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Summary

In this thesis I will use state-of-the-art (SOTA) image denoising methods to de-
noise electron microscopy (EM) data. Then, I will present Noise2Void a deep
learning based self-supervised image denoising approach which is trained on single
noisy observations. Eventually, I approach the missing wedge problem in tomogra-
phy and introduce a novel image encoding, based on the Fourier transform which
I am using to predict missing Fourier coefficients directly in Fourier space with
Fourier Image Transformer (FIT). In the next paragraphs I will summarize the
individual contributions briefly.

Electron microscopy is the go to method for high-resolution images in bio-
logical research. Modern scanning electron microscopy (SEM) setups are used
to obtain neural connectivity maps, allowing us to identify individual synapses.
However, slow scanning speeds are required to obtain SEM images of sufficient
quality. In (Weigert et al. 2018) the authors show, for fluorescence microscopy,
how pairs of low- and high-quality images can be obtained from biological samples
and use them to train content-aware image restoration (CARE) networks. Once
such a network is trained, it can be applied to noisy data to restore high quality
images. With SEM-CARE I present how this approach can be directly applied
to SEM data, allowing us to scan the samples faster, resulting in 40- to 50-fold
imaging speedups for SEM imaging.

In structural biology cryo transmission electron microscopy (cryo TEM) is
used to resolve protein structures and describe molecular interactions. However,
missing contrast agents as well as beam induced sample damage (Knapek and
Dubochet 1980) prevent acquisition of high quality projection images. Hence,
reconstructed tomograms suffer from low signal-to-noise ratio (SNR) and low
contrast, which makes post-processing of such data difficult and often has to be
done manually. To facilitate down stream analysis and manual data browsing of
cryo tomograms I present cryoCARE a Noise2Noise (Lehtinen et al. 2018)
based denoising method which is able to restore high contrast, low noise tomo-
grams from sparse-view low-dose tilt-series. An implementation of cryoCARE
is publicly available as Scipion (de la Rosa-Trevín et al. 2016) plugin.

Next, I will discuss the problem of self-supervised image denoising. With
cryoCARE I exploited the fact that modern cryo TEM cameras acquire mul-
tiple low-dose images, hence the Noise2Noise (Lehtinen et al. 2018) training
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paradigm can be applied. However, acquiring multiple noisy observations is not
always possible e.g. in live imaging, with old cryo TEM cameras or simply by
lack of access to the used imaging system. In such cases we have to fall back
to self-supervised denoising methods and with Noise2Void I present the first
self-supervised neural network based image denoising approach. Noise2Void is
also available as an open-source Python package and as a one-click solution in
Fiji (Schindelin et al. 2012).

In the last part of this thesis I present Fourier Image Transformer (FIT) a
novel approach to image reconstruction with Transformer networks. I develop
a novel 1D image encoding based on the Fourier transform where each prefix
encodes the whole image at reduced resolution, which I call Fourier Domain En-
coding (FDE). I use FIT with FDEs and present proof of concept for super-
resolution and tomographic reconstruction with missing wedge correction. The
missing wedge artefacts in tomographic imaging originate in sparse-view imaging.
Sparse-view imaging is used to keep the total exposure of the imaged sample to
a minimum, by only acquiring a limited number of projection images. However,
tomographic reconstructions from sparse-view acquisitions are affected by miss-
ing wedge artefacts, characterized by missing wedges in the Fourier space and
visible as streaking artefacts in real image space. I show that FITs can be applied
to tomographic reconstruction and that they fill in missing Fourier coefficients.
Hence, FIT for tomographic reconstruction solves the missing wedge problem at
its source.
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Chapter 1

Introduction

For many of us, vision is an important sense which allows us to experience the
world around us. With our eyes we can observe the surrounding world and un-
derstand it better. While we gather information about our surroundings through
vision, it is commonly known that this perception of reality can be confounded by
illusions, distance and size of objects, in other words vision can be deceptive. This
superficial aspect to vision can be dangerous and it is always important to not just
accept what we see, but to question and reason about our observations. Engaging
our curiosity drives us to take a closer look and many tools have evolved over time
and exist for that purpose. Already in the classical antiquity in the Middle East
and the Mediterranean people used simple lenses, i.e. water filled glass globes, to
aid their vision or ignite fires (Sines and Sakellarakis 1987). Ibn al-Haytham was
arguably the first scientist to describe the convex lens used for magnification in
1021. His work was translated into Latin in the 13th century, which lead to the
development of the first reading glasses, soon after. In 1590 the Dutch opticians
Zacharias and Hans Janssen invented the compound microscope by aligning two
lenses within a sliding tube (T. C. Kriss and V. M. Kriss 1998). However, it
took until the 17th century when Antonie van Leeuwenhoek was able to create
the first high quality lenses, which allowed him to accurately describe single cell
sized objects which is often seen as the first application of microscopy in biology.
Many technical advances happened in the next 150 years and in 1848 Carl Zeiss
opened the first microscope workshop in Jena, Germany (van Zuylen 1981). This
essentially started the mass production of microscopes and made them widely
available for scientific discoveries. With standardized microscopes becoming more
prevalent many new imaging methods and techniques got published. The most
common microscopy technique is brightfield microscopy, where the sample is illu-
minated from behind with bright light and the image forms due to light occlusion.
An important step in brightfield microscopy was the Köhler illumination proto-
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col presented by August Köhler in 1883. By using additional lenses the filament
image of the illumination lamp is moved out of the image plane, which results
in an even sample illumination (Köhler 1893). Today, on of the most accessible
birghtfield microscope is the foldscope (Cybulski et al. 2014), which uses the sun
to illuminate the sample. The foldscope enables people around the globe to get
a glimpse at the microscopic world and investigate their direct environment. Mi-
croscopy is used in many disciplines and especially in biology it is a core research
tool. Many biological experiments were only even possible after development of
novel imaging techniques and biology is still a strong driving force for imaging
developments. The next important imaging technique was discovered in the 20th
century by Fritz Zernike and is called phase-contrast microscopy (Zernike 1942),
for which he was awarded the Nobel Prize in physics. With the discovery of DAPI
as fluorescence staining (Kapuscinski 1995) fluorescence microscopy was born,
which allows microscopists to tag specific proteins with fluorescence markers and
image them at high resolution. However, all optical systems have a physical res-
olution limit d, which is linked to the diffraction limit of the illumination light.
Ernst Abbé, a physicist working with Zeiss (T. C. Kriss and V. M. Kriss 1998),
described this relationship already in 1873 through the relation

d = λ

2n sin θ , (1.1)

where λ is the wavelength of the excitation light, n is the refractive index of the
lens and θ is the maximal half-angle of light that can enter the lens (Abbe 1873).
n sin θ is also known as the numerical aperture (NA) and modern optical systems
can reach NAs up to 1.6. So for a NA = 1.4 and green light with a wavelength of
550nm a theoretical resolution of d ≈ 200nm can be reached. With this resolution
we can observe cells and localize molecules within cells, however it is impossible
to resolve molecules and understand their structure.

Nevertheless, there exist technically advanced methods to go beyond the phys-
ical resolution limit of visible light and in 2014, and Eric Betzig, Stefan W. Hell
and William E. Moerner were awarded the Nobel Prize in chemistry for having by-
passed the diffraction limit of visible light (Möckl et al. 2014). Specifically Stefan
W. Hell was rewarded for his work on stimulated emission depletion microscopy
(STED) (Hell and Wichmann 1994), Eric Betzig and William E. Moerner set
the ground work for single molecule microscopy like Photoactivated Localization
Microscopy (PALM) (Betzig et al. 2006) and Stochastic Optical Reconstruction
Microscopy (STORM) (Rust et al. 2006). Another method to increase resolution
of light microscopy is structured illumination microscopy (SIM) (Guerra 1995).
While these methods achieve super-resolution in the field of light microscopy, even
higher resolutions are possible with electron microscopes.
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The wavelength of electrons depends on their speed, where higher speeds
result in shorter wavelengths, which allows us to image at much higher resolutions.
Modern electron microscopes routinely operate at sub Ångström (1Å = 0.1nm)
resolution. In the following sections I will introduce scanning electron microscopy
(SEM) and cryo transmission electron microscopy (cryo TEM), two widely used
methods in biological research.

1.1 Scanning Electron Microscopy

Scanning electron microscopy (SEM) is a popular electron microscopy method
used to image large samples at high resolution. In SEM an electron beam is fo-
cused in a single spot and a dehydrated and stained sample is scanned row by
row (Collett 1970). Sample preparation protocols for tissue imaging usually in-
clude washing, fixation, dehydration and staining steps. Even though the sample
preparation tends to be complex, SEM is often the method of choice to image
large tissues at high resolution (Golding et al. 2016). Therefore multiple volu-
metric SEM techniques have been developed over the last decades. In general
SEM methods can be divided into destructive and non-destructive methods. Se-
rial block face scanning electron microscopy (SBF-SEM) (Denk and Horstmann
2004) and focused ion beam scanning electron microscopy (FIB-SEM) (Heymann
et al. 2006) are deconstructive, because the imaged surface is either cut off with
a diamond knife or milled away with a focused ion beam. In array tomography
and serial-section SEM (Horstmann et al. 2012) on the other hand the sample
is sectioned before it is put into the microscope, hence these are non-destructive
methods. All of these methods have their own advantages and disadvantages. For
example non-destructive methods are usually used with complementary imaging
approaches like light microscopy to localize fluorescent labellings prior to electron
microscopy imaging, however the axial resolution is limited compared to decon-
structiv approaches. From the two deconstructive methods FIB-SEM achieves
higher axial resolution than SBF-SEM. However, the milling process is FIB-SEM
is more time consuming, hence SBF-SEM continues to be the method of choice
for large tissue samples (Shami et al. 2019). But automated imaging of large
tissues is not only possible with deconstructive methods. The Automated Tape-
Collecting Ultramicrotome (ATUM) (Baena et al. 2019) is a fully automated
serial-sectioning method which enables automated imaging of large tissues in a
non-destructive manner and was first used to image a mouse brain (Kasthuri et al.
2015).

A highly automated FIB-SEM setup was used at the HHMI Janelia Research
Campus to acquire the largest synaptic level connectome of a large portion of
the fly brain (Scheffer et al. 2020). The reconstructed connectome contains about
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25′000 neurons and it took about 3 months to image. Usually, scanning speeds
used in SEM connectomics projects are in the range of 0.5-4MHz and imaging
a 8000× 8000 pixel image at 1MHz takes about one minute. Hence, methods to
improve imaging speeds are required to make SEM more time and therefore cost
efficient.

One way to improve imaging speeds is to capture more electrons with im-
proved detectors. Another highly technical and expensive approach is the use of
a multi-beam SEM with 91 parallel electron beams (Crosby et al. 2016). A cost
efficient alternative would be to simply increase the scanning speeds of estab-
lished SEM setups. Unfortunately, this means trading high signal-to-noise ratio
(SNR) for scanning time, which means that the acquired images become signif-
icantly more noisy and downstream processing becomes more difficult or even
impossible.

In 2018 Weigert et al. used content-aware image restoration (CARE) meth-
ods to restore low SNR fluorescence microscopy data (Weigert et al. 2018). They
achieved astonishing results by training deep neural networks with acquired im-
age pairs of low- and high-quality. This so called supervised training approach
teaches a network to uses image context to predict a clean denoised image from
a noisy observation. In this thesis I will show how these supervised CARE tech-
niques from light microscopy can be directly applied to SEM image data. By
training such CARE networks we can increase scanning speeds of SEM setups
40- to 50-fold and restore high quality images digitally from fast scanned noisy
observations.

1.2 Cryo Transmission Electron Microscopy
While SEM is often the method of choice for connectomics, cryo transmission
electron microscopy (cryo TEM) is the preferred approach in structural biology.
Cryo TEM belongs to the family of cryo electron microscopy (EM) methods, for
which Jacques Dubochet, Joachim Frank, and Richard Henderson were awarded
the Nobel Prize in Chemistry in 2017. In cryo TEM, or in cryo EM in general,
the sample is rapidly frozen to cryogenic temperatures by plunge freezing (Dobro
et al. 2010). During this rapid freezing process the water can not assemble into
crystalline ice but embeds the sample in vitreous ice (Jacques Dubochet et al.
1988). From a biological perspective using water as sample substrate is desirable.
This enables imaging of lipid complexes which usually collapse during dehydration.
Furthermore the samples do not need to be chemically fixed i.e. the biological
structures are literally frozen in time and not altered (Bhella 2019).

In cryo TEM the electrons pass through the sample. If they interact with

4



CHAPTER 1. INTRODUCTION

the atoms in the sample they become elastically scattered and are affected by
a phase shift. Others, which we call undeflected, pass just through the sample
without interaction and are not affected by a phase shift. The cryo TEM image is
then formed by phase-contrast between the elastically scattered and undeflected
electron wave. The observed image is modified by the contrast transfer function
(CTF), which is the Fourier transformed point spread function (PSF), of the optical
system. The PSF describes how a point light source is deformed by the optical
system. The CTF for in-focus images in cryo TEM attenuates low resolution
frequencies, which makes identification of molecules impossible due to low contrast
between foreground and background. Hence, cryo TEM practitioners use defocus
to increase phase-contrast in lower frequencies. However, this trades low frequency
contrast at the cost of high frequency information (Bhella 2019). Furthermore,
cryo TEM images suffer from low SNR because of beam induced sample damage.
Unfortunately, electrons interact negatively with organic material, which leads to
denaturation of the samples while they are imaged, hence only a total of 100e−/Å2

to 120e−/Å2 can be used for cryo TEM imaging (Knapek and Dubochet 1980).
In summary cryo TEM experts have to choose appropriate defocus and electron
dose during the imaging process and are still left with rather low contrast and
low SNR images.

Single particle analysis (SPA) and cryo tomography are two approaches that
use cryo TEM to answer different questions in structural biology. SPA enables us
to resolve individual molecules at near atomic resolution and cryo tomography
allows us to look into biological samples at high resolution. Both approaches
are extremely important in modern structural biology and we will discuss in the
next two sections how both of these approaches deal with low contrast and low
SNR.

1.2.1 Single Particle Analysis

In single particle analysis (SPA) a single type of molecule is replicated and purified
in solution. The solution is then applied to a cryo TEM sample grid, which is
plunge frozen and inserted into the microscope. From which a single transmission
image is acquired. Due to the purification process it is given that each object – each
density – in the image belongs to the same particle class. However, each particle
has its own random orientation, which enables 3D tomographic reconstruction of
the particle.

During tomographic reconstruction of the molecular complex, also called sub-
tomogram averaging, the individual densities are identified/picked (Bepler, Morin,
et al. 2019; Voss et al. 2009; Wagner et al. 2019), aligned and averaged together.
The central (also Fourier) slice theorem (Bracewell 1956) relates the 2D Fourier
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2D Fourier Transform

Projection 1D Fourier Transform
Figure 1.1: The Fourier (or central) slice theorem relates the 1D Fourier trans-
form of a projection to the central slice, which is perpendicular to the projection
direction, in 2D Fourier space of the imaged sample. This image is taken from
the text book (Maier et al. 2018).

transformation of a 2D projection image to a slice in the 3D Fourier space of
the sample. More specifically, the 2D Fourier transform corresponds to the slice
in 3D Fourier space, which is perpendicular to the projection direction. This
relation holds also for 1D projections and 2D reconstructions and is illustrated in
Figure 1.1. As a consequence of this, it is given that two random 2D projection
images of the same particle class have a single line in common (the common
line), where the two Fourier transformed slices cross in the reciprocal space of the
3D sample. By finding these common lines of the individual Fourier transformed
2D projections it is possible to compute a particle alignment and generate a 3D
reconstruction from many (10′000 to 100′000) random 2D projections (Jonić et al.
2008).

RELION (Scheres 2012) and EMAN2 (Tang et al. 2007) are two widely
used software packages for particle alignment and sub-tomogram averaging in
SPA. Another recent development in the field is spearheaded by Dimitry Tegunov
with his two contributions WARP and M. WARP is a real-time preprocessing
pipeline for cryo TEM data (Tegunov and Cramer 2019) and M is a novel parti-
cle refinement framework which uses a deformation model to correct for optical
aberrations (Tegunov, Xue, et al. 2021). Another extremely interesting work is
cryoDRGN by Zhong et al. where they use neural networks to reconstruct flexible
i.e. heterogeneous particles and are able to interpolate between different confor-
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mational states (Zhong et al. 2021). The advances in digital post-processing of
SPA data combined with ever better imaging hardware allow reconstruction of
molecular complexes at near atomic resolution. And in 2020 the first atomic res-
olution results were reported, where individual atoms are visible in the particle
reconstruction (Nakane et al. 2020). However, we can not observe these molecules
in their native environments, let alone investigate interactions between different
molecules.

