 ) in successorPoints(psubsys, B) do

/* The new partial subsystem 𝑆new for 𝐼 combines 𝑆𝐵 and 𝑆 ′. */
6 𝑆new := 𝑆𝐵 ∪ 𝑆 ′

7 vp𝑆new := (max-val𝑓
𝑆new

) |𝐼
/* Remember the corresponding partial subsystem. */

8 psubsys[𝐵].insert(𝑆new)
9 end

/* Remove dominated points */
10 psubsys[𝐵] := removeDominated(psubsys[𝐵])
11 end

12 end

/* Here 𝐵𝑛 is assumed to be the root of the tree associated with P. */
13 return argmin

{︁
wgt (𝑆 ′) for 𝑆 ′ in psubsys[𝐵𝑛] such that vp𝑆 ′ (𝑠𝑖𝑛) ≥ 𝜆

}︁
of the for loop in Line 7 and are assumed to be in global memory (they are also needed to
compute the domination relation).

For each such pair (𝑆 ′, 𝑓 ) one computes the value achieved in interface states of 𝐵 under
the partial subsystem 𝑆𝐵 ∪ 𝑆 ′ (Line 7). This corresponds to computing the maximal reachability
probabilities in the MDP M 𝑓

𝑆new
.

Proposition 5.23. If Algorithm 4 returns 𝑆 ′ on input (M,P, 𝜆), then 𝑆 ′ is a weight-minimal
witness for Prmax

M (♢ target) ≥ 𝜆. It returns within exponential time in the size of the input.

Proof. First, we argue that if Algorithm 4 returns 𝑆 ′ then M𝑆 ′ is a witnessing subsystem for
Pr

max
M (♢ target) ≥ 𝜆. In this case we have vp𝑆 ′ (𝑠𝑖𝑛) ≥ 𝜆, and hence, the maximal probability

achieved by M𝑆 ′ in state 𝑠𝑖𝑛 is indeed larger than 𝜆. Observe that values of states in partial
subsystems are computed correctly in Line 7 by Lemma 5.19.

Next, we take any witnessing subsystemM𝑇 and show that wgt (𝑇 ) ≥ wgt (𝑆 ′) holds. Let
𝐵1, . . . , 𝐵𝑛 be a reverse-topological order of the tree partition. We will construct a sequence
𝑆0, . . . , 𝑆𝑛 of subsets of 𝑆 inductively such that

• for all 0 ≤ 𝑖 ≤ 𝑛 we have wgt (𝑇 ) ≥ wgt (𝑆𝑖) and 𝑆𝑖 induces a witnessing subsystem for
Pr

max
M (♢ target) ≥ 𝜆, and

• for all 1 ≤ 𝑖 ≤ 𝑛 and 𝑗 ≤ 𝑖 the partial subsystem 𝑆𝑖 ∩ reach(inter(𝐵 𝑗 )) is in psubsys[𝐵 𝑗 ]
at the end of the execution of Algorithm 4.

We start by setting 𝑆0 = 𝑇 . To find 𝑆𝑖+1 we assume that the above properties hold for all
𝑆 𝑗 with 𝑗 ≤ 𝑖 . If the partial subsystem 𝑆𝑖 ∩ reach(inter(𝐵𝑖+1)) is included in psubsys[𝐵𝑖+1],



5. Probabilistic systems with low tree width 145

we can set 𝑆𝑖+1 = 𝑆𝑖 . Otherwise, we proceed as follows. Let {𝐵𝑙1, . . . , 𝐵𝑙𝑚 } = Post(𝐵𝑖+1). By
induction hypothesis, the partial subsystem𝐾𝑙 𝑗 = 𝑆𝑖∩reach(inter(𝐵𝑙 𝑗 )) is in psubsys[𝐵𝑙 𝑗 ] at the
end of Algorithm 4 for all 𝐵𝑙 𝑗 ∈ Post(𝐵𝑖+1). Hence, the partial subsystem 𝐾 =

⋃︁{𝐾𝑙1, . . . , 𝐾𝑙𝑚 }
appears in 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑃𝑜𝑖𝑛𝑡𝑠 (psubsys, 𝐵𝑖+1) when considering block 𝐵𝑖+1 in Line 5 of Algorithm 4.
We make a case-distinction on whether 𝑆𝑖 ∩ 𝐵𝑖+1 is a model of the formula 𝜙 (𝐵𝑖+1).

Case 1: 𝑆𝑖 ∩𝐵𝑖+1 |= 𝜙 (𝐵𝑖+1). In this case, the partial subsystem 𝐾 ∪ (𝑆𝑖 ∩𝐵𝑖+1) is inserted into
psubsys[𝐵𝑖+1] in Line 8. As it is not in psubsys[𝐵𝑖+1] at the end of the execution of Algorithm 4
by assumption, it must have been removed in Line 10. Hence, by Lemma 5.22, 𝐾 ∪ (𝑆𝑖 ∩ 𝐵𝑖+1)
is dominated by psubsys[𝐵𝑖+1]. By Proposition 5.21 we can conclude that that there exists
a partial subsystem 𝐾 ′ ∈ psubsys[𝐵𝑖+1] such that (𝑆𝑖 \ reach(inter(𝐵𝑖+1))) ∪ 𝐾 ′ induces a
witnessing subsystem for Prmax

M (♢ target) ≥ 𝜆, and wgt (𝐾 ′) ≤ wgt (𝐾 ∪ (𝑆𝑖 ∩ 𝐵𝑖+1)). We set
𝑆𝑖+1 = (𝑆𝑖 \ reach(inter(𝐵𝑖+1))) ∪ 𝐾 ′. As 𝐾 ′ ∈ psubsys[𝐵𝑖+1] holds, it follows that for all 𝐵′
which are below 𝐵𝑖+1 in the tree order we have 𝐾 ′ ∩ reach(inter(𝐵′)) ∈ psubsys[𝐵′].

Case 2: 𝑆𝑖∩𝐵𝑖+1 ̸ |= 𝜙 (𝐵𝑖+1). In this case there exists some 𝐿 ⊆ 𝑆𝑖∩𝐵𝑖+1 such that 𝐿 |= 𝜙 (𝐵𝑖+1).
For any set 𝐾 ⊆ reach(out(𝐵𝑖+1)), the partial subsystem 𝐿 ∪ 𝐾 strongly dominates the partial
subsystem (𝑆𝑖 ∩ 𝐵𝑖+1) ∪ 𝐾 . Now the argument of Case 1 can be applied by observing that if a
set of partial subsystems dominate 𝐿 ∪ 𝐾 , then the same set dominates (𝑆𝑖 ∩ 𝐵𝑖+1) ∪ 𝐾 .

This shows that we can construct the sequence 𝑆0, . . . , 𝑆𝑛 satisfying the above properties.
But then 𝑆𝑛 induces a witnessing subsystem and satisfies wgt (𝑇 ) ≥ wgt (𝑆𝑛). As 𝑆𝑛 is part of
psubsys[𝐵𝑛] in the last line of the algorithm, we have wgt (𝑆𝑛) ≥ wgt (𝑆 ′).

Finally, we argue that the algorithm takes at most exponential time to return. Let 𝑆 be the
states of M, 𝑁 = |𝑆 | and𝑊 be the width of the given tree partition. The outermost for-loop is
taken at most 𝑁 times. The for-loop starting in Line 4 is taken at most 2𝑊 times, as it ranges over
subsets of 𝐵 which has at most𝑊 states. The innermost for-loop in Line 5 is taken at most 2𝑁
times, as it ranges over subsets of 𝑆 . The value computation in Line 7 can be done in polynomial
time in M. The subroutine removeDominated (Algorithm 3) which is called in Line 10 requires
at most exponential time in𝑊 (as the dimension of points is the number of interface states) and
polynomial time in the number of input vectors (in this case |psubsys[𝐵] |). This is because the
convex hull of 𝑘 points in dimension 𝑑 can be computed in time 𝑂 (𝑘 log𝑘 + 𝑘 ⌊𝑑/2⌋) [Cha93].
In our case 𝑑 = 𝑂 (𝑊 ) and 𝑘 = 𝑂 (2𝑊 · |psubsys[𝐵] |) = 𝑂 (2𝑊 · 2𝑁 ). The factor of 2𝑊 in the
number of points used in the convex hull computation comes from the fact that we include
all projections of any point for a partial subsystem in psubsys[𝐵]. All in all, the algorithm
requires at most exponential time in the size of M.

Witnesses for Prmin
M (♢ target) ≥ 𝜆 can be handled by replacing the call to removeDominated

in Line 10 by a method which computes the strong domination relation. This essentially requires
computing the Pareto frontier of a set of vectors, which can be done in time 𝑂 (𝑘 (log𝑘)𝑑−2) for
𝑘 𝑑-dimensional vectors [KLP75]. In general, computing the value vectors in line 7 amounts to
solving a linear program, as it requires computing optimal reachability probabilities of an MDP.
However, if the input is Markov chain, it suffices to solve a linear equation system. Table 5.1
gives an overview over the possible instances of the algorithm.

Additional heuristics to exclude partial subsystems. In addition to the domination relation
we propose two conditions on when a partial subsystem can be excluded. Suppose that we are
considering partial subsystem 𝑇 for block 𝐵. If we know, by the structure of the given system,
that “target” is only reachable from 𝑠𝑖𝑛 through 𝐵 and

∑︁
𝑞∈inter(𝐵) vp𝑇 (𝑞) < 𝜆 holds, then we



146 5.4. A dedicated algorithm for MDPs with low directed tree-partition width

Table 5.1: Different versions of Algorithm 4.

Model value function computing the value (Line 7) domination relation (Line 10)

Markov chain Pr(♢ target) linear equations standard

MDP
Pr

max (♢ target)
linear program

standard

Pr
min (♢ target) strong

know that 𝑇 cannot be part of a witnessing subsystem for Pr𝔪 (♢ target) ≥ 𝜆. This is because
no matter how the partial subsystem will be completed, the value in the initial state of reaching
“target” will be below 𝜆.

For the second condition, let us assume that𝑈 is an upper bound on the weight of a minimal
witnessing subsystem (which may have been computed heuristically) and𝑀 is the weight of a
shortest path from the initial state to any state of 𝐼 . If𝑀 + wgt (𝑇 ) > 𝑈 , then 𝑇 cannot be part
of any minimal witness.

5.4.3 Experimental evaluation

Wehave implementedAlgorithm 4 in Switss using the convex hull library qhull1. At themoment,
the implementation is limited to Markov chains and computing state-minimal witnessing
subsystems, but it could be extended in a straight-forward manner to also handle weight-
minimality and MDPs. All experimental data and scripts to produce them are available [Jan22b].

To evaluate it, we reconsider the bounded retransmission protocol (brp), which was also
used for benchmarks in Section 4.2.5. It is parametrized by 𝑁 (the number of “chunks” of the
transmitted file) and 𝐾 (the number of maximal retransmissions per chunk). We fix 𝐾 = 1
but consider increasing values for 𝑁 , yielding instances with in between 185 (𝑁 = 10) and
1625 (𝑁 = 90) states. We consider the probabilistic reachability constraint Pr(♢ target) ≥ 𝜆, for
varying thresholds 𝜆. The state “target” represents the situation that the receiver reports an
uncertainty on the success of the transmission. The protocol maintains a counter which is only
increased up to maximal value 𝑁 , and using this fact one can compute a natural directed path
partition for the model. Essentially, it partitions the state space along the possible values of the
counter. The directed path partitions that we get in this way have length 𝑁+1, constant width
37 and two interface states in each block.

The experiments were run on a computer with two Intel E5-2680 processors having 8
cores each at 2.70GHz running Linux, with a total of 378 GBs of RAM. Each instance was
limited to a single core for a fairer comparison. While Gurobi is able to use multiple cores, our
implementation of Algorithm 4 is not. In principle, however, Algorithm 4 offers large potential
for parallelization, as it has to process a large number of independent partial subsystems. In
particular, the for loop in Line 4 could be parallelized. All instances were run with a timeout of
1200 seconds and a memory limit of 30 GB.

Figure 5.14 compares the computation times of Algorithm 4 against theMILP-based approach
described in Section 4.2.1. The computation times do not include the generation of the path
partition. As the model at hand is a Markov chain, we can use both the min-witness program
and the max-witness program defined in Section 4.2.1 (see Definitions 4.28 and 4.32). To

1http://www.qhull.org/



5. Probabilistic systems with low tree width 147

10 20 30 40 50 60 70 80 90
brp_N_1, threshold: 0.0001

100

101

102

103

tim
e 

in
 s

ec
on

ds

max-MILP
min-MILP
tree-algo

TO

10 20 30 40 50 60 70 80 90
brp_N_1, threshold: 0.0007

100

101

102

103

tim
e 

in
 s

ec
on

ds

max-MILP
min-MILP
tree-algo

TO

Figure 5.14: Computation times of the MILP-based approaches using the min-witness and max-
witness MILPs with Switss (see Section 4.2.1) and Algorithm 4 for two different thresholds.

solve the MILPs, Switss uses the solver Gurobi [Gur22] (version 9.5). The evaluation shows
that Algorithm 4 performs better for this benchmark, in particular for larger instances and
thresholds. While a result is not returned before the timeout using the MILP-based approaches
for the threshold 0.0007 and instances with 𝑁 ≥ 20, our implementation returns in less than
100 seconds for instances up to 𝑁 = 90.

We also considered instances of the bounded retransmission model with maximal number
of retransmissions 𝐾 = 2, rather than 𝐾 = 1. However, for these instances neither Algorithm 4
nor the MILP-based approaches returned an answer within the timeout, for any 𝑁 ≥ 10.

Summing up, the experiments show that Algorithm 4 may outperform MILP-based ap-
proaches for well-structured benchmarks in which favorable directed path decompositions
exist and can be computed easily. Nevertheless, it does not scale to larger instances or path
decompositions whose width is not very small.



Chapter 6

Explications for probabilistic timed
automata

The models we have considered so far in this thesis do not contain any information about
timing aspects of the modeled systems. For example, they do not specify for how long a system
remains in any given state. To encode timing into a Markov decision process, one could make
the assumption that each state is visited for a fixed amount of time, and therefore a path of
length 𝑛 corresponds to a time interval of 𝑛 time steps. Such a model of time is inherently
discrete, as the granularity of time steps needs to be fixed when modeling the system.

To faithfully represent real-time systems and the timing constraints which usually form a
crucial part of their specification, this is not always appropriate. Therefore, a theory of timed
automata was developed [AD94]. It is based on a dense-time model and extends ordinary
automata by real-valued clocks. Based on this theory, probabilistic timed automata (PTA) were
introduced [KNSS02], which describe systems that combine real-time and probabilistic aspects.

The underlying state space of such models is inherently uncountable, as the clocks are
real-valued. However, it was discovered that timed automata have finite-state bisimulation
quotients [AD94] (the classical construction is called the region construction), which makes many
verification problems decidable. Much work has been put into making model checking technol-
ogy for timed systems feasible and scalable, and very successful tools such as Uppaal [LPY97]
exist. In the probabilistic world, model checking algorithms for probabilistic timed automata
and related complexity questions were considered in [KNSS02, KNSW07, LS07]. Several no-
tions of abstraction and simulation for PTA have been considered [CHK08, ST10]. The tool
Prism [KNP11] is the most prominent tool for modeling and verifying PTA.

Abstraction-based methods are at the core of model checking algorithms for timed automata
and a number of approaches for (counterexample-guided) abstraction refinement have been
proposed [DKL07, HZH+10, RSM19]. All of these works address model checking of safety
properties. The notions of counterexample which are usually considered are variants of timed
traces. These are alternating sequences of states and transitions of the timed automaton, which
witness the fact that a violating execution of the timed automaton exists.

In this chapter, we propose a notion of witnessing subsystems for lower-bounded prob-

148



6. Explications for probabilistic timed automata 149

abilistic reachability constraints in probabilistic timed automata. As for MDPs, the possible
behavior of a subsystem is restricted when compared to the original PTA. It is witnessing if
it, nevertheless, satisfies the threshold constraint on the (maximal or minimal) reachability
probability. We introduce three notions of size for PTA subsystems, some of which take into
account timing aspects. This is done by considering the logical strength of location invariants
(which determine the clock valuations that are valid in a given location), or the volume of the
set of clock valuations satisfying the invariants. Finally, we show that there is a correspondence
between witnessing PTA subsystems and Farkas certificates for certain finite-state quotients of
the PTA. Using this correspondence, we describe single-exponential algorithms for computing
minimal witnessing PTA subsystems for all three notions of size.

Related work

As mentioned above, timed traces are utilized as counterexamples to safety properties by model
checkers such as Uppaal [LPY97], and also applied in counter-example guided abstraction re-
finement for timed automata [DKL07, HZH+10, RSM19]. Repair mechanisms of timed automata
based on analyzing timed traces are presented in [KLW19], and the extraction of dynamic causes
from timed traces was studied in [KLS20]. Certification of positive model checking results has
been studied for timed automata in [WvM20, WHvP20]. This work considers certificate condi-
tions of non-reachability in standard timed automata and emptiness of timed Büchi automata. A
formally verified (in the proof-assistant Isabelle/HOL) certificate checker is presented, building
on previous formalizations of timed automata [Wim16, WL18]. This formalization includes
probabilistic timed automata [WH18].

Counterexamples for safety properties in hybrid automata, which generalize timed automata,
are described in [NÁCC14]. Here, counterexamples are also a form of traces, and the emphasis
of the paper is to extend existing algorithms and tools (which are generally incomplete) such
that they also return a counterexample when a negative answer is given. An extension of our
notion of subsystem to probabilistic rectangular automata has been considered in [Hen21].

Outline

Section 6.1 first defines witnessing subsystems for PTA, and shows that the maximal (and
minimal) reachability probabilities cannot increase when passing to a (strong) subsystem. This
is done by showing that a witnessing subsystem induces a Farkas certificate in a finite-state
quotient of the PTA (Theorem 6.3). Then, after introducing a zone closure operation for difference
bounds matrices (Section 6.1.2), we discuss how to go from a Farkas certificate of a finite-state
quotient to a witnessing subsystem (Section 6.1.3). Finally, three notions of minimality of
witnessing subsystems, along with algorithms to compute them, are introduced in Section 6.2.

Relation to published work

The chapter is largely based on the paper [JFB20], which is joint work with Florian Funke and
Christel Baier. In contrast to [JFB20], we no longer assume that all time-divergent schedulers
reach {target, exit} with probability one, and the algorithms in Section 6.1.3 are presented
using label-based minimization of witnessing subsystems in the quotient MDP. Furthermore, in
our definition of PTA we assume that transition labels uniquely identify the transition, which
simplifies the definition of subsystems.



150 6.1. Witnessing subsystems for probabilistic timed automata

Figure 6.1: A PTA T1 over a single clock 𝑐 , using a
compact representation of transitions. The location
run has two outgoing transitions, one with guard
0 < 𝑐 ≤ 1 carrying probability 1/2 to target and 1/2 to
exit, and another one with guard 1 < 𝑐 ≤ 2, carrying
probability 3/4 to target and 1/4 to exit. The location
invariant of run is 𝑐 ≤ 2.

run
c ≤ 2

target

exit

0 < c ≤ 1 : (1/2, 1/2)

1 < c ≤  : (3/4, 1/4)

6.1 Witnessing subsystems for probabilistic timed automata

In this section we define a notion of subsystem for probabilistic timed automata (PTA), which
generalizes the notion of subsystem for MDPs, as given in Definition 4.1. We consider pointed
PTA as defined in Section 2.3, which contain distinguished absorbing locations “target” and
“exit”.

Before defining subsystems, let us consider two examples of pointed PTA. The PTA in Fig-
ure 6.1 represents the following simple scenario. A server runs a computation, and the probability
of successfully computing a result (represented by reaching “target”) depends on how long it
runs. If it stops within one time unit, this probability is 1/2, and if it runs for more than one time
unit, this probability increases to 3/4. The PTA in Figure 6.2 adds one layer of complexity to this
scenario and includes an additional clock 𝑢. An update is being installed on the server, and the
probability of success now depends both on the time spent on the computation, and whether
the update was completed (this happens when 𝑢 = 1) before the server stops. With probability
2/3, the server has time to complete the update before the computation starts.

6.1.1 Subsystems for probabilistic timed automata

We start by defining subsystems for PTA.

Definition 6.1 (Subsystem). Let T be a pointed PTA with T = (Loc,Cl,Act, inv,𝑇 , 𝑙𝑖𝑛). A
pointed PTA T ′ = (Loc′,Cl,Act, inv′,𝑇 ′, 𝑙𝑖𝑛) is a (weak) subsystem of T if target, exit ∈ Loc′ ⊆
Loc holds and for all 𝑙 ∈ Loc′ \{target, exit} we have

1. inv′(𝑙) ⊩ inv(𝑙),

2. for all 𝛼 ∈ Act: if 𝑇 ′(𝑙, 𝛼) = (𝑔′, 𝜇′) and 𝑇 (𝑙, 𝛼) = (𝑔, 𝜇), then we have

2a. 𝑔′ ⊩ 𝑔, and
2b. 𝜇′(𝐶, 𝑙 ′) ∈ { 0, 𝜇 (𝐶, 𝑙 ′) } for all (𝐶, 𝑙 ′) ∈ 2Cl × Loc′ with 𝑙 ′ ≠ exit.

We call T ′ a strong subsystem if (2a.) can be replaced by the stronger condition

2a∗. 𝑔′ ≡ 𝑔 ∧ inv′(𝑙),

and, additionally, for all 𝑙 ∈ Loc′, 𝑣 ∈ Val(Cl) and 𝑡 ∈ R>0 we have

3. if 𝑣 |= inv′(𝑙) and 𝑣 + 𝑡 |= inv(𝑙) hold, then 𝑣 + 𝑡 |= inv′(𝑙) holds.



6. Explications for probabilistic timed automata 151

Figure 6.2: A PTA T2 over clocks
{𝑐,𝑢}, using the same representa-
tion as in Figure 6.1. The single
transition of location upd uses a
clock reset for clock 𝑐 .

lin
c = u = 0

upd
u ≤ 1

run
c ≤ 2

target

exit

2/3

1/3

u ≥ 1
c := 0

u < 1 ∧ 0 < c ≤ 1 : (1/2, 1/2)

u ≥ 1 ∧ 0 < c ≤ 1 : (3/4, 1/4)

u ≥ 1 ∧ 1 < c ≤  : (9/10, 1/10)

Intuitively, one gets a subsystem of a PTA T by discarding locations, strengthening location
invariants and transition guards and redirecting individual edges to the location “exit”. The
redirection to “exit” is implicit in the constraint (2b). It says that the probability of an edge
should either coincide with that of the corresponding edge in T , or be zero, for all edges leading
to a location which is not “exit”. But as 𝜇′ needs to be a probability distribution, if one chooses to
set some edge probability to zero, then the same probability has to be added to an edge leading
to the location “exit”. Observe that by letting the guard of a transition be false (i.e., 𝑔′ = false)
in a transition in T ′, one can disable actions which were enabled in T .

