

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-805010

Till Kolditz, Thomas Kissinger, Benjamin Schlegel, Dirk Habich, Wolfgang Lehner

Online bit flip detection for in-memory B-trees on unreliable hardware

Erstveröffentlichung in / First published in:

SIGMOD/PODS'14: International Conference on Management of Data, Snowbird 23.06.2014.
ACM Digital Library, Art. Nr. 5. ISBN 978-1-4503-2971-2.

DOI: https://doi.org/10.1145/2619228.2619233

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-805010
https://doi.org/10.1145/2619228.2619233

Online Bit Flip Detection for In-Memory B-Trees
on Unreliable Hardware

Till Kolditz, Thomas Kissinger, Benjamin Schlegel, Dirk Habich, and Wolfgang Lehner

Database Technology Group
Technische Universität Dresden

01062 Dresden, Germany
{firstname.lastname}@tu-dresden.de

ABSTRACT
Hardware vendors constantly decrease the feature sizes of
integrated circuits to obtain better performance and energy
efficiency. Due to cosmic rays, low voltage or heat dissipa-
tion, hardware – both processors and memory – becomes
more and more unreliable as the error rate increases. From
a database perspective bit flip e rrors i n main memory will
become a major challenge for modern in-memory database
systems, which keep all their enterprise data in volatile, un-
reliable main memory. Although existing hardware error
control techniques like ECC-DRAM are able to detect and
correct memory errors, their detection and correction ca-
pabilities are limited. Moreover, hardware error correction
faces major drawbacks in terms of acquisition costs, addi-
tional memory utilization, and latency. In this paper, we
argue that slightly increasing data redundancy at the right
places by incorporating context knowledge already increases
error detection significantly. We use the B-Tree – as a wide-
spread index structure – as an example and propose various
techniques for online error detection and thus increase its
overall reliability. In our experiments, we found that our
techniques can detect more errors in less time on commod-
ity hardware compared to non-resilient B-Trees running in
an ECC-DRAM environment. Our techniques can further
be easily adapted for other data structures and are a first
step in the direction of resilient database systems which can
cope with unreliable hardware.

1. INTRODUCTION
For the last 30 years, disk-centric database systems have

been state-of-the art. Within the recent years, this approach
has dramatically changed due to several reasons. Especially
the significant developments in the hardware sector are the
major driver for that change. Due to these hardware devel-
opments, servers with 2 TiB of main memory are available
for a reasonable price. To efficiently leverage the provided
main memory capacities, the database system architecture
©2014 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in DaMoN’14 June
22-27 2014, Snowbird, UT, USA
DOI: http://dx.doi.org/10.1145/2619228.2619233.

trend shifted from a disk-centric to a main memory-centric
approach, where the entire data pool is kept completely in
main memory. The performance gain is massive because
database operations are able to benefit from its higher band-
width and lower latency [9].
The driving hardware developments mainly rely on shrink-

ing the feature sizes of integrated circuits forming proces-
sors and main memory. On the one hand, this hardware
trend in combination with appropriate software concepts
are responsible for performance improvements, in partic-
ular in the database domain. On the other hand, hard-
ware becomes more and more vulnerable to external influ-
ences such as cosmic rays, electromagnetic radiation, low
voltages, and increased heat dissipation. Besides manufac-
turing errors, hardware also takes permanent damage over
time which is known as aging. Especially main memory al-
ready faces those effects resulting in an increased bit error
rate, which is likely to escalate on future DRAM hardware.
From a database perspective, an increased bit flip rate in
main memory will become a major challenge for modern in-
memory database systems, which keep all business-related
data in volatile and unreliable main memory.
The challenge of DRAM reliability is not new and for years

manufacturers established ECC-DRAM which transparently
detects and corrects bit errors. Common ECC-DRAM pro-
tects against single bit DRAM errors and provides detection
for double bit errors using a 72/64 Hamming code. This ba-
sic hardware protection requires 12.5% more memory cells
per bit. Newer hardware approaches use more sophisticated
methods to correct and detect multiple bit flips, whereas
memory and computation overhead increase. However, this
hardware approach is not only limited in its error detection
and correction capabilities, it also faces major drawbacks in
terms of acquisition costs and memory latency as illustrated
in Table 1. There are no DDR3 (registered) ECC modules
with CAS latency (CL) below 9, which incurs a 29% la-
tency penalty compared to CL7 non-ECC DDR3 modules
at almost the same price – CAS is only one DRAM timing
parameter and other timings are accordingly higher as well.
Aside from hardware solutions for reliability, there also

exist other approaches like redundant data storage and re-
dundant computation [18]. In this case, most errors are
detectable by comparing the final results with each other.
However, the major problem of ensuring a low error proba-
bility by employing generally applicable methods is dramati-
cally increasing costs for memory and computational power.
In this paper, we argue that adding a varying degree of data

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", Art Nr. 5, ISBN 978-1-4503-2971-2
https://doi.org/10.1145/2619228.2619233

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

redundancy by incorporating database context knowledge is
able to reduce those costs. More specifically, we concentrate
on online bit flip detection for in-memory B-Trees and are
thus taking the first step towards bit flip-tolerant database
systems. Our approach leverages the knowledge about the
internal structure of the B-Tree to efficiently detect bit errors
on a logical level and adds different degrees of redundancy
to scale with the amount of bit errors generated by DRAM
hardware and the level of reliability that is requested by the
application. Moreover, we compare lightweight and heavy-
weight error detection mechanisms with regard to their im-
pact on performance and main memory utilization. In our
evaluation, we found that our techniques can detect more
errors on commodity hardware compared to a non-resilient
B-Tree running in an ECC-DRAM environment that comes
with several drawbacks in terms of increased TCOs and
lower performance.

