

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-805032

Marcus Paradies, Christian Lemke, Hasso Plattner, Wolfgang Lehner, Kai-Uwe Sattler,
Alexander Zeier, Jens Krueger

How to juggle columns: an entropy-based approach for table
compression

Erstveröffentlichung in / First published in:

IDEAS '10: Fourteenth International Database Engineering & Applications, Montreal 16.-
18.08.2010. ACM Digital Library, S. 205-215. ISBN 978-1-60558-900-8.

DOI: https://doi.org/10.1145/1866480.1866510

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-805032
https://doi.org/10.1145/1866480.1866510

How to Juggle Columns: An Entropy-Based Approach for
Table Compression

Marcus Paradies
SAP AG

Walldorf, Germany
marcus.paradies@sap.com

Christian Lemke
SAP AG

Walldorf, Germany
c.lemke@sap.com

Hasso Plattner
Hasso-Plattner-Institute

Potsdam, Germany
hasso.plattner@sap.com

Wolfgang Lehner
SAP AG

Walldorf, Germany
wolfgang.lehner@sap.com

Kai-Uwe Sattler
Ilmenau University of

Technology
Ilmenau, Germany

kus@tu-ilmenau.de
Alexander Zeier

Hasso-Plattner-Institute
Potsdam, Germany

alexander.zeier@hpi.uni-
potsdam.de

Jens Krueger
Hasso-Plattner-Institute

Potsdam, Germany
jens.krueger@hpi.uni-

potsdam.de

ABSTRACT
Many relational databases exhibit complex dependencies between
data attributes, caused either by the nature of the underlying data or
by explicitly denormalized schemas. In data warehouse scenarios,
calculated key figures may be materialized or hierarchy levels may
be held within a single dimension table. Such column correlations
and the resulting data redundancy may result in additional storage
requirements. They may also result in bad query performance if in-
appropriate independence assumptions are made during query com-
pilation. In this paper, we tackle the specific problem of detecting
functional dependencies between columns to improve the compres-
sion rate for column-based database systems, which both reduces
main memory consumption and improves query performance. Al-
though a huge variety of algorithms have been proposed for detect-
ing column dependencies in databases, we maintain that increased
data volumes and recent developments in hardware architectures
demand novel algorithms with much lower runtime overhead and
smaller memory footprint. Our novel approach is based on entropy
estimations and exploits a combination of sampling and multiple
heuristics to render it applicable for a wide range of use cases. We
demonstrate the quality of our approach by means of an implemen-
tation within the SAP NetWeaver Business Warehouse Accelerator.
Our experiments indicate that our approach scales well with the
number of columns and produces reliable dependence structure in-
formation. This both reduces memory consumption and improves
performance for nontrivial queries.

©2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in IDEAS10 2010, August 16-18, Montreal, QC [Canada]
DOI: https://doi.org/10.1145/1866480.1866510

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining

1. INTRODUCTION
Databases, especially those created for analytic purposes, often

show an extremely large degree of correlation within the set of
columns. Correlation between columns appears in a huge variety of
ways and has been studied in a huge number of research projects. In
this paper, we take a slightly different approach to exploiting the ap-
pearance of correlations in databases. First, we are only interested
in (soft) functional dependencies between columns. Further, we are
not concerned with tuning a relational query optimizer by provid-
ing accurate selectivities or a good guess of the number of distinct
values over an expression with correlated columns. We worked in
the context of the SAP NetWeaver Business Warehouse Acceler-
ator (BW accelerator) engine, where our focus was on improving
the efficiency of memory utilization by detecting functionally de-
pendent columns. Before we dive into detail, we first take a more
comprehensive look at the specific application problem and then
show the potential of appropriately considering correlated columns
within the BW accelerator.

Where Is Our Algorithm Useful?
The BW accelerator is designed to answer analytic queries effi-
ciently in large enterprise-sized data warehouse scenarios. In such
a setup, we are faced with correlated columns (in terms of “soft”
functional dependencies) in the fact tables and within the dimen-
sion tables of a data cube. By a soft functional dependency be-
tween two columns we mean a functional dependency, which holds
not for all values but for a large part of values. This is a generaliza-
tion of the classical hard functional dependency, where the values
of one column completely determine the values in the other col-
umn. Fact tables, especially from specifically generated data marts,
often contain generated key figures in a materialized form. For ex-
ample, turnover figures are generated during a data mart load in
order to take the computational logic out of the final OLAP sys-
tem but keep it within the central loading infrastructure. Also, the

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 205-215, ISBN 978-1-60558-900-8.
https://doi.org/10.1145/1866480.1866510

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

same numeric values are often materialized multiple times in differ-
ent currencies. Within dimension tables, we find a relatively high
level of dependencies between columns, not only between classical
OLAP hierarchies but especially between (logically) independent
columns, such as properties of articles within a product dimension.
For example, consider LCD TV models described by a large set of
different features (contrast, size, resolution, reaction time, HDMI
input, Scart input, PC input, and so on). In real customer data sets,
we found only a very small number of different combinations of
the possible feature space. For example, a size of 32 inch implies
1366 × 768 resolution in 86% of all 32-inch cases; dependencies
also exist in the number and type of input ports, size, and resolu-
tion. Surprisingly, we also discovered dependencies in almost all
other dimensions, such as shop, region, and customer. Leveraging
our knowledge of these dependencies in analytic databases is of the
utmost importance for a scalable and memory-efficient system.

Why Is Our Algorithm Useful?
The BW accelerator is designed as a column store using a large va-
riety of different compression techniques to keep all data in mem-
ory. A typical customer setup may run on 10 to 16 blades, each
with two Intel Xeon quad-core processors and 16 gigabytes (GB)
of main memory. The accelerator has been run on installations with
up to 140 nodes. Data for the accelerator is compressed using in-
teger coding and dictionary lookup. Integers represent the text or
other values in table cells; the dictionaries are used to replace in-
tegers by their values during post-processing. In particular, each
record in a table has a RowID and each value of a characteristic
or an attribute in a record has a ValueID (Figure 1). Dictionary-
based compression schemes greatly reduce the average volumes of
processed data. Altogether, data volumes and flows are reduced in
typical customer scenarios by an average factor of ten. The overall
goal of this reduction is to improve the utilization of memory space
and to reduce I/O within the accelerator. Finding such correlations
enables us to “merge” multiple columns by storing multiple logi-
cal columns as a single physical column with only one dictionary