While being a subsystem is enough to witness lower bounds on Pr
max
T (♢ target) (see Corol-

lary 6.4 below), to witness lower bounds on Pr
min
T (♢ target) we need the two additional con-

straints imposed on strong subsystems. First, guards can only shrink as much as the location
invariant (2a∗). In particular, this implies that transitions cannot be disabled, unless the new
invariant does not overlap with the old guard 𝑔 of the transition. Furthermore, the new invariant
inv′(𝑙) should be closed under time successors within inv(𝑙) for all 𝑙 ∈ Loc′. Together, these
conditions intuitively make sure that all possibilities that a scheduler has (including the choice
of time delays) in T are preserved in the subsystem.
Example 6.2. Consider again the PTAs T1 and T2 defined in Figures 6.1 and 6.2. Strengthening
the location invariant of run in T1 to 𝑐 ≤ 1 yields a subsystem T ′

1 . The maximal probability
in T ′

1 is 1/2, while it was 3/4 in T1. The PTA T ′
1 is not a strong subsystem because it violates

condition (3.) of Definition 6.1. To see this, observe that the valuation 𝑣 = (𝑐 ↦→ 1) satisfies the
location invariant of T ′

1 , and 𝑣 + 1 satisfies the invariant of T1 but not of T ′
1 .

Now consider the PTA T ′
2 which is formed by taking T2 and changing the invariant in

location run to be 𝑐 ≤ 2 ∧ 𝑢 ≥ 1. This implicitly redirects the edge between 𝑙𝑖𝑛 and run to
“exit”, as taking that edge would lead to a valuation which violates the invariant in run (see the
definition of the semantics of pointed PTA in Section 2.3). One can check that the result is a
strong subsystem. The minimal probability of reaching “target” in T ′

2 is 2/3 · 3/4 = 1/2. △
As for MDPs, the important property of subsystems is that the maximal and minimal

reachability probabilities do not increase when passing to a subsystem. To show this, we
observe that subsystems of the pointed PTA T induce MDP subsystems in finite-state quotients
of S(T ) (i.e., the semantics of T ) with respect to probabilistic time-abstracting bisimulations
(PTABs). Details on the definition of PTAB can be found in Section 2.3.1. By the correspondence
of MDP subsystems and Farkas certificates (see Theorem 4.23), it follows that we also find
Farkas certificates which prove that the optimal probability in T is at least as high as in T ′.



152 6.1. Witnessing subsystems for probabilistic timed automata

Theorem 6.3 (PTA subsystems induce Farkas certificates). Let T be a pointed PTA, and let
∼ be a PTAB on T which respects target and exit and has finite index. Let M = S(T )/∼
be the associated quotient MDP with states 𝑆 ∪ {target, exit}. Given a subsystem T ′ of T , let
𝑆 ′ = {[𝑠] ∈ 𝑆 | 𝑠 is a state of S(T ′)}.

Then, there exists a Farkas certificate y ∈ Fmax
M,≥ (𝜆max) with state-supp(y) ⊆ 𝑆 ′, where

𝜆max = Pr
max
T′ (♢ target). If T ′ is a strong subsystem, then additionally there exists a Farkas

certificate z ∈ Fmin
M,≥ (𝜆min) such that supp(z) ⊆ 𝑆 ′, where 𝜆min = Pr

min
T′ (♢ target).

Proof. We first establish some relations between the semantics of T = (Loc,Cl,Act, inv,𝑇 , 𝑙𝑖𝑛)
and T ′ = (Loc′,Cl,Act, inv′,𝑇 ′, 𝑙𝑖𝑛). For this, we denote by 𝑆T the states of S(T ), by 𝑆T′ the
states of S(T ′), by 𝑇S(T) the transitions of S(T ) and by 𝑇S(T′ ) the transitions of S(T ′).

(a) T and T ′ have the same set of actions, and 𝑆T′ ⊆ 𝑆T .
Proof: As T and T ′ have the same set of actions by construction, the actions of the
semantics are also the same. Then, 𝑆T′ ⊆ 𝑆T follows from Loc′ ⊆ Loc and point (1.) of
Definition 6.1.

(b) For any transition (𝑙, 𝑣) → 𝜇′sem (discrete action, or time delay) in S(T ′), there exists a
transition (𝑙, 𝑣) → 𝜇sem in S(T ) such that for all (𝑙 ′,𝐶) ∈ supp(𝜇sem) with 𝑙 ′ ≠ exit we
have 𝜇′sem(𝑙 ′,𝐶) ≤ 𝜇sem(𝑙 ′,𝐶).

Proof: We first consider discrete transitions. Take any transition (𝑙, 𝑣) 𝛼−→ 𝜇′sem ∈ 𝑇S(T′ ) .

There must be a transition 𝑙
𝛼 : 𝑔′
−→ 𝜇′ in T ′ such that 𝑣 |= 𝑔′ and such that 𝜇′sem and 𝜇′ are

related by the equalities in the definition of the semantics of PTAs. Then, by condition
(2.) of Definition 6.1, there exists a transition 𝑙

𝛼 : 𝑔
−→ 𝜇 of T such that 𝑣 |= 𝑔 (by (2a.)).

Hence, there also exists a corresponding transition (𝑙, 𝑣) 𝛼−→ 𝜇sem ∈ 𝑇S(T) . From (2b)
in Definition 6.1 it follows that 𝜇′(𝐶, 𝑙 ′) ∈ { 𝜇 (𝐶, 𝑙 ′), 0 } for all 𝐶 ⊆ Cl and 𝑙 ′ ∈ Loc′
with 𝑙 ′ ≠ exit. This implies that for states (𝑙 ′, 𝑣 ′) of 𝑆 (T ′) satisfying 𝑙 ′ ≠ exit we have
𝜇′sem(𝑙 ′, 𝑣 ′) ≤ 𝜇sem(𝑙 ′, 𝑣 ′).
Any time delay which exists in S(T ′) also exists in S(T ) as the invariant of locations in
T ′ implies the corresponding invariant in T by point (1.) of Definition 6.1.

(c) If T ′ is a strong subsystem, then for any transition (𝑙, 𝑣) → 𝜇sem (discrete action, or time
delay) in S(T ) such that (𝑙, 𝑣) ∈ 𝑆T′ , there exists a transition (𝑙, 𝑣) → 𝜇′sem in S(T ′) such
that for all (𝑙 ′, 𝑣 ′) ∈ supp(𝜇sem) with 𝑙 ′ ≠ exit we have 𝜇′sem(𝑙 ′, 𝑣 ′) ≤ 𝜇sem(𝑙 ′, 𝑣 ′).

Proof: We again first consider discrete actions, so take (𝑙, 𝑣) 𝛼−→ 𝜇sem ∈ 𝑇S(T) . Then, there
exists a corresponding transition 𝑙

𝛼 : 𝑔
−→ 𝜇 in T satisfying 𝑣 |= 𝑔. We use conditions (2.) and

(2a∗.) of Definition 6.1 to find 𝑙
𝛼 : 𝑔′
−→ 𝜇′ of T ′ such that 𝑔′ ≡ 𝑔 ∧ inv′(𝑙). From 𝑣 |= 𝑔 and

𝑣 |= inv′(𝑙) we can derive 𝑣 |= 𝑔′. Hence, there exists a transition (𝑙, 𝑣) 𝛼−→ 𝜇′sem ∈ 𝑇S(T′ ) .
The required relation between 𝜇sem and 𝜇′sem follows in the same way as in (b).

Now take a time delay (𝑙, 𝑣) 𝑡−→ 𝛿 (𝑙,𝑣+𝑡 ) ∈ 𝑇S(T) such that (𝑙, 𝑣) ∈ 𝑆T′ . Then we have
𝑣 |= inv′(𝑙) and since (𝑙, 𝑣+𝑡) ∈ 𝑆T we have 𝑣+𝑡 |= inv(𝑙). By condition (3) of Definition 6.1
it follows that 𝑣+𝑡 |= inv′(𝑙) and hence (𝑙, 𝑣+𝑡) ∈ 𝑆T′ . Then the transition (𝑙, 𝑣) 𝑡−→ 𝛿 (𝑙,𝑣+𝑡 )
is also in 𝑇S(T′ ) (𝑙, 𝑣), which completes the proof.



6. Explications for probabilistic timed automata 153

Now letM𝑆 ′ be the MDP subsystem ofM induced by 𝑆 ′ (see Definition 4.2). We want to
establish the following chain of inequalities:

Pr
max
T′ (♢ target) ≤ Pr

max
M𝑆′

(♢ target) ≤ Pr
max
M (♢ target) (6.1)

and, if T ′ is a strong subsystem:

Pr
min
T′ (♢ target) ≤ Pr

min
M𝑆′

(♢ target) ≤ Pr
min
M (♢ target) (6.2)

In both cases, the second inequality follows from Proposition 4.4. For the first inequality we
let S𝑆 ′ be the timed probabilistic system (TPS) that includes exactly the states of S(T ) whose
equivalence class lies in 𝑆 ′. More precisely, let

S𝑆 ′ =
⎛⎜⎝
⋃︂

[𝑠 ]∈𝑆 ′
[𝑠], Act∪ R>0, 𝑇𝑆 ′, 𝑠𝑖𝑛

⎞⎟⎠ ,
where the transitions in 𝑇𝑆 ′ correspond exactly to the transitions of S(T ) for the given state,
with the exception that successor states that are not present in S𝑆 ′ are replaced by the state
“exit”. As S𝑆 ′ merges all states that are not in 𝑆 ′ with exit, and elements of 𝑆 ′ are complete
equivalence classes under∼, the restriction of∼ to

⋃︁
[𝑠 ]∈𝑆 ′ [𝑠] is a PTAB onS𝑆 ′ . Furthermore, the

corresponding quotient is M𝑆 ′ . Now Pr
𝔪
S𝑆′

(♢ target) = Pr
𝔪
M𝑆′

(♢ target) follows by Lemma 2.17
for 𝔪 ∈ {min,max}. It remains to show that Pr𝔪T′ (♢ target) ≤ Pr

𝔪
S𝑆′

(♢ target) in both cases.
To show Pr

max
T′ (♢ target) ≤ Pr

max
S𝑆′

(♢ target), it is enough to show that for every scheduler𝔖
for S(T ′) there exists a scheduler𝔖′ for S𝑆 ′ such that Pr𝔖S(T′ ) (♢ target) ≤ Pr𝔖′

S𝑆′
(♢ target). In

order to prove this, take a scheduler𝔖 for S(T ′) and define𝔖′ by mimicking𝔖 on paths that
exist in S(T ′), and arbitrarily otherwise. This is possible by (a) and (b), as proven above, and it
also directly follows by (b) that Pr𝔖S(T′ ) (♢ target) ≤ Pr𝔖′

S𝑆′
(♢ target).

To show Pr
min
T′ (♢ target) ≤ Pr

min
S𝑆′

(♢ target), we assume that T ′ is a strong subsystem. It
suffices to show that for every scheduler 𝔖′ for S𝑆 ′ there exists a scheduler 𝔖 for S(T ′)
such that Pr𝔖S(T′ ) (♢ target) ≤ Pr𝔖′

S𝑆′
(♢ target). Let𝔖′ be such a scheduler for S𝑆 ′ and define a

scheduler𝔖 for ST′ by mimicking𝔖′ on every path. This is possible by (a) and (c) from above,
and again (c) directly implies that Pr𝔖S(T′ ) (♢ target) ≤ Pr𝔖′

S𝑆′
(♢ target). This completes the proof

of equations 6.1 and 6.2.
It follows that M𝑆 ′ is a witnessing MDP-subsystem for Pr

max
M (♢ target) ≥ 𝜆max, and,

assuming that T ′ is a strong subsystem, also for Prmin
M (♢ target) ≥ 𝜆min. Then, by Theo-

rem 4.23, there exist Farkas certificates y ∈ Fmax
M,≥ (𝜆max), respectively z ∈ Fmin

M,≥ (𝜆min), such that
state-supp(y) ⊆ 𝑆 ′ and supp(z) ⊆ 𝑆 ′.

As the optimal reachability probabilities in T coincide with the optimal reachability proba-
bilities in the quotient of S(T ) by any PTAB which respects target and exit, by Lemma 2.17,
the above theorem directly yields that indeed optimal reachability probabilities cannot increase
when passing to a PTA subsystem.

Corollary 6.4. Let T be a pointed PTA.

1. If T ′ is a subsystem of T , then Pr
max
T (♢ target) ≥ Pr

max
T′ (♢ target) holds.

2. If T ′ is a strong subsystem of T , then Pr
min
T (♢ target) ≥ Pr

min
T′ (♢ target) holds.



154 6.1. Witnessing subsystems for probabilistic timed automata

Figure 6.3: A variation of the PTA from Figure 6.1
with different transition probabilities.

lin
c ≤ 2

target

exit

0 < c ≤ 1 : (1/2, 1/2)

1 < c ≤  : (1/4, 3/4)

The following example shows that the assumption that T ′ is a strong subsystem is really
necessary in point (2.) of the above corollary.
Example 6.5. Consider the PTA T depicted in Figure 6.3. The minimal probability of reaching
target in T is 1/4. Now consider the subsystem T ′ obtained by strengthening the invariant in
location 𝑙𝑖𝑛 to 𝑐 ≤ 1. In T ′, the minimal probability of reaching target is 1/2, and thereby larger
than in T . However, T ′ is not a strong subsystem, because it does not satisfy the time closure
condition (3) of Definition 6.1. △

6.1.2 Zone closure for difference bounds matrices
Having shown that subsystems of T induce Farkas certificates for quotients of T , we now aim
to show how such Farkas certificates can be translated back into subsystems of T . Here we
intuitively want Farkas certificates with small support to be mapped to small PTA subsystems.
The precise meaning of this will become clear later, but in a nutshell it is the property we need
to devise algorithms for the computation of small PTA based on Farkas certificates.

Location invariants can be expressed using difference bound matrices (DBMs), which are
matrices in

(︁
(Z∪{∞,−∞})×{<, ≤}

)︁Cl×Cl whose entries correspond to a bound on the difference
between the values of two clocks [Dil90]. For every DBM𝑀 , there exists a unique canonical
DBM𝑀∗ which includes for each pair of clocks the tightest possible constraint which does not
reduce the set of satisfied clock valuations. Sets of clock valuations which are representable using
DBM (or equivalently, using clock constraints) are called zones. For details see Section 2.3.2.

The following operation on DBMs allows to express the minimal zone which includes two
zones, given as DBMs. It will be used later to define location invariants of a subsystem induced
by a Farkas certificate. The maximum in the following definition is taken with respect to the
standard partial order ⪯ on DBMs.

Definition 6.6 (Zone closure). Let 𝐿 and 𝑁 be DBMs over Cl. The zone closure 𝐿 ⊔ 𝑁 is the
DBM defined by

(𝐿 ⊔ 𝑁 )𝑖 𝑗 = max{ 𝐿𝑖 𝑗 , 𝑁𝑖 𝑗 } for all 𝑐𝑖 , 𝑐 𝑗 ∈ Cl.

The zone closure indeed represents the smallest zone that includes all valuations satisfying
𝐿 and 𝑁 , assuming that 𝐿 = 𝐿∗ and 𝑁 = 𝑁 ∗ hold.

Lemma 6.7. Let 𝐿, 𝑁 be DBMs such that 𝐿 = 𝐿∗ and 𝑁 = 𝑁 ∗. Then

1. Val(𝐿 ⊔ 𝑁 ) is the smallest zone in Val(Cl) containing Val(𝐿) ∪ Val(𝑁 ), and
2. (𝐿 ⊔ 𝑁 )∗ = (𝐿 ⊔ 𝑁 ).



6. Explications for probabilistic timed automata 155

Figure 6.4: An example of the zone closure op-
eration. The green area (including the orange
zones) is the smallest set representable by a
DBM which includes the three orange zones.
It can be computed using the ⊔ operation given
DBM representations of the orange zones.

1 2 3 4 5

1

2

3

4

5

c1

c 2

Proof. (1) Let 𝑅 = Val(𝐿) ∪ Val(𝑁 ). We have 𝑅 ⊆ Val(𝐿 ⊔ 𝑁 ), as if 𝑣 ∈ Val(Cl) satisfies one of
the constraints represented by 𝐿𝑖 𝑗 or 𝑁𝑖 𝑗 , then it also satisfies max{𝐿𝑖 𝑗 , 𝑁𝑖 𝑗 }. By point (4.) of
Lemma 2.18 we have 𝐿 = 𝑀Val(𝐿) and 𝑁 = 𝑀Val(𝑁 ) , and thus 𝐿 ⪯ 𝑀𝑅 and 𝑁 ⪯ 𝑀𝑅 . Therefore,
𝐿 ⊔ 𝑁 ⪯ 𝑀𝑅 holds. Now the claim follows from point (3.) of Lemma 2.18.

(2) Assume, for contradiction, that (𝐿 ⊔ 𝑁 )∗ ≺ (𝐿 ⊔ 𝑁 ). Then, there exist 𝑐𝑖 , 𝑐 𝑗 ∈ Cl such
that (𝐿 ⊔ 𝑁 )∗𝑖 𝑗 ≺ (𝐿 ⊔ 𝑁 )𝑖 𝑗 = max{𝐿𝑖 𝑗 , 𝑁𝑖 𝑗 }. Let (𝐿 ⊔ 𝑁 )∗𝑖 𝑗 = (𝑎, ⊳1) and assume, w.l.o.g., that
max{𝐿𝑖 𝑗 , 𝑁𝑖 𝑗 } = 𝐿𝑖 𝑗 = (𝑏, ⊳2). We make the following case distinction:

(i) Assume that 𝑎 < 𝑏 holds. Then, there is no clock valuation 𝑣 ∈ Val(𝐿⊔𝑁 ) = Val((𝐿⊔𝑁 )∗)
such that 𝑣 (𝑐𝑖) − 𝑣 (𝑐 𝑗 ) > 𝑎. On the other hand, due to 𝐿 = 𝐿∗ = 𝑀Val(𝐿) (see Lemma 2.18,
point (4.)) there exist valuations in Val(𝐿) whose difference between clocks 𝑐𝑖 and 𝑐 𝑗 is
arbitrarily close to 𝑏. This yields a contradiction to Val(𝐿) ⊆ Val(𝐿 ⊔ 𝑁 ).

(ii) Assume that 𝑎 = 𝑏, ⊳1 = < and ⊳2 = ≤ hold. Again, as 𝐿 = 𝐿∗ = 𝑀Val(𝐿) , there exists
a valuation 𝑣 ∈ Val(𝐿) such that 𝑣 (𝑐𝑖) − 𝑣 (𝑐 𝑗 ) = 𝑏. But 𝑣 is not in Val(𝐿 ⊔ 𝑁 ) due to
(𝐿 ⊔ 𝑁 )∗𝑖 𝑗 = (𝑏, <), which is again a contradiction to Val(𝐿) ⊆ Val(𝐿 ⊔ 𝑁 ).

Given a sequence 𝑅1, . . . , 𝑅𝑛 of sets of clock valuations, we can express the smallest zone
containing all of these sets using canonical DBMs and the zone closure operation.

Proposition 6.8. Let 𝑅1, ..., 𝑅𝑛 ⊆ Val(Cl) be sets of clock valuations,𝑀𝑅1, . . . , 𝑀𝑅𝑛 the correspond-
ing canonical DBMs and 𝑈 =

⨆︁𝑛
𝑖=1 𝑀𝑅𝑖 . Then, Val(𝑈 ) is the smallest zone containing all sets

𝑅𝑖 .

Proof. For all 1 ≤ 𝑖 ≤ 𝑛 we have 𝑅𝑖 ⊆ Val(𝑀𝑅𝑖 ) and 𝑀𝑅𝑖 = 𝑀∗
𝑅𝑖

by Lemma 2.18. The claim
follows by inductive application of Lemma 6.7.

6.1.3 From Farkas certificates to witnessing subsystems
We now describe a construction which reverses Theorem 6.3, i.e., which computes PTA subsys-
tems from Farkas certificates for probabilistic reachability constraints in finite-state quotients
of the PTA. Of course, the constructed subsystems should witness the thresholds certified by the
certificates on the level of the PTA. To capture this we define a notion of witnessing subsystem
for PTA in analogy to the corresponding notion for MDP subsystems (see Definition 4.5). The
fact that such subsystems indeed form witnesses follows from Corollary 6.4.



156 6.1. Witnessing subsystems for probabilistic timed automata

Definition 6.9. Let T be a pointed PTA and let 𝜆 ∈ [0, 1]. A subsystem T ′ of T is a witness for
Pr

max
T (♢ target) ≥ 𝜆 if it satisfies Prmax

T′ (♢ target) ≥ 𝜆. A strong subsystem T ′ of T is a witness
for Prmin

T (♢ target) ≥ 𝜆 if it satisfies Prmin
T′ (♢ target) ≥ 𝜆.

Let T be a pointed PTA and ∼ be a PTAB on T which respects target and exit and has
finite index. The following definition shows how to construct a subsystem of T induced by
some subset 𝑅 of equivalence classes of ∼. Intuitively, one first takes all locations whose states
intersect some class in 𝑅, and then for each location 𝑙 computes the smallest zone which includes
all equivalence classes in 𝑅 with location 𝑙 . This then defines the location invariant for 𝑙 . To
obtain a strong subsystem, one additionally closes the invariant under time successors (using
the ↑ operator, see Section 2.3), as required by Definition 6.1. Finally, edges of transitions which
do not connect any pair of states in 𝑅 are redirected to exit, and for weak subsystems we can
additionally shrink the transition guards. The DBMs𝑀𝑒 |𝑙 used in the following definition are
the canonical DBMs for the corresponding set of clock valuations, as defined in Section 2.3.

Definition 6.10 (Induced PTA subsystems). Let T = (Loc,Cl,Act, inv,𝑇 , 𝑙𝑖𝑛) be a pointed PTA,
∼ be a PTAB on T with finite index which respects target and exit, and 𝑆 ∪ {target, exit} be the
equivalence classes of ∼. Given 𝑒 ∈ 𝑆 and 𝑙 ∈ Loc we define 𝑒 |𝑙 = {𝑣 ∈ Val(Cl) | (𝑙, 𝑣) ∈ 𝑒}. For
𝑅 ⊆ 𝑆 we define the subsystems

T𝑤
𝑅 = (Loc′,Cl,Act, inv𝑤,𝑇𝑤, 𝑙𝑖𝑛) and T 𝑠

𝑅 = (Loc′,Cl,Act, inv𝑠 ,𝑇 𝑠 , 𝑙𝑖𝑛)

induced by 𝑅 as follows. First, we set Loc′ = {𝑙 ∈ Loc | ∃𝑒 ∈ 𝑅. 𝑒 |𝑙 ≠ ∅} ∪ {target, exit}. For
each 𝑙 ∈ Loc′ we define its location invariant using DBMs as follows:

inv𝑤 (𝑙) = 𝑀𝑤
𝑙

=
⨆︂
𝑒∈𝑅

𝑀𝑒 |𝑙 and inv𝑠 (𝑙) = 𝑀𝑠
𝑙
= (↑𝑀𝑤

𝑙
) ⊓𝑀inv(𝑙 ) .