Contributions. Our contributions can be summarized as
follows:
(1) We present the results of a basic experiment that shows

the increasing bit error rate and corresponding bit error
distribution when operating DRAM outside of the nor-
mal operating parameters (in particular overheating).

(2) We describe different bit error detection techniques for
non-resilient in-memory B-Trees that leverage the knowl-
edge about the structure of a B-Tree and tolerate a spe-
cific error rate.

(3) We evaluate our bit error detection techniques and quan-
tify their impact on performance as well as on mem-
ory consumption. The results show that we are able to
detect more bit errors at higher performance and with
lower memory footprint compared to standard B-Trees
running on an ECC-DRAM system.

(4) Based on our findings, we point out an important re-
search direction that uses an adaptive degree of redun-
dancy for database structures to scale with DRAM error
rates and application demands.

Outline. The paper is structured as follows: In Section 2,
we present our basic experiments that show increased bit
error rates by overheating DRAM. Then, we briefly review
related work in Section 3. Afterwards, we introduce our
developed Error Detecting B-Tree (EDB-Trree) variants in
Section 4. We start with a short description of our baseline
B-Tree implementation, followed by different error detecting
variants. In Section 5, we evaluate the impact of our EDB-
Tree variants on performance and main memory overhead.
Finally, we close the paper with a conclusion in Section 6.

2. MAIN MEMORY ERROR RATE
EXPERIMENTS

Several researchers have already pointed out that main
memory becomes a severe cause for hardware based fail-
ures in today’s data centers [11, 19]. In general, there are
some common causes for memory errors, each showing dif-
ferent characteristics. As described in [2], we are able to
distinguish between static or hard errors as permanently
corrupted bits and dynamic or soft errors as transiently cor-
rupted bits. In particular, dynamic errors are produced by
cosmic rays, electromagnetic radiation, low voltages, and in-
creased heat dissipation. The impact of cosmic rays was al-

CL Latency Type Costs [e] Rel. Costs
7 1.00 non-ECC 83.79 —
8 1.14 non-ECC 66.94 —

9 1.29
non-ECC 62.32 1.00
ECC — —

reg ECC 81.65 1.31

11 1.57
non-ECC 60.49 1.00
ECC 74.13 1.23

reg-ECC 69.99 1.16

13 1.86
non-ECC 67.49 1.00
ECC 87.62 1.30

reg-ECC 125.79 1.86

Table 1: Comparison of single module DRAM and ECC-
DRAM with the costs taken from a German price compari-
son web site on May 26th, 2014. The costs are averaged over
the 10 cheapest modules (where available). Rel. = Relative,
according to CL-category

ready investigated several years ago and experiments showed
that smaller feature sizes tend to be more vulnerable to
cosmic radiation [3, 17]. Next to cosmic rays, heat is an-
other factor known to cause dynamic error in DRAM [15].
Therefore, we provide an experiment showing the correla-
tion between operating temperature and DRAM error rate
as well as the corresponding error distribution. Afterwards,
we draw some implications for main memory database sys-
tems.

2.1 Heating Experiment
To understand the implications of heat induced memory

errors (i.e., the distribution of bit flips), we conducted an ex-
periment for different DRAM operating temperatures. For
the measurement setup, we used a heat gun to operate the
memory at several temperatures. Moreover, we used an in-
frared thermometer to measure the current temperature of
the DRAM. To evaluate the distribution of heat induced bit
flips, we used a software tool that continuously scans a large
memory area for bit errors. Therefore, this tool allocates
a large portion of memory as an 8-Byte integer array in a
continuous physical memory range (we directly mapped the
/dev/mem device into the virtual address space) and writes to
each position in the array the corresponding array index or
zero. Consequently, the content can be easily validated for
corruption respectively bit flips by comparing each 8-Byte
value with its array index or zero. Due to the continuous
allocation of the physical memory, we are able to estimate
the error distribution in the DRAM under different heating
circumstances.
To precisely evaluate the influence of heating, we con-

ducted multiple runs in an experiment, whereas a single
run scans the whole array in an ascending order from the
first to the last index and logs detected errors in a file on
disk. The heating curve over the multiple runs corresponds
to a Gaussian curve, that means, we increased the induced
heat from the beginning until we reached a maximal tem-
perature. Then, the remaining runs are executed under di-
minishing temperatures. Furthermore, we performed exper-
iments in two different scenarios: (1) only detecting errors
and (2) with correcting corrupted values by directly over-
writing them the the right predefined value (index position
or zero). These scenarios are necessary to evaluate the bit

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", Art Nr. 5, ISBN 978-1-4503-2971-2
https://doi.org/10.1145/2619228.2619233

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0

1

2

3

0

500

1000

1500

2000

2500

3000

3500

7
0

7
9

8
8

9
7

1
0

6

1
1

5

1
2

4

1
3

3

1
4

2

1
5

1

1
6

0

1
6

9

1
7

8

1
8

7

1
9

6

2
0

5

2
1

4

2
2

3

2
3

2

2
4

1

2
5

0

2
5

9

2
6

8

2
7

7

#A
ve

ra
ge

 B
it

fl
ip

s
p

er
 C

o
rr

u
p

te
d

 W
o

rd

#C
o

rr
u

p
te

d
 W

o
rd

s
D

et
ec

te
d

 P
er

 R
u

n

Run

Corrupted Words Average Bitflips

Figure 1: Heating Experiment without Correction based on
allocated memory filled with zero values (using new main
memory modules).