ValueId Value

Dictionary

RowId ValueId

1 3

2 4

3 3

Attribute Table

ValueId Value

1 IBM

2 Microsoft

3 Google

4 Sun

5 Novell

… …

0000 0010

0000 0101

0000 …

0000 …

…

0000 0010 0000 0101 0000 … 0000 …

4 x 8-bit values can be
concatenated to one
32-bit integer

Int 1 Int 2 Int 3 Int 4

1 328 2416Bit #

3 3

4 2

5 3

6 1

7 3

8 2

9 2

10 5

… …

Figure 1: Data compression using integers

To demonstrate the effect of using column correlation to increase
the compression ratio, we consider a table with 10 million rows
(e.g., a fact table in an OLAP context) and look in detail at col-
umn c1 with 1000 distinct string values and column c2 with 16 000
distinct string values. With standard dictionary compression, the
memory consumption (neglecting the dictionary, which takes 2.4
million bits in the case of an average string length of 20 bytes)

computes to 10 million ∗ 10 bits (for c1) + 10 million ∗ 14 bits
(for c2) = 240 million bits. Under the assumption that the columns
are strongly correlated, such that we can generate a combined dic-
tionary of 20 000 distinct values (by means of string concatena-
tion of the combined occurrences), only one reference column has
to be stored. The reference column needs 10 million ∗ 15 bits =
150 million bits, so just 62.5% of the original size. The additional
dictionary mapping here amounts to about 7 million bits, which is
a relatively negligible increment to memory consumption.

Contribution and Outline of the Paper
The main challenge in exploiting correlations for table compression
is to identify the pairs of columns which are correlated at all. First
of all, in a typical customer scenario the number of columns a data
warehouse schema may easily reach 200 columns or more, result-
ing in

(
k
2

)
possible pairs for k columns. Second, because we do not

restrict ourself to explicitly defined constraints or hard functional
dependencies, each candidate pair has to be checked for correla-
tions based on the actual data meaning to analyze millions of rows.

Thus, we propose a new algorithm based on sampling, entropy
estimation, and pruning, which outperforms the existing algorithms
by factors and scales to very large databases. For each column pair
and every value pair, it collects frequencies and estimates single
and combined entropy based on this frequency information. If the
entropy correlation coefficient does not exceed a given limit, prun-
ing takes place and the given column pair is ignored. The output
of the algorithm is a dependency graph, which is a model of the
dependency structure of the underlying database, also known as a
Bayesian network graph [6].

We present a deep integration of our algorithm into a main mem-
ory column store und show that this integration results in a sig-
nificant performance improvement over standard algorithms. By
utilizing the different compression schemes, such as standard dic-
tionary coding, block coding, or run-length coding, the algorithm
shows better performance on average.

We propose a new compression schema for leveraging the calcu-
lated dependency graph. We demonstrate that usage of the depen-
dencies results in a better compression ratio, up to factor 2, with
performance improvements on nontrivial queries.

Based on this novel core idea, the paper illustrates aspects of im-
plementing this algorithm efficiently within a column store database
engine. We first highlight some measures, e.g., entropy and coen-
tropy which we use in our approach. Then we present our core al-
gorithm with additional optimizations, e.g., pruning heuristics and
optimized entropy calculation. Finally, we show the results of ex-
periments using real customer data as well as a synthetic data set.
The paper concludes with indications of further work towards an
improved physical database design for column stores.

2. MATHEMATICAL BACKGROUND
Before describing in detail the core of the algorithm and op-

timization techniques, we review some fundamental prerequisites
for our column pairing approach. In particular, we review the basic
characteristics of the entropy measure and introduce the notions of
coentropy and entropy estimation.

Entropy
The use of entropy in statistics has its origin in information the-
ory as introduced by Shannon [16]; for details of the relationship
between information theory and statistics, see [11]. In general, en-
tropy is used in statistics as a quantitative measure of the distribu-
tion of a variable. For a random variable X , the information about
the distribution of X is determined by the frequency with which

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 205-215, ISBN 978-1-60558-900-8.
https://doi.org/10.1145/1866480.1866510

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

each value occurs. The entropy of a variable X reflects the degree
of dispersion in its distribution. For a given variable X with distri-
bution (p1, p2, . . . , pn) the entropyH is defined by the expression:

HX = −
n∑

i=1

pi · log pi (1)

In equation (1), pi stands for the probability of a given value to oc-
cur in the data set. These probabilities can be calculated by dividing
the frequencies from the contingency table by the population size.
Further, H is always nonnegative and has its maximum value for a
uniform distribution (p1 = p2 = . . . = pn = 1/n) and its mini-
mal value if and only if some pi = 1. Figure 2 clarifies this for the
case of two given probabilities. As we can see, the entropy gets its
maximal value if both probabilities are 0.5 and reaches its minimal
value if and only if the probabilities are 0 and 1, respectively.

 0

 0 2

 0 4

 0 6

 0 8

 1

 0 0 2 0 4 0 6 0 8 1

H
(X

)

probability

Figure 2: Entropy curve for probabilities p and 1− p

Coentropy
The entropy measure is not restricted to single variable distribu-
tions but can be generalized to yield information about bivariate
distributions. The combined entropy, coentropy [1], is not only a
measure of the dispersion but also provides information about the
mutual dependence of two variables [17]. The coentropy of a two-
dimensional joint distribution (p11, . . . , prc) where r denotes the
number of rows in a given contingency table and c refers to the
number of columns, is defined as:

HXY = −
r∑

i=1

c∑
j=1

pij · log pij (2)

In our discussion, we use the following relationships between the
entropy and coentropy measure.