For every 𝑙
𝛼 : 𝑔
−→ 𝜇 in 𝑇 (𝑙) we include the transition 𝑙

𝛼 : 𝑔𝑤
−→ 𝜇′ in 𝑇𝑤 (𝑙), and 𝑙

𝛼 : 𝑔𝑠
−→ 𝜇′ in 𝑇 𝑠 (𝑙),

where
𝑔𝑤 = 𝑔 ⊓

⨆︂
𝑒∈𝑅

∃(𝑙,𝑣) ∈𝑒. 𝑣 |=𝑔

𝑀𝑒 |𝑙 and 𝑔𝑠 = 𝑔 ⊓ inv𝑠 (𝑙),

and 𝜇′ is defined as follows. For 𝐶 ⊆ Cl and 𝑙 ′ ∈ Loc′ \{exit} let

𝜇′(𝐶, 𝑙 ′) =
{︄
𝜇 (𝐶, 𝑙 ′) if ∃𝑒, 𝑒′ ∈ 𝑅, (𝑙, 𝑣) ∈ 𝑒. (𝑙 ′, 𝑣 [𝐶 := 0]) ∈ 𝑒′

0 otherwise

and with the remaining probability assigned to 𝜇′(∅, exit).

The PTA T𝑤
𝑅

and T 𝑠
𝑅

are indeed both subsystems of T , and T 𝑠
𝑅

is additionally a strong
subsystem, as the following lemma shows.

Lemma 6.11. Let T = (Loc,Cl,Act, inv,𝑇 , 𝑙𝑖𝑛) be a pointed PTA, ∼ be a PTAB on T with finite
index which respects target and exit, and 𝑆 ∪ {target, exit} be the equivalence classes of ∼. Then,
for any 𝑅 ⊆ 𝑆 , T𝑤

𝑅
is a subsystem of T and T 𝑠

𝑅
is a strong subsystem of T .

Proof. We show that T𝑤
𝑅

satisfies the conditions (1) and (2) from Definition 6.1 and T 𝑠
𝑅
addi-

tionally satisfies (2∗) and (3). The requirement Loc′ ⊆ Loc is trivially satisfied.



6. Explications for probabilistic timed automata 157

Figure 6.5: A graphical sketch which shows
how inv𝑤 (𝑙) and inv𝑠 (𝑙) are constructed in Defi-
nition 6.10. Let the orange zones be equivalence
classes included in 𝑅 for location 𝑙 , and inv(𝑙)
be the zone inside the outer black line. Then the
green area is inv𝑤 (𝑙) (the minimal zone includ-
ing the orange ones), and the gray area is the
time closure of inv𝑤 (𝑙) inside inv(𝑙). The green
and gray areas together form inv𝑠 (𝑙).

1 2 3 4 5

1

2

3

4

5

c1

c 2

Condition (1) requires that for all 𝑙 ∈ Loc′ we have inv′(𝑙) ⊩ inv(𝑙). We first show this for
inv𝑤 (𝑙) = 𝑀𝑤

𝑙
=
⨆︁
𝑒∈𝑅𝑀𝑒 |𝑙 . From Proposition 6.8 it follows that Val(inv𝑤 (𝑙)) is the smallest

zone that contains all states in
⋃︁
𝑒∈𝑅 𝑒 |𝑙 . Since this set is included in Val(inv(𝑙)), we have

Val(inv𝑤 (𝑙)) ⊆ Val(inv(𝑙)) and hence by definition inv𝑤 (𝑙) ⊩ inv(𝑙). For inv𝑠 (𝑙) = 𝑀𝑠
𝑙
=

(↑𝑀𝑤
𝑙
) ⊓𝑀inv(𝑙 ) , the property inv𝑠 (𝑙) ⊩ inv(𝑙) is trivial. Conditions (2) for T𝑤 and (2∗) and (3)

for 𝑇 𝑠
𝑅
follow immediately from the construction.

The following proposition states that Farkas certificates for the quotient of T under the
PTAB ∼ can be used to find witnesses for probabilistic reachability constraints. Hence, it
provides a converse of Theorem 6.3. The constructed witnesses are the PTA subsystems induced
by the support of the Farkas certificates.

Proposition 6.12. Let T = (Loc,Cl,Act, inv,𝑇 , 𝑙𝑖𝑛) be a pointed PTA, ∼ be a PTAB on T with
finite index which respects target and exit, and 𝑆 ∪ {target, exit} be the equivalence classes of ∼.
Furthermore, let M = S(T )/∼ be the quotient of S(T ) by ∼, and fix 𝜆 ∈ [0, 1] and 𝑅 ⊆ 𝑆 .

If there exists a Farkas certificate z ∈ Fmin
M,≥ (𝜆) with supp(z) ⊆ 𝑅, then T 𝑠

𝑅
is a witness for

Pr
min
T (♢ target) ≥ 𝜆. Likewise, if there exists a Farkas certificate y ∈ Fmax

M,≥ (𝜆) with state-supp(y) ⊆
𝑅, then T𝑤

𝑅
is a witness for Prmax

T (♢ target) ≥ 𝜆.

Proof. Consider the MDP subsystem M𝑅 of M induced by 𝑅, as defined in Definition 4.2
and suppose there exists a Farkas certificate z ∈ Fmin

M,≥ (𝜆) with supp(z) ⊆ 𝑅. Then, M𝑅

satisfies Prmin
M𝑅

(♢ target) ≥ 𝜆, by Theorem 4.23. We now intend to show that T 𝑠
𝑅

is a witness for
Pr

min
T (♢ target) ≥ 𝜆 by establishing the chain of inequalities

Pr
min
T𝑠
𝑅
(♢ target) = Pr

min
S(T𝑠

𝑅
) (♢ target) ≥ Pr

min
S𝑅

(♢ target) = Pr
min
M𝑅

(♢ target) ≥ 𝜆, (6.3)

where S𝑅 is the TPS that includes exactly the states of S(T ) whose equivalence class lies in 𝑅
(compare also the proof of Theorem 6.3). More precisely, let S𝑅 =

(︁⋃︁
[𝑠 ]∈𝑅 [𝑠],Act∪R>0,𝑇𝑅, 𝑠𝑖𝑛

)︁
,

where the transitions in 𝑇𝑅 correspond exactly to the transitions of S(T ) for the given state,
with the exception that successor states that are not present in S𝑅 are replaced by the state
“exit”. Then the quotient of S𝑅 under the restriction of ∼ is M𝑅 , and as a consequence we have
Pr

min
S𝑅

(♢ target) = Pr
min
M𝑅

(♢ target) by Lemma 2.17. As the first equality in (6.3) follows from the



158 6.2. Minimal witnessing PTA subsystems

definition and the final inequality in (6.3) was established above, it remains to show

Pr
min
S(T𝑠

𝑅
) (♢ target) ≥ Pr

min
S𝑅

(♢ target). (6.4)

Observe thatS𝑅 does not necessarily coincide withS(T 𝑠
𝑅
) (the semantics of T 𝑠

𝑅
). This is because

the set of equivalence classes in 𝑅 corresponding to a location 𝑙 may not form a zone. However,
if an equivalence classes is present in S(T 𝑠

𝑅
) but not in S𝑅 , then the corresponding incoming

transitions in S𝑅 are redirected to exit. Hence, intuitively, the minimal probability of reaching
target cannot be larger in S𝑅 than in S(T 𝑠

𝑅
). We now show this formally.

First, we show that every state of S𝑅 is a state of S(T 𝑠
𝑅
). Take a state (𝑙, 𝑣) of S𝑅 . It follows

that [(𝑙, 𝑣)] ∈ 𝑅 and hence 𝑙 is a location of T 𝑠
𝑅
. Moreover, since inv𝑤 (𝑙) = ⨆︁

𝑠∈𝑅𝑀𝑠 |𝑙 , we have
𝑣 |= inv𝑤 (𝑙) and therefore also 𝑣 |= inv𝑠 (𝑙) = ↑(inv𝑤 (𝑙)) ⊓𝑀inv(𝑙 ) . It follows that (𝑙, 𝑣) is a state
of S(T 𝑠

𝑅
).

In the following we will use the notation𝑇𝑋 to denote the transition function of 𝑋 , which is
either a PTA or a timed probabilistic system. We now show that every transition in 𝑇S(T𝑠

𝑅
) is

matched by a transition in 𝑇S𝑅
which may differ only in the fact that some edges are redirected

to exit in S𝑅 . Let 𝑠 = (𝑙, 𝑣) be a state of S𝑅 and 𝑠 𝛼−→ 𝜇′sem be a transition in 𝑇S(T𝑠
𝑅
) . Then there

is some transition 𝑙
𝛼 : 𝑔𝑠
−→ 𝜇′ ∈ 𝑇T𝑠

𝑅
. By definition of T 𝑠

𝑅
, there exists 𝑙

𝛼 : 𝑔
−→ 𝜇 ∈ 𝑇T such that

𝜇′(𝐶, 𝑙 ′) = 𝜇 (𝐶, 𝑙 ′) whenever [(𝑙 ′, 𝑣 [𝐶 := 0])] ∈ 𝑅. This induces a transition 𝑠 𝛼−→ 𝜇sem ∈ 𝑇S(T)

and accordingly a transition 𝑠 𝛼−→ 𝜇sem ∈ 𝑇S𝑅
with 𝜇sem(𝑡) = 𝜇sem(𝑡) = 𝜇′sem(𝑡) for all states

𝑡 of S𝑅 . In summary, every transition of S(T 𝑠
𝑅
) for states in S𝑅 is mirrored by a transition

in S𝑅 with the same distribution on states in S𝑅 and remaining probability redirected to exit.
Analogous reasoning shows, vice versa, that every path in S𝑅 is also a path in S(T 𝑠

𝑅
).

In order to prove (6.4) we need to argue that for every scheduler𝔖 on S(T 𝑠
𝑅
) there exists a

scheduler𝔖′ on S𝑅 with Pr𝔖S(T𝑠
𝑅
) (♢ target) ≥ Pr𝔖′

S𝑅
(♢ target). We can define𝔖′(𝜋) = 𝔖(𝜋) for

every finite path 𝜋 in S𝑅 , and with the notation above this means that a transition 𝑠 𝛼−→ 𝜇′sem
will always be matched by a transition 𝑠 𝛼−→ 𝜇sem in S𝑅 under𝔖′. Since 𝜇sem coincides with
𝜇′sem on the states of S𝑅 and redirects the remaining probability to exit, the desired inequality
Pr𝔖S(T𝑠

𝑅
) (♢ target) ≥ Pr𝔖′

S𝑅
(♢ target) follows.

The proof for the corresponding statement about T𝑤
𝑅

is analogous.

6.2 Minimal witnessing PTA subsystems

We will now introduce three notions of minimality for subsystems of PTAs. One of them
simply counts the number of locations in the subsystem and thereby resembles the notion of
state-minimality in MDPs. The other two take the timing aspect of PTA into account. The idea
is to say that a subsystem is smaller if it puts stronger restrictions on the clock valuations that
are allowed in a location.

6.2.1 Notions of minimality for PTA subsystems

As before, let Cl = {𝑐0, 𝑐1, . . . , 𝑐𝑛} be a set of clocks, where 𝑐0 is the special zero clock which
must be interpreted by zero in all valuations. For a set of valuations 𝑅 ⊆ Val(Cl) we denote by
vol(𝑅) the Lebesgue volume of 𝑅 considered as a subset of RCl\{𝑐0} . The volume of a PTA T



6. Explications for probabilistic timed automata 159

over clocks Cl is defined as

vol(T ) =
∑︂

𝑙∈Loc(T)
vol

(︁
Val(inv(𝑙))

)︁
∈ R≥0 ∪ {∞}.

Definition 6.13. Let T be a PTA.We define the three preorders ≤loc, ≤inv and ≤vol on subsystems
T1 and T2 of T as follows:

1. T1 ≤loc T2 iff | Loc(T1) | ≤ | Loc(T2) | holds,

2. T1 ≤inv T2 iff Loc(T1) ⊆ Loc(T2) and for all 𝑙 ∈ Loc(T1) : invT1 (𝑙) ⊩ invT2 (𝑙), and

3. T1 ≤vol T2 iff vol(T1) ≤ vol(T2) holds.

We say that a witness T ′ of T as defined in Definition 6.9 is loc-minimal (respectively,
inv-minimal or vol-minimal) if T ′ is a ≤loc-minimal element (respectively, ≤inv-minimal or
≤vol-minimal element) among all witnesses of T for the same property.

While the invariant order compares the logical strength of location invariants location wise,
the volume order compares the sum of volumes of location invariants. Its main benefit is that it
yields a total relation, while we have to expect many incomparable minimal witnesses under
the invariant order.

Lemma 6.14. Let T be a pointed PTA, ≤inv, ≤loc and ≤vol be the preorders as defined above and
T1,T2 be arbitrary subsystems of T . We have

• if T1 ≤inv T2 holds, then so does T1 ≤loc T2 and T1 ≤vol T2 , and

• ≤vol and ≤loc are incomparable in general.

Proof. Let T1,T2 be PTAs satisfying T1 ≤inv T2. Then T1 ≤loc T2 follows directly from Loc(T1) ⊆
Loc(T2) and T1 ≤vol T2 follows from invT1 (𝑙) ⊩ invT2 (𝑙) for all 𝑙 ∈ Loc(T1).

By considering two PTAs with a single location and different invariants, it becomes clear
that T1 ≤loc T2 does not imply T1 ≤vol T2 nor T1 ≤inv T2. To see that T1 ≤vol T2 does not imply
T1 ≤loc T2 or T1 ≤inv T2 in general, it suffices to arrange T1 to have one location more than T2
but less volume in total.

The above lemma does not imply that inv-minimal witnesses are loc-minimal or vol-minimal.
This is because an inv-minimal witness might be ≤inv-incomparable to witnesses with smaller
volume.
Example 6.15. Consider again the PTAs T1 and T2 shown in Figures 6.1 and 6.2. While T1 does
not have any strong subsystems (apart from T1 itself), the subsystem one gets by strengthening
the location invariant in run to 𝑐 < 1 is a witness for the property Pr

max
T1 (♢ target) ≥ 1/2. It

is inv-minimal, as the location invariant in run cannot be strengthened further while still
intersecting the guard 0 < 𝑐 ≤ 1 of the first transition. It is also vol-minimal for the same
reason. Observe that the subsystem one gets by setting the invariant in run to be 𝑐 ≤ 1 is also
vol-minimal, as the two do not differ with respect to their volume.

Now consider the PTAT2. The subsystem induced by locations {𝑙𝑖𝑛, run} (i.e., excluding upd),
is a loc-minimal witness for both properties Prmax

T2 (♢ target) ≥ 3/10 and Prmin
T2 (♢ target) ≥ 1/6. The

difference between the two is that for minimal probabilities one has to consider the transition



160 6.2. Minimal witnessing PTA subsystems

Figure 6.6: The plot shows the reachable clock
valuations in location run of PTA T2, as defined
in Figure 6.2. Additionally, the probabilities of
taking the only enabled transition is shown for
the different regions of clock valuations.

1 2

1

2

1 2
3 4

9 10

u

c
run1
c < 3

run2
c < 3

target

exit

c := 0

0 < c ≤ 1 : (1/2, 1/2)

1 < c ≤  : (3/ , 2/ )

 < c < 3 : (3/4, 1/4) 0 ≤ c ≤ 1 : (1/2, 1/2)

1 < c ≤  : (3/ , 2/ )

 < c < 3 : (3/4, 1/4)

Figure 6.7: A PTA T3 with two locations, used in Example 6.16.

in run with lowest probability of reaching target (this is 1/2), while for maximal probabilities,
the transition with highest probability counts (this is 9/10).

Figure 6.6 shows the clock valuations which are reachable in location run in T2. Additionally,
the probabilities of taking the transition to “target” are shown for the different clock regions.
In T2, the valuation (𝑐 ↦→ 0, 𝑢 ↦→ 0) in location run is reached with probability 1/3, while
(𝑐 ↦→ 0, 𝑢 ↦→ 1) is reached with probability 2/3. An inv-minimal witness for Prmin

T2 (♢ target) ≥ 1/2
is obtained by strengthening the invariant in run to exclude the left line in Figure 6.6. This
is achieved by the clock constraint 𝑐 ≤ 2 ∧ 𝑢 − 𝑐 = 1. The same subsystem is a witness for
Pr

max
T2 (♢ target) ≥ 6/10. By further strengthening the invariant to 𝑐 < 1 ∧ 𝑢 − 𝑐 = 1 one gets an

inv-minimal witness for Prmax
T2 (♢ target) ≥ 1/2. This subsystem is not strong, however, as it does

not satisfy the time closure condition (point (3) of Definition 6.1). △

Example 6.16. Consider the PTA T3 as shown in Figure 6.7. It models the following scenario.
A server runs a computation, and whether it completes successfully depends on how long
the server runs. If the computation is not successful, the server may restart once. This is
modeled by moving to location run2. Both locations run1 and run2 have volume three (the
volume of {𝑐 | 0 ≤ 𝑐 ≤ 3} ⊆ R is three), and hence vol(T3) = 6. A vol-minimal witness for the
property Pr

max
T3 (♢ target) ≥ 3/4 is the subsystem obtained by strengthening the invariants in

both locations to 𝑐 < 1. This subsystem has volume two. Now consider a second subsystem
which excludes run2 completely, but does not strengthen the invariant in run2 at all. This is
an inv-minimal witness for Prmax

T3 (♢ target) ≥ 3/4, as strengthening the invariant in run2 would
lead to a subsystem with maximal probability below 3/4. However, the volume of this second



6. Explications for probabilistic timed automata 161

subsystem is three. This shows that inv-incomparable subsystems may have different volume.
To answer the question “what is the least number of time-units that is required to achieve a
maximal probability of 3/4”, vol-minimality is the appropriate notion of size in this example. △

6.2.2 Computing minimal witnesses
In general, computingminimal witnesses for PTA is at least as hard as deciding the corresponding
threshold property, as the latter is equivalent to deciding whether any witness exists at all. It
is known that deciding Pr

max
T (♢ target) = 1 is EXPTIME-hard [LS07, Theorem 3.1] for PTAs.

In [AD94, Theorem 4.17] it is shown that standard non-probabilistic reachability is PSPACE-
hard, and, as a direct consequence of their proof, this holds also for time-bounded reachability.
This problem can be reduced to the problem of deciding Pr

min
T (♢ target) < 1. Hence, deciding

Pr
min
T (♢ target) = 1 is also PSPACE-hard. It follows that we cannot expect algorithms which

require less than exponential time even to compute any witness for such threshold properties.
In the following, let T be a pointed PTA, the relation∼ be a PTAB on T which respects target

and exit and has finite index. Furthermore, letM = S(T )/∼ = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be
the quotient of S(T ) by ∼. Additional assumptions on T and ∼ will be placed in the following
sections, depending on which notion of size we consider.

Computing loc-minimal witnesses
For loc-minimality we will assume that whenever (𝑙1, 𝑣1) ∼ (𝑙2, 𝑣2), then 𝑙1 = 𝑙2. Or, in other
words, the bisimulation ∼ distinguishes locations. As before, we will use [(𝑙, 𝑣)] to denote the
equivalence class of the state (𝑙, 𝑣) ∈ Loc×Val(Cl).

The general plan to compute loc-minimal witnesses is to reduce the problem to the labeled
witness problem for MDPs. To this end we define the labeling function Λloc : 𝑆 → 2Loc ofM
(the quotient of S(T ) by ∼) as follows:

Λloc
(︁
[(𝑙, 𝑣)]

)︁
= { 𝑙 }.

Here we use Loc as the finite set of labels and simply label each equivalence class of ∼ by the
location it belongs to. This is well defined by our assumption that ∼ distinguishes locations.

Proposition 6.17. Let T be a pointed PTA, ∼ be a PTAB on T which respects target and exit and
distinguishes locations andM be the quotient of S(T ) by ∼. Then, for all 𝔪 ∈ {min,max} and
𝜆 ∈ [0, 1]:

There exists a witnessing subsystem for Pr𝔪T (♢ target) ≥ 𝜆 with at most 𝑘 locations (excluding
target and exit) if and only if there exists a witnessing subsystem M′ for Pr𝔪M (♢ target) ≥ 𝜆 such
that |Λloc(M′) | ≤ 𝑘 .

Proof. We show only the case of 𝔪 = min, as the other case is analogous.
“=⇒”: Let T ′ be a strong subsystem of T with at most 𝑘 locations and assume that

Pr
min
T′ (♢ target) ≥ 𝜆 holds. Let 𝑆 ′ = {[𝑠] ∈ 𝑆 | 𝑠 is a state in S(T ′)}. Then, by Theorem 6.3,

there exists a Farkas certificate z ∈ Fmin
M,≥ (𝜆) satisfying supp(z) ⊆ 𝑆

′. It follows by Theorem 4.23
that the subsystem M𝑆 ′ induced by 𝑆 ′ satisfies Prmin

M𝑆′
(♢ target) ≥ 𝜆. But as T ′ has at most 𝑘

locations, we get |Λloc(M𝑆 ′) | ≤ 𝑘 .
“⇐=”: Let 𝑆 ′ ⊆ 𝑆 and assume that M𝑆 ′ satisfies Prmin

M𝑆′
(♢ target) ≥ 𝜆 and |Λloc(M𝑆 ′) | ≤

𝑘 . By Theorem 4.23 we find a Farkas certificate z ∈ Fmin
M,≥ (𝜆) such that supp(z) ⊆ 𝑆 ′. It



162 6.2. Minimal witnessing PTA subsystems

follows from Proposition 6.12 that the PTA T 𝑠
supp(z) is a witness for Pr

min
T (♢ target) ≥ 𝜆. As

|Λloc(M𝑆 ′) | ≤ 𝑘 , 𝑆 ′ includes equivalence classes from at most 𝑘 locations, which implies that
T 𝑠
supp(z) has at most 𝑘 locations.

As the MDP M will in general be exponentially larger than T , one might think that
computing loc-minimal witnesses using this method leads to a double exponential blow up,
as the witnesses problem for MDPs is NP-complete. However, the fact that the locations are
very few in general and the integer variables used in the MILP computing minimal witnesses
for MDP (see Definition 4.35) correspond to the number of labels, we get a single exponential
upper bound.

Proposition 6.18. Let T be a pointed PTA, ∼ be a PTAB on T which respects target and exit and
distinguishes locations and let M be the quotient of S(T ) by ∼.

Then for all 𝔪 ∈ {min,max} and 𝜆 ∈ [0, 1] a loc-minimal witness for Pr𝔪T (♢ target) ≥ 𝜆 can
be computed in time 𝑂 (2 | Loc | · poly( |M|)).

Proof. By Proposition 6.17 we can equivalently compute a label-minimal witnessing subsystem
forM and the labeling function Λloc. The labeled witness problem for MDPN with finite set of
labels 𝐿 can be solved in time𝑂 (2 |𝐿 | · poly( |N |)). An algorithm which achieves this enumerates
all subsets 𝐿′ ⊆ 𝐿, computes the subsystem N𝐿′ which excludes exactly the states labeled by
some 𝑙 ∉ 𝐿′ and computes the probability (either minimal or maximal) achieved by N𝐿′ . Then,
from the subsystems N𝐿′ which satisfy the probabilistic reachability constraint one can pick
any one with minimal |𝐿′ |.

