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ABSTRACT
Time series data has become a ubiquitous and important data source
in many application domains. Most companies and organizations
strongly rely on this data for critical tasks like decision-making,
planning, predictions, and analytics in general. While all these
tasks generally focus on actual data representing organization and
business processes, it is also desirable to apply them to alternative
scenarios in order to prepare for developments that diverge from
expectations or assess the robustness of current strategies. When it
comes to the construction of such what-if scenarios, existing tools
either focus on scalar data or they address highly specific scenarios.
In this work, we propose a generally applicable and easy-to-use
method for the generation of what-if scenarios on time series data.
Our approach extracts descriptive features of a data set and allows
the construction of an alternate version by means of filtering and
modification of these features.
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1 INTRODUCTION
What-if scenarios are simulations whose goal is to check a system
under some given hypotheses. They are applied in a multitude of
application domains and support decision-making and planning.
Typically, their generation comes down to varying parameters in
a target function or systematically modifying values of a data set,
applied to data types such as spreadsheets or OLAP cubes [18].
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In our research activities, we focus on capturing time series fea-
tures for evaluation and application purposes. Time series describe
the dynamic behaviour of a monitored object or process over time.
They arise, for example, from consumption in the energy domain,
from sales figures in market research, and from sensor readings in
manufacturing processes.

In the energy domain, analysts aim for grid balancing and avoid-
ing costly grid upgrades. They generate what-if scenarios to assess
the risk of over- or under-consumption by the energy grid due
to, for instance, a changed user behavior, population growth, the
establishment of a new manufacturing site, or consequences of
a black-out. Practically, they carry out a measurement analysis:
taking past measurements and a set of hypotheses, they can study
future measurements and their consequences. Thus, they could
compare a hypothesis a) “Future measurements will follow the fore-
cast” against a hypothesis b) “We assume that future measurements
are 10% higher than forecasts produced from 5% lower measure-
ments” as presented in [26]. The hypothesis b) includes a what-if
scenario.

In market research, a common task is the discussion of sales
figures in order to assess the success of a company. What-if scenar-
ios support assessments like, e.g., “How would sales figures look
like under different market assumptions?” and different pricing
scenarios for different products can be discussed [5].

In manufacturing, users want to figure out the key performance
indicators of a manufacturing site. This relates to decisions in ca-
pacity planning and maintenance. For planning purposes, a valid
question would be, “Can the production facility keep up with a
different market situation?” Whereas for maintenance, users would
like to know, for example, “What if a production line has to produce
a higher number of lots? When will a machine wear out and when
is a failure likely to occur?” Clearly, what-if scenarios on time series
can be beneficial in many different domains.

Still, little attention has been paid to conceptualize the generation
of what-if scenarios for time series. Either they are too general (i.e.,
they do not take time series features into account [26]) or they
are too specific (i.e., they involve highly sophisticated models for
a limited use case [7, 8]). Our goal is a time series representation
for creating what-if scenarios that are applicable in a multitude of
application domains.

The method that we present consists of an analytical and an
interactive part. It automatically decomposes time series into com-
ponents which are subsequently characterized by scalar values,
called features. We will show that these features are a promising
representation for time series components. The second part de-
scribes the interaction which enables users to visually modify time
series data.

Section 2 surveys related work from time series analysis and
what-if scenarios. Section 3 presents our approach as a workflow
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of analytical and interactive steps. In Section 4, we present three 
what-if scenarios in a real-world use case, followed by a discussion 
in Section 5. Finally, we conclude our work in Section 6.

2 RELATED WORK
In order to apply what-if scenarios on time series data, we need to ex-
tract time series features which represent their shape and behavior. 
We discuss these transformations first in this section. Subsequently, 
we review what-if scenarios and their role as a pre-requisite for 
business analytics. Finally, we present two example data sets that 
we use for our explanations. To the best of our knowledge, what-if 
scenarios on time series features have not been adressed by the 
database or statistics community.

2.1 Decomposition of Time Series
Time series form an ubiquitous data type and occur in a multitude 
of domains. Capturing the correlation of adjacent values has most 
often been studied and is commonly referred to as time series 
analysis.

Most existing techniques describe a time series as a combination 
of three components: a trend, a season and a residual component 
[23]. The trend represents the long-term change in the mean level 
of the series, whereas the season describes a cyclical repeated be-
havior. Residuals usually represent unstructured information that 
is generally assumed to be random. The sum of these three compo-
nents is called additive model and represents economic and energy 
time series [23].

Knowing the components, we now look at decomposition tech-
niques that can extract them. There are several techniques based on 
moving-average models or regression: classical decomposition and 
the more sophisticated methods, X-13 and STL, that we subsequently 
discuss.

