Dieses Dokument ist eine Zweitveroffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Ulrike Fischer, Frank Rosenthal, Matthias Béhm, Wolfgang Lehner

Indexing forecast models for matching and maintenance

Erstveréffentlichung in / First published in:
IDEAS '10: Fourteenth International Database Engineering & Applications, Montreal 16.-
18.08.2010. ACM Digital Library, S. 26-31. ISBN 978-1-60558-900-8.

DOI: https://doi.org/10.1145/1866480.1866485

Diese Version ist verfiigbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-805451

TECHNISCHE
Wl SLUB UNIVERSITAT OucosAa

Wir fiihren Wissen. DRESDEN Quality Content of Saxony

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-805451
https://doi.org/10.1145/1866480.1866485

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 26-31, ISBN 978-1-60558-900-8

https://doi.org/10.1145/1866480.1866485

Indexing Forecast Models for Matching and Maintenance

Ulrike Fischer, Frank Rosenthal, Matthias Boehm, Wolfgang Lehner
Dresden University of Technology
Database Technology Group
01062 Dresden, Germany

{firsthame.lasthame}@tu-dresden.de

ABSTRACT

Forecasts are important to decision-making and risk as-
sessment in many domains. There has been recent interest
in integrating forecast queries inside a DBMS. Answering
a forecast query requires the creation of forecast models.
Creating a forecast model is an expensive process and may
require several scans over the base data as well as expensive
operations to estimate model parameters. However, if
forecast queries are issued repeatedly, answer times can be
reduced significantly if forecast models are reused. Due
to the possibly high number of forecast queries, existing
models need to be found quickly. Therefore, we propose
a model index that efficiently stores forecast models and
allows for the efficient reuse of existing ones. Our exper-
iments illustrate that the model index shows a negligible
overhead for update transactions, but it yields significant
improvements during query execution.

Categories and Subject Descriptors

H.2.2 [Physical Design]: Access methods; H.2.4
[Systems]: Query processing; G.3 [Probability and
Statistics]: Time series analysis

General Terms

Design, Performance

1. INTRODUCTION

In many domains, gathered data constitutes time series,
e.g. sales per month. Such data may be used in decision-
making processes that can be improved by a reasonably re-
liable forecast of the time series, e.g. the planning of pro-
duction batches is based on anticipated demand.

There has been a recent interest in processing forecast
queries [4, 5], which is an approach to integrate forecast
methods in standard relational query processing. In this
context, a forecast query uses a model of the time series at

©2010 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in IDEAS10 2010, August 16-18, Montreal, QC [Canada]

DOI: https://doi.org/10.1145/1866480.1866485

hand to calculate the expected future behavior of the time
series. Models used in [4] include sophisticated approaches
from machine learning, like support vector machines (SVM)
or random forests (RF), but traditional approaches from
statistics, like the autoregressive integrated moving average
(ARIMA) model, could also be used.

In any case, model-based forecasting basically involves two
phases: model creation (often also called training) and model
usage. The creation of forecast models is typically compu-
tationally expensive, often involving numerical optimization
schemes to estimate model parameters. In addition, time
series can be too large to fit in memory, so just a single
scan over the series can be expensive [5]. If certain forecast
queries are issued repeatedly, answer times of later queries
can be reduced significantly if the model that was created
during the first query is kept and maintained as necessary.

A good usage scenario for this approach is data warehous-
ing. First, nearly every data warehouse can be considered
as a large high-dimensional time series, since the time di-
mension is virtually guaranteed to be present [8]. Hence,
the most basic requirement for forecasting, the existence of
time series data, is met. Second, a significant number of
repeated queries is issued, e.g. for creating reports. There-
fore, it is safe to assume that a significant portion of the
forecast queries issued to such a system could be answered
with models that were created once and maintained there-
after. And most importantly, since data warehouses typi-
cally store measures that are used to make operational and
strategic decisions, there is a natural and strong interest in
applying forecast methods to this data [7].