The reduction to the labeled witnessing problem for MDPs enables using all the techniques
that have been developed to compute witnessing subsystem for MDPs. In particular, one can
use the quotient-sum heuristic (Section 4.2.3) to compute small witnesses, rather than minimal
ones. Furthermore, we want to emphasize that any PTAB which distinguishes locations can be
used for the above reduction. Hence, the quotient MDPs may be considerably smaller than the
quotient one gets by using the region equivalence.

Computing inv-minimal witnesses

When considering inv- and vol-minimality, we will assume that Val(inv(𝑙)) is bounded for
every location 𝑙 ∈ Loc or, equivalently, that a finite upper bound 𝐾 on the value of all clocks
exists. This guarantees that the set of witnesses that we have to consider is finite, and, for vol-
minimality, that their volume is finite. An important application that justifies this assumption is
time-bounded reachability, where target needs to be reached before an absolute time-bound 𝐾 .

While for loc-minimality we assumed that ∼ distinguishes locations, now we additionally
assume that if (𝑙1, 𝑣1) ∼ (𝑙2, 𝑣2) holds, then there is no clock constraint 𝛾 such that 𝑣1 |= 𝛾

and 𝑣2 ̸ |= 𝛾 . So, ∼-equivalent valuations must be indistinguishable by clock constraints. The
coarsest PTAB that achieves this is the region equivalence, and hence we will say that a
PTAB distinguishes regions if it satisfies this property. As before, let T be a pointed PTA and
M = (𝑆 ∪ {target, exit},Act, 𝑠𝑖𝑛, 𝑃) be the quotient of S(T ) by ∼.

To encode invariant strength, we will use 𝐵 = 4𝐾+1 distinct labels for each location 𝑙 ∈ Loc
and ordered pair of clocks 𝑐𝑖 , 𝑐 𝑗 ∈ Cl. Here 𝐾 is the global upper bound on any clock value



6. Explications for probabilistic timed automata 163

which we have assumed to exist. In total, this gives 𝐵 · | Loc | · |Cl|2 labels. We will denote the
labels by 𝜉𝑙𝑖 𝑗 (𝑘), for 𝑘 ∈ {−2𝐾, . . . , 2𝐾}, and the set of labels by

𝐿 =
{︁
𝜉𝑙𝑖 𝑗 (𝑘) | 𝑐𝑖 , 𝑐 𝑗 ∈ Cl, 𝑙 ∈ Loc, 𝑘 ∈ {−2𝐾, . . . , 2𝐾}

}︁
.

For a given equivalence class [(𝑙, 𝑣)] ∈ 𝑆 , let𝑀[ (𝑙,𝑣) ] be the canonical DBM for the corresponding
set of valuations (see Section 2.3.2). We define the labeling function Λmin

inv : 𝑆 → 2𝐿 as follows:

Λmin
inv

(︁
[(𝑙, 𝑣)]

)︁
=

⋃︂
𝑐𝑖 ,𝑐 𝑗 ∈Cl
𝑐 𝑗≠𝑐0

(︂
{ 𝜉𝑙𝑖 𝑗 (2𝑎) | (𝑎, ≤) ⪯ (𝑀[ (𝑙,𝑣) ])𝑖 𝑗 , −𝐾 ≤ 𝑎 ≤ 𝐾 }

∪ { 𝜉𝑙𝑖 𝑗 (2𝑎−1) | (𝑎, <) ⪯ (𝑀[ (𝑙,𝑣) ])𝑖 𝑗 , −𝐾 ≤ 𝑎 ≤ 𝐾 }
)︂
.

The labeling function Λmax
inv : 𝑆 → 2𝐿 is defined as above but with the large union ranging over

all 𝑐𝑖 , 𝑐 𝑗 ∈ Cl, including the case 𝑐 𝑗 = 𝑐0. In a DBM 𝑀 , the entry 𝑀𝑖0 = (𝑎, ⊳) represents the
constraint 𝑣 (𝑐𝑖) − 𝑣 (𝑐0) ⊳ 𝑎. This is equivalent to 𝑣 (𝑐𝑖) ⊳ 𝑎, as 𝑐0 is interpreted by zero in all
valuations. Hence, these entries correspond to absolute upper bounds on the clocks. In the
min-case reducing the upper bound on a clock 𝑐𝑖 should not lead to a better score in the labeling
function as the invariants of strong subsystems anyway have to be closed under time successors
within the invariant of T (see Definition 6.1). This is the reason for excluding 𝑐 𝑗 = 0 in the
definition of Λmin

inv .
The set of labelsΛ𝔪

inv( [𝑙, 𝑣]) corresponds tightly to the canonical DBM𝑀[ (𝑙,𝑣) ] for states (𝑙, 𝑣)
and 𝔪 ∈ {min,max}. Take arbitrary 𝑙 ∈ Loc, 𝑐𝑖 , 𝑐 𝑗 ∈ Cl such that 𝑐 𝑗 ≠ 𝑐0 and let 𝑣 ∈ Val(Cl)
and 𝑒 = [(𝑙, 𝑣)]. For all 𝑣 ∈ Val(Cl), the following holds by construction for all −2𝐾 ≤ 𝑏 ≤ 2𝐾 :

if 𝜉𝑙𝑖 𝑗 (𝑏) ∈ Λ𝔪
inv(𝑒), then 𝜉𝑙𝑖 𝑗 (𝑏′) ∈ Λ𝔪

inv(𝑒) for all 𝑏′ ∈ {−2𝐾, . . . , 𝑏}. (6.5)

Intuitively, we have 𝜉𝑙𝑖 𝑗 (2𝑏−1) ∈ Λ𝔪
inv(𝑒) if the upper bound on 𝑣 (𝑐𝑖) − 𝑣 (𝑐 𝑗 ) that the canonical

DBM for 𝑒 defines is at least 𝑏.

Example 6.19. Let 𝑒 ∈ 𝑆 be an equivalence class of ∼, 𝑐𝑖 , 𝑐 𝑗 ∈ Cl with 𝑐 𝑗 ≠ 𝑐0 and assume that
(𝑀𝑒)𝑖 𝑗 = (0, ≤) (here 𝑀𝑒 represents the canonical DBM for {𝑣 ∈ Val(Cl) | (𝑣, 𝑙) ∈ 𝑒}). This
means that 𝑣 (𝑐𝑖) − 𝑣 (𝑐 𝑗 ) ≤ 0 holds for all valuations (𝑣, 𝑙) ∈ 𝑒 (we assume here that all states of
𝑒 belong to the same location 𝑙 ∈ Loc). Then, Λ𝔪

inv(𝑒) will include all the labels

{ 𝜉𝑙𝑖 𝑗 (−2𝐾), 𝜉𝑙𝑖 𝑗 (−2𝐾 + 1), . . . , 𝜉𝑙𝑖 𝑗 (0) }.

By the observation above, the “last” element 𝜉𝑙𝑖 𝑗 (𝑏) included in Λ𝔪
inv(𝑒) (i.e., such that 𝑏 is largest)

determines exactly which 𝜉𝑙𝑖 𝑗 (𝑏′) are included in the labeling for the pair of clocks 𝑐𝑖 , 𝑐 𝑗 . If we
had (𝑀𝑒)𝑖 𝑗 = (0, <), then this last element would be 𝜉𝑙𝑖 𝑗 (−1). For (𝑀𝑒)𝑖 𝑗 = (5, ≤), it would be
𝜉𝑙𝑖 𝑗 (10) and for (𝑀𝑒)𝑖 𝑗 = (−3, <), it would be 𝜉𝑙𝑖 𝑗 (−7).

In this way, the last element 𝜉𝑙𝑖 𝑗 (𝑏) precisely determines the entry of (𝑀𝑒)𝑖 𝑗 . Observe that
there are exactly 4𝐾 + 2 possible values of (𝑀𝑒)𝑖 𝑗 , given that 𝐾 is an absolute upper bound for
any clock (and hence also for difference of any two clocks). △

We have seen above how the “last” element 𝜉𝑙𝑖 𝑗 (𝑏) included in the set Λ𝔪
inv( [(𝑙, 𝑣)]) corre-

sponds to the entry (𝑀[𝑙,𝑣 ])𝑖 𝑗 of the canonical DBM. Using this idea, one can read of all location
invariants of the strong subsystem T 𝑠

𝑆 ′ of T from the set of labels Λmin
inv (M𝑆 ′) for some subsystem



164 6.2. Minimal witnessing PTA subsystems

M𝑆 ′ ofM (and similarly for maximal probabilities). The following lemmas depend crucially
on the fact that 𝐾 is an upper bound on all clock evaluations, and hence also on all differences
between two clocks. This implies that the DBMs representing the location invariants of T have
no numerical entry larger than 𝐾 or less than −𝐾 .

Lemma 6.20. Let 𝑆 ′ ⊆ 𝑆 , 𝔪 ∈ {min,max} and 𝐿′ = Λ𝔪
inv(M𝑆 ′). For all 𝑙 ∈ Loc and 𝑐𝑖 , 𝑐 𝑗 ∈ Cl,

let 𝑏𝑙𝑖 𝑗 be the maximal number 𝑏 ∈ {−2𝐾, . . . , 2𝐾} such that 𝜉𝑙𝑖 𝑗 (𝑏) ∈ 𝐿′.
Then, the location invariant of PTA subsystem T 𝑠

𝑆 ′ in 𝑙 is equivalent to the DBM𝑀 defined for
all 𝑐𝑖 , 𝑐 𝑗 ∈ Cl with 𝑐 𝑗 ≠ 𝑐0 by

𝑀𝑖 𝑗 =

{︄
(⌈𝑏𝑙𝑖 𝑗/2⌉, ≤) if 𝑏𝑙𝑖 𝑗 is even,
(⌈𝑏𝑙𝑖 𝑗/2⌉, <) otherwise,

and 𝑀𝑖0 =
(︁
𝑀invT (𝑙)

)︁
𝑖0. The location invariant of PTA subsystem T𝑤

𝑆 ′ in 𝑙 is equivalent to 𝑀 as
defined above but with the definition ranging over all 𝑐𝑖 , 𝑐 𝑗 ∈ Cl (including 𝑐 𝑗 = 𝑐0).

Proof. The location invariant in location 𝑙 of PTA subsystem T𝑤
𝑆 ′ induced by 𝑆 ′ is defined to be

𝑀𝑤
𝑙

=
⨆︁
𝑒∈𝑆 ′ 𝑀𝑒 |𝑙 , where 𝑒 |𝑙 = {𝑣 ∈ Val(Cl) | (𝑙, 𝑣) ∈ 𝑒} (see Definition 6.10). For a given pair of

clocks 𝑐𝑖 , 𝑐 𝑗 , let (𝑎, ⊳) be the maximal element in
{︁(︁
𝑀𝑒 |𝑙

)︁
𝑖 𝑗
| 𝑒 ∈ 𝑆 ′

}︁
with respect to the order

⪯. By definition of the zone closure operation, we have
(︁
𝑀𝑤
𝑙

)︁
𝑖 𝑗
= (𝑎, ⊳). At the same time, the

largest 𝑏 ∈ {−2𝐾, . . . , 2𝐾} such that 𝜉𝑙𝑖 𝑗 (𝑏) ∈ Λmax
inv (M𝑆 ′) is 𝑏 = 2𝑎 if ⊳ = ≤, or 𝑏 = 2𝑎−1 if ⊳ =<.

This shows the claim for T𝑤
𝑆 ′ .

For T 𝑠
𝑆 ′ , the invariant is defined by 𝑀𝑠

𝑙
= (↑𝑀𝑤

𝑙
) ⊓𝑀invT (𝑙 ) . The ↑ operation on DBMs is

realized by replacing the upper bound for all clocks 𝑐𝑖 (which correspond to the index 𝑖0 in the
DBM) by ∞. After intersecting with𝑀invT (𝑙 ) the resulting upper bound is the one from𝑀inv(𝑙 )
(which is in the range {−𝐾, . . . , 𝐾}). Hence, all entries of 𝑀𝑠

𝑙
correspond to the entry of 𝑀𝑤

𝑙

apart from (𝑀𝑠
𝑙
)𝑖0 for all 𝑐𝑖 ∈ Cl, which is equal to (𝑀invT (𝑙 ) )𝑖0. This concludes the proof.

With the above lemma in place, we can show that label-inclusion of subsystems of M
corresponds to the invariant order on PTA subsystems of T .

Lemma 6.21. For all 𝑆1, 𝑆2 ⊆ 𝑆 we have

• Λmin
inv (M𝑆1) ⊂ Λmin

inv (M𝑆2) if and only if T 𝑠
𝑆1

<inv T 𝑠
𝑆2
, and

• Λmax
inv (M𝑆1) ⊂ Λmax

inv (M𝑆2) if and only if T𝑤
𝑆1

<inv T𝑤
𝑆2

.

Proof. We show the statement in the first bullet point, the other one follows analogously.
“=⇒”: Let 𝑙 ∈ Loc and𝑀1, 𝑀2 be the DBMs representing invT𝑠

𝑆1
(𝑙) and invT𝑠

𝑆2
(𝑙) respectively.

By Lemma 6.20 and Λmin
inv (M𝑆1) ⊂ Λmin

inv (M𝑆2) we immediately get 𝑀1 ⪯ 𝑀2. Furthermore, if
Λmin
inv (M𝑆2) \ Λmin

inv (M𝑆1) ≠ ∅, then we have (𝑀1)𝑖 𝑗 ≺ (𝑀2)𝑖 𝑗 . Here we have used the mono-
tonicity property shown in Equation (6.5).

“⇐=”: We show for all 𝑙 ∈ Loc and 𝑐𝑖 , 𝑐 𝑗 ∈ Cl that{︁
𝜉𝑙𝑖 𝑗 (𝑏) ∈ Λmin

inv (M𝑆1) | 𝑏 ∈ {−2𝐾, . . . , 2𝐾}
}︁
⊆
{︁
𝜉𝑙𝑖 𝑗 (𝑏) ∈ Λmin

inv (M𝑆2) | 𝑏 ∈ {−2𝐾, . . . , 2𝐾}
}︁
.

Let 𝑙 ∈ Loc and 𝑀1, 𝑀2 be the DBMs representing invT𝑠
𝑆1
(𝑙) and invT𝑠

𝑆2
(𝑙) respectively. By

assumption, we have (𝑀1)𝑖 𝑗 ⪯ (𝑀2)𝑖 𝑗 for all 𝑐𝑖 , 𝑐 𝑗 ∈ Cl. Hence the largest 𝑏 such that 𝜉𝑙𝑖 𝑗 (𝑏) ∈
Λmin
inv (M𝑆1) is less or equal to the largest 𝑏 such that 𝜉𝑙𝑖 𝑗 (𝑏) ∈ Λmin

inv (M𝑆2) by Lemma 6.20. The



6. Explications for probabilistic timed automata 165

subset relation above follows by the monotonicity as shown in Equation (6.5). Similarly to
the other case, if (𝑀1)𝑖 𝑗 ≺ (𝑀2)𝑖 𝑗 holds for some 𝑐𝑖 , 𝑐 𝑗 and 𝑙 ∈ Loc, then the subset relation is
strict.

The label-based witness problem forM with respect to labeling function Λ𝔪
inv (with 𝔪 ∈

{min,max}) searches for a witnessing subsystem of M such that |Λ𝔪
inv(M)| is minimal. By the

above lemma, such a subsystem induces an inv-minimal witnessing PTA subsystem of T for
the corresponding threshold property. This gives us the following proposition.
Proposition 6.22. Let T be a pointed PTA, ∼ be a PTAB on T with finite index which respects
target and exit and distinguishes regions. Let M be the quotient of S(T ) by ∼. Then, for all
𝜆 ∈ [0, 1] and 𝑆 ′ ⊆ 𝑆 :

• ifM𝑆 ′ is a label-minimal witness for Prmin
M (♢ target) ≥ 𝜆 with respect to Λmin

inv , then T 𝑠
𝑆 ′ is

an inv-minimal witness for Prmin
T (♢ target) ≥ 𝜆.

• if M𝑆 ′ is a label-minimal witness for Prmax
M (♢ target) ≥ 𝜆 with respect to Λmax

inv , then T𝑤
𝑆 ′ is

an inv-minimal witness for Prmax
T (♢ target) ≥ 𝜆.

Proof. We show the first claim, the second one follows analogously. If M𝑆 ′ is a witnessing
subsystem for Prmin

M (♢ target) ≥ 𝜆, then T 𝑠
𝑆 ′ is a strong subsystem satisfying Prmin

T𝑠
𝑆′
(♢ target) ≥ 𝜆

by Theorem 4.23 and Proposition 6.12. So suppose, for contradiction, that T 𝑠
𝑆 ′ is not inv-minimal.

Then, there exists another witness T ′ for the same property satisfying T ′ <inv T 𝑠
𝑆 ′ . As ∼

distinguishes regions, and hence no clock invariant can distinguish ∼-equivalent states, we
may assume that T ′ is induced by a set of equivalence classes 𝑅 ⊆ 𝑆 . That is, we have T ′ = T 𝑠

𝑅
.

By Lemma 6.21, we have Λmin
inv (M𝑅) ⊂ Λmin

inv (M𝑆 ′). But this contradicts label-minimality of
M𝑆 ′ .

In the MILP used to compute label-minimal subsystems for MDPs in Definition 4.35, the
number of integer variables corresponds to the number of labels in the labeling function. With
𝐵 = 4𝐾 + 1, the number of labels 𝜉𝑙𝑖 𝑗 that we have introduced is 𝐵 · | Loc | · |Cl|2. However,
due to the monotonicity of labels as given by Equation (6.5) there are only 𝐵 possible label
configurations for every location and pair of clock constraints. Hence, the number of label-
configurations one has to enumerate to find an optimal one is bounded by (𝐵 + 1) | Loc | · |Cl |2

(rather than 2𝐵 · | Loc | · |Cl |2 ). The “+1” accounts for the case that no label is included for some
location and clock pair. Observe that the number of possible values of an entry in a DBM is
4𝐾 + 2 = 𝐵 + 1, under the assumption that 𝐾 is an upper bound on all clocks.

In a similar way as for Proposition 6.18 it follows that an inv-minimal witness can be
computed in single exponential time (if 𝐾 , encoded in binary, is assumed to be part of input).
Proposition 6.23. Let T be a pointed PTA, ∼ be a PTAB on T which respects target and exit, has
finite index and distinguishes regions, and letM be the quotient of S(T ) by ∼. Furthermore, let 𝐾
be an upper bound on the possible value of any clock in any location and let 𝐵 = 4𝐾 + 1.

Then, for all 𝔪 ∈ {min,max} and 𝜆 ∈ [0, 1], an inv-minimal witness for Pr𝔪T (♢ target) ≥ 𝜆

can be computed in time 𝑂
(︁
2(log(𝐵+1) · | Loc | · |Cl |2 ) · poly( |M|)

)︁
, if one exists.

Proof. It suffices to enumerate all relevant label-subsets 𝐿′ ⊆ 𝐿, where 𝐿 is the entire set of
labels, and compute the optimal probability of the MDP one gets by excluding all states that are
labeled by some label in 𝐿 \ 𝐿′. Computing this value is doable in polynomial time in |M|. The
number of relevant label subsets is bounded by 𝑂

(︁
(𝐵 + 1) | Loc | · |Cl |2

)︁
= 𝑂

(︁
2log(𝐵+1) · | Loc | · |Cl |2

)︁
,

due to the monotonicity of labels given in Equation (6.5).



166 6.2. Minimal witnessing PTA subsystems

Computing vol-minimal witnesses
As for inv-minimality, we will assume that ∼ is a PTAB for T with finite index which distin-
guishes regions. We let M be the quotient of S(T ) by ∼ and assume that 𝐾 is an upper bound
on all clocks. The following lemma shows that the set of inv-minimal witnesses includes a
vol-minimal witness.

Lemma 6.24. Let T be a pointed PTA. For all 𝔪 ∈ {min,max} and 𝜆 ∈ [0, 1], there is at least one
witness for Pr𝔪T (♢ target) ≥ 𝜆 which is both inv- and vol-minimal.

Proof. Assume first that there exists a vol-minimal witness with finite volume and suppose that
the sets of vol- and inv-minimal witnesses are disjoint. Then, for each vol-minimal witness
T1 there must exist another witness T2 such that T2 <inv T1, as otherwise T1 would be inv-
minimal. By definition of ≤inv it follows that vol(T2) ≤ vol(T1) and as T1 is vol-minimal, we get
vol(T2) = vol(T1). Iterating this argument yields an infinitely descending chain of finite-volume
subsystems that are all strictly smaller in the ≤inv order. But this cannot exist, as the relation
<inv is well-founded.

Now suppose that a vol-minimal witness for Pr𝔪T (♢ target) ≥ 𝜆 has infinite volume. Then,
trivially, any witness for Pr𝔪T (♢ target) ≥ 𝜆 is vol-minimal since they all have infinite volume.
In particular, every inv-minimal witness is also vol-minimal.

Hence, to find a vol-minimal witness it suffices to compute all inv-minimal witnesses and
to compare their volumes. We will again use the labeling functions Λmin

inv and Λmax
inv ofM into

the set of labels

𝐿 =
{︁
𝜉𝑙𝑖 𝑗 (𝑘) | 𝑐𝑖 , 𝑐 𝑗 ∈ Cl, 𝑙 ∈ Loc, 𝑘 ∈ {−2𝐾, . . . , 2𝐾}

}︁
,

as defined in the previous section. Lemma 6.21 shows that inv-minimal witnesses correspond
to label-minimal witnesses ofM with respect to the subset order. With respect to this order, a
subsystemM𝑆1 is smaller thanM𝑆2 if Λ𝔪

inv(M𝑆1) ⊂ Λ𝔪
inv(M𝑆2) holds. This should be compared

to the standard label ordering, which is defined using |Λ𝔪
inv(M𝑆1) | ≤ |Λ𝔪

inv(M𝑆2) |.
As in Proposition 6.23, let 𝐵 = 4𝑘 + 1. We have seen that there exist 𝑂

(︁
2log(𝐵+1) · | Loc | · |Cl |2

)︁
relevant subsets of 𝐿 due to the monotonicity of labels (see Equation (6.5) and Proposition 6.23).
To compute a vol-minimal witness, it is hence enough to enumerate this number of subsystems
of M and compare their volumes. This leads to a single exponential algorithm, as stated in
the following proposition. Here we let vol( |Cl|2, log(𝐾)) be the time required to compute the
volume of a DBM over clocks Cl and with all integer entries in {−𝐾, . . . , 𝐾}.

Proposition 6.25. Let T be a PTA, ∼ be a PTAB on T which respects target and exit, has finite
index and distinguishes regions, and letM be the quotient of S(T ) by ∼. Furthermore, let 𝐾 be an
upper bound on the possible value of any clock in any location and let 𝐵 = 4𝐾 + 1.

Then for all 𝔪 ∈ {min,max} and 𝜆 ∈ [0, 1], a vol-minimal witness for Pr𝔪T (♢ target) ≥ 𝜆 can
be computed in time 𝑂

(︁
2log(𝐵+1) · | Loc | · |Cl |2 · vol( |Cl|2, log(𝐾)) · poly( |M|)

)︁
, if one exists.