Classical decomposition dates back to the 1920s and is the basis 
for most subsequent decomposition techniques [9, 12]. The key con-
cept is to retrieve the trend by applying a moving-average process 
on given time series. Afterwards, the season is calculated by averag-
ing the detrended measures of associated time instances: in case of 
monthly values, all values of January are averaged, all measures of 
February, and so on. The season may be of arbitrary season length L. 
It is stable, i.e., the seasonal pattern does not change from season to 
season. In case of monthly values, the seasonal value for January is 
constant throughout all years, the seasonal value for February, and 
so on. A major drawback is that this method does not decompose 
the first and last values of the time series, called endpoints, due to 
the moving average filter. Consequently, components cannot be 
completely retrieved.

In the 1970s, the X-11 method from the U.S. Bureau of the Census 
was published and adopted by several statistical agencies around the 
world [4]. This method and its successors, X-12 and X-13, furthered 
the concept of classical decomposition with several moving-average 
steps [1, 9]. Most importantly, they use predictions from forecast 
models backwards and forwards in time such that the endpoints 
can be decomposed, too. Slowly varying seasons are possible, they 
represent changes in the seasonal behavior. Nevertheless, the meth-
ods are designed for decomposing only quarterly and monthly data 
that is why this method is not applicable in our general approach.

Table 1: Features of Decomposition Techniques

DEC X-13 STL

Arbitrary season length X - X

Slowly varying season - X X

Robustness - X X

Decomposition of endpoints - X X

In the 1990s, Cleveland [3] found that Loess smoothing, a locally-
weighted regression technique, also leads to good results for de-
trending and deseasonalizing a time series. His method, STL, is
considered as a versatile and robust decomposition technique, han-
dling every type of season length and decomposing endpoints [9].
Since this method is widely and recently applied [25], we adopt it
in our approach.

Table 1 summarizes the features of the presented techniques. STL
fulfills all criteria that we require for our automatical and generally
applicable transformation. Thus, we adopt this this technique for
our prototype.

2.2 Features of Time Series
Time series and their components have a high dimensionality due
to their length. We aim for reducing them to scalar values, so called
features, that represent their characteristics.

Common features are minimum, maximum and the central mo-
ments mean and standard deviation. Intuitively, a what-if scenario
modifies a time series such that its extreme values and moments are
shifted. As an example, the linear scale (0, 1) transforms the values
to the given interval, i.e., the minimum value is 0 and maximum is 1.
The z-score transforms the values such that the mean value is 0 and
the standard deviation is 1. These are features that are applicable
on time series in general.

More relevant to our work are features related to time series
components. Wang et al. [27] present features in their work on time
series clustering techniques. They define a trend and season deter-
mination based on the coefficient of determination. These features
describe the influence of the respective components compared to
the residuals on a scale from 0 to 1, where 0 means no influence
of the component and 1 means highest. It seems very intuitive
and easy to understand that features represent the influence of a
time series component on its time series. Therefore, we apply and
extend this concept in our work which we will show in more detail
in Section 3.

2.3 What-If Questions in Analytics
Traditionally, what-if scenarios have been presented in the con-
text of spreadsheets and OLAP tools. Rizzi [18] defines them as
“data-intense simulations whose goal is to inspect the behavior of
a complex system [. . . ] under some given hypotheses.” What-if
scenarios for spreadsheets allow for higher analytical tasks and
are integrated in an interactive environment. However, they lack
storage capacity and performance. OLAP tools are complementary
in that they offer a better storage and performance but only support
basic analytical tasks.
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Since then, several tools adopt this concept, such as SAP Strategy 
Enterprise Management, SAS Forecast Server and Microsoft Analy-
sis Services [18]. Oracle offers basic support for what-if scenarios 
by implementing the MODEL clause in its data warehouse [15, 20]. 
These tools deal with modification and analytics on OLAP data.

More recently, Evans identifies what-if questions as a major re-
quirement for business analytics [5]. He defines business analytics 
as “the use of data, information technology, statistical analysis [. . . ] 
to help managers [. . . ] make better, fact-based decisions”. More-
over, he identified two main reasons why the analytics market is 
increasing in terms of bigger analytics departments, richer univer-
sity programs and wider research literature: A) Studies have shown 
that companies are performing better in terms of profitability when 
they invest in analytics departments that support their fact-based 
decisions. B) Companies are more and more overwhelmed with 
larger data set they retrieve from their processes and they require 
a better understanding of how to turn this data into insights.

Evans views business analytics from three different perspectives: 
a descriptive, a predictive, and a prescriptive perspective. Descrip-
tive analytics is the first and most common perspective, it analyzes 
past and current data in order to prepare informed decisions. Its 
techniques are among others the consolidation, the classification, 
and the reporting of data. Questions that may be answered by these 
techniques are concentrated on the past like, for example, “What 
was the revenue of product x in year y?” or “Which factory has the 
lowest performance?”

