
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-804432

Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, Wolfgang Lehner

FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for
Storage Class Memory

Erstveröffentlichung in / First published in:

SIGMOD/PODS'16: International Conference on Management of Data, San Francisco
26.06.-01.07.2016. ACM Digital Library, S. 371-386. ISBN 978-1-4503-3531-7

DOI: https://doi.org/10.1145/2882903.2915251

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-804432
https://doi.org/10.1145/2882903.2915251

FPTree: A Hybrid SCM-DRAM Persistent and Concurrent
B-Tree for Storage Class Memory

Ismail Oukid†‡ Johan Lasperas‡ Anisoara Nica‡

Thomas Willhalm∗ Wolfgang Lehner†
†TU Dresden ‡SAP SE ∗Intel Deutschland GmbH

first.last@tu-dresden.de first.last@sap.com first.last@intel.com

ABSTRACT
The advent of Storage Class Memory (SCM) is driving a rethink
of storage systems towards a single-level architecture where mem-
ory and storage are merged. In this context, several works have
investigated how to design persistent trees in SCM as a fundamental
building block for these novel systems. However, these trees are
significantly slower than DRAM-based counterparts since trees are
latency-sensitive and SCM exhibits higher latencies than DRAM. In
this paper we propose a novel hybrid SCM-DRAM persistent and
concurrent B+-Tree, named Fingerprinting Persistent Tree (FPTree)
that achieves similar performance to DRAM-based counterparts. In
this novel design, leaf nodes are persisted in SCM while inner nodes
are placed in DRAM and rebuilt upon recovery. The FPTree uses Fin-
gerprinting, a technique that limits the expected number of in-leaf
probed keys to one. In addition, we propose a hybrid concurrency
scheme for the FPTree that is partially based on Hardware Transac-
tional Memory. We conduct a thorough performance evaluation and
show that the FPTree outperforms state-of-the-art persistent trees
with different SCM latencies by up to a factor of 8.2. Moreover, we
show that the FPTree scales very well on a machine with 88 logical
cores. Finally, we integrate the evaluated trees in memcached and
a prototype database. We show that the FPTree incurs an almost
negligible performance overhead over using fully transient data
structures, while significantly outperforming other persistent trees.

1. INTRODUCTION
The last few years have seen the rapid emergence of many novel
types of memory technologies that have the additional character-
istic of being non-volatile. These technologies are grouped under
the umbrella term of Storage Class Memory (SCM) and include
Phase Change Memory [6], Memristors [29], and Spin-Transfer
Torque Magnetic Random Access Memory [4]. SCM combines the
economic characteristics, capacity, and non-volatility property of tra-
ditional storage media with the low latency and byte-addressability
of DRAM. Hence, SCM has a potential that goes beyond replacing
DRAM: it can be used as universal memory, that is, as main memory
and storage at the same time.

Given the characteristics of SCM, it is theoretically possible to per-
sist data structures in SCM and at the same time obtain near-DRAM

©2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in SIGMOD’16, June
26-July 01, 2016, San Francisco, CA, USA

DOI: http://dx.doi.org/10.1145/2882903.2915251

performance. This potential has been acknowledged by recent works
and new systems that adopt this novel paradigm are emerging [5, 21,
18]. In this paper we investigate the design of index structures as one
of the core database structures, motivated by the observation that
traditional main memory B-Tree implementations do not fulfill the
consistency requirements needed for such a use case. Furthermore,
while expected in the range of DRAM, SCM latencies are slower and
asymmetric with writes noticeably slower than reads. We argue that
these performance differences between SCM and DRAM imply that
the assumptions made for previous well-established main memory
B-Tree implementations might not hold anymore. We therefore see
the need to design a novel, persistent B-Tree that leverages the ca-
pabilities of SCM while exhibiting performance similar to that of
traditional transient B-Tree.