Additivity: If two variables X and Y are independent, then the
coentropy of these variables is less than or equal to the sum of the
local entropy measures:

HXY ≤ HX +HY (3)

Lower Bound: The co-entropy value of the variables X and Y is
always greater than or equal to the larger local entropy measure:

HXY ≥ max{HX , HY } (4)

Mutual Dependence Information
We exploit the dependence information IXY of two variables X
and Y , which was introduced by [17]. The dependence information
is based on the entropy measures and defined as follows::

IXY = HX +HY −HXY (5)

IXY is nonnegative, and is zero if and only if X and Y are inde-
pendent. Another interpretation for the mututal dependence infor-
mation is highlighted in Figure 3. As we can see, IXY is the inter-
section of the single entropies HX and HY and HX,Y is the com-
plement of IXY . If the entropiesHX andHY do not intersect, then
X and Y are independent. On the other hand, consider the case that
HX is a complete subset of HY . Then the set HXY = HY and
IXY is maximal. For this case, we have a complete dependency,
where each value in Y uniquely determines a value inX . Based on
the notion of dependency information, Theil introduces a correla-
tion coefficient called the uncertainty coefficient U [17]. The main
benefit of introducing the concept of information dependency be-
tween two statistical variables is that Theil’s U expresses a directed
dependency between two variables.
The uncertainty coefficient, also called the entropy coefficient, has
an information-theoretic interpretation as proportionate reduction
in error. It is a measure of the percentage reduction in uncertainty
in predicting the dependent variable based on knowledge of the in-
dependent variable. When UC = 0, the independent variable is
of no help in predicting the dependent variable. The uncertainty
coefficient UC(X|Y) for predicting the variable X with respect to
variable Y is defined as the ratio of the value of the mean depen-
dence information for both columns and the local entropy of Y :

UC(X|Y) =
IXY

HY
(6)

The uncertainty coefficient UC(X|Y) is an asymmetric measure.
Its value differs depending on which is the independent and which
the dependent variable. The uncertainty coefficient UC(Y |X) with
regard to the independent variable X is then defined as:

UC(Y |X) =
IXY

HX
(7)

In general, the value of the uncertainty coefficient varies from 0 to
1. The value indicates complete dependence if UC(X|Y) = 1, and
statistical independence if UC(X|Y) = 0. We use this measure to
indicate a (soft) functional dependence between two columns when
we have at least one entropy coefficent with a value near to 1. The
choice of the lower bound for the uncertainty coefficient to detect
a functional dependence depends on the use case. For example, in
our compression test cases we set a lower bound of 0.9.

(X,Y)

H(X) H(Y)

H(X,Y)

Figure 3: Mutual dependence information

Entropy Estimation
To compute entropy-based measures efficiently, we rely on sam-
pled information. In particular, we have to specify the basic sample

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 205-215, ISBN 978-1-60558-900-8.
https://doi.org/10.1145/1866480.1866510

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

blocks of our column signatures. Entropy estimation is a well stud-
ied area and a vast set of different estimators for different situations
is available. In our setup, we relied on the Chao−Shen estimator
[5], which combines the classical Horvitz−Thompson estimator [8]
and the concept of sample coverage to adjust for unseen values.
Further, the estimator uses Good−Turing [7] frequency estimation,
which is a statistical technique for predicting frequencies in a set
with unseen values. As evaluated in [18] (and also confirmed in
our experiments), the Chao−Shen estimator has remarkably good
statistical properties. In our scenarios, there are often many unseen
value pairs, which invalidate other approaches. The Chao−Shen
estimator performs reasonably well, even when a relatively large
fraction of value pairs is missing in the sample. The estimated max-
imum likelihood (ML) frequency is defined as

θML
k =

yk
n

where yk denotes the occurrency of value k and n the size of the
sample. On this basis, Good defined a corrected frequency measure
θ̂GT
k (equation 8) for frequency estimation where m1 denotes the

number of singletons (values with occurrency 1) [7]:

θGT
k = (1− m1

n
)θML

k (8)

The Chao−Shen estimator ĤCS for n unique values calculates en-
tropy using the Good−Turing corrected frequencies θ̂GT

k weighted
by the probabilities for their incidence:

ĤCS = −
p∑

k=1

θ̂GT
k log θ̂GT

k

(1− (1− θ̂GT
k)n)

(9)

Summary
We have outlined the mathematical foundations and highlighted the
uncertainty coefficient, which yields a unidirectional measure of
dependence between two statistical variables. Mapping statistical
variables to single columns leads us to the column pairing algo-
rithm.

3. COLUMN PAIRING
In this section, we outline the general column pairing (CP) algo-

rithm that we use in our scenario to detect (soft) functional depen-
dencies between columns. The basic idea of our solution is to rely
on the correlation coefficient introduced in the previous section.
For each pair of columns, we detect any dependencies and generate
a dependency graph, which is the basis for the pairing step. We do
not assume any specific order for the underlying data set. More-
over, we compute all quantitative measures in a single scan over
(a subset) of the database. To simplify the treatment, we make the
standard assumption that we know the number of distinct values for
each column. Optionally, we may store local entropy values for the
columns in a metadata catalog or compute them on the fly.

Preliminaries
We define a column pair Pk as a tuple (Ci, Cj) with i 6= j where
Ci denotes the i-th column in a given table R and Cj denotes the
j-th column in R. The column pairs define a set P = {Pi | i =
1, . . . ,m} of pairs Pi, where m is the number of possible col-
umn pairs. Also, we define |Ci| as the number of distinct values
in column Ci and |Ci, Cj | as the number of distinct value pairs in
columns Ci and Cj . The calculated set of dependence candidates
D ⊆ P includes all column pairs Pi ∈ D for which a dependence
has been detected.

Entropy Computation
To compute the correlation coefficient, we scan the database and
consider single columns Ci and Cj and pairs of columns (Ci, Cj).
To facilitate estimation of the entropy values, we maintain two
additional data structures. As Figure 5 shows, the dict structure
records the frequency of each distinct value in a column Ci. When
a new column value is scanned, the dict structure is consulted
and either a corresponding entry is found or a new entry is cre-
ated. Also, the freq structure that records the cumulative frequen-
cies of the distinct values is updated. Since the procedure main-
tains a freq structure for each candidate column, Ci or Cj , and
also each candidate column pair (Ci, Cj), the algorithm estimates
the entropy (functionENTROPY (frequenciesCi) in algorithm
1) and coentropy COENTROPY (frequenciesCi,Cj) using the
Chao−Shen estimator.

Creating a Dependence Graph
To construct a directed dependence graph G, we need to consider
a potential correlation in two directions: dependence of Ci on Cj

and/or of Cj on Ci. We identify dependent column pairs by cal-
culating the entropy correlation coefficient in both directions and
testing whether it satisfies the condition for dependence. To test
whether a detected dependence is significant (and therefore recorded
as a candidate pair), we define a measure ε2 ∈ [0, 1]. As the
value of ε2 is decreased, increasingly soft functional dependencies
(which give increasingly uncertain predicted values in the second
column) can be detected. For our use case of improving compres-
sion ratios, an ε2 near the upper bound gives the best results (in
our scenarios we used ε2 = 0.975). If columns Ci and Cj are
dependent, we append Pk = (Ci, Cj) to our set D of candidates.
Algorithm 1 illustrates the basic steps to compute the correlation
coefficient and check for significant dependencies.