Predictive analytics goes a step further in that it takes future 
data into account and assesses future behavior. Thus, its techniques 
are the prediction and extrapolation of data. Questions that arise 
are typically focused on these predictions like, for example, “What 
will happen if the market figures continue increasing as they did 
last year?” Thus, predictive analytics is built on top of descriptive 
analytics: it uses past data and links it with forecasting models for 
future assessments.

Prescriptive analytics is the third phase of business analytics 
which goes beyond descriptive and predictive analytics. Not only 
takes this perspective past data and predictions into account, it 
also uses optimization techniques in order to suggest actions and 
decisions with respect to a given goal function. By this means, it 
supports users to discover and to take better, fact-based decisions 
and to answer question like, for example, “How much should we 
produce a product x for maximizing the profit?”

There are tools that support these analytics tasks and that arise 
in different domains such as statistics, modeling, optimization, and 
business intelligence. What-if questions are among these tools in 
that they are an intersection of business intelligence and model-
ing. They link a number of input variables, which are assumptions 
given by users, with an output value, which is a what-if scenario. 
Based on past and current data, what-if scenarios are one require-
ment in order to assess predictive and prescriptive analytics. They 
enable users to build forecasting models based on hypothetical 
assumptions and to assess the effects and actions to take if these 
assumptions become true.

Since time series are an important data type, our work focuses 
on a description of what-if scenarios for time series. By this means,

Table 2: Time Series Components of M3-Competition

No Season Season Sum

No Trend 209 58 267
Trend 2122 614 2736

Sum 2331 672 3003

Table 3: Time Series Components of Smart Metering Project

No Weekly Weekly Sum

No Yearly - - -
Yearly 1934 2687 4621

Sum 1934 2687 4621

we contribute an approach that may be further used by predictive
and prescriptive analysis tools for decision-making.

2.4 Example Data Sets
Throughout this paper, we explain our approach using two running
examples.

Example 2.1 (M3-Competition). The M3-Competition is the latest
of three M-Competitions in 2000 [14]. Its goal is the systematic
evaluation of forecast method accuracy on a defined data set. The
data set consists of 3003 time series that are from different origins
(industry, finance, demographic, macro-/microeconomic, other).
The values of each time series have a defined interval (year, quarter,
month, other). Time series of the M3-Competition exhibit a trend,
a seasonal component or both of them (Table 2).

Example 2.2 (Smart Metering Project). The Irish Commission for
Energy Regulation initiated the Smart Metering Project in order
to assess the performance of smart meters in Irish households and
businesses [24]. They measured the consumption between July
2009 and December 2010 and made the data set available in an
anonymized format, indicating code (specifying residential, small
or medium business (SME), other), smart meter ID, timestamp and
consumption. We choose 4621 time series that are complete and
whose code was publicly available and aggregated them to daily
values. These time series have no trend but a weekly and a yearly
season. Since the time interval of the data set is shorter than two
years, the yearly season cannot be extracted as a season component.
Instead, it is considered as a long-term change. Hence, the data set
has the components as given in Table 3.

3 OVERVIEW OF OUR APPROACH
In this section, we explain the methods that we apply in our ap-
proach. To highlight the major steps, Figure 1 shows an overview
as a flowchart. We begin our description with the analytical steps
and conclude with the visualization and interaction step. A time
series relation stores time series in a database. Its structure is de-
scribed in more detail in Subsection 3.1. After retrieving the data,
time series are transformed. The goal of the transformation is to de-
rive time series components and to reduce components to common
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Figure 1: System Overview

features. Thus, this step addresses two tasks: decomposition and
feature extraction, which are explained in Subsections 3.2 and 3.3. A
feature space further visualizes features and allows for interaction
by the user. By giving factors, time series components and features
are subsequently modified. This modification step is presented in
Subsection 3.4 and results in a what-if scenario. Moreover, modi-
fied components update the respective features. The components
of visualization and interaction are explained in Subsection 3.5. We
export scenarios back to the database. Finally, we give an overview
of the implementation in Subsection 3.6.

3.1 Database
Our goal is to build the approach on top of a database with a unified
time series representation. This representation includes time and
measurement information as well as categorical information. We
tackle this by adopting the time series relation from Fischer [6].

Naturally, time series are defined by its strict order over a time
dimension. A time dimension is characterized by a set of time at-
tributes, whose composition forms a time domain. A value in the
time domain is a time instance, a set of consecutive values forms a
time interval. For example, a tuple (1, 2016) is a time instance from
the time domain (Month, Year), meaning January 2016. Thus, a time
series in the relation model is defined as follows:

Definition 3.1 (Time Series). A time series over a time interval is
formed by a set of tuples over a schema consisting of

• One or more time attributes with instances from the time
domain,

• One or more measure attributes with real-valued measure-
ments, so-called values.