In this scenario, the user does not want to state the suit-
able model instance for each forecast query explicitly. How-
ever, this is required in current extensions to RDBMS that
integrate the creation and use of such models [11, 12]. In-
stead, users want to express their domain queries and ex-
pects the transparent use of applicable, existing models.
This requires a mechanism to find these models quickly. We
denote this task as model matching. Similarly, whenever
new tuples are inserted (assuming append-only semantics),
we need to find the models that are based on those. This
means especially that the new tuples could be used to get
more recent estimates of model parameters. We denote this
task as model maintenance.

Both tasks seem similar to materialized view matching
and maintenance. However, as we will explain in Section 4,
the matching problem for forecast models differs from the
matching problem for materialized views, as we can only
use subsets. Regarding maintenance, forecast models only

Provided by Sachsische Landesb bliothek, Staats- und Universitétsbibliothek Dresden

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 26-31, ISBN 978-1-60558-900-8

https://doi.org/10.1145/1866480.1866485

Add Model —_—

Search Model
s (Tuple)
earch Model
(Query)

Modelindex T

Model ®

Pool 2

o Models w Models w Models TG

3 £ B
8% ==
=3 L e S
= | Timeseries |1 Timeseries || Timeseries =

i 1

‘N ?02 %’
II -+—— Update Transactions

Figure 1: System Overview

Query Transactions —»

materialize the parameters of a model, while a materialized
view materializes data tuples.

Due to the possibly high number of individual time series
in a data warehouse, the challenge is to efficiently find fore-
cast models. Therefore, we propose a model index to index
such models (Figure 1). Then, we show how this structure
can be used for model matching and maintenance. Finally,
we evaluate our model index with the TPCH benchmark
and demonstrate significant improvement during query exe-
cution, but negligible overhead for update transations.

2. PROCESSING FORECAST QUERIES

In this section, we first define forecast queries and describe
how these use existing forecast models transparently. We
begin with the definition of time series relations that can be
seen as a special kind of functional relations. [3]

DEFINITION 1. Let S be a relation with schema
{A1,...;, Am,y} where y € R. The attributes A1, As...Am
are the time attributes of S. The attribute y is referred to
as the measure attribute of S. Relation S is a time series
relation (TR) if the dependency A1, As...Ay, — y holds. In
addition, the following conditions must hold:

1. The relation is ordered on {A1..An}, where
{A1...An} form a time hierarchy (e.g. year, month).

2. There are no null values in S.

3. The elements of the composed set {Ai...An}
are unique and equidistant with respect to some
application-dependent measure of distance.

Examples for the measure of distance in the third condition
might be month, day or weekday. To achieve equidistance,
a preprocessing of the time series relation might be nec-
essary (e.g. aggregation or adding missing values). Time
series relations can be seen as logical views on base tables
(Figure 1). Note that a star- or snowflake-schema is com-
posed of one or several time series relations, since there is a
functional dependency from dimensional attributes (includ-
ing time) to the measure(s) in the fact table. Since such
schemas are typically used in data warehousing, we focus on
this application area in the rest of the paper.

We now define forecast queries in the setting of a data
warehouse.

_ m
GROUP BY country, year, month ‘ Pgroup=rnetbool

FORECAST 6 months

r
SELECT country, YEAR(date) as | Forecast operator We months :
year, MONTH (date) as ll________________—_—_—_—_— o
month, SUM(salesunits) | Vcoun(ry, year, month :
FROM facts f, regions r, : ‘ SUM(salesunits) |
products © | /Ncily id :

WHERE f.city id = r.city id | -
AND f.product_id = : Nproduct id \ . :
p.product_id | / _ regions :
AND p.pgroup IN ('phones', : o)) fact |
'netbooks ') | Ypgroup= phones' OR TaCIS |
| |
| |
! ;

products Time series relations

Figure 2: Forecast Query and Execution Plan

DEFINITION 2. A forecast query defines one or several
time series relations and a forecast horizon. The forecast
horizon specifies the number of values to forecast or a future
point in time until those forecast values will be required. A
forecast query outputs forecast values for each time series
relation according to the forecast horizon. The query has the
following characteristics:

