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1. Introduction 

 

Even-aged forestry takes an outstanding position in the world’s timber supply. Globally, 7%, or 

290 million ha, of the total forest area is covered with planted forests (FAO 2020). About 131 million 

ha of this area consists of intensively managed even-aged plantations (FAO 2020) which alone account 

for more than 33% of the global industrial roundwood supply (JUERGENSEN et al. 2014). Even though 

no exact figures are available, the total roundwood supply originating from even-aged forestry can be 

expected to significantly exceed this share and is even increasing (ABARE/POEYRY 1999; FSC/INDUFOR 

2012).  

Without a doubt, the question of optimal even-aged management is an issue of great economic 

importance. However, although even-aged forestry essentially consists of only three main 

components; i.e., planting, thinning and final harvest, more than 200 years of forest economic research 

have not led to a full understanding of this wide field. The reason is that the analysis of optimal forest 

management faces a major problem: Forests are ecologic-economic systems and their management is 

impacted by a vast range of ecological, biological, economic and social factors (e.g. ROSSER 2005, p. 

191 ff.; ROSSER 2013). Thus, it is subject to enormous complexity which hinders or even prevents the 

qualitative investigation of many relevant management scenarios. Therefore, in this dissertation an 

attempt is made to mitigate this problem with the aim of contributing to a general understanding of 

even-aged forest management. 

To achieve this goal, three steps are taken.  

1. A scenario is qualitatively investigated in which planting, thinning and clear-cut are 

simultaneously optimized. This combined scenario based on HALBRITTER and DEEGEN (2015) 

is expected to yield insights in the complexity of dependent forest management decisions. This 

allows for the evaluation of the suitability of such an analysis to extend the understanding of 

even-aged forestry in comparison to basic management scenarios. 

2. The existing knowledge on optimal even-aged management is extended to scenarios which are 

relevant but have not been previously investigated. Therefore, three studies analysing the 

influence of natural regeneration and uneven-aged intervals (HALBRITTER 2015), 

heterogeneous stands (HALBRITTER 2020) and natural risk (HALBRITTER et al. 2020) are 

discussed in comparison with basic management scenarios to increase the understanding of 

optimal management. 

3. A framework is developed which integrates existing analyses of different scenarios into a so-

called patchwork. This meta approach is tested for its suitability in obtaining an overall picture 
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of even-aged forestry, solving the problem of uncontrollable complexity of holistic studies and 

contributing to a general understanding by systematically identifying the relations between 

management decisions and management environment. 

 

However, before taking these steps, the next section on the classical FAUSTMANN framework 

first provides a brief introduction into the economic foundations of even-aged forestry in which this 

dissertation is embedded. Starting with the concept of an economic model, the section presents the 

famous FAUSTMANN model and its set of implicit and explicit assumptions. In addition, four basic 

FAUSTMANN applications are presented which solve greatly simplified management problems and 

serve as references later in the patchwork discussion. 

Based on the FAUSTMANN framework, section 3 then looks at the complexity of even-aged 

forest management in more detail. Thereby the trade off between the simplicity of an analysis and the 

applicability of the results in a general context is discussed. In the methodological section 4, the 

patchwork approach is introduced as a possible solution to this problem. In this dissertation it will be 

tested by including the basic reference scenarios of the FAUSTMANN framework, the combined 

scenario and the extended scenarios in the patchwork.  

After these preliminary chapters, sections 5 and 6 focus on the three steps above and contain 

the main part of this dissertation. In the sub-sections, the model set-ups are introduced and the results 

of the respective analysis presented. Following that, the dependencies between optimal management 

and management scenario are discussed using the patchwork framework.  

Finally, in section 7, conclusions are drawn on two topics. First, the results of the analysis of 

combined and extended scenarios with the patchwork framework are highlighted and their 

contributions to a better understanding of even-forest management evaluated. Second, the suitability 

of the patchwork approach itself to improve a holistic view on even-aged forestry is assessed and 

limitations identified. This dissertation ends with a summary in section 8. 
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2. The FAUSTMANN Framework 

 

2.1 Model Definition 

 

The introduction already highlighted the enormous complexity associated with forests as 

ecologic-economic systems. Naturally, this also impacts the determinantion of optimal stand 

management. First, it depends strongly on the forest owner’s management objective. A variety of 

different goals are conceivable. Second, optimal management is strongly connected to the 

characteristics of the considered environment such as timber growth conditions, market properties, 

factor prices or management restrictions. An infinite number of different scenarios exist which makes 

it impossible to consider all the aspects which influence a forest owner’s decision. Thus, the only way 

to determine optimal management is to simplify the question by developing a model.  

A model is an abstraction of the real world which contains the aspects necessary to describe a 

certain scenario and answer a specific question (cf. CHIANG 1984, p. 7 ff.). These aspects are called 

model postulates or assumptions. The framework of assumptions usually contains only a selection of 

influencing factors depending on the purpose of the model. Furthermore, a model defines rules to 

make predictions based on the assumptions. Often, these predictions can be compared to real world 

observations in order to evaluate the validity of the model.  

However, a model is only capable of explaining those observations within its scope. The scope 

is the range of scenarios, determined by a set of assumptions and rules, which the model is able to 

describe. Findings are, by definition, restricted to this environment.  

 

2.2 The FAUSTMANN Model 

 

In 1849, Martin FAUSTMANN‘s seminal article “Berechnung des Werthes, welchen 

Waldboden, sowie noch nicht haubare Holzbestände für die Waldwirthschaft besitzen” provided the 

first correct formula to access the economic value of a pitch of forest land. However, the idea dates 

back even further to the end of the 17th century (cf. VIITALA 2013). Like KÖNIG (1835) a few years 

earlier, FAUSTMANN assumed forest management to be an infinite series of stand management cycles, 

called rotations.  
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A rotation consists of a sequence of management measures such as stand establishment at 

planting cost 𝐶𝑝, commercial or pre-commercial thinning harvests at cash flows 𝑣ℎ and a clear-cut at 

stand age 𝑇 yielding revenues 𝑉1. The present value 𝑃𝑉𝑖 of the cash flows assciated with the stand 

management measures of the ith rotation can then be expressed as 𝑃𝑉𝑖 = −𝐶𝑝
𝑖 + ∫ 𝑣ℎ

𝑖 (𝑡)
𝑇𝑖
0

𝑒−𝑟𝑡𝑑𝑡 +

𝑉(𝑇𝑖)𝑒
−𝑟𝑇𝑖  given a continuous discount rate 𝑟. FAUSTMANN further assumed the sequence of 

management measures to be identically repeated in each consecutive rotation. Consequently, each 

rotation also generates the same sequence of cash flows with the same present value 𝑃𝑉 = 𝑃𝑉1 =

𝑃𝑉2 = 𝑃𝑉3 = ⋯. 

The value of bare land, hereinafter called land expectation value 𝐿𝐸𝑉, can be defined as the 

present value of all future rotations, i.e., 𝐿𝐸𝑉 = 𝑃𝑉 + 𝑒−𝑟𝑇𝑃𝑉 + 𝑒−2𝑟𝑇𝑃𝑉 + 𝑒−3𝑟𝑇𝑃𝑉 +⋯. Using the 

convergence of the geometric series with 𝑙𝑖𝑚
𝑛→∞

∑ 𝑒−𝑖𝛾𝑛
𝑖=0 = [1 − 𝑒−𝛾]−1 for 𝛾 > 0, the land value 

becomes 𝐿𝐸𝑉 = 𝑃𝑉[1 − 𝑒−𝑟𝑇]−1 (cf. JOHANSSON and LÖFGREN 1985, p. 79; AMACHER et al. 2009, p. 

19). Equation (5) shows FAUSTMANN’s land value formula, also known as FAUSTMANN’s formula, 

expressed in continuous time. 

  

𝐿𝐸𝑉 =
−𝐶𝑃 + ∫ 𝑣ℎ(𝑡)

𝑇

0
𝑒−𝑟𝑡𝑑𝑡 + 𝑉(𝑇)𝑒−𝑟𝑇

1 − 𝑒−𝑟𝑇
 

(1) 

  

Equation (1) also offers an alternative way to interpret FAUSTMANN’s idea. FAUSTMANN’s 

formula can equivalently be rewritten as 

  

𝐿𝐸𝑉 = 𝑃𝑉 + 𝑒−𝑟𝑇𝐿𝐸𝑉 (2) 

  

indicating that the land value at the beginning of each consecutive rotation is again equal to the 𝐿𝐸𝑉. 

Therefore, a forest owner is indifferent between selling the land after one rotation or continuing the 

forest management with the establishment of a new stand. 

Although it might not have been initially intended by FAUSTMANN, his model also offers a 

framework to optimize silviculture for land owners from a purely economic perspective and with 

 
1 FAUSTMANN’s original formula also contains returns from non-timber production and yearly administration 
cost (cf. FAUSTMANN 1849). The reduced rotation was chosen for reasons of consistency with the studies 
presented in sections 5 and 6. 
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income maximization as their only management goal. As such, FAUSTMANN’s approach is fundamental 

because the 𝐿𝐸𝑉 provides a criteria to economically evaluate different stand management strategies.  

A management strategy 𝜎 is a specific pattern or sequence of stand management variables 

such as planting density and its representation as planting cost, thinning harvests or clear-cut age. 

Assuming a specific strategy �̃� = {�̃�𝑃, ℎ̃(𝑡), �̃�}, equation (1) determines the corresponding land 

expectation value 𝐿𝐸𝑉(�̃�). Moreover, two different management strategies 𝜎1 and 𝜎2 can be 

compared. Calculating 𝐿𝐸𝑉(𝜎1) and 𝐿𝐸𝑉(𝜎2) allows the identification of the strategy, which produces 

the higher land expectation value and, thus, is economically more preferable. 

Defining optimal silviculture as the sequence of stand management measures which maximizes 

the economic value of forest management, the land expectation value provides the correct evaluation 

criteria. Then, the problem of optimizing stand management becomes equivalent to finding the 

sequence of management measures which maximizes the 𝐿𝐸𝑉. Formally, this can be expressed as 

  

𝐿𝐸𝑉∗ = 𝑚𝑎𝑥
𝜎
𝐿𝐸𝑉(𝜎) (3) 

  

with 𝜎∗ = {𝐶𝑃
∗, ℎ∗(𝑡), 𝑇∗} being the optimal stand management strategy. Thus, FAUSTMANN’s 

framework is not only a land value model, which evaluates a certain static and externally given 

sequence of management measures �̃�,  but can also applied as a model of optimal stand management 

which regards the management strategy 𝜎 = {𝐶𝑃 , ℎ(𝑡), 𝑇} as a forest owner’s endogenous choice. 

To solve the optimization problem (3), a set of underlying assumptions and constraints needs 

to be considered, which will be discussed in the next section.  

 

2.3 Assumptions 

 

Within the FAUSTMANN-framework, three groups of assumptions can be distinguished. 

The fundamental assumptions ensure the applicability of the model approach itself.  

SAMUELSON (1976) identified the implied and fundamental assumptions behind FAUSTMANN’s 

approach. First, future prices for timber, capital and production factors as well as the future timber 

yields are known. This assumption can be summarized as a determinstic environment with perfect 

foresight. Having perfect knowledge of all future developments enables a forest owner to make a 
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management plan which maximizes his income. FAUSTMANNS’s formula even takes this one step 

further and assumes identical rotations with identically recurring cash flows over time. Second, 

FAUSTMANN’s approach requires perfect markets for capital and land. A perfect capital market 

ensures the possibility for forest owners to inter-temporally trade consumption and income by 

unconstrained borrowing and lending at the same rate. Without this assumption, the choice of the 

stand management strategy would be restricted to those strategies which generate an income scheme 

fitting the individual consumption plan of the forest owner. In a perfect capital market, however, the 

income scheme and the consumption scheme can be separated without additional cost. Consequently, 

to maximize the forest owner’s consumption over time, the present value of the forest owner’s 

income, i.e., the 𝐿𝐸𝑉, must be maximized. The individual consumption preferences can be ignored. 

This principle goes back to FISHER (1930, p. 125 ff.) and later became known as the separation 

theorem. Furthermore, the assumption of a perfect land market guarantees that the market price for 

forest land equals the maximal land expectation value. 

The fundamental framework ensures the 𝐿𝐸𝑉-maximizing management strategy 𝜎∗ to be the 

only rational choice for a forest land owner. In a stochastic environment without perfect foresight, for 

example, equation (1) does not provide the correct land value and the solution of problem (3) is not 

the optimal management strategy (e.g. REED 1984). The same holds for evolving prices, interest rates 

or growth conditions (e.g. CHANG 1998). Another example is market imperfections, such as borrowing 

constraints (e.g. TAHVONEN et al. 2001), which restrict the set of possible management strategies. 

Again, optimal management in these scenarios might not be identical with the solution of problem (3). 

The second class of assumptions defines the qualitative set-up of the model within the 

fundamental framework, e.g., the components and qualitative functional forms. In the FAUSTMANN 

formula of the version of equation (1), a rotation consists of the components planting, thinning and 

clear-cut. For each of these components, qualitative characteristics need to be defined. The continuous 

discount rate 𝑟, for example, is assumed to be constant over time. Stand establishment is assumed to 

be an external variable at constant planting cost 𝐶𝑃 , which implies the planting of a predefined number 

of seedlings in each rotation. Timber cash flows 𝑣ℎ(𝑡) and 𝑉(𝑇) are defined as age-dependent value 

functions combining the volume of harvested timber at a stand age 𝑡 with their associated net price 

development. In addition, each of the value functions is assumed to show a specific qualitative 

behavior, e.g., the signs of the derivatives with respect to age.  

Furthermore, the definition of the FAUSTMANN formula, equation (1), and the resulting 

optimization problem (3) is implictly based on a set of assumptions on biological timber growth. It 

takes an intermediate position between the fundamental and the qualitative framework, because it is 

not fundamental for the 𝐿𝐸𝑉-approach itself, but sets the general constraints for the qualitative model 



7 
 

definition. Equation (1), for example, is based on the assumption of an even-aged growth model of a 

homogeneous forest stand2. This determines the definition of the model components, e.g., stand 

establishment and clear-cut, as well as some qualitative characteristics of the value functions, e.g., the 

dependency of the clear-cutting value on stand age. The qualitative set-up of models describing 

uneven-aged or heterogeneous forest stands might differ significantly. 

In combination with the fundamental assumptions, the qualitative framework definition is 

sufficient for a qualitative analysis of the model. 

Third, numeric case studies require the definition of a numeric model environment. Thus, this 

group of assumptions defines the specific numeric characteristics of the model components, i.e., their 

actual functional forms and parameters within the qualitative framework. These assumptions are 

required to apply calculation algorithms to provide numeric results, i.e., calculate the value of a certain 

patch of forest land or determine the actual clear-cut age of a specific problem scenario. 

 

2.4 Basic Applications 

 

Within the framework of assumptions introduced in the last section, the maximization 

problem, equation (3) can be applied to address important management questions of even-aged 

forestry. This section briefly introduces three basic even-aged models within the FAUSTMANN 

environment, which discretely solve the problems of optimal planting, optimal thinning and optimal 

rotation as the three key components of even-aged forest management. The models describe reduced, 

i.e., more restricted, scenarios compared to equation (1). Thereby, planting is defined as the artificial 

establishment of a new stand on bare land. Thinning is regarded as a partial harvest of a stand’s timber 

and the rotation is defined as the growth interval between stand establishment and clear-cut.  

In addition, a fourth model based on the same fundamental assumptions and the idea of 

maximizing the present value of an infinite series of cash flows is presented as a basic scenario of 

uneven-aged forestry.  

All four models are intended to serve as benchmarks in the analysis of the extended studies 

which will be discussed in section 5 and 6. 

 

 
2 The concepts of even-aged forestry and the homogeneous forest stand are introduced in detail in section 6. 
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2.4.1 The Rotation Model 

 

Probably the best known application of problem (3) is the classical rotation problem (cf. 

JOHANSSON and LÖFGREN 1985, p. 72 ff.; AMACHER et al. 2009, p. 20 ff.). In its most basic form, a 

rotation consists of only planting and clear-cutting. The rotation length 𝑇 is assumed to be the only 

decision variable of a forest owner. With a stand’s timber stock 𝑞(𝑡) at age 𝑡 and a constant timber 

price 𝑝 the value function at clearcut becomes 𝑣(𝑇) = 𝑝𝑞(𝑇). Thus, the present value of a rotation 

reduces to 𝑃𝑉 = 𝑝𝑞(𝑇)𝑒−𝑟𝑇 − 𝐶𝑃  yielding a land expectation value of 

  

𝐿𝐸𝑉𝑅 =
𝑝𝑞(𝑇)𝑒−𝑟𝑇 − 𝐶𝑃
1 − 𝑒−𝑟𝑇

 
(4) 

 

 Solving the optimization problem (3) using the simplified 𝐿𝐸𝑉-model, equation (4), and a 

management strategy 𝜎𝑅 = {𝑇} provides the optimal clear-cut age 𝑇∗ as the solution of the first order 

differential equation  

  

𝑝
𝜕𝑞(𝑇)

𝜕𝑇
= 𝑟𝑝𝑞(𝑇) + 𝑟𝐿𝐸𝑉𝑅(𝑇) 

(5) 

  

The equilibrium condition (5) is often called the FAUSTMANN-PRESSLER-OHLIN theorem (cf. 

JOHANSSON and LÖFGREN 1985, p. 80) after FAUSTMANN’s fundamental work and the solutions 

provided independently by PRESSLER (1860) and OHLIN (1921). As a golden rule of forest management 

it states that an even-aged stand should be harvested when its value growth (LHS) equals the 

opportunity cost of its bound capital (RHS) which consists not only of the value of the standing timber 

but also of the value of the land it stands on. 

From equation (5), a relationship between the optimal clear-cut age 𝑇∗ and the externally 

determined management conditions such as timber price, interest rate and planting cost can be 

derived in a comparative static analysis (cf. JOHANSSON and LÖFGREN 1985, p. 80 ff.; AMACHER et al. 

2009, p. 27). A higher timber price increases the land value and the capital cost of land in relation to 

the stand’s value increment and, thus, leads to an earlier clear-cut. A higher interest rate increases 

both the capital cost from standing timber and land and, therefore, also shortens the rotation. Higher 

planting costs, however, reduce the land value and a longer rotation period becomes optimal. 
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2.4.2 The Thinning Model 

 

The introduction of thinning harvests as a measure to actively control the timber stock of a 

forest stand represents a second basic problem of optimal stand management. Especially in scenarios 

in which the timber growth of a forest stand not only depends on stand age but is additionally 

influenced by stand density, thinning can be beneficial. Up to a critical level, the stand’s timber growth 

usually increases with density. However, above a certain threshold, competition between the trees 

starts to reduce the increment (cf. AMACHER et al. 2009, p. 80). To focus on this dependency, it is 

beneficial to separate timber price 𝑝 and timber volume 𝑞 in the timber value functions 𝑣ℎ and V of 

equation (1), i.e. 𝑣(𝑡) = 𝑝(𝑡)𝑞(𝑡). Then, the 𝐿𝐸𝑉 under continuous thinning of a timber quantity ℎ 

can be expressed as  

  

𝐿𝐸𝑉𝑇ℎ =
−𝐶𝑃 + ∫ 𝑝(𝑡)ℎ(𝑡)

𝑇

0
𝑒−𝑟𝑡𝑑𝑡 + 𝑝(𝑇)𝑞(𝑇)𝑒−𝑟𝑇𝑑𝑡

1 − 𝑒−𝑟𝑇
 

(6) 

 

Furthermore, the stand’s timber growth can be defined as �̇�(𝑡) = 𝜙(𝑡, 𝑞) − ℎ(𝑡) using an age 

and density-dependent growth function 𝜙(𝑡, 𝑞). Of course, the thinning volume must be restricted to 

0 ≤ ℎ(𝑡) ≤ 𝑞(𝑡). Under these assumptions, forest owner’s thinning problem becomes 

  

𝑚𝑎𝑥
ℎ(𝑡)

𝐿𝐸𝑉𝑇ℎ  

s.t. 

�̇�(𝑡) = 𝜙(𝑡, 𝑞) − ℎ(𝑡) 

0 ≤ ℎ(𝑡) ≤ 𝑞(𝑡) 

 

(7) 

 

Applying optimal control theory (e.g. CHIANG and WAINWRIGHT 2005, p. 631 ff.) to solve 

problem (7) yields the first order condition for the optimal stand volume path under continuous 

thinning 
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�̇�(𝑡) +
𝜕𝜙(𝑡, 𝑞)

𝜕𝑞
𝑝(𝑡) = 𝑟𝑝(𝑡) 

(8) 

  

The forest stand’s timber stock should be maintained on a level 𝑞∗ at which the capital cost of 

delaying the harvest of a marginal volume unit (RHS) equal the resulting value effects consisting of 

price increments of this unit and its impact on the stand’s combined value growth (LHS). The optimal 

thinning volume then follows the equation ℎ∗(𝑡) = 𝑚𝑎𝑥{𝑞(𝑡) − 𝑞∗(𝑡); 0}.  

A first solution of the thinning problem was provided by NÄSLUND (1969) and later refined by 

others, e.g. CLARK and DE PREE (1979) or CAWRSE et al. (1984). None of these studies investigated the 

impact of timber prices or interest rates on the optimal stock level in a qualitative way. However, 

assuming a concave relation between timber growth and stand volume (cf. AMACHER et al. 2009, p. 

80), some statements can easily be derived from condition (8). A higher interest rate and, thus, higher 

capital costs, must be balanced by a higher volume increment 
𝜕𝜙(𝑡,𝑞)

𝜕𝑞
 which can be achieved at a lower 

optimal stock level. A higher timber price level reduces the price growth rate and, with it, the value 

increment of the stand in relation to the cost of capital. Thus, a forest owner must again maintain a 

lower optimal timber volume in the stand. 

The discrete equivalent to condition (8) is equation (9). It determines the optimal timber stock 

if a thinning at stand age 𝑡 is followed by an undisturbed growth interval  [𝑡, 𝑡 + ∆] before the next 

harvest. At the optimal timber stock, the impact of a marginally increased stand volume on the value 

right before the next harvest age (LHS) must be equal to the opportunity cost of harvesting today and 

investing the revenue at interest rate 𝑟 (RHS). 

  

𝑝(𝑡 + ∆)
𝜕𝑞(𝑡 + ∆, 𝑞𝑡)

𝜕𝑞𝑡
= 𝑝(𝑡)𝑒𝑟∆ 

(9) 

  

Appendix A sketches out a proof that both solutions are identical for ∆→ 0. The analytical 

advantage of the continuous solution is its independence from the problem of harvest timing. In the 

discrete case, the optimal harvest ages must be determined by a second optimality condition. 

However, because of fixed harvest costs, continuous thinning is predominantly of academical interest. 
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2.4.3 The Planting Model 

 

The optimization of stand establishment, in particular planting, is a third important application 

of problem (3). In a model by CHANG (1983), a planting density 𝑚 is introduced as a decision variable 

at cost 𝐶1 per seedling. With 𝐶0 as the cost of site preparation, the stand establishment costs are linear 

in 𝑚 with 𝐶𝑃(𝑚) = 𝐶0 + 𝐶1𝑚. The planting density also determines the stand’s timber stock 𝑞(𝑡,𝑚) 

after undisturbed growth up to age 𝑡. With a timber value function defined as 𝑣(𝑡) = 𝑝𝑞(𝑡,𝑚) with a 

constant timber price 𝑝, the 𝐿𝐸𝑉 becomes  

  

𝐿𝐸𝑉𝑃 =
−𝐶𝑃(𝑚) + 𝑝𝑞(𝑇,𝑚)𝑒

−𝑟𝑇

1 − 𝑒−𝑟𝑇
 

(10) 

  

The condition for optimal planting can be derived applying optimization problem (3) with 𝜎𝑃 =

{𝑚} and the land value formula (10). Solving yields the optimality condition for the planting density 

  

𝐶1 = 𝑒
−𝑟𝑇𝑝

𝜕𝑞(𝑇,𝑚)

𝜕𝑚
 

(11) 

  

At the optimal planting density 𝑚∗, the discounted impact of an additional seedling on the 

clear-cutting value must equal its planting cost.  

The impact of planting costs, i.e. site prepation and costs per seedling, timber price and 

interest rate on the optimal planting density and the rotation depend on the qualitative characteristics 

of the management environment and cannot be determined for all scenarios. Especially the impact of 

planting density on the annual volume increment and the capital cost of an additional seedling in 

comparison to its impact on the harvest value must be considered. However, higher variable planting 

costs tend to reduce the planting density and prolong the rotation. Higher site preparation costs always 

prolong the rotation, while the impact on the planting density may go both directions. Higher timber 

prices tend to increase the planting density and the timber volume maintained in the stand but the 

rotation might be shorter. The influence of the interest rate is suprisingly uncertain. Only one particular 

scenario can be determined showing both a reduction of planting density and rotation for higher 

interest rates. 
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2.4.4 The Uneven-aged Model 

 

Uneven-aged forest management differs significantly from even-aged forestry. Once a stand 

consisting of trees of different age is established, the questions of optimal planting and optimal clear-

cut age are not relevant any more. Instead, a forest owner concentrates on maintaining an optimal 

stand density and structure, keeping the stand area covered with trees at all times. CHANG (1981) 

introduced a basic model on uneven-aged management which is situated within the fundamental 

framework of the classical FAUSTMANN assumptions and, therefore, was added as a basic application 

to this dissertation. He simultaneously solves the problem of optimal equilibrium harvest timing and 

intensity for an uneven-aged forest stand using a static approach3. 

A stand is assumed with timber volume 𝑞 right before a harvest which reduces the timber stock 

to 𝑞0. After a growth period of 𝑡 years, the stand’s timber volume is assumed to be 𝑞(𝑡, 𝑞0) and the 

next harvest can be carried out. With a constant timber price 𝑝 and an interest rate 𝑟, the present 

value of this management becomes 

  

𝐹. 𝑉.= 𝑝[𝑞 − 𝑞0] +
𝑝[𝑞(𝑡, 𝑞0)−𝑞0]

𝑒𝑟𝑡 − 1
 

(12) 

  

with 𝐹. 𝑉. being the forest value, i.e., the combined value of land and trees. Instead of solving 

optimization problem (3) using the land expectation value, the owner of an uneven-aged forest must 

maximize the forest value for a management strategy 𝜎𝑈 = {𝑡, 𝑞0}. The conditions for optimal 

management are  

  

𝑝
𝜕𝑞(𝑡, 𝑞0)

𝜕𝑡
= 𝑟𝑝[𝑞(𝑡, 𝑞0) − 𝑞0] + 𝑟

𝑝[𝑞(𝑡, 𝑞0)−𝑞0]

𝑒𝑟𝑡 − 1
 

(13) 

  

and 

 

 

 
3 In contrast to the dynamic approach, the static model omits a possible long transition period from an arbitrary 
stand structure to an equilibrium structure by assuming that the equilibrium can be reached in only one cut. 
HAIGHT (1985) demonstrates under which conditions both approaches provide equivalent results. 
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𝑝
𝜕𝑞(𝑡, 𝑞0)

𝜕𝑞0
= 𝑝𝑒𝑟𝑡  

(14) 

  

Condition (13) determines the optimal cutting cycle 𝑡∗. The stand should be thinned when its 

value increment on the left hand side equals the opportunity cost from postponing the harvest on the 

right hand side. This cost consists of the interest which could be earned if the stand, i.e., trees and 

land, was sold before the harvest. The optimal timber volume right after thinning, 𝑞0
∗, must satisfy 

condition (14). Maintaining an additional timber unit in the stand can be interpreted as an investment 

of value 𝑝. In order to make a profit, a forest owner expects a discounted return on this investment, 

i.e. 𝑝
𝜕𝑞(𝑡,𝑞0)

𝜕𝑞0
𝑒−𝑟𝑡 , greater than 𝑝. Thus, the stand’s timber stock should be increased until the forest 

owners profit becomes zero. At this point, condition (14) holds with equality. 

Looking at both equations, it is obvious that changes in the timber price will not affect the 

optimal cutting cycle or stock level. Higher interest rates, however, will both reduce the length of the 

cutting cycle and the timber stock maintained in the stand. 
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3. Problem 

 

The determination of the optimal management strategy of even-aged forestry is often 

characterized as simple and easy to handle. In the model environments of the three even-aged  

FAUSTMANN-applications of section 2.4, this statement is true. The introduced models are easy to 

solve and provide meaningful solutions for optimal stand management. Moreover, the qualitative 

characteristics of the equilibrium state can be investigated in a comparative static analysis, e.g., the 

impact of timber prices or interest rates on the optimal clear-cut age (cf. JOHANSSON and LÖFGREN 

1985, p. 80 ff.; AMACHER et al. 2009, p. 27) or optimal planting density (cf. CHANG 1983). 

However, the models describe rather specific management situations within the wide range of 

even-aged forestry. First, the models are restricted to scenarios within the framework of fundamental 

assumptions of the FAUSTMANN world (cf. section 2.3). Perfect foresight and perfect market 

conditions are assumed. Second, each of the basic models depicts a scenario with a reduced set of 

decision variables. The rotation model (cf. section 2.4.1) describes a situation with clear-cut age as the 

only variable of choice. Optimized planting or thinning harvests are not part of the model. The thinning 

model (cf. section 2.4.2) also omits planting density as a decision variable and the model on optimal 

planting (cf. section 2.4.3) does not cover management scenarios with thinning harvests. Third, the 

applications focus on management environments with rather simple dependencies between the 

model variables, i.e., the set of qualitative assumptions (cf. section 2.3) is strongly restricted. For 

example, the thinning model depicts an age-dependent timber price while it is often rather influenced 

by tree dimension. In the rotation and the planting model, the timber price is even assumed to be 

constant. The interest rate is also assumed to be constant over time in all three models. The thinning 

model is restricted to scenarios with a homogeneous stand structure without differentiation between 

the trees. More simplifying assumptions could be named. 

Of course, the restriction of the model environment to simple management scenarios helps to 

get a clearer focus on a particular management question. In addition, the application of rather 

restrictive assumptions reduces a model’s complexity and allows for the exercise of a high degree of 

control over the problem solution and its analysis. DEEGEN et al. (2011) compare the approach to an 

experiment in a laboratory, in which the conditions can be precisely monitored and external 

dependencies excluded. Thus, the analysis of simple forest management models allows for the drawing 

of clear conclusions. However, the simplicity comes at the cost of narrowing the validity of the results. 