In our method, time series are equidistant and complete, which
means that there are no null values. Time instances are unique.
Subsequently, Fischer defines a time series relation as follows:

Definition 3.2 (Time Series Relation). A set of time series com-
poses a time series relation over a schema consisting of category
attributes, time and measure attributes.

Table 4: Example Time Series Relation

Code Meterid Date Consumption

SME 1050 2009-07-14 36.809
SME 1050 2009-07-15 34.941
SME 1050 2009-07-16 32.477

Residential 1052 2009-07-14 15.206
Residential 1052 2009-07-15 11.256
Residential 1052 2009-07-16 19.829

. . . . . . . . . . . .

• A time series relation has zero or more category attributes
that are of arbitrary domain and that are invariant with
respect to time.

• Each time series has equal values in all category columns.
Each distinct set of category attributes determines exactly
one time series.

• Each time series follows the properties of Def. 3.1.

Table 4 represents a time series relation for our running example
(Smart Metering Project). The meterid uniquely describes a given
time series. Code is a category attribute, date is the time attribute
and consumption the measure attribute.

3.2 Decomposition
We suppose that time series are a combination of a trend, a season,
and residual component. Whether it contains a trend or season
component has to be checked first. In our automatic environment,
this is carried out with test methods. The possible combinations
and the applied techniques are shown in Table 5.

The trend check is done by extracting the long-term mean of the
time series and by testing whether this mean is a trend. We use a
kernel smoothing method to extract the long-term mean. Presented
by [16, 19], this method is based onmoving-average smoothingwith
a weight function to average observations. A bandwidth parameter
b configures how smooth the result is. The method is selected
because it smooths also the endpoints of a time series which is not
the case for usual moving-average filters. We refer to the bandwidth
parameters b = 2 given by [23] that smooths a long-term mean.

Subsequently, the trend test of Mann-Kendall [13] enables us to
checkwhether the long-termmean is considered as a trend. The null
hypothesis states that there is no trend in the sample, whereas the
alternative hypothesis states that there is a trend.We accept the null
hypothesis according to a significance level α = 0.05. Otherwise,
we accept the alternative hypothesis.

Second, we check for a seasonal behavior on the detrended series.
For this purpose, we rely on the procedure presented by Wang et
al. [27] with one modification. The autocorrelation function of the
detrended series returns autocorrelation coefficients for all lags up
to 1/3 of the series length. Peaks and lows are visible and show
which lag has the highest autocorrelation. The season length is the
lag of the first peak of a positive autocorrelation that is preceded
by a low. As we only want to assert the existence of a season, we
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Table 5: Decomposition Techniques

Season No Season

Trend STL
Kernel Smoothing

with b = 2

No Trend
Kernel Smoothing

with b = 5/L
-

modify this method in that we only accept the lag as season length
if

• the autocorrelation difference between peak and low is at
least 0.1 [27],

• the autocorrelation is significant in that it is within the
confidence interval and positive,

• the lag is greater than 1 and it is a multiple of the frequency
given by the data or vice-versa (monthly values only accept
a lag 6, 12, 24 etc.).

The lag that is returned either confirms the season length given by
the data or it is 1 (no season). If only a season but not a trend compo-
nent exists we smooth the season with bandwidth b = 5/L (where
L is the season length) as given by [23]. If no season component
exists but a trend, the trend is the extracted long-term mean.

If a trend as well as a season component exist, we choose STL as
decomposition method because it is robust and applicable on arbi-
trary season lengths. Full details of the method are given in [3]. All
parameters were selected automatically except for the smoothness
of seasonal subcycles. That smoothness represents the variation
from one season to another. The greater the value the smoother
are the subcycles which means there is less variation. As it highly
depends on the knowledge of the time series, users must carry out
some diagnostics first. To avoid this task in an automatic context,
we assume that seasons do not vary from one cycle to another and
are highly robust.

The process in Figure 2 is the time series named N1906 from
the M3-Competition along with its components trend, season, and
residuals. It measures the number of recreation visits in national
parks from January 1983 to August 1992, thus, it belongs to the
category “Industry". Its trend component shows an increase of 800
visits on average along these 10 years. Fluctuations due to less and
higher visits are also captured which results in a trend that deviates
from a strongly linear behavior. The season component has a high
influence because its range (from -3100 to 5500) is 10 times higher
than the trend increase. Since the decomposition ensures a high
robustness, the season does not vary from one season to another.

3.3 Feature Extraction
Time series are further transformed by extracting features from the
components. Three trend features are chosen: determination, slope
and linearity. Additionally, we choose the season determination.
We explain these features with respect to the additive model. Let
xt be the original time series, then

xt = trt + seast + rest (1)

Series
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00
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Figure 2: Decomposition with STL: Series and Trend, Season
and Residuals

where trt is the trend, seast the season, and rest the residual com-
ponent.