1.2.2 Cryo Tomography

Cryo electron tomography, on the other hand, allows us to image complete bio-
logical systems. Although, samples up to 250µm can be plunge frozen, only thin
samples (up to 400nm thickness) can be transmission imaged (Golding et al.
2016). Above 400nm the electron beam will not be able to penetrate (Gan and
Jensen 2012). From such a sample a tilt-series is acquired by rotating the sample
from e.g. -60 to 60 degrees in 2 degree steps. Rotations below and above ±60
degrees are usually infeasible, because of relative increasing sample thickness and
sample holder geometry. Note, that the dose per tilt-angle is much lower than
the total dose of a SPA image, therefore individual tilt-series images have a much
lower SNR compared to SPA. Hence, any tomographic reconstruction from such
noisy images suffers from low SNR as well.

Cryo tomography experts use binning and classical filtering techniques like
non-linear anisotropic diffusion (NAD) (Frangakis and Hegerl 2001) to enhance
image quality. These steps are necessary to enable visual inspection of tomo-
graphic data in tools like IMOD (Kremer et al. 1996). Furthermore, since we deal
now with extremely crowded environments, automated picking pipelines as they
are used in SPA are not necessarily applicable anymore. And more often than not,
structural biologists working with cryo tomography have to hand pick individual
particles of interest to perform sub-tomogram averaging. However, the aforemen-
tioned filtering techniques are rather weak compared to modern content-aware
deep learning solutions and require delicate hyper-parameter tuning to work best
for given frequency ranges.

In this thesis I will apply SOTA deep learning solutions to cryo tomographic
data. Providing a novel approach to tomographic image restoration, which opti-
mizes denoising over a wide range of structural sizes, hence enabling cryo tomog-
raphy practitioners to see more in their data. In the next section we will discuss
tomographic reconstruction in general and have a closer look at the artefacts
which can occur.
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Figure 1.2: In tomography a detector is rotated around a sample and transmission
images are acquired at defined acquisition angles. The red arrows, in Subfigure (a)
correspond to a transmission image acquired at a 90◦ angle. For a 2D sample we
will acquire 1D intensity measurements, see intensity plot. All acquired 1D projec-
tions are usually arranged in a sinogram (see Subfigure (b)), where each column
corresponds to an acquisition angle. From a sinogram we can then reconstruct
the 2D image via Filtered Backprojection (FBP), also called inverse radon trans-
form (Kak et al. 2002; Ramesh et al. 1989) shown in Subfigure (c).

1.3 Tomographic Reconstruction
Tomographic reconstruction is used to restore a 3D image from a series of 2D
projections or a 2D image from a series of 1D projection images. Formally, to-
mographic reconstruction is the inverse transformation of the Radon transform.
The Radon transform (Kak et al. 2002; Radon 1917) is obtained by either ro-
tating a detector around a sample, or by rotating the sample, and acquiring a
series of density measurements at defined projection angles αi. In cryo tomog-
raphy, as we have seen above, the sample is rotated and a so called tilt-series
consisting of multiple 2D projections is acquired. A wider known application is
computed tomography (CT) from bio-medical imaging, where a 1D detector array
is rotated around the sample, acquiring a series of density measurements. In CT
these density measurements are often visualized as sinogram, where each column
corresponds to a single 1D projection see Figure 1.2. Like in cryo tomography,
where total electron dose is a limiting factor, total radiation dose for the patient
is a safety concern in medical imaging.

Reducing total radiation dose can be achieved in two ways: (i) reducing dose
per projection or (ii) reducing number of projections. The first approach leads to
increased noise levels in the measurements, which results in noisy tomographic
reconstructions see Figure 1.3 (b). As for the second approach, reducing the
number of projection angles results in tomographic reconstruction artefacts see
Figure 1.3 (c) and (d). These reconstruction artefacts are linked to an undersam-
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Figure 1.3: Subfigure (a) shows the sinogram from Figure 1.2(b) with additional
Poisson noise. The observed noise leads to a noisy FBP reconstruction as shown
in Subfigure (b). Subfigure (c) shows the FBP reconstruction from a sparse-view
acquisition, where only the projections indicated by the red dashed lines in (a)
were used. Subfigure (d) shows a tomographic reconstruction from a sinogram
which was acquired with a limited tilt-range (yellow dashed lines in (a)), as it is
the case in cryo tomography. The insets in (b-d) show the Fourier spectra of the
reconstructions with visible missing wedges in (c) and (d). These missing wedges
are the reason for the streaking artefacts in image space.

pled Fourier space as described by the Fourier slice theorem (see Figure 1.1. The
Fourier slice theorem states that the Fourier coefficients of each 1D projection at
a given angle αi coincide with the 2D Fourier coefficients that lie on the line that
crosses the DC component at angle αi (Bracewell 1956). Hence, a sparse sampling
of projection angles leaves many 2D Fourier coefficients unobserved, leading to so
called missing wedge artefacts see Figure 1.3. Note, the same is true for 3D tomo-
graphic acquisitions as they are used in cryo tomography. There exists a plethora
of work that deals with different combinations of noise and number of projections,
some of them we will discuss shortly. Many of these techniques were developed
for biomedical imaging and some of them can directly be applied to cryo tomogra-
phy, while others are infeasible due to increased runtimes for 3D reconstructions
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or because of image size. Most modern methods try to cope with less dose and
fewer projections, while keeping reconstruction quality high, which would allow
practitioners to reduce radiation further. In the following paragraphs we will go
over some of the different tomographic reconstruction approaches.

The most common tomographic reconstruction method is filtered backpro-
jection (FBP) or inverse radon transform (Kak et al. 2002; Ramesh et al. 1989).
Each projection image can be interpreted as the sum over all intensities along the
projection direction. To obtain a reconstruction the measured intensity is then
replicated along the projection direction. This is repeated for each projection
angle and the final restored image is the sum over all of these “backprojected”
projection images. Simply doing this leads to a reconstruction which is blurred by
the point spread function 1

r
, where r corresponds to the distance of the current

pixel from the projection rotation center. This blur can be reduced by Fourier fil-
tering the backprojected image i.e. deconvolving the reconstruction. To speed up
the reconstruction process, the Fourier filtering can be applied first to the lower
dimensional projections before backprojecting them. This improves reconstruc-
tion time without compromising reconstruction quality, hence the name filtered
backprojection. Many different filtering approaches (Ramp, Shepp-Logan, Cosine,
Hamming, Hann) exist to deal with varying amount of noise. However, filtered
backprojection is not able to reduce missing wedge artefacts.

The missing wedge artefacts are directly related to missing information in
the Fourier space (see Figure 2.6 (c) and (d)), so any method trying to remove
these artefacts has to be able to generate this information in some way. Classical
reconstruction algorithms achieve this by optimizing

argmin
ŷ
D(x,Φ(ŷ)) + λR(ŷ), (1.2)

where ŷ is the reconstructed image, Φ is the radon transform i.e. the forward pro-
jection operation, x is the observed sinogram (or tilt-series),D is the data term,R
is a regularizer and λ is a hyper-parameter controlling the relative weight of regu-
larization versus data affinity. A common data term is the L2-Norm and classical
regularizers are Total Variation (TV) (Rudin et al. 1992) or Total Generalized
Variation (TGV) (Bredies et al. 2010). Today, these engineered regularizers are
also replaced by shallow neural networks (Adler and Öktem 2018; Hauptmann et
al. 2018). Optimizing such objective functions is done with iterable solvers (Cham-
bolle and Pock 2011; Gilbert 1972; Gordon et al. 1970) and high quality recon-
structions can be generated from a few noisy projections. However, due to their
iterative nature these solvers are comparably slow and tuning the regularization
weight λ is non-trivial.
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More recent approaches use deep neural networks as post-processing of FBP.
To train such a network in a supervised fashion pairs of low quality reconstructions,
obtained by standard FBP, and high quality ground truth images are required
to train the deep neural network (H. Chen et al. 2017; Jin et al. 2017). Once the
network is trained reconstruction and artefact removal is fast and exceptional re-
sults can be achieved. However all these reconstruction methods deal with missing
wedge artefacts in real image space i.e. they use regularizers or post-processing to
smooth out or remove these artefacts in the reconstruction. But we know, from the
Fourier slice theorem, that these artefacts originate in the Fourier space where cer-
tain frequencies are just not present. This lead me to investigate if these artefacts
can be removed by directly predict missing Fourier coefficients in Fourier space.
In the Chapter 4 of this thesis we will investigate this line of thought and with
Fourier Image Transformers (FITs) a novel tomographic image reconstruction
approach working directly in Fourier space restoring missing Fourier coefficients
directly is presented, with it eliminating reconstruction artefacts.

1.4 Overview and Contributions
In this thesis I will present at multiple approaches to image denoising without
ground truth data and present a novel idea to approach tomographic reconstruc-
tion. In Chapter 2, I will demonstrate how CARE methods for denoising can be ap-
plied to electron microscopy data. In particular, I present a way to speed up image
acquisition in SEM by using fast and slow scanned image pairs to train supervised
CARE models. Furthermore, I present cryoCARE, a Noise2Noise (Lehtinen
et al. 2018) trained CARE denoising approach for cryo tomograms, where acquisi-
tion of paired low- and high-quality training data is impossible. In Chapter 3, we
will take a step back from specific imaging modalities like cryo TEM and look at
image denoising in general. I will introduce Noise2Void, the first self-supervised
image denoising method based on deep learning. Noise2Void allows us to train
content-aware image denoising networks with only single noisy observations. How-
ever, Noise2Void can not be applied to reconstructed tomograms and denoising
the projections leads to enhanced reconstruction artefacts. In Chapter 4, I will
address tomographic reconstruction artefacts namely the missing wedge artefact.
We will turn toward Transformer based architectures. Transformers are currently
setting new gold standards in virtually all natural language processing (NLP)
tasks (Devlin et al. 2018; Radford et al. 2018). In the future, I expect that an
increasing number of computer vision tasks will be solved with Transformers and
I present such methods. Unlike convolutional neural networks Transformers are
applied to 1D input sequences and it has been shown that Transformers are able to
complete pixel sequences corresponding to a flattened image (M. Chen et al. 2020;
Katharopoulos et al. 2020; Parmar et al. 2018). Here I propose a novel 1D image
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encoding which is based on the Fourier transformation of the image. In particu-
lar, the proposed Fourier Domain Encoding (FDE) fulfills the property that each
prefix encodes the full image, however at reduced resolution. This allows to easily
train an auto-regressive Transformer for image super-resolution. Additionally, I
will present an encoder-decoder Transformer setup for tomographic reconstruction.
Unlike convolutional based post-processing restoration approaches, I aim at filling
in the missing wedges directly in Fourier space by restoring the missing Fourier
coefficients.

The contributions of this thesis can be briefly summarized as follows:

Chapter 2: Content Aware Image Restoration for Electron Mi-
croscopy

• Proposing a content-aware image denoising approach for SEM to enable
faster image acquisition.

• cryoCARE a content-aware image denoising approach for cryo TEM to-
mograms based on Noise2Noise (Lehtinen et al. 2018).

• Open-source implementation of cryoCARE1 and integration into Scip-
ion2 (de la Rosa-Trevín et al. 2016), a cryo electron microscopy image
processing framework.

Parts of this chapter are published in (Buchholz, Jordan, et al. 2019; Buchholz,
Krull, et al. 2019).

Chapter 3: Noise2Void - Self-Supervised Denoising

• Introduction of Noise2Void, a novel approach for training denoising Con-
volutional Neural Networks (CNNs) that requires only a body of single,
noisy images.

• Comparison of Noise2Void trained denoising results to results obtained
with existing CNN training schemes (Lehtinen et al. 2018; Weigert et al.
2018) and a non-trained method (Dabov et al. 2007).

• A sound theoretical motivation for Noise2Void as well as a detailed de-
scription of an efficient publicly available implementation3.

Parts of this chapter are published in (Krull, Buchholz, et al. 2019).

1 https://github.com/juglab/cryoCARE_pip
2 https://github.com/scipion-em/scipion-em-cryocare
3 https://github.com/juglab/n2v
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Chapter 4: Fourier Image Transformer

• Proposing Fourier Domain Encoding (FDE) a novel sequential image en-
coding.

• Demonstrating Fourier Image Transformer (FIT) for super-resolution by
training an auto-regressive Transformer on the FDE.

• Demonstrating FIT for tomographic reconstruction, which resolves missing
wedge artefacts directly in Fourier space.

• Open-source implementation of FIT in PyTorch4.

Parts of this chapter are under review.

In the text of this thesis, the pronoun “we” generally refers to the author and
the reader.

4 https://github.com/juglab/FourierImageTransformer

13

https://github.com/juglab/FourierImageTransformer


CHAPTER 1. INTRODUCTION

14



Chapter 2

Denoising in Electron
Microscopy
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Over the last decades, tremendous technological advancements have been
made in light microscopy (LM) and electron microscopy (EM). Employing fluo-
rescent light microscopes in workflows, imaging beyond the resolution limit, ac-
quiring image volumes at high temporal resolution, and capturing many hours of
video material is now routinely done, which enables imaging of processes in living
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cells and tissues that were previously unobservable. Electron microscopes can go
far beyond the resolution limit of light microscopy, and modern EM approaches
enable us to see cellular building-blocks in their native cell and tissue context.
Despite all technological progress, electron microscopy images tend to have a low
signal-to-noise ratio (SNR).

As we have seen in Section 1.1 SEM imaging is slow, if we would like to
acquire at high SNR. Scanning speeds can be drastically increased, but then high
SNR is traded for faster acquisition times. Unfortunately low SNR images make
solving downstram tasks hard, for example, when such images are post-processed
to obtain a neural connectivity map (connectome) of the brain (Kasthuri et al.
2015). Hence, the scanning speed is a major limiting factor when acquiring large
image volumes. On the other hand, we have looked at cryo TEM, which can image
thousands of pixels within seconds, much faster than any SEM setup. However,
the lack of staining in combination with beam induced sample damage (Knapek
and Dubochet 1980) prevents acquisition of high quality, high SNR images in
cryo TEM. Both EM methods would greatly benefit from modern state-of-the-art
(SOTA) denoising approaches to ease post-processing in cryo TEM and enable
faster scanning speeds without compromising downstream processing in SEM.
In this chapter I will first discuss multiple image denoising methods from simple
fixed filter approaches like mean-filtering to current SOTA methods based
on deep neural networks. In Section 2.1 we look at some classical denoising
approaches and follow up with modern supervised denoisers in Section 2.2. In
Section 2.3 I describe how SOTA deep learning approaches from fluorescence
microscopy can be applied to SEM data. This allows to significantly speed up
SEM acquisitions without loss in image quality. Then, in Section 2.4, the seminal
Noise2Noise work by Lehtinen et al. is introduced. In Section 2.5 I will present
multiple approaches to denoise 2D cryo TEM data and reconstructed 3D cryo
TEM tomograms. Section 2.6 introduces the used and developed open-source
software packages. Finally, I close with a discussion in Section 2.7.

Contributions:

• Using content-aware image denoising to enable faster SEM acquistions.
• cryoCARE a content-aware image denoising approach for cryo TEM to-

mograms based on Noise2Noise.
• Open-source implementation of cryoCARE1 and integration into Scipion2,

a cryo EM image processing framework.

Parts of this chapter are published in (Buchholz, Jordan, et al. 2019; Buchholz,

1 https://github.com/juglab/cryoCARE_pip
2 https://github.com/scipion-em/scipion-em-cryocare
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Krull, et al. 2019).

2.1 Image Denoising
The dominant noises in bio-medical imaging are Gaussian and Poisson noise.
This is due to the inherent mechanisms behind imaging – while Gaussian noise is
induced by analog to digital convertion in the detector, Poisson noise is inherently
given by the stochastic observation process of photons or electrons. An important
property of Gaussian and Poisson noise is, that they are both zero-centered around
the signal i.e. the expected value of the noise for a given signal is zero. We can
formalize this relationship into

E(x) = E(s+ n) = s+ E(n) = s+ 0, (2.1)

where x represents an image consisting of of the ground truth signal s and a
random noise contribution n. Hence, the image quality depends on a better
estimate of the random noise contribution, which can be achieved by increasing
exposure i.e. maximising number of captured photons or electrons. Note, that it
doesn’t matter if the capture is continuous or over multiple individual images over
which we can sum later on. But, it is important that the imaged scene is perfectly
still and does not move, else motion blur is introduced into the image. Hence,
the first step in image denoising is optimizing the imaging protocol to gather
as much signal as possible. However, there exist plenty of applications where
exposure has to be limited. For example in time-lapse imaging in biology due to
phototoxicity, in cryo tomography due to beam induced sample damage (Knapek
and Dubochet 1980) or in computed tomography (CT) due to radiation concerns
for the patient.

If noise is a limiting factor for down stream image processing, denoising offers
different solutions. Simple denoising approaches convolve a noisy image with
a fixed kernel. The convolution operation computes for each output pixel the
weighted sum over the input pixels, where the weights for each pixel are given by
the kernel. By increasing the size of the kernel, the receptive field i.e. the amount
of information aggregated by the filter is increased. However, by increasing the
kernel size we trade resolution for signal.