To stay within the picture of a laboratory: the impact of influencing factors within the laboratory can 

be precisely analyzed, but it remains questionable to which extent these findings also apply in more 

complex scenarios outside the enclosed environment. 
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Thus, the development of more general models covering a wider range of scenarios is 

desirable. This is equivalent to moving the experiment into a bigger laboratory in which a more 

complex environment can be analyzed. This objective was also discussed by Paul SAMUELSON in his 

influential book “Foundations of Economic Analysis”. He states, “There is,…, considerable advantage 

in discussing the problem at first in its full generality. The high degree of abstractness will be more 

than compensated for in the ease with numerous applications can be deduced as special cases.” 

(SAMUELSON 1983, p. 23). In the case of even-aged silviculture, there are numerous possibilities to 

include more general scenarios in the analysis. The resolution of the fundamental assumptions of the 

FAUSTMANN environment (cf. section 2.3), for example, would enormously increase the range of 

depicted scenarios. Stochastic influence factors on interest rates, timber prices or timber growth could 

be included to dissolve the restriction of perfect foresight. Borrowing or lending constraints could be 

a step to enlarge the focus beyond the assumption of a perfect capital market. The introduction of 

information asymmetry or transaction cost could contribute to describing more scenarios of the land 

market. In addition, the qualitative assumption of a homogeneous stand could be replaced with 

heterogeneous and density-dependent growth. The same holds for the relation between the net 

timber price and stand age, which is rather a dependency on tree dimension in many relevant 

situations. Furthermore, the three basic even-aged stand management components; stand 

establishment, thinning and clear-cut, could be modeled depending on each other yielding a combined 

management strategy 𝜎 = {𝑚, ℎ(𝑡), 𝑇}. All of these examples would increase the level of generality of 

the analysis of optimal stand management and would still include more simple scenarios as special 

cases in the sense of SAMUELSON. 

Unfortunately, SAMUELSON’s statement from a few years earlier, “If the solution is to be 

simple, the assumptions must be heroic!” (SAMUELSON 1976), already indicates a trade-off between 

controllability of a model and its universal applicability. The wider the range of depicted scenarios, the 

more dependencies or influencing variables need to be considered and, usually, the more limited 

becomes its suitability for a meaningful qualitative analysis. Often, the resolution of only one single 

assumption already increases the complexity to an unfavorable degree. The derivation of the 

optimality conditions might still be possible, but the analysis of the solution becomes too difficult. 

COORDES (2014b, p. 144), for example, demonstrates this problem in his study of the thinning problem 

in even-aged forest stand management. The introduction of heterogeneous growth on the single-tree 

level yields a meaningful harvest condition for each tree, the analysis of the comparative static effects, 

however, becomes ambiguous for most relevant scenarios. Another example can be found in 

TAHVONEN et al. (2001). They relax the assumption of a perfect capital market by introducing a 

borrowing constraint. Although they model a corner case with no borrowing possibility at all, the 

problem turns into a complex dynamic utility maximization with a discontinuous consumption 
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depending on the individual time preference of a forest owner. Moreover, a comparative analysis of 

the solution is only possible under further strict restrictions, e.g., in the direct neighbourhood of the 

FAUSTMANN rotation length, non-binding borrowing constraint or in case of a stationary rotation with 

moderate consumption.  

Looking at the difficulties of more general models, the research dilemma becomes obvious. It 

is very difficult, perhaps even impossible, to create universal models without facing the disadvantages 

of complexity. On the other hand, it is also impossible to apply strongly simplified models without also 

being confronted with a severely limited applicability. This problem is by no means restricted to the 

field of optimal even-aged silviculture. The general question is, how the analysis of a complex economic 

system can be simplified but still generate as generally applicable results as possible.  

The patchwork approach, introduced in the next section, tries to provide a suitable answer to 

this task. 
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4. Methodology 

 

A common way to cope with the dilemma discussed in the last section, is to create a rather 

general model framework but restrict the analysis to numeric example scenarios. This approach could 

be called a case study. It avoids the complexity of a qualitative analysis by simply calculating the 

optimal management strategy under specific numeric assumptions (cf. section 2.3). In addition, the 

characteristics of the management equilibrium are often investigated by a sensitivity analysis, which 

compares optimal solutions under various numeric specifications, e.g., different values for timber 

prices or interest rates. The calculation of example cases is a helpful way to visualize results or solve a 

specific numeric problem. However, the results must be interpreted with caution. Applied as a 

universal analysis, case studies could pretend generality where there is none. By definition, they face 

the major disadvantage of strongly restricted models in its most extreme form.  

Obviously, another way is to try to design simple but general models. SAMUELSON puts it this 

way: “A theory may be so general as to be useless. It is for the simple theories which have wide 

applicability that we must look.” (SAMUELSON 1983, p. 33). The generalized model by CHANG (1998), 

for example, can be regarded as an approach in this direction. The model applies a generalized 

FAUSTMANN formula, which allows external variables such as timber price, interest rate, stand 

establishment cost or even timber growth to vary in each rotation. Thus, the approach dissolves the 

assumption of identically repeated rotations and, thereby, covers a much wider range of possible 

forest management scenarios than the classical FAUSTMANN model. At the same time, the generalized 

approach is still well suited for analysis. It can also be applied to different questions of optimal stand 

management beyond the field of even-aged forestry (cf. CHANG 2020).  

However, given the long history of forest economic models, it seems unrealistic that simple 

but universal models can be found to cover all relevant stand management scenarios. A single model 

will always remain limited by the problem of increasing complexity if more scenarios and management 

questions are added to gain a greater degree of generality (cf. section 3). Thus, interpreted as a single 

model approach to achieve full understanding of a complex problem, SAMUELSON’s objective is not 

achievable. It rather must be understood as an invitation to create a multiverse of simple models with 

a maximum of controllable generality. However, this leads straight to the question of how these 

models can be combined to systematically analyze all aspects of a problem. 

The idea of model-dependent realism developed by HAWKING and MLODINOW (2010) offers 

an opportunity to answer this question. The concept tries to solve the problem that real-world 

observations often cannot be fully explained because the underlying reality is unknown, unobservable 
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or too complex. Then, theories, or models, about the actual influencing factors must be developed, 

which can sufficiently explain these observations. Often, however, different theories and, thus, 

different ideas about the underlying reality, might be conceivable. This is a common problem in 

modern theoretical physics, where rather abstract theories, like the string- or the M-theory, have been 

developed to explain the seemingly contradictory implications of relativity theory and quantum theory, 

which are often not even directly observable. Furthermore, it might be impossible to fully discover or 

understand the actual physical laws determining our universe (cf. Gödel’s incompleteness theorem in 

HOFSTADTER (1979)). As a result, many different theories and models exist next to each other without 

a possibility to find out which one describes the underlying reality correctly. 

According to model-dependent realism, a theory or model, i.e. a certain idea about the 

underlying reality, is valid if it is able to correctly predict all real-world observations within its scope. 

Thus, model-dependent realism focusses on the ability of a model to make correct predictions. This 

means if two theories or models with a different idea about the underlying reality both imply the same 

real-world observations, then both are equally valid if it is impossible to decide which one is correct. 

Consequently, two models with different but overlapping scope must predict the same observations 

for the overlap in order to be both valid. 

The last postulate provides a mechanism to connect two valid models with overlapping scope 

to study more aspects of the same problem. The model results of the overlapping scenarios can be 

used as a common reference point to evaluate the dependencies of changes in the model results and 

scenario extensions beyond the overlap. Because the resulting modeling compound covers a wider 

range of scenarios compared to each of the included models alone, it is also able to systematically, i.e., 

in relation to a reference, evaluate the influence of the scenario on the results for a larger 

environment. Thus, theoretically, the set of all existing observations within a certain field of interest 

could be explained by a combination of different overlapping theories and models. Like a patchwork, 

the partial scopes of the included models cover the underlying problem and form a combined theory 

to explain all observations. The idea of the patchwork approach is illustrated in Figure 1. 

Instead of applying a single general model which covers all aspects of a problem, the patchwork 

idea offers the possibility of using several, reasonably more simple, models to gain a unified 

understanding. This way, the approach is suitable to solve the trade-off problem discussed in section 

3 and is still in line with SAMUELSON’s idea of simple but general models. Moreover, the patchwork 

method is scalable. This means that models covering additional details or aspects of a problem can 

easily be added, as long as their predictions match the implications made by other models for 

overlapping scopes. Consequently, the precision of the whole system increases with the number of 

included models.  
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Figure 1     The idea of the patchwork approach. 

 

The patchwork approach offers a framework to combine and structure a set of models to form 

a general explanatory theory. In this dissertation, it will be applied to access the problem of optimal 

even-aged forest stand management. Thereby, the different optimal stand management strategies are 

considered as observations and all included stand management models must imply the same strategies 

for overlapping scenarios. However, in a qualitative study, it is not possible to compare two strategies 

from two different models directly. Thus, this dissertation defines two management strategies to be 

identical if the overlapping assumptions are identically represented in the first order conditions of the 

decision variables. Furthermore, both strategies must show the same reaction on changes in the 

impact factors timber price and interest rate. 

The applied patchwork consists of four models which cover extended aspects of classical even-

aged stand management. First, HALBRITTER and DEEGEN (2015) provided an analysis of a combined 

stand management strategy on optimal planting density, optimal thinning and optimal clear-cut. This 

model will be referred to as The Combined Model. In the second model, The Double-Cohort Model 

(HALBRITTER 2015), the possibilities of thinning as a measure to trigger natural regeneration are 

investigated extending the scope in the direction of uneven-aged stand management. The 

Heterogeneous Stand Model (HALBRITTER 2020) studies the thinning decision in a vertically structured 

stand. The last model (HALBRITTER et al. 2020) analyses the relation between thinning harvests and 

the stability of a forest stand in the presence of natural hazard risk. The model will be referred to as 

The Natural Risk Model.  

Each of the included models contains at least one of the three basic elements of even-aged 

stand management, i.e., stand establishment, thinning and clear-cut age, as a decision variable. This 
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allows for the application of a two-stage patchwork approach. In the first stage, the models are 

combined as a patchwork covering the complete cycle of even-aged stand management and the analyis 

can be separated by management component. This is illustrated in Figure 2. The figure depicts a 

stylized timber stock path of an even-aged rotation with planting an initial volume 𝑞0, an age-interval 

of undisturbed growth, [0, �̃�], stock reduction by thinning after �̃� and a clearcut at age 𝑇. It also shows 

how these management decisions are depicted by the patchwork models. The combined model’s 

management strategy contains all three elements of even-aged stand management. It, therefore, 

allows for the investigation of dependencies between the decision variables. The double-cohort model 

combines the decisions thinning and stand establishment showing also characteristics of uneven-aged 

management, while the heterogenous stand model focusses solely on the thinning intensity of one 

particular thinning. Finally, the natural risk model lays its focus on the management components 

thinning and clear-cut. 

 

 

Figure 2     The patchwork approach of even-aged stand management by management components. 

  

Because of the separation of the analysis by management component, it is usefull to enlarge 

the patchwork by including the basic applications introduced in section 2.4. This offers two major 

advantages. First, each basic model covers a simplified environment which offers a good reference 

point for the analysis of extended scenarios of overlapping models. Second, the inclusion of established 

and well known solutions to particular management problems also ensures an externally proven 

quality for the core scenarios of the patchwork. Table 1 shows which of the extended models of the 

patchwork might share an overlapping model scope with the basic models of section 2.4. 
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Table 1     The first dimension of the patchwork approach. 

  The Combined Model 
The Double-Cohort 

Model 
The Heterogeneous 

Stand Model 
The Natural Risk 

Model 

Ev
e

n
-a

ge
d

 The Planting Model x x   

The Thinning Model x x x x 

The Rotation Model x x  x 

The Uneven-aged Model  x   

      

 

Within the patchwork analysis of each of the management components in the first stage, the 

set of assumptions of each included model forms a second and more detailed dimension of the 

patchwork approach. Generally, this dissertation considers assumptions on foresight and market 

conditions (cf. fundamental FAUSTMANN assumptions in section 2.3), stand establishment, the stand’s 

age and vertical structure, the timber growth, the timber price process and the interest rate. The model 

can either be assumed to be fully deterministic implying perfect foresight on all exogeneous variables, 

or allow for stochastic shocks. Market conditions will be distinguished in either perfect or imperfect. 

Stand establishment can be determined exogeneous, i.e., as fixed planting cost, or as an endogeneous 

management decision. The stand’s age structure can be even-aged or uneven-aged. The vertical 

structure of a forest stand is determined by the assumption of homogeneity or heterogeneity, allowing 

the trees of a stand to vary in growth. In addition, timber growth can be assumed stand density-

dependent or purely age dependent. The timber price is either modeled constant, evolving with each 

rotation or dependent on stand age or tree dimension. Lastly, the interest is assumed to be constant 

or evolving with each rotation. 

The combined model is based on a rather common set of assumptions: perfect foresight, 

perfect markets, even-aged and homogeneous stand structure, stand-density-dependent timber 

growth, an age and dimension-dependent price process and a constant interest rate. The double-

cohort model dissolves the assumption of an even-aged stand and extends the model in the direction 

of uneven-aged forestry with a second age class introduced by natural regeneration and planting. In 

addition, the model also allows for evolving timber prices and interest rates. Again, the model assumes 

perfect foresight and market conditions. The timber growth is homogeneous and density-dependent 

this time, however, depending only on the density of the shelter cohort. The assumption of 

homogeneous growth is dissolved in the heterogeneous growth model. It models a vertically 

structured stand with a dominant and a suppressed even-aged class of trees. The model remains 

deterministic without market imperfections. Planting, as well as the constant discount rate, are 

exogenous. The timber price process allows constant, age-dependent and dimension-dependent 

scenarios. The natural risk model includes risk in the form of natural hazard and, thereby, expands the 
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model’s scope beyond scenarios with perfect foresight. The assumption of perfect market conditions 

is kept, as well as the exogenously given stand establishment, even-aged management, density-

dependent homogeneous growth, a timber price determined by stand age and a constant interest rate. 

Table 2 summarizes the set of assumptions considered in the second stage of the patchwork 

and highlights the model’s important extension compared to the commonly used set-up.  

 

Table 2     The second dimension of the patchwork approach by model assumption. 

 

Fundamental 
assumptions Stand 

establishment 
Stand structure 

Timber 
growth 

Timber price 
Interest 

rate Perfect 
market 

Perfect 
foresight 

The Planting Model yes yes endogeneous Even-aged 
Age- and 
Density-

dependent 
Constant Constant 

The Thinning Model yes yes exogeneous 
Even-aged, 

homogeneous 

Age- and 
Density-

dependent 

Age-
dependent 

Constant 

The Rotation Model yes yes exogeneous Even-aged 
Age- 

dependent 
Constant Constant 

The Uneven-aged 
Model 

yes yes  Uneven-aged 
Density-

dependent 
Constant Constant 

The Combined 
Model 

yes yes endogeneous 
Even-aged, 

homogeneous 

Age- and 
Density-

dependent 

Age-
dependent, 
Dimension-
dependent 

constant 

The Double-Cohort 
Model 

yes yes endogeneous 
Uneven-aged, 
homogeneous 

Age- and 
Density-

dependent 

Age-
dependent, 

evolving 
evolving 

The Heterogeneous 
Stand Model 

yes yes exogeneous 
Even-aged, 

heterogeneous 

Age- and 
Density-

dependent 

Constant, Age-
dependent, 
Dimension-
dependent 

constant 

The Natural Risk 
Model 

yes no exogeneous 
Even-aged, 

homogeneous 

Age- and 
Density-

dependent 

Age-
dependent 

constant 

        
 

Both the management-based first dimension and the assumption-based second dimension of 

the patchwork approach must be taken into account. For example, it is useless to analyze the overlap 

of two models with the assumption of density-dependent timber growth, if one model includes the 

management component thinning and the other one does not. On the other hand, two models 

including thinning can be expected to yield different solutions if one assumes a constant timber price 

while the other one depicts a density-dependent price scenario. 
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In the next chapter, the combined model will be described, analyzed and the impact of a 

combined management strategy investigated compared to the basic even-aged models. After that, the 

three problem extensions on heterogeneous growth, uneven-aged forestry with natural regeneration 

and natural risk are presented. Their optimal management strategies are investigated and compared 

to the basic referencing models according to the two dimensions of the patchwork approach. Finally, 

the results and suitability of the patchwork aproach to analyse optimal even-aged stand management 

will be evaluated. 
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5. The Combined Model 

 

This section summarizes the results of HALBRITTER and DEEGEN (2015)4, who provided an 

even-aged stand management model incorporating the components planting, thinning and clear-cut 

as endogeneous variables of choice for a forest owner. Thus, the model contains elements from the 

three even-aged basic FAUSTMANN applications introduced in section 2.4. However, instead of looking 

isolatedly at planting, thinning and clear-cuttting, an optimal combined management strategy was 

analyzed.  

 

5.1 Model 

 

In the combined model, a rotation consists of planting an initial volume 𝑞0 at cost 𝐶(𝑞0), 

thinning harvests during an age interval 𝑡 ∈ (0, 𝑇) yielding revenues 𝑝(𝑡, 𝑞0)ℎ(𝑡) with an age- and 

dimension-dependent timber price 𝑝 and thinning volume ℎ and a clear-cut of the stand’s 

merchantable timber stock 𝑞(𝑇) at age 𝑇 with revenues 𝑝(𝑇, 𝑞0)𝑞(𝑇). Thus, the stand’s timber volume 

development corresponds to the stylized stock path depicted in Figure 2. Under the classical 

FAUSTMANN framework with perfect foresight and perfect information, the land expectation value of 

the infinite cycle of identically repeated rotations with constant discount rate 𝑟 (cf. section 2.2) 

becomes 

  

𝐿𝐸𝑉𝑐 =
−𝐶(𝑞0) + ∫ 𝑝(𝑡, 𝑞0)

𝑇

0
ℎ(𝑡)𝑒−𝑟𝑡𝑑𝑡 + 𝑝(𝑇, 𝑞0)𝑞(𝑇)𝑒

−𝑟𝑇

1 − 𝑒−𝑟𝑇
 

(15) 

  

The planting cost 𝐶 depends positively on the planted volume, i.e., 
𝜕𝐶(𝑞0)

𝜕𝑞0
> 0 (cf. section 

2.4.3). The stand’s timber stock follows an age- and density-dependent first order differential 

equation, �̇�(𝑡) = 𝜙(𝑡, 𝑞) − ℎ(𝑡) (cf. section 2.4.2), with the growth function 𝜙 depending negatively 

on stand age, i.e., 
𝜕𝜙(𝑡,𝑞)

𝜕𝑡
< 0, positively on timber stock below a critical density �̂�, i.e., 

𝜕𝜙(𝑡,𝑞)

𝜕𝑞
> 0|

𝑞<�̂�
, 

and negatively above �̂�, i.e., 
𝜕𝜙(𝑡,𝑞)

𝜕𝑞
≤ 0|

𝑞≥�̂�
 (cf. Figure 3). Thus, �̂� reprensents a critical stock level, 

 
4 For a full description of the model, the mathematical derivations and the analysis, please see HALBRITTER and 
DEEGEN (2015). 



25 
 

above which competition between the trees starts to decrease the stand’s timber increment (cf. 

AMACHER et al. 2009, p. 80). 

 

 

Figure 3     The dependency of timber growth and timber stock.  

 

The timber price depends positively on stand age, i.e., 
𝜕𝑝(𝑡,𝑞0)

𝜕𝑡
> 0, with the common 

assumption of increasing single tree dimension and decreasing harvest cost as the trees get older. In 

addition, the negative effect of density on tree dimension is also reflected in the timber price with 

𝜕𝑝(𝑡,𝑞0)

𝜕𝑞0
< 0. This assumption solely reflects impact of dimension but not the influence of timber 

quality.  

Formally, the forest owner’s goal is to find a management strategy 𝜎𝐶 = {𝑞0, ℎ(𝑡), 𝑇}, which 

maximizes the land expectation value under some self-evident constraints for planting volume, growth 

and budget. The dynamic optimization problem can be expressed as 

  

𝑚𝑎𝑥
𝜎𝐶

𝐿𝐸𝑉𝑐  

s.t. 

𝑞0 > 0 

�̇�(𝑡) = 𝜙(𝑡, 𝑞) − ℎ(𝑡) 

0 ≤ ℎ(𝑡) ≤ 𝑞(𝑡) 

(16) 
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5.2 Optimal Management 

 

Solving problem (16) yields conditions (17), (18) and (19), which determine the optimal stand 

management strategy of the combined model, i.e., 𝜎𝐶∗ = {𝑞0
∗ , ℎ∗(𝑡), 𝑇∗}. 

  

−𝑒−𝑟𝑡𝑝(�̃�, 𝑞0)ℎ(�̃�, 𝑞0)
𝜕�̃�

𝜕𝑞0
+∫𝑒−𝑟𝑡

𝜕[𝑝(𝑡, 𝑞0)ℎ(𝑡, 𝑞0)]

𝜕𝑞0

𝑇

𝑡

𝑑𝑡

+ 𝑒−𝑟𝑇
𝜕[𝑝(𝑇, 𝑞0)𝑞(𝑇, 𝑞0)]

𝜕𝑞0
=
𝜕𝐶(𝑞0)

𝜕𝑞0
 

(17) 

  

𝜕𝑝(𝑡, 𝑞0)

𝜕𝑡
+ 𝑝(𝑡, 𝑞0)

𝜕𝜙(𝑡, 𝑞)

𝜕𝑞
= 𝑟𝑝(𝑡, 𝑞0) 

(18) 

  

𝑝(𝑡, 𝑞0)𝜙(𝑇, 𝑞(𝑇)) +
𝜕𝑝(𝑡, 𝑞0)

𝜕𝑡
𝑞(𝑇) = 𝑟𝑝(𝑇, 𝑞0)𝑞(𝑇) + 𝑟𝐿𝐸𝑉

𝑐  
(19) 

  

First, it must be noted, that optimal stand management in the combined model requires the 

simultaneous fulfillment of all three conditions. Thus, all three management variables planting, 

thinning and clear-cutting depend on each other and their optimal specification cannot be discussed 

independently, i.e., 𝑞0
∗(ℎ∗, 𝑇∗), ℎ∗(𝑡, 𝑞0

∗ , 𝑇∗) and 𝑇∗(𝑞0
∗ , ℎ∗). However, it is helpful for the 

understanding of the general drivers of the optimal management decision by looking at the structure 

and meaning of each condition isolatedly. Although equations (17), (18) and (19) are displayed in 

chronological management order, it makes sense from a didactic point of view to look at the thinning 

condition first. 

 Solving equation (18) provides the stand’s optimal timber stock 𝑞∗(𝑡) for each stand age 𝑡. 

Apparently, the stucture and interpretation of (18) is identical to condition (8) of the isolated thinning 

problem introduced in section 2.4.2. On the optimal volume path, the revenue from maintaining 

additional stand volume (LHS) must be equal to its capital cost (RHS). However, in the combined model, 

density influences the optimal timber stock not only via the growth function 𝜙 but also via the planting-

density dependent timber price. Thus, the optimal thinning strategy ℎ∗ also depends on the planting 

strategy 𝑞0. The optimal thinning volume ℎ∗ can be derived directly by comparing the optimal and the 

current timber volume, i.e. ℎ∗(𝑡) = 𝑚𝑎𝑥{𝑞(𝑡) − 𝑞∗(𝑡); 0}. 
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HALBRITTER and DEEGEN (2015) show, that under some reasonable additional assumptions5, 

the optimal timber stock 𝑞∗ is monotonically decreasing with stand age as the stand’s value growth 

declines. This means, a forest owner should gradually reduce the opportunity cost of bound timber 

capital. Furthermore, the timber stock of an undisturbed stand is a monitonically increasing function 

of stand age in the domain relevant to forestry. Thus, an intersection with the decreasing optimal stock 

path at some stand age �̃� > 0 is likely. In this case, �̃� becomes the age of the first thinning. From the 

monotony of 𝑞∗, it can also be concluded, that ℎ∗(𝑡) > 0 for stand ages above �̃�. This follows, because 

the timber stock harvested during thinning is, at the optimal stock path 𝑞∗, the sum of timber growth 

and the decline of the optimal stock path, i.e., ℎ∗(𝑡) = 𝜙(𝑡, 𝑞∗) − �̇�∗(𝑡). Furthermore, in scenarios 

depicted by the combined model, it is never optimal to schedule thinnings before the timber price 

turns positive, because the age of the first thinning, i.e., intersection of actual stand volume and 

optimal stock path, can be determined by the planting density 𝑞0. This is reasonable, because in the 

absence of quality effects on timber prices, precommercial thinnings are meaningless. However, at this 

point it must be mentioned that the dependency of optimal planting, thinning and rotation length 

could also lead to a scenario of a clear-cut before an intersection of 𝑞 and 𝑞∗, and, therefore, no 

thinnings at all.  

Condition (19) determines the optimal rotation length or, equivalently, the optimal clear-cut 

age 𝑇∗. The stand’s final harvest should be postponed until the stand’s value increment from price and 

timber growth (LHS) is greater than its opportunity cost from the capital bound in standing timber and 

property (RHS). As such, the meaning and structure of the optimality condition in the scenario of the 

combined model is rather equivalent to the FAUSTMANN-PRESSLER-OHLIN theorem, i.e., condition (5) 

of the isolated rotation problem introduced in section 2.4.1. However, the inclusion of planting density 

and thinnings as additional decision variables indicates deviations in the individual components and, 

therefore, in the optimal clear-cut age. 

CHANG (1983) finds the optimal planting density at a level at which the cost of planting an 

additional seedling equals its discounted value impact (cf. section 2.4.3). In the scenario of the 

combined model, optimality condition (17) generally follows the same reasoning. The cost of 

marginally increasing the planted volume 𝑞0, comparable to the cost of planting one additional 

seedling in the model by CHANG, can be found on the right hand side. The opposing left hand side 

shows the revenue impact of a marginal increment of 𝑞0. Different to the model by CHANG, which 

does not consider thinnings and the value impact of an addition seedling is received solely when the 

stand is clear-cut, the combined model differentiates three revenue components. First, the planting 

density impacts the age of the first thinning �̃�. Marginally increasing 𝑞0 increases the stand’s volume 

 
5 The density impact on 

𝜕𝜙

𝜕𝑞
 is assumed to be dominant compared to the age impact, i.e., |

𝜕2𝜙

𝜕𝑞2
| > |

𝜕2𝜙

𝜕𝑞𝜕𝑡
|. 
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and may lead to an earlier intersection with the optimal stock path 𝑞∗ and, thus, possibly additional 

thinning revenue 𝑝(�̃�, 𝑞0) ℎ(�̃�). However, via the price process, 𝑞∗ also depends on 𝑞0. It can be shown 

using condition (18) that the stand’s optimal stock level shifts upwards for marginal increments in 

planting. Thus, �̃� is influenced by two opposing effects and the direction of 
𝜕𝑡

𝜕𝑞0
 is not clear. 

Consequently, the first component of (17) might also represent a loss of thinning revenue. In general, 

the same ambiguous result holds for the other two components on the right hand side of condition 

(17). The terms represent the reaction of thinning and clear-cutting revenues on changes of 𝑞0. Again, 

this includes the dependency of optimal timber volume path and planting which influences the 

thinning harvest and clear-cutting volume. In addition, the timber price depends negatively on higher 

planting volume. Thus, the direction of the two revenue terms remains uncertain for most scenarios. 

As the look at the conditions of optimal management shows, the integrated model set-up with 

the three decision components planting, thinning and clearcutting influencing each other, limits the 

possibility to draw clear conclusions on the model’s behaviour. However, in order to gain more 

understanding, the impact of planting density on thinning and clearcutting can be investigated, i.e., 

ℎ∗(𝑡, 𝑞0) and 𝑇∗(𝑞0).  

From condition (18) an upward shift of the optimal stock level 𝑞∗ can be concluded for marginal 

increments in planting density. In addition, the optimal stock path becomes steeper. Thus, there is 

defintely an impact on the thinning volume ℎ. It can be shown using ℎ∗(𝑡) = 𝜙(𝑡, 𝑞∗) − �̇�∗(𝑡), that the 

reaction of ℎ∗ depends on the stand’s stock level being below or above the density-critical volume �̂� 

(cf. Figure 3). Below �̂�, the optimal thinning volume increases, above �̂� the impact remains ambiguous. 

However, these relations only occur in scenarios with planting-density dependent prices. Otherwise, 

the optimal volume path remains unchanged for higher planting volumes. In this case, increments in 

planting density only decrease the stand age of the first thinning which yields a higher overall thinning 

revenue. 

As HALBRITTER and DEEGEN (2015) show, the impact of planting density on the rotation length 

also occurs only in case of a planting-dependent price process. For timber prices independent of 𝑞0, 

the rotation period is not influenced by the planting decision. In a scenario of density-dependent 

timber prices, however, it can be shown that the impact of marginal changes in 𝑞0 on the optimal clear-

cut age 𝑇 depends on the stand’s volume growth rate at the end of the rotation. For growth rates 

greater than the interest rate, i.e., 
𝜙

𝑞
|
𝑇
> 𝑟, the rotation period increases, while it decreases for growth 

rates with 
𝜙

𝑞
|
𝑇
< 𝑟. If the growth rate is equal to the interest rate, the planting volume does not 

influence the rotation length directly. 
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Table 3 summarizes the impact of the planting density. 

 

Table 3     The influence of planting density on the optimal timber stock, thinning and rotation. 

 𝒅𝒒∗ 𝒅𝒉∗ 𝒅𝑻∗ 

𝒅𝒒𝟎  > 0 

𝑞 ≤ 𝑞 > 0 
𝜙

𝑞
|
𝑇

> 𝑟 < 0 

𝑞 > 𝑞 ambiguous 
𝜙

𝑞
|
𝑇

< 𝑟 > 0 

      

 

5.3 Impact of Timber Price and Interest Rate 

 

Section 5.2 already highlighted the high complexity associated with the analysis of the 

influence of planting density. Thus, it is not surprising, that no meaningfull impact of timber price and 

interest rate on the optimal planting volume can be extracted from condition (17). Unfortunately, this 

also prevents the comparative analysis of the combined scenario with recursive relations between the 

decision variables. However, the equation determining the optimal timber stock, equation (18), can 

isolatedly be investigated for marginal changes of 𝑝 and 𝑟. For increased interest rates, the cost of 

maintaining bound timber capital also increase. To balance this effect, the optimal timber stock path 

must be reduced to a lower level. The same holds for situations with higher timber prices, in which the 

decreasing price growth rate causes the downward shift in timber volume. From the reaction of the 

stand’s optimal timber stock on changes of timber price or interest rate, the impact on the optimal 

thinning volume ℎ∗ can be derived using ℎ∗(𝑡) = 𝜙(𝑡, 𝑞∗) − �̇�∗(𝑡). For stock levels below the 

competition critical volume �̂� (cf. Figure 3), the thinning harvest declines in cases of higher timber 

prices or interest rates. For stand volumes above �̂� the impact remains ambiguous. Lastly, the rotation 

length 𝑇 shows the expected tendency. If the price level or interest rate increases, the stand should be 

clear-cut earlier because the effect of a decreased price growth rate or higher opportunity cost of 

maintaining timber capital must be considered. However, this result is also restricted to a isolated 

analysis of the first order condition (19). 