Designing persistent data structures presents unprecedented chal-
lenges for data consistency since SCM is accessed via the volatile
CPU cache over which software has only little control. Several works
proposed SCM-optimized B-Trees such as the CDDS B-Tree [24], the
wBTree [8], and the NV-Tree [28], but they fail to match the speed
of an optimized DRAM-based B-Tree. Additionally, they do not ad-
dress all SCM programming challenges we identify in Section 2,
especially those of persistent memory leaks and data recovery.
To lift this shortcoming, we propose in this paper the Fingerprinting
Persistent Tree (FPTree) that is based on four design principles to
achieve near-DRAM-based data structure performance:
1. Fingerprinting. Fingerprints are one-byte hashes of in-leaf keys,

contiguously placed in the first cache-line-sized piece of the leaf.
The FPTree uses unsorted leaves with in-leaf bitmaps –originally
proposed in [8]–, such that a search would iterate linearly over all
valid keys in a leaf. By scanning the fingerprints first, we are able
to limit the number of in-leaf probed keys to one in the average
case, which leads to a significant performance improvement.

2. Selective Persistence. The idea is based on the well-known
distinction between primary data, whose loss would infer an
irreversible loss of information, and non-primary data that can be
rebuilt from the former. Selective Persistence consists in storing
primary data in SCM and non-primary data in DRAM. Applied to
the FPTree, this corresponds to storing the leaf nodes in SCM and
the inner nodes in DRAM. Hence, only leaf accesses are more
expensive during a tree traversal compared to a fully transient
counterpart.

3. Selective Concurrency. This concept consists in using different
concurrency schemes for the transient and persistent parts. Basi-
cally, the FPTree uses Hardware Transactional Memory (HTM) to
handle the concurrency of inner nodes, and fine-grained locks to
handle that of leaf nodes. Selective Concurrency elegantly solves
the apparent incompatibility of HTM and persistence primitives
required by SCM such as cache line flushing instructions. Con-

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://dx.doi.org/10.1145/2882903.2915251
http://www.acm.org/publications/policies/artifact-review-badging#replicated
http://www.acm.org/publications/policies/artifact-review-badging#available

currency control techniques such as key-range locking [14] and
orthogonal key-value locking [16] are orthogonal to our work as
we focus on concurrency of physical operations.

4. Sound programming model. We identify four SCM program-
ming challenges: data consistency, partial writes, data recovery,
and memory leaks, the last two of which are not fully addressed
in related work. We solve all these challenges by relying on a
sound programming model that encompasses the use of Persis-
tent Pointers, an optimized, crash-safe, persistent allocator, and
a memory leak prevention scheme. Contrary to existing work,
this allows us to take into account the higher cost of persistent
memory allocations in the performance evaluation.
We implemented the FPTree and two state-of-the art persistent

trees, namely the NV-Tree and the wBTree. Using micro-benchmarks,
we show that the FPTree outperforms the implemented competitors,
with respectively fixed-size and variable-size keys, by up to 2.6x
and 4.8x for an SCM latency of 90 ns, and by up to 5.5x and 8.2x
for an SCM latency of 650 ns. The FPTree achieves these results
while keeping less than 3% of its data in DRAM. In addition, we
demonstrate how the FPTree scales on a machine with 88 logical
cores, both with fixed-size and variable-size keys. Moreover, we
show that the FPTree recovery time is 76.96x and 29.62x faster than
a full rebuild for SCM latencies of 90 ns and 650 ns, respectively.
Finally, we integrate the FPTree and the implemented competitors in
memcached and a prototype database system. Compared with fully
transient trees, results show that the FPTree incurs only 2% overhead
in memcached using the mc-benchmark and that performance is
network-bound. When using the TATP benchmark on the prototype
database, the FPTree incurs a performance overhead of only 8.7%
and 12.8% with an SCM latency of respectively 160 ns and 650 ns,
while the overheads incurred by state-of-the-art trees are up to 39.6%
and 51.7%, respectively.

The rest of the paper is organized as follows: Section 2 details our
SCM programming model while Section 3 surveys related work. Sec-
tion 4 presents our design goals and a description of our contributed
design principles. Then, Section 5 explains the base operations of
the FPTree. Thereafter, we discuss the results of our experimental
evaluation in Section 6. Finally, Section 7 concludes the paper.

2. SCM PROGRAMMING MODEL
In the following we discuss SCM programming challenges and detail
how we solve them with our programming model.