Proof. By Lemma 6.21, inv-minimal subsystems of T correspond to label-minimal subsystems
of M with respect to the subset ordering of the labeling function Λ𝔪

inv. Under these labeling
functions, there are 2log(𝐵+1) · | Loc | · |Cl |2 relevant subsets of labels to consider (see Proposition 6.23).
An algorithm which achieves the claimed running time enumerates all of these subsets of labels,
checks whether the induced MDP subsystem is a witness for the threshold property and, if



6. Explications for probabilistic timed automata 167

so, computes the volume of the induced PTA subsystem. After completing the enumeration,
the PTA subsystem which achieved a minimal volume among the ones that were stored is
returned.

The algorithm that was sketched in the above proof relies on a complete enumeration of
relevant label subsets. To circumvent this issue, one can formulate the problem as a multi-
objective mixed-integer linear program. This is a mixed-integer linear program subject to a set
of optimization objectives, rather than a single one. As a consequence we deal with a partial
order of feasible solutions, and the goal is to compute the set of minimal (sometimes called
non-dominated) solutions with respect to this partial order.

Recall that the objective function used to compute label-minimal witnessing subsystems for
MDPs is of the form min

∑︁
𝑝∈𝐿 𝜎 (𝑝), where 𝜎 (𝑝) is an integer variable representing the choice

of whether label 𝑝 should be included or not (see Definition 4.35). For 𝐿1, 𝐿2 ⊆ 𝐿, let M1 be the
MDP subsystem of M which excludes exactly the states which are labeled by some label in
𝐿 \ 𝐿1, and M2 be defined analogously. Now for fixed 𝑙 ∈ Loc, 𝑐𝑖 , 𝑐 𝑗 ∈ Cl we have

{𝜉𝑙𝑖 𝑗 (𝑏) ∈ Λ𝔪
inv(M1) | 𝑏 ∈ {−2𝐾, . . . , 2𝐾}} ⊆ {𝜉𝑙𝑖 𝑗 (𝑏) ∈ Λ𝔪

inv(M2) | 𝑏 ∈ {−2𝐾, . . . , 2𝐾}}

if and only if

|{𝜉𝑙𝑖 𝑗 (𝑏) ∈ Λ𝔪
inv(M1) | 𝑏 ∈ {−2𝐾, . . . , 2𝐾}}| ≤ |{𝜉𝑙𝑖 𝑗 (𝑏) ∈ Λ𝔪

inv(M2) | 𝑏 ∈ {−2𝐾, . . . , 2𝐾}}|,

by the monotonicity of labels described in Equation (6.5).
Consider themulti-objectivemixed-integer linear program one gets by replacing the objective

function in the MILP for the label-minimal witness problem for M under labeling Λ𝔪
inv by the

| Loc | · |Cl|2 objective functions

min
∑︂

−2𝐾≤𝑏≤2𝐾
𝜉𝑙𝑖 𝑗 (𝑏), for all 𝑙 ∈ Loc, 𝑐𝑖 , 𝑐 𝑗 ∈ Cl, (6.6)

where we interpret 𝜉𝑙𝑖 𝑗 (𝑏) as a binary integer variable corresponding to the label with the same
name.

The solutions of the resulting program correspond to the inv-minimal witnesses of T by
the above discussion and Lemma 6.21. Hence, to compute a vol-minimal PTA subsystem one
can first solve this multi-objective MILP to receive the set of inv-minimal subsystems. Out
of these, one can then pick one with minimal volume. With this approach one can avoid
the exhaustive enumeration of label-subsets to compute the set of inv-minimal witnesses, by
exploiting techniques for solving multi-objective MILPs as presented in [ÖK10, PO19].

The complexity of deciding the volume order

A necessary ingredient in the described algorithms for vol-minimal PTA subsystems are algo-
rithms which compute the volume of a polytope. This problem generally requires exponential
time in the number of dimensions [GK94]. However, as the location invariants of PTA have a
very restricted form involving only linear inequalities with at most two clocks, one might hope
that computing their volume is easier. We now show that this is not the case.

We recall that #P is the counting complexity class which includes the functions that can
be expressed as the number of accepting runs of a polynomial time, nondeterministic Turing



168 6.2. Minimal witnessing PTA subsystems

machine (NTM) for a given input. Hardness for #P is typically defined using polynomial-time
Turing reductions. A problem 𝑃1 is reducible to 𝑃2 under such reductions if one can solve
𝑃1 using a polynomially time-bounded Turing machine with an oracle for 𝑃2. The analogous
decision class is PP, where 𝐿 ∈ PP if there is a polynomial time NTM such that 𝑥 ∈ 𝐿 if and
only if the majority of runs of the NTM on 𝑥 is accepting (see [AB09, Chapter 9] for more
information on these complexity classes). Via a reduction from specific results on polytope
volume computation, the following proposition shows that computing the volume of a DBM is
#P-hard.

Proposition 6.26. Computing vol(Val(𝑀)) for a DBM M is #P-hard.

Proof. The problem of counting the number of linear extensions of a partially ordered set is
known to be #P-complete [BW91]. It turns out that this problem is polynomially interreducible
with the problem of computing the volume of a so called order-polytope [GK94, Theorem 5.1.4].
Let ⊏ be a partial order on the set {1, . . . , 𝑛}. The order polytope P⊏ is defined as:

P⊏ = { 𝑥 ∈ [0, 1]𝑛 | if 𝑖 ⊏ 𝑗 then 𝑥 (𝑖) ≤ 𝑥 ( 𝑗) for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛} }.

Such polytopes can be defined using DBMs over clocks Cl = {𝑐0, . . . , 𝑐𝑛} as follows:

𝑀⊏𝑖 𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(1, ≤) if 𝑖 ≥ 1, 𝑗 = 0,
(0, ≤) if 𝑖 = 0, 𝑗 ≥ 0,
(0, ≤) if 𝑖 ⊏ 𝑗,
(1, ≤) otherwise.

The first two cases represent the constraint 0 ≤ 𝑣 (𝑐𝑖) ≤ 1 for all clocks 𝑐𝑖 ∈ Cl, by defining
appropriate upper and lower bounds on the difference to the zero clock 𝑐0. The third case
formalizes that 𝑣 (𝑐𝑖) − 𝑣 (𝑐 𝑗 ) ≤ 0 should hold whenever (𝑖, 𝑗) ∈ 𝐼 . Given that 0 ≤ 𝑣 (𝑐𝑖) ≤ 1
holds, the fourth condition does not impose any further restriction on the polytope. Then, P⊏
equals Val(𝑀⊏) considered as a subset of RCl\{𝑐0} ≅ R𝑛 , and hence vol(P⊏) = vol(Val(𝑀⊏)).

It follows that the volume computation problem for these special DBMs is #P-complete, and
in general #P-hard.

This observation can be used to show that comparing the volumes of two PTA subsystems
(i.e., deciding the ≤vol order) is hard.

Theorem 6.27. Given two subsystems T1,T2 in a PTA T , deciding whether T1 ≤vol T2 holds is
PP-hard under polynomial-time Turing reductions.

Proof. As in Proposition 6.26, we consider the DBMs𝑀⊏ (henceforth called order-DBMs) over
clocks Cl = {𝑐0, . . . , 𝑐𝑛}, defined using the partial order ⊏ over {1, . . . , 𝑛}. The problem of
computing vol(Val(𝑀⊏)) for order-DBMs is #P-complete by the proof of Proposition 6.26. It
follows that the threshold problem vol(Val(𝑀⊏)) ≥ 𝑘 , for a given order-DBM𝑀⊏ and 𝑘 ∈ Q,
is PP-hard under polynomial-time Turing reductions. This is because using an oracle for this
problem, one can compute vol(Val(𝑀⊏)) bitwise using a binary search. Only polynomially many
calls to the oracle are needed here as the length of the binary representation of vol(Val(𝑀⊏)) is
polynomial (this holds for order polytopes in general).

It remains to show that computing the volume-threshold problem for order-DBMs can be
reduced to deciding whether T1 ≤vol T2 holds given a PTA T and two subsystems T1,T2 of T .



6. Explications for probabilistic timed automata 169

We first make the observation that the value vol(Val(𝑀⊏)) corresponds to the number of linear
extensions of ⊏ divided by 𝑛!. Now the proof idea is to construct (the invariant condition of) T1
by scaling𝑀⊏ , such that the resulting volume becomes 𝑛!𝑛 · vol(Val(𝑀⊏)). On the other hand,
T2 is constructed to have a volume 𝑛!𝑛 · 𝑘 . The reason for scaling both volumes by 𝑛!𝑛 is that it
is not obvious how to define a DBM whose volume is exactly 𝑘 .

Consider the PTA T having two locations 𝑙1, 𝑙2 with invariants 𝑀1 and 𝑀2, respectively,
defined as follows. The first invariant𝑀1 inherits all its entries from𝑀⊏ , apart from the upper
bounds (i.e., entries (𝑀1)𝑖0 for all 1 ≤ 𝑖 ≤ 𝑛) which are set to 𝑛!. As 𝑛! = 𝑂 (2𝑛 log𝑛), we can
express 𝑛! in poly(𝑛) bits. We have vol(Val(𝑀1)) = 𝑛!𝑛 · vol(Val(𝑀⊏)), as the polytope that𝑀1
represents is essentially the order polytope P⊏ but scaled to the 𝑛-dimensional cube with side
length 𝑛!.

As vol(Val(𝑀⊏)) is a multiple of 1/𝑛! we can assume that so is 𝑘 (or we round up to the
nearest rational with this property). We let𝑀2 be the DBM that describes a row of 𝑘 ·𝑛!𝑛 (which
is an integer) 1-cubes in 𝑛 dimensions. This is achieved by letting all variables have upper
bound 1 apart from a single variable with upper bound 𝑘 · 𝑛!𝑛 . As 𝑘 · 𝑛!𝑛 = 𝑂 (𝑘 · (2𝑛 log𝑛)𝑛) =
𝑂 (𝑘 · (2𝑛2 ·log𝑛)), this number is expressible with 𝑂 (poly(𝑛) + log(𝑘)) many bits. We have
vol(Val(𝑀2)) = 𝑘 · 𝑛!𝑛 .

Now let T1 be the subsystem that includes only location 𝑙1, and T2 be the subsystem that
includes only location 𝑙2. Then, we have vol(Val(𝑀⊏)) ≥ 𝑘 if and only if T2 ≤vol T1. This
completes the reduction of the threshold problem for the volume of order-DBMs to deciding
≤vol.

It follows that if there existed a polynomial time algorithm to decide T1 ≤vol T2, then the
polynomial hierarchy would collapse by Toda’s Theorem [Tod91]. This should be contrasted
with the relations ≤loc and ≤inv. To decide T1 ≤loc T2 one just counts the locations of the two
subsystems, and for T1 ≤inv T2 one checks the inclusion of locations and inspects the entries of
the canonical DBMs associated to the invariants. Hence, both of these checks can be done in
polynomial time in T1 and T2.



Chapter 7

Conclusion

This thesis has introduced a number of new techniques to explicate and certify properties in
the context of probabilistic model checking. We have focused on constraints on the optimal
reachability probabilities in Markov decision processes and probabilistic timed automata. Apart
from describing new kinds of explications and algorithms to compute them, a goal of this thesis
was to determine the precise complexity of the corresponding computational problems.

Farkas certificates can be used to certify model checking algorithms for probabilistic reach-
ability constraints in MDPs. They are vectors satisfying certain systems of linear inequalities,
derived from the classical linear-programming-based characterizations of optimal reachability
probabilities in MDPs and Farkas lemma. We use Farkas lemma to transform the question of
unsatisfiability of one system of linear inequalities to the question of satisfiability of another.
Hence, solutions of the latter may serve as certificates for the unsatisfiability of the former.
An important observation of the thesis is that this duality can be used to provide certificate
conditions in terms of satisfiability of linear inequalities for all kinds of probabilistic reachability
constraints. Validating Farkas certificates amounts to checking whether a candidate certificate
is a solution of the corresponding inequalities and can hence be done in linear time.

Witnessing subsystems were introduced in [JÁK+11] as a means to explicate properties of
the form Pr(♢ target) ≥ 𝜆 in Markov chains, and later also for lower bounds on the maximal
reachability probability in Markov decision processes [WJÁ+12]. We showed that the support
(i.e., the set of indices with non-zero value) of a Farkas certificate induces a witnessing subsystem
for the same property. This observation leads to novel algorithms for computing minimal
witnessing subsystems, both exactly and heuristically. The quotient-sum heuristic aims to
compute Farkas certificates with small support by solving a sequence of linear programs. In
an experimental analysis we showed that this heuristic is competitive with known approaches
in terms of computation time and the size of computed witnesses. It generally returns a good
solution already after a few (usually two to three) iterations. Hence, the overhead of using the
heuristic is not huge when compared with model checking, which requires solving a single
linear program of the same size. All algorithms which are based on computing Farkas certificates
are certifying, by construction. The Farkas certificate which is returned along with a witnessing
subsystem (actually, the certificate induces the witness) provides an easily-verifiable proof that

170



7. Conclusion 171

the subsystem is an actual witness for the considered property.
Regarding the complexity of computing minimal witnessing subsystems, we have shown

that the corresponding decision problem is NP-complete already for acyclic Markov chains. To
find possibly tractable subclasses, we studied Markov chains with bounded tree width. Here, a
negative result was proved: even for the class of Markov chains with bounded path width, the
problem of computing minimal witnessing subsystems remains NP-hard. The proof exposes a
new type of combinatorial hardness, which was not utilized in other NP-hardness proofs. On
the other hand, we show that one can still hope for algorithms which exploit tree structure of an
MDP to compute witnesses faster in practice. Such an algorithm was proposed and experiments
show that it outperforms other approaches for systems with favorable structure.

Finally, we considered explications on the level of probabilistic timed automata (PTA), a well
established model for probabilistic real-time systems. We proposed two notions of witnessing
subsystems for lower-bounded reachability constraints for PTA, one for maximal and one for
minimal reachability probabilities. Intuitively, one gets a subsystem by removing locations and
strengthening location invariants and transition guards. For minimal probabilities, additional
care has to be taken to ensure that the minimal probability cannot increase in a subsystem. Small
subsystems are more informative, and we consider three different notions of size for subsystems
of PTA. While the first simply counts the number of locations included in the subsystems, the
other two are designed to take timing aspects into account.

Future work

Richer properties in Markov chains. Our focus in this thesis was on reachability probabilities.
This is a natural choice, as they are an important building block for many probabilistic model
checking problems. A standard approach to compute the probability of an 𝜔-regular property
in a Markov chainM is to compute a deterministic Rabin automaton (DRA) A for the property,
construct the product ofM andA (which is again a Markov chain), and compute the probability
of reaching a bottom strongly connected component (BSCC) 𝐵 in the product which satisfies
the Rabin property. This means that for one of the Rabin pairs (𝐿, 𝐾) we have 𝐵 ∩ 𝐿 = ∅ and
𝐵 ∩ 𝐾 ≠ ∅. In this way, many problems considering 𝜔-regular properties in Markov chains can
be reduced to the case of reachability in a product Markov chain (which may be much larger
than the original system). In particular, Farkas certificates for the reachability property in the
product serve as certificates for the 𝜔-regular property in the original system.

Witnessing subsystems with respect to 𝜔-regular properties were considered in [WJÁ+14,
Jan15]. The notion of a witnessing subsystem is essentially the same as for reachability1. To
compute them for a Markov chain, one can consider the product ofM and a DRA A for the
property, as sketched above. Now, one labels the states in the product by their first component
(i.e., the corresponding state ofM) and collapses the accepting BSCCs, which form the target set.
The collapsed BSCCs are labeled by all states of the Markov chain included in the BSCC. Now
we have a labeled Markov chain in reachability form, and the minimal witnessing subsystems
of M w.r.t. the 𝜔-regular property correspond to the label-minimal witnessing subsystems for
a reachability property in the product. This reduction was described in [WJÁ+14]. With this
idea, the algorithms and heuristics presented in this thesis can be used to compute minimal

1It is more convenient in this setting to use substochastic matrices and make edges “disappear” in a subsystem,
rather than redirecting them to a dedicated state “exit”. This is because there is no such canonical rejecting state if
we consider arbitrary 𝜔-regular properties.



172

witnesses in Markov chains for threshold constraints on the probability of satisfying 𝜔-regular
properties.

If the property is described using an LTL formula, then the above approach is not entirely
satisfactory. This is because it requires double-exponential space, as any transformation of
LTL formulas into DRA produces double-exponentially larger automata in the worst case.
However, it is clear that minimal witnessing subsystems can be computed in exponential time
by enumerating all subsystems of the Markov chain and checking whether they satisfy the
probability bound on the LTL formula. This check can be done in exponential time [CY95]. Of
course, such an exhaustive enumeration of subsystems is not feasible in practice. A promising
direction to overcome this complexity gap is to apply methods for LTL model checking of
Markov chains which use unambiguous Büchi automata [BKK+16]. With these techniques, the
probability induced by an LTL formula can be computed using an (only) exponentially larger
system of linear equations. It would be interesting to see whether and how our techniques can
be extended to compute small witnessing subsystems and Farkas certificates on the basis of this
system of linear equations.

Richer properties in Markov decision processes. For Markov decision processes, the situation
is a bit different. The product construction works in an analogous way and again reduces the
𝜔-regular case to a Rabin condition. A set of accepting states with respect to the maximal
probabilities of satisfying the Rabin condition can also be computed (see [BK08, Theorem
10.125]). However, by collapsing these states we may lose information which is required to
compute minimal witnessing subsystems. This is because a scheduler may only need to visit
some of those states to achieve a desired probability. Observe that the difference to Markov
chains is that in a Markov chain, partly including a BSCC in a subsystem is never useful. This
is because for the subsystem this means that a rejecting state will be visited with probability
one inside the former BSCC. However, in MDPs, partly including maximal end components
may well be useful in a subsystem. A MILP-formulation which computes minimal witnesses for
lower-bounded maximal probability constraints w.r.t. Rabin conditions in MDPs is presented
in [WJÁ+14]. To overcome the issues sketched above, this MILP includes carefully crafted
constraints to ensure that the schedulers induced by its solutions indeed realize accepting end
components for the Rabin property. These constraints are costly, however, as they require 𝐾 ·𝑁
binary variables, where 𝑁 is the number of states in the product and 𝐾 is the number of Rabin
pairs.

A similar issue arose when we considered invariance properties in Section 4.4. Here, one
could not simply collapse proper end components in the case of maximal probabilities, because
one would have potentially lost subsystems which may have been minimal witnesses. We solved
this issue by using linear equation systems whose solutions induce proper end components (see
also Lemma 3.8). For Rabin conditions, onewould have to additionally guarantee that the induced
proper end components satisfy the Rabin condition. Considering how our techniques can be
extended to handle richer conditions such as Rabin or Streett is definitely worth exploring, with
the goal of enabling better algorithms and heuristics for the computation of minimal witnessing
subsystems with respect to 𝜔-regular properties in MDPs.

That being said, the above issues concern only the question of computing small and minimal
witnessing subsystems. Farkas certificates for 𝜔-regular properties in MDPs can be defined via
the reduction to reachability properties.

It may also be worth to reconsider the notion of witness for 𝜔-regular properties. The



7. Conclusion 173

fact that the states in the product construction correspond to memory locations of the sched-
ulers in the original system could be taken into account to possibly provide more informative
explications.

Probabilistic computation tree logic. Another pathway for further research is to consider
richer subclasses of PCTL properties beyond probabilistic reachability constraints. The standard
approach to PCTL model checking recursively computes accepting state sets for all subformulas.
Having computed these sets, one can compute the accepting state set of the main formula
using methods for reachability probabilities. However, removing states to form a subsystem
may change the acceptance status of subformulas in all states in ways that are difficult to
predict. Witnessing subsystems for a safety fragment of PCTL were considered in [CV10]. Their
algorithm for computing witnesses is based on removing states iteratively, until removing any
further state would lead to the violation of the property. The approach is completely unguided,
however, in the sense that states are removed in an arbitrary order. As probabilistic reachability
constraints form the basis of PCTL, we believe that our work can be a good starting point to
design exact algorithms and heuristics for the computation of minimal witnessing subsystems
for such properties.

Other properties. And then, there are all the other kinds of properties. By considering the
expected total reward, we have only scratched the surface on the quantitative and weighted
properties which are important for MDPs. One can, and should, consider explications and
certificates for (threshold constraints on) the expected mean-payoff, cost-utility ratios, energy
properties, conditional expectations, to name a few. All of them will require new methods,
but we hope that some of the ideas presented in this thesis can serve as starting points and
inspiration.

Richer systems. It is also interesting to consider witnesses and certificates in classes of systems
which go beyond Markov decision processes. A natural first candidate to address are stochastic
two player reachability games (also called simple stochastic games). They resemble standard two
player graph games, with the exception that the players now choose probability distributions
over states (similarly as in MDPs). The objective of one player is to maximize the probability of
reaching the target, while the other player tries to minimize it. The threshold problem of these
games is in NP ∩ co-NP and not known to be solvable in polynomial time. In particular, (non-
stochastic) parity games reduce to it [CF11]. Hence, we cannot hope for certificates which are
solutions of small systems of linear inequalities (as this would imply a polynomial time algorithm
for the problem). However, the fact that we have identified Farkas certificates for two special
cases – namely, if all states belong to the minimizing or the maximizing player, respectively –
makes us believe that our work is an interesting starting point to look for certificates in the
general case. The notion of subsystems which is used for MDPs also makes sense here (although
plausible alternatives certainly exist). If a state is removed, which means that we assign to it
value zero, then the value of all other states does not increase1. Hence, a subsystem which
satisfies a lower bound on the value in any given state, witnesses that this lower bound holds in
the original system.

Another direction to explore are probabilistic hybrid automata, which generalize probabilis-
tic timed automata. Here, one quickly runs into the issue that the model checking problem is

1By value we mean the reachability probability under optimal strategies for both players.



174

undecidable already with minor extensions beyond the setting of timed automata [HKPV98].
Still, decidable classes do exist, and first steps to generalize our results for probabilistic timed
automata have been made [Hen21]. Also, incomplete model checking procedures for large
classes of hybrid automata exist, and whenever such a procedure yields a conclusive answer, it
is useful to provide an explication for it. The work on counterexamples for hybrid automata
presented in [NÁCC14] goes in this direction. In this setting, the question of what constitutes a
useful explication is still largely unexplored, and will be an important one to pursue.



Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[ÁBD+14] Erika Ábrahám, Bernd Becker, Christian Dehnert, Nils Jansen, Joost-Pieter Ka-
toen, and Ralf Wimmer. Counterexample Generation for Discrete-Time Markov
Models: An Introductory Survey. In Marco Bernardo, Ferruccio Damiani, Reiner
Hähnle, Einar Broch Johnsen, and Ina Schaefer, editors, Formal Methods for Ex-
ecutable Software Models: 14th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems, (SFM), Lecture Notes
in Computer Science, pages 65–121. Springer International Publishing, Cham,
2014. doi:10.1007/978-3-319-07317-0_3.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-Checking in
Dense Real-Time. Information and Computation, 104(1):2–34, May 1993.
doi:10.1006/inco.1993.1024.

[ACDE07] David L. Applegate, William Cook, Sanjeeb Dash, and Daniel G. Espinoza. Exact
solutions to linear programming problems. Operations Research Letters, 35(6):693–
699, Nov. 2007. doi:10.1016/j.orl.2006.12.010.