To draw graph G, we now define as a node each column Ci that
occurs in the result set D in any column pair Pk = (Ci, Cj).
Then we represent a given functional dependence Ci → Cj as a
directed edge from node Ci to node Cj . We can determine whether
Ci → Cj or Cj → Ci holds by comparing the calculated entropy
coefficients.

Algorithm 1 Naive column pairing algorithm
1: D = ∅
2: for all Pc ∈ P do
3: for i = 0 to n do
4: get val1 for Ci

5: get val2 for Cj

6: update freqCi with val1
7: update freqCj with val2
8: update freqCi,Cj with val1 and val2
9: if |freqCi,Cj | ≥ (1 + ε1) ·max{|Ci|, |Cj |} then

10: break
11: end if
12: end for
13: hCi = ENTROPY(freqCi)
14: hCj = ENTROPY(freqCj)
15: hPc = COENTROPY(freqCi,Cj)
16: uCj ,Ci = (hCi + hCj − hPc)/hCj

17: uCi,Cj = (hCi + hCj − hPc)/hCi

18: if (uCj ,Ci ≥ ε2) ∨ (uCi,Cj ≥ ε2) then
19: D = D ∪ {Pc}
20: end if
21: end for

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 205-215, ISBN 978-1-60558-900-8.
https://doi.org/10.1145/1866480.1866510

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Exploiting a Dependence Graph
The result dependence graph G may be divided into several sub-
graphs (Figure 4) that are not connected to each other. Our aim is
to define structures that can optimize the resulting compression ra-
tios. Such optimal structures are paths between two or more nodes
between which the dependencies are as strong as possible. To avoid
storing a single column more than once, and in different ways, we
choose to use each node at most once when defining a path.

As a measure for finding optimal paths, we currently use the en-
tropy coefficients calculated by the algorithm. But this measure
for assessing edges has to be adapted to several further facts, such
as the number of distinct values in the columns. In some cases,
to reach optimal compression rates in combination with existing
smart compression methods, it may be appropriate to choose a dif-
ferent path for compression. To cover such cases, we need to find
a more suitable measure to maximize the benefit, which is planned
for future work.

Once these optimal structures have been built up, the paths de-
rived from them can be used as a basis for further analysis (espe-
cially in case of soft functional dependencies). In the simplest case
of hard functional dependencies, the algorithms gives the columns
that can be compressed immediately.

4. MAKING THE ALGORITHM WORK
In the previous section, we have introduced an algorithm that

scans over the set of column pairs and enumerates column pairs
that show soft functional dependencies. This naive approach to
compute the dependency degree of two columns shows an expo-
nential runtime behavior with regard to the number of columns. To
ensure scalability of the algorithm for large databases with a rela-
tively high number of columns and make it feasible for real-world
scenarios, the naive CP algorithm needs to be improved by opti-
mization techniques and pruning heuristics. This can be achieved
on two ways:

• reducing the effort for frequency computation by considering
only subset of the rows,

• reducing the number of pairs which have to be taken into
account during processing by applying heuristics for pruning
the search space.

In the following, we discuss appropriate techniques for both ap-
proaches and study their impact in an experimental evaluation.

Blockwise Processing
A first step to reduce the overhead of computing the entropy mea-
sures is to maintain the statistics for computing the entropy mea-
sures not after every row but after a block of 1024 entries. Batch-
ing the computation reduces the processing time significantly but
does not change the number of operations and rows considered for
entropy measures.

Sampling
A second step toward a more reliable and efficient procedure is to
rely on a subset of the overall database. Thus we pick only an ar-
bitrary number of blocks and base the estimation of the entropy
measures on all rows within these blocks. The sampling factor, i.e.,
the number of blocks to be considered for the entropy estimation,
may either chosen in advance or tied to the error bound of the en-
tropy estimator. We study both influencing factors in the evaluation
section.

Static Pruning
The prohibitive factor for the naive algorithm is the sheer number
of pairing combinations to be potentially considered as dependent.
Pruning the set of candidate columns is therefore of utmost im-
portance to make the algorithms applicable for large scenarios and
reduce runtime sufficiently. Our CP algorithm provides two ways
to prune columns: static and online.

Static pruning relies in the given cardinality information and dis-
tinguishes two different situations where a column is no longer con-
sidered a good “driver” for a combined dictionary.

• Case 1: The number of distinct values of a candidate column
is 1 or 2. In this case, the column storage engine provides
a special compression scheme that is more efficient than a
combined dictionary. Especially in analytic scenarios, these
types of columns are extremely popular (e.g., to store yes/no
answers) and the pruning potential is significant.

• Case 2: The number of distinct values of a candidate column
is equal or almost equal to the number of rows in the table.
Such “almost key” columns are also dismissed, because they
obviously functionally determine (almost all) other columns.
We defined a constant ε3 ∈ [0, 1] in Algorithm 2 to be able
to exclude this kind of “almost key“ columns. Again, in the
context of analytic databases, product numbers or additional
identifiers are very frequent.

Algorithm 2 summarizes the static pruning strategies applied to the
set of candidate columns before starting to scan a sample of the
underlying database.

Algorithm 2 Pruning column candidates
1: for all Ci ∈ R do
2: get distinct values for Ci from dictionary
3: if (|Ci|R < 3) then
4: prune Ci

5: continue
6: end if
7: if (|Ci|R ≥ (1− ε3) · |R|) then
8: prune Ci

9: continue
10: end if
11: end for

Online Pruning
In addition to the static pruning step before starting to analyze the
columns, we also apply an online pruning technique to cut off the
analysis of a column pair as soon as it proves not to exhibit sig-
nificant dependence. The overall goal is to reduce the number of
candidate pairs as quickly and as much as possible.