CPU

Buffer

Caches

Buffer

NVM Controller

NVM Device

Figure 1: Volatility
chain in x86-like pro-
cessors.

Data consistency. SCM is accessed
via a long volatility chain, illustrated
in Figure 1, that includes store buffers,
CPU caches, and the memory controller
buffers, over all of which software has
little control. The SNIA [3] recom-
mends to manage SCM using an SCM-
aware file system that grants the appli-
cation layer direct access to SCM with
mmap, enabling load/store semantics.
Hence, ordering and durability of SCM
writes cannot be guaranteed without
software effort. To address this problem,
we use, similarly to state-of-the art, per-
sistence primitives, namely CLFLUSH,
MFENCE, SFENCE, and non-temporal

writes. CLFLUSH evicts a cache line from the cache and writes its
content back to memory. When an MFENCE is issued, all pending
load and store memory operations are completed before the program
proceeds further. As for non-temporal writes, they bypass the cache
and are buffered in a special buffer that is flushed when it is full or

when an MFENCE is issued. Additionally, hardware vendors have
announced new instructions to enhance SCM programming perfor-
mance. For example, Intel has announced the CLFLUSHOPT (an op-
timized version of CLFLUSH), PCOMMIT, and cache line write back
(CLWB) instructions [2]. When a PCOMMIT is issued, all pending
writes that were evicted from the cache are made durable. Contrary
to CLFLUSH, CLWB does not evict the cache line but simply writes
it back, which can lead to significant performance gains when the
cache line is re-used shortly after it was written back. In this work
we assume the existence of a function Persist that implements the
most efficient way of making data durable. In our evaluation sys-
tems, this function can correspond to either a CLFLUSH wrapped
by two MFENCEs, since only MFENCE can order CLFLUSH [2], or a
non-temporal write followed by an MFENCE.
Data recovery. When a program restarts, it does so with a new ad-
dress space that renders all stored virtual pointers invalid. Therefore,
there is a need for a mechanism that allows restoring data in SCM
upon restart. We propose to use Persistent Pointers that encompass
an 8-byte File ID and an 8-byte Offset inside that file. The file
ID corresponds to a file that is created by the persistent allocator
and used as an Arena to allocate memory. The persistent allocator
provides bidirectional conversions between persistent and volatile
pointers. Since persistent pointers stay valid across failures, they
are used to refresh the volatile ones on restart.
Memory leaks. Since memory allocations are persistent in SCM, a
memory leak would also be persistent. Hence, memory leaks have a
deeper impact in SCM than in DRAM. For instance, let us consider
a vector resize operation. The first step is to allocate a new, larger
array. Then, the old array is copied into the new one. Finally, the
old array is deallocated. If a crash occurs after the allocation of
the new array but before the end of the copy phase, the persistent
allocator will remember that it allocated the new array but the data
structure will not, leading to a persistent memory leak. To solve
this problem, we modify the interface of our persistent memory
allocator so that it takes a reference to a persistent pointer that must
belong to the persistent data structure that calls the allocator. In
case of an allocation, the allocator persistently writes the address
of the returned memory into that persistent pointer. In case of
a deallocation, the allocator persistently resets (i.e., sets to null)
that persistent pointer to convey that the deallocation has executed
successfully. If a crash occurs during an allocation, upon recovery
the allocator will either complete or roll-back the allocation, and
the data structure will inspect the persistent pointer it used for the
allocation. If the latter is not null, the data structure will know that
it received memory. In brief, the task of discovering memory leaks
is split between the allocator and the data structure.
Partial writes. Since writes to SCM have word granularity, partial
writes may occur. Indeed, if a failure happens while writing data that
is larger than the supported p-atomic write size, there is no guarantee
on how much data was written. In contrast to atomic in the sense of
concurrency, we mean by p-atomic a write that executes in one CPU
cycle, i.e., a write that is immune to the partial write problem. To
address this problem, we use flags that can be written p-atomically
to indicate whether a larger write operation has completed. In this
work we assume that only 8-byte writes are p-atomic.