[ACG+20] Ali Asadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Kiarash Moham-
madi, and Andreas Pavlogiannis. Faster Algorithms for Quantitative Analysis of
MCs and MDPs with Small Treewidth. In Dang Van Hung and Oleg Sokolsky,
editors, Automated Technology for Verification and Analysis - 18th International
Symposium (ATVA), Lecture Notes in Computer Science, pages 253–270, Cham,
2020. Springer International Publishing. doi:10.1007/978-3-030-59152-6_14.

[AČJ+21] Roman Andriushchenko, Milan Češka, Sebastian Junges, Joost-Pieter Katoen, and
Šimon Stupinský. PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs.
In Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided Verification -
33rd International Conference (CAV), Lecture Notes in Computer Science, pages
856–869, Cham, 2021. Springer International Publishing. doi:10.1007/978-3-030-
81685-8_40.

[AČJK21] Roman Andriushchenko, Milan Češka, Sebastian Junges, and Joost-Pieter Katoen.
Inductive Synthesis for Probabilistic Programs Reaches NewHorizons. In Jan Friso

175

http://dx.doi.org/10.1007/978-3-319-07317-0_3
http://dx.doi.org/10.1006/inco.1993.1024
http://dx.doi.org/10.1016/j.orl.2006.12.010
http://dx.doi.org/10.1007/978-3-030-59152-6_14
http://dx.doi.org/10.1007/978-3-030-81685-8_40
http://dx.doi.org/10.1007/978-3-030-81685-8_40


176 BIBLIOGRAPHY

Groote and Kim Guldstrand Larsen, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 27th International Conference (TACAS), Lecture
Notes in Computer Science, pages 191–209, Cham, 2021. Springer International
Publishing. doi:10.1007/978-3-030-72016-2_11.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, Apr. 1994. doi:10.1016/0304-3975(94)90010-8.

[ADvR09] Miguel E. Andrés, Pedro D’Argenio, and Peter van Rossum. Significant Diag-
nostic Counterexamples in Probabilistic Model Checking. In Hana Chockler
and Alan J. Hu, editors, Hardware and Software: Verification and Testing, Lecture
Notes in Computer Science, pages 129–148, Berlin, Heidelberg, 2009. Springer.
doi:10.1007/978-3-642-01702-5_15.

[AF92] David Avis and Komei Fukuda. A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete & Computational Geometry,
8(3):295–313, Sept. 1992. doi:10.1007/BF02293050.

[AF96] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied
Mathematics, 65(1):21–46, Mar. 1996. doi:10.1016/0166-218X(95)00026-N.

[AFG+09] Husain Aljazzar, Manuel Fischer, Lars Grunske, Matthias Kuntz, Florian Leitner-
Fischer, and Stefan Leue. Safety Analysis of an Airbag System Using Probabilistic
FMEA and Probabilistic Counterexamples. In QEST 2009, Sixth International
Conference on the Quantitative Evaluation of Systems, pages 299–308, Sept. 2009.
doi:10.1109/QEST.2009.8.

[AH90] James Aspnes and Maurice Herlihy. Fast randomized consensus using shared
memory. Journal of Algorithms, 11(3):441–461, Sept. 1990. doi:10.1016/0196-
6774(90)90021-6.

[AH99] Rajeev Alur and Thomas A. Henzinger. Reactive Modules. Formal Methods in
System Design, 15(1):7–48, July 1999. doi:10.1023/A:1008739929481.

[AHL05] Husain Aljazzar, Holger Hermanns, and Stefan Leue. Counterexamples for Timed
Probabilistic Reachability. In Paul Pettersson and Wang Yi, editors, Formal Mod-
eling and Analysis of Timed Systems, Third International Conference (FORMATS),
Lecture Notes in Computer Science, pages 177–195, Berlin, Heidelberg, 2005.
Springer. doi:10.1007/11603009_15.

[ÁJW+10] Erika Ábrahám, Nils Jansen, Ralf Wimmer, Joost-Pieter Katoen, and Bernd Becker.
DTMC Model Checking by SCC Reduction. In QEST 2010, Seventh Interna-
tional Conference on the Quantitative Evaluation of Systems, pages 37–46, 2010.
doi:10.1109/QEST.2010.13.

[AK98] Edoardo Amaldi and Viggo Kann. On the approximability of minimizing nonzero
variables or unsatisfied relations in linear systems. Theoretical Computer Science,
209(1):237–260, Dec. 1998. doi:10.1016/S0304-3975(97)00115-1.

http://dx.doi.org/10.1007/978-3-030-72016-2_11
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-642-01702-5_15
http://dx.doi.org/10.1007/BF02293050
http://dx.doi.org/10.1016/0166-218X(95)00026-N
http://dx.doi.org/10.1109/QEST.2009.8
http://dx.doi.org/10.1016/0196-6774(90)90021-6
http://dx.doi.org/10.1016/0196-6774(90)90021-6
http://dx.doi.org/10.1023/A:1008739929481
http://dx.doi.org/10.1007/11603009_15
http://dx.doi.org/10.1109/QEST.2010.13
http://dx.doi.org/10.1016/S0304-3975(97)00115-1


BIBLIOGRAPHY 177

[AL06] Husain Aljazzar and Stefan Leue. ExtendedDirected Search for Probabilistic Timed
Reachability. In Eugene Asarin and Patricia Bouyer, editors, Formal Modeling
and Analysis of Timed Systems, 4th International Conference (FORMATS), Lecture
Notes in Computer Science, pages 33–51, Berlin, Heidelberg, 2006. Springer.
doi:10.1007/11867340_4.

[AL08] Husain Aljazzar and Stefan Leue. Debugging of Dependability Models Using In-
teractive Visualization of Counterexamples. In QEST 2008, Fifth International
Conference on Quantitative Evaluation of Systems, pages 189–198, Sept. 2008.
doi:10.1109/QEST.2008.40.

[AL09] Husain Aljazzar and Stefan Leue. Generation of Counterexamples for Model
Checking of Markov Decision Processes. In QEST 2009, Sixth International Con-
ference on the Quantitative Evaluation of Systems, pages 197–206, Sept. 2009.
doi:10.1109/QEST.2009.10.

[AL10] Husain Aljazzar and Stefan Leue. Directed Explicit State-Space Search in the
Generation of Counterexamples for Stochastic Model Checking. IEEE Transactions
on Software Engineering, 36(1):37–60, Jan. 2010. doi:10.1109/TSE.2009.57.

[ALLS11] Husain Aljazzar, Florian Leitner-Fischer, Stefan Leue, and Dimitar Simeonov.
DiPro - A Tool for Probabilistic Counterexample Generation. In Alex Groce and
Madanlal Musuvathi, editors,Model Checking Software, Lecture Notes in Computer
Science, pages 183–187, Berlin, Heidelberg, 2011. Springer. doi:10.1007/978-3-642-
22306-8_13.

[AMP09] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded
model checking of software using SMT solvers instead of SAT solvers. Inter-
national Journal on Software Tools for Technology Transfer, 11(1):69–83, Feb. 2009.
doi:10.1007/s10009-008-0091-0.

[And01] Erling D. Andersen. Certificates of Primal or Dual Infeasibility in Linear Program-
ming. Computational Optimization and Applications, 20(2):171–183, Nov. 2001.
doi:10.1023/A:1011259103627.

[BBF+16] Pietro Belotti, Pierre Bonami, Matteo Fischetti, Andrea Lodi, Michele Monaci,
Amaya Nogales-Gómez, and Domenico Salvagnin. On handling indicator con-
straints in mixed integer programming. Computational Optimization and Applica-
tions, 65(3):545–566, Dec. 2016. doi:10.1007/s10589-016-9847-8.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Devel-
opment - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07964-
5.

[BCC+15] Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelík, Andreas Fellner, and
Jan Křetínský. Counterexample Explanation by Learning Small Strategies in
Markov Decision Processes. In Daniel Kroening and Corina S. Păsăreanu, editors,
Computer Aided Verification - 27th International Conference (CAV), Lecture Notes in

http://dx.doi.org/10.1007/11867340_4
http://dx.doi.org/10.1109/QEST.2008.40
http://dx.doi.org/10.1109/QEST.2009.10
http://dx.doi.org/10.1109/TSE.2009.57
http://dx.doi.org/10.1007/978-3-642-22306-8_13
http://dx.doi.org/10.1007/978-3-642-22306-8_13
http://dx.doi.org/10.1007/s10009-008-0091-0
http://dx.doi.org/10.1023/A:1011259103627
http://dx.doi.org/10.1007/s10589-016-9847-8
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-662-07964-5


178 BIBLIOGRAPHY

Computer Science, pages 158–177, Cham, 2015. Springer International Publishing.
doi:10.1007/978-3-319-21690-4_10.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
Model Checking without BDDs. In W. Rance Cleaveland, editor, Tools and Al-
gorithms for Construction and Analysis of Systems, 5th International Conference
(TACAS), Lecture Notes in Computer Science, pages 193–207, Berlin, Heidelberg,
1999. Springer. doi:10.1007/3-540-49059-0_14.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. Information and
Computation, 98(2):142–170, 1992. doi:10.1016/0890-5401(92)90017-A.

[BdeA95] Andrea Bianco and Luca de Alfaro. Model checking of probabilistic and nondeter-
ministic systems. In P. S. Thiagarajan, editor, Foundations of Software Technology
and Theoretical Computer Science, 15th Conference (FSTTCS), Lecture Notes in Com-
puter Science, pages 499–513, Berlin, Heidelberg, 1995. Springer. doi:10.1007/3-
540-60692-0_70.

[BDH96] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull
algorithm for convex hulls. ACMTransactions onMathematical Software, 22(4):469–
483, Dec. 1996. doi:10.1145/235815.235821.

[Ben08] Mordechai Ben-Ari. Principles of the Spin Model Checker. Springer-Verlag, London,
2008. doi:10.1007/978-1-84628-770-1.

[BHHK03] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-
Pieter Katoen. Model-checking algorithms for continuous-time Markov
chains. IEEE Transactions on Software Engineering, 29(6):524–541, June 2003.
doi:10.1109/TSE.2003.1205180.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The soft-
ware model checker Blast. International Journal on Software Tools for Technology
Transfer, 9(5):505–525, Oct. 2007. doi:10.1007/s10009-007-0044-z.

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems. Science of Computer Programming,
72(1):3–21, June 2008. doi:10.1016/j.scico.2007.08.001.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[BKK+16] Christel Baier, Stefan Kiefer, Joachim Klein, Sascha Klüppelholz, David Müller,
and James Worrell. Markov Chains and Unambiguous Büchi Automata. In
Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification - 28th
International Conference, (CAV), Lecture Notes in Computer Science, pages 23–42,
Cham, 2016. Springer International Publishing. doi:10.1007/978-3-319-41528-4_2.

http://dx.doi.org/10.1007/978-3-319-21690-4_10
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1007/3-540-60692-0_70
http://dx.doi.org/10.1007/3-540-60692-0_70
http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.1007/978-1-84628-770-1
http://dx.doi.org/10.1109/TSE.2003.1205180
http://dx.doi.org/10.1007/s10009-007-0044-z
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1007/978-3-319-41528-4_2


BIBLIOGRAPHY 179

[BKL+17] Christel Baier, Joachim Klein, Linda Leuschner, David Parker, and Sascha Wun-
derlich. Ensuring the Reliability of Your Model Checker: Interval Iteration for
Markov Decision Processes. In Rupak Majumdar and Viktor Kunčak, editors, Com-
puter Aided Verification - 29th International Conference, (CAV), Lecture Notes in
Computer Science, pages 160–180, Cham, 2017. Springer International Publishing.
doi:10.1007/978-3-319-63387-9_8.

[BLR11] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of software
model checking with SLAM. Communications of the ACM, 54(7):68–76, July 2011.
doi:10.1145/1965724.1965743.

[BLTW15] Pierre Bonami, Andrea Lodi, Andrea Tramontani, and Sven Wiese. On mathe-
matical programming with indicator constraints. Mathematical Programming,
151(1):191–223, June 2015. doi:10.1007/s10107-015-0891-4.

[BMS+17] Anna Bernasconi, Claudio Menghi, Paola Spoletini, Lenore D. Zuck, and Carlo
Ghezzi. From Model Checking to a Temporal Proof for Partial Models. In Alessan-
dro Cimatti and Marjan Sirjani, editors, Software Engineering and Formal Methods
- 15th International Conference (SEFM), Lecture Notes in Computer Science, pages
54–69, Cham, 2017. Springer International Publishing. doi:10.1007/978-3-319-
66197-1_4.

[Bod97] Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. In Igor
Prívara and Peter Ružička, editors, Mathematical Foundations of Computer Science,
22nd International Symposium, (MFCS), Lecture Notes in Computer Science, pages
19–36, Berlin, Heidelberg, 1997. Springer. doi:10.1007/BFb0029946.

[BT91] Dimitri P. Bertsekas and John N. Tsitsiklis. An Analysis of Stochastic Shortest
Path Problems. Mathematics of Operations Research, 16(3):580–595, Aug. 1991.
doi:10.1287/moor.16.3.580.

[BV14] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2014. doi:10.1017/CBO9780511804441.

[BW91] GrahamBrightwell and PeterWinkler. Counting linear extensions. Order, 8(3):225–
242, Sept. 1991. doi:10.1007/BF00383444.

[BWB+11] Bettina Braitling, Ralf Wimmer, Bernd Becker, Nils Jansen, and Erika Ábrahám.
Counterexample Generation for Markov Chains Using SMT-Based BoundedModel
Checking. In Roberto Bruni and Juergen Dingel, editors, Formal Techniques for
Distributed Systems, Lecture Notes in Computer Science, pages 75–89, Berlin,
Heidelberg, 2011. Springer. doi:10.1007/978-3-642-21461-5_5.

[BY04] Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algorithms and
Tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures
on Concurrency and Petri Nets: Advances in Petri Nets, Lecture Notes in Computer
Science, pages 87–124. Springer, Berlin, Heidelberg, 2004. doi:10.1007/978-3-540-
27755-2_3.

http://dx.doi.org/10.1007/978-3-319-63387-9_8
http://dx.doi.org/10.1145/1965724.1965743
http://dx.doi.org/10.1007/s10107-015-0891-4
http://dx.doi.org/10.1007/978-3-319-66197-1_4
http://dx.doi.org/10.1007/978-3-319-66197-1_4
http://dx.doi.org/10.1007/BFb0029946
http://dx.doi.org/10.1287/moor.16.3.580
http://dx.doi.org/10.1017/CBO9780511804441
http://dx.doi.org/10.1007/BF00383444
http://dx.doi.org/10.1007/978-3-642-21461-5_5
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/978-3-540-27755-2_3


180 BIBLIOGRAPHY

[CB06] Frank Ciesinski and Christel Baier. LiQuor: A tool for Qualitative and Quantitative
Linear Time analysis of Reactive Systems. In QEST 2006, Third International Con-
ference on the Quantitative Evaluation of Systems, pages 131–132. IEEE Computer
Society, 2006. doi:10.1109/QEST.2006.25.

[CBGK08] Frank Ciesinski, Christel Baier, Marcus Größer, and Joachim Klein. Reduction
Techniques for Model Checking Markov Decision Processes. In QEST 2008, Fifth
International Conference on Quantitative Evaluation of Systems, pages 45–54, Sept.
2008. doi:10.1109/QEST.2008.45.

[CDR92] John Canny, Bruce Donald, and Eugene K. Ressler. A rational rotation method for
robust geometric algorithms. In Proceedings of the Eighth Annual Symposium on
Computational Geometry, (SCG), pages 251–260, New York, NY, USA, July 1992.
Association for Computing Machinery. doi:10.1145/142675.142726.

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: Algo-
rithmic verification and debugging. Communincations of the ACM, 52(11):74–84,
2009. doi:10.1145/1592761.1592781.

[CF11] Krishnendu Chatterjee and Nathanaël Fijalkow. A reduction from parity games
to simple stochastic games. Second International Symposium on Games, Au-
tomata, Logics, and Formal Verification (GandALF), 54:74–86, June 2011, 1106.1232.
doi:10.4204/EPTCS.54.6.

[CGJ+03] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking.
Journal of the ACM, 50(5):752–794, Sept. 2003. doi:10.1145/876638.876643.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and
abstraction. ACMTransactions on Programming Languages and Systems, 16(5):1512–
1542, Sept. 1994. doi:10.1145/186025.186051.

[Cha93] Bernard Chazelle. An optimal convex hull algorithm in any fixed di-
mension. Discrete & Computational Geometry, 10(4):377–409, Dec. 1993.
doi:10.1007/BF02573985.

[Cha96] T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three
dimensions. Discrete & Computational Geometry, 16(4):361–368, Apr. 1996.
doi:10.1007/BF02712873.

[ČHJK19] Milan Češka, Christian Hensel, Sebastian Junges, and Joost-Pieter Katoen.
Counterexample-Driven Synthesis for Probabilistic Program Sketches. In Mau-
rice H. ter Beek, Annabelle McIver, and José N. Oliveira, editors, Formal Methods
– The Next 30 Years, Lecture Notes in Computer Science, pages 101–120, Cham,
2019. Springer International Publishing. doi:10.1007/978-3-030-30942-8_8.

[CHJM05] Krishnendu Chatterjee, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majum-
dar. Counterexample-guided Planning. In Proceedings of the 21st Conference in
Uncertainty in Artificial Intelligence, pages 104–111. AUAI Press, 2005.

http://dx.doi.org/10.1109/QEST.2006.25
http://dx.doi.org/10.1109/QEST.2008.45
http://dx.doi.org/10.1145/142675.142726
http://dx.doi.org/10.1145/1592761.1592781
http://arxiv.org/abs/1106.1232
http://dx.doi.org/10.4204/EPTCS.54.6
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/186025.186051
http://dx.doi.org/10.1007/BF02573985
http://dx.doi.org/10.1007/BF02712873
http://dx.doi.org/10.1007/978-3-030-30942-8_8


BIBLIOGRAPHY 181

[CHK08] Taolue Chen, Tingting Han, and Joost-Pieter Katoen. Time-Abstracting Bisimula-
tion for Probabilistic Timed Automata. In 2nd IFIP/IEEE International Symposium
on Theoretical Aspects of Software Engineering (TASE), pages 177–184, June 2008.
doi:10.1109/TASE.2008.29.

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem,
editors. Handbook of Model Checking. Springer, 2018. doi:10.1007/978-3-319-
10575-8.

[CIP15] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. Faster
Algorithms for Quantitative Verification in Constant Treewidth Graphs. In Daniel
Kroening and Corina S. Păsăreanu, editors, Computer Aided Verification - 27th
International Conference (CAV), Lecture Notes in Computer Science, pages 140–157,
Cham, 2015. Springer International Publishing. doi:10.1007/978-3-319-21690-4_9.

[CJLV02] Edmund M. Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Tree-like counterex-
amples in model checking. In 17th Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 19–29, July 2002. doi:10.1109/LICS.2002.1029814.

[CŁ13] Krishnendu Chatterjee and Jakub Łącki. Faster Algorithms for Markov Decision
Processes with Low Treewidth. In Natasha Sharygina and Helmut Veith, edi-
tors, Computer Aided Verification - 25th International Conference (CAV), Lecture
Notes in Computer Science, pages 543–558, Berlin, Heidelberg, 2013. Springer.
doi:10.1007/978-3-642-39799-8_36.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

[CNŽ17] Krishnendu Chatterjee, Petr Novotný, and Ðorđe Žikelić. Stochastic invariants for
probabilistic termination. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, (POPL), pages 145–160, New York, NY, USA,
Jan. 2017. Association for Computing Machinery. doi:10.1145/3009837.3009873.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable
sets of finite graphs. Information and Computation, 85(1):12–75, Mar. 1990.
doi:10.1016/0890-5401(90)90043-H.

[CSS03] Michael A. Colón, Sriram Sankaranarayanan, and Henny B. Sipma. Linear In-
variant Generation Using Non-linear Constraint Solving. In Warren A. Hunt and
Fabio Somenzi, editors, Computer Aided Verification, 15th International Conference
(CAV), Lecture Notes in Computer Science, pages 420–432, Berlin, Heidelberg,
2003. Springer. doi:10.1007/978-3-540-45069-6_39.

[CV03] Edmund Clarke and Helmut Veith. Counterexamples Revisited: Principles, Al-
gorithms, Applications. In Nachum Dershowitz, editor, Verification: Theory and
Practice. Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday,
Lecture Notes in Computer Science, pages 208–224. Springer, Berlin, Heidelberg,
2003. doi:10.1007/978-3-540-39910-0_9.

http://dx.doi.org/10.1109/TASE.2008.29
http://dx.doi.org/10.1007/978-3-319-10575-8
http://dx.doi.org/10.1007/978-3-319-10575-8
http://dx.doi.org/10.1007/978-3-319-21690-4_9
http://dx.doi.org/10.1109/LICS.2002.1029814
http://dx.doi.org/10.1007/978-3-642-39799-8_36
http://dx.doi.org/10.1145/3009837.3009873
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/978-3-540-39910-0_9


182 BIBLIOGRAPHY

[CV10] Rohit Chadha and Mahesh Viswanathan. A counterexample-guided abstraction-
refinement framework for Markov decision processes. ACM Transactions on
Computational Logic, 12(1):1:1–1:49, Nov. 2010. doi:10.1145/1838552.1838553.

[CY90] Costas Courcoubetis and Mihalis Yannakakis. Markov decision processes and
regular events (extended abstract). In Michael S. Paterson, editor, Automata,
Languages and Programming, 17th International Colloquium (ICALP), Lecture
Notes in Computer Science, pages 336–349, Berlin, Heidelberg, 1990. Springer.
doi:10.1007/BFb0032043.

[CY95] Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic ver-
ification. Journal of the ACM, 42(4):857–907, July 1995. doi:10.1145/210332.210339.

[deA97] Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
university, 1997.

[deA99] Luca de Alfaro. Computing Minimum and Maximum Reachability Times in
Probabilistic Systems. In Jos C. M. Baeten and Sjouke Mauw, editors, Concurrency
Theory, 10th International Conference (CONCUR), Lecture Notes in Computer
Science, pages 66–81, Berlin, Heidelberg, 1999. Springer. doi:10.1007/3-540-48320-
9_7.

[deAKN+00] Luca de Alfaro, Marta Kwiatkowska, Gethin Norman, David Parker, and Roberto
Segala. Symbolic Model Checking of Probabilistic Processes Using MTBDDs and
the Kronecker Representation. In Susanne Graf andMichael Schwartzbach, editors,
Tools and Algorithms for Construction and Analysis of Systems, 6th International
Conference (TACAS), Lecture Notes in Computer Science, pages 395–410, Berlin,
Heidelberg, 2000. Springer. doi:10.1007/3-540-46419-0_27.

[DHK08] Berteun Damman, Tingting Han, and Joost-Pieter Katoen. Regular Expressions for
PCTL Counterexamples. In QEST 2008, Fifth International Conference on Quantita-
tive Evaluation of Systems, pages 179–188, Sept. 2008. doi:10.1109/QEST.2008.11.

[Dil90] David L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In Joseph Sifakis, editor, Automatic Verification Methods for Finite State
Systems, Lecture Notes in Computer Science, pages 197–212, Berlin, Heidelberg,
1990. Springer. doi:10.1007/3-540-52148-8_17.