1. The query projects at least one time |A;| > 1 and one
measure |y| > 1 attribute.

2. The query can contain additional nominal attributes
{C1...Cr.}. We call these category attributes.

8. The query is restricted to operations that fulfill con-
ditions (2) and (3) of Definition 1. As a result, we
only consider 1:N inner joins, so we do not have null
values (no outer joins) or multiple assignments of one
point in time (no N:M joins). Note that a typical data
warehouse schema consists of foreign-key relationships
anyway.

We only consider univariate time series in this paper. There-
fore, each measure attribute forms a separate time series
relation together with each distinct set of values in the cat-
egory columns.

ExAMPLE 1. An example forecast query is shown in Fig-
ure 2 in the left part. Here, the user wants to forecast the sold
quantities for products belonging to product group phones
or netboooks for the next six months according to different
countries. Measure (salesunits), time (date) and category
(country) attributes are specified in the SELECT clause. With
the FORECAST keyword the user specifies the forecast horizon.
This SQL extension was introduced in [4].

The corresponding plan (Figure 2 right) creates the time
series relations (one for each country) in the first part and
is extended with a relational forecast operator 1 on top.

This query will be processed as follows. The system needs
to choose one or several forecast models from an existing
model pool (Figure 1). The forecast plan operator is param-
eterized with the models to use and the forecast horizon. We
assume the model pool is created by a decision analyst who
knows which time series are queried and which models are
appropriate for which time series. Each time series can be
associated with several models. All models are indexed in a
model index, which is used to find existing models (match-
ing) and to add new models. If no model is found during the
matching process (e.g. ad-hoc queries), we either return an
empty result set or use a default forecast method. For exam-
ple, we could use the automatic smoothing approach from

Provided by Sachsische Landesb bliothek, Staats- und Universitétsbibliothek Dresden

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 26-31, ISBN 978-1-60558-900-8

https://doi.org/10.1145/1866480.1866485

=~ @ @ @ joins
[EEEE]

Predicates

:

atomic N,
predicate

"vand (IID or (I models (TTT |
‘

. parameter o, By
“~._| horizon 1 week
22z error 0.02
=
8 % last ti 2010-05-31 memo structure
8 = one-step-ahead | 314.56 id [type | visited
o8
ao

Logical View

Physical View

Figure 3: Model Index Structure

Hyndman [7], which evaluates different exponential smooth-
ing methods and chooses the best one. Then, the new model
is added to the model index. For update transactions, the
model index is used as well to find and maintain all models
that are affected by the new tuple.

3. MODEL INDEX

The model index is a logical decision tree (Section 3.1),
where different parts are modeled by different physical in-
dexes (Section 3.2). The query definition of a time series is
the key of the index, while the model itself is the value.

3.1 Logical Representation

A forecast model needs to be created for each time series
relation that exists for each set of distinct values in the cat-
egory columns and for each measure column. Therefore, for
each time series, we can identify different parts: projection
columns (measure, time), join paths, predicates (including
value of category attribute) and time granularity. In Figure
3, the logical model index to index such a forecast query
is shown in the left part. The model index consists of two
parts. It can be entered from either part in order to retrieve
the models that fulfill the conditions of that part. As we will
explain later, for model maintenance only the upper part is
required, while for matching both parts are used.

In the upper part, the predicates and join paths of the
query are indexed. Our goal is to put the most selective
conditions first in order to prune out non-matching models
early. The predicates of a forecast query are normalized
to the conjunctive normal form. Therefore, we first index
atomic predicates of the form attribute 6 v, where 0 € {=
,<,>}. We need to index the relation the attribute belongs
to, the attribute itself, and the value v together with the
condition 6. Atomic predicates can then be combined with
disjunctions (OR node). Disjunctions can be combined with
conjunctions (AND node). In addition, we need to express
joins in the upper part. As we restrict join nodes to 1:N
inner joins, we keep just a pointer from the join attribute of
the source table to the join attribute of the joined table.