flip rate without and with correction.
Our test system was a Pentium D clocked at 3 GHz with

2GiB of DDR2 main memory running an Ubuntu Linux as
operating system. The tool was instructed to allocate an
array of 1.5GiB so that no swapping of memory occurs. Re-
garding performance, the tool scanned that amount of mem-
ory 2.6 times a second. While running the program, we tried
to heat up the memory modules uniformly and observed
the temperature with the infrared thermometer. Forcing
memory errors through heat worked reliably in our setup
when the memory chips reached a temperature of 100 ◦C
and above. The actual observations regarding our two dif-
ferent scenarios are as follows:

Scenario 1: Experiment without Error Correction
In our first experiment, we conducted our multiple runs
without error correction. Our expectation of this experiment
is, that the number of corrupted 8-byte words increases with
increasing heat. Figure 1 shows the results of this experi-
ment, based on an allocated array filled with zero values.
As we can see, the total number of corrupted 8-byte words
increases in an accumulated manner with almost each run
as expected. In order to reduce the number of corrupted
8-byte words over the runs, we need to correct the detected
errors in each run as explained later on.
A further observation of this experiment is, that the av-

erage bit flip rate per 8-byte word is constant by 1. That
means, the number of bit flips is very low which could be
efficiently handled by simple ECC-DRAM. However, an im-
portant notice is that the utilized DDR2 memory modules
were new while conducting this experiment. We utilized the
main memory modules further on to include the aging as-
pect in our experiment. Figure 2 shows results of a further
experiment later on. In this case, the allocated array was
filled with corresponding array index positions. Again, we
conducted several runs with increasing and decreasing heat.
The results are almost the same as highlighted in the pre-
vious experiment. Nevertheless, we observe a new aspect.
The average number of bit flips increases to a maximum
value of 15 per 8-byte word. Therefore, the detection as
well correction of words with a high number of bit flips is
challenging.

0

3

6

9

12

15

18

0

500

1000

1500

2000

2500

3000

5
8

6
5

7
2

7
9

8
6

9
3

1
0

0

1
0

7

1
1

4

1
2

1

1
2

8

1
3

5

1
4

2

1
4

9

1
5

6

1
6

3

1
7

0

1
7

7

1
8

4

1
9

1

1
9

8

2
0

5

2
1

2

2
1

9

#A
ve

ra
ge

 B
it

fl
ip

s
p

er
 C

o
rr

u
p

te
d

 W
o

rd

#C
o

rr
u

p
te

d
 W

o
rd

s
D

et
ec

te
d

 P
er

 R
u

n

Run

Corrupted Words Average Bitflips

Figure 2: Heating Experiment without Correction based on
allocated memory filled with index values (using older and
commonly used main memory modules).

0

1

2

3

0

100

200

300

400

500

600

700

5
3

7
7

9
2

1
0

7

1
2

2

1
3

7

1
5

2

1
6

7

1
8

2

1
9

7

2
1

2

2
2

7

2
4

2

2
5

7

2
7

2

2
8

7

3
0

2

3
1

7

3
3

2

3
4

7

3
6

2

3
7

7

3
9

2

4
0

7

4
2

2

#A
ve

ra
ge

 B
it

fl
ip

s
p

er
 C

o
rr

u
p

te
d

 W
o

rd

#C
o

rr
u

p
te

d
 W

o
rd

s
D

et
ec

te
d

 P
er

 R
u

n

Run

Corrupted Words Average Bitflips

Figure 3: Heating Experiment with Correction based on
allocated memory filled with index values (using new main
memory modules).

Scenario 2: Experiment with Error Correction
In the second scenario, we slightly modified our experiment
setting to investigate the influence of error correction. Fig-
ure 3 shows the result for an experiment with array index
position. Again, we conducted multiple scan runs over the
array with increasing as first and decreasing heat as sec-
ond. During the scan runs, we detect errors and correct the
detected errors in online fashion. As we can in the figure,
the number of corrupted 8-byte words in each is lesser with
correction as expected. Moreover, the diagram shows, that
the number of corrupted words is correlated with the operat-
ing temperature. Furthermore, the average bit flip rate with
new memory modules is constant by 1. With older modules,
the characteristic changes and the bit flip rate increases as
well as the total number of corrupted pages as depicted in
Figure 4.

2.2 Implications
Based on the previous presented experimental results, we

are able to conclude the following aspects for the main mem-
ory database community:

1. With managing all business relevant data in main mem-
ory, we have to cope with increasing errors and bit flip
rates due to several reasons (heat, cosmic rays, elec-
tromagnetic radiation, low voltages).

2. In order to handle increasing errors, we require efficient
techniques to detect as well as to correct these errors in

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", Art Nr. 5, ISBN 978-1-4503-2971-2
https://doi.org/10.1145/2619228.2619233

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0

2

4

6

8

10

12

14

16

18

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

4
8

5
3

5
8

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

1
3

5

1
4

0

1
4

5

1
5

0

1
5

5

1
6

0

#A
ve

ra
ge

 B
it

fl
ip

s
p

er
 C

o
rr

u
p

te
d

 W
o

rd

#C
o

rr
u

p
te

d
 W

o
rd

s
D

et
ec

te
d

 P
er

 R
u

n

Run

Corrupted Words Average Bitflips Corrupt Pages

Figure 4: Heating Experiment with Correction based on
allocated memory filled with index values (using older and
commonly used main memory modules).

an online fashion. Whenever we access data, we have
to validate the data. If the data is corrupt, the data
has to be corrected immediately.