[DJ14] N. Dinh and V. Jeyakumar. Farkas’ lemma: Three decades of generalizations for
mathematical optimization. TOP, 22(1):1–22, Apr. 2014. doi:10.1007/s11750-014-
0319-y.

[DJKV17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A
Storm is Coming: AModern Probabilistic Model Checker. In RupakMajumdar and
Viktor Kunčak, editors, Computer Aided Verification - 29th International Conference
(CAV), Lecture Notes in Computer Science, pages 592–600, Cham, 2017. Springer
International Publishing. doi:10.1007/978-3-319-63390-9_31.

[DJW+14] Christian Dehnert, Nils Jansen, Ralf Wimmer, Erika Ábrahám, and Joost-Pieter
Katoen. Fast Debugging of PRISM Models. In Franck Cassez and Jean-François

http://dx.doi.org/10.1145/1838552.1838553
http://dx.doi.org/10.1007/BFb0032043
http://dx.doi.org/10.1145/210332.210339
http://dx.doi.org/10.1007/3-540-48320-9_7
http://dx.doi.org/10.1007/3-540-48320-9_7
http://dx.doi.org/10.1007/3-540-46419-0_27
http://dx.doi.org/10.1109/QEST.2008.11
http://dx.doi.org/10.1007/3-540-52148-8_17
http://dx.doi.org/10.1007/s11750-014-0319-y
http://dx.doi.org/10.1007/s11750-014-0319-y
http://dx.doi.org/10.1007/978-3-319-63390-9_31


BIBLIOGRAPHY 183

Raskin, editors, Automated Technology for Verification and Analysis - 12th Inter-
national Symposium (ATVA), Lecture Notes in Computer Science, pages 146–162,
Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-11936-6_11.

[DKL07] Henning Dierks, Sebastian Kupferschmid, and Kim G. Larsen. Automatic Ab-
straction Refinement for Timed Automata. In Jean-François Raskin and P. S.
Thiagarajan, editors, Formal Modeling and Analysis of Timed Systems, 5th Interna-
tional Conference (FORMATS), Lecture Notes in Computer Science, pages 114–129,
Berlin, Heidelberg, 2007. Springer. doi:10.1007/978-3-540-75454-1_10.

[DO96] Guoli Ding and Bogdan Oporowski. On tree-partitions of graphs. Discrete Mathe-
matics, 149(1):45–58, Feb. 1996. doi:10.1016/0012-365X(94)00337-I.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using Branching Time Temporal
Logic to Synthesize Synchronization Skeletons. Science of Computer Programming,
2(3):241–266, 1982. doi:10.1016/0167-6423(83)90017-5.

[Ede86] Anders Edenbrandt. Quotient tree partitioning of undirected graphs. BIT Numeri-
cal Mathematics, 26(2):148–155, June 1986. doi:10.1007/BF01933740.

[Far02] Julius Farkas. Theorie der einfachen Ungleichungen. Journal für die
reine und angewandte Mathematik (Crelles Journal), 1902(124):1–27, Jan. 1902.
doi:10.1515/crll.1902.124.1.

[FJB20] Florian Funke, Simon Jantsch, and Christel Baier. Farkas Certificates and Minimal
Witnesses for Probabilistic Reachability Constraints. In Armin Biere and David
Parker, editors, Tools and Algorithms for the Construction and Analysis of Systems -
26th International Conference (TACAS), Lecture Notes in Computer Science, pages
324–345, Cham, 2020. Springer International Publishing. doi:10.1007/978-3-030-
45190-5_18.

[FKNP11] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, andDavid Parker. Automated
Verification Techniques for Probabilistic Systems. In Marco Bernardo and Valérie
Issarny, editors, Formal Methods for Eternal Networked Software Systems: 11th
International School on Formal Methods for the Design of Computer, Communication
and Software Systems (SFM), Lecture Notes in Computer Science, pages 53–113.
Springer, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-21455-4_3.

[FM06] Zhaohui Fu and SharadMalik. On Solving the Partial MAX-SAT Problem. In Armin
Biere and Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing,
9th International Conference (SAT), volume 4121 of Lecture Notes in Computer
Science, pages 252–265. Springer, 2006. doi:10.1007/11814948_25.

[FMY97] Masahiro Fujita, Patrick C. McGeer, and Jerry Chih-Yuan Yang. Multi-
Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix
Representation. Formal Methods in System Design, 10(2):149–169, Apr. 1997.
doi:10.1023/A:1008647823331.

[FY03] Uriel Feige and Orly Yahalom. On the complexity of finding balanced oneway
cuts. Information Processing Letters, 87(1):1–5, July 2003. doi:10.1016/S0020-
0190(03)00251-5.

http://dx.doi.org/10.1007/978-3-319-11936-6_11
http://dx.doi.org/10.1007/978-3-540-75454-1_10
http://dx.doi.org/10.1016/0012-365X(94)00337-I
http://dx.doi.org/10.1016/0167-6423(83)90017-5
http://dx.doi.org/10.1007/BF01933740
http://dx.doi.org/10.1515/crll.1902.124.1
http://dx.doi.org/10.1007/978-3-030-45190-5_18
http://dx.doi.org/10.1007/978-3-030-45190-5_18
http://dx.doi.org/10.1007/978-3-642-21455-4_3
http://dx.doi.org/10.1007/11814948_25
http://dx.doi.org/10.1023/A:1008647823331
http://dx.doi.org/10.1016/S0020-0190(03)00251-5
http://dx.doi.org/10.1016/S0020-0190(03)00251-5


184 BIBLIOGRAPHY

[GHK+16] Robert Ganian, Petr Hliněný, Joachim Kneis, Daniel Meister, Jan Obdržálek,
Peter Rossmanith, and Somnath Sikdar. Are there any good digraph width
measures? Journal of Combinatorial Theory, Series B, 116:250–286, Jan. 2016.
doi:10.1016/j.jctb.2015.09.001.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.

[GK94] Peter Gritzmann and Victor Klee. On the Complexity of Some Basic Problems
in Computational Convexity. In T. Bisztriczky, P. McMullen, R. Schneider, and
A. Ivić Weiss, editors, Polytopes: Abstract, Convex and Computational, NATO ASI
Series, pages 373–466. Springer Netherlands, Dordrecht, 1994. doi:10.1007/978-94-
011-0924-6_17.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated
random testing. In Vivek Sarkar and Mary W. Hall, editors, Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 213–223. ACM, 2005. doi:10.1145/1065010.1065036.

[GL81] Peter Gács and Laszlo Lovász. Khachiyan’s algorithm for linear programming. In
H. König, B. Korte, and K. Ritter, editors, Mathematical Programming at Oberwol-
fach, Mathematical Programming Studies, pages 61–68. Springer, Berlin, Heidel-
berg, 1981. doi:10.1007/BFb0120921.

[GMT02] Jens Gustedt, Ole A. Mæhle, and Jan Arne Telle. The Treewidth of Java Programs.
In David M. Mount and Clifford Stein, editors, Algorithm Engineering and Experi-
ments, Lecture Notes in Computer Science, pages 86–97, Berlin, Heidelberg, 2002.
Springer. doi:10.1007/3-540-45643-0_7.

[Gra72] Ronald L. Graham. An efficient algorith for determining the convex hull of
a finite planar set. Information Processing Letters, 1(4):132–133, June 1972.
doi:10.1016/0020-0190(72)90045-2.

[GRT18] Alberto Griggio, Marco Roveri, and Stefano Tonetta. Certifying Proofs
for LTL Model Checking. In Proceedings of the 18th Conference on For-
mal Methods in Computer Aided Design (FMCAD), pages 1–9, Oct. 2018.
doi:10.23919/FMCAD.2018.8603022.

[Gur22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL
https://www.gurobi.com.

[Han91] Hans A. Hansson. Time and Probability in Formal Design of Distributed Systems.
PhD thesis, University Uppsala, Sweden, 1991.

[HC11] Monika Henzinger and Krishnendu Chatterjee. Faster and Dynamic Algo-
rithms For Maximal End-Component Decomposition And Related Graph Prob-
lems In Probabilistic Verification. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), San Francisco, Jan. 2011.
doi:10.1137/1.9781611973082.101.

http://dx.doi.org/10.1016/j.jctb.2015.09.001
http://dx.doi.org/10.1007/978-94-011-0924-6_17
http://dx.doi.org/10.1007/978-94-011-0924-6_17
http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1007/BFb0120921
http://dx.doi.org/10.1007/3-540-45643-0_7
http://dx.doi.org/10.1016/0020-0190(72)90045-2
http://dx.doi.org/10.23919/FMCAD.2018.8603022
https://www.gurobi.com
http://dx.doi.org/10.1137/1.9781611973082.101


BIBLIOGRAPHY 185

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science (LICS), pages 278–292, July 1996.
doi:10.1109/LICS.1996.561342.

[Hen21] TomRenéHennig. Witnessing Subsystems and Farkas Certificates for Probabilistic
Rectangular Automata. Master’s thesis, Technische Universität Dresden, 2021.

[HK07a] Tingting Han and Joost-Pieter Katoen. Counterexamples in Probabilistic Model
Checking. In Orna Grumberg and Michael Huth, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 13th International Conference (TACAS),
Lecture Notes in Computer Science, pages 72–86, Berlin, Heidelberg, 2007.
Springer. doi:10.1007/978-3-540-71209-1_8.

[HK07b] Tingting Han and Joost-Pieter Katoen. Providing Evidence of Likely Being on
Time: Counterexample Generation for CTMC Model Checking. In Kedar S.
Namjoshi, Tomohiro Yoneda, Teruo Higashino, and Yoshio Okamura, editors,
Automated Technology for Verification and Analysis, 5th International Symposium
(ATVA), Lecture Notes in Computer Science, pages 331–346, Berlin, Heidelberg,
2007. Springer. doi:10.1007/978-3-540-75596-8_24.

[HK20] Arnd Hartmanns and Benjamin Lucien Kaminski. Optimistic Value Iteration. In
Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided Verification - 32nd
International Conference (CAV), Lecture Notes in Computer Science, pages 488–511,
Cham, 2020. Springer International Publishing. doi:10.1007/978-3-030-53291-8_26.

[HKD09] Tingting Han, Joost-Pieter Katoen, and Berteun Damman. Counterexample Gener-
ation in Probabilistic Model Checking. IEEE Transactions on Software Engineering,
35(2):241–257, Mar. 2009. doi:10.1109/TSE.2009.5.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s
Decidable about Hybrid Automata? Journal of Computer and System Sciences,
57(1):94–124, Aug. 1998. doi:10.1006/jcss.1998.1581.

[HLS+14] Ernst Moritz Hahn, Yi Li, Sven Schewe, Andrea Turrini, and Lijun Zhang. iscasMc:
A Web-Based Probabilistic Model Checker. In Cliff Jones, Pekka Pihlajasaari, and
Jun Sun, editors, FM 2014: Formal Methods - 19th International Symposium, Lecture
Notes in Computer Science, pages 312–317, Cham, 2014. Springer International
Publishing. doi:10.1007/978-3-319-06410-9_22.

[HM14] Serge Haddad and Benjamin Monmege. Reachability in MDPs: Refining Con-
vergence of Value Iteration. In Joël Ouaknine, Igor Potapov, and James Worrell,
editors, Reachability Problems - 8th International Workshop (RP), Lecture Notes in
Computer Science, pages 125–137, Cham, 2014. Springer International Publishing.
doi:10.1007/978-3-319-11439-2_10.

[HSV93] Leen Helmink, M. P. A. Sellink, and Frits W. Vaandrager. Proof-Checking a Data
Link Protocol. In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs
and Programs, International Workshop (TYPES), volume 806 of Lecture Notes in
Computer Science, pages 127–165. Springer, 1993. doi:10.1007/3-540-58085-9_75.

http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1007/978-3-540-71209-1_8
http://dx.doi.org/10.1007/978-3-540-75596-8_24
http://dx.doi.org/10.1007/978-3-030-53291-8_26
http://dx.doi.org/10.1109/TSE.2009.5
http://dx.doi.org/10.1006/jcss.1998.1581
http://dx.doi.org/10.1007/978-3-319-06410-9_22
http://dx.doi.org/10.1007/978-3-319-11439-2_10
http://dx.doi.org/10.1007/3-540-58085-9_75


186 BIBLIOGRAPHY

[HWZ08] Holger Hermanns, BjörnWachter, and Lijun Zhang. Probabilistic CEGAR. In Aarti
Gupta and Sharad Malik, editors, Computer Aided Verification, 20th International
Conference (CAV), Lecture Notes in Computer Science, pages 162–175, Berlin,
Heidelberg, 2008. Springer. doi:10.1007/978-3-540-70545-1_16.

[HZH+10] Fei He, He Zhu, William N.N. Hung, Xiaoyu Song, and Ming Gu. Compositional
Abstraction Refinement for Timed Systems. In 4th IEEE International Symposium
on Theoretical Aspects of Software Engineering (TASE), pages 168–176, Aug. 2010.
doi:10.1109/TASE.2010.27.

[IR90] Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks. Infor-
mation and Computation, 88(1):60–87, 1990. doi:10.1016/0890-5401(90)90004-2.

[JÁK+11] Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter Katoen, and
Bernd Becker. Hierarchical Counterexamples for Discrete-TimeMarkov Chains. In
Tevfik Bultan and Pao-Ann Hsiung, editors, Automated Technology for Verification
and Analysis, 9th International Symposium (ATVA), Lecture Notes in Computer
Science, pages 443–452, Berlin, Heidelberg, 2011. Springer. doi:10.1007/978-3-642-
24372-1_33.

[Jan15] Nils Jansen. Counterexamples in Probabilistic Verification. PhD thesis, RWTH
Aachen University, Germany, 2015.

[Jan22a] Simon Jantsch. Certificates and witnesses for probabilistic model checking –
examples, Feb 2022. doi:10.6084/m9.figshare.19209429.

[Jan22b] Simon Jantsch. Certificates and witnesses for probabilistic model checking –
supplementary material, Feb 2022. doi:10.6084/m9.figshare.19209303.

[JÁV+12] Nils Jansen, Erika Ábrahám, Matthias Volk, Ralf Wimmer, Joost-Pieter Katoen,
and Bernd Becker. The COMICS Tool – Computing Minimal Counterexamples
for DTMCs. In Supratik Chakraborty and Madhavan Mukund, editors, Automated
Technology for Verification and Analysis - 10th International Symposium (ATVA),
Lecture Notes in Computer Science, pages 349–353, Berlin, Heidelberg, 2012.
Springer. doi:10.1007/978-3-642-33386-6_27.

[JÁZ+13] Nils Jansen, Erika Ábrahám, Barna Zajzon, Ralf Wimmer, Johann Schuster, Joost-
Pieter Katoen, and Bernd Becker. Symbolic Counterexample Generation for
Discrete-Time Markov Chains. In Corina S. Păsăreanu and Gwen Salaün, editors,
Formal Aspects of Component Software, 9th International Symposium (FACS), Lec-
ture Notes in Computer Science, pages 134–151, Berlin, Heidelberg, 2013. Springer.
doi:10.1007/978-3-642-35861-6_9.

[JFB20] Simon Jantsch, Florian Funke, and Christel Baier. Minimal Witnesses for Prob-
abilistic Timed Automata. In Dang Van Hung and Oleg Sokolsky, editors, Au-
tomated Technology for Verification and Analysis - 18th International Symposium
(ATVA), Lecture Notes in Computer Science, pages 501–517, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-59152-6_28.

http://dx.doi.org/10.1007/978-3-540-70545-1_16
http://dx.doi.org/10.1109/TASE.2010.27
http://dx.doi.org/10.1016/0890-5401(90)90004-2
http://dx.doi.org/10.1007/978-3-642-24372-1_33
http://dx.doi.org/10.1007/978-3-642-24372-1_33
http://dx.doi.org/10.6084/m9.figshare.19209429
http://dx.doi.org/10.6084/m9.figshare.19209303
http://dx.doi.org/10.1007/978-3-642-33386-6_27
http://dx.doi.org/10.1007/978-3-642-35861-6_9
http://dx.doi.org/10.1007/978-3-030-59152-6_28


BIBLIOGRAPHY 187

[JHFB20] Simon Jantsch, Hans Harder, Florian Funke, and Christel Baier. SWITSS: Comput-
ing Small Witnessing Subsystems. In Proceedings of the 20th Conference on Formal
Methods in Computer-Aided Design (FMCAD), volume 1, pages 236–244. TU Wien
Academic Press, 2020. doi:10.34727/2020/isbn.978-3-85448-042-6_31.

[JPB21] Simon Jantsch, Jakob Piribauer, and Christel Baier. Witnessing Subsystems for
Probabilistic Systems with Low Tree Width. In 12th International Symposium
on Games, Automata, Logics, and Formal Verification (GandALF), volume 346
of Electronic Proceedings in Theoretical Computer Science, pages 35–51. Open
Publishing Association, Sept. 2021, 2109.08326. doi:10.4204/EPTCS.346.3.

[JRST01] Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Directed
Tree-Width. Journal of Combinatorial Theory, Series B, 82(1):138–154, May 2001.
doi:10.1006/jctb.2000.2031.

[JWÁ+14] Nils Jansen, Ralf Wimmer, Erika Ábrahám, Barna Zajzon, Joost-Pieter Katoen,
Bernd Becker, and Johann Schuster. Symbolic counterexample generation for
large discrete-time Markov chains. Science of Computer Programming, 91:90–114,
Oct. 2014. doi:10.1016/j.scico.2014.02.001.

[KÁJW15] Joost-Pieter Katoen, Erika Ábrahám, Nils Jansen, and Ralf Wimmer. High-level
Counterexamples for Probabilistic Automata. Logical Methods in Computer Science,
11(1), Mar. 2015. doi:10.2168/LMCS-11(1:15)2015.

[Kal83] Lodewijk C. M. Kallenberg. Linear Programming and Finite Markovian Control
Problems. Mathematical Centre, Amsterdam, 1983.

[Kal94] Lodewijk C. M. Kallenberg. Survey of linear programming for standard and
nonstandardMarkovian control problems. Part I: Theory. Zeitschrift für Operations
Research, 40(1):1–42, Mar. 1994. doi:10.1007/BF01414028.

[Kal16] Lodewijk C. M. Kallenberg. Markov Decision Processes. Lecture Notes. 2016,
University of Leiden.

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems. In Raymond E.
Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Proceedings of a Sympo-
sium on the Complexity of Computer Computations, The IBM Research Symposia
Series, pages 85–103. Springer US, Boston, MA, 1972. doi:10.1007/978-1-4684-2001-
2_9.

[Kha79] Leonid Genrikhovich Khachiyan. A polynomial algorithm in linear programming.
Doklady Akademii Nauk, 244(5), 1979.

[Kin76] James C. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, July 1976. doi:10.1145/360248.360252.

[KLL11] Matthias Kuntz, Florian Leitner-Fischer, and Stefan Leue. From Probabilistic
Counterexamples via Causality to Fault Trees. In Francesco Flammini, Sandro
Bologna, and Valeria Vittorini, editors, Computer Safety, Reliability, and Security -
30th International Conference (SAFECOMP), Lecture Notes in Computer Science,
pages 71–84, Berlin, Heidelberg, 2011. Springer. doi:10.1007/978-3-642-24270-0_6.

http://dx.doi.org/10.34727/2020/isbn.978-3-85448-042-6_31
http://arxiv.org/abs/2109.08326
http://dx.doi.org/10.4204/EPTCS.346.3
http://dx.doi.org/10.1006/jctb.2000.2031
http://dx.doi.org/10.1016/j.scico.2014.02.001
http://dx.doi.org/10.2168/LMCS-11(1:15)2015
http://dx.doi.org/10.1007/BF01414028
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1007/978-3-642-24270-0_6


188 BIBLIOGRAPHY

[KLP75] H. T. Kung, Fabrizio Luccio, and Franco P. Preparata. On Finding the Max-
ima of a Set of Vectors. Journal of the ACM, 22(4):469–476, Oct. 1975.
doi:10.1145/321906.321910.

[KLS20] Martin Kölbl, Stefan Leue, and Robert Schmid. Dynamic Causes for the Violation
of Timed Reachability Properties. In Nathalie Bertrand and Nils Jansen, editors,
Formal Modeling and Analysis of Timed Systems - 18th International Conference
(FORMATS), Lecture Notes in Computer Science, pages 127–143, Cham, 2020.
Springer International Publishing. doi:10.1007/978-3-030-57628-8_8.

[KLW19] Martin Kölbl, Stefan Leue, and Thomas Wies. Clock Bound Repair for Timed
Systems. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification - 31st
International Conference (CAV), Lecture Notes in Computer Science, pages 79–96,
Cham, 2019. Springer International Publishing. doi:10.1007/978-3-030-25540-4_5.

[KM17] Jan Křetínský and Tobias Meggendorfer. Efficient Strategy Iteration for Mean
Payoff in Markov Decision Processes. In Deepak D’Souza and K. Narayan Kumar,
editors, Automated Technology for Verification and Analysis - 15th International
Symposium (ATVA), Lecture Notes in Computer Science, pages 380–399, Cham,
2017. Springer International Publishing. doi:10.1007/978-3-319-68167-2_25.

[KM20] Jan Křetínský and Tobias Meggendorfer. Of Cores: A Partial-Exploration Frame-
work for Markov Decision Processes. Logical Methods in Computer Science, 16(4),
2020. doi:10.23638/LMCS-16(4:3)2020.

[KMMM10] Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C. Morgan.
Linear-Invariant Generation for Probabilistic Programs: Automated Support for
Proof-Based Methods. In Radhia Cousot and Matthieu Martel, editors, Static
Analysis - 17th International Symposium (SAS), volume 6337 of Lecture Notes in
Computer Science, pages 390–406. Springer, 2010. doi:10.1007/978-3-642-15769-
1_24.

[KMMS06] Dieter Kratsch, Ross M. McConnell, Kurt Mehlhorn, and Jeremy P. Spinrad. Certi-
fying Algorithms for Recognizing Interval Graphs and Permutation Graphs. SIAM
Journal on Computing, 36(2):326–353, Jan. 2006. doi:10.1137/S0097539703437855.

[KNP11] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification
of Probabilistic Real-Time Systems. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Computer Aided Verification - 23rd International Conference (CAV), Lecture
Notes in Computer Science, pages 585–591, Berlin, Heidelberg, 2011. Springer.
doi:10.1007/978-3-642-22110-1_47.

[KNP12] Marta Kwiatkowsa, Gethin Norman, and David Parker. The PRISM Benchmark
Suite. In QEST 2012, Ninth International Conference on Quantitative Evaluation of
Systems, pages 203–204, Sept. 2012. doi:10.1109/QEST.2012.14.