3.3.1 Trend Determination. According to [27], the trend deter-
mination represents the influence of the trend component on the
time series. The coefficient of trend determination is then

R2
tr = 1 −

var (rest )

var (rest + trt )
(2)

wherevar (yt ) = 1
T−1

∑T
t=1 (yt − ȳ)2 is the sample variance,yt (1 ≤

t ≤ T ) is a sample of T values and ȳ is the sample mean. The trend
determination ranges between 0 and 1: R2

tr = 0 means that the
series is determined by the residuals and the influence of the trend
is negligible, whereas R2

tr = 1 shows a high trend influence. Thus,
this feature is promising because users can examine the data set
under the assumption of a weaker or stronger trend. Time series
N1906 has a moderate trend determination, R2

tr = 0.66.

3.3.2 Trend Slope. We assume that there is a linear trend. Thus,
there is a trend slope that captures an overall increase or decrease
of the time series, whereas the trend component trt derived by the
STL captures also local trend changes. In an attempt to identify the
slope, we fit a linear regression model to trt :

trt = θ1 + θ2 · lt + δt (3)

such that the sum of the squares of δt is minimal.
The slope is represented by θ2, it can be retrieved and manipu-

lated for generating what-if scenarios. A high slope results in a high
increase of the trend whereas a slope near 0 means that there is no
overall increase. Given the time series N1906, the slope is θ2 = 7.24
which means an increase by 7.24 visits per month on average.
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The other parameters of linear regression are as follows. θ1 is 
the base value from which the trend starts. The base value of time 
series N1906 is θ1 = 4044.74.

lt is the vector of time instances. For our calculations, we suppose 
that lt is a sequence of integers [0, 1, . . . ]. For visualization purposes, 
this is mapped to the time instances as given by the time series. In 
case of N1906, this means [Jan 1983, Feb 1983, . . . , Aug 1992].

The difference between a trend from STL and from linear regres-
sion is expressed as δt , representing the difference of local trend 
changes in STL compared to the overall trend behavior.

3.3.3 Trend Linearity. The trend linearity expresses the relation 
between the linear regression model (3) and the trend component. 
Indeed, a trend that has little variation, has a strong linearity. This 
feature is captured by

R2
l in = 1 −

var (δt )

var (trt )
(4)

R2
l in = 1 means that the trend is a straight line and the residuals

δt are negligible. Otherwise, the trend fluctuates. In case of time
series N1906, the feature is R2

l in = 0.80 which indicates, that there
are some slight variations as shown in Figure 2.

3.3.4 Season Determination. The season determination repre-
sents the strength of the season component on the time series [27].
Analogous to the trend, the coefficient of season determination is

R2
seas = 1 −

var (rest )

var (rest + seast )
. (5)

This allows to generate what-if scenarios where the seasonal fluc-
tuation is increased or diminished. Given the time series N1906,
the season determination is almost 1.00 and confirms the strong
influence of the respective component.

Concluding the transformation, the data set consists of time
series components tagged with its respective features. On the one
hand, this enables users to filter not only by category attributes
but also by features. On the other hand, it enables them to modify
features, as subsequently explained.

3.4 Modification
A what-if scenario consists of data with hypothetical modifica-
tions. In our scenario, features are representatives of time series
components and we propose their modification by introducing fac-
tors. Factors may increase or decrease the feature proportionally
or non-linearly. We reuse the example time series N1906 from M3-
Competition (Figure 2) and give scenarios and the dependency from
factors for the aforementioned features (Figure 3). Additionally, we
allow for adding linear trends.

3.4.1 Trend Determination Factor. Let f be a factor that varies
trend determination. The modified trend trt,f is defined by:

trt,f = θ1 + f · (θ2 · lt + δt ) (6)

This equation represents the linear regression model that is fitted
to the trend. f is a factor applied to the slope θt and the difference
δt . Depending on f , the trend determination increases (f > 1),
decreases (0 ≤ f < 1), or is left unchanged (f = 1). A factor f < 0
is not admissible.

The effect of this factor is represented by Figure 3(a). The plot
shows the original trend (blue with triangles) and three modified
trends. The latter ones are modified by a trend determination factor
f = 1.25, f = 0.75, and f = 0.50, respectively. Overall, the main
characteristics of the trend are kept but they are a multiple of the
former value. In January 1988, the given trend value is 4663, the
trend value with factor f = 0.5 is 4354. The influence on the trend
determination R2

tr is given in the figure’s legend. It is shown that
the trend determination factor and the trend determination is not
proportional.