3. Furthermore, we require a set of techniques to cover
all possible situations. Data that is accessed less fre-
quently (cold data) require more sophisticated tech-
niques compared to hot data that is accessed frequently
and thus is corrected in shorter periods. In the case of
cold data, errors are able to accumulate which compli-
cates the error detection.

3. RELATED WORK
Fundamentally, for fault tolerance against dynamic mem-

ory errors several techniques are known. First, a general
applicable approach is executing the same computation mul-
tiple times [18]. In this case, any dynamic error can be de-
tected by comparing the final results. The most well-known
technique in this class is triple modular redundancy. Sec-
ond, error detection and error correction coding, such as
parity and Hamming codes, introduce information redun-
dancy to data [8]. Regarding DRAM bit flips the most com-
monly used approach is hardware-based (72,64)-Hamming
ECC [16]. It realizes single-error correction and double-
error detection. Many other general coding algorithms are
available such as cyclic-redundancy codes or Reed-Solomon
codes [16]. These enhanced coding schemes are more robust
against burst errors than parity or Hamming, however their
coding results in higher computational costs.
As already stated in [2], an increasing dynamic error rate

with increasing costs for general-purpose error detection and
correction codes as described previously, data management
system should use their context knowledge for more efficient
and more effective fault tolerance mechanisms. There exist
already several works that discuss resilient data structures.
Finocchi et al. [6] proposes resilient search trees that allow
search, insert, and delete operations. The key idea of their
approach is to form groups of keys and basically store for
each group, the interval in which the group’s assigned keys
reside. The interval information allows to partially restore
corrupted values as well as operations on non-corrupted val-
ues. There are also similar works, which provide resilient
linked-lists [1], priority queues [12], or dictionaries [4]. All of
them exploit additional redundancy in their data structures
to detect errors and cope with them. However, to the best
of our knowledge, besides errors due to disc problems [10]

there is no work so far on making data structures heavily
used in database systems – like the B-tree – resilient against
arbitrary memory corruption.
Besides data structures that can cope with errors, there

exist further many fault-tolerant algorithms. Finocchi et al.
[7], for example, propose a fault-tolerant sort and binary-
search algorithm. Both algorithms can cope with corrupted
keys and deliver in most cases correct results for the un-
corrupted values, i.e., the uncorrupted values are correctly
sorted within the sort algorithm and correct uncorrupted
keys are returned when searched within binary search. The
basic idea of these approaches is that they perform redun-
dant work to cope with corruptions, i.e., additional checks
are applied which would not be performed in the original
algorithms.

4. ERROR DETECTING B-TREES
In this paper, we concentrate on online bit flip detection

for in-memory B-Trees and are thus taking the first step to-
wards bit flip-tolerant database systems. B-Trees [5] are
widely used in database systems to accelerate point and
range queries and therefore they are an important compo-
nent of database systems. To show the benefits of imple-
menting appropriate error detection mechanisms leveraging
context knowledge – in contrast to general-purpose mech-
anisms – we present different adaptations of the B-Tree to
detect bit flips in main memory on the fly. Since there exists
a wide range of B-Tree implementations, we adapt a basic B-
Tree without any special performance tweaks in this paper.
First, we will present our basic B-Tree implementation and
the widely used “naive” triple modular redundancy (TMR)
variant for error tolerance, which are used as baselines in our
evaluation. Second, we propose three different lightweight
to heavyweight adaptations for detecting bit flips in main
memory B-Trees.
The baseline B-Tree and all variants are designed for single-

threaded applications, as the main focus lies on investigating
mechanisms for detecting arbitrary main memory bit flips.
Anyhow, there are also DBMSs employing single-threaded
query processing, like VoltDB [20] and H-Store [13].

4.1 Baseline Trees

B-Tree
The physical layout of our B-Tree serving as a baseline is
shown in Figure 5, which shows 3 inter-linked nodes whereas
black and red arrows denote links from a node to its children
or from a node to its parent, respectively. Each node is
structured the following. At first, there is a pointer P to the
node’s parent node which is null in the case of the root node.
Then, there follows a 2-Byte integer L denoting the node’s
level inside the tree, which is 0 at the leaf level and increases
by one at each higher level towards the root. Afterwards,
another 2-Byte integer F (fill level) represents the number
of key-value pairs currently contained in the node. At next,
there are the key-value pairs {(K1, V1), (K2, V2), . . . } where
each key is 4 or 8 bytes wide as well as each value, which e.g.
can be inline data, a RID (record identifier), or a pointer to
the actual data. Inside a node, keys are kept in ascending
order. Finally, there follow pointers to child nodes {P1, P2,
. . . }, which are always 8 bytes long. Finally, a padding –
not shown in the figure for conciseness – allows to align the
node to a desired boundary – usually the system’s memory

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", Art Nr. 5, ISBN 978-1-4503-2971-2
https://doi.org/10.1145/2619228.2619233

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Figure 5: Physical layout of B-Tree and EDB-Tree (without
checksums).