[KNSS02] Marta Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston.
Automatic verification of real-time systems with discrete probability distribu-
tions. Theoretical Computer Science, 282(1):101–150, June 2002. doi:10.1016/S0304-
3975(01)00046-9.

http://dx.doi.org/10.1145/321906.321910
http://dx.doi.org/10.1007/978-3-030-57628-8_8
http://dx.doi.org/10.1007/978-3-030-25540-4_5
http://dx.doi.org/10.1007/978-3-319-68167-2_25
http://dx.doi.org/10.23638/LMCS-16(4:3)2020
http://dx.doi.org/10.1007/978-3-642-15769-1_24
http://dx.doi.org/10.1007/978-3-642-15769-1_24
http://dx.doi.org/10.1137/S0097539703437855
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1109/QEST.2012.14
http://dx.doi.org/10.1016/S0304-3975(01)00046-9
http://dx.doi.org/10.1016/S0304-3975(01)00046-9


BIBLIOGRAPHY 189

[KNSW07] Marta Kwiatkowska, Gethin Norman, Jeremy Sproston, and FuzhiWang. Symbolic
model checking for probabilistic timed automata. Information and Computation,
205(7):1027–1077, July 2007. doi:10.1016/j.ic.2007.01.004.

[KNVG22] Arut Prakash Kaleeswaran, Arne Nordmann, Thomas Vogel, and Lars Grunske.
A systematic literature review on counterexample explanation. Information and
Software Technology, 145:106800, May 2022. doi:10.1016/j.infsof.2021.106800.

[KS76] John G. Kemeny and J. Laurie Snell. Finite Markov Chains: With a New Appendix
"Generalization of a Fundamental Matrix". Undergraduate Texts in Mathematics.
Springer-Verlag, New York, 1976.

[KT14] Daniel Kroening and Michael Tautschnig. CBMC – C Bounded Model Checker.
In Erika Ábrahám and Klaus Havelund, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 20th International Conference (TACAS),
Lecture Notes in Computer Science, pages 389–391, Berlin, Heidelberg, 2014.
Springer. doi:10.1007/978-3-642-54862-8_26.

[KV04] Orna Kupferman and Moshe Y. Vardi. From Complementation to Certification.
In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, 10th International Conference, (TACAS), Lecture
Notes in Computer Science, pages 591–606, Berlin, Heidelberg, 2004. Springer.
doi:10.1007/978-3-540-24730-2_43.

[KZH+11] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns, and
David N. Jansen. The ins and outs of the probabilistic model checker MRMC.
Performance Evaluation, 68(2):90–104, Feb. 2011. doi:10.1016/j.peva.2010.04.001.

[LMT07] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. Parametric
probabilistic transition systems for system design and analysis. Formal Aspects of
Computing, 19(1):93–109, Mar. 2007. doi:10.1007/s00165-006-0015-2.

[LP19] Ratan Lal and Pavithra Prabhakar. Counterexample Guided Abstraction Refine-
ment for Polyhedral Probabilistic Hybrid Systems. ACM Transactions on Embedded
Computing Systems, 18(5s):98:1–98:23, Oct. 2019. doi:10.1145/3358217.

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-2):134–152,
1997. doi:10.1007/s100090050010.

[LS07] François Laroussinie and Jeremy Sproston. State explosion in almost-sure prob-
abilistic reachability. Information Processing Letters, 102(6):236–241, June 2007.
doi:10.1016/j.ipl.2007.01.003.

[MMNS11] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms.
Computer Science Review, 5(2):119–161, May 2011. doi:10.1016/j.cosrev.2010.09.009.

[MN98] Kurt Mehlhorn and Stefan Näher. From algorithms to working programs: On
the use of program checking in LEDA. In Luboš Brim, Jozef Gruska, and Jiří
Zlatuška, editors,Mathematical Foundations of Computer Science, 23rd International

http://dx.doi.org/10.1016/j.ic.2007.01.004
http://dx.doi.org/10.1016/j.infsof.2021.106800
http://dx.doi.org/10.1007/978-3-642-54862-8_26
http://dx.doi.org/10.1007/978-3-540-24730-2_43
http://dx.doi.org/10.1016/j.peva.2010.04.001
http://dx.doi.org/10.1007/s00165-006-0015-2
http://dx.doi.org/10.1145/3358217
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1016/j.ipl.2007.01.003
http://dx.doi.org/10.1016/j.cosrev.2010.09.009


190 BIBLIOGRAPHY

Symposium (MFCS), Lecture Notes in Computer Science, pages 84–93, Berlin,
Heidelberg, 1998. Springer. doi:10.1007/BFb0055759.

[MN99] Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999.

[MNS+99] Kurt Mehlhorn, Stefan Näher, Michael Seel, Raimund Seidel, Thomas Schilz,
Stefan Schirra, and Christian Uhrig. Checking geometric programs or verifica-
tion of geometric structures. Computational Geometry, 12(1):85–103, Feb. 1999.
doi:10.1016/S0925-7721(98)00036-4.

[NÁCC14] Johanna Nellen, Erika Ábrahám, Xin Chen, and Pieter Collins. Counterexample
Generation for Hybrid Automata. In Cyrille Artho and Peter Csaba Ölveczky, edi-
tors, Formal Techniques for Safety-Critical Systems - Second International Workshop
(FTSCS), Communications in Computer and Information Science, pages 88–106,
Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-05416-2_7.

[Nam01] Kedar S. Namjoshi. Certifying Model Checkers. In Gérard Berry, Hubert Comon,
and Alain Finkel, editors, Computer Aided Verification, 13th International Confer-
ence (CAV), Lecture Notes in Computer Science, pages 2–13, Berlin, Heidelberg,
2001. Springer. doi:10.1007/3-540-44585-4_2.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer, 2002. doi:10.1007/3-540-45949-9.

[ÖK10] Özgür Özpeynirci and Murat Köksalan. An Exact Algorithm for Finding Ex-
treme Supported Nondominated Points of Multiobjective Mixed Integer Programs.
Management Science, 56(12):2302–2315, 2010. doi:10.1287/mnsc.1100.1248.

[PO19] William Pettersson and Melih Ozlen. Multi-objective mixed integer programming:
An objective space algorithm. AIP Conference Proceedings, 2070(1):020039, Feb.
2019. doi:10.1063/1.5090006.

[PPZ01] Doron Peled, Amir Pnueli, and Lenore Zuck. From Falsification to Verification.
In Ramesh Hariharan, V. Vinay, and Madhavan Mukund, editors, Foundations of
Software Technology and Theoretical Computer Science, 21st Conference (FSTTCS),
Lecture Notes in Computer Science, pages 292–304, Berlin, Heidelberg, 2001.
Springer. doi:10.1007/3-540-45294-X_25.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley Series in Probability and Statistics. Wiley, 1994.
doi:10.1002/9780470316887.

[QJD+15] Tim Quatmann, Nils Jansen, Christian Dehnert, Ralf Wimmer, Erika Ábrahám,
Joost-Pieter Katoen, and Bernd Becker. Counterexamples for Expected Rewards.
In Nikolaj Bjørner and Frank de Boer, editors, FM 2015: Formal Methods, Lecture
Notes in Computer Science, pages 435–452, Cham, 2015. Springer International
Publishing. doi:10.1007/978-3-319-19249-9_27.

http://dx.doi.org/10.1007/BFb0055759
http://dx.doi.org/10.1016/S0925-7721(98)00036-4
http://dx.doi.org/10.1007/978-3-319-05416-2_7
http://dx.doi.org/10.1007/3-540-44585-4_2
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1287/mnsc.1100.1248
http://dx.doi.org/10.1063/1.5090006
http://dx.doi.org/10.1007/3-540-45294-X_25
http://dx.doi.org/10.1002/9780470316887
http://dx.doi.org/10.1007/978-3-319-19249-9_27


BIBLIOGRAPHY 191

[QK18] Tim Quatmann and Joost-Pieter Katoen. Sound Value Iteration. In Hana Chockler
and GeorgWeissenbacher, editors, Computer Aided Verification - 30th International
Conference (CAV), Lecture Notes in Computer Science, pages 643–661, Cham, 2018.
Springer International Publishing. doi:10.1007/978-3-319-96145-3_37.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in CESAR. InMariangiola Dezani-Ciancaglini and UgoMontanari, editors,
International Symposium on Programming, 5th Colloquium, volume 137 of Lecture
Notes in Computer Science, pages 337–351. Springer, 1982. doi:10.1007/3-540-11494-
7_22.

[Ree99] Bruce A. Reed. Introducing Directed Tree Width. Electronic Notes in Discrete
Mathematics, 3:222–229, May 1999. doi:10.1016/S1571-0653(05)80061-7.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: Anonymity for Web Transac-
tions. ACM Transactions on Information and System Security, 1(1):66–92, 1998.
doi:10.1145/290163.290168.

[RS86] Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic Aspects
of Tree-Width. Journal of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-
6774(86)90023-4.

[RSM19] Victor Roussanaly, Ocan Sankur, and Nicolas Markey. Abstraction Refinement
Algorithms for Timed Automata. In Isil Dillig and Serdar Tasiran, editors, Com-
puter Aided Verification - 31st International Conference (CAV), Lecture Notes in
Computer Science, pages 22–40, Cham, 2019. Springer International Publishing.
doi:10.1007/978-3-030-25540-4_2.

[Saf05] Mohammad Ali Safari. D-Width: A More Natural Measure for Directed Tree
Width. In Joanna Jȩdrzejowicz and Andrzej Szepietowski, editors, Mathematical
Foundations of Computer Science, 30th International Symposium (MFCS), Lecture
Notes in Computer Science, pages 745–756, Berlin, Heidelberg, 2005. Springer.
doi:10.1007/11549345_64.

[Sch99] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley, 1999.

[See85] Detlef Seese. Tree-partite graphs and the complexity of algorithms. In
Lothar Budach, editor, Fundamentals of Computation Theory (FCT), Lecture
Notes in Computer Science, pages 412–421, Berlin, Heidelberg, 1985. Springer.
doi:10.1007/BFb0028825.

[SSM04] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Constraint-Based
Linear-Relations Analysis. In Roberto Giacobazzi, editor, Static Analysis, 11th
International Symposium (SAS), Lecture Notes in Computer Science, pages 53–68,
Berlin, Heidelberg, 2004. Springer. doi:10.1007/978-3-540-27864-1_7.

[ST10] Jeremy Sproston and Angelo Troina. Simulation and Bisimulation for Probabilis-
tic Timed Automata. In Formal Modeling and Analysis of Timed Systems - 8th
International Conference (FORMATS), pages 213–227. Springer, Berlin, Heidelberg,
Sept. 2010. doi:10.1007/978-3-642-15297-9_17.

http://dx.doi.org/10.1007/978-3-319-96145-3_37
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1016/S1571-0653(05)80061-7
http://dx.doi.org/10.1145/290163.290168
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1007/978-3-030-25540-4_2
http://dx.doi.org/10.1007/11549345_64
http://dx.doi.org/10.1007/BFb0028825
http://dx.doi.org/10.1007/978-3-540-27864-1_7
http://dx.doi.org/10.1007/978-3-642-15297-9_17


192 BIBLIOGRAPHY

[SVV09] Matthias Schmalz, Daniele Varacca, and Hagen Völzer. Counterexamples in
Probabilistic LTL Model Checking for Markov Chains. In Mario Bravetti and
Gianluigi Zavattaro, editors, Concurrency Theory, 20th International Conference
(CONCUR), Lecture Notes in Computer Science, pages 587–602, Berlin, Heidelberg,
2009. Springer. doi:10.1007/978-3-642-04081-8_39.

[Tho98] Mikkel Thorup. All Structured Programs Have Small Tree Width and Good
Register Allocation. Information and Computation, 142(2):159–181, May 1998.
doi:10.1006/inco.1997.2697.

[Tod91] Seinosuke Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM Journal
on Computing, 20(5):865–877, Oct. 1991. doi:10.1137/0220053.

[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite state
programs. In 26th Annual Symposium on Foundations of Computer Science (FOCS),
pages 327–338, Oct. 1985. doi:10.1109/SFCS.1985.12.

[VW86] Moshe Y. Vardi and PierreWolper. An Automata-Theoretic Approach to Automatic
Program Verification. In Proceedings, 1th Annual IEEE Symposium on Logic in
Computer Science (LICS). IEEE Computer Society, 1986.

[WBB09] Ralf Wimmer, Bettina Braitling, and Bernd Becker. Counterexample Generation
for Discrete-Time Markov Chains Using Bounded Model Checking. In Neil D.
Jones and Markus Müller-Olm, editors, Verification, Model Checking, and Abstract
Interpretation, 10th International Conference (VMCAI), Lecture Notes in Computer
Science, pages 366–380, Berlin, Heidelberg, 2009. Springer. doi:10.1007/978-3-540-
93900-9_29.

[WH18] Simon Wimmer and Johannes Hölzl. MDP + TA = PTA: Probabilistic Timed
Automata, Formalized (Short Paper). In Jeremy Avigad and Assia Mahboubi,
editors, Interactive Theorem Proving - 9th International Conference (ITP), Lecture
Notes in Computer Science, pages 597–603, Cham, 2018. Springer International
Publishing. doi:10.1007/978-3-319-94821-8_35.

[WHvP20] Simon Wimmer, Frédéric Herbreteau, and Jaco van de Pol. Certifying Emptiness
of Timed Büchi Automata. In Nathalie Bertrand and Nils Jansen, editors, Formal
Modeling and Analysis of Timed Systems - 18th International Conference (FOR-
MATS), Lecture Notes in Computer Science, pages 58–75, Cham, 2020. Springer
International Publishing. doi:10.1007/978-3-030-57628-8_4.

[Wim16] Simon Wimmer. Formalized Timed Automata. In Jasmin Christian Blanchette and
Stephan Merz, editors, Interactive Theorem Proving - 7th International Conference
(ITP), Lecture Notes in Computer Science, pages 425–440, Cham, 2016. Springer
International Publishing. doi:10.1007/978-3-319-43144-4_26.

[WJÁ+12] Ralf Wimmer, Nils Jansen, Erika Ábrahám, Bernd Becker, and Joost-Pieter Katoen.
Minimal Critical Subsystems for Discrete-Time Markov Models. In Cormac Flana-
gan and Barbara König, editors, Tools and Algorithms for the Construction and

http://dx.doi.org/10.1007/978-3-642-04081-8_39
http://dx.doi.org/10.1006/inco.1997.2697
http://dx.doi.org/10.1137/0220053
http://dx.doi.org/10.1109/SFCS.1985.12
http://dx.doi.org/10.1007/978-3-540-93900-9_29
http://dx.doi.org/10.1007/978-3-540-93900-9_29
http://dx.doi.org/10.1007/978-3-319-94821-8_35
http://dx.doi.org/10.1007/978-3-030-57628-8_4
http://dx.doi.org/10.1007/978-3-319-43144-4_26


BIBLIOGRAPHY 193

Analysis of Systems - 18th International Conference (TACAS), Lecture Notes in Com-
puter Science, pages 299–314, Berlin, Heidelberg, 2012. Springer. doi:10.1007/978-
3-642-28756-5_21.

[WJÁ+14] Ralf Wimmer, Nils Jansen, Erika Ábrahám, Joost-Pieter Katoen, and Bernd Becker.
Minimal counterexamples for linear-time probabilistic verification. Theoretical
Computer Science, 549:61–100, Sept. 2014. doi:10.1016/j.tcs.2014.06.020.

[WJV+13] Ralf Wimmer, Nils Jansen, Andreas Vorpahl, Erika Ábrahám, Joost-Pieter Katoen,
and Bernd Becker. High-Level Counterexamples for Probabilistic Automata.
In Kaustubh Joshi, Markus Siegle, Mariëlle Stoelinga, and Pedro R. D’Argenio,
editors, QEST 2013, 10th International Conference on Quantitative Evaluation of
Systems, Lecture Notes in Computer Science, pages 39–54, Berlin, Heidelberg,
2013. Springer. doi:10.1007/978-3-642-40196-1_4.

[WL18] SimonWimmer and Peter Lammich. Verified Model Checking of Timed Automata.
In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems - 24th International Conference (TACAS), Lecture
Notes in Computer Science, pages 61–78, Cham, 2018. Springer International
Publishing. doi:10.1007/978-3-319-89960-2_4.

[Woo09] David R. Wood. On tree-partition-width. European Journal of Combinatorics,
30(5):1245–1253, July 2009. doi:10.1016/j.ejc.2008.11.010.

[WvM20] Simon Wimmer and Joshua von Mutius. Verified Certification of Reachability
Checking for Timed Automata. In Armin Biere and David Parker, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 26th International
Conference (TACAS), Lecture Notes in Computer Science, pages 425–443, Cham,
2020. Springer International Publishing. doi:10.1007/978-3-030-45190-5_24.

[Ye11] Yinyu Ye. The Simplex and Policy-Iteration Methods Are Strongly Polynomial
for the Markov Decision Problem with a Fixed Discount Rate. Mathematics of
Operations Research, 36(4):593–603, Nov. 2011. doi:10.1287/moor.1110.0516.

http://dx.doi.org/10.1007/978-3-642-28756-5_21
http://dx.doi.org/10.1007/978-3-642-28756-5_21
http://dx.doi.org/10.1016/j.tcs.2014.06.020
http://dx.doi.org/10.1007/978-3-642-40196-1_4
http://dx.doi.org/10.1007/978-3-319-89960-2_4
http://dx.doi.org/10.1016/j.ejc.2008.11.010
http://dx.doi.org/10.1007/978-3-030-45190-5_24
http://dx.doi.org/10.1287/moor.1110.0516


List of Figures

3.1 Example MDP on Farkas certificates for universal constraints. . . . . . . . . . 34
3.2 Example Markov chain on Farkas certificates for Markov chains. . . . . . . . . 36
3.3 A Markov chain and the polyhedra of Farkas certificates. . . . . . . . . . . . . 39
3.4 AnMDPwith proper end components illustrating their effect for Farkas certificates. 46

4.1 An example MDP together with two induced subsystems. . . . . . . . . . . . . 65
4.2 A sketch for the NP-hardness proof of the witness problem for acyclic Markov

chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 An example MDP with unbounded expected number of visits. . . . . . . . . . 78
4.4 Computing u𝑒𝑣 in MDPs with small maximal end components. . . . . . . . . . 86
4.5 Two Markov chains which serve as example for the quotient-sum heuristic and

illustrate that it may run into local optima. . . . . . . . . . . . . . . . . . . . . 90
4.6 Experimental results for the quotient-sum heuristic, illustrating the “spike”

phenomenon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7 Experimental results comparing MILP-based approaches for computing minimal

witnesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.8 Experimental results comparing the quotient-sum heuristic with Comics. . . . 98
4.9 Experimental results illustrating the effect of alternative initial objective func-

tions in the quotient-sum heuristic. . . . . . . . . . . . . . . . . . . . . . . . . 100
4.10 Experimental results on computing witnessing subsystems with few labels. . . 102
4.11 An example MDP in nonnegative reward reachability form. . . . . . . . . . . . 107
4.12 An example MDP illustrating witnessing subsystems for an invariance property. 111

5.1 A Markov chain and its binarization. . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Sketch for NP-hardness of the labeled and weighted witness problem for tree

structured Markov chains with binary weights. . . . . . . . . . . . . . . . . . . 122
5.3 An example graph together with an optimal tree partition. . . . . . . . . . . . 124
5.4 The reduction from the oneway bisection problem to the threshold problem on

the directed path- and tree-partition width. . . . . . . . . . . . . . . . . . . . . 126
5.5 A geometric interpretation of the matrix-pair chain problem in dimension 2. . 127
5.6 A picture for the reduction from partition to the 2-MCP. . . . . . . . . . . . . 128
5.7 A picture for the reduction from 2-MCP to nonnegative 3-MCP. . . . . . . . . 130
5.8 A gadget to encode matrix multiplication. . . . . . . . . . . . . . . . . . . . . . 133

194



List of Figures 195

5.9 The structure of the reduction from the nonnegative 3-MCP to the witness
problem for Markov chains with low directed path-partition width. . . . . . . 134

5.10 The matrix multiplication gadget enhanced with 𝛾-cycles. . . . . . . . . . . . . 135
5.11 A sketch for the definitions regarding tree partitions used for Algorithm 4. . . 138
5.12 A picture illustrating the (strong) domination relation between partial subsystems. 139
5.13 An example showing that the standard domination relation does not suffice for

minimal reachability probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.14 Experimental results comparing Algorithm 4 with MILP-based approaches. . . 147

6.1 An example PTA using a single clock. . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 An example PTA with two clocks. . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3 A variation of the PTA from Figure 6.1 with different transition probabilities. 154
6.4 An example of the zone closure operation for DBMs. . . . . . . . . . . . . . . 155
6.5 A sketch showing how the location invariants of PTA subsystems induced by

Farkas certificates are constructed. . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.6 A plot showing the reachable clock valuations in a location of T2. . . . . . . . 160
6.7 A PTA T3 with two locations, used in Example 6.16 on volume-minimal witness-

ing subsystems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



List of Tables

3.1 Overview of Farkas certificates for the different types of probabilistic reachability
constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Properties of the considered Markov chain benchmarks. . . . . . . . . . . . . . 94
4.2 Properties of the considered MDP benchmarks. . . . . . . . . . . . . . . . . . . 94
4.3 Experimental results on the computation of minimal witnessing subsystems

using MILP-based approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Experimental results on the computation of witnessing subsystems with few or

minimal labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 Experimental results comparing different heuristic approaches for MDPs. . . . 104
4.6 Threshold values used in Tables 4.5 and 4.7. . . . . . . . . . . . . . . . . . . . . 104
4.7 Experimental results comparing different heuristic approaches for Markov chains. 105

5.1 Different versions of Algorithm 4. . . . . . . . . . . . . . . . . . . . . . . . . . 146

196


	Introduction
	Counterexamples, witnesses and certificates
	Outline and contributions

	Preliminaries
	Linear algebra and linear programming
	Markov decision processes
	Definitions
	Reachability probabilities
	Expected total reward
	Expected number of visits

	Probabilistic timed automata
	Definitions
	Difference bounds matrices


	Farkas certificates
	Farkas certificates for probabilistic reachability constraints
	End-component-free Markov decision processes
	Farkas certificates and expected number of visits
	MDPs with proper end components
	Certifying the decomposition into maximal end components

	Farkas certificates for expected rewards
	Computing and validating Farkas certificates
	Computing Farkas certificates using linear programs
	Computing Farkas certificates using value- or policy iteration
	Validating Farkas certificates


	New techniques for witnessing subsystems
	Witnessing subsystems
	The witness problem
	Complexity of the witness problem
	The core-problem for Markov chains

	Farkas certificates and witnessing subsystems
	Mixed-integer programming formulations
	Computing upper bounds on uev
	A heuristic based on linear programming
	The tool Switss
	Experimental results

	Witnessing subsystems for the expected total reward
	Witnessing subsystems for invariants

	Probabilistic systems with low tree width
	The witness problem for Markov chains with tree structure
	An algorithm for tree structured Markov chains and unary weights
	NP-hardness with labels or binary weights

	Directed tree- and path-partition width
	The witness problem for Markov chains with bounded path width
	Hardness of the matrix-pair chain problem
	Hardness of the witness problem

	A dedicated algorithm for MDPs with low directed tree-partition width
	The domination relation
	An algorithm based on the domination relation
	Experimental evaluation


	Explications for probabilistic timed automata
	Witnessing subsystems for probabilistic timed automata
	Subsystems for probabilistic timed automata
	Zone closure for difference bounds matrices
	From Farkas certificates to witnessing subsystems

	Minimal witnessing PTA subsystems
	Notions of minimality for PTA subsystems
	Computing minimal witnesses


	Conclusion