Table 4 summarizes these results. 
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Table 4     The influence of timber price and interest rate on the optimal planting volume, timber 
stock, thinning and rotation. 

 𝒅𝒒𝟎
∗  𝒅𝒒∗ 𝒅𝒉∗ 𝒅𝑻∗ 

𝒅𝒑 ambiguous < 0 
𝑞 ≤ �̂� < 0 

< 0 
𝑞 > �̂� ambiguous 

𝒅𝒓 ambiguous < 0 
𝑞 ≤ �̂� < 0 

< 0 
𝑞 > �̂� ambiguous 

     

 

5.4 Discussion in Comparison to the Basic FAUSTMANN Applications 

 

The main characteristic of the combined model is the inclusion of all three basic elements of 

even-aged stand management, i.e. planting, thinning and clearcutting age, as decision variables of a 

forest owner. Despite this structural difference, the model is based on almost the same set of 

assumptions on foresight, markets, stand structure, timber growth, timber price and interest rate as 

the three FAUSTMANN applications of section 2.4. Thus, differences in the optimal management 

strategy are not expected to originate from the set of assumptions but from the structural model set-

up, i.e., the dependencies between the decision variables in the combined model. Therefore, the 

combined model is especially suitable to investigate the influence of these dependencies on the 

optimal management strategy in comparison to more simplified studies. 

 

Optimal Timber Stock and Thinning 

 

In contrast to the basic thinning model of section 2.4.2, the combined model assumes a 

relation between timber price and planting density to reflect the impact of density on tree dimension. 

Despite this difference, a look at both conditions for the optimal timber stock path, equations (8) and 

(18), reveals the structural similarity. Moreover, restricting the general set-up of the combined model 

to scenarios with purely age-dependent timber price, the first order conditions become identical and, 

with it, the optimal timber stock paths also become identical. The same holds for the reaction of the 

stand’s optimal timber volume on changes in the external impact factors timber price and interest rate. 

Thus, the scenario of the basic thinning model is included in the set of management environments 

described by the combined model and, according to model-dependent realism and the patchwork 

approach, both models are equally valid in the overlap. The cumulative thinning quantities, however, 

will differ if the forest owner chooses another planting density in his combined management strategy 
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compared to the externally given density of the basic thinning model. Thinning becomes necessary if 

the actual stand timber volume is above the desired optimal path (cf. section 5.2). Thus, there might 

be no thinning at all if the planting density is set to such a low level that the timber stock does not 

meet its optimal course before the clear-cut. If the planting density is set to a higher level compared 

to the isolated thinning model, the optimal volume path will be reached earlier and the accumulated 

thinning volume increases. However, once the optimal density is reached, the thinning harvests of both 

models as well as the stand’s timber stock at clear-cut, are identical. As in the basic thinning model, 

the chosen clear-cut age has no impact on the thinning decision. The combined model also shows, that 

thinnings are not optimal if the timber price is negative. If planting density is a decision variable for the 

forest owner, the intersection of the actual timber stock with the optimal path, i.e., the stand age of 

the first thinning, can be scheduled to an age with positive timber price by choosing a suitable planting 

strategy. 

The inclusion of scenarios with a planting density-dependent timber price, changes the 

dependencies between the decision variables drastically. Due to the price process, a forest manager’s 

choice on the planting density directly enters the condition determining the optimal timber stock, 

equation (18). If the planting density increases, the timber stock path shifts to a higher level (cf. Table 

3). Thus, if a forest manager plants more trees compared to the basic thinning model, a higher stand 

volume must be maintained. In case of an interior thinning solution, i.e., a situation without thinning 

is not optimal, the stand volume at the end of the rotation increases. This also influences the clear-

cutting decision. But also the stand age of the first thinning is likely to change if the timber stock path 

shifts. However, not only the optimal timber stock level itself is affected by the planting density, but 

also its shape. Therefore, the harvest quantities change once the optimal stand volume is met. The 

impact of planting on the thinning harvest can head either direction depending on the actual timber 

stock level being above or below the increment maximum (cf. Table 3). Again, the choice of the clear-

cutting age does not influence the thinning decision. 

As discussed in section 5.3, the impact of changes in interest rate or timber price is too complex 

to be evaluated in the combined strategy. However, looking isolatedly at condition (18), the reaction 

of the combined set-up is identical to the basic thinning model. Both, a higher level or interest rate or 

timber price, reduces the stand’s stock level (cf. Table 4). For scenarios with no or only a weak impact 

of planting density on the stand’s optimal stock path, i.e., planting-independent timber price, these 

results are also valid in a combined view of all three decisions of the stand management strategy. 
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Optimal Planting 

 

Setting the thinning harvest and the increment of the timber price to zero, the combined 

model depicts exactly the same management environment as the basic model on planting density by 

CHANG (1983) introduced in section 2.4.3. Thus, the combined model is able to describe the simplified 

environment of the planting model. In the patchwork approach, both models should find the same 

optimal management strategy with the same characteristics in order to be valid for overlapping 

scenarios. Applying the simplified set-up to the first order condition of optimal planting in the 

combined model, equation (17), the condition reduces to equation (20), which is equivalent to the FOC 

of optimal planting in the basic planting model (cf. equation (11)). Thus, the behaviour of both models 

must also be identical under these assumptions. 

  

𝑒−𝑟𝑇𝑝
𝜕𝑞(𝑇, 𝑞0)

𝜕𝑞0
=
𝜕𝐶(𝑞0)

𝜕𝑞0
 

(20) 

  

After confirming the validity of the combined model for the simplified scenario, the influence 

of adding thinning harvests can be isolated. In the analysis of management scenarios with thinning 

harvests and constant timber price, the impact of the planting density on the age of the first thinning 

must be taken into account. It is reasonable to conclude that higher planting density will trigger 

thinnings at an earlier age. However, in scenarios with constant or even age-dependent timber prices, 

the optimal timber stock path and, thus, the thinning harvest, remains independent of the initial 

density with 
𝜕ℎ(𝑡)

𝜕𝑞0
= 
𝜕𝑞(𝑡)

𝜕𝑞0
= 0 for 𝑡 ≥ �̃�. Thus, according to the resulting first order condition, equation 

(21), the impact of density on the first harvest must be compared with its marginal cost to make the 

optimal planting decision. Therefore, the optimal management strategy changes entirely compared to 

the scenario without thinning. Condition (21) also provides an opportunity to evaluate the influence 

of higher variable planting cost. The influence on planting density depends on the second order 

derivative of the first thinning age, which might go either direction. Both higher or lower planting 

density can be the result. In the basic planting model by CHANG (1983), there is a tendency to reduce 

the planting density. However, not all scenarios present a clear decision. 

  

−𝑒−𝑟𝑡𝑝ℎ(�̃�)
𝜕�̃�

𝜕𝑞0
=
𝜕𝐶(𝑞0)

𝜕𝑞0
 

(21) 
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As for the comparison of the thinning decision, the combined analysis becomes rather complex 

in environments with planting-density dependent timber price. To determine the optimal planting 

density, its influence on the first thinning age, the cumulative thinning revenues and the clear-cut 

revenues must be considered (cf. equation (17)). The revenue impact consists of a direct component 

via the timber price and the indirect influence on the harvest quantities. The resulting effects are 

mostly ambiguous for the general scenario. The age of the first thinning, for example, might decrease 

for higher planting densities, because the actual timber stock is higher and might meet the optimal 

timber volume path at an earlier age. However, the optimal timber stock also increases (cf. Table 3), 

which causes the age of the first thinning to rise. Thus, the direction of the first thinning age cannot be 

determined without further assumptions. The same reasoning can be applied for the impact on the 

revenues from thinning and clear-cutting. While the timber price decreases for higher planting density, 

the harvest quantities might be higher, as Table 3 indicates. Again, the overall influence remains 

unclear. 

 The high complexity associated with the planting decision also shows up in the analysis of the 

impact of changes in the timber price or the interest rate. Not even the isolated view on the planting 

condition, equation (17), yields unambiguous results. However, with a look at the suprisingly case-

dependent results of the comparative static analysis of the basic model by CHANG (1983), especially 

for the interest rate, this outcome of the combined view could be expected. 

 

Optimal Rotation 

 

The conditions on optimal clear-cut age in the combined model, equation (19), and the basic 

rotation problem of section 2.4.1, the famous FAUSTMANN-PRESSLER-OHLIN theorem, equation (5), 

are structurally similar. The revenue from postponing the harvest must be compared to the implied 

capital cost. If the general formulation of the combined model is restricted to a scenario matching the 

simplified environment without thinning, constant timber price and exogeneous planting decision, 

both conditions become identical. Consequently, the combined model and the rotation model provide 

the same management strategy for overlapping scenarios and are valid in the sense of model-

dependent realism. 

If planting density and thinning become decision variables, they impact the optimal clear-cut 

solution in different ways. The planting density enters the first order condition for the optimal clear-

cut age only indirectly via the land expectation value under a constant or age-dependent timber price 

because the optimal timber stock path is independent as discussed above. In addition, this relation is 
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rather weak. In equilibrium, the 𝐿𝐸𝑉 is predetermined by the land price, which ideally incorporates 

the optimal management strategy under perfect markets. In this view, the capital cost of land would 

be determined externally and planting density would have no impact on the clear-cut age in scenarios 

with thinning. This idea could also be applied for the indirect impact of thinning harvests on the capital 

cost of land. However, thinning also has a direct influence on the clear-cut age because it determines 

the stand’s timber stock at the end of the rotation. Unfortunately, the direction of the influence is 

case-dependent. Intensified thinning, for example, reduces the timber volume and the capital cost of 

standing timber. At the same time, the timber volume increment might be higher or lower, depending 

on the stand’s stock level being below or above the increment maximum (cf. Figure 3). 

While the influence of thinning does not change, the impact of planting density on the optimal 

rotation becomes much stronger if it enters the timber price function. Now, the value of standing 

timber and, with it, its capital cost, depend directly on the planting decision. The same holds for the 

stand’s value increment. Furthermore, planting density has an influence on the timber volume at the 

end of the rotation because it impacts the timber stock path and the thinning decision. As a result, 

planting also causes an indirect effect on timber value increment and capital cost. Therefore, the 

influence of planting density on clear-cut age is extremely complex. It can move both directions 

depending on the relation between timber growth rate and interest rate (cf. Table 3). This relation also 

prevents the analysis of increased planting cost in the combined scenario. The basic rotation model 

expects the clear-cut age to decrease for higher cost of stand establishment because the capital cost 

of land decrease. In the combined model, however, the planting density will also react on the cost 

increment causing the ambiguous effects discussed above. 

The isolated comparative analysis of the optimality condition (19) on changes in the timber 

price level or the interest rate shows the same behavior as the basic rotation model of section 2.4.1. 

Higher timber price or interest rate both reduce the optimal clear-cut age. In a combined view including 

planting-density dependent timber price and dependencies between the decision variables, the impact 

might be different. However, because of the weak connection between planting density and clear-

cutting, scenarios with thinning but a timber price independent of planting most likely still show the 

negative relationship found in the isolated analysis. 
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6. Extensions 

 

6.1 Uneven-Aged Extension: The Double-Cohort Model 

 

Section 6.1 gives a summary of the results of HALBRITTER (2015), who expands the analysis of 

even-aged stand management in the direction of uneven-aged forestry6. The analysis introduces a 

double-cohort model, which contains both even- and uneven-aged elements. It combines the thinning 

decision with the establishment of a new age class by introducing natural regeneration (cf. Figure 2). 

In addition, the static approach to timber price and interest rate is extended to allow different timber 

price and interest rate levels in each rotation.  

However, before introducing the model and its results, a general section on even- and uneven-

aged stand management highlights the concept and briefly reviews the forest economic literature on 

the field. 

 

6.1.1 Even-Aged and Uneven-Aged Stands 

 

In even-aged management, a forest stand is composed of trees of similar age. The emergence 

of only one age class is usually the result of a management plan in which a forest stand is established 

by planting and clearcutting at the end of the rotation period (e.g. AMACHER et al. 2009, p. 12 ff.). This 

system goes back to the roots of classical forestry and the development of the idea of sustainable 

forest management in the 17th century (cf. CARLOWITZ 1713; PFEIFFER 1781; HARTIG 1791; COTTA 

1817). Foresters were obliged to ensure high timber yields and a steady supply and forests composed 

of even-aged stands offer a plannable and relatively simple structure to achieve this goal. Gradually 

thinning by selectively cutting trees, however, was seen as not desirable (cf. DEEGEN and SEEGERS 

2011).  HUNDESHAGEN (1826) even introduced the theoretical concept of the normal forest in which 

all age classes are present and occupy equal areas. If the number of even-aged stands equals the 

rotation period, a normal forest produces an even flow of timber in each period. However, a normal 

forest does not necessarily represent an optimal steady state scenario (cf. SALO and TAHVONEN 2002). 

 
6 For a full description of the model, the mathematical derivations and the analysis, please see HALBRITTER 
(2015). 
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The classical question of even-aged forest economics is the selection of the optimal clear-

cutting age of a forest stand, the so-called rotation problem (cf. JOHANSSON and LÖFGREN 1985, p. 

72). The first correct formulation of the problem was provided by Martin FAUSTMANN (1849) and 

solved by PRESSLER (1860). Since then, other important questions like optimal thinning (e.g. NÄSLUND 

1969; CLARK and DE PREE 1979; CAWRSE et al. 1984), optimal planting (e.g. CHANG 1983) or the 

inclusion of public goods and non-timber products provided by forests (e.g. HARTMANN 1976) were 

studied and solved for even-aged systems. However, classical even-aged management with stand 

establishment by planting and timber harvest by clear-cutting still remains a common model 

framework in forest economics until today.  

Uneven-aged stands, on the other hand, are composed of trees of different age or age classes. 

In contrast to even-aged systems, stands are not clear-cut but trees are selectively harvested at their 

individual maturity, i.e., the end of their individual rotation (cf. AMACHER et al. 2009, p. 12 ff.). Under 

uneven-aged management, the stand area is always covered with trees. As such, it belongs to the 

group of continuous cover systems.  

The basic question of uneven-aged management considered on stand level, i.e., whole-stand 

view, is the determination of an economically optimal stand structure and thinning schedule. 

Depending on the level of aggregation, this problem transforms into finding an optimal stock level and 

harvest cycle (e.g. DUERR and BOND 1952; CHANG 1981) or the determination of an optimal 

distribution of diameter or age classes (e.g. ADAMS and EK 1974; BUONGIORNO and MICHIE 1980). 

Closely related to this question is the problem of converting a given age class or diameter distribution 

into the target structure (e.g. HAIGHT 1985; HAIGHT et al. 1985; HAIGHT 1987; HAIGHT and GETZ 

1987). Genuine, uneven-aged, single-tree models, however, focus on the harvest decision of an 

individual tree, rather than looking at the optimal stand structure (e.g. COORDES 2014b, p. 45 ff.). 

Between pure even-aged and pure uneven-aged management exists a continuum of mixed 

forms containing characteristics of both worlds. One example is the application of a shelter wood 

system to introduce natural regeneration into the classical even-aged model with planting. In this type 

of double-cohort management, two age classes of trees are kept together on the same stand area for 

a certain period of time. Therefore, this system can be regarded as an extension of the basic even-aged 

approach towards natural regeneration and uneven-aged management. Section 6.1 discusses such a 

hybrid model based on HALBRITTER (2015). 
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6.1.2 Model 

 

The double-cohort model is situated in a classical environment with perfect foresight and 

perfect markets which are fundamental assumptions of the FAUSTMANN approach (cf. section 2.3). It 

depicts stand management scenarios with two cuts in each rotation. Each rotation has the same 

principle structure, but it is usefull to introduce the model setup by looking arbitrarily at the nth cycle. 

First, an establishment cut removes part of the even-aged forest stand at an age 𝑡𝑛 . The cut 

could be interpreted as a thinning harvest to reduce the stand density to a stock level 𝑄𝑛. It aims at 

increased timber growth and allows for the establishment of a new cohort underneath the shelter of 

remaining trees. This new cohort is established by natural regeneration and additional planting. The 

occurrence of natural regeneration depends on the conditions offered by the shelter. The more natural 

regeneration can be utilized, the lower are the cost necessary for additional planting to ensure full 

coverage of the stand area. Thus, the planting cost 𝐶𝑅(𝑄𝑛) is a convex function of the remaining 

overstory volume with a minimum at a stock level �̅� which offers the conditions associated with 

complete natural regeneration cover (cf. Figure 4).  

 

 

Figure 4     The regeneration cost. 

 

During the shelter period, the stand consists of two cohorts of different ages. Thus, the model 

can be considered as uneven-aged at times or, alternatively, as a hybrid form between even- and 

uneven-aged management (cf. CHANG 2020).  
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The overstory is fully removed in an overstory cut 𝜅𝑛 years after the thinning harvest yielding 

a harvest volume 𝑄(𝜅𝑛, 𝑡𝑛 , 𝑄𝑛). 𝑄 is assumed to depend concavely on the growth period 𝜅𝑛, i.e. 
𝜕𝑄

𝜕𝜅𝑛
>

0 and 
𝜕2𝑄

𝜕𝜅𝑛
2 < 0, and positively on the initial shelter volume at the establishment cut because tree 

mortality is not considered, i.e. 
𝜕𝑄

𝜕𝑄𝑛
≥ 1. The age of the thinning 𝑡𝑛  has a negative impact because 

older stands usually lose the ability to react on density reductions, i.e. 
𝜕𝑄

𝜕𝑡𝑛
< 0. 

After the overstory cut, the former understory cohort creates again an even-aged stand which 

systematically already belongs to the (𝒏 + 𝟏)th rotation. Its growth is influenced by age and the 

intensity and length of the former shelter period. Thus, at the (𝒏 + 𝟏)th establishment cut, the timber 

volume can be expressed as 𝑞(𝑡𝑛+1, 𝑄𝑛, 𝜅𝑛) with the usual concave dependency on age. Although the 

protection of the shelter might be beneficial at the beginning, it is assumed to reduce growth for any 

𝜅𝑛 > �̅� by inducing competition, i.e., 
𝜕𝑞

𝜕𝜅𝑛
< 0 and 

𝜕𝑞

𝜕𝑄𝑛
< 0. 

Figure 5 illustrates the general structure of a the model. 

 

 

Figure 5     The nth double-cohort management cycle. 

 

The timber price 𝑝𝑛 at the establishment cut of the nth rotation and the interest rate 𝑟𝑛 may 

vary with each management cycle. The timber price of the overstory 𝑝𝑄(𝑝𝑛, 𝜅𝑛) is assumed to increase 

with the shelter period, which serves as a proxy for tree value increment, i.e., 
𝜕𝑝𝑄

𝜕𝜅𝑛
> 0. In addition, the 

impact of the general timber price level of the nth cycle is considered with 𝑝𝑄 ≥ 𝑝𝑛 and 
𝜕𝑝𝑄

𝜕𝑝𝑛
≥ 1, which 

means that the shelter trees cannot lose in value.  
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Under the described model set-up, the land expectation value of bare land of the double-

cohort management can be expressed as 

  

𝐿𝐸𝑉𝐷𝐶 =∑𝑀𝐶𝑖𝑒
−∑ 𝑟𝑗𝑡𝑗

𝑖−1
𝑗=1

∞

𝑖=1

 
(22) 

  

with 𝑀𝐶𝑛  being the present value of the nth management cycle with 

  

𝑀𝐶𝑛 = −𝐶
𝑅(𝑄𝑛−1) + 𝑝𝑛[𝑞(𝑡𝑛 , 𝑄𝑛−1, 𝜅𝑛−1) − 𝑄𝑛]𝑒

−𝑟𝑛𝑡𝑛

+ 𝑝𝑄(𝑝𝑛, 𝜅𝑛)𝑄(𝜅𝑛, 𝑡𝑛 , 𝑄𝑛)𝑒
−𝑟𝑛[𝑡𝑛+𝜅𝑛] 

(23) 

  

In the double-cohort scenario, the forest owner decides about the age of the thinning, the 

thinning intensity represented by the post-thinning stock, and the length of the shelter period. Thus, 

the cycle management is summarized by a strategy 𝜎𝑛
𝐷𝐶 = {𝑡𝑛, 𝑄𝑛, 𝜅𝑛} for each rotation 𝑛 = 1,… ,∞. 

Given equations (22) and (23), the problem of determining the optimal stand management becomes 

  

𝑚𝑎𝑥
{𝜎𝑛
𝐷𝐶}

1≤𝑛≤∞

𝐿𝐸𝑉𝐷𝐶  

s.t. 

𝑄0 = 0 

𝜅0 = 0 

(24) 

  

In addition to the introduced set-up, an often applied gradual reduction of the shelter’s timber 

stock can also be included in the model to study the influence of continuous thinning. Let ℎ𝑛(𝑥) with 

𝑥 ∈ (0, 𝜅𝑛) be the timber volume harvested during thinning of the nth overstory at shelter age 𝑥. The 

nth management cycle including thinning, 𝑀�̃�𝑛, can be expressed as 
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𝑀�̃�𝑛 = −𝐶
𝑅(�̃�𝑛−1(0)) + 𝑝𝑛[𝑞(𝑡𝑛, �̃�𝑛−1) − �̃�𝑛(0)]𝑒

−𝑟𝑛𝑡𝑛

+∫ 𝑝𝑄(𝑝𝑛, 𝑥)

𝜅𝑛

0

ℎ𝑛(𝑥)𝑒
−𝑟𝑛[𝑡𝑛+𝑥]𝑑𝑥 + 𝑝𝑄(𝑝𝑛, 𝜅𝑛)�̃�𝑛(𝜅𝑛)𝑒

−𝑟𝑛[𝑡𝑛+𝜅𝑛] 

(25) 

  

with �̃�𝑛 being the volume path of the overstory during the shelter period. It is assumed to contain all 

information about the influence on the sheltered trees. Thus, shelter period length 𝜅 can be omitted 

from the growth function of the understory. Given an increment function of the understory 𝜙(𝜏, �̃�𝑛)  

depending on age and overstory volume and the increment of the shelter 𝛷(𝜏, 𝑡𝑛, �̃�𝑛) depending on 

growth period, age at overstory cut and shelter density, problem (24) can be applied to optimize an 

extended strategy �̃�𝑛
𝐷𝐶 = {𝑡𝑛, 𝑄𝑛, 𝜅𝑛, ℎ𝑛} under the thinning-dependent management cycle (equation 

(25)) and some additional necessary constraints regarding the stand increment7. 

 

6.1.3 Optimal Management 

 

Solving problem (24) yields conditions (26), (27) and (28) which determine the optimal stand 

management strategy of the nth  management cycle of the double-model, 𝜎𝑛
𝐷𝐶∗ = {𝑡𝑛

∗ , 𝑄𝑛
∗ , 𝜅𝑛

∗ }.  

  

𝑝𝑛
𝜕𝑞(𝑡𝑛 , 𝑄𝑛−1, 𝜅𝑛−1)

𝜕𝑡𝑛

= −𝑝𝑄(𝑝𝑛, 𝜅𝑛)
𝜕𝑄(𝜅𝑛, 𝑡𝑛 , 𝑄𝑛)

𝜕𝑡𝑛
𝑒−𝑟𝑛𝜅𝑛

+ 𝑟𝑛[𝑝𝑛[𝑞(𝑡𝑛 , 𝑄𝑛−1, 𝜅𝑛−1) − 𝑄𝑛] + 𝑝
𝑄(𝑝𝑛, 𝜅𝑛)𝑄(𝜅𝑛, 𝑡𝑛 , 𝑄𝑛)𝑒

−𝑟𝑛𝜅𝑛

+ 𝐿𝐸𝑉𝑛+1
𝐷𝐶 ] 

(26) 

  

𝑝𝑄(𝑝𝑛, 𝜅𝑛)
𝜕𝑄(𝜅𝑛, 𝑡𝑛, 𝑄𝑛)

𝜕𝑄𝑛
𝑒−𝑟𝑛𝜅𝑛

= 𝑝𝑛 +
𝜕𝐶𝑅(𝑄𝑛)

𝜕𝑄𝑛
− 𝑝𝑛+1

𝜕𝑞(𝑡𝑛+1, 𝑄𝑛, 𝜅𝑛)

𝜕𝑄𝑛
𝑒−𝑟𝑛+1𝑡𝑛+1  

(27) 

  

 
7 For a detailed description of the thinning extension of the double-cohort model and the resulting optimization 
problem, please see appendix A in HALBRITTER (2015). 



41 
 

𝜕𝑝𝑄(𝑝𝑛, 𝜅𝑛)

𝜕𝜅𝑛
𝑄(𝜅𝑛, 𝑡𝑛 , 𝑄𝑛) + 𝑝

𝑄(𝑝𝑛, 𝜅𝑛)
𝜕𝑄(𝜅𝑛, 𝑡𝑛, 𝑄𝑛)

𝜕𝜅𝑛

= 𝑟𝑛𝑝
𝑄(𝑝𝑛, 𝜅𝑛)𝑄(𝜅𝑛, 𝑡𝑛 , 𝑄𝑛)

− 𝑝𝑛+1
𝜕𝑞(𝑡𝑛+1, 𝑄𝑛, 𝜅𝑛)

𝜕𝜅𝑛
𝑒−[𝑟𝑛+1𝑡𝑛+1−𝑟𝑛𝜅𝑛] 

(28) 

  

All three conditions must be fulfilled simultaneously in each rotation. Thus, like the 

management strategy of the combined model (cf. section 5.2), the forest owners decision variables 𝑡𝑛
∗ , 

𝑄𝑛
∗  and 𝜅𝑛

∗  depend on each other. Furthermore, in the environment of the double-cohort model, 

timber price level and interest rate are allowed to vary in each cycle preventing the optimal 

management strategy to reach a steady state. A look at the equations also reveals that the optimal 

management strategy of the nth rotation is dependent on the management decision of the (𝒏 − 𝟏)th 

and (𝒏 + 𝟏)th cycle. Thus, to calculate a solution for management problem (24), an equation system 

of 3 × 𝑁 with 𝑁 → ∞ would have to be solved. This is, of course, impossible without further 

assumptions. However, conditions (26), (27) and (28) can still be interpreted and the characteristics of 

𝜎𝑛
𝐷𝐶∗ can be qualitatively analyzed. 

The condition of the optimal thinning age 𝑡𝑛
∗ , equation (26), balances the revenues from 

postponing the establishment cut (LHS) with the associated opportunity cost (RHS). A marginal delay 

of the thinning allows for the continued full value growth of the stand but, at the same time, decreases 

the ability to react to the reduced density because the trees get marginally older. The term in brackets 

on the RHS of (26) captures the capital cost of standing timber and land, i.e., the interest which could 

be earned by selling the whole forest right before the thinning and lending out the money. Under the 

fundamental assumptions of the FAUSTMANN world, the obtained market price would be equal to the 

net present value of all optimized future cash flows which is exactly the term in the brackets.  

The solution of the differential equation (27) provides the optimal stock level of the overstory 

𝑄𝑛
∗  right after the establishment cut. At 𝑄𝑛

∗ , different effects of a marginal increment of the cohort 

volume have to be balanced. On the left hand side, the impact on the overstory value growth can be 

found. Higher residual stock improves the value of the overstory cut at the end of the shelter period. 

The RHS of (27) contains the opportunity cost of a marginal increment of 𝑄𝑛. Obviously, the thinning 

revenue declines by 𝑝𝑛. But the regeneration costs are also affected. Depending on the level of the 

residual stock level being below or above �̅�, 
𝜕𝐶𝑅(𝑄𝑛)

𝜕𝑄𝑛
 might be negative or positive (cf. Figure 4). The 

third term on the RHS, covers the impact of a denser shelter on the growth of the understory of the 

subsequent cycle, 𝑞(𝑡𝑛+1, 𝑄𝑛, 𝜅𝑛). Whether 
𝜕𝑞(𝑡𝑛+1,𝑄𝑛,𝜅𝑛)

𝜕𝑄𝑛
 is positive or negative depends on the shelter 
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period 𝜅𝑛 in relation to its critical level �̅�. For 𝜅𝑛 < �̅� the shelter might have a protective impact while 

the negative effect of competition is dominant for longer shelter periods. 

Finally, condition (28) must be fulfilled to obtain the optimal length of the shelter period of the 

nth cycle, 𝜅𝑛. The value growth of the overstory from a marginally prolonged shelter period can be 

found on the left hand side. The value growth is the sum of of timber growth, 𝑝𝑄
𝜕𝑄(𝜅𝑛,𝑡𝑛,𝑄𝑛)

𝜕𝜅𝑛
, and price 

growth, 
𝜕𝑝𝑄(𝑝𝑛,𝜅𝑛)

𝜕𝜅𝑛
𝑄. Of course, delaying the overstory cut also causes opportunity costs from bound 

timber capital of the shelter as well as a growth impact on the understory. Capital cost and understory 

growth effect can be found on the RHS of (28). Again, the growth effect on the trees of the sheltered 

cohort can be positive or negative depending on the shelter period being below or above �̅�. With the 

inclusion of capital cost and growth impact of the shelter on the understory, condition (28) contains 

elements both from the determination of the optimal thinning age, equation (26), and optimal residual 

stock level, equation (27). 

The derivation of meaningful dependencies between the management variables of the 

combined model, 𝑡𝑛
∗ , 𝑄𝑛

∗  and 𝜅𝑛
∗ , is difficult in comparision to the combined model in section 5. The 

inclusion of two dependent cohorts and natural regeneration covers a wide range of management 

scenarios but a look at the conditions of optimality, equations (26), (27) and (28), also reveal a much 

higher complexity. However, the management environments can be structured in a meaningful way 

using corner cases in the relations between over and understory. First, scenarions with an early 

negative shelter impact on the growth of the understory (�̅� → 0) can be distinguished from scenarios 

with a long protective influence. Second, the value growth of the overstory, 
𝑑

𝑑𝜅𝑛
𝑝𝑄𝑄, can be compared 

to its value impact on the understory, i.e., the shelter effect (𝑆𝐸), with the three corner cases 

𝑑

𝑑𝜅𝑛
𝑝𝑄𝑄 ≫ |𝑆𝐸|, 

𝑑

𝑑𝜅𝑛
𝑝𝑄𝑄 ≪ |𝑆𝐸| and 

𝑑

𝑑𝜅𝑛
𝑝𝑄𝑄 ≈ |𝑆𝐸|. With these two criteria, equations (26), (27) 

and (28) can be used to derive relations between the management variables. 