Key width [Bytes] 4 8 4 8
Value width [Bytes] 4 4 8 8
K (B-Tree) 127 101 84
K (EDB-TreeCS) 126 101 84

Table 2: K for different key and value sizes for baseline B-
Tree and EDB-TreeCS.

page size of 4KiB. Note also that the compiler (G++) aligns
L and F so that they together consume a total of 8 Bytes
for better alignment of the subsequent node members.
As is common for B-Trees (and its derivatives) parameter

K delimits the number of key-value pairs and pointers in
nodes: except for the root, in a node there must be present
K . . . 2K keys and accordingly up to 2K + 1 child pointers.
For 4 byte keys and values K is 127 (254 keys and 254 values
per node), while for 8 byte keys and values K is 84 (168 each
per node). Accordingly, there are up to 255 or 169 children
for a node, respectively. For mixed data widths of 8 byte
keys and 4 byte values or vice versa K is 101. Table 2
summarizes the values for K according to the data width of
keys and values for our B-Trees.
This baseline employs no error detection at all. Cor-

rupt pointers to unallocated memory result in segmentation
faults, while corrupted keys and pointers to the wrong child
may result in false positives or false negatives – keys which
were never added to the tree are found and the other way
around. For all variants presented hereafter methods for
building the trees and doing point queries are fully imple-
mented.

Triple Modular Redundant B-Tree
Triple Modular Redundancy (TMR) is a common technique
for tolerating arbitrary data corruption. The basic idea is to
keep three copies – replicas – of all data, execute algorithms
on all three copies, compare the according results and fi-
nally do a majority voting to opt for the correct result. The
TMR baseline instantiates three B-Trees replicas and per-
forms each and every operation on all replicas successively,
one after another. For instance, a point query is successively
forwarded to each replica, each result is temporarily buffered
– whether found or not found and if found also the associ-
ated value – and then compared them against each other.
If there is a successful majority voting, i.e. two out of three
are the same, that result indicates whether the searched key
was found or not. Also, when the key was found, the actual
values are compared against each other and must match.
TMR succeeds as long as two replicas yield the same re-

sult but does not guarantee that this result is really correct:
When at least two replicas are corrupted in the very same
way, the error is not detected. Furthermore, execution time

and required amount of memory are tripled, which might
not always be acceptable.

4.2 Error Detecting B-Trees
In order to cope with an increase in error rates in fu-

ture hardware, our idea is to introduce online checking for
main memory corruption – in the form of bit flips – during
tree traversal and node scans. Since we propose to make
B-Trees detect main memory errors, we call these variants
Error Detecting B-Trees, or short EDB-Trees. Furthermore,
our premise for the following is that main memory may be-
come corrupt, whereas CPUs – cores and on-chip caches –
are reliable components not introducing further errors to
data or during computations.

EDB-Tree
As a first variant, we add pointer sanity checks, while the
physical layout of the tree and its nodes is still equal to those
of the baseline B-Tree similar to [14], which did not provide
any performance evaluation. Different from [14], however,
we exploit virtual memory management:

1. the virtual address space is much larger than typically
employed amounts of main memory,

2. hardware supports less than 64 bits for addressing –
today usually 46-48 bits – and

3. operating systems further reduce the available address-
able amount of main memory to 43-41 bits, for Linux
and Windows respectively.

For utilizing the much larger virtual address space, EDB-
Trees allocate nodes at successive virtual addresses. Con-
sequently, from the process’s perspective, the tree consists
of a single contiguous memory area. This memory alloca-
tion allows to detect corrupt pointers pointing out of this
area into unallocated virtual memory space, since we know
starting address and length of the contiguous memory area.
Nowadays these bits which would be zero anyways are used
for further status information, but with regard to arbitrary
bit flips in main memory this information again must be
guarded against corruption and specially handled. Thus,
we decided against using those bits in pointers for other
purposes in this paper.
During tree traversal, three different pointer sanity checks

are employed with minimal computational overhead: align-
ment, memory region and parent-child-relation. Since the
node size is fixed, pointers must be aligned accordingly,
i.e. for 4KiB nodes, the first 12 bits must be zero. Know-
ing the memory area’s offset and size, the pointer is then
range-checked, i.e. it must point into the allocated region.
For handling pointers to the wrong child, the child’s par-
ent pointer is compared against the node’s address from
which we descended. If any of those three checks fails, we
can be sure some bit flip(s) occurred. While the alignment-
and region-checks suggest an error in the checked pointer,
the parent-child relation only indicates one of the two has
changed.
These sanity checks imply no additional memory foot-

print. However, they can detect only some errors in pointers
where the position of the flipped bit – starting from 1 at the
least significant bit – is greater or equal than ld(node size)
and smaller or equal to ld(allocated memory). For instance,
such an EDB-Tree using 4KiB nodes and having allocated

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", Art Nr. 5, ISBN 978-1-4503-2971-2
https://doi.org/10.1145/2619228.2619233

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Figure 6: Physical layout of EDB-Tree with checksums.

4GiB of memory can not detect bit flips in pointers between
bit positions 13 and 32, inclusive. Consequently, about 69%
of bit flips could be detected in 64-bit pointers by those
sanity checks.
The following variants all inherit the pointer sanity checks.

Since main memory bit flips may occur at any position, any
information added to nodes as some kind of redundancy for
error correction must be guarded against main memory bit
flips again. Therefore, the following techniques only add
little to no redundancy – as e.g. in contrast to [14].