3. RELATED WORK
Persistent trees. Data structures are traditionally persisted using
undo-redo logging and shadowing techniques. The rise of flash
memory lead to the emergence of new optimized data structures
such as the Bw-Tree [19]. However, these remain intrinsically tied
to the logging and paging mechanisms, which SCM can completely
do without. Indeed, the advent of SCM enables novel and more

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

fine-grained techniques in designing persistent data structures, but it
presents unprecedented challenges as discussed in Section 2. Sev-
eral works proposed global solutions to these challenges, such as
NVHeap [10], Mnemosyne [26], and REWIND [7], which are based
on garbage collection and software transactional memory. However,
these solutions incur additional overhead due to systematic logging
of changed data, which adds up to the overhead caused by the higher
latency of SCM. Another line of work relies on the persistence prim-
itives provided by the CPU, namely memory barriers, cache line
flushing instructions, and non-temporal stores to design persistent
data structures that are stored in and accessed directly from SCM.

In this context, Venkataraman et al. [24] proposed the CDDS
B-Tree, a persistent and concurrent B-Tree that relies on versioning
to achieve consistency. It recovers from failures by retrieving the ver-
sion number of the latest consistent version and removing changes
that were made past that version. Nevertheless, its scalability suffers
from using a global version number, and it requires garbage collec-
tion to remove old versions. Chen et al. [8] proposed to use unsorted
nodes with bitmaps to decrease the number of expensive writes
to SCM. They extended their work by proposing the write-atomic
B-Tree (wBTree) [9], a persistent tree that relies on the atomic update
of the bitmap to achieve consistency, and on undo-redo logs for more
complex operations such as splits. It employs sorted indirection slot
arrays in nodes to avoid linear search and enable binary search. Fol-
lowing another approach, Yang et al. [28] proposed the NV-Tree, a
persistent and concurrent B-Tree based on the CSB+-Tree [23]. They
proposed to enforce the consistency of leaf nodes while relaxing
that of inner nodes, and rebuilding them in case of failure. This
approach assumes an SCM-only configuration, while our proposed
Selective Persistence assumes a hybrid SCM-DRAM configuration,
stores only primary data in SCM, and keeps the rest in DRAM to en-
able better performance. The NV-Tree keeps inner nodes contiguous
in memory and uses unsorted leaves with an append-only strategy.
This design implies the need for costly rebuilds when a leaf parent
node overflows, and leads to a high memory footprint.

While the wBTree and the NV-Tree perform better than existing
persistent trees, including the CDDS B-Tree, their performance is still
significantly slower than fully transient counterparts. Additionally,
they are oblivious to the problem of persistent memory leaks. Indeed,
both the wBTree and the NV-Tree do not log the memory reference of
a newly allocated or deallocated leaf, which makes these allocations
prone to persistent memory leaks. Moreover, while the NV-Tree can
retrieve its data thanks to using offsets, the wBTree does not elaborate
on how data is recovered: It uses volatile pointers which become
invalid after a restart, making data recovery practically infeasible.
Our proposed FPTree successfully solves these issues.
Other related work. Arulraj et al. [5] studied different SCM-based
database architectures and recovery strategies. They concluded that
using in-place updates is the optimal approach as there is no need
to reload primary data or to apply a redo log upon recovery since
transaction changes are made persistent at commit time. Oukid
et al. [21] proposed a novel database architecture where data is
stored in and directly accessed from SCM, eliminating the need for
traditional logging mechanisms. Kimura [18] presented FOEDUS,
a novel database architecture that aims at scaling with many cores
and very large SCM capacity. The FPTree can be a building block for
such systems since it is based on the same architectural assumptions.

To manage SCM, Condit et al. [11] presented BPFS, a high perfor-
mance transactional file system that runs on top of SCM. Nayaranan
et al. [20] proposed Whole System Persistence where data is flushed
only on power failures using the residual energy of the system, but
do not consider software failures. Zhao et al. [30] proposed Kiln,
a persistent memory design that leverages SCM to offer persistent

in-place updates without logging or copy-on-write. However, they
assume a non-volatile last level cache. Several works used SCM to
optimize OLTP durability management, mainly by optimizing the
logging infrastructure [13, 22, 27]. Finally, other works focused on
optimizing database algorithms on SCM such as sorts and joins, but
without leveraging the non-volatility property of SCM [8, 25].