For �̅� → 0 and a dominant shelter effect, i.e., a very negative competition impact of the shelter 

on the understory with 
𝑑

𝑑𝜅𝑛
𝑝𝑄𝑄 ≪ |𝑆𝐸|, the shelter period 𝜅𝑛

∗  must be short, the post-thinning stock 

𝑄𝑛
∗  must be low with an intense thinning and the thinning age 𝑡𝑛

∗  must be rather high. The more 

dominant the shelter effect, the more pronounced becomes its impact. Furthermore, it can be shown 

that the optimal overstory volume right after thinning must be below the stock level optimal for natural 

regeneration, i.e., 𝑄𝑛
∗ < �̅�. This scenario can be considered as seed-tree management, in which only a 

few seed-trees are maintained after the opening of the stand to induce natural regeneration and cut 

shortly after. In its most extreme form, the shelter period and the residual stock turn to zero. In this 
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situation, the optimal double-cohort management strategy turns into standard even-aged forestry 

with a clearcut at 𝑡𝑛
∗  followed by planting at cost 𝐶𝑃𝑙𝑎𝑛𝑡𝑖𝑛𝑔.  

A very high value increment of the shelter together with a low impact on the understory, i.e., 

𝑑

𝑑𝜅𝑛
𝑝𝑄𝑄 ≫ |𝑆𝐸|, yields an opposite management strategy. A light and relatively early thinning 

followed by a long shelter period indicates a shelterwood approach to be the optimal strategy in which 

a high overstory stock, i.e., 𝑄𝑛
∗ > �̅�, is kept to grow in value. In the shelterwood method, the canopy 

is used to support natural regeneration but also as a value contributor. In the most extreme scenario, 

the shelter period can be prolonged until or beyond the establishment cut of the consecutive cycle 

indicating that uneven-aged management with more than two age classes might be optimal.  

In the third corner case, the value growth potential of the overstory equals its value impact on 

the sheltered trees in dimensions, i.e., 
𝑑

𝑑𝜅𝑛
𝑝𝑄𝑄 ≈ |𝑆𝐸|. The decision variables of this scenario show 

characteristics of both shelterwood and seed-tree management. The management’s strategy lies in 

between the two more extreme corner cases. 

In addition to the analysis of the optimal management of the double-cohort model in its 

original version, problem (24) can also be solved for the thinning extension (cf. equation (25)). While, 

the solution on 𝑡𝑛 , 𝑄𝑛 and 𝜅𝑛 under this extension is not expected to yield some additional insights, 

the optimality condition for the timber stock path of the shelter is 

  

�̇�𝑄(𝑝𝑛, 𝜏) + 𝑝
𝑄(𝑝𝑛, 𝜅𝑛)

𝜕𝛷(𝜏, 𝑡𝑛, �̃�𝑛)

𝜕�̃�𝑛
= 𝑟𝑛𝑝

𝑄(𝑝𝑛, 𝜅𝑛) − 𝑝𝑛+1
𝜕𝜙(𝜏, �̃�𝑛)

𝜕�̃�𝑛
8 

(29) 

  

The optimal timber stock during the shelter period must balance the value increment effects 

from maintaining a marginally higher timber volume on the LHS of condition (29) and its opportunity 

cost on the RHS. The value impact on the shelter sums up the timber price increment and the effect of 

a change of the shelter volume increment. The opportunity cost contains the usual lost interest on the 

timber revenue but also the value impact on the sheltered trees induced by the changes in the 

competition induced by the overstory. 

 

 
8 Please note that equation (29) is a corrected version of equation (27) in HALBRITTER (2015). 
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6.1.4 Impact of Timber Price and Interest Rate 

 

The comparative static analysis of the nth cycle strategy 𝜎𝑛
𝐷𝐶 covers the reaction of the optimal 

management decisions in the three corner scenarios introduced in the last section on changes of the 

external environment regarding timber price and interest rate. The results of the other scenarios lie in 

between these corner solutions, but, unfortunately, cannot directly be specified qualitatively. 

However, if the optimal management strategy shows the same behavior for both extremes, i.e., the 

shelterwood and the seed-tree scenario, it might be reasonable to conclude this behavior to be 

universal for all scenarios. 

A marginally higher level of the interest rate 𝑟𝑛 and the implied higher opportunity cost of 

maintaining timber capital in the stand can generally be expected to yield a reduction in the optimal 

thinning age 𝑡𝑛
∗  and shelter period 𝜅𝑛

∗ . However, for shelterwood or the intermediate scenario there 

might exist an environment with 𝑟𝑛 ≫ 1/𝜅𝑛, in which the thinning age increases. The reason is that 

under these management forms the overstory is the main value contributor. Thus, it is theoretically 

possible that the loss from discounting the overstory clear-cut value with a higher interest rate 

outbalances the negative effect of a postponed thinning. Thus, 𝑡𝑛
∗  might increase. Although, the impact 

of a higher interest rate cannot be qualitatively identified with certainty for the shelter period in the 

intermediate scenario, the identical reaction of the other two corner cases also indicates a tendency 

for an earlier overstory cut in case of a marginally higher interest rate. The thinning intensity, however, 

does not show the expected behavior for all three management methods. While a marginal increment 

of 𝑟𝑛 leads to a heavier thinning in the shelterwood scenario, i.e., a decline in 𝑄𝑛
∗ , the seed-tree method 

shows the opposite reaction. The reason lies within the model set-up of the double-cohort model. The 

interest rate of the nth cycle, 𝑟𝑛, is assumed to be independent of the rate of the subsequent cycle 𝑟𝑛+1. 

Thus, for a marginally higher interest rate in the nth cycle, the LHS of optimality condition (27) declines 

while the RHS remains unchanged. In order to balance this effect, 𝑄𝑛
∗  must be increased. The higher 

shelter stocking triggers a negative impact on the understory. This impact will be partly offset by a 

decline in regeneration cost because the condition 𝑄𝑛
∗ < �̅� must still hold for the seed-tree method 

(cf. Figure 4). However, in case of equality of 𝑟𝑛 and 𝑟𝑛+1, the effect would most likely be similar to the 

shelterwood scenario because the decline in the discounted value growth in the understory can be 

expected to be dominant. 

A marginally higher timber price level in the nth rotation increases the value growth potential 

of this cycle in relation to the subsequent rotation because 𝑝𝑛+1 remains unchanged. Not surprisingly, 

both thinning age 𝑡𝑛
∗  and shelter period 𝜅𝑛

∗  are prolonged in the seed-tree scenario as well as under 

shelterwood management. Although the intermediate case cannot be decided qualitatively, to assume 
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the same behavior seems plausible. Because an increase in 𝑝𝑛 also impacts 𝑝𝑄 with 
𝜕𝑝𝑄

𝜕𝑝𝑛
≥ 1, the timber 

value of the overstory increases even more. Thus, in the shelterwood system, in which the timber of 

the overstory is a major value contributor, a forest owner will keep more timber in the shelter and 

increase 𝑄𝑛
∗ . If the shelter period is very short, however, the timber price obtained from thinning is 

almost similar to the clear-cut price and keeping timber stock until the clear-cut offers little value 

increment potential in relation to the thinning. This relation becomes even more pronounced for 

higher timber price levels. Thus, in the seed-tree approach, a heavier thinning is optimal to reduce the 

timber stock kept for clear-cut. Due to the different behavior of seed-tree and shelterwood 

management, the qualitative reaction of the thinning intensity on a marginal increment of the timber 

price remains ambiguous. Again, the results are influenced by the model set-up and might differ for 

some scenarios if the timber prices of consecutive cycles are equal or at least positively related. 

The results of the comparative static analysis are summarized in Table 5. 

 

Table 5     The influence of timber price and interest rate on the optimal management strategy of the 
nth cycle. 

 Seed-tree scenario Shelterwood scenario Intermediate scenario 

𝒅𝒕𝒏/𝒅𝒓𝒏 < 0 
 𝑟𝑛 ≫ 1/𝜅𝑛 > 0 𝑟𝑛 ≫ 1/𝜅𝑛 > 0 

𝑒𝑙𝑠𝑒 < 0 𝑒𝑙𝑠𝑒 < 0 

𝒅𝜿𝒏/𝒅𝒓𝒏 < 0 < 0 ambiguous 

𝒅𝑸𝒏/𝒅𝒓𝒏 > 0 < 0 ambiguous 

𝒅𝒕𝒏/𝒅𝒑𝒏 > 0 > 0 > 0 

𝒅𝜿𝒏/𝒅𝒑𝒏 > 0 > 0 ambiguous 

𝒅𝑸𝒏/𝒅𝒑𝒏 < 0 > 0 ambiguous 

    

 

6.1.5 Discussion in Comparison to the Basic FAUSTMANN Applications 

 

Optimal Harvest Timing and Rotation 

 

Table 6 compares condition (5) for the determination of the optimal clear-cut age 𝑇∗ in the 

basic rotation model (cf. section 2.4.1) and condition (13) for the optimal cutting cycle 𝑡∗ in the uneven-

aged model (cf. section 2.4.4) with the two harvest timing conditions of the double-cohort model, 

equations (26) and (28). Although, all four timing conditions compare the value increment of 

postponing the harvest with associated opportunity cost from bound capital, a closer view reveals 

considerable differences for most scenarios. However, some overlapping scenarios can be identified. 
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Table 6     Comparison of the harvest age conditions between the basic rotation model, the basic 
uneven-aged model and the double-cohort model. 

  Value increment Capital cost 

  Direct Indirect  Standing timber Land 

       

The Rotation 
Model 

𝑇∗: 𝑝
𝜕𝑞(𝑇)

𝜕𝑇
  = 𝑟𝑝𝑞(𝑇) +𝑟𝐿𝐸𝑉 

       

The Uneven-
aged Model 

𝑡∗: 𝑝
𝜕𝑞(𝑡, 𝑞0)

𝜕𝑡
  = 𝑟𝑝[𝑞(𝑡, 𝑞0) − 𝑞0] +𝑟

𝑝[𝑞(𝑡, 𝑞0)−𝑞0]

𝑒𝑟𝑡 − 1
 

       

The Double-
cohort 
Model 

𝑡𝑛
∗ : 𝑝𝑛

𝜕𝑞(𝑡𝑛, 𝑄𝑛−1, 𝜅𝑛−1)

𝜕𝑡𝑛
 +𝑝𝑄(𝑝𝑛, 𝜅𝑛)

𝜕𝑄(𝜅𝑛, 𝑡𝑛, 𝑄𝑛)

𝜕𝑡𝑛
𝑒−𝑟𝑛𝜅𝑛 = 

𝑟𝑛[𝑝𝑛[𝑞(𝑡𝑛 , 𝑄𝑛−1 , 𝜅𝑛−1) − 𝑄𝑛]

+ 𝑝𝑄(𝑝𝑛, 𝜅𝑛)𝑄(𝜅𝑛, 𝑡𝑛, 𝑄𝑛)𝑒
−𝑟𝑛𝜅𝑛] 

+𝑟𝑛𝐿𝐸𝑉𝑛+1
𝐷𝐶  

      

𝜅𝑛
∗ : 

𝜕𝑝𝑄(𝑝𝑛, 𝜅𝑛)

𝜕𝜅𝑛
𝑄(𝜅𝑛, 𝑡𝑛, 𝑄𝑛)

+ 𝑝𝑄(𝑝𝑛, 𝜅𝑛)
𝜕𝑄(𝜅𝑛, 𝑡𝑛, 𝑄𝑛)

𝜕𝜅𝑛
 

+𝑝𝑛+1
𝜕𝑞(𝑡𝑛+1 , 𝑄𝑛, 𝜅𝑛)

𝜕𝜅𝑛
𝑒−[𝑟𝑛+1𝑡𝑛+1−𝑟𝑛𝜅𝑛] = 𝑟𝑛𝑝

𝑄(𝑝𝑛 , 𝜅𝑛)𝑄(𝜅𝑛, 𝑡𝑛, 𝑄𝑛)  

       

 

First, in an environment with extreme competitive impact of the overstory on the sheltered 

trees there will be no shelter period and all trees are removed in the establishment cut. Under these 

conditions the double-cohort model resembles the same classical even-aged stand mangement with 

planting and clear-cutting like the basic rotation model. Thus, under an identical timber price and 

interest rate process, the conditions for 𝑇∗ and 𝑡𝑛
∗  become identical, while the equation for 𝜅𝑛

∗ , 

equation (28), vanishes. Therefore, it can be concluded that an overlapping management scenario in 

the sense of the patchwork approach exists, and both models are expected to yield the same clear-cut 

age solution in this scenario. Consequently, both models can be connected in a patchwork. 

The same holds for the management scenario depicted by the uneven-aged model introduced 

in section 2.4.4. If 𝜅𝑛 approaches the establishment cut of the next rotation, 𝑡𝑛+1, e.g., in case of a 

positive or very low impact of the shelter on the growth of the understory together with a high value 

growth potential, the double-cohort model turns into an uneven-aged cutting cycle and stand density 

problem. In this case, 𝑡𝑛  becomes the length of the cutting cycle rather than a stand age. Thus, 

𝜕𝑄(𝜅𝑛,𝑡𝑛,𝑄𝑛)

𝜕𝑡𝑛
 vanishes and equation (26) turns into the timing condition for the thinning of an uneven-

aged stand, equation (13) (cf. Table 6). Condition (28) vanishes completely because 𝜅𝑛 melts into the 

cutting cycle. Thus, the double-cohort model also overlaps with the basic uneven-aged model and 

provides a structurally equivalent solution. Both models are valid in the sense of the patchwork 

approach. 

Depending on the length of the shelter period, the double-cohort model is a hybrid between 

pure even-aged and pure uneven-aged forestry. As already discussed, the model depicts a classical 
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even-aged rotation problem for 𝜅𝑛 → 0 and an uneven-aged problem for 𝜅𝑛 → 𝑡𝑛+1. Thus, it is suitable 

to investigate the changes in stand management if the model is extended in the direction of more than 

one age class.  

Assuming the general hybrid scenario, i.e., for 0 < 𝜅𝑛 < 𝑡𝑛+1, the clear-cut of even-aged 

management is split in an establishment cut, removing only a part of the even-aged stand, and an 

overstory cut, which removes the remaining trees of the shelter. Looking at both associated conditions, 

equations (26) and (28), it is obvious, that the establishment cut at 𝑡𝑛
∗  is the hybrid-model’s equivalent 

to the clear-cut adjusted for an additional shelter period, because it directly incorporates the 

regeneration decision, and the capital cost of land must be considered for its determination. The split 

harvest is reflected in two ways. First, the value of standing timber on the RHS of equation (26) consists 

of the value of trees which are directly removed in the establishment cut and the trees which are 

maintained until the shelter is harvested and experience additional value growth. Thus, the considered 

capital costs associated with standing timber are greater than in classical even-aged management for 

the same stand age and timber stock. Second, the value increment component on the LHS is also split. 

As in the even-aged clearcut conditions, the direct value increment of the stand, 𝑝𝑛
𝜕𝑞

𝜕𝑡𝑛
, must be 

considered. The second component captures the indirect impact of age on the clear-cut value of the 

remaining trees. Therefore, equation (26) can also be interpreted as a timing condition for a thinning 

harvest, which reduces the timber stock from 𝑞(𝑡𝑛, 𝑄𝑛−1 , 𝜅𝑛−1) to 𝑄𝑛. This interpretation is also 

supported if the double-cohort model gets close to the uneven-aged management, i.e. 𝜅𝑛 → 𝑡𝑛+1, and 

𝑡 becomes the length of a cutting cycle. In this case, the capital cost of timber is reduced to the thinning 

value 𝑝𝑛[𝑞(𝑡𝑛 , 𝑄𝑛−1, 𝜅𝑛−1) − 𝑄𝑛], and the optimality condition (26) becomes equivalent to the 

harvest timing rule of the uneven-aged model. 

As Table 6 shows, the condition for the optimal shelter period, 𝜅𝑛
∗ , deviates most from the 

clear-cut, cutting cycle or the establishment cut decision. Its existence is entirely due to the hybrid-

character of the model. For both 𝜅𝑛 → 𝑡𝑛+1 and 𝜅𝑛 → 0 the condition vanishes. It can, therefore, be 

called a link between pure uneven-aged and pure even-aged forestry. The shelter shows characteristics 

of both worlds. Because with the regeneration decision at the establishment cut, the capital cost of 

the land is passed to the understory trees, the shelter must only carry the capital cost from its own 

bound capital on the RHS of condition (28). But unlike an uneven-aged stand, the shelter is clear-cut 

and, thus, the complete capital cost from its standing timber must be considered and not just the 

thinning value. The value increment of the overstory trees on the LHS of equation (28) must also cover 

its negative impact on the value growth of the sheltered cohort. This consideration is also necessary in 

pure uneven-aged stands, because a forest manager must decide which trees need to be removed at 
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the harvest, i.e., which trees provide insufficient value growth including possible negative competition 

effects on other trees. 

Due to the generalized character of the double-cohort model with evolving timber price and 

interest rate, the impact of different levels of timber prices or interest rates cannot directly be 

compared to the rotation model or the uneven-aged model. However, CHANG (1998) provided a 

generalized analysis of even-aged forestry. It resembles the planting/clear-cutting scenario of the 

rotation model in a generalized form. Thus, it can be compared to seed-tree management, which is a 

corner solution of the double-cohort model and close to the even-aged scenario (cf. section 6.1.3). 

Both models shown a decrement of the harvest age for higher interest rates in the current rotation 

and an increase of the harvest age for higher timber price of the current stock (cf. Table 5). The 

shelterwood solution on the other side, which is closest to uneven-aged management (cf. section 

6.1.3), can be compared to a generalized uneven-aged model by CHANG and GADOW (2010), which 

depicts the uneven-aged model for a generalized scenario. Surprisingly, the impact of a higher interest 

rate of today’s rotation is case-dependent in both models, although there is a strong tendency to 

decrease the harvest ages in the double-cohort model. The behaviour for higher timber prices is also 

highly case-dependent in the generalized uneven-aged model, while the shelterwood case shows 

increasing harvest ages (cf. Table 5). However, this difference seems to be a result of the specific 

formulation of the timber price process of the overstory timber in the double-cohort model. 

 

Optimal Stand Establishment and Thinning 

 

In classical even-aged stand management, the choice of the planting density is a fundamental 

decision of the forest owner, which influences all subsequent management measures such as thinning 

or clear-cutting (cf. section 2.4.3 or section 5). This relation to other management decisions during a 

forest stand’s life is captured in a separate optimality condition (cf. equations (11) or (17)). In pure 

uneven-aged management, however, stand regeneration is very closely related to thinning. In fact, 

both decisions are rather equivalent because thinning not only increases the growth of the remaining 

trees but also creates the space for new seedlings. Thus, only one optimality condition determining 

the optimal timber stock is required (cf. equation (14)). The double-cohort model is a hybrid between 

the even-aged and the uneven-aged world. Thus, the decisions on thinning and regeneration can also 

not be discussed independently. 

Table 7 contains the timber stock conditions from the basic models on planting (cf. section 

2.4.3), equation (11), thinning (cf. section 2.4.2), equation (9), uneven-aged management (cf. section 
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2.4.4), equation (13), and the corresponding condition from the double-cohort model, equation (27). 

A comparision of the basic even-aged planting model and the double-cohort model reveals that there 

is no scenario in which both timber stock conditions become equivalent. This is not surprising, because 

the number of seedlings is not a decision variable in the double-cohort scenario. The stand area is 

always assumed to be fully covered with seedlings after regeneration takes place. This means that each 

rotation starts with the same pre-defined density. Thus, in the even-aged corner case with 𝜅𝑛 = 0 and 

a clear-cut at 𝑡𝑛 , the planting costs for full regeneration are externally given by the regeneration cost 

function (cf. Figure 4). However, one could argue that the double-cohort model implicitly optimizes 

the planting cost for all other scenarios except the even-aged corner case by determining a post-

thinning stock 𝑄𝑛
∗ . 

  

Table 7     Comparison of the timber stock conditions between the basic planting model, the basic 
thinning model, the basic uneven-aged model and the double-cohort model. 

  Value increment Cost 

  Direct Indirect  Planting Opportunity 

       

The Planting 
Model 

𝑚∗: 𝑝
𝜕𝑞(𝑇,𝑚)

𝜕𝑚
𝑒−𝑟𝑇   = 𝐶1  

       

The Thinning 
Model 

𝑞𝑡
∗: 𝑝(𝑡 + ∆)

𝜕𝑞(𝑡 + ∆, 𝑞𝑡)

𝜕𝑞𝑡
𝑒−𝑟∆  =  𝑝(𝑡) 

       

The Uneven-
aged Model 

𝑞0
∗: 𝑝

𝜕𝑞(𝑡, 𝑞0)

𝜕𝑞0
𝑒−𝑟𝑡  =  𝑝 

       

The Double-
cohort 
Model 

𝑄𝑛
∗ : 𝑝𝑄(𝑝𝑛 , 𝜅𝑛)

𝜕𝑄(𝜅𝑛, 𝑡𝑛, 𝑄𝑛)

𝜕𝑄𝑛
𝑒−𝑟𝑛𝜅𝑛 +𝑝𝑛+1

𝜕𝑞(𝑡𝑛+1 , 𝑄𝑛, 𝜅𝑛)

𝜕𝑄𝑛
𝑒−𝑟𝑛+1𝑡𝑛+1 = 

𝜕𝐶𝑅(𝑄𝑛)

𝜕𝑄𝑛
 +𝑝𝑛 

       

 

For any 𝜅𝑛 > 0, i.e., in a pure or temporarily uneven-aged scenario, condition (27) shows 

stronger characteristics of a thinning than of a planting condition. If 0 < 𝜅𝑛 < 𝑡𝑛+1, the stock density 

condition of the thinning model, equation (9), becomes equivalent to condition (27) for environments 

without growth impact of the shelter on the understory, i.e., 
𝜕𝑞(𝑡𝑛+1,𝑄𝑛,𝜅𝑛)

𝜕𝑄𝑛
= 0, and independent 

planting cost, i.e.,  
𝜕𝐶𝑅(𝑄𝑛)

𝜕𝑄𝑛
= 0. This could be the case in scenarios with external planting costs or sole 

use of natural regeneration, i.e., 𝐶𝑅 = 0. The equality of the conditions seems surprising because the 

thinning model describes an even-aged scenario while the double-cohort model contains a second age 

class. In this case, however, both age classes are independent from each other and the determination 

of the optimal thinning volume of the shelter follows the same considerations as in the even-aged case.  
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For 𝜅𝑛 ≥ 𝑡𝑛+1 the double-cohort model depicts a pure uneven-aged scenario. If natural 

regeneration is available without restrictions, the planting cost is, again, zero. In this case, the sum of 

the direct and the indirect impact of the shelter density on the stand at the next thinning, i.e., the 

subsequent establishment cut, is almost equivalent to the LHS of condition (13), which determines the 

optimal harvest quantity of an uneven-aged stand in the basic uneven-aged model. The only difference 

is that the basic uneven-aged model does not differentiate which trees to cut, while the double cohort 

model harvests only overstory trees. 

The considerations above show that overlapping scenarios with the basic models exist but are 

restricted to the use of condition (27) as a thinning condition. The connection of the double-cohort 

model with the basic thinning model or with the uneven-aged model in the sense of the patchwork 

approach is possible. 

However, the question remains which additional aspects have to be considered if classical 

even-aged stand management is extended by a temporary second age class and the possibility of 

influencing the regeneration cost by using planting and natural regeneration. With a look at Table 7, 

the general timber stock condition of the double-cohort model appears almost like a combination of 

the planting condition of the basic planting model and one of the basic thinning conditions. The right 

hand side seems to contain marginal planting costs and a marginal opportunity cost of reducing the 

harvest intensity. However, 𝑄𝑛 is not a planting density and 
𝜕𝐶𝑅(𝑄𝑛)

𝜕𝑄𝑛
 does not describe marginal 

planting cost in the proper sense. The residual timber stock, 𝑄𝑛, determines the planting cost in an 

indirect way by influencing the conditions for natural regneration and, thus, the number of additional 

seedlings which have to be planted to obtain full coverage of the stand area. Thus, the term  
𝜕𝐶𝑅(𝑄𝑛)

𝜕𝑄𝑛
+

𝑝𝑛 depicts the opportunity cost of keeping more residual stock in the thinning. Depending on the 

assumptions made on the cost function, the opportunity cost of maintaining volume can increase or 

decrease, yielding more or less timber stock in the shelter (cf. Figure 4).  

The introduction of a second or more age classes also impacts the stand’s value increment. 

This must be considered in the thinning decision. Maintaining more volume in one age class, in this 

case the shelter, creates an influence on the value growth of the other age class or classes. In Table 7 

this impact is included as the indirect value increment of the timber stock condition, i.e., 

𝑝𝑛+1
𝜕𝑞(𝑡𝑛+1,𝑄𝑛,𝜅𝑛)

𝜕𝑄𝑛
. Depending on the direction of this influence, the shelter could maintain more or 

less timber volume. The consideration of density effects on value growth can also be found in the 

continuous timber stock condition of the shelter in the extended double-cohort model, equation (29). 

Comparing with the continuous condition of the basic thinning model, equation (8), shows an 
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additional term 𝑝𝑛+1
𝜕𝜙(𝜏,�̃�𝑛)

𝜕�̃�𝑛
, which captures exactly the same influence of shelter density on the 

growth of the understory. 

Unfortunately, the impact of timber price and interest rate shows a strong case dependency 

(cf. Table 5). In addition, the generalized character of the double-cohort model prevents a comparison 

of the stock density solution’s behavior to the basic models of section 2.4. At least it can be concluded 

that higher timber price or interest rate in a particular rotation may lead to either higher or lower stock 

levels after the establishment cut, depending on the shelter scenario. Unfortunately, no general rules 

can be found.  

 

6.2 Heterogeneous Extension: The Heterogeneous Stand Model 

 

This section presents a model by HALBRITTER (2020) which dissolves the assumption of the 

homogeneous stand in even-aged forest management to analyze the thinning decision under 

heterogeneous tree growth. Heterogeneity is introduced in its simplest form by assuming only two 

social classes of trees. Furthermore, the model introduces a timber price process depending on tree 

dimension. Because the development of tree dimension depends on stand density, the model is also 

suitable to analyse the dependency between the thinning decision and price growth. 

Before presenting the model and the results9, section 6.2 starts with an introduction of the 

concepts of homogeneous and heterogeneous growth together with a brief review of the economic 

literature on the field. 

 

6.2.1 Homogeneous and Heterogenous Stands 

 

A homogeneous forest stand is a purely theoretical concept aiming to simplify the modelling 

of timber growth and, with it, the problem of tree selection in the thinning decision. In even-aged 

rotation problems such as the basic rotation model (cf. section 2.4.1) the concept is not necessary. 

In whole-stand models, the assumption of homogeneity refers to a stand in which the biomass 

of growing trees is regarded as homogeneous without even differentiating individual trees (cf. 

JOHANSSON and LÖFGREN 1985, p. 55). This approach simplifies the modeling of density-dependent 

 
9 Please note that section 6.2 presents only a summary of the model and its results. For a full description of the 
model, the mathematical derivations and the analysis, please see HALBRITTER (2020). 
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timber growth, i.e., the timber volume increment of the stand depends simply on its timber stock and 

other influence factors like that of spatial tree distribution, social tree classes or the stand’s spatial 

shape and borders don’t have to be considered. This also simplifies the modeling of the thinning 

decision. Harvest quantities can be regarded as continuous and without taking into account the 

individual volume of the harvested trees. In addition, other practical questions such as tree selection, 

the spacial distribution of the harvest or individual competition effects of harvested trees can be 

omitted. This homogeneous whole-stand approach was applied by most qualitative studies (e.g. CLARK 

and DE PREE 1979; CAWRSE et al. 1984; HALBRITTER and DEEGEN 2015). 

In single-tree models, however, a homogeneous stand is composed of identical trees, which 

are evenly distributed on the stand area under homogeneous growth conditions. This implies that the 

individual trees are of the same age, dimension and value, show the same growth and cause symmetric 

competition effects on each other (cf. COORDES 2014b, p. 11 ff.). In a single-tree approach, the concept 

of homogeneity is also simplifying the analysis of thinnings, because the problems of tree selection or 

competition between individual trees can be abstracted (e.g. COORDES 2014a). 

The homogeneous stand is a purely theoretical concept. Right after planting, a forest stand 

might still be considered homogeneous to some extent but, as it gets older, differences in individual 

tree growth dissolve the homogeneous structure. Thus, heterogeneous stands are the reality of forest 

practice. Because heterogeneity can show in many different forms, the most complete definition of a 

heterogeneous stand is to characterize it simply as not homogeneous. Under this definition, every 

forest stand that is not homogeneous is heterogeneous.  

There exists a vast number of criteria to diffentiate the biomass of growing trees to drop the 

assumption of homogeneity. In single-tree models, a stand could already be considered heterogeneous 

if it consists of trees of different ages or species. Another common criteria is the consideration of the 

individual growth potential of each tree, e.g., because of different genetic constitution, site conditions 

or competition effects. This results in different individual tree dimensions, timber volumes, values or 

social classes (e.g. COORDES 2014b, p. 27 ff.). In a very strict sense, pure whole-stand models are not 

suitable for all management problems of heterogeneously structured stands. To model a 

heterogeneity on the stand level usually requires the differentiation of cohorts or classes, which are 

again treated as homogeneous. Common criteria to distinguish between these classes are dimension 

(e.g. ADAMS and EK 1974; BUONGIORNO and MICHIE 1980), age (e.g. SALO and TAHVONEN 2003; 

TAHVONEN 2011) or social status (e.g. HALBRITTER 2020). However, some studies also use pure whole-

stand growth functions to approach questions of uneven-aged management (e.g. CHANG 1981; 

CHANG and GADOW 2010) but, implicitly, these studies also need assumptions on stand structure. 
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Identically repeated thinning intervals, for example, require identical growth in each interval, which, 

in turn, can only be achieved under an identically repeated stand structure. 

The concepts of even- or uneven-aged stands and homogeneous or heterogeneous stands are 

related. Uneven-aged forest stands cannot be considered homogeneous but are heterogeneous by 

definition. The opposite does not hold. Homogeneous stands must be even-aged. Again, the reverse 

statement does not hold. Starting from an even-aged and homogeneous model, the simplest step in 

the direction of heterogeneity is the introduction of a stand structure with only two sub-stands. In 

section 6.2 such an extention is introduced based on HALBRITTER (2020). Instead of the homogeneous 

stand structure of the basic thinning model of section 2.4.2 by CLARK and DE PREE (1979), a two-tiered, 

even-aged stand reflecting the development of two different social classes of trees, dominant and 

suppressed, is analyzed. The extention aims to improve the general understanding of thinning in even-

aged heterogeneous stands, i.e., the optimality of a social class-dependent thinning intensity 

represented by a certain thinning type. 