EDB-Tree Using Parity Bits (EDB-Tree PB)
For a given data word, a parity bit guarantees that there is
always either an even or odd number of ones. By that, any
odd number of bit flips can be detected, while even numbers
of bits flip cancel each other out. Parities can be either even
or odd and in principal there is no difference in employing
either. Compared to e.g. 64 bits, a single bit causes an
additional memory footprint of 1.6%, while for 32 bits it is
3.1%. Computing a parity bit on modern processors can be
done with native instructions in a few cycles. Consequently,
parity bits provide limited bit flip detection with very little
memory and performance impact.
In this B-Tree variant, for each node member (compare

Figure 5), a parity bit is computed and set as its most sig-
nificant bit (MSB). Thus, for computing the parity bit, only
all but the MSB are regarded and the according member’s
domain is reduced by one bit. For pointers, this is no limita-
tion since the virtual address space is much larger anyways.
The parity bit is set for a key and a value, whenever a new
key/value-pair is added, or when a value is updated. It is set
for a node’s fill level whenever that changes, and on pointers
when these change in the course of split, merge and delete
operations. For each tree traversal, node members are first
validated against the parity bit before their first use.

EDB-Tree Using Checksums (EDB-Tree CS)
For detecting more bit flips, we employ XOR checksums to
groups of node members, because on the one hand these can
be computed easily and quickly by XOR-ing the concerning
data elements and on the other hand they will detect almost
any bit flips. The exception is when exactly an even number
of bit flips occurs at the very same bit position in an even
number of data objects, so that these even each other out
during XOR-ing of the values. An advantage of using XOR
checksums is that they allow to correct a single data ele-
ment, when there is only one corrupted element and when
it is known exactly which element is the corrupt one. To
improve this rate for a single node keys, values and pointers
can be partitioned and one checksum for each partition can
be added, which however further increases the memory over-
head leading to a smaller fan-out. However, checksums like
these introduce a greater performance penalty than parity

bits since all according data elements used to compute the
checksum must be accessed to verify the checksum again.
We add four checksums to each node: one for the parent

node pointer, tree level and fill level (CSM), one for all keys
(CSK), one for all values (CSV) and one for all pointers
(CSP), as can be seen in Figure 6. This has a rather small
impact on parameter K, as is depicted in Table 2: for 4-byte
keys/values there remain 252 keys/values instead of 254, the
memory overhead is 24 bytes, and the fan-out decreases by
0.8% while for 8-byte keys and values it is still 168, with an
additional 32 bytes which fit into previously unused memory.

CSK is updated when a key is added or removed, CSV

when value is added, removed or updated, CSP when a
pointer is added or removed (e.g. during a split), and CSM

when parent pointer, tree level or fill level change. During
tree traversal, first CSM is validated, while CSK is vali-
dated while scanning through a node, i.e. while comparing
the present keys with the searched one they are XOR-ed.
Before descending or when the key is found all remaining
keys are XOR-ed and the computed checksum is compared
against the stored one. Also, only when the key is actually
found in the node is the values checksum validated. Addi-
tionally, before descending CSP is validated by XOR-ing all
child pointers.

5. EVALUATION
In the following we show how our error detection tech-

niques perform against ECC and TRM. Therefore, we first
measured point-query throughput without bit flips to get a
performance baseline. Then, we induced differently severe
bit flip patterns ranging from 1 to 5 random bit flips per data
word, to show how the presented techniques can detect more
than 2 bit flips, in contrast to ECC. For this paper, the basic
operations insert(key, value) and get(key) were implemented
in order to build the trees and measure their throughput and
bit flip detection capabilities. Results were obtained for 8-
byte keys/values and 4KiB nodes on an ASUS P9X79 Pro
mainboard running a 12-core Intel i7-3960X CPU and 8x4
GiB (32GiB) DRAM.

5.1 Throughput
Scanning a single node for the occurence of a key can be

done in at least two different ways by iteratively scanning
the whole node or by employing binary search. We tested
both methods and received very different results, which are
displayed in Figures 7 to 10. These show absolute and rel-
ative throughput without bit flips for tree sizes in numbers
of keys ranging from 6.4 thousand up to 64 million to re-
flect very small and large trees. Actual sizes range from
32KiB to 1.4GiB from smallest to largest one, whereas for
TMR those values triple. Memory overhead for checksum
EDB-Trees was less than 3% in all cases. Each result was
computed as an average over 10 runs.
For the iterative scan we employed loop unrolling for four

elements. The results are shown in Figure 7 for absolute and
in Figure 8 for relative performance. For a scan the base-
line B-Tree reaches about 12.0M lookups for a very small
tree of 6400 keys and 2.0M lookups for the largest one.
The TMR baseline has a relative throughput of about 30%.
Pointer checking of EDB-Tree incurs almost no performance
penalty and even is slightly faster for a very small tree, which
might be due to better prefetching, but that effect is nul-
lified already for 64K keys. EDB-Tree PB however has a

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", Art Nr. 5, ISBN 978-1-4503-2971-2
https://doi.org/10.1145/2619228.2619233

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0

2

4

6

8

10

12

14

 6.400 64.000 640.000 6.400.000 64.000.000

Th
ro

u
gh

p
u

t
[M

Lo
o

ku
p

s/
Se

co
n

d
]

Index Size [#Keys]

Btree

EDBTree

EDBTreePB

EDBTreeCS

EDBTreeTMR

Figure 7: Absolute performance using iterative scan for
searching keys.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