This trade-off can be nicely observed if the convolution is performed via
Fourier space. A relationship described by the convolution theorem, which states
that a real image space convolution corresponds to an element-wise multiplication
in Fourier space between the Fourier transformed kernel and image. In Figure 2.1
we can see that the Gaussian filter attenuates the high frequencies in the Fourier
domain, which leads to a noise reduction in the image domain. This makes sense,
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Figure 2.1: The left most image shows a noisy version of the cameraman image
and the inset is the Fourier transformation of it. The center image is a Gaussian
filtered version of this image with σ = 1 and the right image is Gaussian filtered
with σ = 2. The insets show the Fourier transformation of the image. In the
Fourier transform the low frequency information is displayed in the center and
each concentric ring contains higher frequency information. The high frequencies
are most affected by pixel-wise independent noise, hence applying a Gaussian filter
which attenuates high frequencies (middle and right subfigure) is able to suppress
pixel-wise independent noise. However, all frequencies are attenuated equally, also
high frequencies responsible for sharp edges, hence the denoised images become
blurrier with larger σ.

since noise is random for each pixel and therefore captured by high frequencies in
the Fourier spectrum. However, by increasing the kernel size also lower frequencies
get attenuated and eventually zeroed out. This overall loss in high-frequency
information manifest as blur in the denoised image.

Using a single fixed kernel on images with content of different scales and
shapes is suboptimal. A single convolution-based filter can only be optimized for
a single given structure and will introduce blur artefacts in all other regions of
the image. Anisotropic diffusion is an advanced image denoising algorithm which
tackles this problem by introducing an edge detection component, which tunes
down the filter response near edges to keep them sharp and contrasted (Frangakis
and Hegerl 2001). Other methods like non-local mean filtering (Buades et al. 2005)
or BM3D (Dabov et al. 2007) are based on the idea that natural images usually
contain a large amount of repeating patterns. They perform internal grouping
of similar looking image regions and combine them to produce denoised outputs.
Intuitively, these methods denoise similar looking patches by averaging them
and build up a denoised image by stitching together all of these denoised patches.
However, such iterative and internal statistics based methods have long run times,
which makes them cumbersome to apply to large image data.

Generally speaking, all of the above mentioned denoising techniques rely on
at least one hyper-parameter e.g. the kernel size in the case of a Gaussian filter.
These hyper-parameters are non-trivial to optimize and often a lot of domain
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expertise is required to get decent denoising results. However, if we would have
access to some ground truth signal we could optimize hyper-parameters with
respect to some quality measurement like mean squared error (MSE) or peak
signal-to-noise ratio (PSNR).

2.2 Supervised Image Restoration
Supervised training of deep neural networks is the current SOTA in image restora-
tion and image denoising. Instead of hand crafting individual filters or priors, deep
neural networks are trained with pairs of low- and high-quality images (xi,yi)
combined with a suitable loss function L. We can interpret a deep neural network
as a highly parameterized function, which maps an input xi to an output ŷi

fθ(xi) = ŷi, (2.2)

where θ are the trainable parameters of the neural network. By employing a loss
function

e = L(ŷi,yi) (2.3)

we obtain the error e between the current prediction ŷi and the ground truth
target yi. This error, also called loss, is then backpropagated (Rumelhart et al.
1986) through the neural network and for each weight the individual error contri-
bution is computed. With gradient descent, we can then iteratively update the
neural network weights until convergence. Following this procedure enables us to
train the neural network function fθ to map any input xi to any output yi. But
our hope is to obtain a network which generalizes well to unseen data, for which
we do not have access to ground truth.

2.2.1 Training and Validation Loss

The best way to get a neural network to generalize better over a given data
distribution is to increase the amount of training data pairs. However, a large
enough neural network trained until convergence will still be able to learn a perfect
one-to-one mapping for all training samples and perform poorly on new unseen
test images. Therefore it is necessary to monitor the neural network performance
on unseen validation data during training. It is important that validation and
training data are disjoint datasets, however they should capture the same data
distribution. By plotting the training and validation loss we can learn a couple
things about the trained neural network. In Figure 2.2 (a) we can observe that
both loss curves are going down over time. These curves contain two bits of
information, first validation- and training-loss are close to each other, this means
that the training- and validation-datasets are reasonably similar i.e. they both

19



CHAPTER 2. DENOISING IN ELECTRON MICROSCOPY

0
Epochs

Lo
ss

(a)

0
Epochs

Lo
ss

(b)

0
Epochs

Lo
ss

(c)

Figure 2.2: Shown are three common loss curve plots with the blue line correspond-
ing to the training-loss and the red dashed line corresponding to the validation-loss.
Subfigure (a) shows the loss curves of a under-parameterized model, hence the
loss curves can not reach 0. In Subfigure (b) loss curves of an over-parameterized
model are shown. The model is able to capture the data distribution and even
overfits in the last third of the training i.e. it does not generalize well to the
unseen validation data. In Subfigure (c) the validation loss is much higher than
the train loss, this indicates that the data distribution of the validation dataset
differs from the training data distribution.

capture the same data distribution. Second, the losses have flattened out i.e.
reached a plateau, but are still far away from zero. Flattening loss curves tell us
that the training has converged, however the gap towards zero informs us that
the neural network has not enough capacity to capture all essential features of the
training data. Essentially, the model has used its limited capacity to learn some
of the most common features of the data. By increasing the size of the neural
network we can increse its capacity and it will be able to learn more specialized
features, see Figure 2.2 (b). Where both learning curves are going down initially,
and reach a lower plateau compared to subfigure (a). However, towards the end the
training-loss suddenly drops again and reaches quasi zero, while the validation
loss simultaneously starts growing. This behaviour indicates overfitting of the
model to the training data. Overfitting means, that the network has learned a
perfect representation of all training samples, however it does not generalize well
to the unseen validation data. In such a case we can either reduce the model
size, add more training data or we employ the early stopping strategy (Finnoff
et al. 1993) and just use the model corresponding to the lowest validation loss.
In Figure 2.2 (c) we see that the validation-loss is much higher than the training-
loss. This indicates that the validation- and training-datasets capture different
distributions and while the model is able to learn all details of the training data, it
is unable to generalize to the different validation-dataset. This is a good indicator
to investigate the datasets, which potentially leads to an increase in required
training- and validation-data. Understanding the losses is important to train deep
neural networks, however as LeCun stated in (Y. A. LeCun et al. 2012), efficient
training with backpropagation in reality is often a lot harder than it seems. Not
every neural network will converge with any optimizer and loss function, which
makes training of deep neural networks also an engineering challenge. In the
next section, I will highlight the neural network architectures which have been
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proposed for the task of image denoising.

2.2.2 Neural Network Architectures
The first convolutional neural network (CNN) used for image denoising was pre-
sented by Jain et al. in 2009. They interpret the denoising task as a regression
task and the CNN is trained to minimize a loss calculated between its prediction
and clean ground truth data (Jain and Seung 2009). This basic setup builds the
backbone of many SOTA CNN denoisers available today. It is noteworthy to men-
tion that GPUs were becoming commercially available around the same time3.
Hence, training of deep neural networks started to become feasible.

Zhang et al. use a very deep CNN architecture for image denoising in (Zhang
et al. 2017). Their architecture, unlike previous architectures, does not predict
the clean image, it predicts the noise and the clean image is then computed in a
subsequent subtraction step. Essentially, the network computes a residual image,
an idea presented by He et al. (He et al. 2016).

Around the same time Mao et al. presented a very deep encoder-decoder
architecture (Mao et al. 2016) for image denoising. They also use residual or
skip connections between corresponding encoding and decoding modules i.e. in-
formation in the forward and backward pass can skip further compression. Note,
that these architectures by Zhang et al. and Mao et al. completely dispense with
pooling layers.

In 2015 Ronneberger et al. presented the U-Net architecture for the segmen-
tation of neuronal structures in electron microscopy images (Ronneberger et al.
2015), however it got adapted for denoising tasks later on (Weigert et al. 2018). In
general the U-Net consists of convolution blocks, down- and up-sampling layers
and most importantly skip-connections, a depiction is shown in Figure 2.3. The
convolution blocks contain two convolution layers followed by the ReLU (Nair
and Hinton 2010) activation function. The first convolution block takes a single
channel input image and convolves it with n_first different learnable kernels,
which results in an intermediate image representation with n_first feature maps.
These n_first feature maps are then passed through the second convolution layer,
which applies another n_first trainable convolution kernels to produce a new
intermediate image representation of n_first feature channels. This output is
then down-sampled by applying a 2× 2 pooling operation (e.g. average- or max-
pooling). Then the next convolution-block is applied, but this time the number of
feature maps is doubled by the first convolution layer. This procedure can be re-

3 https://web.archive.org/web/20130624034844/https://blogs.nvidia.com/blog/2009/12/
16/whats-the-difference-between-a-cpu-and-a-gpu/
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...................................................︸ ︷︷ ︸
Encoder

.....................................︸ ︷︷ ︸
Decoder

........︷ ︸︸ ︷
Latent Space

Figure 2.3: A depiction of a U-Net with n_depth = 2. The blue arrows are con-
volution layers, the purple arrows are pooling layers, the orange arrows represent
up-sampling layers and the grey arrows are the skip-connections. The first convo-
lution layers on the left side, the encoder, double the number of feature channels.
In the decoder, the right side of the U-Net, the first convolution layers half the
number of feature channels.

peated arbitrarily often and each pooling operation adds an additional depth level
to the U-Net until a predefined depth (n_depth) of the U-Net is reached. Then an
up-sampling (e.g. up-convolution, pixel-shuffle (Shi et al. 2016) or linear interpo-
lation) layer is employed, which doubles the size of each feature channel in X- and
Y-dimension while halving the number of feature channels. Now, before the next
convolution-block is applied, the feature channels from the same level of the encod-
ing side are concatenated or summed to the up-sampled feature channels, these
feature maps have skipped the down-sampling, encoding and compression, hence
the name skip-connection. The following convolution-bock halves the number of
feature channels with the first convolution i.e. the model can choose between the
up-sampled feature maps and the feature maps from the skip-connection. This
up-convolution followed by convolution-block procedure is repeated until depth
zero is reached again. Finally, the remaining feature maps are reduced with a
single 1× 1 convolution layer to the number of required output channels. In the
original U-Net paper the authors used n_first = 64, n_depth = 5, max-pooling,
up-convolutions and added the feature channels from the skip-connections to
the up-sampled feature maps. Furthermore, the last convolution reduced the 64
feature maps to 2 outputs – foreground and background (Ronneberger et al.
2015).

The skip-connections are essential for the U-Net, because they allow the net-
work to let high-resolution details flow from the encoder to the decoder, without
being compressed. The encoder of such a network, compresses the input image
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into a high dimensional latent space representation, however each latent space
feature map is much smaller than the original input image. The decoder inverts
this operation. Given a latent space representation the decoder builds up a full
image. In some sense encoder and decoder are highly specialized filter-banks. The
encoder filter-bank decomposes an image into a compressible representation and
the decoder filter-bank uses these compressed signals to choose the appropriate
combination of filters to restore a full image. Encoder-decoder networks tend to
learn low-resolution features first and gradually restore higher resolution features.
However, with limited capacity these encoder-decoder networks are not able to
fully restore the original image due to missing high-resolution features. This is
where the skip-connections of the U-Net prove advantageous, because they by-pass
the compression and the network can learn to integrate or ignore high-resolution
features. Because of its simplicity the U-Net architecture got quickly adapted in
bio-medical image processing and is one of the most used neural network back-
bones for bio-image analysis.

A U-Net can be trained for virtual any image-to-image task like segmentation,
deconvolution, up-sampling or denoising as long as we have access to pairs of input
and target data. In 2018 Weigert et al. presented their work on content-aware
image restoration (CARE) for fluorescence microscopy images (Weigert et al.
2018). They describe multiple strategies, from simulation to carefully imaged
pairs of low- and high-quality images, to obtain training data to train a U-Net.
One of these tasks is image denoising, which they achieve by imaging the same
sample once with low exposure and a second time with high exposure, resulting in
suitable training pairs to train CARE networks. In the following section, I will use
this CARE approach from light microscopy and apply it to SEM images with the
goal of increasing image acquisition speeds without loss of image quality.

2.3 SEM-CARE

In scanning electron microscopy (SEM) the limiting factor is often acquisition
time, leading to long and expensive projects. With SEM-CARE I use CARE to
speed up image acquisitions, by restoring fast scanned low SNR images to high
quality images which can be used for down stream processing like connectomics.
This work is a collaboration with Réza Shahidi and Gáspár Jékely from the Living
Systems Institute at the University of Exeter (Exeter, UK).

2.3.1 SEM-CARE Experiments

My collaborators imaged ultrathin sections (30nm) of an EPON-embedded larva
of the marine annelid worm Platynereis dumerilii using a Zeiss Gemini 500
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Figure 2.4: Results of SEM-CARE. The upper row of images shows (a) the noisy
input image (scanned at 5 MHz), and two baseline denoising methods, namely (b)
Non-Local Means and (c) BM3D. The second row of images shows (d) SEM-
CARE results, and (e) the ground-truth, i.e. an average of 4 scans at 0.2 MHz.
The remaining two rows show the insets of (a-e) in respective order, additionally
indicated by color and line-style.

SEM. Platynereis is an ideal specimen for whole-body connectomics, because
of the transparent embryos, synchronous fertilization of many eggs and determin-
istic/stereotypic development so variance between multiple individuals is low in
terms of position of nuclei (Fischer et al. 2010). The collaborators collected sec-
tions as ribbons on conductive ITO glass (Pluk et al. 2009). For post-staining, a
solution of uranyl acetate and lead citrate was used. To train a CARE image de-
noising network, pairs of low- and high-quality ground truth images are required.
The ground truth images were obtained by scanning the same region 4 times at
0.2MHz and averaging the four images together. The corresponding low-quality
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image was scanned at 5MHz. The high speed scanned images suffered from severe
noise and could not be used in their raw form for downstream image analysis e.g.
connectome tracing.

I have used this data to train a CARE denoising model to restore fast scanned
SEM images to sufficient quality, such that downstream image analysis is possible
again. To this end I had to ensure that the training data is pixel-perfect aligned,
else the CARE network can not learn an exact mapping from noisy observations
to clean observations, which will manifest as blur in the denoised images. Luckily,
image registration is a well understood problem and many powerful methods are
readily available (Klein et al. 2009; Schindelin et al. 2012; Thevenaz et al. 1998).
In this work I used the free Fiji plugin StackReg (Thevenaz et al. 1998) to align
the low- and high-quality images pixel perfect.

Then to train CARE, I extracted 32′768 randomly positioned image patches
of size 128 × 128 from a total of 8 images (jointly counting 471 megapixels).
No additional patch augmentation was used. From the extracted patches I used
10% as validation data and trained a default CARE denoising network with
n_depth = 2, 5× 5 kernels, and a linear activation function in the last layer. A
batchsize of 16 and an initial learning rate of 0.0004 was used. Further the mean
absolute error (MAE) was used as loss function. The best performing network on
the validation set is evaluated on the test data.

2.3.2 SEM-CARE Results

After training, one fast-scanned, low-quality image which was excluded from the
training set was restored. Additionally, I used non-local means (Buades et al.
2005) and BM3D (Dabov et al. 2007) as baselines, two self-supervised denoising
algorithms. All results and the corresponding ground truth (slowly scanned and
averaged image of the same sample) are shown in 2.4. In addition, I summarize
computed PSNR and SSIM (Zhou Wang et al. 2004) (higher is better) values for
all baselines and our CARE results in Table 2.1.

PSNR SSIM
Input (5MHz) 6.62 0.09

NLM 9.25 0.16
BM3D 9.41 0.37

SEM-CARE 16.56 0.47

Table 2.1: Quantitative measurements comparing the restoration results of the
5MHz SEM acquisition restored with Non-Local Means (NLM), BM3D, and
CARE to the 0.2MHz 4 times average ground-truth SEM acquisition.
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2.4 Noise2Noise

So far we have looked at CARE networks which required pairs of low- and high-
quality images. A neural network is trained by using the low-quality image as input
and we ask the network to predict a high-quality output. Naturally, a randomly
initialized network will produce some random output far from the high-quality
image. But we can compute the error between the current prediction and the
high-quality image. This loss is then backpropagated through the network and
the neural network weights θ are gradually updated, optimizing

argmin
θ
L(yi = fθ(xi), si) (2.4)

where L is a suitable loss function computing the error between our neural network
output ŷi and the ground truth si. Once this process converges we can feed
different low-quality images, obtained with the same optical setup and of similar
structures, through the network and will obtain high-quality images.

A seminal discovery was presented by Lehtinen et al., which removes the
ground truth requirement for supervised denoising tasks. They show that the
ground truth observations si can be replaced by noisy observations y′

i = si + n′

as long as E(y′
i|xi) = si, which requires the noise to have an expected value of

0 given the signal. Crucially this condition holds true for Gaussian and Poisson
noises, the two most common noises in imaging, which means that we don’t have to
carefully acquire high quality images corresponding to ground truth but a second
noisy observation is sufficient. This means that supervised training for denoising
can be done with pairs of noisy images (xi,x′

i), hence the name Noise2Noise.
The only requirement is, that xi = si+n and x′

i = si+n′ have independent noise
contributions n and n′. In practice this means that acquiring two independent
images, either in quick succession or with two cameras would provided all required
training data to train a content-aware denoising network with the mean squared
error (MSE) loss. And even though we are attempting to learn a mapping from
a noisy input to a noisy target, the training will still converge to the correct
solution. Intuitively we are asking the neural network to do the impossible, to
predict a random noise value given an independent random input value and since
the expected value of the noise is 0, the best guess i.e. the prediction is ŷi = si+0

the underlying ground truth signal (Lehtinen et al. 2018).