 

6.2.2 Model 

 

Like the combined model (cf. section 5) or the double-cohort model (cf. section 6.1), the 

heterogeneous stand model also depicts stand management scenarios under the fundamental 

assumptions of the classical FAUSTMANN environment, i.e., perfect foresight and perfect markets (cf. 

section 2.3). 

A rotation consists of the establishment of an even-aged forest stand at planting cost 𝐶𝑝, a 

single thinning at stand age 𝑡 and, finally, a clear-cut at age 𝑇. Right before the thinning, the stand’s 

trees are assumed to be differentiated into two homogeneous sub-stands of dominant (𝑑) and 

suppressed (𝑠) trees with merchantable timber volumes 𝑞𝑡
𝑑 and 𝑞𝑡

𝑠, which are evenly distributed over 

the stand area. The sub-stands can be regarded as social classes or cohorts created by differences in 

individual tree growth. Thereby, the term cohort is used to define a group of trees with identical 

characteristics rather than a pure age class. During the thinning harvest, the forest owner removes the 

volume shares 𝛼𝑑 and 𝛼𝑠 (𝛼𝑑,𝑠 ∈ [0,1]) from each cohort leaving the residual stocks 𝑞𝑡+
𝑑 = (1 − 𝛼𝑑)𝑞𝑡

𝑑 

and 𝑞𝑡+
𝑠 = (1 − 𝛼𝑠)𝑞𝑡

𝑠. Like the timber growth of the shelter in the double-cohort model (cf. section 

6.1), the timber increment of each cohort between thinning and clear-cut is influenced by its residual 

stock, 𝑞𝑡+, the stand’s age 𝑡 at the thinning harvest and the clear-cutting age 𝑇. In addition, the 

dominant trees induce a negative competition effect on the growth of the suppressed trees, which is 

assumed to be related to the post-thinning timber stock of the dominant cohort. To achieve a clearer 
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focus, the affect is assumed to be one-sided. The suppressed class of trees does not impact the growth 

of the dominant cohort, e.g., because the suppressed trees might lag behind in height and, thus, do 

not influence the availability of light for the dominant trees. Using aggregated growth functions 𝜙𝑑 

and 𝜙𝑠 to describe the timber growth in the interval [𝑡, 𝑇], the cohort timber volumes at age 𝑇, 𝑞𝑇
𝑑 and 

𝑞𝑇
𝑠 , can be expressed as 

  

𝑞𝑇
𝑑 = 𝜙𝑑(𝑞𝑡+

𝑑 , 𝑡, 𝑇) (30) 

  

𝑞𝑇
𝑠 = 𝜙𝑠(𝑞𝑡+

𝑠 , 𝑞𝑡+
𝑑 , 𝑡, 𝑇) (31) 

  

The growth functions are both assumed to be concave in clear-cut age, i.e., 
𝜕𝜙

𝜕𝑇
> 0 and 

𝜕2𝜙

𝜕𝑇2
<

0, convex in thinning age, i.e., 
𝜕𝜙

𝜕𝑡
< 0 and 

𝜕2𝜙

𝜕𝑡2
> 0, and concave in residual stock, i.e., 

𝜕𝜙

𝜕𝑞𝑡+
> 0 and 

𝜕2𝜙

𝜕(𝑞𝑡+)
2 ≤ 0. The residual stock 𝑞𝑡+ captures the impact of intra-cohort competition and, thus, includes 

stand density in the growth model. Figure 6 illustrates the relation. At low densities, i.e., 𝑞𝑡+ ∈ [0, 𝑞], 

trees are growing solitarily without competition with 
𝜕𝜙

𝜕𝑞𝑡+
≥ 1 and 

𝜕2𝜙

𝜕(𝑞𝑡+)
2 = 0. Above a stock level 𝑞, 

the occurrence of intra-cohort competition reduces growth and 
𝜕2𝜙

𝜕(𝑞𝑡+)
2 turns negative. While at stock 

levels 𝑞𝑡+ ∈ [𝑞, �̂�] the cohort growth still benefits from additional density, 
𝜕𝜙

𝜕𝑞𝑡+
≥ 1, the negative 

impact of competition becomes dominant above the increment maximal volume �̂�, i.e., 
𝜕𝜙

𝜕𝑞𝑡+
< 1. As 

indicated by the dashed graph in Figure 6, the impact of residual cohort volume might even turn 

negative for 𝑞𝑡+ > �̂�. The downward pointed axis in the figure illustrates the timber increment 

between thinning and clear-cutting. Technically, it displays the difference between the stock curve and 

the 45-degree-line in the sector above. The maximal aggregated increment can be obtained at a level 

�̂�, which is charactrized by 
𝜕𝜙

𝜕𝑞𝑡+
= 1. 

 



55 
 

 

Figure 6     The intra-cohort impact of residual stock on the clear-cut volume. 

 

In addition to the intra-cohort effects of density, the timber growth of the suppressed cohort 

is also influenced by inter-cohort competition (cf. equation (31)) from the dominant trees. The residual 

stock of the dominant sub-stand, 𝑞𝑡+
𝑑 , is assumed to impact the clearcut timber volume of the 

suppressed cohort with 
𝜕𝜙𝑠

𝜕𝑞𝑡+
𝑑 ≤ 0 and a cross derivative 

𝜕2𝜙𝑠

𝜕𝑞𝑡+
𝑠 𝜕𝑞𝑡+

𝑑 ≤ 0. 

The timber price levels 𝑝𝑡
𝑑 and 𝑝𝑡

𝑠 obtained for timber harvested during the thinning at age 𝑡 

are externally given. The assumption 𝑝𝑡
𝑑 ≥ 𝑝𝑡

𝑠 represents differences in a single tree between the 

cohorts dimension and its resulting effect on harvesting revenues and cost. The development of the 

clear-cut timber prices 𝑝𝑇
𝑑 and 𝑝𝑇

𝑠  depends directly on the growth of the single tree dimension of each 

cohort. Without mortality, the growth of the tree dimension during the age interval [𝑡, 𝑇] can simply 

be captured by the factor 𝜉 ≔
𝑞𝑇

𝑞𝑡+
≥ 1. This allows the definition of a twice continuously differentiable 

clear-cut price function 

  

𝑝𝑇 = 𝑝𝑡𝜓(𝜉) (32) 
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with 𝜓(𝜉) ≥ 1, 
𝜕𝜓(𝜉)

𝜕𝜉
≥ 0 and 

𝜕2𝜓(𝜉)

𝜕𝜉2
< 0. Applying (32) to the dominant and the suppressed cohort, 

the relations 𝑝𝑇
𝑑 ≥ 𝑝𝑇

𝑠 , 𝑝𝑇
𝑑 ≥ 𝑝𝑡

𝑑 and 𝑝𝑇
𝑠 ≥ 𝑝𝑡

𝑠 can be derived. In addition, the assumed price process 

also allows the analysis of scenarios with dimension-independent timber prices, i.e., 𝜓(𝜉) = 𝑐𝑜𝑛𝑠𝑡. 

This approach is different to the common use of stand age as a proxy to describe the relation 

between timber price and tree dimension, i.e.,  𝑝 = 𝑝(𝑡). Because the tree growth is influenced by 

stand density, the heterogeneous stand model allows for the depicted stand management scenarios 

with a connection between the thinning decision and the timber price development. Thus, the clear-

cut price is endogeneous and the value growth potential of thinning can be analyzed both from a 

perspective of timber and price growth. 

Under a constant interest rate 𝑟, the land expectation value of bare land can be expressed as 

  

𝐿𝐸𝑉𝐻𝐺 =
−𝐶𝑝 + 𝑒

−𝑟𝑡 ∑ 𝑝𝑡
𝑖[𝑞𝑡

𝑖 − 𝑞𝑡+
𝑖 ]𝑖=𝑑,𝑠 + 𝑒−𝑟𝑇 ∑ 𝑝𝑇

𝑖 𝑞𝑇
𝑖

𝑖=𝑑,𝑠

1 − 𝑒−𝑟𝑇
 

(33) 

  

The forest owner’s goal is to find a management strategy 𝜎𝐻𝐺  which maximizes the land 

expectation value. Usually, this strategy would also include decisions on the thinning age 𝑡, the clear-

cutting age 𝑇 and the planting density. However, the focus of the model is on the analysis of the 

thinning intensity under a heterogeneous stand structure. Thus, the timing of the two harvests is 

treated as externally given as well as the planting decision and the management strategy reduces to 

𝜎𝐻𝐺 = {𝛼𝑑 , 𝛼𝑠}. Thus, the forest owner’s optimization problem becomes 

  

𝑚𝑎𝑥
𝜎𝐻𝐺

𝐿𝐸𝑉𝐻𝐺  

s.t. 

𝛼𝑖 ∈ [0,1] for 𝑖 = 𝑑, 𝑠 

(34) 

  

6.2.3 Optimal Management 

 

The optimal thinning strategy of the heterogeneous stand model, 𝜎𝐻𝐺∗ = {𝛼𝑑
∗ , 𝛼𝑠

∗}, can be 

obtained by solving problem (34). The solution requires the application of the Kuhn-Tucker conditions 

(e.g. CHIANG 1984, p. 722 ff.), which yields the general conditions for the optimal thinning intensity 
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𝑝𝑡
𝑠 ⋚ 𝑒−[𝑇−𝑡] [𝑝𝑇

𝑠
𝜕𝑞𝑇

𝑠

𝜕𝑞𝑡+
𝑠 +

𝜕𝑝𝑇
𝑠

𝜕𝑞𝑡+
𝑠 𝑞𝑇

𝑠 ] 

 

(35) 

  

𝑝𝑡
𝑑 ⋚ 𝑒−[𝑇−𝑡] [𝑝𝑇

𝑠
𝜕𝑞𝑇

𝑠

𝜕𝑞𝑡+
𝑑
+
𝜕𝑝𝑇

𝑠

𝜕𝑞𝑡+
𝑑
𝑞𝑇
𝑠 + 𝑝𝑇

𝑑
𝜕𝑞𝑇

𝑑

𝜕𝑞𝑡+
𝑑
+
𝜕𝑝𝑇

𝑑

𝜕𝑞𝑡+
𝑑
𝑞𝑇
𝑑] 

(36) 

  

Conditions (35) and (36) represent a general economic principle of intertemporal resource 

management. The effects of today’s consumption have to be balanced with the present value of its 

impact on the future. In the thinning decision, the consumption is reflected by the revenue obtained 

from the harvest of an incremental timber unit, i.e., the timber price 𝑝𝑡
𝑑 or 𝑝𝑡

𝑠 on the LHS of the 

optimality conditions. The RHS of the conditions contains the opportunity cost of this consumption, 

i.e., the present value which would be lost at clear-cut. In condition (35), the RHS contains the impact 

heavier thinning on the clear-cut value of the suppressed cohort. A change in the residual stock 𝑞𝑡+
𝑠  

impacts the discounted clear-cut value of the suppressed trees by influencing the timber price 𝑝𝑇
𝑠  and 

the clear-cut volume 𝑞𝑇
𝑠 . Condition (36) captures the value effects in the dominant cohort. A marginally 

heavier thinning yields additional revenues 𝑝𝑡
𝑑 on one side, but impacts the present value of the clear-

cut revenues of both dominant and suppressed trees on the other side. Thus, in order to maintain 

timber volume in the dominant cohort, the value growth of the dominant trees must offset the 

opportunity cost from today’s consumption and, in addition, the reduction of the suppressed cohort’s 

growth caused by inter-cohort competition. 

As in the models of the previous sections, the forest owner’s decisions within the management 

strategy 𝜎𝐻𝐺  are dependent. For example, heavier thinning of the suppressed trees would reduce the 

value impact of competition from the dominant trees and a higher stock could be maintained in the 

dominant cohort.  

The structure of the first order conditions (35) and (36) differs slightly from the optimality 

conditions in the last sections. The formulation using the relation sign ⋚ to compare both sides of the 

condition is a result of the Kuhn-Tucker conditions and allows the inclusion of corner cases. For an 

inner solution, i.e., 0 < 𝛼𝑑,𝑠
∗ < 1, a condition must be fulfilled with equality. However, depending on 

the curvature of the 𝐿𝐸𝑉 (cf. equation (33)) in the thinning intensities 𝛼𝑑 and 𝛼𝑠, the corner solutions 

𝜎𝐻𝐺∗ ∈ {(0,0); (∙ ,0); (0,∙); (1,1)} are possible. While the first and the last corner cases represent 

either no thinning or a complete clear-cut at age 𝑡, the two other cases represent specific thinning 
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types. If the thinning price on the LHS of a first order condition is always greater than the RHS for any 

thinning intensity, the cohort must be harvested completely because the opportunity cost of a partial 

thinning cannot be offset by the cohorts value increment in [𝑡, 𝑇]. If, on the other hand, the thinning 

price is smaller than the RHS for any thinning intensity, the cohort should not be thinned. The solution 

𝜎𝐻𝐺∗ = (∙ ,0) can be regarded as thinning from above, because only dominant trees are harvested 

during the thinning, while 𝜎𝐻𝐺∗ = (0,∙) represents a thinning from below in which only dominated 

trees are cut (e.g. SMITH 1997, p. 102 ff.). The internal solution with 0 < 𝛼𝑑,𝑠
∗ < 1 represents a thinning 

from both ends. 

Compared to the FOCs of the previous sections, the formulation of conditions (35) and (36) is 

also rather general. HALBRITTER (2020) increases the degree of detail by applying the timber growth 

functions 𝜙𝑑 and 𝜙𝑠 (cf. equations (30) and (31)) and the price growth function 𝜓 (cf. equation (32)). 

This allows for some additional remarks on the optimal thinning decision under different timber price 

scenarios. First, the general formulation of the price process, equation (32), is considered as 

dimension-dependent. Second, environments without dimension-dependency of the timber price can 

be displayed by setting 𝜓 to a constant value. 𝜓 > 1, describes a timber price growth between thinning 

and clear-cut (dimension-independent with price growth), while 𝜓 = 1 and, thus, 𝑝𝑡
𝑑 = 𝑝𝑡

𝑠 = 𝑝 

represents scenarios without growth and without price differentiation (dimension-independent with 

𝑝 = 𝑐𝑜𝑛𝑠𝑡). It is not surprising, that the simplest group of price scenarios with constant timber price 

allows the clearest insights. It can be shown that, without price differentiation, the optimal thinning 

intensity reduces each cohort volume to 𝑞𝑡+
𝑑,𝑠 ∈ [0, �̂�), i.e., to a stock level without or with low intra-

cohort competition and below the level of the maximal aggregated increment �̂� (cf. Figure 6). In 

principle, this rule also applies for scenarios under the dimension-dependent price process and the 

dimension-independent process with price growth. However, if the timber price increment between 

thinning and clear-cut is strong enough, lighter thinnings with residual stock levels above the critical 

density �̂� are possible in each cohort. In scenarios with dimension-independent pricing with growth, 

for example, the price increment of the suppressed trees must exceed the discount effect with 𝑝𝑇
𝑠 >

𝑒𝑟[𝑇−𝑡]𝑝𝑡
𝑠. This also holds for the dominant cohort but this time the competition impact on the 

suppressed trees also has to be taken into account, i.e., 𝑝𝑇
𝑑 > 𝑒𝑟[𝑇−𝑡]𝑝𝑡

𝑑 − 𝑝𝑇
𝑠 𝜕𝑞𝑇

𝑠

𝜕𝑞𝑡+
𝑑 . Thus, the timber 

price growth of the dominant sub-stand must be higher to cause the same effect. It is also possible to 

derive such conditions for management environments with dimension-dependent timber price 

increments. However, they are more complex and less intuitive. 
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6.2.4 Impact of Timber Price and Interest Rate 

 

To investigate the behaviour of the optimal management strategy 𝜎𝐻𝐺∗ on changes in timber 

price or interest rate, the three pricing scenarios introduced in the previous section are again applied 

to gain a more detailed insight. In addition, the comparative static analysis must assume an inner 

solution with 0 < 𝛼𝑑,𝑠
∗ < 1 to yield qualitative results. By definition, the impact of changes of the 

external variables on the corner solutions, e.g., thinning from below or thinning from above, cannot 

be expressed explicitly. However, these thinning types have a tendency to shift in the same direction 

as the inner solutions. 

The impact of marginal changes in the externally given thinning prices, 𝑝𝑡
𝑑 and 𝑝𝑡

𝑠, on the 

thinning intensities of the dominant and the suppressed class of trees is shown in Table 8. In scenarios 

without timber price differentiation, i.e., 𝑝 = 𝑐𝑜𝑛𝑠𝑡, a change in the thinning price is equivalent to a 

change in the overall price level 𝑝. Thus, the revenue of the thinning harvest does not change in 

relation to the clear-cut revenues and the thinning intensities remain unchanged. If, like in the 

dimension-independent price scenario with price growth, the thinning revenues of a cohort increase 

in relation to its clear-cut revenues, a forest owner will increase the thinning intensity because the 

opportunity cost of maintaining timber stock in the stand becomes higher. This also impacts the 

thinning intensity of the other cohort. If the thinning price for suppressed trees shifts to a higher level, 

the optimal thinning intensity 𝛼𝑠
∗ also increases and less timber volume is kept in the suppressed 

cohort. Thus, the opportunity cost of maintaining dominant trees caused by their competition effect 

on the suppressed trees becomes lower and a higher stock can be kept in this cohort. The thinning 

intensity 𝛼𝑑
∗  decreases. This effect also works in case of an increment in 𝑝𝑡

𝑑. This time the thinning of 

the dominant cohort becomes more intense. The reduction in the optimal residual stock 𝑞𝑡+
𝑑∗ improves 

the growth potential of the suppressed trees and thinning of the suppressed cohort becomes less 

intense. While these dependencies are rather intuitive, the optimal thinning strategy in the dimension-

dependent price scenario shows the very opposite behaviour. The reason lies within the growth 

function of the clear-cut price (cf. equation (32)). Thinning and clearcut revenues are connected. For 

𝑑𝑝𝑡 the clearcut price 𝑝𝑇 changes disproportionally with 
𝑑𝑝𝑇

𝑑𝑝𝑡
= 𝜓(𝜉) > 1. In the considered scenario 

in which the timber price at thinning indicates the timber price level for the entire rotation, this 

behavior seems reasonable. As a result, an upward shift in price level favors the clearcut revenues in 

relation to the thinning and a forest owner will maintain a higher timber stock until the clear-cut age. 

The thinning will become lighter. Again, if the optimal thinning intensity of one cohort changes in one 

direction, the thinning intensity of the other cohort must change with the opposite sign. The reason is 

identical to the discussion of the behavior under dimension-independent pricing with growth. 
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Table 8     Impact of thinning prices on thinning intensity. 

  𝒅𝜶𝒔
∗ 𝒅𝜶𝒅

∗  

𝒅𝒑𝒕
𝒔 Dim-dependent < 0 > 0 

 Dim-independent with p-growth > 0 < 0 

 Dim-independent with p=const = 0 = 0 

𝒅𝒑𝒕
𝒅 Dim-dependent > 0 < 0 

 Dim-independent with p-growth < 0 > 0 

 Dim-independent with p=const = 0 = 0 

    

 

The analysis of a shift in the clear-cut prices 𝑝𝑇
𝑑 and 𝑝𝑇

𝑠  only makes sense for scenarios with 

dimension-independent price growth. The behavior of the optimal thinning intensities is shown in 

Table 9 and follows the same rationale as the discussion of changes of the thinning price under 

dimension-dependent price development. Again, the relative shift between thinning and clear-cutting 

revenues together with the effects on the respective other sub-stand must be considered to explain 

the results. 

 

Table 9     Impact of clear-cut prices on thinning intensity. 

  𝒅𝜶𝒔
∗ 𝒅𝜶𝒅

∗  

𝒅𝒑𝑻
𝒔  Dim-independent with p-growth < 0 > 0 

𝒅𝒑𝑻
𝒅 Dim-independent with p-growth > 0 < 0 

    

 

In contrast to the analysis of isolated changes in the timber prices of each cohort, the interest 

rate 𝑟 affects both the dominant and the suppressed class of trees. Under a higher interest rate, higher 

opportunity costs for bound timber capital must be balanced by reducing timber stock. Thus, heavier 

thinnings in both cohorts can be expected. However, the negative dependencies between the thinning 

intensity of dominant and the suppressed trees prevent such a clear relationship without further 

scenario differentiation. In summary, two rather technical conditions dealing with the behavior of the 

land expectation value (cf. equation (33)) in a close environment around the optimal thinning strategy 

𝜎𝐻𝐺∗ determine the results of the comparative impact of the interest rate. The more sensitive the 

𝐿𝐸𝑉𝐻𝐺  reacts on deviations from the optimal thinning intensities 𝛼𝑑
∗  or 𝛼𝑠

∗, i.e., the more negative the 

effect on the profitability, the more likely becomes the expected reduction of the timber stock of this 

cohort in case of a higher interest rate. In addition, the relation between the thinning prices 𝑝𝑡
𝑑 and 𝑝𝑡

𝑠 

is also influencial. As presented in Table 10, the two conditions must be evaluated jointly to deliver 

results. Only in scenarios of a high sensitivity of the land expectation value on deviations from 𝜎𝐻𝐺∗, 
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does a higher interest rate level result in heavier thinning of both cohorts. In all other scenarios, the 

thinning intensity of the sub-stands shifts to opposite directions10.  

 

Table 10     Impact of interest rate on thinning intensity. 

 
1

𝑝𝑡
𝑑

𝜕2𝐿𝐸𝑉𝐻𝐺

𝜕𝑞𝑡+
𝑑 2 ⋚

1

𝑝𝑡
𝑠

𝜕2𝐿𝐸𝑉𝐻𝐺

𝜕𝑞𝑡+
𝑑 𝜕𝑞𝑡+

𝑠  
1

𝑝𝑡
𝑠

𝜕2𝐿𝐸𝑉𝐻𝐺

𝜕𝑞𝑡+
𝑠 2

⋚
1

𝑝𝑡
𝑑

𝜕2𝐿𝐸𝑉𝐻𝐺

𝜕𝑞𝑡+
𝑑 𝜕𝑞𝑡+

𝑠  𝒅𝜶𝒔
∗ 𝒅𝜶𝒔

∗ 

𝒅𝒓 < < > 0 > 0 

 < > > 0 < 0 

 < = > 0 = 0 

 > < < 0 > 0 

 = < = 0 < 0 

     

 

 

6.2.5 Discussion in Comparison to the Basic FAUSTMANN Applications 

 

The heterogeneous stand model solely investigates the intensity of one particular thinning 

harvest. Thus, it is suitable to study the influence of heterogeneous growth in comparison to the 

discrete version of the basic thinning model (cf. section 2.4.2). Table 11 contains the conditions for an 

inner solution for the residual timber stock in the basic model, equation (9), and for the dominant and 

the supressed cohort in the heterogeneous stand model, equations (35) and (36). 

 

Table 11     Comparison of the residual timber stock conditions between the basic thinning model 
and the heterogeneous stand model. 

 

  Value increment   Opportunity cost 

  Direct Indirect   

      

The Thinning Model 𝑞𝑡
∗: 𝑝(𝑡 + ∆)

𝜕𝑞(𝑡 + ∆, 𝑞𝑡)

𝜕𝑞𝑡
𝑒−𝑟∆  = 𝑝(𝑡) 

      

The Heterogeneous 
Stand Model 

𝑞𝑡+
𝑑∗: [𝑝𝑇

𝑑
𝜕𝑞𝑇

𝑑

𝜕𝑞𝑡+
𝑑 +

𝜕𝑝𝑇
𝑑

𝜕𝑞𝑡+
𝑑 𝑞𝑇

𝑑] 𝑒−[𝑇−𝑡] + [𝑝𝑇
𝑠
𝜕𝑞𝑇

𝑠

𝜕𝑞𝑡+
𝑑 +

𝜕𝑝𝑇
𝑠

𝜕𝑞𝑡+
𝑑 𝑞𝑇

𝑠] 𝑒−[𝑇−𝑡] = 𝑝𝑡
𝑑  

      

 𝑞𝑡+
𝑠∗ : [𝑝𝑇

𝑠
𝜕𝑞𝑇

𝑠

𝜕𝑞𝑡+
𝑠 +

𝜕𝑝𝑇
𝑠

𝜕𝑞𝑡+
𝑠 𝑞𝑇

𝑠] 𝑒−[𝑇−𝑡]  = 𝑝𝑡
𝑠 

      

 
10 The relation > is not possible for both conditions at the same time, because it would violate the conditions 
for the optimal management strategy to constitute a maximum of the 𝐿𝐸𝑉𝐻𝐺 . 
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To apply the patchwork approach according to section 4, an overlapping scenario must be 

found to connect the analysis of both models. A look at the structure of the three first order conditions 

already reveals a high degree of similarity. Assuming an identical timber price process, both models 

are identical if they are applied to environments with homogeneous stands. Thus, the range of 

scenarios depicted by the basic thinning model is contained in the scope of the heterogeneous stand 

model. For homogeneous stands, both models provide the same optimality condition and imply the 

same solution and behavior.  

Expanding this overlapping scenario by introducing a stand density-dependent timber price 

yields a straight forward extension of the value increment on the LHS of the timber stock condition by 

the impact of density on the timber price, 
𝜕𝑝𝑇
𝑑,𝑠

𝜕𝑞𝑡+
𝑑,𝑠 𝑞𝑇

𝑑,𝑠. If this impact is negative, e.g., because of smaller 

tree dimension, the optimal timber stock of the extended model must be lower compared to the 

density-independent pricing and the thinning must be more intense. If quality is included, e.g., if higher 

stand density reduces branches or knots and, thus, even leads to a higher timber price, the stand’s 

optimal timber stock must be higher than in the basic thinning model. It can even exceed the 

increment-maximal level. Consequently, thinnings become lighter compared to the density-

independent timber price scenario. 

The determinantion of the optimal post-thinning timber stock of a homogeneous stand 

requires only one optimality conditition, i.e., equation (9). In a heterogeneous stand structure several 

conditions are necessary. The thinning intensity of each cohort is a decision variable for the forest 

owner and must fulfill a separate condition. Thus 𝑛 cohorts form an equation system of 𝑛 conditions 

which must be solved to maximize the land expectation value. If a timber volume level can be found 

for each cohort, which fulfills its condition with equality, i.e., the associated thinning intensities are ∈

(0,1), an inner solution is optimal and each cohort is thinned. However, in case of a multitude of 

cohorts, it is more likely that the corner solutions of either no thinning or complete harvest apply for 

some of the sub-stands. Depending on the differentiation criteria of the cohorts, i.e., dominant and 

suppressed, the corner solutions correspond to thinning patterns such as thinning from above or from 

below (cf. section 6.2.3). 

In a heterogeneous stand with several cohorts, there usually exist dependencies between the 

cohorts which must be taken into account to determine the optimal timber stock. In the 

heterogeneous stand model, only dominant and suppressed trees are assumed with the growth of the 

suppressed trees being negatively influenced by the density of the dominant cohort. Thus, the value 

growth of the dominant trees must be high enough to account for its impact on the suppressed trees. 
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This is representend by the term for the indirect value increment on the LHS of condition (36). The 

stronger this inter-cohort competition, the lower the optimal timber stock and the more intense must 

be the thinning. In case of a positive dependency, e.g., different tree species and the occurence of 

quality effects, the relation may point the opposite direction. If the trees from a cohort do not influence 

the growth of other sub-stands, e.g., the suppressed trees in the heterogeneous stand model, the 

optimality condition determining the optimal timber volume is rather similar to the condition of the 

basic thinning model (cf. Table 11). The only difference is that the competiton effects influencing the 

density-dependent growth are split into an intra-cohort and an inter-cohort effect represented by the 

volume of both cohorts in the growth function. 

While the impact of heterogeneity on the optimal thinning solution is rather straight foreward, 

the comparison of the model behaviour for changes in the interest rate or the timber price reveals 

significant differences. Section 6.2.4 showed the high complexity of the still rather simple scenario of 

only two sub-stands with a one-sided, inter-cohort competition effect. However, a detectable pattern 

is the antagonistic behaviour of the thinning intensities of the two cohor ts (cf. Table 11). For the 

suppressed trees, this is due to a direct negative effect induced by inter-cohort competition from the 

dominant trees. For the dominant cohort, the antagonistic behavior is the results of an indirect effect. 

A higher timber volume in the suppressed cohort increases the opportunity cost of inter-cohort 

competition the dominant trees have to carry. Generally, changes in interest rate or timber price 

impact the value growth potential of one or both cohorts and, with it, the relative profitability between 

both cohorts changes. The thinning intensity declines in the cohort whose value growth potential 

benefits from the change in the external conditions in relation to the other cohort. Thus, this also holds 

if the change has a negative value impact on both cohorts. A good example provides a look at the 

interest rate. A higher level of 𝑟 increases the capital cost of maintaining timber stock. Consequently, 

the stand’s optimal timber volume decreases in the basic thinning model and the thinning is more 

intense. In the heterogeneous stand model, however, most scenarios show a lower optimal thinning 

intensity for one of the cohorts even though both sub-stands face higher capital costs (cf. Table 10). 

There is only one scenario in which heavier thinning in both cohorts is optimal. The same antagonistic 

behavior can be found for timber price changes. In the heterogeneous model, a forest owner reduces 

the thinning intensity of the cohort which benefits most and applies a heavier thinning in the other 

sub-stand (cf. Table 8 and Table 9). In the basic thinning model, a higher timber price often reduces 

the price growth rate resulting in a lower timber stock. Thus, general guidelines for thinning patterns 

cannot be applied under heterogeneous growth. 
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6.3 Stochastic Extension: The Natural Risk Model 

 

Perfect foresight belongs to the fundamental assumptions of the FAUSTMANN environment 

(cf. section 2.3). However, any stand management model assuming full knowledge about future cash 

flows severely restricts the depicted management environment. This section presents a model by 

HALBRITTER et al. (2020), which extends the analysis of optimal stand management to scenarios under 

a stand density-dependent natural risk. Thereby, the thinning decision determines the stand’s density 

and, with it, controls the stand’s stability and likelihood of destruction through natural hazard. Thus, 

the natural risk model allows for the analysis of thinnings as a measure to increase timber growth as 

well as a measure to influence stand stability. 

The extension dissolves the assumption of perfect foresight only for the development of the 

timber stock. There are various other possibilities to include stochastic scenarios in the analysis. Before 

summarizing the set-up and results of the natural risk model, section 6.3.1 clarifies the terms 

‘deterministic’ and ‘stochastic’ and gives a brief overview of the literature in the field. 