 6400,0 64000,0 640000,0 6400000,0 64000000,0

R
el

at
iv

e
Th

ro
u

gh
p

u
t

Index Size [#Keys]
B-Tree EDB-Tree EDB-Tree PB EDB-Tree CS TMR B-Tree

Figure 8: Relative performance using iterative scan for
searching keys.

higher performance penalty of 40%...20% from the small-
est to the largest tree, respectively. The checksums have
an even greater impact of about 73% to 47%, respectively.
As the larger trees become memory bound the additional
computation overhead becomes less influencing.
When employing binary search the picture is quite differ-

ent. Not only do the B-Tree and TMR variant have lower
throughput, about 10.3M and 3.3M lookups per second, but
the parity bit and checksum variants have higher perfor-
mance for the smaller trees. The relative performance of the
parity bit variant is almost as high as the B-Tree one’s, be-
cause much less parity bits have to be evaluated. And even
for EDB-Tree CS the relative and absolute performance im-
proves, although the key checksum now is evaluated before
the binary search. There the relative perfomance improves
to 39% and 66% for the smallest and largest trees, respec-
tively.

5.2 Bit Flip Detection
We examined five bit flip scenarios where 1 to 5 ran-

dom bit flips per 8-byte word in the according tree memory
ranges were simulated while there was a constant load of
point queries on the trees on only the inserted keys. The
8-byte words for corruption were chosen uniformly across
the trees’ allocated memory and also the bit flip positions
were chosen randomly. For each scenario and B-Tree variant
over a total period of 300 seconds at every millisecond an 8-
byte word was corrupted. For this experiment all trees used
binary search as explained above. To measure the effective-
ness of the techniques, we differ between two categories of
errors. Detected errors are those which are detected by our

0

2

4

6

8

10

12

14

 6.400 64.000 640.000 6.400.000 64.000.000

Th
ro

u
gh

p
u

t
[M

Lo
o

ku
p

s/
Se

co
n

d
]

Index Size [#Keys]

Btree

EDBTree

EDBTreePB

EDBTreeCS

EDBTreeTMR

Figure 9: Absolute performance using binary search for
searching keys.

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

 6.400 64.000 640.000 6.400.000 64.000.000
R

el
at

iv
e

Th
ro

u
gh

p
u

t

Index Size [#Keys]
Btree EDB-Tree EDB-Tree PB EDB-Tree CS TMR B-Tree

Figure 10: Relative performance using binary search for
searching keys.

proposed adaptations and for the TMR B-Tree when differ-
ent results were encountered. Undetected errors are those
which would otherwise not be identified by the techniques.
To measure the second category, the trees were built with
the values set to the according keys and only the inserted
keys were queried. By that, false negatives – a key was not
found although it must be present – and corrupted values –
by comparing key and returned value – are detected. When-
ever an error is discovered an exception is thrown indicating
the type of error and also segmentation faults are caught
and counted as undetected errors.
Figures 11 to 14 show how the tree variants were able or

unable to detect 4 and 5 bit flips per 8-byte word, respec-
tively. EDB-Tree PB and EDB-Tree CS are able to detect
much more errors for 5 bit flips – about 73K and 168K er-
rors during the last second, respectively – than even TMR
– about 39K errors. EDB-Tree CS performs the same in all
5 scenarios but unfortunately has many undetected errors
in our simulation, which seems to be some implementation
bug we could not eliminate until now. Anyways, it is very
sensitive to bit flips as it validates checksums for so many
node members and errors in node members which would not
be accessed otherwise greatly increase the overall error rate.
On the one hand, for 2 and 4 bit flips EDB-Tree PB detects
no errors since they cancel each other out as mentioned be-
fore. On the other hand, for 1, 3, and 5 bit flips it detects
even more bit flips than TMR with no memory overhead
and very little performance penalty, as shown in the exper-
iment before. Nevertheless, the TMR B-Tree variant is able
to return no erroneous results in this setup, i.e. there were
no undetected errors for all scenarios. As EDB-Tree only

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", Art Nr. 5, ISBN 978-1-4503-2971-2
https://doi.org/10.1145/2619228.2619233

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

11 31 51 71 91 111 131 151 171 191 211 231 251 271 291

D
et

ec
te

d
 E

rr
o

rs
 [

1
/s

]

Duration [s]
B-Tree EDB-Tree EDB-Tree PB EDB-Tree CS EDB-Tree TMR

Figure 11: Detected errors for 4 bit flips per 8-Byte word.

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

11 31 51 71 91 111 131 151 171 191 211 231 251 271 291

U
n

d
et

ec
te

d
 E

rr
o

rs
 [

1
/s

]

Duration [s]
B-Tree EDB-Tree EDB-Tree PB EDB-Tree CS EDB-Tree TMR

Figure 12: Undetected errors for 4 bit flips per 8-Byte word.

checks pointers, it detects very few errors and returns a rel-
atively high number of wrong values and false negatives, i.e.
that the key was not found.

6. CONCLUSION
Main memory errors in the form of single and multi-bit

flips are already occurring in current main memory for di-
verse reasons. With future hardware this trend will only
increase. Current solutions like ECC will not scale for dif-
ferent reasons – they are static, general purpose mechanisms
which are not able to leverage application knowledge. We
presented software based adaptations for B-Trees, a widely
used database index structure, to cope with increasing bit
flip rates in main memory. We showed that pointer san-

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

11 31 51 71 91 111 131 151 171 191 211 231 251 271 291

D
et

ec
te

d
 E

rr
o

rs
 [

1
/s

]

Duration [s]
B-Tree EDB-Tree EDB-Tree PB EDB-Tree CS EDB-Tree TMR

Figure 13: Detected errors for 5 bit flips per 8-Byte word.