In some sense the Noise2Noise approach is already indirectly used
in (Weigert et al. 2018). By acquiring high quality target images for training
a second “noisy” observation of the sample is acquired, just that the noise in
this case is not detectable anymore. Naturally, it is beneficial to have as much
information as possible available in the training data i.e. reducing the noise in
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the network input and target will always yield better results.

2.5 cryoCARE
With SEM-CARE I demonstrated the use of CARE denoising networks by acquir-
ing pairs of low and high signal-to-noise ratio (SNR) images, which is possible due
to the SEM staining. In cryo-TEM this is not possible anymore. Even the most
optimized protocols produce very noisy, low contrast images. Hence, for cryo-
TEM data a combination of CARE and the Noise2Noise idea from (Lehti-
nen et al. 2018) enable us to train cryoCARE networks. It has to be men-
tioned that Dimitry Tegunov has also implemented Noise2Noise based de-
noising in Warp (Tegunov and Cramer 2019) as well as Bepler et al. in the
Topaz-Denoiser (Bepler, Kelley, et al. 2020). Also Palovcak et al. implemented
a Noise2Noise based cryo TEM denoiser and additionally investigated sub-
tomogram averaging of denoised particles (Palovcak et al. 2020).

In the following subsections I will present various ways to use the
Noise2Noise idea to denoise single cryo-TEM projections or fully reconstructed
cryo tomograms. The feasibility of cryoCARE is demonstrated on two datasets.
The first dataset, called Tomo110, was acquired by Mareike Jordan from the lab
of Gaia Pigino on a 300 kV Thermo Fisher cryo TEM Titan Halo with a Gatan K2
direct electron detector. This detector can acquire images in dose-fractionation
mode (movie mode), which enables us to test all proposed cryoCARE varia-
tions. The Tomo110 data is available via our example notebooks on GitHub4.
The second dataset, EMPIAR-101105, is publicly available via the EMPIAR
database (Iudin et al. 2016) and consists of a complete tomographic series of
tilted projections.

All presented experiments were performed with the open-source CSBDeep
framework by Uwe Schmidt and Martin Weigert (Weigert et al. 2018). More
specifically a U-Net (Ronneberger et al. 2015) with n_depth = 2, a convolution
kernel size of three, and a linear activation function at the last layer is used. More-
over a per-pixel mean squared error (MSE) loss is employed. In all experiments
10% of extracted training data is used as validation data only.

2.5.1 Restoration of cryo TEM Projections

Here I describe three ways to train cryoCARE networks on adequately prepared
pairs of cryo TEM projections.

4 https://github.com/juglab/cryoCARE_T2T
5 http://dx.doi.org/10.6019/EMPIAR-10110
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Training using acquired image pairs: The most straight forward way
to combining CARE (Weigert et al. 2018) and Noise2Noise (Lehtinen et al.
2018) is to acquire pairs of images for which the noise is independent. To this
end, Mareike Jordan acquired such image pairs on a 300 kV Thermo Fisher cryo-
TEM Titan Halo that is equipped with a K2 direct electron detector from Gatan.
More precisely, she acquired images of Chlamydomonas reinhardtii cilia in dose-
fractionation mode (movie mode) (Li et al. 2013). The acquired frames were then
splitted in two halves, and averaged without additional alignment, resulting in the
equivalent of two independently acquired images at half the available electron dose
each6. From such pairs of images I extracted 1000 randomly selected patch-pairs
of size 128×128 which are used to train a CARE network with the Noise2Noise
regime. After training, I used the trained network to restore all image pairs and
retrieve the final result by pixel-wise averaging the two individual restorations
(see Fig. 2.5 (d)).

Training using tomographic tilt-angle pairs: For readily acquired,
not dose-fractionated data, the previously described scheme cannot be applied.
Archived data for which only single acquisitions exist can therefore not be used for
training cryoCARE networks. For existing tilt-series, acquired for tomographic
reconstruction, I asked myself if pairs of neighboring tilt-angles could be used for
training. I used IMOD (Kremer et al. 1996) to align and register all acquired tilt-
angles. As before, training was performed on 1000 randomly selected patch pairs
of size 128×128 taken from adjacent tilt-angle projections. Final restorations are
retrieved by applying the trained network to both tilt-angles individually followed
by pixel-wise averaging (see Figure 2.5 (c)).

Training using dose-fractionated movie frames: Since the data was
acquired on a Gatan K2 direct detector, I was able to go an additional step
further. Instead of using two acquired images, as described initially, I can lever-
age the fact to have many more frames acquired. As it is usually done during
dose-fractionation, I additionally corrected for motion-blur of the sample by reg-
istering the individual frames using MotionCor2 (Zheng et al. 2016). Then I sum
all even and odd frames to retrieve two images with independent noise. This in-
terleaved frame-splitting is advantageous because induced beam damage will be
equally shared in both independent images. Again I trained on 1000 randomly
selected patch pairs of size 128 × 128, and created the final restored projection
by applying the network to both images followed by pixel-wise averaging (see
Fig. 2.5 (e)).

In Figure 2.5 (c) and Figure 2.8 (c) cryoCARE restoration results based on

6 Note that each image in such a pair has an even lower SNR due to the halved electron
dose.
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100 nm(a) 100 nm(b) 100 nm(c) Tilt Pairs

100 nm(d) Acq. Pairs 100 nm(e) Movie Frames

Figure 2.5: cryoCARE results on a 2D cryo TEM projection. Subfigures
and insets show: raw input data (a), median filtered restoration baseline (b),
cryoCARE results when trained on tomographic tilt-angle pairs (c), on ac-
quired image pairs (d), and on dose-fractionated movie frames (e).

tilt-angle pairs are presented. This approach leads to restored images that appear
blurry. This is expected, because the neighboring tilt-angles are not and can
not be pixel-wise perfectly registered, due to the rotational projection geometry.
Hence, the CARE network learns to map slightly displaced image features to
one another i.e. the closest solution is a compromise between the two structures,
which appears blurry.

This problem is circumvented by training cryoCARE on specifically ac-
quired pairs of images or by using dose-fractionated and aligned movie frames.
Restoration results of these approaches are shown in Figure 2.5 (d,e).

2.5.2 Restoration of cryo TEM Tomograms

A canonical idea to reconstruct denoised tomograms is to use restored movie
frame tilt-angles (like in Figure 2.5 (e)). This does, unfortunately, amplify the
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25 nm(a) 25 nm(b)

Figure 2.6: Tomogram reconstruction artefacts. Tomograms reconstructed from
restored tilt-angles lead to strong missing-wedge artefacts (a). This problem is
reduced using the proposed Tomo2Tomo training scheme (b).

missing wedge artifacts at high-gradient locations (see Fig. 2.6). Since neural net-
works are complex non-linear filters and tilt-angle reconstructions are performed
independently, the predicted intensities for a given structure is not necessarily
consistent across restored tilt-angles. These inconsistent amplitudes are likely the
reason for the amplification of the observed missing wedge artifacts. However, this
problem can be addressed with the Tomo2Tomo network training regimes de-
scribed in the following paragraphs. The Tomo2Tomo approaches work directly
on reconstructed tomograms. All tomographic reconstructions were performed
with ETOMO, which is part of IMOD (Kremer et al. 1996).

Training using even-odd acquisitions: This protocol is designed to work
for conventionally acquired tilt-series, when no direct detector is available. Here
all tilted projections are split in two sets based on their acquisition number. From
all tilt angles with an even/odd acquisition number, two data-independent tomo-
grams are reconstructed and used to train a 3D cryoCARE network on 1′200
randomly selected 3D sub-volumes of size 64× 64× 64. The final restored tomo-
gram is obtained by applying the trained network to both tomograms followed
by voxel-wise averaging (see Figure 2.7 (d)).

Training using dose-fractionated movie frames: In case the available
data was acquired in dose-fractionation mode (movie mode), I propose a slightly
different protocol. For each tilt-angle, similar to the cryo TEM projection approach
on dose-fractionated data, the frames are aligned, split in even/odd frames and
summed. The two sets of independent tilt-angle projections can then be used
to reconstruct two independent tomograms. I trained as before and created the
final restored tomogram by applying the trained network to both tomograms
followed by voxel-wise averaging. The advantage of this approach is that the
angular sampling for both tomograms is denser and consistent, hence leading to
better results (see Figure 2.7 (d)).

In Figure 2.7 Tomo2Tomo even-odd acquisitions and Tomo2Tomo dose-
fractionated reconstructions are compared to the reconstructed raw tomogram
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Figure 2.7: cryoCARE results on a 3D cryo TEM tomogram. Subfigures show:
a section through the raw tomogram (a), the non-linear anisotropic diffusion
filtered baseline (b), cryoCARE results when trained on even- and odd-tilt
angle tomograms (T2T-eoa) (c) and trained on dose-fracitonated movie frame
splits (T2T-df) (d).

and a non-linear anisotropic diffusion (NAD) (Frangakis and Hegerl 2001) filtered
baseline on Tomo110. In Figure 2.8 (bottom row) the Tomo2Tomo method
using even-odd acquisitions is demonstrated.

2.5.3 Automated Downstream Analysis

In order to test if the restored images are beneficial for downstream analysis of
cryo tomograms, I developed the following segmentation and detection workflow.
To segment and detect Chlamydomonas reinhardtii outer dynein arm (ODA) a U-
Net (Ronneberger et al. 2015) was trained on manually created and refined ground
truth generated with PEET (Heumann et al. 2011; Nicastro et al. 2006), a sub-
tomogram averaging software. The predicted segmentation were then normalized
and Otsu thresholded (Otsu 1979). Each connected component was then filtered
according to its size in voxels and each remaing component was treated as one
detected ODA. Since only a single hand annotated tomogram was available, the
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Figure 2.8: cryoCARE restoration on the publicly available EMPIAR-10110
dataset. (a) Raw projection (single tilt angle). (b) Median filtered baseline.
(c) The projection restoration results trained with neighboring tilt-angle pairs.
(d) Raw tomogram. (e) NAD filtered baseline. (d) The Tomo2Tomo restora-
tions based on even-odd acquisitions.

ground truth annotations were split into 383 training and 712 test annotations.
For the neural network training no additional data augmentation was used. The
described automated segmentation and detection workflow was applied to the raw
and cryoCARE restored data. In Figure 2.9 we can appreciate that cryoCARE
is beneficial for automated downstream processing.

2.6 Implementations and Availability
All presented SEM-CARE experiments were conducted with the existing open-
source software package CSBDeep7. For cryoCARE I developed a custom CS-
BDeep wrapper and example notebooks with the initial publication. Later on I
integrated cryoCARE into Scipion8 (de la Rosa-Trevín et al. 2016) with the
help of Jorge Jiménez de la Morena and Pablo Conesa. As part of the Scipion in-
tegration the cryoCARE wrapper became a standalone Python package which
is available via pip9. The latest development of the cryoCARE package allows
users to lazily load training data from multiple tomograms, hence enabling train-
ing of more robust and better generalized networks, while keeping the memory
footprint as low as possible i.e. a normal sized workstation is sufficient to train
cryoCARE.

In early 2021 the developer of IMOD (Kremer et al. 1996) has reached out
and is interested in integrating cryoCARE directly into IMOD. Unfortunately
a direct integration of cryoCARE into IMOD is unlikely to happen, since the
deployment of deep learning solutions is still rather complex with respect to differ-
ent hardware, drivers and required libraries. Nonetheless, the IMOD developers
are looking into options which will ease the data preprocessing with IMOD for

7 https://github.com/CSBDeep/CSBDeep
8 http://scipion.i2pc.es/
9 https://pypi.org/project/cryoCARE/
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Figure 2.9: Automated downstream analysis on raw data (a) and a Tomo2Tomo
restored tomogram using the dose-fractionated data approach (b). Ground truth
voxels are shown in violet, true-positives in turquoise, and false-positives in orange.
Precision-recall plots on increasing segment size threshold (see main text) are
shown below. The pentagons correspond to subfigures (a) and (b).

cryoCARE.

2.7 Discussion
In this chapter we have seen how SOTA image restoration techniques can be
applied to SEM and cryo TEM data. When using SEM, faster acquisition times
are desirable if very large image volumes need to be recorded. My results using
SEM-CARE indicate that 40- to 50-fold speed-ups can be achieved without sub-
stantial loss in quality. Low-quality acquisitions used in the experiments have
been acquired using a 200 times faster scanning speeds than the ground truth
images.

In cryo TEM, data is usually heavily filtered with relatively simple filtering
techniques like NAD before it is manually investigated. cryoCARE, as we have
seen, leads to highly contrasted and well resolved 2D and 3D data. The pro-
posed Tomo2Tomo approach on dose-fractionated movie frames is a simple and
powerful tool for content-aware tomographic image restoration.

2.7.1 Tasks Facilitated through cryoCARE

An often overlooked task from non cryo-tomography experts is manual data in-
spection. However, talking to practitioners immediately reveals the importance
of cryo tomographic data visualization. Only by looking at the data it is possi-
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ble to build new and confirm hypothesises. Sometimes the structures of interest
are extremely rare and hard to see in raw or naively filtered data. This is where
cryoCARE can enable easier and less tiring data browsing. The same holds true
for manual particle picking tasks, which is often necessary since cryo tomograms
are crowded environments where automated picking solutions from SPA are not
applicable.

I have also shown that cryoCARE restorations can lead to improved auto-
mated segmentation results. An essential feature of cryoCARE is that training
data can be generated by the microscope itself and does not require tedious hu-
man labeling. While end-to-end pipelines on raw data might need huge amounts
of labeled data to also co-learn to restore the noisy data, cryoCARE helps to
uncouple these two tasks – a pre-processing step that does not need human la-
bels and a segmentation stage that is likely to require lesser amounts of training
data.

Since cryoCARE facilitates particle picking, a canonical question to ask is
if cryoCARE processed tomograms can be used for sub-tomogram averaging.
It is clear that a single particle instance taken from a denoised tomogram has
a better SNR than one extracted from the raw data. However, this advantage
quickly diminishes for averages of multiple particles. Palovcak et al. report that
sub-tomogram averages from CNN denoised particles are only slightly worse than
averages of only raw particles (Palovcak et al. 2020). From the Noise2Noise
perspective this is to be expected, since the trained model can only learn a sin-
gle fixed estimate of the denoised particle. The cryoCARE approach does not
contain a generative component which could add extra high frequency signal to
create higher resolution particles. In other words a cryoCARE network can at
best replace each noisy particle with the learned average of all particles in the
training data. Hence, each average created from cryoCARE denoised data will
at best be equal to a raw data average of the same data.

Finally, I am extremely excited about the integration of cryoCARE into Sci-
pion (de la Rosa-Trevín et al. 2016) and the ongoing developments in IMOD (Kre-
mer et al. 1996) to facilitate data pre-processing. With the integration of
cryoCARE into these famous cryo TEM tomography processing packages, I am
confident that cryoCARE will be used by an increasing number of researchers
in the future.
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In the previous chapter I used supervised CARE and trained deep neural
networks to denoise SEM and cryo TEM data. In this chapter we will take a
step back from specific data modalities and focus on the training task itself. So
far neural network training for image denoising requires pairs of training data.
Usually we expect these training pairs to consist of low- and high-quality images,
but as Lehtinen et al. have shown with Noise2Noise this requirement can be
relaxed and the high-quality image can be replaced by a second low-quality image
as long as the noise contributions are independent. With cryoCARE we have
discussed an application of Noise2Noise to cryo TEM. However, often times
access to a ground truth image or even a second noisy observation is not possible.
For example during live imaging the sample will move between two observations,
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or if we only have access to an electron microscope with an old detector that does
not support dose-fractionated movie acquisitions, or sometimes we just don’t have
access to the used optical setup anymore.

In such cases we have to fall back to unsupervised image denoising approaches
like classical naive filtering or more advanced internal statistics methods like
non-local means (Buades et al. 2005) or BM3D (Dabov et al. 2007). Classical
filtering approaches are fast, but as we have seen in Chapter 2 Section 2.1 they
are limited in restoration quality leading to blurred results. On the other hand we
have methods like BM3D which produce good denoising results but are slow e.g.
running BM3D on a 992 × 832 image takes about 4.6 seconds, the same image
takes <1 second with a trained CARE network. All these methods exploit the core
assumption that the signal s in a given image is not statistically independent. In
other words, by observing just the neighborhood of an occluded pixel, we can make
a sensible (above chance) prediction of the hidden pixel intensity. A large body
of work, e.g. (Roth and Black 2005; Tappen et al. 2007), explicitly modeled these
interdependencies via Markov Random Fields (MRFs). However, convolutional
neural networks (CNNs) such as the ones used in the previous chapter, produce
much better results and provide faster inference times.