To illustrate the value of online pruning, we consider a small ex-
ample. Assume two columns C1 and C2 with cardinalities |C1| =
10 and |C2| = 13 and table size |R| = 10 000 000. Given
this information, we would not prune the column pair by applying
the static pruning heuristics. However, we can prune the column
pair as soon as the number of detected distinct value pairs exceeds
max(|C1|, |C2|) · ε1, where ε1 is a dependence threshold to cut off
analysis of soft dependencies. The maximum possible number of
distinct value pairs for our example is |C1| · |C2| = 130. In this
case, C1 and C2 are completely independent. The lower bound of
distinct value pairs is max(|C1|, |C2|). In this case, the column
with max(|C1|, |C2|) distinct values completely determines each

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 205-215, ISBN 978-1-60558-900-8.
https://doi.org/10.1145/1866480.1866510

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

orderpriority ordertotalprice custkey orderdate

revenue

extendedprice supplycost

partkey

quantity

orderkey

1 1 1 1

0 968

0 952 1

Figure 4: Dependency graph for lineorder

value in the other column (which indicates a hard functional de-
pendence). We are very careful in exploiting transitivity to more
aggressively prune column pair candidates. For example, if the
two correlated column-pairs (C1, C2) and (C2, C3) are known, we
cannot defer that (C1, C3) is also correlated. It may even be the
case that (C1, C3) shows an even larger benefit than exploiting the
correlated column-pairs (C1, C2) and (C2, C3). For the sake of il-
lustration, consider the following example: we have revenue →
extendedpricewith coefficient 0.9518; extendedprice→ quantity
with coefficient 0.968 and revenue → quantity with coefficient
0.84. There is a near transitivity, which unfortunately cannot be ex-
ploited by the pruning strategy. Additionally with C1 → C2 and
C2 → C3, we cannot assume that C1 → C3 is also a candidate
for further compression. In the above example with a threshold of
0.95, the first 2 column pairs are candidates, the third pair does not
qualify.

Optimized Entropy Calculation
The time required to calculate entropy measures is primarily deter-
mined by expensive (in relation to native operations like shifting or
addition) logarithm calculations.

In a naive approach, we would calculate entropy terms (by term
we mean a summand pi ∗ log pi in the entropy equation) for each
value and for each value pair, respectively. However, in our exper-
iments we discovered that many frequencies occur several times.
With the simple mapping shown in Figure 5, we avoid calculat-
ing equal terms (corresponding to the same frequencies) again and
again. In the figure, the leftmost part displays 9 rows of a column
in our database. The middle part of the figure maps the values to
their occurrences in the column and the rightmost part holds infor-
mation about the frequency for each occurrence. For example the
values a and c have both a frequency 2 and in a naive approach we
would calculate the same entropy value two times. The dotted lines
in the figure illustrate the transition between two calculation steps.
In our example the last scanned value was b. The frequency of b is
1 and the number of occurences with values with frequency 1 is 2
(e and b). In the next step another b is scanned and the frequency
of b increases by 1. However, we have to decrease the number of
values with occurency 1 by 1 and increase the number of values
with occurency 2 by 1. The general idea behind the mapping is
not to collect frequencies for each value or value pair but to count
how often a frequency occurs. This reduces the number of term
calculations by at least an order of magnitude.

Exploiting Block Coded Columns
If two columns are compressed using a block coding schema, fur-
ther speed improvements are possible. If a column is set to be
block coded, its structure is divided into equal-sized blocks of val-

a
c
e
a
c
b
b
d
b

value

sc
an

dict

a
c
e
b

freq

1
2
3
4

2
2
1
1

2
2
0
0

1

(co-) entropy
computation

2

3

Figure 5: Incremental computation of entropy values

ues. This is part of the compression scheme provided by the BWA,
where equal values are grouped together to compress blocks of val-
ues. If a block contains just one distinct value, this block can be
marked as compressed and only its value is stored. In combination
with our block sampling approach, this can speed up the algorithm
in two ways. On the one hand, the costs for I/O operations are
reduced and on the other hand the number of insertions for the en-
tropy estimation are minimized to one insertion per block.

...

...

...

...

Single Value Block

Multiple Values Block

Column 1 Column 2

Case 1

Case 2

Case 3

...

...

...

...

Figure 6: Possible cases for optimizing block coded columns

Figure 6 illustrates the cases that are possible during collect-
ing column pair frequencies of two block coded columns. A gray
shaded block is a block where only one distinct value occurs and
this block will be compressed within the BWA. The striped block
illustration indicates, that there are at least two different values
within this block and therefore the block is not compressed. In

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 205-215, ISBN 978-1-60558-900-8.
https://doi.org/10.1145/1866480.1866510

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

case 1, the number of values to be read from the first column can
be reduced because the block only contains one distinct value. Fur-
ther, we only need to insert as many value pairs into our data struc-
ture as distinct values appear in the block of the second column. In
case 1, we can gain a little more by optimizing the single entropy
calculation for column 1. In case 2, we need to read only one value
from each column and insert only one pair, which is a big improve-
ment. If we have a block size of 1024, we can reduce the number of
insertions into the data structure to 1/1024. In case 3, since mul-
tiple values appear in both columns, no optimization is possible.
Whether a block in a block coded column is compressed can be
easily retrieved from the intern data representation of block coded
columns in the BWA. There are more compression schemes in the
BWA (e.g. run-length coding) which are part of the implementa-
tion. These compression schemes can be exploited in a similar way
to reduce the execution time of the algorithm.

Summary
Making the column pairing algorithm a feasible solution requires
that we reduce the number of rows and the number of columns to
be considered. In this section, we introduced blockwise processing
and sampling steps to reduce the number of items. We also intro-
duced two pruning heuristics: static pruning based on the number
of distinct values and online pruning based on the cardinality of the
column pair values. We evaluate all these factors in the following
section.

5. EXPERIMENTAL EVALUATION
This section evaluates our algorithm against a wide range of ex-

periments, where we highlight the main characteristics and advan-
tages of our approach. We tested our algorithm against two differ-
ent data sets: we chose a synthetic data set and a business data set
from a BW accelerator customer.

• The synthetic data set (called SSB10 in the figures [14]) is
derived from the TPC-H benchmark where we generated a
data set based on the fact table lineorder with scaling factor
10. The data set consists of 17 columns and about 59 million
rows.

• In contrast to the synthetic data set, the business data set
(called BIZ in the figures) with 175 columns and about 10
million rows.

Given these data sets, the different optimizations like sampling
and pruning heuristics can be described as follows. In our experi-
ments, we focused on the characteristics of our pruning heuristics
and compared the resulting errors under different aspects. We also
examined the effect of sampling in relation both to our entropy es-
timations and to the pruning heuristics. In our experiments, where
not otherwise noted, we used a sample size of 5% and a block size
of 1024.