This becomes clear with Figure 3(b) on the given time series. It
presents the trend determination R2

tr for factors f between 0.00
and 2.00. By increasing f , determination approaches 1. The slope of
this figure depends on the variance of the time series components.

3.4.2 Trend Slope Factor. Let д be a factor that varies the trend
slope. The modified trend trt,д is defined by:

trt,д = θ1 + д · θ2 · lt + δt (7)

Again, we apply the factor to the linear regression model. But in this
case, only the slope is modified and not the difference δt . Depending
on д, the trend slope increases (д > 1), decreases (0 ≤ д < 1), or is
left unchanged (д = 0). A factor д < 0 is not admissible.

This effect is represented in Figure 3(c). Again, the original trend
(blue with triangles) and three modified trends (with factors д =
2.00, д = 0.75, д = 0.50) are shown. All time series start at the same
base level and they keep the same trend changes but their directions
are different. The factor д and the trend slope are proportional.

3.4.3 Trend Linearity Factor. Local trend changes are captured
by the decomposition method STL. We define the trend linearity as
the determination of trend changes and of the linear trend. Let h
be a factor that varies the trend linearity. The modified trend trt,h
is defined by:

trt,h = θ1 + θ2 · lt +
1
h
· δt (8)

Depending on h, the linearity increases (h > 1), decreases (0 ≤ h <
1) or is left unchanged (h = 1). A factor h < 0 is not admissible.

The effect of this factor represented in Figure 3(d). Again, the
original trend (blue with triangles) and three modified trends (with
factors h = 1.50, h = 1.25, h = 0.75) are shown. If the factor h
increases the resulting trend is more linear because the difference
δt is diminished.

The linearity is calculated approximately with

R2
l in = 1 −

1
h2 · var (δt )

θ2
2 · var (lt ) +

1
h2 · var (δt )

(9)

supposing that the sample covariance of lt and δt is negligible
because these processes are independent. It follows that, if h → 0,
the trend is very noisy and not determined. If h → ∞, the trend
tends to be linear which means a determination of 1. Thus, the
linearity factor and the trend linearity are also not proportional.
This is also confirmed by Figure 3(e) which shows the trend linearity
for different 0 < h < 10.

3.4.4 Additional Trend. The aforementioned factors are applied
on trends, but they do not carry out a modification on time series
without this component. Introducing such a trend for assessing
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Figure 3: Factors for Modification

possible consequences is crucial for risk-analysis. Thus, we consider
an additional trend trt,m and extend our tool set by an offset m
such that

trt,m = θ1 +m · θ1 · lt (10)

where θ1 is the base level and lt are the time instances. These
values are calculated from the residual component in the absence
of a trend component.

Subsequently, we add an offsetm · θ1 for each time instance. For
a time series with monthly values, m = 0.10/12 means that the
trend increases by 0.83% per month (10% per year). An application
scenario in the following section uses an additional trend (Figure 6).

3.4.5 Season Determination Factor. Let there be a factor k that
varies the season determination. The modified season seast,k is
defined by:

seast,k = k · seast (11)

Depending on k , the season determination increases (k > 1), de-
creases (0 ≤ k < 1), or is left unchanged (k = 1). A factor k < 0 is
not admissible.

This effect is represented by Figure 3(f). The plot shows the orig-
inal season (blue with triangles) and two modified season compo-
nents from the Smart Metering Project. The latter ones are modified
by a season determination factor k = 2.00 and k = 0.50, respec-
tively. Modifying the season by factor k leads to higher peaks and
lows. The resulting R2

seas is given in the legend. Again, the season
determination is not proportional to k because with increasing k ,
R2
seas approaches 1.

3.5 Visualization and Interaction
To provide an easy way of creating what-if scenarios, we propose
a visual exploration which permits users to select time series by
features and categorical information, to modify components by
setting factors and to display the resulting what-if scenarios.
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Figure 4: Trend Linearity and Season Determination: Scat-
terplot and Selected Time Series

Features form dimensions by which time series are sorted. To-
gether, these dimensions build a feature space which is described
by Kang et al. [10]. We focus on visualizing one or two features
at a time. A one-dimensional feature space is visualized with a
histogram, whereas a two-dimensional feature space is visualized
with a scatter plot. We further the idea of Kang et al. in that users
interact with the instance space. By clicking and brushing, users
select time series that are subject to further modification.

Figure 4 shows the instances of the M3-Competition in a two-
dimensional scatterplot. The axes show the trend linearity and the
season determination. Every dot represents a time series. We choose
four time series (red triangles) which exhibit different features and
which are also plotted as a common line plot. Series N1078 clearly
shows a strong season (compared to its residuals) and a very linear
behavior. Therefore, it is in the upper right corner of the scatterplot.
Series N1085 is less linear due to a trend which is not constantly
increasing. While series N0754 is still very linear, it does not exhibit
a strong season. Finally, the series N2374 does not exhibit any of
these two features. Thus, users get an insight of a) how the time
series are spread across the instance space and b) which are the
time series that reside in a certain feature range.