In the lower part, the projection columns and the time
granularity are indexed. The entry points are the measure
attributes, which point to time attributes. Time attributes
can be distinguished by different time granularities (e.g.,
day, week). By storing several measure attributes, the model
index can be easily extended for multivariate time series.

Figure 4: Example Model Index

Every time a forecast model is created, the model defini-
tion is indexed in our model index structure. For example,
Figure 4 shows the state of the model index after indexing
models that are necessary for answering the forecast query
in Example 1. As three tables are referenced in the query,
we have three relation nodes. In the left corner, the inlist is
indexed as disjunction, while in the right part, the column
country is restricted. For each country, a forecast model has
been created and indexed. The models are annotated with
the used projection columns and time granularity month in
the lower part of the index.

Note, the number of possible models is exponential to the
number of attributes and distinct items. We can create mod-
els for all subsets over the domain of each attribute and for
all subsets of attribute combinations.

3.2 Physical Representation

The physical realization of our model index is shown in
Figure 3 in the right part. The model index is kept as a
graph structure in main memory, as it needs to be accessed
for every forecast query and every update transaction. Each
part of the model index is only built as needed. All nodes
can have multiple children and different types of child nodes.
Conjunction and disjunction nodes have exactly two par-
ents, while all other nodes have exactly one. Pointers to
child nodes are stored in lists, hashmaps or b-trees. All
nodes, besides attribute nodes, can point directly to mod-
els that fulfill the predicates up to that point. Therefore,
relation nodes keep a list of attribute and model pointers.
Attribute nodes keep a list of join nodes. The join node
itself just keeps a pointer to the join attributes. Attribute
nodes have two b-trees, one for greater- and one for less-than
predicates. In addition, they keep a hashmap for equality
predicates. This approach is similar to [10]. Atomic predi-
cates (Qvalue), conjunction and disjunction nodes have three
lists — model, conjunction and disjunction pointers. Forecast
models are the leaf nodes of the upper part of the model in-
dex. For every forecast model, we keep a model evaluation,
the forecast horizon the model was optimized for, the last
seen timestamp, and the one-step-ahead forecast in main
memory. Most simple, but widely used, forecast models just
require a few floating point numbers as parameters. For
these models, we store the parameters in main memory as
well. Otherwise, the parameters are materialized in a rela-
tional parameter table and we store the object identifier. In
the lower part of the model index, we just store list of point-
ers to the corresponding child nodes. The measure node also

Provided by Sachsische Landesb bliothek, Staats- und Universitétsbibliothek Dresden

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 26-31, ISBN 978-1-60558-900-8

https://doi.org/10.1145/1866480.1866485

stores the aggregation type of the forecast query (e.g. sum,
max). In addition, we keep a memo structure for conjunc-
tion and disjunction nodes (shown in the right corner). This
memo structure is used for maintenance, as we will explain
in Section 5. For maintenance as well, we keep a unique join
index on each join column for all dimension tables.

4. MODEL MATCHING

In this section, we first study when a forecast model can be
reused; then we will shortly discuss our matching algorithm.
The model matching problem can be expressed as follows.

DEFINITION 3. Given a relational time series definition
TRqg, as defined in Definition 1, determine a possible set
of models with time series definitions T Ry, ... T Ry, and an
aggregation function AGG to calculate the forecast values of
TRg. The following conditions must hold:

1. The attributes {A1,...,Am,y}
TR, ... TR, are identical.

of TRg and

2. The aggregation function AGG (e.g. sum) of TR¢g and
TRwu, .. TRy, is identical.

8. TR, ...T Ry, model the complete relation T Rg by ag-
gregation and optional duplicate elimination with re-
gard to the aggregation function.