In this chapter I will introduce Noise2Void: the first self-supervised
denoising approach for CNNs. Noise2Void allows us to train deep neural
networks if we only have access to single noisy observations, addressing the
shortcomings of supervised training approaches like CARE and Noise2Noise.
In Section 3.1 we will look at the image formation process from a probabilistic
perspective. Next, we will take another look at fully convolutional neural
networks and their receptive fields in Section 3.2. Then in Section 3.3 a detailed
detailed description of Noise2Void and its efficient implementation is provided.
I evaluate Noise2Void in Section 3.4, in particular, I evaluate the performance
of Noise2Void on the BSD68 dataset (Roth and Black 2009) and simulated
microscopy data1. Then I compare the results to the ones obtained by a
traditionally trained network (Weigert et al. 2018), a Noise2Noise trained
network, and BM3D (Dabov et al. 2007), a powerful but training-free baseline.
Additionally, Noise2Void training and prediction is applied to four biomedical
datasets: cryo-TEM images from (Buchholz, Jordan, et al. 2019), SEM images
from (Buchholz, Krull, et al. 2019) and two datasets from the Cell Tracking
Challenge2 (Ulman et al. 2017). For these examples, I have only access to
ground truth data for the SEM experiments (see previous Chapter). For the
cryo TEM data I have access to a second noisy observation, hence I can train
a Noise2Noise network. However, Noise2Void can be applied to all four

1 For simulated microscopy data we know the perfect ground truth.
2 http://celltrackingchallenge.net/
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datasets showcasing the tremendous practical utility of Noise2Void. Finally we
discuss the findings in Section 3.5 and summarize some of the followup works to
Noise2Void.

Contributions:

• Introduction of Noise2Void, a novel approach for training denoising CNNs
that requires only a body of single, noisy images.

• Comparison of Noise2Void trained denoising results to results obtained
with existing CNN training schemes (Lehtinen et al. 2018; Weigert et al.
2018) and a non-trained method (Dabov et al. 2007).

• A sound theoretical motivation for the Noise2Void approach as well as a
detailed description of an efficient implementation.

• Publicly available implementation of Noise2Void3.

Parts of this chapter are published in (Krull, Buchholz, et al. 2019) and I would
like to thank Alexander Krull in particular for the great collaboration on this
paper. I have learned a lot from him.

3.1 Probabilistic Image Formation
So far we have looked at noisy images x as a combination of ground truth signal
s and some random noise contribution n

x = s+ n. (3.1)

This interpretation is convenient and allows us to think of denoising as a simple
subtraction process. However the image formation process is better described as
a draw from the joint distribution

p(s,n) = p(s)p(n|s). (3.2)

Let us assume p(s) to be an arbitrary distribution satisfying

p(si|sj) 6= p(si), (3.3)

for two pixels i and j with a certain distance of each other. That is, the pixels si

of the signal are not statistically independent. With respect to the noise n, let us
assume a conditional distribution of the form

p(n|s) =
∏

i

p(ni|si). (3.4)

3 https://github.com/juglab/n2v
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That is, pixels values ni of the noise are conditionally independent given the
signal. We furthermore assume the noise to be zero-mean

E [ni] = 0, (3.5)

which leads to
E [xi] = si. (3.6)

In other words, if we were to acquire multiple images with the same signal, but
different realizations of noise and average them, the result would approach the
true signal. An example of this would be recording multiple photographs of a
static scene using a fixed tripod-mounted camera.

3.2 Receptive Field
Until now we have treated CNNs as functions which map low-quality images to
ground truth images. Here I want to introduce a slightly different but equivalent
view on such networks. Lets just consider a single predicted pixel ŷi in the output
of the CNN and reason about the information aggregated in it. From earlier we
know that each convolutional filter has a receptive field and that the computed
output is the weighted sum over all pixels within the receptive field. A CNN
is essentially just a stack of multiple convolution filters with non-linearities in
between. The receptive field of a stack of convolutions can recursively be computed
by

rout(rin, k, j) = rin + (k − 1) · j, (3.7)

with rin being the size of the receptive field of the previous convolution or 1 if it
is the first convolution, k representing the kernel size and j being the stride of
the convolution (Dumoulin and Visin 2016). For pooling operation the receptive
field grows by the pooling factor i.e. each 2 × 2 pooling operation doubles the
size of the receptive field. Hence, every predicted output pixel of a CNN has a
certain receptive field xRF(i) of input pixels, usually a square patch around that
pixel. With this knowledge we can now consider a CNN as a function that takes
a patch xRF(i) as input an outputs a prediction ŷi for the single pixel i located
at the patch center. Following this view, the denoising of an entire image can be
achieved by extracting overlapping patches and feeding them to the network one
by one. Consequently, a CNN can be defined as the function

fθ(xRF(i)) = ŷi, (3.8)

where θ denotes the trainable CNN parameters.

In supervised training we are presented with a set of training pairs (xj, sj),
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each consisting of a noisy input image xj and a clean ground truth target sj. By
again applying the patch-based view of the CNN, we can see the training data as
pairs (xj

RF(i), s
j
i ). Where xj

RF(i) is a patch around pixel i, extracted from training
input image xj, and sj

i is the corresponding target pixel value, extracted from
the ground truth image sj at same position. These pairs can be used to tune the
parameters θ to minimize pixel-wise loss

arg min
θ

∑
j

∑
i

L
(
fθ(xj

RF(i)) = ŷj
i , s

j
i

)
. (3.9)

Here the standard MSE loss

L
(
ŝj

i , s
j
i

)
= (ŝj

i − s
j
i )2, (3.10)

is considered.

Now let us consider the training procedure according to (Lehtinen et al. 2018).
Noise2Noise allows us to cope without clean ground truth training data. Instead
we start out with noisy image pairs (xj,x′j), where

xj = sj + nj and x′j = sj + n′j, (3.11)

that is the two training images are identical up to their noise components nj and
n′j, which are, in the probabilistic image generation model, just two independent
samples from the same distribution (see Eq. 3.4).

We can now again apply the patch-based perspective and view the training
data as pairs (xj

RF(i),x
′j
i ) consisting of a noisy input patch xj

RF(i), extracted from
xj, and a noisy target x′ji , taken from x′j at the position i. As in supervised
training, the parameters are tuned to minimize a loss, similar to Eq. 3.9, this
time however using the noisy target x′ji instead of the ground truth signal sj

i .
Even though we are attempting to learn a mapping from a noisy input to a noisy
target, the training will still converge to the correct solution. The key to this
phenomenon lies in the fact that the expected value of the noisy input is equal
to the clean signal (Lehtinen et al. 2018) (see Eq. 3.6).

3.3 Noise2Void Training
Now let us go a step further. Nothing prohibits us to derive both parts of the
training data, the input and the target, from a single noisy training image xj.
However, if we were to simply extract a patch as input and use its center pixel as
target, the network would just learn the identity, by directly mapping the value
at the center of the input patch to the output (see Figure 3.1 (a)).
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Target

Prediction

Input

(a) (b)

Figure 3.1: A conventional network versus the proposed blind-spot network.
(a) In the conventional network the prediction for an individual pixel depends
an a square patch of input pixels, known as a pixel’s receptive field (pixels under
blue cone). If such a network is trained using the same noisy image as input and
as target, the network will degenerate and simply learn the identity. (b) In a
blind-spot network, as proposed, the receptive field of each pixel excludes the pixel
itself, preventing it from learning the identity. I show that blind-spot networks
can learn to remove pixel wise independent noise when they are trained on the
same noisy images as input and target.

To understand how training from single noisy images is possible nonetheless,
let us assume that we use a network architecture with a special receptive field.
We assume the receptive field x̃RF(i) of this network to have a blind-spot in its
center. The CNN prediction ŷi for a pixel is affected by all input pixels in a square
neighborhood except for the input pixel xi at its very location. Let us call this
type of network a blind-spot network (see Figure 3.1 b).

A blind-spot network can be trained using any of the training schemes de-
scribed above. Like with a normal network, supervised training or Noise2Noise,
using a clean target, or a noisy target respectively can be applied. The blind-spot
network has a little bit less information available for its predictions, and a slight
drop in accuracy is expected compared to a normal network. Considering however
that only one pixel out of the entire receptive field is removed, we can assume it
to still perform reasonably well.

The essential advantage of the blind-spot architecture is its inability to learn
the identity. Let us consider why this is the case. Since we assume the noise to
be pixel-wise independent given the signal (see Eq. 3.4), the neighboring pixels
carry no information about the value of ni. It is thus impossible for the net-
work to produce an estimate that is better than its a priori expected value (see
Eq. 3.5).
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The signal however is assumed to contain statistical dependencies (see Eq. 3.3).
As a result, the network can still estimate the signal si of a pixel by looking at
its surroundings.

Consequently, a blind-spot network can be trained with input patch and target
value being extracted from the same noisy training image. During training the
empirical risk

arg min
θ

∑
j

∑
i

L
(
fθ(x̃j

RF(i)),x
j
i

)
, (3.12)

is minimized. Note that the target xj
i , is just as good as the N2N target x′ji ,

which has to be extracted from a second noisy image. This becomes clear when
we consider Eqs. 3.11 and 3.4: The two target values xj

i and x′ji have an equal
signal sj

i and their noise components are two independent samples from the same
distribution p(ni|sj

i ).

We have seen that a blind-spot network can in principle be trained using
only individual noisy training images. However, implementing such a network
that can still operate efficiently is not trivial. As workaround special masking
schemes are used, which replace the pixel value in the center of each input patch
with a randomly selected value. This effectively erases the pixel’s information
and prevents the network from learning the identity. The following replacment
strategies are part of Noise2Void:

• Uniform Pixel Selection (UPS) replaces the value of the selected pixel
i with a randomly selected pixel value from a square window around i. This
includes the pixel itself.

• Gaussian (G) changes the value of the selected pixel i by adding random
Gaussian noise.

• Gaussian Fitting (GF) fits a 1D Gaussian distribution to the pixel values
within a small square neighborhood around the pixel i with the center pixel
included and draws a sample from this distribution as replacement value.

• Gaussian Pixel Selection (GPS)

These masking schemes are necessary to use out of the box U-Nets for
Noise2Void training.

3.3.1 Implementation Details

A naive implementation of the above training scheme is unfortunately still not very
efficient. An entire patch has to be processed to calculate the gradients for a single
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(a) (b) (c)

Figure 3.2: Blind-spot masking scheme used during Noise2Void training. (a) A
noisy training image. (b) A magnified image patch from (a). During Noise2Void
training, a randomly selected pixel is chosen (blue rectangle) and its intensity
copied over to create a blind-spot (red and striped square). This modified image
is then used as input image during training. (c) The target patch corresponding
to (b). I use the original input with unmodified values also as target. The loss is
only calculated for the blind-spot pixels which is masked in (b).

output pixel. To mitigate this issue, the following approximation technique is used.
Given a noisy training image xi, patches which are bigger than the receptive field
of the network are randomly extracted.. For example a U-Net (Ronneberger et al.
2015) from the CSBDeep (Weigert et al. 2018) framework with n_depth = 2 and
kernel size 3×3 has a receptive field size corresponding to a patch of 22×22 pixels.
If the kernel size is increased to 5× 5 the receptive field grows to 40× 40 pixels.
Hence, the default size of randomly extracted patches is set to 64 × 64 pixels.
Within each patch randomly N pixels are selected, using stratified sampling to
avoid clustering. Then these pixels are masked and the original noisy input values
are used as targets at their position (see Figure 3.2). For the masked pixels the
loss is then calculated simultaneously and backpropagated, while ignoring the rest
of the predicted image. This is achieved by setting the loss for non-masked pixels
to zero in a customized loss function.

The publicly available implementation of Noise2Void4 is based on the CS-
BDeep (Weigert et al. 2018) framework. Furthermore a Fiji (Schindelin et al.
2012) implementation of Noise2Void5 is providing a one-click solution to deep
learning based image denoising.

3.4 Experiments
Now I will evaluate Noise2Void on natural images, simulated biological image
data, and acquired microscopy images. The Noise2Void results are compared
to results of supervised CARE and Noise2Noise trained CARE, as well as
results of BM3D (Dabov et al. 2007), a non deep learning approach. From a
methodological perspective the deep learning based approaches can be divided in

4 https://github.com/juglab/n2v
5 https://imagej.net/N2V
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two steps: (i) the training phase, during which a the neural networks are optimized
w.r.t. a suitable loss function and (ii) the inference or test phase, during which
the neural network weights are fixed and only applied to novel unseen data. The
BM3D approach on the other hand has no training phase and is directly applied
to the test images. However, BM3D will build up an internal denoising state from
scratch for each test image, which results in increased run times compared to deep
learning inference.

All neural networks in the following experiments were trained for 200 epochs
with 400 steps per epoch and the data is normalized to 0-mean and 1-standard
deviation. Various Noise2Void training and prediction notebooks are publicly
available6.

3.4.1 Natural Images
For the evaluation on natural image data I followed the example of (Zhang et al.
2017) and took 400 gray scale images with 180×180 pixels of which randomly 1%
were chosen as validation data and the rest served as training data. For testing the
gray scale version of the BSD68 dataset was used. Noisy versions of all images are
generated by adding zero mean Gaussian noise with standard deviation σ = 25.
Furthermore, data augmentation is used on the training dataset. More precisely,
each image was rotated three times by 90◦ and also all mirrored versions were
added. During training random 64×64 pixel patches from this augmented training
dataset were drawn.

The network architecture used for all BSD68 experiments is a U-Net (Ron-
neberger et al. 2015) with n_depth = 2, kernel size 3, batch normalization, and
a linear activation function in the last layer. The network has n_first = 96
feature maps on the initial level, which get doubled while the network gets deeper.
A learning rate of 0.0004 and the default CARE learning rate schedule, halv-
ing the learning rate when a plateau on the validation loss is detected are used.
The validation loss is computed on a fixed set of randomly chosen pixels in the
validation dataset.

I used batch size 128 for traditional training and batch size 16 for
Noise2Noise, where I found that a larger batch leads to slightly diminished
results. For Noise2Void training I used a batch size of 128 and simultaneously
manipulated N = 64 pixels per input patch (see Section 3.3.1), as before with an
initial learning rate of 0.0004.

In the first row of Figure 3.3, I compare Noise2Void results (with Uniform

6 https://github.com/juglab/n2v/tree/master/examples
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Masking Types
Masking Kernel Loss Features PSNR
UPS (3×3) 3×3 MSE 96 26.98
UPS (5×5) 3×3 MSE 96 27.71
UPS (7×7) 3×3 MSE 96 27.26
UPS (50×50) 3×3 MSE 96 27.42
GF (3×3) 3×3 MSE 96 27.51
GF (5×5) 3×3 MSE 96 27.31
GF (7×7) 3×3 MSE 96 27.47
GF (50×50) 3×3 MSE 96 27.35
G (5) 3×3 MSE 96 27.24
G (10) 3×3 MSE 96 26.52
GPS 3×3 MSE 96 27.31

Other Parameters
Masking Kernel Loss Features PSNR
UPS (5×5) 5×5 MSE 96 27.60
UPS (5×5) 3×3 MAE 96 27.58
UPS (5×5) 5×5 MAE 96 26.99
UPS (5×5) 3×3 MAE 32 27.33
UPS (5×5) 5×5 MAE 32 27.36

Table 3.1: Results achieved with various masking methods and different parameter
settings on the BSD68 dataset.

Pixel Selection UPS with a 5×5 pixel window) to the ones obtained by BM3D, tra-
ditional CARE training, and Noise2Noise training. While on visual inspection,
all results look similarly good, the PSNR value of the classical training method
is clearly best. As mentioned earlier, Noise2Void is not expected to outperform
other training methods, as it can utilize less information for its prediction. Still,
here we observe that the denoising performance of N2V even drops moderately
below the performance of BM3D (which is not the case for other data).

In Table 3.1 performance of all proposed masking schemes on the BSD68
dataset are compared. Furthermore results obtained with different kernel sizes
and with the mean absolute error (MAE) loss are presented.

3.4.2 Light Microscopy Data

Simulated Data

The acquisition of close to ground truth quality microscopy data is either im-
possible or at the very least, difficult and expensive. Since ground truth data is
required to compute desired PSNR values, I decided to use a simulated dataset for
our second set of experiments. To this end, I used simulated membrane labeled
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CHAPTER 3. NOISE2VOID: SELF-SUPERVISED DENOISING

cells epithelia provided by Alexander Dibrov and mimicked the typical image
degradation of fluorescence microscopy by first applying Poisson noise and then
adding zero-mean Gaussian noise. More specifically I normalized the simulated
membrane images to the range [0, 1]. Then I added a constant value of 0.2 to
simulate background illumination, followed by multiplication with a factor λ to
account for the exposure. Then shot noise is simulated by drawing for each pixel
from a Poisson distribution conditioned on the shifted and scaled membrane im-
age. Finally readout sensor noise is simulated by adding zero-mean Gaussian
noise with a standard deviation of σ = 1. This scheme allows simulation of
low- and high-exposure images, using λ = 20 and λ = 10′0000 respectively. For
the Noise2Noise experiments a second noisy observation was generated with
λ = 20. The high-exposure images were used as ground truth images for the
CARE training and to calculate the PSNR during testing. Due to the different
scaling factors λ for low- and high-exposure images, I had to rescale the outputs
of Noise2Noise and Noise2Void prior to the PSNR computation. I used the
same data augmentation scheme as described in Section 3.4.1.