0

200.000

400.000

600.000

800.000

1.000.000

1.200.000

11 31 51 71 91 111 131 151 171 191 211 231 251 271 291

U
n

d
et

ec
te

d
 E

rr
o

rs
 [

1
/s

]

Duration [s]
B-Tree EDB-Tree EDB-Tree PB EDB-Tree CS EDB-Tree TMR

Figure 14: Undetected errors for 5 bit flips per 8-Byte word.

ity checks, parity bits and checksums can deliver compara-
ble or better error detection on commodity hardware com-
pared to ECC hardware, since they are able to detect more
than 2 bitflips in 8-byte words. Furthermore, we showed
that checksums are able to detect more bit flips and pro-
vide higher reliability which is highly desired for database
systems. Aside from error detection, the area of error correc-
tion is highly relevant, whereas correction approaches using
context knowledge of databases are required.
This paper is only a first step towards B-Trees which are

resilient against arbitrary main memory bit flips. In future
work we want to employ online error correction mechanisms
and optimizations like multi-threading awareness. Also, fur-
ther error detection mechanisms like a combination of parity
bits and checksums could be possible.

Acknowledgments
This work has been supported by the state of Saxony under
grant of ESF 100111037 (SREX) and the German Research
Foundation within cfAED cluster of excellence and the grant
LE 1416/22-1 (HEAC).

References
[1] Y. Aumann and M. A. Bender. Fault tolerant data

structures. FOCS ’96.

[2] M. Böhm, W. Lehner, and C. Fetzer. Resiliency-Aware
Data Management. PVLDB, 4(12), 2011.

[3] L. Borucki, G. Schindlbeck, and C. Slayman. Compar-
ison of accelerated DRAM soft error rates measured at
component and system level. In IRPS 2008.

[4] G. S. Brodal et al. Optimal Resilient Dynamic Dic-
tionaries. In L. Arge, M. Hoffmann, and E. Welzl, edi-
tors, Algorithms âĂŞ ESA 2007, volume 4698 of Lecture
Notes in Computer Science, pages 347–358. Springer
Berlin Heidelberg, 2007.

[5] H. T. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, third
edition edition, 2009.

[6] I. Finocchi, F. Grandoni, and G. F. Italiano. Resilient
Search Trees. SODA ’07.

[7] I. Finocchi and G. F. Italiano. Sorting and Searching in
the Presence of Memory Faults (without Redundancy).
STOC ’04.

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", Art Nr. 5, ISBN 978-1-4503-2971-2
https://doi.org/10.1145/2619228.2619233

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

[8] E. Fujiwara. Code Design for Dependable Systems:
Theory and Practical Applications. Wiley Interscience,
2006.

[9] H. Garcia-Molina and K. Salem. Main Memory
Database Systems: An Overview. Knowledge and Data
Engineering, 4(6), 1992.

[10] G. Graefe and R. Stonecipher. Efficient verification of
b-tree integrity. In BTW, pages 27–46, 2009.

[11] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cos-
mic Rays DonŠt Strike Twice: Understanding the Na-
ture of DRAM Errors and the Implications for System
Design. SIGARCH Comput. Archit. News, 40(1), 2012.

[12] A. G. Jørgensen, G. Moruz, and T. Mølhave. Priority
Queues Resilient to Memory Faults. In WADS 2007.

[13] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker,
Y. Zhang, et al. H-store: a high-performance, dis-
tributed main memory transaction processing system.
Proceedings of the VLDB Endowment, 1(2):1496–1499,
2008.

[14] K. Küspert. Efficient Online Error Detection Tech-
niques for Trees in Database Systems. In Fehlerto-
lerierende Rechensysteme, volume 84 of Informatik-
Fachberichte. 1984.

[15] J. Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang.
Thermal Modeling and Management of DRAM Mem-
ory Systems. SIGARCH Comput. Archit. News, 35(2),
2007.

[16] T. K. Moon. Error Correction Coding: Mathematical
Methods and Algorithms. 2005.

[17] E. Normand. Single Event Upset at Ground Level.
IEEE transactions on Nuclear Science, 43(6), 1996.

[18] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and
D. I. August. SWIFT: Software Implemented Fault Tol-
erance. In Proceedings of the International Symposium
on Code Generation and Optimization, 2005.

[19] B. Schroeder and G. A. Gibson. A Large-scale Study of
Failures in Highperformance-computing Systems. De-
pendable and Secure Computing, 7(4), 2010.

[20] M. Stonebraker and A. Weisberg. The voltdb main
memory dbms. IEEE Data Eng. Bull, 36(2), 2013.

Final edited form was published in "SIGMOD/PODS'14: International Conference on Management of Data. Snowbird 2014", Art Nr. 5, ISBN 978-1-4503-2971-2
https://doi.org/10.1145/2619228.2619233

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	Introduction
	Main Memory Error Rate Experiments
	Heating Experiment
	Implications

	Related work
	Error Detecting B-Trees
	Baseline Trees
	Error Detecting B-Trees

	Evaluation
	Throughput
	Bit Flip Detection

	Conclusion
	ADP8587.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Till Kolditz, Thomas Kissinger, Benjamin Schlegel, Dirk Habich, Wolfgang Lehner
	Online bit flip detection for in-memory B-trees on unreliable hardware