 

6.3.1 Deterministic and Stochastic Scenarios 

 

In a deterministic scenario, a decision-maker has perfect knowledge of all future parameters 

influencing the decision. Uncertainty or risk does not exist. Adapted to forestry, this means that future 

changes in key variables, such as timber price, interest rate or timber growth, are known to a forest 

owner in advance and can, therefore, be considered in the intertemporal stand management decisions 

(e.g. CHANG 1998). 

Perfect foresight belongs to the most common assumptions in forest economic models. The 

basic questions of optimal stand management, e.g., the rotation problem (FAUSTMANN 1849; 

PRESSLER 1860), have first been solved in a determinstic environment, often under the assumption of 

external parameters being constant over time or endogeneously dependent on stand age. Models 

studying the impact of variables evolving deterministically over time or in the course of consecutive 

rotations, e.g., timber price development (e.g. McCONNELL et al. 1983; NEWMAN et al. 1985) or 

technical improvements (e.g. JOHANSSON and LÖFGREN 1985, p. 102 ff.), just came up during the 

FAUSTMANN revival after the seminal article by SAMUELSON (1976).  

However, given the long time-horizon of many forest management decisions, the assumption 

of perfect foresight is quite unrealistic. Instead, the future development of many necessary variables 
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is not known with certainty. To solve this problem, stochastic models include risk in the development 

of one or more variables and study the impact on forest management decisions. Risk can be 

incorporated systematically in economic optimization because the parameters of its probability 

distribution are known or, at least, can be assumed to be known. Thus, by maximizing the expected 

utility or expected present value of an investment exposed to risk, the optimal forest management 

strategy can be determined. 

Since the 1980s, a vast amount of stochastic problems have been discussed in forest economic 

literature. Among others, three major fields of research easing the deterministic assumption of 

classical models can be distinguished.  

One branch investigates the impact of natural risk like forest fires, wind damage or pests on 

optimal forest management (e.g. YIN and NEWMAN 1996). Especially the influence of fire risk on the 

optimal rotation (e.g. ROUTLEDGE 1980; REED 1984; SUSAETA et al. 2016), forest protection (e.g. REED 

1987) or optimal thinning (e.g. REED and APALOO 1991), has received considerable attention. While 

catastrophic events represent negative timber volume shocks, another field of research looks at the 

influence of stochastic biological growth on forest management decisions (e.g. JOHANSSON and 

LÖFGREN 1985, p. 260 ff.; CLARKE and REED 1989). The third and probably largest group of studies 

incorporates stochastic markets into forest economic models, often under consideration of the risk 

preferences of the forest owner.  Most common are studies investigating the impact of stochastic 

timber prices (e.g. NORSTRØM 1975; BRAZEE and MENDELSOHN 1988; HAIGHT and HOLMES 1991; 

GONG and LÖFGREN 2007) or interest rates (e.g. OLLIKAINEN 1990).  

The excursion into the diverse field of risk in forest economic research reveals a great number 

of possible stochastic extentions of the classical deterministic models. Literally, each parameter of the 

combined model by HALBRITTER and DEEGEN (2015) is exposed to risk. The natural risk model 

presented in the next section, introduces risk to a stand’s timber stock.  

 

6.3.2 Model 

 

Although the assumption of perfect foresight is somewhat dissolved by the risk of losing the 

stand’s timber volume, other parameters such as timber price, stand establishment cost, interest rate 

or the timber growth function are assumed to be known and constant in each rotation. In addition, the 

model treats capital and land markets as perfect (cf. section 2.3). 
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In the natural risk scenario, a rotation consists of the establishment of an even-aged forest 

stand at planting cost 𝐶𝑝, followed by a period of thinnings and a clear-cut at age 𝑇. The harvest 

volumes are denoted ℎ(𝑡) for any thinning at stand age 𝑡 ∈ (0, 𝑇) and 𝑞(𝑇) for the clear-cut. The 

timber growth model follows the common approach of the simplified thinning model by CLARK and DE 

PREE (1979) (cf. section 2.4.2) and is also utilized in the combined model (HALBRITTER and DEEGEN 

2015) introduced in section 5. The age and density-dependent timber increment 𝜙(𝑡, 𝑞) slows down 

in older stands, i.e., 
𝜕𝜙(𝑡,𝑞)

𝜕𝑡
< 0, and is concave in stand volume 𝑞 with a maximum at the critical 

density �̂�, i.e., 
𝜕𝜙(𝑡,𝑞)

𝜕𝑞
> 0|

𝑞<�̂�
 and 

𝜕𝜙(𝑡,𝑞)

𝜕𝑞
≥ 0|

𝑞≥�̂�
 (cf. section 5.1). Thus, the stand’s timber stock 

development defined as �̇�(𝑡) = 𝜙(𝑡, 𝑞) − ℎ(𝑡) (cf. section 2.4.2). 

The stand is exposed to the risk of natural hazards such as fires, wind damage or pests which 

are assumed to destroy the stand’s timber completely at their occurence. Let 𝑋 be the age at which 

the stand is destroyed either by natural hazard (𝑋 < 𝑇) or clear-cut (𝑋 = 𝑇) and instantly regenerated. 

With an interest rate 𝑟, an age-dependent monotone increasing net timber price 𝑝(𝑡) and a hazard 

damage to human health and infrastructure 𝐷 for which the forest owner is liable, the sum of 

discounted cash flows of a single rotation can be expressed as 

  

𝑌 =

{
 
 

 
 −𝐶𝑝 +∫ 𝑒−𝑟𝑡𝑝(𝑡)ℎ(𝑡)𝑑𝑡 − 𝑒−𝑟𝑋𝐷

𝑋

0

𝑋 < 𝑇

−𝐶𝑝 +∫ 𝑒−𝑟𝑡𝑝(𝑡)ℎ(𝑡)𝑑𝑡 + 𝑒−𝑟𝑇𝑝(𝑇)𝑞(𝑇)
𝑇

0

𝑋 = 𝑇

 

(37) 

  

The hazard function 𝜑(𝑡, 𝑞) represents the instantaneous probability rate that a natural hazard 

destroys a stand with timber stock 𝑞 at stand age 𝑡. Depending on the characteristics regarding its two 

parameters, i.e., 
𝜕𝜑

𝜕𝑡
⋚ 0 and 

𝜕𝜑

𝜕𝑞
⋚ 0, the hazard function is able to describe a wide range of relations 

between hazard risk and stand management. To reduce the complexity of further analysis, the risk 

function is assumed to be linear in both components. The hazard probability rate can be accumulated 

to a stand  survivor function 

  

𝑆(𝑡) = 𝑒−𝑢(𝑡) (38) 
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with 𝑢(𝑡) = ∫ 𝜑(𝑥, 𝑞(𝑥))𝑑𝑥
𝑡

𝑜
 (cf. REED 1984). It represents the probability that the stand has not 

been destroyed at age 𝑡. Using equations (37) and (38), the expected net present value of a single 

rotation, �̂�: = 𝛦(𝑌), becomes 

  

�̂� = −𝐶𝑝 +∫ 𝑒−[𝑟𝑡+𝑢(𝑡)][𝑝(𝑡)ℎ(𝑡) − 𝜑(𝑡, 𝑞(𝑡))𝐷]𝑑𝑡 + 𝑒−[𝑟𝑇+𝑢(𝑇)]𝑝(𝑇)𝑞(𝑇)
𝑇

0

 
(39) 

  

Finally, the expected net timber revenues over infinite rotations, i.e., the land expectation 

value 𝐿𝐸𝑉𝑁𝑅  of the natural risk model, can be determined. Defined as 𝐿𝐸𝑉𝑁𝑅 ≔
𝛦(𝑌)

1−𝛦(𝑒−𝑟𝑋)
 with 

𝛦(𝑒−𝑟𝑋) = 1 − 𝑟 ∫ 𝑒−[𝑟𝑡+𝑢(𝑡)]𝑑𝑡
𝑇

𝑜
 it can be expressed as 

  

𝐿𝐸𝑉𝑁𝑅 =
�̂�

𝑟 ∫ 𝑒−[𝑟𝑡+𝑢(𝑡)]𝑑𝑡
𝑇

𝑜

 
(40) 

  

However, for the analysis of optimal stand management in the natural risk scenario, the use of 

equation (40) generates an unfavoarable degree of complexity. To avoid these difficulties, the equation 

can be rearranged by splitting off the expected revenues of the first rotation, �̂�. This yields an 

equivalent formulation with  

  

𝐿𝐸𝑉𝑁𝑅 = �̂� + 𝛦(𝑒−𝑟𝑋)𝐿𝐸𝑉𝑁𝑅  (41) 

  

which represents the sale of the forest land at the end of the first rotation at a land price equal to 

𝐿𝐸𝑉𝑁𝑅. In market equilibrium, the land price 𝐿 represents the land value under optimal stand 

management. In the scenario of the natural risk model, optimal management consists of the optimal 

choice of the thinning volume ℎ and the clear-cut age 𝑇. Thus, 𝐿 = max
𝜎𝑁𝑅

𝐿𝐸𝑉𝑁𝑅 = 𝐿𝐸𝑉𝑁𝑅(𝜎𝑁𝑅∗) must 

hold under the optimal management strategy 𝜎𝑁𝑅∗ = {ℎ∗(𝑡), 𝑇∗}. Therefore, under the assumption of 

market equilibrium, the forest owner’s management problem becomes 
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𝑚𝑎𝑥
𝜎𝑁𝑅

{�̂� + 𝛦(𝑒−𝑟𝑋)𝐿} 

s.t. 

�̇�(𝑡) = 𝜙(𝑡, 𝑞) − ℎ(𝑡) 

�̇�(𝑡) = 𝜑(𝑡, 𝑞(𝑡)) 

ℎ(𝑡) ∈ [0, 𝑞(𝑡)] for all 𝑡 ∈ [0, 𝑇]  

(42) 

  

6.3.3 Optimal Management 

 

As in the combined model (cf. section 5), the uneven-aged extension (cf. section 6.1) or the 

heterogeneous extension (cf. section 6.2), the stand management decisions of the optimal 

management strategy 𝜎𝑁𝑅∗ are not independent. However, in equilibrium, the optimal thinning 

strategy ℎ∗ can be derived under the assumption of an optimal rotation age. The optimal rotation 𝑇∗, 

on the other hand, can be determined under the assumption of optimal thinning. 

To derive the conditions for the optimal thinning harvest for a given 𝑇∗, the dynamic 

optimization problem (42) can be solved using optimal control theory with a current value approach 

(e.g. CHIANG and WAINWRIGHT 2005, p. 631 ff.) yielding equation (43). As in the simplified thinning 

problem (cf. section 2.4.2) and the optimal management of the combined model (cf. section 5.2), the 

solution of condition (43) provides the optimal timber stock path 𝑞∗ of a stand facing the risk of 

destruction by natural hazzard. 

  

𝑝(𝑡)
𝜕𝜙(𝑡, 𝑞)

𝜕𝑞
+ �̇�(𝑡) = 𝑝(𝑡)[𝑟 + 𝜑(𝑡, 𝑞)] +

𝜕𝜑(𝑡, 𝑞)

𝜕𝑞
𝑅(𝑡, 𝑞) 

(43) 

  

The LHS of condition (43) contains the returns of maintaining a marginally higher timber stock 

level in the stand. The slightly higher volume affects the timber increment, i.e., 
𝜕𝜙

𝜕𝑞
, and contributes 

additional value from the timber price increment �̇�. The right hand side represents the opportunity 

cost. A marginally increased timber stock causes risk adjusted capital cost [𝑟 + 𝜑]𝑝 because 𝜑 

represents the likelihood of instantaneous destruction which endangers the investment in additional 
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stand volume 𝑝. Furthermore, the influence on the return at risk 𝑅(𝑡, 𝑞)11 must be considered. It 

consists of the difference between the stand’s current value and the value in case of an instant 

destruction by natural hazard, i.e., 𝐿 − 𝐷, and represents the expected future revenue that would be 

lost in case of the stand’s destruction. If the instantaneous risk of a natural hazard changes, e.g., 

because of the thinning decision, the expected loss of future cash flows, 𝜑𝑅, also changes. This effect 

must be taken into account when evaluating the opportunity cost of a marginal volume increment and 

is captured in the last term of condition (43).  On the optimal timber volume path 𝑞∗, value increment 

and opportunity cost must be balanced. 

The optimal thinning quantities ℎ∗ can be derived by comparing the optimal timber volume  𝑞∗ 

with the actual stand volume 𝑞. Thus, 

  

ℎ∗(𝑡) = {
0 𝑞(𝑡) < 𝑞∗(𝑡)

𝑞(𝑡) − 𝑞∗(𝑡) 𝑞(𝑡) ≥ 𝑞∗(𝑡)
 

(44) 

  

Similar to the analysis of the optimal timber stock path in the combined model (cf. section 5.2), 

the timber stock level condition (43) can be used as a basis to draw some additional conclusions. 

Without further restrictions on the management environment, the domain of the optimal timber 

volume 𝑞∗ can be located below, on or above the increment maximal level �̂� depending on the growth 

rate 
�̇�

𝑝
 of the timber price. However, if the impact of timber price is excluded from the thinning decision 

by looking at scenarios with �̇� = 0, the influence of risk becomes clear. The stand’s optimal stock 𝑞∗ 

lies below �̂� with certainty if the hazard risk is increasing in timber stock, i.e., 
𝜕𝜑

𝜕𝑞
> 0. If, on the other 

side, the risk of destruction is decreasing in timber volume, i.e., 
𝜕𝜑

𝜕𝑞
< 0, it can become beneficial to 

maintain a timber stock above 𝑞,̂ purely to reduce the risk of destruction.  

In addition, condition (43) also reveals the relation of the optimal stand volume in scenarios 

with density-dependent risk and density-independent risk. If the hazard risk grows with stand volume, 

a forest owner must account for this impact and keep the timber volume at a lower level compared to 

density-independent risk scenarios. The opposite is true in case of a decreasing relationship between 

timber stock and risk of destruction. 

Not surprisingly, the analysis of the development of the timber stock over a stand’s lifetime is 

far more complex in the natural risk model compared to the combined model of section 5. 

 
11 The definition of 𝑅 is rather technical and can be found in more detail in HALBRITTER et al. (2020). 
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Unfortunately, a look at density-dependent risk scenarios only yields ambiguous results. Only in 

environments with age-dependent or constant risk of natural hazards, i.e.,  
𝜕𝜑(∙,𝑞)

𝜕𝑞
= 0 together with 

𝜕𝜑(𝑡,∙)

𝜕𝑡
⋛ 0, and a linear price and risk process, some clear conclusions can be drawn. In the scenario of 

a constant risk of a natural hazard, condition (43) becomes almost identical to the condition of optimal 

thinning in the simplified thinning model of section 2.4.2, equation (8), or the thinning condition (18) 

of the combined model introduced in section 5. Although in the natural risk model, a risk adjusted 

interest rate, i.e., 𝑟 + 𝜑, is applied, the stand’s optimal timber stock declines over time with the same 

reasoning as in the other two models. If the risk of losing the accumulated timber in a natural hazard 

event increases with age, i.e., 
𝜕𝜑(𝑡,∙)

𝜕𝑡
> 0, the RHS of condition (43) increases. This effect must be 

balanced on the LHS by reducing the timber stock and, thereby, increasing the timber growth. Under 

a decreasing hazard rate, however, both sides of condition (43) decline. The left hand side declines 

because of the price growth rate, the right hand side because of the hazard rate 𝜑. Depending on 

which impact is dominant, the optimal timber stock, 𝑞∗, also declines, remains constant or might even 

increase. 

Table 12 summarizes the development of the optimal timber volume in scenarios with density-

independent natural risk.  

 

Table 12    The impact of stand age on the optimal timber stock level in case of density-independent 
natural risk. 

 
𝜕𝜑

𝜕𝑡
 

𝜕2𝜙

𝜕𝑞𝜕𝑡
− [
�̇�

𝑝
]
2

⋛
𝜕𝜑

𝜕𝑡
 𝒅𝒒∗ 

𝒅𝒕 > 0  < 0 

 = 0  < 0 

 

< 0 < 0 < 0 

= 0 = 0 

> 0 > 0 

    

 

Solving problem (42) for the clear-cut age and under the assumption of an optimal thinning 

path ℎ∗ yields condition (45). 

  

�̇�(𝑇)𝑞(𝑇) + 𝑝(𝑇)𝜙(𝑇, 𝑞(𝑇)) = 𝑟[𝑝(𝑇)𝑞(𝑇) + 𝐿] + 𝜑(𝑇, 𝑞(𝑇))[𝑝(𝑇)𝑞(𝑇) + 𝐷] (45) 
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For the most part, the equation resembles the FAUSTMANN-PRESSLER-OHLIN theorem of the 

simplified rotation problem (cf. equation (5) in section 2.4.1) and the rotation condition of the 

combined model (cf. equation (19) in section 5.2). At the optimal clear-cutting age, the revenues from 

postponing the clear-cut resulting from timber and price increment must balance the capital costs from 

the standing timber and land. However, the additional term on the RHS of condition (45) introduces 

the impact of risk into the determination of 𝑇∗. If the clear-cut is postponed by a marginal time interval, 

there is a likelihood 𝜑  of a natural hazard and the destruction of the stand’s timber stock. The expected 

costs of such an event are 𝜑[𝑝𝑞 + 𝐷]. They have to be added to the opportunity cost of prolonging 

the rotation in the natural risk model. 

 

6.3.4 Impact of Timber Price and Interest Rate 

 

Based on HALBRITTER et al. (2020) this section focusses on the impact of changes in the 

interest rate or timber price on the optimal thinning decision, especially on the optimal timber 

stocking. The influence on the optimal rotation was mostly omitted in the analysis of the model. 

However, although a negative influence of increments in timber price or interest rate on the optimal 

rotation is well-known for classical scenarios (e.g. JOHANSSON and LÖFGREN 1985, p. 80 ff.), already 

the inclusion of thinnings might change this result (cf. section 5). Thus, some thoughts in comparison 

to the classical rotation model are included in section 6.3.5. 

Because the interest rate influences the opportunity cost of maintaining bound timber capital, 

a stock reduction in case of increased level of 𝑟 would be expected. However, the impact of the interest 

rate in the natural hazard model turns out to be highly case-dependent.  

The first differentiation must be made for the relation between timber stock and hazard risk. 

In the simplest scenario, i.e., density-independent risk with 
𝜕𝜑

𝜕𝑞
= 0, the stand’s optimal volume shows 

the expected decline in case of a marginally increment of 𝑟. For density-dependent risk scenarios, the 

conditions −
𝜕𝜑

𝜕𝑞

𝜕𝑅

𝜕𝑟
⋚ 𝑝 and 

𝜕2𝜙

𝜕𝑞2
≶
𝜕𝜑

𝜕𝑞
 must be evaluated. The first condition evaluates the capital cost 

increment of a marginally increasing interest rate and timber stock level, 𝑝, against the impact on the 

change of the return at risk 𝑅. The later declines for higher levels of 𝑟 due to higher discounting costs, 

i.e., 
𝜕𝑅

𝜕𝑟
< 0. The second condition compares the curvature of the timber increment function with 

respect to 𝑞 and the impact of the stock level on the hazard risk. 
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If the dependency between timber stock and risk is positive with 
𝜕𝜑

𝜕𝑞
> 0, 

𝜕2𝜙

𝜕𝑞2
<
𝜕𝜑

𝜕𝑞
 always 

holds because 
𝜕2𝜙

𝜕𝑞2
 is negative. In the first condition, higher opportunity costs for capital stand against 

lower opportunity costs from future revenues. If the first effect dominates, the optimal timber stock 

path lies on a lower level for a marginally higher interest rate. On the other hand, it is also possible 

that the opportunity costs from maintaining timber volume decline because of a lower return at risk. 

In these scenarios, the optimal stand timber volume would be on a higher level. 

Fortunately, the discussed effects between capital costs and expected future revenues point 

in the same direction for risk scenarios with negative dependency between hazard rate and stand 

volume, i.e., −
𝜕𝜑

𝜕𝑞

𝜕𝑅

𝜕𝑟
< 𝑝 always applies in case of  

𝜕𝜑

𝜕𝑞
< 0. In these management environments, the 

curvature of the timber increment function, i.e., 
𝜕2𝜙

𝜕𝑞2
, must be compared to the slope of the risk 

function, i.e., 
𝜕𝜑

𝜕𝑞
. The odd result of a higher optimal timber stock in situations of higher interest rates 

might occur if the risk is very sensitive to stand volume and, thus, the higher stock offers a strong 

protection against natural hazard events. 

Table 13 summarizes these results. 

 

Table 13     The impact of interest rate on the optimal timber stock. 

 𝜕𝜑

𝜕𝑞
 −

𝜕𝜑

𝜕𝑞

𝜕𝑅

𝜕𝑟
⋚ 𝑝 |

𝜕2𝜙

𝜕𝑞2
| ≶ |

𝜕𝜑

𝜕𝑞
| 

𝒅𝒒∗ 

𝒅𝒓 > 0 <  < 0 
= = 0 
> > 0 

= 0   < 0 
< 0  < > 0 

> < 0 
     

 

The impact of the age-dependent timber price 𝑝(𝑡) on the stand’s optimal timber stock level 

can be twofold. First, the overall price level could change and, second, the timber price increment 

could be different. To separate these effects, the analysis assumes a linear timber price with 𝑝(𝑡) =

𝑎 + 𝑏𝑡 with 𝑎 < 0 and 𝑏 > 0. However, both a higher level of 𝑎 as well as a higher level of 𝑏 reduce 

the price growth rate 
�̇�

𝑝
. In scenarios without a timber stock influence on the hazard risk, i.e., 

𝜕𝜑

𝜕𝑞
=

0, this decrement of the price growth rate and, with it, the profitability of maintaining timber stock 

must be balanced by an improved timber growth. This results in a lower stand volume for marginally 

higher 𝑎 and 𝑏. In density-dependent risk scenarios, the relationship between the timber price 

weighted sensitivity of the return at risk, 𝑝
𝜕𝑅

𝜕𝑎
 and 𝑝

𝜕𝑅

𝜕𝑏
, and 𝑅, respectively 𝑡𝑅, must be evaluated. For 
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management environments with 
𝜕𝜑

𝜕𝑞
> 0, there seems to be a tendency to reduce the stand’s timber 

volume for a higher timber price level or increment, even though not every scenario is qualitatively 

decidable. The influence of the smaller timber price growth rate might be dominant. The management 

environment with a negative relation between hazard risk and stand volume appears to be highly 

dependent on specific conditions. In addition to the impact of the return at risk 𝑅, a second condition 

concerning the relation between increment and hazard risk function must be considered. Thus, no 

simple rule or tendency of the impact of 𝑎 and 𝑏 can be made. Both an increased or decreased timber 

stock level is possible.  

These results are compiled in Table 14 and Table 15. 

 

Table 14     The impact of timber price level on the optimal timber stock. 

 𝜕𝜑

𝜕𝑞
 𝑝

𝜕𝑅

𝜕𝑎
⋚ 𝑅 |

𝜕2𝜙

𝜕𝑞2
| ≶ |

𝜕𝜑

𝜕𝑞
| 

𝒅𝒒∗ 

𝒅𝒂 > 0 <  ambiguous 
=  < 0 
>  < 0 

= 0   < 0 
< 0 < < > 0 

= < > 0 
< > < 0 

 > < 0 
>  ambiguous 

     

 

Table 15     The impact of timber price increment on the optimal timber stock. 

 𝜕𝜑

𝜕𝑞
 𝑝

𝜕𝑅

𝜕𝑏
⋚ 𝑡𝑅 |

𝜕2𝜙

𝜕𝑞2
| ≶ |

𝜕𝜑

𝜕𝑞
| 

𝒅𝒒∗ 

𝒅𝒃 > 0 <  ambiguous 
=  < 0 
>  < 0 

= 0   < 0 
< 0 < < > 0 

= < > 0 
< > < 0 

 > < 0 
>  ambiguous 
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6.3.5 Discussion in Comparison to the Basic FAUSTMANN Applications 

 

Optimal Timber Stock and Thinning 

 

The conditions determining the optimal timber stock path for continuous thinning in the basic 

thinning model, equation (8), and the natural risk model, equation (43), are displayed in Table 16. Both 

conditions become identical if the natural hazard rate is assumed to be zero. Thus, the basic scenario 

without hazard risk is contained in the scope of the natural risk model. 

 

Table 16     Comparison of the timber stock conditions between the basic thinning model and the 
natural risk model. 

  Value increment  Opportunity cost  

    Capital Future revenue 

      

The Thinning Model 𝑞∗: �̇�(𝑡) +
𝜕𝜙(𝑡, 𝑞)

𝜕𝑞
𝑝(𝑡) = 𝑟𝑝(𝑡)  

      

The Natural Risk 
Model 

𝑞∗: �̇�(𝑡) +
𝜕𝜙(𝑡, 𝑞)

𝜕𝑞
𝑝(𝑡) = [𝑟 + 𝜑(𝑡, 𝑞)]𝑝(𝑡) +

𝜕𝜑(𝑡, 𝑞)

𝜕𝑞
𝑅(𝑡, 𝑞) 

      

 

The extension of the basic environment by a constant or age-dependent natural risk adds 

additional opportunity cost to the decision of maintaining a marginally higher timber volume in the 

stand because the stock increment faces the risk of destruction. With the hazard function 𝜑(𝑡) 

denoting the instanteneous probability of destruction, the expected value loss, 𝜑(𝑡)𝑝(𝑡), must be 

taken into account on the RHS of condition (43). Another way of interpreting these additional 

opportunity costs is a risk premium on the interest rate, which accounts for the possiblity of a hazard 

event and stand destruction. Thus, [𝑟 + 𝜑(∙)] can be regarded as a risk-adjusted interest rate. Under 

the increased opportunity cost of maintaining timber volume, the stand’s optimal timber stock will 

always be lower than in the risk-free scenario. Thus, if the same planting density is externally given, 

the actual timber stock will meet the optimal volume at an earlier age compared to the scenario 

without risk and the stand age of the first thinning harvest declines. Furthermore, the optimal timber 

stock path of the basic scenario is downward sloping (cf. sections 2.4.2 and 5.2). As Table 11 shows, 

this is also the case in the natural risk model if the hazard risk is constant or increasing with stand age. 

However, if the stand becomes more stable as it gets older, i.e., the hazard rate declines with stand 

age, there exists a scenario depending on price growth rate and timber growth function in which 

timber volume accumulation is optimal. Thus, a meaningfull comparison of the thinning intensity, 
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which would require an analysis of the slope of the optimal volume path, is not possible. Section 6.3.4 

shows the similarity of the model’s reaction to changes in interest rates or timber prices for the 

density-independent risk scenario. As in the environment of the basic thinning model, higher interest 

rates increase the capital cost and reduce the optimal timber stock. Higher timber prices or timber 

price increments reduce the price growth rate and the value growth potential of the stand, which also 

yields a reduction of timber stock. 

If the analysis is extended to age and density-dependent risk scenarios, the consideration of 

the risk-adjusted rate also applies, although it is dependent on the stand’s age and timber volume. In 

addition, changes in the timber stock also affect the likelihood of an instant hazard event and, with it, 

the expected loss of future revenues from standing timber together with the social cost the forest 

owner has to bear in case of a hazard event. This effect is captured in the last term of the optimality 

condition (43) (cf. section 6.3.3). Thus, the thinning decision at a certain stand age in the density-

dependent risk scenario is not independent of the rest of the rotation any more. The expected future 

revenues depend on the forest owner’s management strategy regarding thinning and clear-cut. In 

addition, the timber price process is influential. This is a major difference to the basic or the density-

independent scenarios. Although changes in the risk of losing future revenues or facing social costs can 

be considered opportunity costs, the direction of this effect can be positive or negative depending on 

the density-impact in the hazard function. Both higher or lower opportunity costs on the RHS of the 

stocking condition are possible in the density-dependent risk scenario compared to a risk-free or 

density-independent environment. Thus, no general statements can be made regarding the difference 

of the optimal timber stock level, the slope of the optimal volume path or the thinning intensity in the 

density-depenendent risk extension. Unfortunately, the same holds for the comparison of changes in 

the interest rate or timber price level analyzed in section 6.3.4. A higher interest rate increases the 

opportunity cost of maintaining bound timber capital. At the same time, it also reduces the expected 

value of future revenues, 𝑅, which also impacts the opportunity cost. Thus, Table 13 shows a strong 

case dependency in the results. Both higher or lower optimal stand volume are possible for both 

positive or negative stock-dependency in the hazard rate. A similar picture yields the look at the timber 

price level or the price increment. Changes in the timber price also influence the opportunity cost on 

the RHS of the timber stock condition. In addition, the value increment on the LHS is also affected. As 

a result, scenarios can be identified for which the optimal stand volume increases for higher price or 

growth rate. However, the model’s reaction on a higher timber price level is identical to the impact of 

a higher price increment (cf. Table 14 and Table 15). This behavior can also be observed in the basic 

scenario or under density-independent risk.  
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Optimal Rotation 

 

Table 17 shows the optimality condition of the basic rotation model, equation (5), in 

comparision with the rotation condition of the natural risk model, equation (45). Under the assumption 

of the same price process, both models provide a structurally identical optimality condition for the 

clear-cut age if the hazard risk is zero and the land price equals the land expectation value. However, 

in equilibrium, this last premise must be fulfilled (cf. section 6.3.2). Although both FOCs are structurally 

equivalent, the actual optimal rotation age is not identical because of the density dependency of the 

timber growth process in the natural risk model. Only if thinning harvests are omitted, do the scenarios 

completely overlap and both models become identical. 

 

Table 17     Comparison of the rotation conditions between the basic rotation model and the natural 
risk model. 

  Value increment  Opportunity cost  

    Capital Hazard loss 

      

The Rotation Model 𝑇∗: 𝑝
𝜕𝑞(𝑇)

𝜕𝑇
 = 𝑟[𝑝𝑞(𝑇) + 𝐿𝐸𝑉]  

      

The Natural Risk 
Model 

𝑇∗: �̇�(𝑇)𝑞(𝑇) + 𝑝(𝑇)𝜙(𝑇, 𝑞(𝑇)) = 𝑟[𝑝(𝑇)𝑞(𝑇) + 𝐿] +𝜑(𝑇, 𝑞(𝑇))[𝑝(𝑇)𝑞(𝑇) + 𝐷] 

      

 

If the basic overlapping environment is extended by natural risk, the optimal rotation must 

reflect the possibility of a hazard event. Prolonging the clearcut not only generates opportunity cost of 

capital, i.e., bound timber capital and land, but also a risk of stand destruction and social cost 𝐷. 