The network architecture used for all experiments on simulated data is a U-
Net (Ronneberger et al. 2015) of with n_depth = 2, kernel size 5, batch norm,
n_first = 32, and a linear activation function in the last layer. Traditional and
Noise2Noise training was performed with batch size 16 and an initial learn-
ing rate of 0.0004. The Noise2Void training was performed with a batch size
of 128. I chose to simultaneously manipulate N = 64 pixels per input patch
(see Section 3.3.1) and use the Gaussian Pixel Selection (GPS) masking method.
Again the standard CARE learning rate schedule was used for all three training
methods.

In the second row of Figure 3.3 one can appreciate the denoising quality of
Noise2Void training, which reaches virtually the same quality as traditional
and Noise2Noise training. All trained networks clearly outperform the results
obtained by BM3D.

Real Light Microscopy Data

I tested Noise2Void on two fluorescence microscopy datasets from the Cell
Tracking Challenge (Ulman et al. 2017). The first dataset, Fluo-C2DL-MSC (CTC-
MSC) consists of two movies and I only used the provided image data without any
additional ground truth annotations for segmentation. I extracted 256 randomly
selected patches of size 80×80 pixels from each movie frame. To ensure that each
patch contains some foreground signal I computed the standard deviation over
the pixel intensities of each patch and rejected patches with standard deviation
below 1250. From each frame a single patch is used as validation data only. On
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the training data I employed the same augmentation strategy as before.

The second dataset, Fluo-N2DH-GOWT1 (CTC-N2DH) also consists of two
movies. Like before, only the image data without any ground truth annotations for
segmentation are used. Like for the CTC-MSC dataset I extracted 256 randomly
selected patches of 80×80 pixels, but this time patches with a standard deviation
below 5 were rejected.

Since no ground truth images or second noisy observations are available, only
self-supervised image denoising methods like Noise2Void and BM3D can be
used to denoise these data. The last two rows of Figure 3.3 show the results
of BM3D and Noise2Void. We can see that the Noise2Void trained network
gives subjectively smooth and appealing results, while requiring only a fraction
of the BM3D runtime.

The network architecture used for all experiments on real microscopy (light
and electron) data is a U-Net (Ronneberger et al. 2015) of n_depth = 2, kernel
size 3, batch norm, n_first = 32, and a linear activation function in the last
layer. For an efficient training of Noise2Void N = 64 pixels per input patch
(see Section 3.3.1) were simultaneously manipulate and with the Uniform Pixel
Selection (UPS) masking method with a 5× 5 window. I used a batch size of 128
and a initial learning rate of 0.0004.

3.4.3 Electron Microscopy Data

The same network setup as above was used for the EM experiments.

SEM Data

I also applied Noise2Void to SEM data acquired by our colaborators from the
Jékely lab (see previous chapter for more details). Since, I have access to slow- and
fast-scanned SEM images I can also train a fully supervised denoising network and
compute PSNR numbers for the noisy input, the supervised prediction and the
Noise2Void prediction see Figure 3.4. Both neural networks were trained on 442
training and 68 validation patches of 96×96 pixels and I used data augmentation
i.e. all four 90◦ rotations and mirroring.

Cryo-TEM Data

In cryo-TEM, the acquisition of high-SNR images is not possible due to beam
induced damage (Knapek and Dubochet 1980) as discussed in the previous chap-
ter. We have already seen that cryoCARE can be used to denoise cryo TEM
data by employing the Noise2Noise training paradigm. Now we will look at a
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(a)

15.29

(b)

(c)

18.28

(d)

18.02

Figure 3.4: Subfigure (a) shows a low-SNR SEM image from the Jékely lab (see
previous chapter). Subfigure (b) shows the corresponding high-SNR ground truth
image. Subfigure (c) shows the denoising result of a supervised trained CARE
network using pairs of low- and high-quality images. Subfigure (d) shows the
denoising result achieved with Noise2Void using only sinlge noisy observations
for training. The numbers in the top left corners of (a), (c) and (d) are the PSNR
values with respect to the ground truth image (b).

Noise2Void trained network on the same data. The network was trained on a
single cryo TEM projection of 7676 × 7420 pixels and of which 435 overlapping
patches of 512 × 512 pixels were extracted. Of these patches 10% are used as
validation data and no data augmentation is used for training.

In terms of inference runtime Noise2Noise and Noise2Void are equal,
which is expected, and about 25 times faster than BM3D. Furthermore, BM3D
seems to struggle more with fine details (indicated in Figure 3.3) compared to
Noise2Void.

As mentioned in the previous section, ground truth quality microscopy data
is typically not available. Hence, I can no longer compute PSNR values.

3.4.4 Errors and Limitations

In this section we will look at extreme error cases of Noise2Void predictions
and discuss the limitation of Noise2Void to pixel-wise independent noises. We
will start by looking at the denoising results of real world images i.e. the BSD68
data, for which Noise2Void performed least convincing. Figure 3.5 shows the
ground truth image, and prediction results of a fully supervised CARE trained
and a Noise2Void trained network. The upper row contains the image with the
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(a)
ä

(b)
ä

(c)
ä

(d) (e) (f)

Figure 3.5: Failure cases of Noise2Void trained networks. (a) A crop from the
ground truth test image with the largest individual pixel error (indicated by red
arrow). (b) Result of a network trained with available ground truth. (c) Result
of a Noise2Void trained network. The network fails to predict this bright and
isolated pixel. (d) A crop from the ground truth test image with the largest
total error. (e) Result of a network trained with ground truth targets. (f) Result
of a Noise2Void trained network. Both networks are not able to preserve the
grainy structure of the image, but the Noise2Void trained network loses more
high-frequency detail.

largest squared single pixel error and the lower row shows the image with the
largest sum of squared pixel errors.

Noise2Void works on the assumptions that the signal is pixel-wise dependent
on each other (see Equation 3.3), while the noise is pixel-wise independent of each
other (see Equation 3.4). The images in Figure 3.5 show either a single bright
pixel surrounded by dark pixels (top row) or highly irregular patterns of rubble in
the mountains and a breeze on a lake (lower row). Since these signal constellations
are rare in the training data it is more difficult for the neural network to pick these
patterns up and restore them. This is also true for supervised approaches, however
these have additionally access to all input pixels, while in Noise2Void the center
pixel is removed from the input. In cases where the center pixel coincides with a
single bright pixel Noise2Void has no access to this information at all. Therefore,
the loss of reconstruction quality is expected.

In Figure 3.6 another, in some sense opposite, limitation of Noise2Void
can be observed. It is impossible for Noise2Void to distinguish between ground
truth signal and structured noise. As soon as the noise, e.g. a checkerboard pat-
tern or lines, span over multiple pixels the pixel-wise independence assumption
for noise is violated (see Equation 3.4). This phenomenon was first observed when
Noise2Void was applied to real low exposure microscope images, where the de-
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(a) (b) (c)

(d)

∅
Clean target
not available.

(e)

Figure 3.6: Effect of structured noise on Noise2Void trained network predic-
tions. Structured noise violates the assumption that noise is pixel-independent
(see also Eq. 3.4). (a) A photograph corrupted by structured noise. The hidden
checkerboard pattern is barely visible. (b) The denoised result of a traditionally
trained CNN. (c) The denoised result of an Noise2Void trained CNN. The in-
dependent components of the noise are removed, but the structured components
remain. (d) Structured noise in real microscopy data. (e) The denoised result of
an Noise2Void trained CNN. A hidden pattern in the noise is revealed. Note
that due to the lacking training data, it is not possible to use Noise2Noise or
the traditional training scheme in this case.

noised images contained lines (lower row in Figure 3.6). This limitation can be
replicated by superimposing a faint checkerboard pattern before artificially apply-
ing noise to a ground truth image (see top row in Figure 3.6). The checkerboard
pattern is well hidden in the noisy observation and if a supervised CARE model
is trained with clean ground truth targets, i.e. ground truth without the checker-
board, the model is able to remove the noise as well as the checkerboard pattern.
However, Noise2Void will only remove the pixel-wise independent noise contri-
butions and treat the checkerboard pattern as part of the ground truth signal.
The striped pattern in the microscope images can be traced back to a systematic
error of the imaging system.

3.5 Conclusion and Followup Work
I have introduced Noise2Void, a novel training scheme that only requires single
noisy acquisitions to train denoising CNNs. We have seen its application to a
variety of image modalities i.e. photography, fluorescence microscopy, cryo TEM
and SEM. And as long as both initial assumptions of predictable signal and
pixel-wise independent noise are met, Noise2Void trained networks can compete
with supervised trained networks. We have also looked at examples where these
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assumptions are violated, showing us limitations of Noise2Void.

Concurrent with the initial presentation of Noise2Void at CVPR in 2019,
Batson et al. presented a similar method for self-supervised training of neural
networks and other systems, also based on the idea of removing parts from
the input (Batson and Royer 2019). Since then, multiple incremental papers
by different groups have been published, which deal with different shortcom-
ings of Noise2Void and we will go over some of them in the following para-
graphs.

Probabilistic Noise2Void by Krull et al. predicts an intensity distribution
for each output pixel instead of a single value. This distribution is characterized by
800 simultaneously predicted values by the CNN. Then the predicted distribution
is combined with a suitable noise model, which results in a complete probabilistic
description of the noisy observation and the ground truth signal. Once the network
is trained, they use minimum mean squared error inference to predict the clean
ground truth signal. The required noise model is crucial to this method, however
it is only dependent on the optical system and not on the image data (Krull,
Vičar, et al. 2020). While probabilistic Noise2Void uses a histogram based
noise model, Prakash et al. go a step further in (Prakash, Lalit, et al. 2020)
and replace the noise model with a Gaussian mixture model, which leads to
more robust results. Additionally, they explore bootstrapping the noise model via
Noise2Void directly from the image data to denoise.

In Noise2Void the pixel is masked by replacing it with random values, con-
ditioning the model to ignore the center pixel. Laine et al. propose a different
network architecture which uses shifted convolutions and receptive fields which
only grow in a single direction. They create a true blind spot by feeding the
same image four times each with one of the 90◦ rotations (S. Laine et al. 2019).
Honzátko et al. propose a dilated convolution with a blind-spot in its kernel, alle-
viating the rotation requirement from before and leading to a smoother coverage
of the receptive field (Honzátko et al. 2020).

Broaddus et al. tackle the problem of structured noise removal with self-
supervised training by increasing the size of the blind-spot (Broaddus et al. 2020).
This extension is especially useful to handle striping noise artefacts produced
by some microscope cameras. StructN2V is also part of the publicly available
Noise2Void implementation.

Noise2Same by Xie et al. proposes to apply the model once to the un-masked
and once to the masked input image. Then the reconstruction loss is computed
between the un-masked output and the noisy image. This alone would lead to
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a network which learns the identity. To avoid this, they introduce a second loss
which is computed between the masked pixels of the un-masked and masked
output and enforces them to be equal. These two losses are combined, resulting in
significantly better image denoising results compared to previous self-supervised
image denoising methods (Xie et al. 2020).

DivNoising by Prakash et al. takes a different route compared to all other ap-
proaches mentioned above and builds on the probabilistic noise model formulation
in Probabilistic Noise2Void by Krull et al. However, the U-Net architecture is
replaced by a variational auto-encoder (VAE) (Kingma and Welling 2014), which
allows generating multiple diverse denoising results, which then can be aggregated
into a single denoised solution (Prakash, Krull, et al. 2021).

These are some of the follow-up works to Noise2Void and it is exciting to
see these works develop and push self-supervised image denoising performance
closer to fully supervised image denoising approaches where ground truth data is
available. I believe that there is still a lot of interesting research to be done in the
field of self-supervised image denoising. I expect novel neural network architectures
and loss function to emerge in the future. Already today, Prakash et al. have
replaced the standard U-Net with VAE and it will be interesting to see which
architectures will be used in the future. I expect that novel ideas will generate
networks which are able to distinguish between wanted and unwanted signal. One
day we might be able to separate a given image into noise, structured noise and
ground truth signal.

52



Chapter 4

Fourier Image Transformer

Contents
4.1 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Attention Is All You Need . . . . . . . . . . . . . . . 55

4.1.2 Fast-Transformers . . . . . . . . . . . . . . . . . . . . 56

4.1.3 Transformers in Computer Vision . . . . . . . . . . . 57

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Fourier Domain Encodings (FDEs) . . . . . . . . . . 57

4.2.2 Fourier Coefficient Loss . . . . . . . . . . . . . . . . . 59

4.3 FIT for Super-Resolution . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Super-Resolution Data . . . . . . . . . . . . . . . . . 60

4.3.2 Super-Resolution Experiments . . . . . . . . . . . . . 61

4.4 FIT for Tomography . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Computed Tomography Data . . . . . . . . . . . . . 64

4.4.2 Computed Tomography Experiments . . . . . . . . . 66

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

So far we have discussed content-aware image restoration, in particular image
denoising, with supervised training using pairs of low- and high-quality images,
with Noise2Noise training using pairs of low-quality images and self-supervised
training with Noise2Void, which only requires single noisy observations. The
backbone of all methods discussed until now was the U-Net (Ronneberger et al.
2015), a convolutional encoder-decoder architecture with skip-connections. The
U-Net encodes a corrupted image into a latent space embedding, from which
the U-Net decoder reconstructs a restored image. High resolution details can be
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passed through the skip-connections as well as gradients during backpropagation.
However, in this last chapter we will step away from the U-Net architecture and
turn towards Transformers, a very different type of neural networks originally
proposed for natural language processing (NLP) and explore their application to
image restoration tasks.

Transformer architectures are currently setting new standards on virtually
all natural language processing (NLP) tasks (Devlin et al. 2018; Radford et al.
2018). Recently, Transformers were also successfully applied to image classification
tasks (Dosovitskiy et al. 2020; Ramachandran et al. 2019) and pixel-by-pixel
image generation (M. Chen et al. 2020). Hence, Transformers might be the next
big step in computer vision related tasks.

The key novelty of Transformers is their self-attention mechanism (Vaswani
et al. 2017), allowing them to learn and utilize long ranging dependencies in
data. Recently, this mechanism is applied to longer and longer input sequences
of words or other elements, e.g. pixels (M. Chen et al. 2020). In this chapter
I will investigate if pixel sequences are the only valid image representation to
train auto-regressive Transformer models in the spirit of (M. Chen et al. 2020). In
particular, I want to use a representation where each prefix of such a descriptive
sequence encodes the full image at lower resolution. Therefore, I introduce Fourier
Domain Encodings FDEs, which do have this desired property and, as I will show,
can successfully be used to train auto-regressive Fourier Image Transformer for
super-resolution (FIT: SRes).

Additionally, I will investigate how an encoder-decoder based Fourier Image
Transformer can be trained on a set of Fourier measurements and then used to
query arbitrary Fourier coefficients, which I use to improve sparse-view computed
tomography (CT) image restoration by filling in missing Fourier coefficients, hence
removing the missing wedge reconstruction artefacts directly in Fourier space. I
will call this approach Fourier Image Transformer for tomograpic reconstruction
(FIT: TRec). I demonstrate this by providing a given set of projection Fourier
coefficients to the encoder-decoder setup and use it to predict Fourier coefficients
at arbitrary query points. This allows the prediction of a dense, grid-sampled
discrete Fourier spectrum of a high quality CT reconstruction.

In Section 4.1 I discuss the relevant transformer literature. In Section 4.2 I
introduce the novel Fourier Domain Encoding (FDE) and training strategies for
auto-regressive and encoder-decoder transformer models. Finally in Section 3.4
super-resolution and tomographic reconstruction experiments are presented and
evaluated.
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Contributions:

• Fourier Domain Encoding (FDE) a novel sequential image encoding.
• Fourier Image Transformer for super-resolution (FIT: SRes) by training an

auto-regressive transformer on the FDE.
• Novel approach to tomographic reconstruction, which aims to resolve miss-

ing wedge artefacts directly in Fourier space.
• Open-source implementation of Fourier Image Transformer in PyTorch1.

Parts of this chapter are under review and available as arXiv pre-print2.

4.1 Transformers

Transformer architectures are revolutionizing neural language processing (NLP),
replacing recurrent neural networks (RNNs) and long short-term memory (LSTM)
architectures in virtually all NLP tasks (Devlin et al. 2018; Radford et al. 2018).
The work presented in this chapter is based on the seminal paper by Vaswani et al.,
which introduces the self-attention mechanism that is key to the success of
Transformers (Vaswani et al. 2017). Since I work on images, where input se-
quences tend to be long, I use Fast-Transformers, an efficient approximation of
softmax self-attention, as introduced by Katharopoulos et al. (Katharopoulos et
al. 2020).