To illustrate the importance of pruning columns as early as pos-
sible, we show in Figure 7 the influence of the number of columns
on execution time. As expected, we see an almost exponential in-
crease with the number of columns. The time also shows a linear
dependence on the size of the individual columns.

The figure suggests that a naive approach without efficient prun-
ing heuristics will fail on business data sets with many columns. In
Figure 8 we tested our business data set against our online prun-
ing approach. We expected that with increasing sample size the
algorithm would prune more column pairs. Indeed, with increasing
sample size the number of observed value pairs increases and our

0

50

100

150

200

250

300

 20 40 60 80 100 120 140 160 180

tim
e

[s
]

column count

Figure 7: Effect of the column count on the execution time
(BIZ)

0
50

100
150
200
250
300
350
400
450
500
550
600

25%20%15%10%5%2.5%

pr
un

ed
 c

ol
um

n
pa

ir
s

sample size

Figure 8: Effect of the sample size on the number of pruned
column pairs (BIZ)

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 205-215, ISBN 978-1-60558-900-8.
https://doi.org/10.1145/1866480.1866510

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0
5

10
15
20
25
30
35
40
45
50

25%20%15%10%5%2.5%

fu
lly

 c
al

cu
la

te
d

co
lu

m
n

pa
ir

s

sample size

Figure 9: Effect of the sample size on the number of complete
calculated column pairs (SSB10)

pruning condition becomes true. With the smallest sample size of
2.5%, we achieved a pruning rate of about 0.75%. This increased to
4.75% pruning rate for a 15% sample and up to 8.4% for a reduced
dataset with sample size 25%.

The online pruning rate depends strongly on the dependence
structure of the underlying database. If the data includes many de-
pendencies, online pruning speeds up the algorithm only marginally.
This is because we are likely to discover fewer distinct value pairs
than in the case of statistical independence. If the number of dis-
tinct values in one column is larger than the sample, then a column
pair that includes this column cannot be pruned.

By contrast, Figure 9 shows that online pruning can greatly re-
duce the search space for the synthetic data set. For this test, we
focused on the number of completely calculated column pairs. We
see that we can achieve high pruning rates of 60% for a relatively
small sample size of 2.5%. This increases to 80% pruning for a
sample size of 25%. When we compare these pruning rates with
those for the business dataset, we find that the pruning rate varies
with the data distribution.

To reduce the amount of data to be processed even further, we
used a block sampling approach. Figures 10 and 11 show the re-
sults of our evaluation of the impact of different sample sizes for
business and synthetic data sets. Independently of the data set used,
we observed a linear growth of the execution time with increasing
sample size. The figures also show the huge impact of using col-
umn and column pair pruning.

Figures 10 and 11 show only the final number of pruned or fully
calculated column pairs after the algorithm has run.

In contrast, Figure 12 illustrates the progress of pruning and the
steadily decreasing number of potentially dependent column pairs.
The pruning occurred in two phases, first static pruning (which took
one second in the graph) and then calculation and online pruning.
As the graph shows, the number of dependent column pair candi-
dates that remain to be processed decreases rapidly.

Another aspect that we considered in our tests is the effect of the
chosen sample size on the relative error for estimating the coen-
tropy for two columns. Figure 13 shows the results. We focused on
the coentropy because this is critical in view of the combinatorial
explosion in the possible number of distinct value pairs. We com-
pared the calculated relative error on our synthetic data set to the
relative error on the business data set. The relative error is the dif-
ference between the estimated coentropy and the exact coentropy
divided by the exact coentropy.

We expected that the relative error decreases with increasing

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

25%20%15%10%5%2.5%

tim
e

[s
]

sample size

w/o pruning
with pruning

Figure 10: Effect of the sample size and pruning on the execu-
tion time (BIZ)

0
25
50
75

100
125
150
175
200
225
250

25%20%15%10%5%2.5%

tim
e

[s
]

sample size

w/o pruning
with pruning

Figure 11: Effect of the sample size and pruning on the execu-
tion time (SSB10)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140

 0 5 10 15 20 25

co
lu

m
n

pa
ir

 c
an

di
da

te
s

time [s]

Figure 12: Number of column pair candidates over time using
pruning heuristics (SSB10)

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 205-215, ISBN 978-1-60558-900-8.
https://doi.org/10.1145/1866480.1866510

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0.000
0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100
0.110

25%20%15%10%5%2.5%

re
la

tiv
e

er
ro

r

sample size

BIZ
SSB10

Figure 13: Effect of the sample size on the relative estimation
error

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018
0.020
0.022
0.024

641282565121024

re
la

tiv
e

er
ro

r

block size

Figure 14: Effect of the block size on the relative estimation
error (SSB10)

sample size. As we can see, the two data sets differ dramatically.
Whereas the relative error for the synthetic data set is quite small,
at 3% for a sample size of 2.5%, the error in estimating the coen-
tropy for our business data set is well over three times larger. This
is caused by an extremely spiky distribution, which is difficult to
catch with sampling. In the case of spiky distributions, both the
entropies for single columns and the coentropies for column pairs
have values near zero, where the calculations are always prone to
error. But, as expected, the relative error decreases for both data
sets with increasing sample size. The relative error for the busi-
ness data set was nearly halved for a sample size of 20%. For the
synthetic data set we reduced the relative error by a factor three
in relation to the error by increasing the sample size by factor ten
(from 2.5% to 25%).

Another parameter that may influence the relative error in esti-
mating the coentropy is the block size of our sample data blocks.
Figure 14 shows the effect of different block sizes in relation to cal-
culated relative errors. We see that decreasing the block size from
1024 to 64 reduces the relative error by 20%. By using a small
block size, say 64, we catch on average more value pairs and can
more accurately estimate the coentropy to characterize the disper-
sion of the joint distribution. If we choose a large block size, such
as 1024, we define fewer data blocks and reduce the accuracy of
our estimations. On the other hand, choosing a smaller block size
results in a runtime overhead, because more data blocks need to
be fetched from the database. This may conflict with other opti-

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018
0.020

641282565121024

re
la

tiv
e

er
ro

r

block size

random order
sorted

Figure 15: Effect of the data order on the relative error with
different block sizes (SSB10)

0
50

100
150
200
250
300
350
400
450
500

partkey,supplycost

tim
e

[m
s]

not optimized
optimized

Figure 16: Effect of block coding on execution time (SSB10)

mizations, such as for block-coded columns in the BW accelerator,
where a block size of 1024 is predefined. We need to find a com-
promise between reducing error and reducing algorithm runtime.
In the case of the BW accelerator, we chose a block size of 1024
for our sampling approach to improve the runtime at the cost of an
acceptable increase in relative error when estimating the coentropy.