4. FPTree DESIGN PRINCIPLES
We put forward the following design goals for the FPTree:
1. Persistence. The FPTree must be able to self-recover to a consis-

tent state from any software crash or power failure scenario. We
do not cover hardware failures in this work.

2. Near-DRAM performance. The FPTree must exhibit similar per-
formance to transient counterparts.

3. Robust performance. The performance of the FPTree must be
resilient to higher SCM latencies.

4. Fast recovery. The recovery time of the FPTree must be signifi-
cantly faster than a complete rebuild of a transient B+-Tree.

5. High scalability. The FPTree should implement a robust concur-
rency scheme that scales well in highly concurrent situations.

6. Variable-size keys support. The FPTree should support variable-
size keys (e.g. strings) which is a requirement for many systems.
Figure 2 depicts the inner node and leaf node layouts of the

FPTree. Since inner nodes are kept in DRAM, they have a classical
main memory structure with sorted keys. Leaf nodes however keep
keys unsorted and use a bitmap to track valid entries in order to
reduce the number of expensive SCM writes, as first proposed by
Chen et al [8]. Additionally, leaf nodes contain fingerprints which
are explained in detail in Section 4.2. The next pointers in the leaves
are used to form a linked list whose main goals are: (1) enable range
queries, and (2) allow the traversal of all the leaves during recovery
to rebuild inner nodes. The next pointers need to be Persistent
Pointers in order to remain valid across failures. Finally, a one-byte
field is used as a lock in each leaf.

bitmap pNext KV={(k1,v1)...(kn,vn)} lock

fingerprints

optimally one-cache-line-sized

nKeys Keys={k1...km} Children={c1...cm+1} (a) sorted inner node

(b) unsorted leaf node
with fingerprints

Figure 2: FPTree inner node and leaf node layouts.

In the following we present our proposed design principles that
enable us to achieve the above design goals.

4.1 Selective persistence
Selective persistence can be described as keeping in SCM the mini-
mal set of primary data on which all the implementation effort for
consistency will be focused, and rebuilding all non-primary data
that is placed in DRAM upon recovery. Applied to a B+-Tree, as
illustrated in Figure 3, the leaf nodes are placed in SCM using a
persistent linked-list, while inner nodes are placed in DRAM and
can be rebuilt as long as the leaves are in a consistent state. As a
result only accessing the leaves is more expensive compared to a
transient B+-Tree. In addition, inner nodes represent only a small
fraction of the total size of the B+-Tree. Hence, selective persistence
should enable our persistent tree to have similar performance to that
of a transient B+-Tree, while using only a minimal portion of DRAM.
Our approach differs from that of the NV-Tree [28] in its underlying
hardware assumptions: We assume a hybrid SCM-DRAM configura-
tion while the NV-Tree assumes an SCM-only configuration.

In a nutshell, inner nodes will keep a classical structure and fully
reside in DRAM without needing any special implementation effort,
while leaf nodes will fully reside in SCM and require special care to

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

N0

N1 N2

L0 L1 L2 L3 L4 L5

DRAM

Volatile

SCMPersistent

Figure 3: Selective persistence applied to a B+-Tree: inner nodes
are kept in DRAM while leaf nodes are kept in SCM.

ensure their consistency. This interplay between SCM and DRAM is
crucial for our concurrency mechanism we present in Section 4.4.

4.2 Fingerprints
Unsorted leaves require an expensive linear scan in SCM. To

enable better performance, we propose a technique called Finger-
printing. Fingerprints are one-byte hashes of leaf keys, stored con-
tiguously at the beginning of the leaf as illustrated in Figure 2. By
scanning them first during a search, fingerprints act as a filter to
avoid probing keys that have a fingerprint that does not match that of
the search key. In the following we show that, theoretically, Finger-
printing enables a much better performance than the wBTree and the
NV-Tree. We consider only the case of unique keys, which is often an
acceptable assumption in practice [15]. We demonstrate that, using
Fingerprinting, the expected number of in-leaf key probes during
a successful search is equal to one. In the following we compute
this expected number. We assume a hash function that generates
uniformly distributed fingerprints. Let m be the number of entries
in the leaf and n the number of possible hash values (n = 256 for
one-byte fingerprints).