4.1.1 Attention Is All You Need

Vaswani et al. were the first to introduce Transformers. More specifically, they
introduced an encoder-decoder structure, where the encoder maps an input encod-
ing x ∈ RN×F into a continuous latent space z ∈ RN×F , with N corresponding
to the number of input tokens and F representing the feature dimensionality
per token. This latent space embedding z is then given to the decoder, which
generates an M long output sequence y ∈ RM×F iteratively, element by element.
This auto-regressive decoding scheme means that the decoder generated the i-th
output token while not only observing z, but also all i−1 output tokens generated
previously (Vaswani et al. 2017).

More formally, a Transformer is a function T : RN×F −→ RN×F , represented
by L Transformer layers

Tl(x) = fl(Al(x) + x), (4.1)

1 https://github.com/juglab/FourierImageTransformer
2 https://arxiv.org/abs/2104.02555
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with Al denoting a self-attention module and fl being a simple feed forward
network.

In the self-attention module, the input x is mapped to queries Q = xWQ, keys
K = xWK and values V = xWV by matrix multiplication with learned matrices
WQ ∈ RF×D, WK ∈ RF×D and WV ∈ RF×F . The self-attention output is then
computed by

Al(x) = softmax
(
QKT

√
D

)
V, (4.2)

with the softmax-function being applied per row. Intuitively, the softmax-
normalized similarity between computed keys and queries is used to obtain the
weighted sum over the values.

Typically, instead of a single self-attention module, multi-head attention is
being used. If that is the case, a transformer layer Tl learns multiple WQ, WK

and WV , allowing the layer to simultaneously perform multiple attention-based
computations (Vaswani et al. 2017).

Since transformers do not explicitly encode the relative position between input
tokens, positional encodings are required whenever specific input topologies need
to be made accessible to the Transformer. In (Vaswani et al. 2017), a useful 1D
positional encoding scheme was proposed. Later, Wang et al. (Zelun Wang and
J.-C. Liu 2020) generalized this scheme to 2D topologies. In this work, I have
adopted this encoding scheme, but use it not only to encode integer pixel-grid
locations, but arbitrary real coordinates.

4.1.2 Fast-Transformers

While the advantage of transcending beyond CNN’s localized receptive fields by
introducing global attention proves beneficial for many learning tasks, the big
downside is the computational cost associated with it. Due to the required matrix
multiplication QKT , the self-attention on an input sequence of length N requires
O(N2) memory and time. Katharopoulos et al. propose to generalize the self-
attention for the i-th row to

Ai
l(x) =

∑N
j=1 sim(Qi, Kj)Vj∑N

j=1 sim(Qi, Kj)
, (4.3)

with sim being a non-negative similarity function, which includes all kernels
k(x, y) = 〈Φ(x),Φ(y)〉 with k(x, y) : R2×F −→ R+ where Φ is the feature map-
ping of the kernel. Using the feature mapping Φ Equation 4.3 can be written as
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Ai
l(x) =

Φ(Qi)T ∑N
j=1 Φ(Kj)Vj

Φ(Qi)T
∑N

j=1 Φ(Kj)
. (4.4)

This reduces the time and memory complexity to O(N), because ∑N
j=1 Φ(Kj)V T

j

and ∑N
j=1 Φ(Kj) can be computed once and reused for each subsequent query

computation (Katharopoulos et al. 2020).

Since the linearization of the softmax is infeasible Fast-Transformers use

Φ(x) = elu(x + 1) (4.5)

as feature mapping and show that their formulation performs on par with the
original softmax-attention, while significantly reducing time and memory con-
sumption.

4.1.3 Transformers in Computer Vision

The success of Transformers in NLP has naturally raised the question if computer
vision tasks might as well benefit from transformer-like attention. Recent work
on image classification (Dosovitskiy et al. 2020; Ramachandran et al. 2019) and
pixel-by-pixel image generation/completion (M. Chen et al. 2020; Katharopoulos
et al. 2020; Parmar et al. 2018) were among the first to successfully demonstrate
the applicability of Transformers in the image-domain. In (Parmar et al. 2018),
for example, the first n pixels of the flattened input image are used to condition
a generative transformer setup that then predicts the remaining image in an
auto-regressive manner. Since image-based applications have to deal with very
long input sequences, the use of efficient transformer implementations (Bello 2021;
Katharopoulos et al. 2020; Kitaev et al. 2020; S. Wang et al. 2020) is essential
(see discussion above).

4.2 Methods

4.2.1 Fourier Domain Encodings (FDEs)

To compute the Fourier Domain Encoding (FDE) for an image x, I first take the
discrete Fourier transform (DFT), X = F(x), resulting in the complex valued
Fourier spectrumX. The DC component ofX is in its center-most location. Con-
centric rings of Fourier coefficients around the DC component are called Fourier
rings. More central Fourier rings contain lower frequencies, coefficients further
away from the DC component higher ones. Since I started with a real-valued
image x, I know that the coefficients to the left of the DC component are re-
dundant to the ones on the right. Hence, I drop the left half of X and call the

57



CHAPTER 4. FOURIER IMAGE TRANSFORMER

remaining half Xh. If one masks all Fourier ring coefficients up to a radius r and
then back-transforms the result we receive x0−r = F−1(X �M0−r), with M0−r

being a circular mask containing 1 at every location from the DC component up
to the Fourier coefficients at distance r and 0’s beyond that. The image x0−r is a
lower-resolution version of the original image x, its effective resolution depending
on the value of r, see Figure 4.1 for an example. Hence, if I create a sequence of
Fourier coefficients starting from the DC component and followed by an unrolling
of (half) Fourier rings from Xh, I end up with a sequential image representation

S = unroll(Xh) = [c1, c2, . . . , cN ]T , (4.6)

where ci – the words of theS input sequence – are complex Fourier coefficients.
The sequence S has the desired prefix-properties required for the super-resolution
task, which will be introduced in Section 4.3.

In order to proceed, the complex Fourier coefficients ci are converted into
normalized amplitudes

ai = 2(|ci| − amax)
amax − amin

− 1 (4.7)

and phases
φi = ∠(ci)

π
, (4.8)

where amin and amax are minimum and maximum amplitudes computed over all
training images and the function ∠ returns the phase of a given Fourier coefficient.
Hence, the complex sequence S is now the described by the normalized real-valued
matrix

C =
[
a1 · · · aN

φ1 · · · φN

]T

, (4.9)

with C ∈ RN×2.

The final goal is to transform each word (ai, φi) into an F -dimensional vec-
tor. To this end I feed C through a single trainable linear layer that increases the
feature dimensionality from 2 to F

2 , to which a F
2 -dimensional 2D positional encod-

ing is concatenated. The 2D positional encoding is an adapted version of (Zelun
Wang and J.-C. Liu 2020), which accepts arbitrary (non integer) coordinates. This
allows me to encode the original polar coordinates of the Fourier coefficient in
the original 2D Fourier spectrum Xh in the positional encoding. The final FDE
image sequence is therefore E ∈ RN×F .

Predicted output words Z = [z1, . . . , zk], with zi ∈ RF , are fed through two lin-
ear layers that back-transform the F -dimensional encoding of zi into predicted am-
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Figure 4.1: FIT for super-resolution. Low-resolution input images are first
transformed into Fourier space and then unrolled into an FDE sequence, as de-
scribed in Section 4.2.1. This FDE sequence can now be fed to a FIT, that,
conditioned on this input, extends the FDE sequence to represent a higher reso-
lution image. This setup is trained using an FC-Loss that enforces consistency
between predicted and ground truth Fourier coefficients. During inference, the
FIT is conditioned on the first 39 entries of the FDE, corresponding to (a, d) 3×
Fourier binned input images. Panels (b, e) show the inverse Fourier transform of
the predicted output, and panels (c, f) depict the corresponding ground truth.

plitudes and phases ĉi = (âi, φ̂i), respectively. The output of the phase-predicting
layer is additionally passed through the tanh-activation function to ensure that
all normalized phases are in [−1, 1].

4.2.2 Fourier Coefficient Loss

I train the Fourier Image Transformers (FITs) with a loss function consisting of
two terms, (i) the amplitude loss

Lamp(âi, ai) = 1 + (âi − ai)2, (4.10)

computed between the predicted amplitudes âi and the target amplitudes ai, and
(ii) the phase loss

L∠(φ̂i, φi) = 2− cos(φ̂i − φi), (4.11)

with φ̂i the predicted phase and φi the corresponding target phase.

The final Fourier coefficient loss LFC is the multiplicative combination of both
individual losses, given by

LFC(Ĉ,C) = 1
N

N∑
i=0
Lamp(âi, ai) · L∠(φ̂i, φi). (4.12)
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4.3 FIT for Super-Resolution

The FDE I described above is a sequential representation of an input image x,
for which each prefix pre encodes a reduced resolution image xpre. Hence, using
FDE image sequences, I can train an auto-regressive Fourier Image Transformer
that takes an encoded sequence E = [e1, . . . , eN−1] as input and predicts the FDE
sequence Z = [z2, . . . , zN ]. This FIT for super-resolution (FIT: SRes) is trained
w.r.t. the correct target sequence C = [c2, . . . , cN ], using the previously intro-
duced Fourier coefficient loss LFC, which is computed using the back-transformed
predicted amplitude and phase values Ĉ = [ĉ2, . . . , ĉN ], where ĉi = (âi, φ̂i), as
explained in Section 4.2.1.

Once the transformer is trained, a prefix of a complete FDE sequence
Epre = [e1, . . . , e|pre|] is used to condition the transformer, which is then used
in iterations to auto-regressively predict the missing part of the complete se-
quence E = [e1, . . . , eN ], i.e. filling in predicted high-frequency information not
contained in Epre (see Figure 4.1).

Note that the proposed super-resolution setup operates exclusively on Fourier
domain encoded data. All final prediction images x̂ are generated by com-
puting the inverse Fourier transform on predictions Ĉ, which are rearranged
(rolled) into X̂h and completed to a full predicted Fourier spectrum X̂, i.e.
x̂ = F−1(roll(Ĉ)).

4.3.1 Super-Resolution Data

MNIST (Y. LeCun and Cortes 2010): Cropped to 27 × 27 pixels with the
default train-test split (in 60′000 and 10′000 images, respectively). The train
images are further split into 55′000 samples for training and 5′000 validation
images.

CelebA 128× 128 (Z. Liu et al. 2015): Converted to gray scale and
downscaled to 63 × 63 pixels. The images are randomly split into 20′000, 5′000
and 5′000 training, validation and test samples, respectively.

I evaluated all results using (i) Fourier Ring Correlation (FRC) (Van Heel
et al. 1982) in Fourier space and (ii) the peak signal-to-noise ratio (PSNR) in
image space.
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Figure 4.2: Super-resolution results on MNIST. The top left triangles of
(a, c, e) show 3× binned (low-res) MNIST inputs. Conditioned by these inputs,
our trained FIT auto-regressively generates results as shown in (b, d, f). Inputs
and predictions are labeled with the peak signal-to-noise ratio (PSNR) values
computed w.r.t. ground truth images, shown in the lower-right half of (a, c, e).
The examples in (a-f) correspond to the 98th, 50th and 2nd percentile in terms of
obtained PSNR over all MNIST prediction results. Box-plots show the distribution
of PSNR values of Fourier binned inputs and predicted outputs, respectively (mean
in dashed gold and median in solid blue). The Fourier ring correlation plot shows
how predicted Fourier coefficients are improving w.r.t. ground truth coefficients.
Shaded areas correspond to +/-1 standard deviation. The correlation for the first
5 Fourier rings is 1 because these rings have been used as inputs to the FIT.

4.3.2 Super-Resolution Experiments

Super-Resolution Training

I used a F = 256 dimensional FDE, with the positional encoding being based
on polar coordinates, i.e. Fourier coefficients of same frequency have the same
radius. The FDE is passed to a causal-linear transformer (Katharopoulos et al.
2020) with 8 layers, 8 self-attention heads, a query and value dimensionality of 32,
dropout of 0.1, attention dropout of 0.1, and a dimensionality of the feed-forward
network of 1024.

This setup is trained auto-regressively, i.e. with a triangular attention mask.
I used the rectified Adam optimizer (RAdam) (L. Liu et al. 2019) with an initial
learning rate of 0.0001 and weight decay of 0.01 for 100 epochs. The batch size
is 32 and the learning rate is halved on plateauing validation loss.

Super-Resolution Results

Quantitative results for all conducted super-resolution experiments on MNIST
data are shown in Figure 4.2, where I show (i) 3× binned low-res MNIST input
images corresponding to Epre = [c1, . . . , c39], also sketched in Figure 4.1, (ii) cor-
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2 Fourier Rings 4 Fourier Rings 8 Fourier Rings 16 Fourier Rings

Figure 4.3: Super-resolution results on CelebA. On two input images (rows
1+2 and 3+4) we see predictions of a trained super-resolution FIT conditioned
on 2, 4, 8 and 16 Fourier rings (columns). Upper rows show the iFFT of the input
FDEs used to condition the FIT, lower rows depict the iFFT of the predicted
results.

responding ground truth MNIST images, (iii) the predictions of the “FIT: SRes”
network trained on the MNIST data as described in Section 4.3, (iv) two box-
plots showing the distribution of PSNR values computed between the ground
truth images and the downscaled inputs and predicted outputs, respectively, and
(v) Fourier ring correlation plots showing the correlation between the predicted
Fourier coefficients and the corresponding ground truth.

In Figure 4.3, I show two sequences of super-resolution results obtained with
a FIT trained on the CelebA data. For each image, I conditioned the trained
transformer on 2, 4, 8, and 16 Fourier rings, respectively. This corresponds to
low-resolution images subject to 16×, 8×, 4×, and 2× binning in Fourier space,
respectively.
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Figure 4.4: FIT for computed tomography. I propose an encoder-decoder
based Fourier Image Transformer setup for tomographic reconstruction. In 2D
computed tomography, 1D projections of an imaged sample (i.e. the columns of
a sinogram) are back-transformed into a 2D image. A common method for this
transformation is the filtered backprojection (FBP) (Kak et al. 2002; Ramesh et
al. 1989). Since each projection maps to a line of coefficients in 2D Fourier space,
a limited number of projections in a sinogram leads to visible streaking artefacts
due to missing/unobserved Fourier coefficients. The idea of my FIT setup is to
encode all information of a given sinogram and use the decoder to predict missing
Fourier coefficients. The reconstructed image is then computed via an inverse
Fourier transform (iFFT) of these predictions. In order to reduce high frequency
fluctuations in this result, I introduce a shallow conv-block after the iFFT (shown
in black). I trained this setup combining the FC-Loss, see Section 4.2.2, and a
conventional MSE-loss between prediction and ground truth.

4.4 FIT for Tomography

My Fourier Image Transformer for tomograpic reconstruction (FIT: TRec) is
based on an encoder-decoder transformer architecture as shown in Figure 4.4. As
input to the encoder I use the Fourier Domain Encoding (FDE) of a raw sinogram
s. As described above, s consists of P pixel columns [s1, . . . , sP ] of 1D projections
of x at angles [α1, . . . , αP ]. The Fourier slice theorem states, see also Section 1.3,
that the discrete 1D Fourier coefficients Ci = F(si) coincide with the values of
the 1D slice at angle αi through the 2D Fourier spectrum F(x). To assemble the
full FDE of a sinogram I need to combine all Ci with the adequate positional
encoding (using polar coordinates) of all Fourier coefficients, as dictated by the
Fourier slice theorem and sketched in Figure 4.4.

Hence, the encoder creates a latent space representation Z that encodes the
full input sinogram s. This latent space encoding is then given as input to the
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decoder. The decoder is used to predict all Fourier coefficients Ĉ, such that the
predicted reconstruction x̂ of x can be computed by x̂ = F−1(roll(Ĉ)), where
roll arranges the 1D sequence back into a discrete 2D Fourier spectrum. This
setup is called “FIT: TRec”.

Additionally, I propose a variation of this procedure, called “FIT: TRec +
FBP”, where the decoder not only receives the latent space encoding Z, but also
FDEs of the Fourier coefficients CFBP = F(FBP(s)), where FBP denotes the
function computing the filtered backprojection of a sinogram (see Figure 4.4).
Note that the implementation of “FIT: TRec” coincides with “FIT: TRec +
FBP”, with FBP being replaced by a function ZERO which returns 0 for all
inputs.

I train “FIT: TRec” and “FIT: TRec + FBP” using the LFC-loss of Eq.4.12.
Additionally, I introduced a residual convolution block consisting of two convolu-
tional layers (3×3 followed by 1×1) with dconv = 8 intermediate feature channels.
This conv-block (conv) receives the inverse Fourier transform of the predicted
Fourier coefficients x̂ = F−1(roll(Ĉ)) as input and is trained using the MSE-loss
between the predicted real-space image conv(x̂) and the known ground truth
image x. Hence, the full loss is the sum over LFC and the MSE-loss.