Because the instantaneous hazard risk is given by the hazard function, the term 

𝜑(𝑇, 𝑞(𝑇))[𝑝(𝑇)𝑞(𝑇) + 𝐷] represents the expected loss of a marginal increment of the clear-cut age 

which must be considered as additional opportunity costs. The inclusion of the expected loss is 

independent of the type of hazard function, i.e., must be considered for constant, age-dependent or 

density-dependent risk in the same way. The land value is not directly part of the risk related 

opportunity cost because it is independent from the occurence of a hazard event. However, if risk 

scenarios are considered, the land value will be lower compared to environments without natural risk 

and, thus, the capital cost of land will also be lower. In general, a higher opportunity cost for delaying 

the harvest can be expected which must be balanced with a shorter rotation in scenarios without 

thinning compared to the basic environment without risk. The inclusion of social cost in the case of a 

hazard event for which the forest owner is liable might even prevent the rotation condition from being 
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fullfilled, i.e., forestry becomes unprofitable. If thinning is included, however, a gradual reduction of 

stand timber volume might also reduce the opportunity cost at the end of the rotation in relation to 

the value increment yielding the odd result of a longer rotation. 

The discussion of the behavior of the optimal timber stock path in scenarios of different levels 

of timber prices or interest rates shows a strong case dependency. The relation between clear-cut age 

and stock density prevents clear statements on the dependency of rotation and timber price or interest 

rate. Only in scenarios without thinning, does the natural risk model show the same results for the 

comparative static analysis as the basic rotation model. 
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7. Conclusions 

 

After introducing four studies which extend the reference scenarios and dissolve some of their 

classical assumptions, this section summarizes the key findings on the dependencies between the 

optimal stand management strategy and expansion of the model scope under the patchwork 

approach. After that, the usefulness of the patchwork approach in achieving a universal understanding 

of the complex field of even-aged stand management is evaluated. 

 

7.1 Optimal Management Strategy 

 

This section aims to put the comparison of the basic and the extended scenarios (cf. sections 

5.4, 6.1.5, 6.2.5 and 6.3.5) into a more general context. It is structured according to the applied two-

stage patchwork (cf. section 4). First, the conclusions on optimal management are split into the key 

components of even-aged forestry, i.e., planting, thinning and final harvest. Second, for each 

management measure, the implications of deviations from the classical set of assumptions on the 

optimal management strategy, in particular the combined view of all three management components; 

partially uneven-aged management, natural regeneration, the heterogeneous stand and density-

dependent hazard risk, are discussed (cf. Table 2).  

 

7.1.1 Optimal Planting 

 

7.1.1.1 Combined Strategy 

 

The analysis of the basic even-aged planting model by CHANG (1983) (cf. section 2.4.3) already 

indicated that optimal stand establishment might be the most complex topic compared to the two 

other management measures, optimal thinning and optimal clear-cutting age. Especially the many 

rather ambiguous results of the comparative static analysis under CHANG’s set-up, which considers 

only planting and clear-cutting under a constant timber price and interest rate, supports this view. The 

reason might be that the planting density decision has more direct effects on the subsequent stand 

management than thinning and clear-cutting age, simply because of the chronological order of the 

measures. From this perspective, the additional inclusion of thinning harvests in the basic scenario can 
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be expected to increase the complexity of the planting decision considerably. However, the analysis of 

the combined management strategy of section 5 reveals a slightly more differentiated picture. 

In general, the complexity of the planting decision increases the more it impacts the 

subsequent stand management. The analysis of the combined model shows that this impact 

particularly depends on the timber price process. In scenarios with a planting density-independent 

timber price, the inclusion of thinnings in CHANG‘s basic scenario does not complicate the optimization 

of the planting decision. The reason is, in this case, that the stand’s optimal timber stock path, which 

determines the thinning harvests, is independent from the planting density. Thus, the number of 

planted seedlings only influences the age at which the optimal volume path is reached, i.e., the age of 

the first thinning. Consequently, the optimal combined planting strategy is solely determined by its 

impact on the first harvest. In general, this is similar to the basic scenario without thinning. However, 

in situations without thinnings, the first and only harvest is the clear-cut. 

In the combined model under a planting density-independent timber price, thinning works as 

a separator which cuts off the direct influence of planting on the subsequent management. Although 

the inclusion of thinning surprisingly mitigates the complexity associated with the combined view, the 

optimal planting solution still differs from the basic scenario. While in the basic model, the planting 

decision is indirectly influenced by the factors determining the clear-cut age, the impact factors of the 

optimal stock path recursively affect the planting density in the combined model with planting density-

independent pricing. However, a meaningful qualitative analysis of the optimal solution is still possible. 

The consideration of combined scenarios with planting density-dependent timber price yields 

an entirely different picture. Under this assumption, planting density via the timber price directly 

impacts the revenues for each thinning harvest and the clear-cut. Furthermore, and even more 

problematic for a qualitative analysis, it influences not only the age of the first thinning, but also the 

shape of the optimal timber stock path. Consequently, the thinning volumes and the stand‘s timber  

volume at clear-cut are affected. Thus, thinning does not work as a separator between the 

management decisions any more. Under this timber price process, the combined optimization of 

planting, thinning and clear-cutting yields a maximum of dependencies between the decision variables 

and, with it, the complexity associated with planting also becomes maximal. As a result, optimal 

planting cannot be analysed qualitatively to its fullest extent. Especially the combined results of the 

comparative static analysis remain ambiguous. However, the isolated perspective omitting indirect and 

recursive dependencies is possible, which still sheds some light on the principle drivers of the planting 

density decision. 
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7.1.1.2 Double-Cohort Strategy with Natural Regeneration 

 

In the double-cohort scenario, the analysis of optimal stand establishment allows for the 

discussion of two additional aspects in comparison to classical even-aged management. First, the 

influence of the double-cohort management with an additional uneven-aged shelter period and two 

overlapping age classes and, second, the impact of the possibility to use natural regeneration to 

provide further insights. Although both aspects are closely interwoven, the discussion should be 

separated to gain more understanding. 

 

 Shelter management with planting 

 

Even if natural regeneration is omitted, the influence of shelter management on optimal 

planting can, theoretically, be observed very clearly. However, by the assumption of full seedling 

coverage of the stand area, the number of seedlings is implicitly predefined and externally given in the 

introduced version of the double-cohort model. Thus, it is not a decision variable of the forest owner 

and overlapping scenarios with the basic planting model by CHANG do not exist. Also, the drivers of 

the optimal planting density under the double-cohort approach were not compared during the 

analysis. Fortunately, some impact factors can easily be identified, which would have to be considered 

to determine an optimal planting density. 

According to the optimal rule, the marginal cost of planting must be compared to its impact 

on the harvest revenues to determine the optimal planting density. At the optimal planting density, 

both sides must be equal. In the double-cohort scenario, this translates into comparing the marginal 

planting cost with the resulting marginal revenues at the subsequent establishment cut. As shown by 

CHANG (cf. section 2.4.3) and discussed in the combined analysis of section 5, the planting decision is 

recursively influenced by subsequent stand management measures, e.g., first thinning age, thinning 

intensity or clear-cut age. However, by applying shelter management, there also exists a direct impact 

because the shelter of older trees influences the growth of the understory. It may support seedling 

growth by offering protection or be an hindrance by inducing competition. Moreover, this impact 

depends on the shelter density, which itself depends on the thinning intensity at the previous 

establishment cut. Thus, the forest owner’s previous thinning becomes relevant for his planting 

decision. This dependency of planting on previous decisions under a shelter system is a significant 

difference to the classical planting optimization in even-aged management. In consequence, a higher 

complexity can be expected. Finally, given the generalized character of the double-cohort model with 
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different timber and capital prices in each cycle, a forest owner must  find a different planting density 

to be optimal in each rotation. 

 

Natural regeneration 

 

Generally, under a rigorous definition, the use of natural regeneration is not compatible with 

classical even-aged forestry. It requires, at least temporary, a period of uneven-aged stand 

management because, right after sprouting, seed-trees and seedlings share the same stand area. Thus, 

to include natural regeneration, the even-aged model must be extended by a shelter period. As the 

discussion of section 6.1 demonstrates, the length of this period determines if the stand management 

shows more characteristics of pure even-aged forestry, e.g., the seed-tree method, or of pure uneven-

aged forestry, e.g., the shelterwood method. 

 In addition to this structural aspect, the influence of natural regeneration on stand 

management depends strongly on its controlability. This includes especially the timing, quantity and 

quality of natural regeneration. In the double-cohort scenario, the occurrence and quantity of natural 

seedings can be controlled by the timing of the establishment cut and its intensity. This seems to be a 

reasonable assumption because the availability of light and space are key requirements for the new 

seedlings to grow. Thus, thinning and the establishment of a new cohort by natural regeneration are 

closely linked. The connection even shows in the condition for the optimal harvest intensity at the 

establishment cut which contains the opportunity cost of thinning with respect to stand regeneration. 

This direct impact of thinning on stand regeneration is a major difference to classical even-aged 

forestry and relates the double-cohort set-up closely to pure uneven-aged management. Furthermore, 

the shelter density also influences the timber growth of the new seedlings. This indirect impact of the 

thinning was already discussed in the pure planting scenario. However, it does not originate from 

natural seeding but from the structure of two overlapping age classes in the double-cohort approach. 

Of course the intensity of the relation between thinning and natural seeding can vary between 

scenarios. Situations are imaginable in which seedlings are able to grow under a dense canopy of older 

trees, i.e., in cases of shade tolerant species. In these scenarios, initial thinning might not even be 

necessary to enable natural regeneration. Also, the dependence of mast years can be a factor which 

limits the importance of thinnings as trigger events and can lead to other optimal management 

measures.  

If the optimal regeneration density is not predefined as in the introduced version of double-

cohort management, a forest owner must decide which amount of natural seeding is optimal. 
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Generally, the optimal density under even-aged stand management is reached if the cost of adding an 

additional seedling equals the associated discounted marginal timber revenue at the next harvest. 

Thus, at first glance, the answer seems straight foreward because natural seeding is for free. But this 

solution might be incorrect although no direct cost per seedling must be paid. The reason is, as 

discussed, that the stand’s ability to produce survivable seedlings by natural regeneration strongly 

depends on the stand’s shelter density and the thinning intensity of the previous establishment cut. 

Thus, the opportunity cost of maintaining a shelter density which supports the desired amount of 

natural seeding can be expected and considered the cost of natural regeneration. As long as these 

opportunity costs are lower than the cost of planting, natural seeding will be the only source of 

regeneration. In all other scenarios a share of the seedlings will be planted. 

However, the introduced double-cohort scenario also omits some further aspects of natural 

regeneration which are likely to have an influence on optimal stand management. In scenarios with a 

negative dependency between harvest events and natural seeding, e.g., if thinning or clear-cutting the 

overstory causes severe damage to the understory, natural regeneration might not be the optimal 

choice. If harvest damage prevents sufficient regeneration cover, density or seedling quality, additional 

planting becomes necessary. In its most extreme form, pure even-aged management with planting 

might become superior to the use of natural regeneration. Another important aspect which is not 

explicitly depicted in the double-cohort scenario are costs associated with natural regeneration. These 

costs might include the technical prevention of harvest damage or necessary juvenile spacing to reduce 

the high seedling density which is often associated with the use of natural regeneration. Thus, classical 

even-aged management with clear-cutting and planting could be favorable if the costs of these 

additional measures exceed the cost of planting.  

The determination of the optimal additional planting volume follows the same principles as in 

a situation without natural seeding. However, both the number of planted seedlings and the number 

obtained by natural regeneration must be optimized simultaneously because they most likely depend 

on each other. The marginal revenue from an additional planted seedlings will differ if natural 

regeneration already produced a certain number of seedlings and vice versa. If scaling effects are 

involved, this dependency between the two seedling variables might even influence the cost side of 

the planting condition. Keeping in mind the enormous complexity associated with variable 

dependencies in the combined model, the optimization of stand regeneration in the double-cohort 

scenario with natural regeneration and planting can be expected to be even more difficult. 

It seems reasonable to conclude that in the introduced version of shelter management, the 

regeneration decision is somewhat less complex because the regeneration density is implicitly given. 

However, a forest owner still makes an implicit planting decision when determining the thinning 
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intensity. By deciding on the remaining stock of the overstory at the previous establishment cut and, 

with it, on the intensity of natural regeneration, the forest owner implicitly determines the necessary 

additional planting. It still remains a characteristic of shelter management that thinning and planting 

are closely interwoven even though the regeneration density is not an internal choice. Thus, the 

condition of optimal thinning also shows characteristics of a stand regeneration condition, e.g., 

marginal planting cost implied by the thinning intensity decision during the establishment cut.  

 

7.1.2 Optimal Thinning 

 

7.1.2.1 Combined Strategy 

 

The management plan including the combined optimization of planting, thinning and rotation 

must consider a greater number of direct and recursive dependencies between the decision variables 

than the basic scenarios introduced in section 2.4. Thus, the combined view on thinning can be 

expected to be more complex than the thinning decision in the basic even-aged scenario. However, 

the degree of deviation between the thinning decision in the basic and the combined scenario is closely 

connected to the timber price process. Under the classical assumptions of stand age-dependent or 

even constant stumpage price of timber, the stand’s optimal timber stock paths are identical and 

decreasing for the basic thinning scenario and the combined management plan. Consequently, the 

identity also holds for the thinning intensity once the optimal timber stock level is met. Moreover, 

some characteristics seem to be universal under the simplified timber price assumptions. First, the 

optimal timber stock path and, with it, the thinning intensity is independent of the rotation decision. 

Of course, there still exists an indirect connection because thinning obviously stops once the optimal 

rotation condition is fulfilled and the stand is clear-cut. But the knowledge of the clear-cut age is not 

necessary to determine the optimal thinning intensity during the thinning interval of the stand’s life. 

Second, the same holds generally for the dependency on planting. The planting density determines the 

stand’s undisturbed timber growth and, therefore, the age at which the first thinning becomes 

necessary, i.e., the actual timber stock reaches the theoretically optimal volume path. Thus, while the 

rotation age determines the end of the thinning period, planting influences its beginning. However, 

during the age interval in which the thinning harvests are optimal, the timber stock condition is also 

independent of the planting desicion. This relation also proves that there are no pre-commercial 

thinnings under a classical timber price assumption. It is never optimal to plant a number of seedlings 

which would lead to a first thinning age at which the stumpage price of timber is still negative. Only 
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under a price model with positive quality effects from high planting density, might pre-commercial 

thinning be economically beneficial. 

In summary, for environments with age-dependent or constant timber price, thinning serves 

as a separator, which cuts off the planting decision from the clear-cut. Compared to optimal planting 

and clear-cutting, the thinning intensity decision is, therefore, more easy to handle. Furthermore, the 

complexity of the thinning decisions under a combined stand management plan is not much bigger 

than in the simpler basic scenario. However, this changes dramatically if the timber price process 

becomes more complex. Already, the reasonable inclusion of lower harvest cost at the clear-cut 

compared to thinning and, thus, a higher stumpage price for clear-cut timber, connects the decision 

on thinning intensity and rotation because it becomes optimal to stop thinning at some stand age and 

accumulate timber stock before the clear-cut (e.g. CLARK and DE PREE 1979). The most complex 

situation occurs if the timber price depends on the first management decision of a rotation, i.e., the 

planting density.  

Under a planting density-dependent stumpage price, the planting strategy directly influences 

the stand’s optimal timber volume path, both in stock level and shape. From the simplified analysis of 

the direct impact of planting (cf. section 5.2), a positive relation between optimal stock level and 

planting density is known. In addition, the optimal volume path can be shown to be decreasing during 

the stand’s life. Analyzing the optimality condition isolatedly, there is also a tendency that the stock 

path decreases if external factors like interest rate and timber price increase (cf. section 5.3). Thus, 

there is evidence that the general tendencies of the optimal volume in the combined and the basic 

management set-up are identical. However, these are only tendencies obtained from a simplified 

perspective. In the combined view, recursive effects must also be taken into account and might be 

strong enough to outweigh these general tendencies. Changes in the external factors, for example, 

may influence the optimal planting decision which, in turn, impacts the optimal timber stock path and 

the thinning intensity. Thus, characteristics such as first thinning age, thinning intensity and harvest 

quantities might differ compared to the optimal stand management in the classical price scenario. 

Unfortunately, the direction of these differences is not always clear because the combined analysis 

including the recursive or indirect relations povides many ambiguous results. It lies beyond the 

possibilites of a qualitative analysis. As a consequence, forest owners cannot generally trust 

silvicultural guidelines any more. At a minimum they must be applied with care and a close view on 

the individual characteristics of a particular management environment.  
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7.1.2.2 Double-Cohort Strategy with Natural Regeneration 

 

Double-cohort management with an uneven-aged shelter period represents a hybrid between 

pure even-aged and pure uneven-aged forestry. Thus, it is suitable to provide understanding on the 

drivers of the thinning decision under even-aged compared to uneven-aged management. 

There are two main reasons to introduce a double-cohort system. First, the stand’s 

productivity might be increased compared to pure even-aged stands because in the two-tired stand 

structure during the shelter period the new understory is already growing into the space between the 

stems of the older trees and accumulates value. Second, the double-cohort management allows the 

use of natural regeneration which can help to reduce regeneration cost. Based on these two 

arguments, a wide range of situations is imaginable in which double-cohort management might be 

beneficial compared to pure even-aged forestry. Thus, the importance of the productivity argument 

or the regeneration cost reduction by natural regeneration can be very different between the possible 

scenarios. The two extremes are the seed-tree method, in which only a few shelter trees are 

maintained for a rather short period of time to support natural regeneration, and the shelterwood 

method, which maintains a rather dense shelter for a longer period of time with a strong focus on the 

productivity aspect of double-cohort management. However, both the introduction of a second age 

class and the encouragement of natural regeneration require an initial reduction of the stand’s timber 

stock, i.e., a thinning, which is carried out in a single establishment cut. 

In classical even-aged forestry, thinning predominantly reduces the stand’s timber stock with 

the goal to decrease the negative effects of competition between the trees. Thus, its main purpose is 

an increased value growth rate for the remaining trees. In double-cohort management, the density 

reduction of the establishment cut also provides this positive impact on the value growth of the 

remaining shelter trees. It can be a significant value contributor, e.g., in the shelterwood method, or 

be less important, e.g., in the seed-tree method. However, as discussed above, the role of thinning 

under double-cohort management has further effects. Compared to a single thinning in pure even-

aged scenarios, the establishment cut predominantly has a structural function to support the 

establishment of a new age class either by planting or natural regeneration. Thus, in contrast to pure 

even-aged management, thinning under a double-cohort system shifts a part of the stand’s value 

growth into the new generation of trees. This is also reflected in the condition for the optimal thinning 

intensity at the establishment cut. Next to the consideration of the density-dependent value growth 

of the shelter, the effects of thinning intensity on the growth conditions of the understory are taken 

into account because the shelter might offer protection at first but induces negative effects through 

the competition for light, water, space and nutrients on the younger trees for longer shelter periods. 
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These considerations link the thinning decision of the double-cohort system to the harvest of an age 

class in uneven-aged stands in which the competition between older and younger trees must also be 

taken into account. 

Furthermore, the thinning intensity of the establishment cut also determines to which extent 

natural seeding can be utilized. Thus, it impacts the regeneration cost because the shelter density is 

responsible to provide sufficient coverage of the stand’s area with seedlings. If the seedling density is 

too low, additional cost, i.e., additional planting, is necessary. Thus, the thinning condition under 

double-cohort management must also consider the marginal regeneration cost dependent on thinning 

intensity. This relation between thinning and regeneration cost represents another major difference 

to pure even-aged forestry. Thereby, the cost term is not restricted to additional planting. It could also 

depict seedling damages caused by the thinning harvest or cost of density control by pre-commercial 

thinning. Although the cost term is usually not explicitly part of uneven-aged models, the dependency 

between thinning and regeneration is also a characterstic of uneven-aged management. 

Depending on the management environment, especially the tree species, the establishment 

cut of the double-cohort system can take on both the character of being predominantly a classical 

measure to increase value growth of the remaining trees or of being predominantly a measure to 

optimize stand regeneration and value growth of the new cohort. This depends on the growth reaction 

of a tree species on thinning harvests and reduced competition in relation to its shade tolerance and 

ability to grow under shelter. For shade intolerant species, the reproduction aspect might be dominant 

leading to seed-tree management with heavy thinning and a short shelter period, which is close to 

even-aged forestry. Shade tolerant species, however, might be more suitable for a shelterwood system 

with lower thinning intensity and a longer shelter period, which shows more similarities to uneven-

aged management. However, these are only tendencies. The double-cohort model is able to depict 

scenarios within the range of almost pure even-aged management and almost pure uneven-aged 

management depending on the length of the shelter period. Therefore, the thinning decision can also 

show a wide range of characteristics within these extremes. This is, for example, reflected in the strong 

scenario-dependency of the model behavior on changes in timber prices and interest rates. A higher 

timber price or a higher interest rate can both have opposite impacts on the thinning intensity 

depending on the optimal management plan being closer to even-aged or to uneven-aged forestry. In 

consequence, general management guidelines cannot be applied for shelter systems.  

The extended double-cohort model, in which a forest owner uses thinnings to gradually reduce 

the density of the shelter during the shelter period, provides additional insights into the uneven-aged 

thinning problem. In comparison to the establisment cut, which represents a single thinning, the 

shelter thinnings in the extended scenario are modeled in a continuous way and have no influence on 
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the regeneration decision. However, next to controling the inter-cohort competition within the shelter, 

which is equivalent to thinning in pure even-aged scenarios, these harvests also continuously control 

the inter-cohort competition induced from the shelter trees on the understory. Because these 

additional costs of competition must be considered, there is a tendency to maintain less timber volume 

in the overstory compared to pure even-aged volume paths. This tendency becomes even more 

pronounced the stronger the inter-cohort competition and the higher the value growth potential of 

the understory in relation to the shelter trees. This result can also apply in the case of more than two 

age-classes, i.e., in pure uneven-aged management, if the younger age classes do not significantly 

influence the growth of the older ones. The condition which determines the optimal shelter stock path 

for the simplest case of only two age-classes already contains all the drivers of the optimal timber 

volume under pure uneven-aged forestry. Finally, the use of gradual shelter thinnings in the double-

cohort scenario reduces the importance of considering the impact of thinning intensity in the 

establishment cut on the growth of the understory. Thus, the aspect of optimized stand regeneration 

becomes dominant for the establishment cut. 

Another important topic of the thinning decision in the double-cohort model is the timing of 

the establishment cut. However, this topic will be dealt with in the discussion on harvest timing and 

optimal rotation in the next section. This is because the timing condition under double-cohort 

management contains elements both from a rotation and a thinning perspective.  

 

7.1.2.3 Heterogeneous Stand 

 

The extension of the basic thinning model to a vertically-structured, even-aged stand with 

several different cohorts of trees yields significant implications on the thinning decision. In these 

scenarios, the stand’s combined timber growth is split into cohort growth functions, which contain not 

only the intra-cohort impact of density but also the information about the inter-cohort growth effects. 

Consequently, a thinning harvest in the heterogeneous stand requires a separate thinning decision for 

each cohort and, with it, the multiplication of the optimal timber stock conditions to one for each class 

of trees. These conditions show the same general structure as in the homogeneous scenario. At the 

optimal thinning intensity, the revenues from harvesting additional timber volume, i.e., the timber 

price, must offset the opportunity cost from cutting, i.e., the value that would be lost until the next 

harvest. Under high opportunity cost of harvesting, more timber volume will be maintained in the 

stand and thinning intensities tend to be low. Low opportunity costs, however, lead to higher stocking 

and heavier thinnings. In the heterogeneous stand, the opportunity costs of reducing timber stock in 

a particular cohort are additionally influenced by its inter-cohort dependencies. First, the intra-cohort 
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value growth does not solely depend on the density of this particular class of trees but also on the 

timber stock of other influential cohorts. Competition from other classes of trees usually decreases the 

value growth potential but positive effects, e.g., on timber quality, also are imaginable. Second, the 

value impact which the cohort induces on other classes of trees enters the optimality condition of the 

thinning intensity in separate terms. Again, negative and positive value effects are possible. Cohorts 

with a significant negative impact on other classes of trees must account for this with high own value 

growth. Otherwise, they would be heavily thinned or even clear-cut. Cohorts which induce positive 

effects on the value growth of other cohorts, however, can maintain a higher timber stock and tend to 

have a lower thinning intensity.  

In the homogeneous thinning scenario, the intra-cohort impact of density on value growth can 

be twofold. First, and most obvious, the timber growth is affected by density. However, there are 

scenarios in which density also influences the timber price development. Often, the timber price is 

related to tree dimension which might develop differently in stands that are kept at different stock 

levels. Another example are density-related improvements in timber quality. Thus, in these scenarios 

the timber price development is influenced by thinning and the value growth potential of thinnings 

can be analyzed both from a perspective of timber and price growth. The same separation of value 

growth into a timber and a price dimension holds for the intra-cohort opportunity cost of harvesting 

in heterogeneous stands. In addition, it must also be applied to the inter-cohort part of the opportunity 

cost which captures the impact on other classes of trees and has to be considered to determine the 

optimal cohort stocking and thinning intensity. Again, this impact can positively relate to timber 

growth, e.g., if protection and shelter is provided, or negatively, if competition is the dominant aspect. 

The same holds for the influence on the timber price development. If, for example, competition slows 

down the growth of individual tree dimension, the price impact would be negative. If the trees of one 

cohort help to increase the timber quality of another, the inter-cohort influence on timber price would 

be positive. However, there are no structural differences between scenarios with density-dependent 

timber price and those without. Density-dependent timber prices just add another dimension and 

complexity to the opportunity cost of thinning. 

Depending on the individual comparison of thinning revenues and opportunity cost, each 

cohort has its own optimal thinning intensity. Thus, in the heterogeneous scenario, a stand’s thinning 

shows a certain cohort pattern, which depends on the differentiation criteria of the cohorts. If the 

cohorts can be separated by social class, for example, well-known patterns like thinning from above, 

below or from both ends can occur. 

If the inter-cohort dependencies predominantly have a one-sided negative impact on value 

growth, e.g., in case of strong competition between different social classes of trees, heterogeneous 
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stands seem to show an antagonistic tendency in the cohort thinning decisions. Any external impact, 

e.g., timber price growth, favoring the value growth of only one particular cohort and, thus, supporting 

a higher stocking, indirectly has a negative impact on the growth potential of other classes of trees. 

Consequently, their thinning intensity must show the opposite behavior yielding a lower stock and 

heavier thinning. Furthermore, factors like interest rate or growth conditions, which influence the 

value growth potential of all trees in the same way, can also lead to antagonistic thinning patterns. 

This is because the relative impact on the value growth potential is the decisive criterion. If the growth 

potential of all cohorts is negatively influenced, there is a tendency to increase the thinning in the 

cohorts which are affected most, which in turn might improve the value growth of the other classes of 

trees to an extent that even leads to a lighter thinning. For example, the expected volume decrease in 

all cohorts in the case of a higher interest rate, could only be identified in the minority of scenarios if 

the two-tired stand consists of dominant and suppressed trees. However, this is the result of a 

qualitative analysis which does not make statements about the likelihood of the occurence of these 

odd scenarios compared to the expected result.  

Both, the optimal behavior in case of cohort specific impact factors as well as in case of overall 

influences, follow the rule that the relative value effects between the cohorts are more important for 

the thinning decision than the absolute value impact. There seem to be only a few exeptions to this 

rule. The relative value effects can even differ among different timber price processes. A higher 

thinning price in a cohort under density-independent pricing might yield a more intense thinning of 

this cohort, while under a density-dependent timber price a lighter thinning could be optimal. Such 

seemingly odd behaviors of the optimal thinning solution prevent the establishment of general rules 

on thinning patterns which might be useful for practioners. Only tendencies can be identified for 

particular competition and timber price scenarios. 

The heterogeneous stand model was analysed under the assumption of two cohorts 

representing two simplified social classes of dominant and suppressed trees of the same species and 

age. However, the general principles also apply under other criteria which allow for the differentiation 

of cohorts. Thus, the results of the heterogeneous stand model could also be used to explain the 

thinning decision in mixed stands with several tree species. The relation of competition between the 

cohorts of different trees species is often quite comparable to the analysed scenario of dominant and 

suppressed cohorts because of differences in growth performance or adaption to site conditions 

between the species. Furthermore, some mixed stands in plantation forestry consist of a value 

accumulating and a supportive tree species, which helps to increase the quality of the more valuable 

class of trees, e.g., reduce branchiness, but has little or no value or competitive impact. In these 

scenarios, the supportive trees induce a positive impact on the timber price of the valuable cohort 

which balances its own surpressed value growth and low timber value. Thus, these supportive trees 
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are maintained, although they would already be cut in stands without the other class of trees or are 

even unsuitable for mono-species plantations. 

Another application of the results can be found in uneven-aged stands, because age classes 

could also be considered cohorts in the sense of the heterogeneous stand model. The older shelter 

trees usually induce a one-sided negative value growth impact on the understory. Thus, an older and 

a younger class of trees can be differentiated as cohorts of a heterogeneos stand with rather similar 

relations as a dominant and a supressed cohort. The consideration of inter-cohort effects of 

maintaining timber stock in a particular cohort, are also comparable to double-cohort management, 

e.g., in the decision on the post-thinning shelter volume in the establishment cut or on gradual thinning 

of the shelter. However, under double-cohort management, the value growth potential of the 

understory trees is rather high resulting in a high opportunity cost for maintaining the shelter trees. 

This leads to a gradual reduction of the shelter stock and finally an overstory cut but little intervention 

in the understory. The same tendency holds in pure uneven-aged scenarios if the thinning intensities 

are optimized for the different age classes, although the number of age classes is likely to be much 

higher than in the double-cohort management. Despite this difference, the principle considerations 

between older and younger classes of trees to determine the optimal thinning intensity are rather 

similar to the shelter period of the double-cohort scenario.  

 

7.1.2.4 Risk of Stand Destruction 

 

The extension of the basic deterministic thinning scenario to environments in which the forest 

stand faces the risk of destruction, e.g., by a natural hazard event, requires the consideration of 

additional aspects in the thinning decision. However, the principle of determining the stand’s optimal 

timber stock under continuous thinning is identical. In the relevant domain a marginally higher stock 

creates additional value increment but, at the same time, causes opportunity costs, e.g., higher cost of 

bound timber capital. At the optimal stocking, value increment and opportunity cost must be balanced. 