Note, this definition also includes the exact match case
where we reuse the exact suitable model for a query. In
that case no aggregation is necessary.

Condition (3) makes the model matching problem more
restrictive than the materialized view matching problem. To
answer a query with an existing materialized view, it can also
just be a superset of the query. Then, a selection predicate
has to be applied. However, to answer a forecast query, we
need to find all sets that represent the whole given time
series relation. The problem of finding sets of time series
relations is similar to the view-selection problem, which has
shown to be NP-hard [1].

Therefore, we implemented only common cases in a data
warehouse where reuse possibilities appear quite often. For
example, we can reuse a model at lower time granularity and
aggregate the forecast values. In our example (Figure 4), we
can reuse the model M1 created for Germany to answer a
query that wants to forecast the sum of the sold quanti-
ties for next year in Germany. We need to forecast twelve
months with the existing model and then aggregate the fore-
cast values, by using the specified aggregation method, to
get a one-step-ahead forecast on year-granularity. A second
case is the reuse of forecast models at lower dimensional hi-
erarchies. Therefore, to get a forecast at a higher dimension,
we need to forecast for all corresponding values at the lower
dimension. For example, all models created in Figure 4 can
be reused to answer a forecast query that forecasts total
sales units for phones or netbooks for the next month. For
each country, a forecast is calculated and all forecasts are
aggregated to get the final result.

Note, although we can reuse models by aggregation of
forecasts, the aggregated forecast might not be equal to the
forecast directly created by a model. Several studies have
analyzed this problem. Some concluded that aggregation of
forecasts lead to better results [14], while others found little
difference. Even so, we can always reuse an exact match

without doubt, while aggregation should include an addi-
tional analysis of the forecast error.

Our model matching algorithm itself is called for each time
series definition in a given query. It returns the node that
fits exactly the query predicates. This could be a relation,
atomic predicate, conjunction or disjunction node. If one or
more models are directly associated with this node, we found
an exact match. In the lower part of the model index, we
need to check if measure and time column as well as time
granularity fit. If so, we choose the model with the best
model evaluation. If no exact match has been found, we
check for a model at different time granularity. If no result
has been found until now, we check for reusable subsets,
where we use the set of models with the smallest number.

S. MODEL MAINTENANCE

Maintenance has to be done when the underlying base
tables of forecast models change. Typical data warehouse
applications are append-only, i.e. we only consider the in-
sertion of tuples in the fact table that have a higher times-
tamp than existing tuples with the same dimension values.
For maintenance, we traverse through the upper part of our
model index for each newly inserted row in the fact table and
identify all models that are affected by the current tuple.
First, we need to maintain all models that are directly asso-
ciated with the source table and have no predicates. Then,
we need to check atomic predicates for the incoming tuple.
For each single predicate that evaluates to true, we need
to evaluate possible connections to other predicates. Note,
for greater- and less-than predicates, a whole subtree might
evaluate to true. To avoid visiting and possibly returning
the same node multiple times, the search procedure must
remember which nodes have been visited. Therefore, we
use a recursive algorithm with memoization. Every time we
find a new conjunction or disjunction node, we add its id
to a memo structure (shown in the right corner in Figure
3). The memo structure consists of node ids, node types
(conjunction or disjunction) and a flag indicating weather
this node has been visited. For disjunction nodes, we eval-
uate the underlying subtree. When we enter a disjunction
node a second time, we do not need to evaluate the subtree
again. For conjunction nodes, we do nothing. When we
enter a conjunction node a second time, we remove it from
the memo structure and evaluate its subtree. We can do
this since every conjunction node has exactly two parents.
Every time we find a model as a child of a node, we main-
tain it. Finally, for each join node, we need to retrieve the
corresponding tuple from the joined table in order to check
additional predicates on this table. For this, we always have
an index on each join column. Since we only consider 1:N
joins, we can retrieve the joined tuple with a fast lookup.
We now enter our index structure with the new tuple at the
entry point of the dimension table.