First, we compute the expected number of occurrences of a fin-
gerprint in a leaf, denoted E[K], which is equivalent to the number
of hash collisions in the fingerprint array plus one (since we assume
that the search key exists):

E[K] =

m∑
i=1

i · P [K = i]

where P [K = i] is the probability that the search fingerprint has
exactly i occurrences knowing that it occurs at least once. Let A
and B be the following two events:
• A: the search fingerprint occurs exactly i times;
• B: the search fingerprint occurs at least once.
Then, P [K = i] can be expressed with the conditional probability:

P [K = i] = P [A|B] =
P [A ∩B]

P [B]
=

(
1
n

)i (
1− 1

n

)m−i (m
i

)
1−

(
1− 1

n

)m
The nominator reflects the binomial distribution, while the denom-
inator reflects the condition, i.e., the probability that at least one
matching fingerprint exists, expressed as the complementary proba-
bility of that of no matching fingerprint exists.

Knowing the expected number of fingerprint hits, we can deter-
mine the expected number of in-leaf key probes, denotedEFPTree[T],
which is the expected number of key probes in a linear search of
length E[K] on the keys indicated by the fingerprint hits:

E[T] =
1

2
(1 + E[K]) =

1

2

(
1 +

m∑
i=1

i

(
1
n

)i (
1− 1

n

)m−i (m
i

)
1−

(
1− 1

n

)m
)

=
1

2

(
1 +

(
n−1
n

)m
1−

(
n−1
n

)m m∑
i=1

i
(
m
i

)
(n− 1)i

)

=
1

2

(
1 +

(
n−1
n

)m
1−

(
n−1
n

)m (m

n− 1

)m−1∑
i=0

(
m−1

i

)
(n− 1)i

)

4 8 16 32 64 128 256
1
2
4
8

16
32
64

128
256

Number of leaf entries m

E
xp

ec
te

d
nu

m
be

r o
f

in
-l

ea
fk

ey
pr

ob
es FPTree

NV-Tree
wBTree

Figure 4: Expected number of in-leaf key probes during a successful
search operation for the FPTree, NV-Tree, and wBTree.

By applying the binomial theorem on the sum we get:

E[T] =
1

2

(
1 +

(
n−1
n

)m
1−

(
n−1
n

)m (m

n− 1

)(
n

n− 1

)m−1
)

=
1

2

(
1 +

m

n
(
1−

(
n−1
n

)m)
)

The wBTree is able to use binary search thanks to its sorted indi-
rection slot arrays, hence, its expected number of in-leaf key probes
is: EwBTree[T] = log2(m). The NV-Tree scans a leaf by perform-
ing a reverse linear search, starting from the last entry of the leaf,
so that if a matching key is found, it is guaranteed to be the most
recent version. Then, the expected number of in-leaf key probes
during a search operation for the NV-Tree is that of a linear search:
ENV-Tree[T] =

1
2
(m+ 1). Figure 4 shows the expected number of

in-leaf key probes for the FPTree, the wBTree, and the NV-Tree. We
observe that the FPTree theoretically enables a much better perfor-
mance than the wBTree and NV-Tree. For instance, for m = 32,
the FPTree needs a single in-leaf key probe, while the wBTree and
NV-Tree need 5 and 16, respectively. Basically, fingerprinting re-
quires less than two key probes in average up to m ≈ 400. The
wBTree outperforms the FPTree only starting from m ≈ 4096. It is
important to note that, in the case of variable-size keys, since only
key references are kept in leaf nodes, every key probe results in a
cache miss. Hence, every saved in-leaf key probe is a saved cache
miss to SCM. This theoretical result is verified by our experimental
evaluation as shown in Section 6.2.

4.3 Amortized persistent memory allocations

L1 L2 L3 L4 L5 L6 L7 L8
Linked list of
leaf groups

L2L4L5L7
Volatile array
of free leaves

L1 L3 L6 L8
Linked list of

leaves in the tree

Figure 5: FPTree leaf groups management.