Users generate a what-if scenario by setting factors for one or
two features. Affected time series are then recalculated and their
instance point is moved to the resulting position. Modifications
are carried out consecutively which means that the ordering of
modifications is important. The visualization is limited in that there
are only two features represented together and thus, modifications
are limited. Subsequent modifications are possible by changing
the displayed feature after a modification step and re-applying a
modification. In conclusion, we provide a visualization that allows
for a user-friendly interaction and that covers the presented steps
for generating what-if scenarios.

3.6 Implementation
The generation of what-if scenarios is implemented as the R package
whatif, reusing several statistical methods from R [17]. It is available
online1.

Figure 5 gives an overview of the visualization using the M3-
Competition. Four boxes are displayed: the feature space shows a
scatter plot of the features, a time series summary shows a line plot
with original time series and the modified time series (if available).
Below, users may set features that are displayed (select axis) and
select modifications that lead to the desired what-if scenario. In
order to make sure that a series does not exceed an admissible
range, users may fix a value domain in the modification dialog, too,
consisting of a minimum and a maximum value. In this example,
time series instances whose trend determination and linearity is
between 0.50 and 0.75 have been selected and shifted by a factor
f = 1.2 and h = 1.2. This results in a shift of the instances to a
higher determination and linearity value as shown in the feature
space (red triangles).

4 WORKINGWITHWHAT-IF SCENARIOS
Our goal is the generation of scenarios for evaluating time se-
ries data under different assumptions. This allows users to check
decision-making and planning and to assess a system’s robustness.

We discuss an application of what-if scenarios in the energy
domain which is based on the Smart Metering Project. We did not
choose the M3-Competition because these time series originate
from different processes and their aggregation would be meaning-
less. Subsection 4.1 outlines the transformation and modification
steps for this data set. In Subsection 4.2, we introduce and discuss
three example cases which may be expressed by what-if scenarios.
1https://lkegel.shinyapps.io/whatif/
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Figure 5: Screenshot of What-If Analysis Tool

4.1 Transformation and Modification
Figure 6 (blue line) shows the aggregate energy consumption of the
Smart Metering Project. The consumption is high during winter and
low in other seasons. We consider the yearly season as a long-term
change because the data set is too short for extracting a cyclical
yearly behavior. Therefore, we analyze the season determination
feature on the weekly season. By this means, the feature space
turns into a histogram. For the modification, we enforce positive
consumption values by setting a minimum value of 0, thus, modified
time series does not exceed this lower bound. We did not find
an expression for factors that guarantees a proportional feature
modification, thus, users must keep in mind estimating the factor
with respect to the data.

4.2 Example Cases
We give three examples from the Smart Metering Project that model
real-world use cases and that show the usage what-if scenarios. As
for features, we rely on the season determination representing the
weekly season component and the additional trend.

Case 1. We want to assess the risk that arises if the seasonal
behavior of all households and SMEs increased. In that case, a
utility must take different peaks and lows into account. We express

this by a higher season determination and increase this feature
by a factor k = 4 for the whole data set. A detail of this what-if
scenario is shown in Figure 7 (red line). It shows the aggregate
consumption of all smart meters and the increased effect on the
seasonal behavior compared to the original data (blue line). Also the
histogram (Figure 8) shows the increased amount of time series with
a high season determination (red bars) compared to the original case
(blue bars). The boxplot (Figure 10) summarizes the distribution of
season determination and confirms that this feature increases.

Case 2. We pose the question what would happen, if time series
that are dominated by their season were less fluctuating. A what-if
scenario that expresses this assumption is created by selecting the
region R2

seas ≥ 0.5 in the feature space (Figure 9) and setting a sea-
son determination factor k = 0.5. The resulting aggregate consump-
tion is shown in Figure 7 (green line), it is the sum of modified series
(R2
seas ≥ 0.5) and unmodified series (R2

seas < 0.5). The weekly fluc-
tuation is diminished to a certain extent compared to the original
data set but it is still important. The histogram (Figure 8, green
bars) shows that the season determination is clearly diminished:
there are more time series with a season determination between
0.25 ≤ R2

seas ≤ 0.50 and less time series with 0.5 ≤ R2
seas ≤ 1.

Surprisingly, no modified time series has a season determination
less than R2

seas ≤ 0.20. This underlines that the feature is roughly
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divided by 2, as given by the factor k = 0.5. As there are far less time
series with a season determination higher than 0.5 than below the
overall decrease of season determination is rather small (Figure 10,
green bars).