For example, consider again the example model index
in Figure 4. Assume, the following insert transaction
is submitted INSERT INTO facts(date, product_id,
supplier_id, city_id, salesunits, purchaseunits)
VALUES (2010-04-01, 1, 1, 34, 251, 953). As there are
no predicates directly associated with the fact table, the
maintenance search algorithm retrieves a tuple for prod-
uct_id=1 and city_id=34 via the join index from products
and regions. Assume pgroup equals netbooks, so the child
OR-node of the netbooks-node and consecutively all child

Provided by Sachsische Landesb bliothek, Staats- und Universitétsbibliothek Dresden

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 26-31, ISBN 978-1-60558-900-8

https://doi.org/10.1145/1866480.1866485

AND-nodes are added to the memo structure. Then, when
country equals Germany, the AND-node is found in the
memo structure and therefore model M1 is maintained.

Finally, for each model found, the current model evalu-
ation is updated with the new tuple. For this, we use the
accuracy measure SMAPE (symmetric mean absolute per-
centage error), because of its scale-independence. Then, the
model itself is maintained. Maintenance strongly depends on
the used forecast method. However, after an insert transac-
tion, we only want to perform cheap and incremental main-
tenance operations of forecasts and parameters. Therefore,
each forecast method offers an interface called Incremental-
Maintenance. For example, the parameters slope and offset
of a simple linear regression model are calculated there, as
this can be done incrementally. For an exponential smooth-
ing model, only the next forecast value is calculated from the
value inserted. However, if the model evaluation exceeds a
certain user-set threshold ¢, we invalidate it. Then, the next
time the forecast model is used, we perform more expensive
operations, so each forecast method also offers an interface
FullMaintenance. For example, we could reestimate the pa-
rameters of a exponential smoothing model by rescanning
the whole time series. With this approach, we let queries
pay for maintenance, as it is certain that the result will be
used.

6. EXPERIMENTS

We implemented the described model index as a main-
memory structure in PostgreSQL. Therefore, we extended
the parser, optimizer and executor of PostgreSQL to sup-
port forecast queries. The parser annotates the time, mea-
sure and category attributes; the optimizer performs model
matching, rewrites query plans if necessary and indexes new
models. Finally, the executor builds new models if neces-
sary or calculates forecasts from existing ones. In addition,
we update existing models in the executor when new tuples
are inserted into the system according to our maintenance
algorithm. The test environment was an IBM Blade (Suse
Linux, 64bit) with two processors (each a Dual Core Intel
Xeon at 2.80 GHz) and 4 GB RAM.

We used data from the TPCH benchmark (scale fac-
tor two), which constitutes a normalized data warehouse
schema, using primary and foreign keys between fact and
dimension tables. We created five workloads. The first work-
load W1 forecasts the sold quantities according to different
parts or suppliers. In the second workload W2, we use the
same scenario but for several partkeys or suppliers using in-
lists. In workload W3, we forecast the sold quantities for
different parts and suppliers. In the fourth workload W4,
we forecast the sold quantities for different customers using
a join with the orders table. Finally, in workload W5, we
submit any combination of inlists, conjunctions and predi-
cates used in the first four workloads. In order to conduct
a fair evaluation, we use the simplest forecast method, lin-
ear regression, as default for all workloads. In the following
experiments, we do not focus on forecast accuracy, as accu-
racy depends on the used data and forecast model, which is
independent from our model index.