Since persistent allocations are expensive, allocating new leaves
during splits is costly to the overall performance of the persistent
tree. To remedy this issue, we propose to amortize the overhead of
those allocations by allocating blocks of multiple leaves at once. As
illustrated in Figure 5, leaves are managed through two structures:
• A linked-list of groups of leaves currently allocated;
• A volatile array of leaves currently free and not used in the tree.
Two methods are used to get and free leaves:
• GetLeaf: if the vector of free leaves is not empty, we pop the last

element and return it. If it is empty, we allocate a new leaf group,
append it to the linked list of groups, and add its leaves to the
vector of free leaves, except the one that we return.
• FreeLeaf: when a leaf is freed, it is pushed into the vector of free

leaves. If its corresponding leaf group is completely free, it is
deallocated.

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Using leaf groups allows to decrease the number of expensive persis-
tent memory allocations which leads to better insertion performance,
as shown in Section 6.2.

4.4 Selective concurrency
Transactional memory is a tool that simplifies concurrency by mak-
ing a batch of writes atomically visible using transactions. HTM
is hardware supported transactional memory. Several hardware
vendors provide HTM, such as IBM on Blue Gene/Q and POWER8
processors, and Intel with Transactional Synchronization Extensions
(TSX). Although we use Intel TSX in this work, our algorithms are
valid for any currently available HTM implementation.

From a programmer’s point of view, HTM is used as a coarse-
grained lock around a critical section, but it behaves from the hard-
ware point of view as a fine-grained lock: conflicts are detected
between transactions at the granularity of a cache line. In the case of
TSX, the critical code is put inside a transaction using the XBEGIN
and XEND instructions. When a thread reaches the XBEGIN instruc-
tion, the corresponding lock is first read, and if it is available, a
transaction is started without acquiring the lock. All changes made
inside a transaction are made atomically visible to other threads
by an atomic commit if the transaction is successful, that is, if it
reaches the XEND instruction without detecting any conflicts. If
the transaction aborts, all the buffered changes are discarded, and
the operation is re-executed following a programmer-defined fall-
back mechanism. In our implementation we use the Intel Threading
Building Block1 speculative spin mutex that uses a global lock as a
fall-back mechanism.

To detect conflicts, each transaction keeps read and write sets in
L1 cache. The read set comprises all the memory cache lines that
the transaction reads, and the write set consists of all the memory
cache lines that the transaction writes to. A conflict is detected by
the hardware if a transaction reads from the write set of another
transaction or writes to the read or write set of another transaction.
When this happens, one of the two transactions is aborted. In this
case, the aborted transaction falls back to a programmer-defined
concurrency mechanism. To increase performance, a transaction
is allowed to retry a few times before resorting to the fall-back
mechanism. This is an optimistic concurrency scheme as it works
under the assumption that only few conflicts will occur and the
transactions will execute lock-free with high probability.

HTM is implemented in current architectures by monitoring changes
using the L1 cache. Consequently, CPU instructions that affect the
cache, such as CLFLUSH, are detected as conflicts which triggers
the abortion of a transaction if they are executed within its read or
write sets. A trivial implementation of HTM-based lock-elision for
a standard B+-Tree would be to execute its base operations within
HTM transactions [17]. However, insert and delete operations would
need to flush the modified records in the leaf, thus aborting the
transaction and taking a global lock. This means that all insertion
and deletion operations will in practice get serialized. Therefore,
there is an apparent incompatibility between the use of HTM on
the one hand and our need to flush the data to persistent memory
to ensure consistency on the other hand. To solve this issue, we
propose to use different concurrency schemes for the transient and
the persistent parts of the data, in the same way we applied different
consistency schemes for the data stored in DRAM and in SCM. We
name our approach Selective Concurrency.