In order to speed up training, I start by feeding only a low-resolution subset
of all Fourier coefficients Ci = F(si) (and CFBP), and successively increase this
subset over training until the full sets are used. This forces the FIT to first
learn good low resolution features and later learn to add suitable high resolution
predictions.

4.4.1 Computed Tomography Data

As described in Section 1.3, tomographic image reconstruction in 2D operates
on a number of 1D projections of a given true object x. I used a tomographic
simulation process which is based on the work by Leuschner et al. (Leuschner
et al. 2019). Furthermore, I chose the detector length to be equal to the width of
the chosen object (i.e. ground truth image) to which the synthetic tomography
pipeline is applied. To avoid spurious contributions to individual projections, I
needed to set all pixel intensities outside the largest image-centered circle to 0
(hence, we see only circular images in Figures 4.5, 4.6 and 4.7).

MNIST (Y. LeCun and Cortes 2010): Data is split and preprocessed as
described in Section 4.3.1. Additionally, for visualization purposes, I min-clipped
all pixel intensities within the before-mentioned largest image-centered circle to
50. Finally, I used this data to compute P = 7 equally spaced projections which
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FBP Baseline TRec (Ours) TRec + FBP (Ours) Ground Truth
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Figure 4.5: Tomographic reconstruction results. These are three qualitative
results for the MNIST (Y. LeCun and Cortes 2010) dataset. From left to right,
the input sinogram, reconstruction results obtained with filtered backprojection
(FBP) (Kak et al. 2002; Ramesh et al. 1989), the results obtained with the “FIT:
TRec” setup, the results obtained with the “FIT: TRec + FBP” setup, and the
corresponding ground truth images are shown. In the top left corner of each
reconstruction the peak signal-to-noise ratio (PSNR) with respect to the ground
truth image is shown.

are assembled in sinograms sj
MNIST = [sj,1

MNIST, . . . , s
j,P
MNIST].

Kanji (Clanuwat et al. 2018): Data is randomly split into 50′000 train,
5′000 validation and 5′000 test samples and all images are cropped to 63 × 63
pixels, which are otherwise processed as described for MNIST. Finally, I used
this data to compute P = 33 equally spaced projections which are assembled in
sinograms sj

Kanji = [sj,1
Kanji, . . . , s

j,P
Kanji].

LoDoPaB (Leuschner et al. 2019): The original train- and validation-
data is first reduced to 4′000 and 400 randomly chosen images respectively and for
testing all 3′553 images are used. All selected images are downscaled to 111× 111
pixels and I computed P = 33 equally spaced projections like for the Kanji
data.

All tomographic reconstruction experiments with “FIT: TRec” and “FIT:
TRec + FBP” and the FBP baseline are evaluated using peak signal-to-noise
ratio (PSNR) w.r.t. available ground truth.
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FBP Baseline TRec (Ours) TRec + FBP (Ours) Ground Truth
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Figure 4.6: Tomographic reconstruction results. These are three qualitative
results for the Kanji (Clanuwat et al. 2018) dataset. From left to right, the input
sinogram, reconstruction results obtained with filtered backprojection (FBP) (Kak
et al. 2002; Ramesh et al. 1989), the results obtained with the “FIT: TRec” setup,
the results obtained with the “FIT: TRec + FBP” setup, and the corresponding
ground truth images are shown. In the top left corner of each reconstruction
the peak signal-to-noise ratio (PSNR) with respect to the ground truth image is
shown.

4.4.2 Computed Tomography Experiments

Computed Tomography Training

Like before, I consistently used F = 256 dimensional FDEs, and employed the
linear encoder and decoder method by Katharopoulos et al. (Katharopoulos et al.
2020). More specifically, I used 4 transformer layers, 8 self-attention heads per
layer, a query and value dimensionality of 32, dropout of 0.1, attention dropout
of 0.1, and a dimensionality of the feed-forward network of 1024. The residual
conv-block has dconv = 8 intermediate feature channels.

All networks are optimized using RAdam (L. Liu et al. 2019), with an initial
learning rate of 0.0001 and weight decay of 0.01 for 300 (MNIST), 120 (Kanji),
and 350 (LoDoPaB) epochs. The batch size is 32. The learning rate is halved on
plateauing validation loss.
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FBP Baseline TRec (Ours) TRec + FBP (Ours) Ground Truth

31.65 25.22 32.85

25.07 19.89 28.89

26.87 19.0 29.59

29.79 22.47 30.37

31.57 25.94 34.34
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Figure 4.7: Tomographic reconstruction results. These are three qualitative
results for the LoDoPaB (Leuschner et al. 2019) dataset. From left to right,
the input sinogram, reconstruction results obtained with filtered backprojection
(FBP) (Kak et al. 2002; Ramesh et al. 1989), the results obtained with the “FIT:
TRec” setup, the results obtained with the “FIT: TRec + FBP” setup, and the
corresponding ground truth images are shown. In the top left corner of each
reconstruction the peak signal-to-noise ratio (PSNR) with respect to the ground
truth image is shown.

Ablation Studies

I propose two ablation setups for all tomographic reconstruction experi-
ments.

First, I ask what influence the encoded latent space information Z, i.e. the
output of the encoded sinogram, has on the quality of the overall reconstruction
x̂. To that end, I performed ablation experiments for all 3 datasets, for which I
do not feed Z to the decoder. Technically this is implemented by replacing the
decoder by an encoder network (since only one input remains to be fed). I called
these experiments “Only FBP”.

The second ablation study asks, to what degree the conv-block contributes to
the overall reconstruction performance, i.e. I want to verify that the convolution
block alone is not sufficient to solve the task at hand. Hence, I trained the conv-
block on pairs of images (FBP(s),x), i.e. the filtered backprojection of sinograms
s and their corresponding ground truth images x. I labelled these experiments
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Dataset Method PSNR

MNIST (Y. LeCun and Cortes 2010)

Baseline: FBP 17.87
FIT: TRec + FBP (Ours) 27.85
FIT: TRec (Ours) 27.90
Ablation: Only FBP 26.89
Ablation: Only Conv-Block 22.53

Kanji (Clanuwat et al. 2018)

Baseline: FBP 22.06
FIT: TRec + FBP (Ours) 30.72
FIT: TRec (Ours) 25.99
Ablation: Only FBP 30.49
Ablation: Only Conv-Block 26.92

LoDoPaB (Leuschner et al. 2019)
(downscaled)

Baseline: FBP 26.89
FIT: TRec + FBP (Ours) 30.98
FIT: TRec (Ours) 21.90
Ablation: Only FBP 30.74
Ablation: Only Conv-Block 30.70

Table 4.1: Quantitative tomographic reconstruction results. I report the
average peak signal-to-noise ratio (PSNR) with respect to ground truth, for each
of the three used datasets. For each dataset, I compare the results of the “FIT:
TRec + FBP” and “FIT: TRec” setups to results obtained with the filtered
backprojection (FBP) (Kak et al. 2002; Ramesh et al. 1989) baseline, and the
two ablation studies described in Section 4.4.2.

“Only Conv-Block”.

For all ablation experiments all hyper-parameters not explicitly mentioned
above are kept unchanged.

Tomographic Reconstruction Results

Qualitative tomographic reconstruction results for all three datasets I used are
shown in Figures 4.5, 4.6 and 4.7. For each dataset, I show three input sinograms,
the reconstruction baseline obtained via filtered backprojection (FBP), results
obtained via “FIT: TRec”and “FIT: TRec + FBP”, and the corresponding ground
truth images. In Table 4.1, PSNR numbers for all three datasets using the FBP
baseline, the “FIT: TRec + FBP” and “FIT: TRec” training setups, and both
ablation studies are given. All code used to reproduce the reported results is
available on GitHub3.

3 https://github.com/juglab/FourierImageTransformer
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4.5 Discussion

I proposed the idea of Fourier Domain Encodings (FDEs), a novel sequential image
encoding, for which each prefix represents the whole image at reduced resolution,
and demonstrated the utility of FDEs for solving two common image processing
tasks with Transformer networks, i.e. super-resolution and tomographic image
reconstruction.

For the super-resolution task I showed that Fourier Image Transformer can
be trained to, when conditioned on an FDE corresponding to a low-resolution
input image, auto-regressively predict an extended FDE sequence that can be
back-transformed into a higher resolution output. It is obvious, the information
required to generate a higher resolution image must be stored in the trained
network, and I have shown in Figure 4.3, how this learned prior completes very
low to moderate resolution inputs in sensible ways. It is curious to see that eyes
are the first high-resolution structures filled in by the trained FIT. I believe that
this is a direct consequence of all training images being registered such that the
eyes are consistently at the same location.

For the tomographic reconstruction task, I employed an encoder-decoder trans-
former that encodes a given FDE sequence corresponding to a given sinogram and
can then be used to predict Fourier coefficients at arbitrary query locations. I used
the decoder to predict all Fourier coefficients of a fully reconstructed image, which
we could then visualize via inverse Fourier transformation (iFFT). I noticed that
introducing a shallow residual convolution block after the iFFT reduces unwanted
high frequency fluctuations in predicted results. While I see that this procedure
leads to very convincing results on MNIST, for more complex datasets, results
quickly deteriorate. Hence, I proposed to additionally feed Fourier coefficients
obtained by filtered backprojection (FBP) into the decoder. This leads to much
improved results that outperform the FBP baseline, showing that the FIT does
contribute to solving the reconstruction task.

My results show that Transformers, currently the dominant approach for vir-
tually all NLP tasks, can successfully be applied to complex and relevant tasks
in computer vision. While this is encouraging, I see a plethora of possibilities
for future improvements. For example, the Transformers I used are rather small.
I believe that an up-scaled version of the training setups with more attention
heads and more layers would already lead to much improved results. Still, I also
believe that there is plenty of room for methodological improvements that do not
require more computational resources, making this line of research also accessible
to many other research labs around the globe.
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Chapter 5

Conclusions and Outlook

With this thesis I introduced content-aware image denoising techniques to the field
of electron microscopy (EM). I presented Noise2Void, the first self-supervised
image denoising approach based on neural networks. Then I proposed novel
ideas to image reconstruction based on Transformer networks. In the next para-
graphs I will revisit the individual contributions and outline some possible future
works.

In the introduction of this thesis we looked at EM as tool for bio-medical re-
search. In scanning electron microscopy (SEM) a focused electron beam is used to
scan a sample row by row (Collett 1970). Whole tissues are imaged with volumetric
SEM methods, where the sample is slice-wise imaged with destructive (SBF-SEM,
FIB-SEM) or non-destructive (array tomography or serial-section SEM) methods.
Common to all SEM methods is that the imaging quality is dependent on the
scanning speed, with slower scanning speeds resulting in higher SNR images.
This results in long acquisition times which makes large connectomics projects
expensive and time consuming. With SEM-CARE I showed how supervised im-
age denoising methods from fluorescence microscopy can be translated to SEM
image data. With carefully acquired pairs of slow and fast scanned SEM images
we can train a supervised CARE network, which we can later apply to unseen
noisy, fast scanned image data. This approach results in a potential 40- to 50-fold
imaging speedup. Interesting followup work to SEM-CARE could combine the
information from different SEM detectors. Such networks could pool information
from backscattered and secondary electrons with elemental identification data
obtained from measured X-rays.

Next, we looked at cryo transmission electron microscopy (cryo TEM) tomo-
grams. In cryo TEM the acquisition of high quality images is impossible due to
missing contrast agents and beam induced sample damage (Knapek and Dubochet
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1980). The beam induced sample damage limits the total electron dose to which
the sample can be exposed, hence any cryo TEM acquisition is dominated by Pois-
son noise. But modern cryo TEM detectors acquire short bursts of images (movies)
to avoid motion blur, which are aligned and summed into a single observation.
With cryoCARE I take advantage of this procedure and instead of summing
up the aligned frames up into a single image I split them in two summed subsets.
The first image contains all even movie frames and the second image contains all
odd movie frames. This is done for each tilt-angle and results in an even- and
odd-frames tilt-series. From these two tilt-series two tomograms are reconstructed
containing the same signal but different independent noise contributions. Hence,
the requirements for Noise2Noise (Lehtinen et al. 2018) training are fulfilled
and these images can be used to train supervised CARE networks. After training
both tomograms are denoised and voxel-wise averaged resulting in a high contrast
and high SNR tomogram. These tomograms are used for manual data browsing
and particle picking and I have shown that down stream processes benefit as well.
I have integrated cryoCARE into Scipion, an EM image processing framework,
which eases the usability of cryoCARE significantly. Furthermore, I am look-
ing forward to future developments of cryoCARE like methods. I see potential
in optimizing the current reconstruction algorithms jointly with cryoCARE or
similar methods.

In Chapter 3, I have presented Noise2Void a novel training scheme, which
only requires single noisy observations to train content-aware image denoising
networks. Noise2Void introduces the concept of a blind-spot network, which has
access to all pixels in its receptive field except for the center pixel. The idea is, that
the signal in an image is not pixel-wise independent and the network is able to
predict the missing pixel value by looking at the local neighborhood. For the noise
the assumption is pixel-wise independence, in other words the noise contribution
for a single pixel is not predictable by looking at the surrounding pixels. I proposed
an efficient implementation of Noise2Void, which simulates the blind-spot by
replacing single pixels in the input with random values and only computing the
loss for these perturbed pixels. The implementation is publicly available as a
Python package and additionally a one-click solution exists in Fiji (Schindelin
et al. 2012). Personally, I find it interesting to see that current SOTA natural
language processing (NLP) approaches like BERT (Devlin et al. 2018) use similar
techniques i.e. they mask individual words in the input and train the network to
predict them. I believe that research in self-supervised learning will move more into
the spotlight in the following years. We already see high quality attention maps
emerge from self-supervised Vision Transformer training (Caron et al. 2021) and
I would not be surprised if similar methods will be used in the future to train self-
supervised segmentation approaches. Regarding self-supervised image denoising,
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a big challenge is still presented with structural noises and reconstruction artefacts
from for example tomography. I am expecting that novel network architectures
and loss functions will be developed for self-supervised training, such that we
can eventually disentangle ground truth signal, structured noise and pixel-wise
independent noise by accessing the latent space encodings of such neural networks.
In this regard I am especially looking forward to followup work based on Mangal
Prakashs recent publication (Prakash, Krull, et al. 2021).

In Chapter 4, we looked into Transformer networks and their application to-
wards image restoration. Transformers work on 1D sequences, which makes them
well suited for sequential data domains like text. However, the recent success of
Transformers (Devlin et al. 2018; Radford et al. 2018) has inspired the computer
vision community to take a closer look and apply Transformers to image classifica-
tion (Dosovitskiy et al. 2020; Ramachandran et al. 2019) and pixel-by-pixel image
generation (M. Chen et al. 2020). This pixel-by-pixel image generation feels artifi-
cial to me, because images almost never come cut in half and generating the second
half is seldom the problem. A much more common problem is super-resolution,
where we have access to a low-resolution image and would like to restore a corre-
sponding high-resolution image. This lead me to the development of the Fourier
Domain Encoding (FDE), which takes the Fourier transformation of an image
and brings it in a 1D sequence where each prefix corresponds to a lower resolution
version of the encoded image. I used these encodings to present a proof of concept
for Fourier Image Transformer (FIT) trained for super-resolution. Then I consid-
ered the missing wedge artefacts in tomography. The missing wedge artefacts in
tomographic imaging originate due to sparse-view imaging. Sparse-view imaging
is used to keep the total exposure of the imaged sample to a minimum, by only
acquiring a limited number of projection images. However, tomographic recon-
structions from sparse-view acquisitions are affected by missing wedge artefacts,
characterized by missing wedges in the Fourier space and visible as streaking arte-
facts in real image space. All methods dealing with these missing wedge artefacts
do so in real image space i.e. they try to remove an artefact from a reconstructed
image. However with Fourier Image Transformer for tomograpic reconstruction
(FIT: TRec) I presented a method which aims at filling in the missing data di-
rectly in Fourier space preventing the artefacts of occurring in the first place.
FIT for tomographic reconstruction is for now a proof of concept, which shows
how Transformer architectures in combination with FDEs can be used to train
tomographic reconstruction networks. Using such an approach would also be in-
teresting for sub-tomogram averaging in cryo TEM. The closest work to this is
cryoDRGN (Zhong et al. 2021), which uses a fully connected network to build
sub-tomogram averages of molecules with multiple conformations.

Finally, I want to emphasize the important work done by the labs of
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Anna Kreshuk with ilastik (Berg et al. 2019), Ricardo Henriques with Zero-
CostDL4Mic (von Chamier et al. 2021), and Florian Jug with CSBDeep (Weigert
et al. 2018). These frameworks and projects are crucial to make deep learning
available to a wider community of users and enabling bio-image analysts to use
SOTA deep learning tools on their own data. In my opinion, one of the most
important collaborations to make deep learning reproducible in the future is the
bioimage modelzoo project1. Personally, I feel extremely lucky to be part of such
a great community which helps each other to develop great bioimage analysis
tools and invests the time to bring them to our customers – the biologists in the
labs around the world.

Thank you for reading.

1 https://bioimage.io/#/
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