Case 3. We pose the question, what would happen if the con-
sumption of residential households decreased by 20% per year while
the consumption of SMEs did not change. It is motivated by the
assumption that households diminished their energy consump-
tion due to, for example, more energy-efficient devices, while the
consumption of companies did not change. This brings together se-
lection by category attributes, known from OLAP tools, and what-if
scenarios with modification, by introducing an additional trend.
Since we have a daily granularity within the data and we want a
trend decrease by 20% per year, we setm = −0.2/365. The resulting
plot shows the overall consumption for the original data set and for
case 3 (Figure 6). After one year, on July 14, 2010, the consumption
is decreased by 12.9% and on December 31, 2010, the difference is
already 14.5%, underlining that an important part of consumption
is due to private households.

5 DISCUSSION
Ourmain goal is to present amethod that prepares what-if scenarios
for time series and that is usable in further analysis tasks. Through-
out the steps of transformation, modification and visualization the
method returns well-formed data sets that give a substantial insight
into scenarios that may arise.

Transforming of time series into components is meaningful in
that components and their features are common for a multitude of
domains. In our work, we focus on the additive model. Although
this assumption is widespread [23], there are other model types too,
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Figure 10: Boxplot of Season Determination

namely the multiplicative and the mixed additive-multiplicative
model. The former may be transformed to the additive model by
taking logarithms [22], while the latter includes the additive model
as a special case [12, 27]. A check for the best-fitting model would
improve the quality of decomposition and should be part of a future
extension.

Other time series models may be the basis for the transforma-
tion, too, in order to capture other behavior. One could extend our
method to multi-seasonal time series which assume more than one
season component. Moreover, the method could capture the be-
havior from, for instance, tenant traces as discussed in [21] which
assumes a specific time series model. With these time series mod-
els, there are other component features that may be captured and
explored by users. In summary, users may adopt the method of
what-if scenario generation for an analog use-case.

The application of factors leads to new and useful what-if scenar-
ios, as shown on two example data sets. Trend and season behavior
are modifiable by strengthening or weakening a component feature.
Most often, the classification by trend and season determination
leads to comprehensible feature spaces. Still, there are time series
where a slight season results in a high season determination (re-
garding a negligible residual component), which is mainly due to a
very systematic and well decomposed series. In that case, there may
be introduced other features that better represent the determination
of a season vis-à-vis the trend component.

The proposed visualization covers tasks that are comparable to
a query sent against a database. Selecting time series instances
corresponds to filtering of a time series with respect to categorical
data and features. Previewing the time series corresponds to a
projection of the selected subset. Moreover, time series may be
aggregated by the sum function if each time series has the same

Final edited form was published in "SSDBM '17: 29th International Conference on Scientific and Statistical Database Management. Chicago 2017", Art. Nr. 3, 
ISBN 978-1-4503-5282-6 

https://doi.org/10.1145/3085504.3085507

11 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



 

time instances. Finally, the modification of features corresponds to 
a function applied to the result set.

What-if scenarios may be used in further analysis tools such as 
forecasting or simulation. Thus, it is a key instrument for business 
analytics and applies to the predictive as well as to the prescriptive 
perspective.

6 CONCLUSION AND FUTURE WORK
What-if scenarios play an important role in decision-making in 
many domains. Applied on time series data, users can get a better 
insight in recorded data and easily assess different scenarios of the 
past. Moreover, they contribute to predictive analytics in that users 
may create forecasts based on what-if scenarios and optimize the 
outcome with respect to a goal function.

Our aim was to bridge the gap between the hypothetical OLAP 
queries and spreadsheet-like what-if scenarios. The combination 
allows users to visually explore data as well as precisely set up new 
what-if scenarios.

Recently, we presented Loom, an application for generating syn-
thetic time series data based on mathematical models and given 
time series [11]. In the latter case, we reuse time series and their 
characteristics but we do not modify them. With what-if scenarios, 
we are now able to systematically cover a feature space and gener-
ate data sets that are configurable. Taking the example of the Smart 
Metering Project, a further query could be “What would be the 
power consumption of Ireland given an increase of households of 
11% by 2020 compared to 2011?” Creating such a scenario includes 
an assumption on the consumer behaviour as well as the generation 
of new time series similar to given data. Thus, the combination of 
these two approaches is important since generated data sets will 
be flexible in both, data set size and time series features.

Finally, a database system can deeply integrate this method and 
thus bringing what-if scenarios closer to the data. With this aim, 
Balmin et al. [2] introduced a first model for an hypothetical sce-
nario on warehouse data and views. The authors define a select-
modify operator σ̂ that filters tuples by categorical information and 
modifies their content. A scenario is a set of ordered hypothetical 
modifications l eading to a  new hypothetical data set. With our 
approach in mind, time series can be also subject to hypothetical 
queries.
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