6.1 Model Usage

Figure 5(a)) shows the results of an experiment where
we vary the number of distinct items (i.e. the size of the
domain) in workload W1 and plot the execution times of

™~ ~ B index
@ © Ohs O no index
[CRTolE o
£E4] £ao
§ o § o
=1 =]
e g~
(I S 0w~
e ow
e T T T T T ©
0 1000 3000 5000 w1 w2 W3 W4 W5

workload

(b) Index vs. Nolndex

query number

(a) Index Evolution

o N — n 1 N
3 2 o | STV RRTER,
o R
£ £
= ® <A 1
c S ji -- recalculaIL
s @ = : —— exhaustive search
3« 8 o : index
o © T T T —
W1 W4 insert only 0 1000 3000 5000

workload

(¢) Insert Overhead

query number

(d) Exhaustive Search

m
©
€ o
8 N1 m model usage
® | O model maintenance 0
g)
£87 =3
s 1 F
(2]
¥ 5
K] i °
3 = ol
g<, o - T T T T
) W1 w2 W3 W4 0 1000 3000 5000
workload query number

(e) Index Lookup (f) Index Size

Figure 5: Experimental Results

5,000 queries. We set the number of distinct items to low
(0.2 times the number of executed queries = 1,000), medium
(0.5) and high (0.8). When we start the system with an
empty model index, we need an initial phase where forecast
models are built. With a low number of distinct items, the
executed queries find a reusable model soon, so the average
execution times decrease fast. We also plot execution times,
when no index is used and forecast models are built for every
new query. Due to caching effects, the execution times also
decrease slightly in the beginning but stay constantly high
until the end. Then, in Figure 5(b), we compare our index
structure with the approach to use no index at all. We
measure the average execution time of 5,000 queries and set
the number of distinct items to medium. As a result, with
our model index, we save about half the execution time for
all workloads, as every second query finds a reusable model.

6.2 Model Maintenance

In a second series of experiments, we test the performance
of our maintenance algorithm. First, in Figure 5(c), we show
the total execution time of one insert transaction. For this,
we create an initial model index of 5,000 models for work-
loads W1 and W4. Each insert requires the maintenance of
about 100 models. In addition, for workload W4, each in-

Provided by Sachsische Landesb bliothek, Staats- und Universitétsbibliothek Dresden

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 26-31, ISBN 978-1-60558-900-8

https://doi.org/10.1145/1866480.1866485

sert requires an index lookup to dimension tables. We also
show the execution time of a standard insert with no model
index. As discussed in Section 5, each maintenance request
on a model is very cheap, so the overhead is quite small.
In a second experiment (Figure 5(d)), we submit queries
and inserts according to workload W1 with a low number
of distinct items. The ratio of queries to inserts is 99:1. We
compare our approach with the no-index approach and an
exhaustive search approach, where we just store model def-
initions in a list, kept in main memory. However, as we can
only use it for exact matches, for maintenance, we drop all
models that have been created for the concerned table. As
a result, we get constant execution time when we use no
index, and since we used a low number of distinct items,
we get a strong decrease of execution times when we use
our model index. With the exhaustive search approach, we
need to drop all models every time a tuple is inserted into
the lineitem table, so we result in fluctuating times.

6.3 Model Index Structure

Finally, we examine the model index more closely. There-
fore, we indexed 1,000 models according to workload W1 —
W4. Then, we measured just the lookup time in our in-
dex for model usage and model maintenance (Figure 5(e)).
Note that all execution times are in the order of micro sec-
onds, so the overhead is really small. The longest lookup
time is found for workload W4, as we need to retrieve tu-
ples from dimension tables. We also measured the lookup
time of the exhaustive search list, explained in Subsection
6.2, which is around 87 micro seconds for all workload types
(not shown). In a second experiment, we monitor the stor-
age requirements of the model index for workload W1 — W4
and 5,000 queries. As we set the number of distinct items to
medium, the size of the model index increases faster in the
beginning than in the end. After 5,000 queries have been
executed, the size of the model index is below 2 MByte for
workloads W1, W3 and W4. For workload W2, we end up
with a size of 10 MByte, as each inlist of size n requires the
creation of n — 1 OR-nodes.