If a risk of stand destruction is involved, the possible value incremement of maintaining additional 

timber volume remains the same. However, the investment in a higher stock is at risk and can be lost 

with a certain probability during the short time interval between today’s harvest and the next. To 

account for this, a risk premium must be added to the opportunity cost of maintaining capital leading 

to a risk adjusted interest rate. Consequently, the opportunity costs of maintaining timber capital are 

higher compared to deterministic environments. Thus, less timber volume is kept in the stand. Despite 

this difference, the timber stock decision and the implied thinning intensity are rather similar to the 

risk-free scenario if density-independent risk is assumed. Both environments find a downward sloping 
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timber stock path optimal for constant timber price or decreasing price growth rates. The reaction of 

the volume path on changes of timber price or interest rate is also identical.There may be deviating 

scenarios with timber volume accumulation, but only when the risk of destruction strongly decreases 

with stand age. If such a scenario occurs, it depends in particular on the stand’s timber growth and the 

timber price development.  

The similarity between the risk-scenario and the stand-density decision in a determinstic world 

vanishes to a great extent if the probability of stand destruction also depends on stand volume. 

However, the assumption of density-dependent risk is reasonable because stand density often has 

implications on stability and, thus, on many different types of hazard events. In such environments, 

the likelihood of stand destruction changes if a forest owner reduces the timber stock by thinning. 

Consequently, the risk adjusted interest rate to evaluate the cost of capital is not constant any more 

but depends on a stand‘s particular level of timber volume. Furthermore, and maybe more severe, the 

change of hazard risk also has an impact on the expected value of the stand’s future revenues. This 

effect must be considered as an additional component in the opportunity cost of maintaining timber 

volume. Thus, today’s thinning decision is not independent from future management measures, in 

particular future thinnings, any more. This is a major difference to continuous thinning in deterministc 

environments.  

The influence of stand volume on the destruction risk can be either positive or negative, 

depending on the considered management environment or hazard type. Therefore, the opportunity 

cost can also be higher or lower compared to the risk-free or density-independent risk scenario yielding 

lower or higher optimal timber stock levels. This also holds for the slope of the optimal timber stock 

path or its reaction to changes in the timber price or interest rate. Unfortunately, the optimal stocking 

and the thinning decision become highly case dependent in this environment and odd solutions such 

as increased stand volume for higher interest rates are possible. As a consequence, this prevents the 

application of general management guidelines which might simplify a forest owner’s thinning decision. 

 

7.1.3 Optimal Rotation 

 

7.1.3.1 Combined Strategy 

 

In the combined view of section 5 the decision for the optimal clear-cut age is, generally, 

determined by the same considerations as in the basic rotation model. The optimal clear-cut age is 

reached when the stand’s value increment from postponing the harvest sinks below the capital cost of 
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the standing timber and land. However, the view on a combined management plan including optimized 

planting and thinning generates some additional aspects in comparison to the basic rotation decision. 

 As discussed in the sections on optimal planting and thinning, the timber price process has a 

significant impact on the complexity of the combined management plan because it is able to severely 

influence the number of direct dependencies between the decision variables. 

In case of a planting density-independent timber price, thinning serves as a separator between 

planting and clear-cut and prevents a direct influence. However, a weaker indirect effect still exists 

because the planting density impacts the value of bare land via the planting cost and, with it, the capital 

cost of bare land and the optimal rotation. Such an indirect effect via the land value also exists for the 

relation between thinning harvests and rotation. However, thinning also generates a direct impact on 

the optimal clear-cut age because it determines the actual timber stock path and, thereby, both the 

capital cost of the standing timber as well as the stand’s value increment in the rotation condition. 

Because of a downward sloping path, the stand’s timber stock at clear-cut is generally lower under a 

combined management compared to the basic rotation scenario. Although this effect reduces the 

capital cost of standing timber, the capital cost of land, however, should be higher because of the 

optimized management. Thus, the net effect on the capital cost cannot be determined qualitatively 

and a comparison of the clear-cut age with the basic scenario is highly case dependent. This also 

prevents a combined comparative analysis of higher interest rates or timber prices because the 

optimal timber stock path shifts to a lower level and creates ambiguous effects on the optimal clear-

cut age. Only the isolated view on the rotation condition, which assumes planting density and stock 

path as constant, shows the well-known tendency to decrease the rotation for increasing interest rates 

or timber prices. 

The complexity of the combined rotation decision even increases in case of a timber price 

process depending on the planting density. Although the principle impact of thinning on the optimal 

rotation remains the same, planting now directly impacts the optimal timber stock path and the 

thinning intensity and, with it, the timber stock at the end of the rotation. Thus, the role of thinning 

harvests as a separator between planting and clear-cutting is much weaker compared to the density-

independent scenario. Moreover, the timber price at clear-cut is now directly influenced by the 

planting decision leading to a direct dependency of the stand’s value increment and the capital cost of 

standing timber on the planting density. In this situation, both sides of the rotation condition are 

directly influenced by planting. In turn, a look at the condition for optimal planting also reveals 

recursive dependency of the optimal rotation on the planting decision. Not surprisingly, such a scenario 

lies beyond the borders of a qualitative analysis or a comparative static investigation. Even in the 

isolated view without the consideration of recursive or indirect relations between the decision 
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variables, the influence of timber prices and interest rates on planting density is ambiguous and, thus, 

the comparative static analysis of the optimal clear-cut decision is also meaningless.  

In general, it can be concluded that the rotation decision under a combined management plan 

provides enormous challenges to forest owners. General guidelines are not applicable. Particularly, 

adoptions of the management plan in case of changes of the external factors must be evaluated 

carefully. 

 

7.1.3.2 Double-Cohort Strategy with Natural Regeneration 

 

Under a double-cohort strategy with an uneven-aged shelter period the discussion of the 

optimal rotation contains several additional aspects compared to classical even-aged forestry. The first 

difference deals with the definition of a rotation itself. In classical even-aged management a rotation 

starts on bare land with a stand establishment and ends on bare land after a clear-cut, which releases 

the land for a new production cycle. Obviously, this definition does not apply in a continuous cover 

scenario such as the double-cohort management. However, the even-aged definition based on bare 

land is equivalent to regarding regeneration or clear-cut as management measures which define the 

boundaries of a rotation. From a regeneration point of view, a rotation in the double-cohort system 

could be defined as the time between two cohort establishments, i.e., the time between two 

establishment cuts. Thus, the shelter period would belong to the subsequent rotation or, possibly, 

could also be regarded as an add-on outside the rotation concept. From a clear-cut perspective, the 

time between the establishment and the clear-cut of a cohort could also be considered a rotation. 

Under this definition, the lifespan of a cohort starting with its establishment at the establishment cut 

and its clear-cut at the overstory cut would represent a rotation. This view, however, would imply 

overlapping cohort rotations. This concept is obviously incompatible with even-aged forestry but an 

essential characteristics in uneven-aged management in which several age-classes are maintained. 

Thus, the discussion of the possible definitions of a rotation already highlights the hybrid character of 

the double-cohort model between even-aged and uneven-aged management. 

Under either definition the question of the optimal rotation in the double-cohort scenario is 

closely related, if not equivalent, to the problem of harvest timing. The harvest of each cohort is split 

in an establishment cut, in which part of the trees are removed by thinning, and an overstory cut, in 

which the remaining trees are cut. The closer these two harvests lie together, i.e., the shorter the 

shelter period, the more the double-cohort management resembles a pure even-aged scenario. The 



94 
 

longer the shelter period, the more similar gets the double-cohort system to pure uneven-aged 

forestry. 

If one follows the definition of a rotation based on the clear-cut, the optimal rotation would 

be determined by the overstory cut. Equivalent to the rotation condition in pure even-aged scenarios, 

the timing condition under double-cohort management balances the opportunity cost of bound capital 

with the value increment of the cohort from waiting. However, the timing of the overstory cut is not 

independent from the understory. The value increment of the shelter must not only offset its cost of 

capital but also the additional opportunity cost induced by the competition on the understory. The 

consideration of these competitive effects between age classes is a major characteristic of the double-

cohort system compared to even-aged management. In addition, and in contrast to even-aged 

scenarios, the land value is omitted in the determination of the cost of capital. Surprisingly, selling the 

land right after the overstory cut does not seem to be an option which needs to be considered by a 

forest owner. Instead, the opportunity cost of land must be carried by the understory. This suggests 

that the shelter predominantly shows the character of a rotation add-on. At least, the definition of a 

rotation based on a clear-cut seems questionable.  

A look at the condition determining the timing of the establishment cut also supports the 

regeneration-based definition of a rotation. In contrast to the timing condition of the overstory cut, it 

contains elements known from the FAUSTMANN-PRESSLER-OHLIN theorem, in particular the capital 

cost of land. This means, at the establishment cut, a part of the cohort’s future value growth potential 

shifts from the shelter to the land and the new generation of trees.  

Furthermore, the inclusion of a shelter period impacts the optimal harvest timing in two ways. 

First, under even-aged management the opportunity costs from bound capital are derived from the 

bare land value and the value of standing timber represented by the clear-cut revenue. These two 

components can be separated because a forest owner is indifferent to selling the land and the trees 

separately or together. Under double-cohort management as a form of continuous cover forestry this 

is not possible any more but a forest value consisting of land and trees must be applied. Right before 

the establishment cut, this combined value of land and trees is higher than the value of bare land and 

the revenue which could be obtained from a clear-cut. This is because both the value of the land and 

the trees are dependent on the double-cohort strategy. If double-cohort management is the most 

profitable land use, the value of the trees right before the establishment cut does not consist of the 

timber value alone, but also of its seeding potential. Thus, a thinning is necessary to open the stand 

for regeneration, which also implies that the remaining shelter trees must be removed at a later 

overstory cut. Consequently, the future value increment of the shelter trees until the clear-cut must 

also be considered as a value component. The value of natural seeding is incorporated in the land 
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value, which must be considered as seeded land instead of bare land for capital cost which determine 

the harvest timing. The impossibility of separating the value of land and standing timber is another 

connection between the double-cohort management and pure uneven-aged scenarios in which also a 

forest value including land and timber must be applied.  

The second difference to a pure even-aged rotation condition can be found on the value 

increment side. In the double-cohort scenario, postponing the establishment cut negatively impacts 

the value growth potential of the remaining shelter because the trees get older and might show a 

weaker growth reaction on thinning. This influence also has to be taken into account. The 

consideration of dependencies between the harvest age of the establishment cut and the future 

increment shows the connection between the determinantion of the optimal harvest age in double-

cohort management and a thinning schedule in pure even-aged forestry. However, this is not surprising 

because, in addition to the view as a boundary for consecutive rotations, the establishment cut 

remains a thinning harvest with the additional function of stand regeneration. 

As discussed broadly in the section on optimal planting, the double-cohort model can be 

regarded as a hybrid between pure even-aged and pure uneven-aged management, depending on the 

length of the shelter period. This is also reflected in the behavior of the optimal timing of the 

establisment cut or, respectively, the optimal rotation if the definition based on regeneration is 

applied. For short shelter periods, i.e., seed-tree management, changes in the interest rate or timber 

price lead to the same reaction as in generalized even-aged scenarios. For longer shelter periods, i.e., 

shelterwood management, the model behavior resembles generalized uneven-aged scenarios.  

If the use of natural regeneration would be the main reason for a forest manager to apply a 

double-cohort set-up, it would also be responsible for the differences which need to be considered for 

optimal harvest timing compared to pure even-aged management. However, there is no direct 

component related to natural regeneration in the harvest timing conditions in the double-cohort 

model. Consequently, the two conditions in a pure even-aged model and under double-cohort 

management look structural identical, if the double-cohort model would exclusively use planting 

instead of natural regeneration. At the most, an indirect effect via the forest value could be recognized. 

Using natural regeneration, it could be expected to be higher. Thus, a rotation might be shorter 

because it faces a higher opportunity cost for maintaining capital. However, this finding supports the 

view that optimal harvest timing is not strongly impacted by the type of regeneration but instead the 

shelter management is the main driver of differences in harvest timing between the double-cohort 

and even-aged models. The reason might be that timing decisions mainly evaluate value increment 

potential and cost from bound capital. If tree growth and quality do not depend on the regeneration 

method, no strong impact can be expected on the harvest timing. However, if seedlings from natural 
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regeneration and planting differ in growth, quality or even require different management measures, 

some impact factors on harvest timing might be diretly traced back to the use of natural regeneration. 

 

7.1.3.3 Risk of Stand Destruction 

 

Equivalent to the risk-free scenario, the determination of the optimal rotation length in 

environments including the risk of stand destruction follows the golden rule that the revenues from 

postponing the clear-cut must be balanced by the opportunity cost of waiting, which consist of the 

capital cost of timber and land. However, postponing the harvest also generates a risk of losing the 

stand’s timber value in a hazard event. Thus, the expected loss of timber value must be added to the 

opportunity cost of the rotation condition. Furthermore, the expected cost of possible social damage 

from a hazard event must also be considered if the forest owner is liable for damages encouraged by 

his management. An example could be forest fires if a dense understory is maintained which allows 

the fire to spread more easily to other stands or properties. If these social costs are too high, this effect 

might even prevent forestry from being the optimal land use at all.  

Compared to deterministic management scenarios, both the expected loss of timber value in 

case of a hazard and the expected social damage increase the opportunity cost of prolonging the 

rotation in relation to the basic rotation model. Thus, shorter clear-cut ages can be expected. However, 

this only holds if thinnings are not included. As already discussed, under a combined management 

strategy, thinnings influence the stand’s timber volume at the end of the rotation and change both 

value increment and capital cost. If, in addition, the risk of stand destruction is density-dependent, 

another aspect must also be taken into account. The likelihood of a hazard event and, thus, the 

expected loss for a forest owner is different for higher or lower stand timber volumes. The direction 

of this effect depends on the relation between risk and stand density. Thus, under a management 

including thinnings and density-dependent risk, both a shorter or a longer rotation is possible 

compared to the risk-free scenario. These ambiguous results of the qualitative analysis also prevent 

clear statements on a comparative impact of the timber price or interest rate. However, under a 

management strategy without thinning, the risk model yields the same comparative static results as 

the deterministic scenario. 
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7.2 The Patchwork Approach 

 

7.2.1 Applicability of the Patchwork Approach 

 

The patchwork approach, inspired by the idea of model-dependent realism, was introduced as 

a tool to cope with the problem of model complexity. Its application for the qualitative analysis of 

even-aged forest management provides two major methodological outcomes.  

First, the patchwork approach allows for the connection of a wide range of management 

scenarios and associated models to a compound system in a structured and well-controllable way. 

Thereby, the included models focus on particular problems of stand management or heavily restricted 

environments which allows for the use of a rather simplified set of assumptions. The connection of 

these models via identical optimal management strategies for overlapping scenarios ensures the 

validity of the whole system. In addition, the introduction of basic reference scenarios, which represent 

widely accepted solutions to management aspects of particular relevance, provides further validity to 

the patchwork. The inclusion of the basic models of section 2.4 on optimal planting, thinning and 

rotation also ensures the coverage of the key components of even-aged stand management. In 

addition, it provides for the calibration of the extended models of sections 5 and 6 because each of 

these models could be connected to one or more basic models, i.e., arrived at the same solution for 

overlapping scenarios. The patchwork approach even allowed for reference models to relate to each 

other. The double-cohort model, for example, is a hybrid between even-aged and uneven-aged 

management. Thus, it represents a bridge between the basic rotation model and the basic uneven-

aged model. Furthermore, the patchwork system also connects aspects of different extended models. 

The heterogeneous stand model, for example, relates the thinning decision in vertically structured 

stands, e.g., in case of a differentiation by social tree classes, to thinning in the basic uneven-aged 

scenario or mixed stands. In summary, the patchwork approach is suitable to provide coverage of 

relevant topics of stand management and is able to fill gaps between seemingly unrelated scenarios.  

Second, next to the ability to cover a wide range of relevant aspects, an approach to gain a 

holistic understanding of optimal stand management must also provide an understanding of how 

particular properties of the management environment influence a forest owner‘s decision. One way 

to achieve this goal is the comparision of two different scenarios and associated stand management 

strategies, which deviate in only one or very few assumptions. The inclusion of basic reference models 

in the patchwork system follows this approach. The optimal management strategies of the extended 

models were compared with the optimal management plan of the connected reference models and 
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relationships between management environment and management strategy could be clearly 

identified. Moreover, the second stage of the patchwork approach applied in this dissertation even 

allowed for the analysis of the dependencies between environment and management on the level of 

the management components stand establishment, thinning and clear-cut. For example, the influence 

of a heterogeneous stand structure on optimal thinning could be analysed in comparison to the basic 

thinning model, which assumes a homogeneous stand. The influence of a destruction risk on the 

thinning and the clear-cutting decision was compared to the basic thinning model and the basic 

rotation model, which both depict deterministic environments. The impact of the availability of natural 

regeneration or a combined management strategy including thinnings was analyzed in comparison to 

the basic planting scenario. Thus, the patchwork approach allows for the analysis of the consequences 

of deviations in the model assumtions, i.e., the depicted management environment. Thereby, the 

comparision of connected models with overlapping scope ensures a standardized procedure and 

increases the validity of the analysis. 

Consequently, it can be concluded that the two-stage patchwork approach applied in this 

dissertation is suitable to connect various management scenarios and allows for a systematic and well-

controllable analysis of the relationship between optimal management strategy and environment. This 

view is also supported by the conclusions on optimal management in section 7.1 which show the 

potential of the patchwork to contribute to a holistic understanding of even-aged forest stand 

management. 

 

7.2.2 Limitations of the Patchwork Approach 

 

The application of the patchwork approach for the analysis of optimal even-aged stand 

management also reveals a limit related to the complexity of the included models. This border could 

be called the complexity horizon of the approach, beyond which a qualitative analysis of optimal stand 

management is no longer possible. Of course, the complexity horizon is no sharp border. It can be 

approached from two related perspectives, the view of the scenario and the view of the model 

variables. 

From the perspective of the complexity of the depicted scenarios, the inclusion of rather 

simplified models representing separate extensions of the basic scenarios does not allow for the 

analysis of effects resulting from the combination of several extensions, e.g., depicting risk, stand 

heterogeneity and a combined view in the same model. This is not a problem if the isolated effects of 

each extension are independent, but it prevents the analysis of the optimal management strategy if 
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the different effects influence each other. Looking at the extended models of sections 5 and 6, the 

latter case seems more relevant. Of course, the inclusion of models which extend the basic scenario in 

several directions is possible. However, it would be counterproductive. The resulting complexity in the 

intersection of extended assumptions would lead straight back to the problems associated with more 

general models (cf. section 3). Thus, it can be concluded, that the patchwork approach favors the use 

of separate scenario extensions to avoid the difficulties associated with the analysis of several 

management aspects at once. 

Figure 7 illustrates this separation for the scenarios analyzed in this dissertation. 

 

 

Figure 7     Separate extensions of the basic scenarios in the patchwork approach. 

 

The second perspective to look at the complexity horizon of the patchwork approach is related 

to the number of variables of the included models and their dependencies. It directly correlates to the 

complexity of the analysis and, with it, to the suitability of the patchwork to contribute to a holistic 

understanding of stand management. Thereby, the impact of exogeneous and endogeneous variables 

must be differentiated.  

The inclusion of external dependencies appears less problematic for a qualitative analysis 

compared to endogeneously derived variables. A good example offers a look at the thinning decision 

under different timber price processes in the heterogeneous stand model. If the clear-cut price is 

exogenously given, the derivation of results in the comparative static analysis is rather simple, while 

the results under density-dependent timber price development are much more complex. The reason 
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is that exogoneous variables have an impact on the endogeneous variables but not the other way 

around, i.e., no feedback has to be considered. 

A look at endogeneous variables yields a different picture because the dependencies between 

these variables are not one-sided any more. However, decision and non-decision variables must still 

be differentiated within this group. Endogeneous variables, which are dependent on external 

conditions and internal management decisions but are not a part of the management strategy itself, 

take an intermediate position. The density-dependent timber prices in the combined or the 

heterogeneous stand model represent a good example. The latter depends on the externally given 

timber price level and the development of the tree dimension, which is influenced by the forest 

owner’s thinning decision. The impact of these variables has to be considered in the optimality 

conditions of the optimal management strategy but, on the other side, their dependencies on external 

factors and management decisions is straight forward. Thus, they certainly increase the complexity of 

the analysis but they are not optimized themselves because they are passive.  

Consequently, the complexity horizon of the patchwork approach depends particularly on the 

number of active decision variables of the included models. This is not surprising because in scenarios 

with 𝑛 decision variables up to 𝑛(𝑛 − 1), two-sided relations can exist between the components of an 

optimal management strategy, which means that the number of dependencies increases very fast in 

𝑛. Already the inclusion of all three basic management measures planting, thinning and clear-cut could, 

theoretically, imply the consideration of 6 dependencies between the management measures and 

would, most likely, put the scenario beyond the complexity horizon of the patchwork system. In 

addition, the decision variables still depend on the external variables and are connected to 

endogeneous non-decision variables. Even in the scenario of the combined model, which also includes 

three decision variables but with rather reduced direct dependencies, the analysis of the model 

behavior still yields many ambiguous results. Thus, it is recommended to reduce the number of 

endogeneous decision variables to a minimum, which just barely allows for an answer to the research 

question of interest.  

Figure 8 illustrates the conclusion. 
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Figure 8     The relation between the number of variables and model complexity. 

 

7.2.3 Comparison to the Holistic Approach 

 

The previous two sections provide conclusions about the wide applicability but also the 

limitations of the patchwork approach. It becomes obvious, that the patchwork approach is not able 

to entirely solve the problems associated with model complexity discussed in section 3. Some scenarios 

cannot be qualitatively analyzed in a satisfactorily way and lie beyond the complexity horizon. Thus, 

the question remains if the patchwork approach still yields insights in optimal even-aged stand 

management which cannot be obtained by single holistic models. 

Unfortunately, a final answer to this question lies beyond the scope of this dissertation, 

because it would be necessary to compare the results to those of a general model containing all aspects 

of the introduced patchwork models. That was not part of this dissertation, which focussed on the goal 

of gaining a broader understanding of even-aged stand management by testing a patchwork system. 

However, some conclusions can still be made by theoretical reasoning. 

First, because the patchwork set-up is a meta approach limited by the included individual 

models, the same limitations must consequently hold for the general model approach, which depicts 

a wider and more complex range of scenarios in one single model. Given the difficulties in analyzing 

the combined model of section 5, for example, it does not seem beneficial to include even more 

aspects to form a single holistic model. However, even if holistic models exist for some scenarios, which 

allow for the analysis of several aspects at once, they could also be included in a patchwork. Thus, 

compared to holistic models, the patchwork approach theoretically does not lose any insights. But it 

allows for the use of  more simplified models and connects them to a structured and validated system 
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covering a wider range of problems than each model alone. Thus, it mitigates the problem of 

complexity. 

Second, the advantage of the patchwork approach does not lie in the analysis of combined 

effects in highly complex management environments. It is the ability to relate very different scenarios, 

e.g., via reference models, and study the relationships between scenario and management in a 

systematic way. In a validated patchwork, the influence of different model assumptions, i.e., different 

model scopes, can easily be identified and compared to other scenarios. The impact of heterogeneous 

growth on the thinning decision, for example, can be compared to the influence of natural risk or the 

presence of another age class using the basic thinning model as a connector. Thereby, the model 

validation based on overlaps of the model scopes ensures that only compatible models are compared. 

Theoretically, the same could be obtained by using a single holistic model and setting all extended 

aspects but one to zero in a qualitative analysis. However, this method would not provide additional 

insights compared to analyzing a patchwork of more simple models but still require the maintenance 

of a complex set-up. Thus, it might not be favorable.  

Based on these two theoretical arguments, the patchwork approach seems more suitable for 

a qualitative analysis. However, this statement is not the result of a comprehensive investigation and 

by no means universally applicable. Thus, to provide a sound answer to the question above, further 

methodological research would be needed. In general, the task of finding suitable methods to 

understand and deal with model complexity seems a necessary field to extend the complexity horizon 

of  qualitative studies of optimal forest management. 
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8. Summary 

 

In managed forests, the enormous complexity of an ecologic system meets a vast range of 

economic and other impact factors. Thus, to determine, analyze and understand economically optimal 

stand management is a task which has kept forest economists occupied for the past 200 years. The 

approach which has been followed since the days of Martin FAUSTMANN is the analysis of models 

which describe rather specific management scenarios using a set of clearly defined model assumptions. 

Unfortunately, the applicability of the findings to more general scenarios is limited. On the other side, 

the possibility of analyzing general management environments with single models is also limited by 

increasing complexity. Thus, a holistic understanding of optimal forest management is still missing. 

This statement also holds for the extensive field of optimal even-aged timber production, which 

essentially consists of only three main components, i.e., planting, thinning and final harvest. Therefore, 

this dissertation aims to make a contribution to further increase the general understanding of even-

aged forest management. 

To achieve this goal three steps were taken.  

First, a qualitative analysis of a combined management plan including decisions on all three 

basic components is presented based on HALBRITTER and DEEGEN (2015). It provides a discussion of 

the direct and indirect dependencies between the decision variables of a rotation in a rather classical 

management environment.  

Second, three studies are presented which dissolve some of the classical model assumptions 

and extend the existing knowledge on even-aged forestry to relevant but more complex mangement 

questions. HALBRITTER (2015) includes natural regeneration and a shelter period in an even-aged 

system and explores the borders between the even- and uneven-aged management. Thereby, the 

influence of natural regeneration and the impact of several age classes were studied. HALBRITTER 

(2020) drops the assumption of stand homogeneity and investigates stand management under 

heterogeneous tree growth in which, for example, different social classes of trees are maintained. 

Lastly, HALBRITTER et al. (2020) extend the classical deterministic management environment in the 

direction of density-dependent hazard risk. This adds an additional aspect to the thinning and the 

rotation decision because, in this scenario, the probability of stand destruction can be controlled by 

thinning.  

As a third step, the studies above were embedded in a patchwork representing a 

conglomeration of models which are connected and validated by overlapping scopes. Using this 

approach, a wide range of different management scenarios can be covered by rather simple models. 
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Thus, the complexity of the analysis decreases compared to single models with a more generally 

applicable framework and the problem of model complexity is mitigated. In addition, the inclusion of 

reference models with a particular focus on the management components stand establishment, 

thinning or rotation allows for a clear identification of the relationship between optimal stand 

management and the characteristics of a scenario. Applied to the qualitative analysis of the four 

studies above, the approach yields insights which contribute to a better understanding of even-aged 

forest management: 

(A) The separate investigation of the components of the combined management plan reveals 

the same qualitative characteristics as in the well-known reference studies. However, due to opposing 

effects in the optimality conditions, especially the recursive dependencies, the combined results are 

often ambiguous. General management guidelines cannot be applied and the optimal management 

plan might show unexpected or odd behavior as an adaption to changes in external factors. The 

analysis still shows that thinning can serve as a separator between planting and clear-cutting which 

prevents direct dependencies and simplifies the analysis. If timber prices are planting-density 

dependent, however, planting becomes the dominant decision because it exercises a strong direct 

impact on the subsequent management. 

(B) The optimal management strategy of the shelter scenario shows characteristics of both the 

even-aged and the uneven-aged worlds which become more pronounced the closer the management 

drifts to one of the two extremes. Under the possibility to use natural regeneration, the forest owner’s 

thinning decision must take aspects of the subsequent stand establishment into account. In addition, 

if several age classes of trees are maintained in one stand, the management strategy for each class 

cannot be determined independently. Inter-cohort effects must be considered to maximize the 

combined value growth of the stand.  

(C) The same rationale applies to the thinning decision in heterogeneous even-aged stands. 

The optimal thinning pattern balances both intra- and inter-cohort value effects to maximize the 

stand’s total value growth. In addition, a tendency for anatagonistic behavior in the optimal thinning 

intensities of social classes can be observed, which may lead to odd reactions to changes in external 

factors. The heterogeneous stand model provides a clear understanding of the drivers of thinning types 

such as thinning from below or from above. 

(D) To maximize the expected value of forestry under density-dependent hazard risk, 

continuous thinning must consider its impact on future expected hazard losses. Thus, it is no longer 

independent of future management decisions. However, these intertemporal dependencies are 

responsible for many ambiguous results in the qualitative analysis of optimal management. The clear-
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cut decision, on the other hand, does not face any structural differences compared to density-

independent risk scenarios. 

The results show that the patchwork approach provides a suitable tool to structure the 

qualitative analysis of optimal even-aged stand management. Unfortunately, it also shows its limits. 

Although some complex management scenarios can be covered by more simplified overlapping 

models, particularly problems involving a combination of several dependent decision variables quickly 

lie beyond the complexity horizon of the approach. However, the results still represent a contribution 

to a holistic understanding of even-aged stand management without the use of a general model. 

Furthermore, the patchwork approach offers future opportunities to further complete the overall 

picture of forest management by adding additional studies in a validated and well-structured way.  
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Appendix A: Transformation of the Optimality Condition from Discrete to 

Continuous Thinning 
 

Proof: 

In case of undisturbed growth during an age interval [𝑡, 𝑡 + ∆] the stand value at 𝑡 + ∆, 

𝑝(𝑡 + ∆)𝑞(𝑡 + ∆, 𝑞𝑡), depends on the initial stock 𝑞𝑡. It can also be expressed using the integral of the 

value increment with 𝑝(𝑡 + ∆)𝑞(𝑡 + ∆, 𝑞𝑡) = 𝑝(𝑡)𝑞𝑡 + ∫ [�̇�(𝑥)𝑞(𝑥, 𝑞𝑡) + 𝑝(𝑥)𝜙(𝑥, 𝑞𝑡)]
𝑡+∆

𝑡
𝑑𝑥. Thus, 

  

𝑝(𝑡 + ∆)
𝜕𝑞(𝑡 + ∆, 𝑞𝑡)

𝜕𝑞𝑡
= 𝑝(𝑡) +

𝜕

𝜕𝑞𝑡
[∫ [�̇�(𝑥)𝑞(𝑥, 𝑞𝑡) + 𝑝(𝑥)𝜙(𝑥, 𝑞𝑡)]

𝑡+∆

𝑡

𝑑𝑥] 

(46) 

 

In a first order Taylor approximation around 𝑡, the integral can be modified to 

∫ [�̇�(𝑥)𝑞(𝑥, 𝑞𝑡) + 𝑝(𝑥)𝜙(𝑥, 𝑞𝑡)]
𝑡+∆

𝑡
𝑑𝑥 = ∆[�̇�(𝑡)𝑞𝑡 + 𝑝(𝑡)𝜙(𝑡, 𝑞𝑡)] + Γ(∆) with Γ(∆)

∆→0
→  0 yielding 

  

𝑝(𝑡 + ∆)
𝜕𝑞(𝑡 + ∆, 𝑞𝑡)

𝜕𝑞𝑡
≈ 𝑝(𝑡) + ∆ [�̇�(𝑥) + 𝑝(𝑡)

𝜕𝜙(𝑡, 𝑞𝑡)

𝜕𝑞𝑡
] 

(47) 

 

for small ∆. Using (47), condition (9) can be transferred into condition (8). 
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