Figure 15 shows the results of our evaluation of the effect of
the column value sort order in relation to calculated relative errors.
We considered two categories: column of values in sort order and
column of values in random order. In a column in sort order, the
distinct values are grouped, whereas in random order they are all
mixed up. We also evaluated the effect of different block sizes.
As the figure shows, the relative error is generally larger for sorted
data than for random data. Figure 14 also shows that the relative
error decreases with decreasing block size. The difference in ef-
fect on the error between random order and sorted order is quite
small, so we conclude that our algorithm reliably estimates single
entropy and coentropy, independently of the structure and order of
the underlying data set.

The results of our evaluation of the performance improvement
for block-coded columns are shown in Figure 16. We chose a
column pair with columns partkey and supplycost which are both
block-coded in our test scenario. The figure highlights the run-
time improvement by exploiting block coding in contrast to the case
when columns are not block-coded. For the evaluated column pair,
we achieved a performance improvement of factor 2.5.

To demonstrate the consequences of combining two columns
physically in respect to the query performance, we performed tests

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 205-215, ISBN 978-1-60558-900-8.
https://doi.org/10.1145/1866480.1866510

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0

20

40

60

80

100

120

140

Q1 Q2 Q3 Q4 Q5 Q6

tim
e

(%
)

single columns combined columns

Figure 17: Possible improvement for combined dictionaries in
relation to severel queries (SSB10)

Columns Original size Reduction
orderkey, orderpriority 91 553 kB 3 662 kB (96 %)
orderkey, ordertotalprice 156 160 kB 68 270 kB (56 %)
orderkey, custkey 110 645 kB 22 754 kB (79 %)
orderkey, orderdate 102 548 kB 14 658 kB (86 %)
revenue, extendedprice 79 165 kB 7 935 kB (90 %)
extendedprice, quantity 35 800 kB 5 625 kB (84 %)
partkey, supplycost 43 904 kB 17 147 kB (61 %)

Figure 18: Reduction in space for combined columns (SSB10)

with different search predicates using the scenario described in the
introduction. We ran two queries Q1 and Q3 evaluating an equality
predicate on each column seperately, two queries Q2 and Q4 with
a range predicate (20 values), query Q5 concatenating two equal-
ity predicates with AND, and query Q6 concatenating two equality
predicates with OR.

Because the combined dictionary can only be ordered by the val-
ues of one column, values of the other column can appear in ran-
dom order. As the figure 17 shows, queries on column two (Q3
and Q4) ran slower when the combined dictionary is ordered by
column one. The reason is that in this case we have to evaluate
a list of values (implemented using a bit vector) which is slower
than searching for one value/range. In contrast, query Q6 ran faster
on the combined columns because only one scan over the data has
to be performed instead of doing two searches and combining the
resulting bit vectors. For query Q5 the difference is much smaller
because even when using single columns only one full table scan
on the more selective column is required. The remaining result
rows have to be tested for the requested value of the other col-
umn. To achieve the best query performance, previous knowledge
and results of query workload analyses are required. In any case,
the increased efficiency of memory space utilization is the primary
benefit of our approach, independently of runtime considerations.

For this reason figure 18 shows the reduction of memory space
for the correlated column pairs of the synthetic data set. Using a
greedy strategy for the six chosen columns a total reduction of 93
352 kB (67 percent) was achieved.

6. RELATED WORK
Information about data distribution and correlation of table columns

has played an important role in the database field for many years.
Most work has addressed this issue in the context of collecting and
maintaining statistics for query optimization and can be categorized
into the questions for which data statistics are needed (e.g. if the
uniformity assumption is not valid), questions about how the data

characteristics can be represented efficiently (e.g., in the form of
histograms), and questions about when and how statistics have to
be updated.

One of the main problems in exploiting database statistics is the
independence assumption. This is often violated, either because
functional dependencies are explicitly modeled using constraints
or – more often – exist only implicitly or even not for all tuples. In
recent years, this has motivated research on detecting and capturing
such dependencies and correlations in databases. Here we give a
brief survey of techniques that are related to our approach. We
distinguish between two basic classes: approaches where the set of
columns is known a priori and approaches aiming at discovering
the correlated and dependent columns.

Examples of the first class are approaches based on multidimen-
sional synopses and histograms like STHoles [4] and SIT [3] which
both use query feedback for maintaining multicolumn statistics.
STHoles histograms are built and refined by analyzing query re-
sults. SITs are “statistics on intermediate tables” which are con-
structed also for intermediate nodes in query execution plans and
are general enough to be usable with multidimensional histograms,
too.

In contrast, approaches of the second class aim to discover de-
pendencies and/or correlations. Most of the existing solutions are
data-centric in the sense that they analyze the base data in order
to identify dependency relationships. Apart from early works on
detecting strict functional dependencies in support of data model-
ing and reengineering (e.g. [13, 15]), several approaches have been
proposed that also consider fuzzy or soft dependencies.

The goal of SASH [12] is to find the best set of histograms with
respect to a given multidimensional query workload. SASH uses
junction trees for representing dependency relationships between
columns. A junction tree consists of cliques – related columns –
whose frequency distribution is approximated by histograms. The
junction trees are then used to formulate a search strategy for the
histogram set that minimizes a given scoring criterion such as MDL
or the error for selectivity estimation. SASH also exploits query
feedback to adjust the frequencies and the overall structure incre-
mentally.

CORDS [10] – which extends BHUNT [2] – is a sampling-based
approach for correlation detection. It enumerates pairs of columns
and applies a chi-squared analysis to a sample of column values in
order to identify correlations. The problem of a potentially huge
search space is addressed by exploiting several pruning techniques.
From the set of candidate pairs, only the top-k pairs with respect
to their correlation strength are recommended in the column group
statistics, which may then be used by the query optimizer. A cru-
cial point in CORDS is to determine the necessary sample size for
the correlation analysis. According to [10] the test for soft func-
tional dependencies requires that the sample S contains “enough
information” meaning that |S| � |Ci, Cj | which means that the
sample size has to be adapted to the number of distinct value pairs.
For a large number of distinct value pairs (e.g., combinations with
the orderkey column in the SSB data set) this may result in wrongly
detected FDs. Fig. 19 illustrates this by comparing the relative es-
timation error (sample of 5% size vs. exact) from CORDS to our
entropy-based approach. Note, that these are only the critical cases
– if the sample size can be chosen large enough, CORDS provides
results which are as good as ours. On the other hand, in situa-
tions with very small entropy values (< 0.01) the entropy-based
approach is less reliable than CORDS due to rounding errors.