7. RELATED WORK

Forecast queries have been discussed in the context of the
Fa system [4]. There, Duan and Babu proposed an incre-
mental approach to build models in which more variables
are added to the model in successive iterations. Another
approach [5] addresses the issue of processing prediction
queries over very large time series data sets. Forecasting
is also supported as an extension of two common database
systems. Oracle offers a FORECAST command as part of its
OLAP DML [11]. The Data Mining Extension (DMX) in
Microsoft SQL Server supports forecasting of time series us-
ing a custom forecast algorithm, which offers the interface
method PredictTimeSeries [12]. However, all existing ap-
proaches lack the transparency of a seamless integration that
does not require the selection of a model in a forecast query.
In addition, they do not consider transparent maintenance.
As our approach has shown negligible overhead in Section
6, it could be easily added on top of existing approaches to
allow the transparent selection and maintenance of models.

Materialized views are similar to forecast models, as they
need to be identified for maintenance and matching as well.
However, to the best of our knowledge, no approach has
developed a unique structure to use for both. Content-

independent approaches [2] use rules to detect irrelevant up-
dates to base relations. Content-dependent approaches use
additional relations to check for irrelevant updates [13, 9.
All approaches filter out some materialized views, but they
might still require checking against base relations. To speed
up materialized view matching, a filter tree was proposed [6],
which is an in-memory index and allows to find supersets or
subsets of a given search key easily. However, as explained
in Section 4, materialized view matching differs from model
matching, as we only need to find complete sets.

8. CONCLUSION

We presented the novel concept of a model index that
stores forecast models in main memory. We explained how
this model index can be used to reuse and maintain exist-
ing forecast models. The proposed index is a tailor-made
solution for forecast models. However, it could be used with
certain extensions for any kind of statistical model as well.

9. REFERENCES

[1] Serge Abiteboul and Oliver M. Duschka. Complexity
of answering queries using materialized views. In
PODS, 1998.

[2] Jose A. Blakeley, Per-Ake Larson, and Frank Wm.
Tompa. Efficiently updating materialized views. In
SIGMOD, 1986.

[3] Héctor Corrada Bravo and Raghu Ramakrishnan.
Optimizing mpf queries: decision support and
probabilistic inference. In SIGMOD, 2007.

[4] Songyun Duan and Shivanath Babu. Processing
forecasting queries. In VLDB, 2007.

[5] Tingjian Ge and Stan Zdonik. A skip-list approach for
efficiently processing forecasting queries. Proc. VLDB
Endow., 1, 2008.

[6] Jonathan Goldstein and Per &ke Larson. Optimizing
queries using materialized views: A practical, scalable
solution. In SIGMOD, 2001.

[7] Rob J. Hyndman, Anne B. Koehler, Ralph D. Snyder,
and Simone Grose. A state space framework for
automatic forecasting using exponential smoothing
methods. International Journal of Forecasting, 18,
2000.

[8] Ralph Kimball and Margy Ross. The Data Warehouse
Toolkit. Wiley, 2002.

[9] Gang Luo and Philip S. Yu. Content-based filtering
for efficient online materialized view maintenance. In
CIKM, 2008.

[10] Samuel Madden, Mehul Shah, Joseph M. Hellerstein,
and Vijayshankar Raman. Continuously adaptive
continuous queries over streams. In SIGMOD, 2002.

[11] Oracle. Oracle OLAP DML Reference: FORECAST -
DML Statement, 2010.

[12] PredictTimeSeries — Microsoft SQL Server 2008 Books
Online. http://msdn.microsoft.com/en-us/
library/ms132167.aspx, 2010.

[13] Dallan Quass, Ashish Gupta, Inderpal Singh Mumick,
and Jennifer Widom. Making views self-maintainable
for data warehousing. 1996.

[14] David E. Rose. Forecasting aggregates of independent
arima processes. Journal of Econometrics, 1977.

Provided by Sachsische Landesb bliothek, Staats- und Universitétsbibliothek Dresden