Techniques from data mining have also been applied to the prob-
lem of discovering dependencies. An example of such an approach
is TANE [9], which is a typical levelwise data mining algorithm

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 205-215, ISBN 978-1-60558-900-8.
https://doi.org/10.1145/1866480.1866510

10

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

ENTROPY

0.50

1.00

1.50

2.00

2.50

3.00

orderkey/
partkey

orderkey/
quantity

orderkey/
revenue

orderkey/
shipmode

re
la

tiv
e

er
ro

r
CORDS

0.00

Figure 19: Comparison of CORDS vs. entropy-based aproach

based on a lattice representing the containment relationships of all
attribute sets. TANE searches levelwise for nontrivial, minimal,
fuzzy dependencies starting from the singleton set. In each step,
TANE validates the dependencies and eliminates false dependen-
cies as soon as possible. This is performed by partitioning the re-
lation into equivalence classes, i.e., sets of tuples containing the
same attribute values. Partitions can be computed from the product
of earlier partitions. Like similar methods from data mining, this
approach requires both a full scan on the base table and appropriate
synopses for maintaining the equivalence classes.

7. CONCLUSION
In analytic engines using a column-based approach, such as the

BW accelerator, data compression techniques greatly reduce the
data volumes and thus enable more data to be held in memory for
accelerating queries. Leveraging correlated columns opens the po-
tential to compress multiple logical columns together and to store
them as a single physical column with a single dictionary for en-
coded value pairs.

For this purpose, we have developed a novel algorithm, the col-
umn pairing (CP) algorithm, for detecting (soft) functional depen-
dencies based on entropy measures. Our approach exploits sam-
pling and effective pruning heuristics, is easily scalable to large
databases, and can detect dependencies between pairs of columns
orders of magnitude faster than using other approaches. Our ex-
periments indicate that the CP algorithm performs even well on a
database with n > 100 columns, where the search space for (soft)
functional dependencies scales exponentially with n.

We have implemented the CP algorithm in the BW accelerator to
enable it to deliver more fully on the advantages of column-oriented
main memory databases. In further work, we shall concentrate on
analyzing the dependence graph to find an improved structure for
compressing detected column pairs and optimizing the mapping
scheme, and hence yet further exploit the functional dependencies
in the data.

8. REFERENCES
[1] J. Astola and I. Virtanen. Entropy correlation coefficient, a

measure of statistical dependence for categorized data.
Technical Report 4, Lappeenranta University of Technology,
1982.

[2] P. G. Brown and P. J. Haas. Bhunt: Automatic discovery of
fuzzy algebraic constraints in relational data. In Proc. 29th
VLDB, pages 668–679, 2003.

[3] N. Bruno and S. Chaudhuri. Exploiting Statistics on Query
Expressions for Optimization. In Proc. ACM SIGMOD 2002,
Madison, WI, pages 263–274, 2002.

[4] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A
Multidimensional Workload-aware Histogram. In Proc. ACM
SIGMOD 2001, Santa Barbara, CA, pages 211–222, 2001.

[5] A. Chao and T.-J. Shen. Nonparametric estimation of
shannon’s index of diversity when there are unseen species in
sample. Environmental and Ecological Statistics,
10:429–443, 2003.

[6] J. Cheng, D. A. Bell, and W. Liu. Learning belief networks
from data: An information theory based approach. In Proc.
6th CIKM, pages 325–331, 1997.

[7] I. J. Good. The population frequencies of species and the
estimation of population parameters. Biometrika 40(3 and 4),
pages 237–264, 1953.

[8] D. G. Horvitz and D. J. Thompson. A generalization of
sampling without replacement from a finite universe. Journal
of the American Statistical Association, 47(260):663–685,
1952.

[9] Y. Huhtala, J. K. P. Porkka, and H. Toivonen. Efficient
Discovery of Functional and Approximate Dependencies
Using Partitions. In Proc. ICDE 1998, Orlando, FL, pages
392–401, 1998.

[10] I. F. Ilyas, V. Markl, P. J. Haas, P. G. Brown, and
A. Aboulnaga. Cords: Automatic discovery of correlations
and soft functional dependencies. In Proc. 30th VLDB, pages
1341–1344, 2004.

[11] S. Kullback. Information Theory and Statistics. Wiley, 1959.
[12] L. Lim, M. Wang, and J. Vitter. SASH: A Self-Adaptive

Histogram Set for Dynamically Changing Workloads. In
Proc. VLDB 2003, Berlin, Germany, pages 369–380, 2003.

[13] H. Mannila and K.-J. Räihä. Dependency Inference. In Proc.
VLDB 1987, Brighton, England, pages 155–158, 1987.

[14] P. O’Neil, E. O’Neil, and X. Chen. The star schema
benchmark.
http://www.cs.umb.edu/ poneil/StarSchemaB.PDF.

[15] J.-M. Petit, F. Toumani, J.-F. Boulicaut, and
J. Kouloumdjian. Towards the Reverse Engineering of
Denormalized Relational Databases. In Proc. ICDE 1996,
New Orleans, LA, pages 218–227, 1996.

[16] C. E. Shannon. A mathematical theory of communication.
Bell Systems Technical Journal, 27, 1948.

[17] H. Theil. On the use of information theory concepts in the
analysis of financial statements. Management Science,
15(9):459–480, 1969.

[18] V.Q.Vu, B.Yu, and R. Kass. Coverage-adjusted entropy
estimation. In Statistics in Medicine, volume Volume 26
Issue 21, pages 4039–4060, 2007.

Final edited form was published in "IDEAS '10: Fourteenth International Database Engineering & Applications. Montreal 2010", S. 205-215, ISBN 978-1-60558-900-8.
https://doi.org/10.1145/1866480.1866510

11

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	ADP1971.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Marcus Paradies, Christian Lemke, Hasso Plattner, Wolfgang Lehner, Kai-Uwe Sattler, Alexander Zeier, Jens Krueger
	How to juggle columns: an entropy-based approach for table compression