As illustrated in Figure 6, Selective Concurrency consists in per-
forming the work that does not involve modifying persistent data
inside an HTM transaction, and the work that requires persistence
primitives outside HTM transactions. In the case of our FPTree, the

1
https://www.threadingbuildingblocks.org/

Insertion Search
XBEGIN

1. Search
insertion
position

2. Acquire
lock on

persistent part

3. Modify
transient part

inside TX

XEND

4. Modify
persistent part

outside TX

XBEGIN

XEND

Search
key

Transient
part

Persistent
part

Figure 6: Selective Concurrency applied to a hybrid data structure.

traversal of the tree and changes to inner nodes only involve tran-
sient data. Therefore, these operations are executed within an HTM
transaction and are thus protected against other operations done in
concurrent HTM transactions. For other operations that cannot be
executed inside the transaction, fine-grained locks are used. Basi-
cally, the leaf nodes to be modified are locked during the traversal of
the tree inside the HTM transaction. After all modifications on the
transient part are done, the transaction is committed. The remaining
modifications on the persistent part are then processed outside of
the transaction. Finally, the locks on the persistent part are released.
The implementation of the base operations using TSX are detailed
in Section 5.

5. BASE OPERATIONS
In this work, we implement three different persistent trees:
1. FPTree. It is the single-threaded version that implements se-

lective persistence, fingerprinting, amortized allocations, and
unsorted leaves.

2. Concurrent FPTree. This version implements selective persis-
tence, selective concurrency, fingerprinting, and unsorted leaves.
As for amortized allocations, since they constitute a central syn-
chronization point, we found that they hinder scalability. Hence,
they are not used in this version.

3. PTree. It reflects a light version of the FPTree that implements
only selective persistence and unsorted leaves. Contrary to the
FPTree and the wBTree, it keeps keys and values in separate arrays
for better data locality when linearly scanning the keys.

In the following we discuss the base operations of the FPTree with
fixed-size keys and explain how it can recover in a consistent state
from any software crash or power failure scenario. A similar dis-
cussion is available for variable-size keys in Appendix C. Moreover,
the algorithms for managing the leaf groups in the single-threaded
version of the FPTree are explained in Appendix B. In the following,
speculative lock denotes a TSX-enabled lock. Since leaf locks are
only taken within TSX transactions, there is no need to modify them
using atomics. Indeed, if many threads try to write the same lock
–thus writing to the same cache line–, only one will succeed and the
others will be aborted.

Find
Since search operations do not modify persistent data, they can be
fully wrapped in a TSX transaction that protects them from con-
flicting with write operations of other threads. If another thread
writes to a location read by the thread performing the lookup, the
transaction will abort and retry, eventually taking a global lock if the
retry threshold is exceeded. Search operations still need to check
for any non-TSX lock (i.e., leaf locks) that might have been taken
by another thread to perform changes outside a TSX transaction.
Algorithm 1 shows the pseudo-code for the Find operation.

The concurrent Find is executed until it succeeds, making it retry
as long as it aborts, which occurs either because the target leaf is
locked or because a conflict has been detected. The speculative lock

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://www.threadingbuildingblocks.org/

can execute in two ways: either a regular TSX transaction is started
with the XBEGIN instruction as long as the TSX retry threshold is
not reached, or a global lock is taken.

Algorithm 1 ConcurrentFind(Key K)

1: while TRUE do
2: speculative_lock.acquire();
3: Leaf = FindLeaf(K);
4: if Leaf.lock == 1 then
5: speculative_lock.abort();
6: continue;
7: for each slot in Leaf do
8: set currentKey to key pointed to by Leaf.KV[slot].PKey
9: if Leaf.Bitmap[slot] == 1 and Leaf.Fingerprints[slot] == hash(K)

and currentKey == K then
10: Val = Leaf.KV[slot].Val;
11: Break;
12: speculative_lock.release();
13: return Val;

The way a transaction is aborted depends on the current situation:
if a regular TSX transaction was started, the XABORT instruction
will undo all changes (not relevant here since no changes were
made), and rewind to the XBEGIN instruction. If the global lock
was taken, the XABORT instruction has no effect. In this case, the
while loop and the continue directive play the role of aborting and
retrying. Upon reaching the leaf, and if its lock is not already taken,
a lookup for the key is performed without taking the leaf lock. If
another thread takes the leaf lock during the search for the key, a
conflict is detected and one of the two transactions is aborted.

Insert
Algorithm 2 presents the pseudo-code of the concurrent Insert op-
eration. It follows three steps: (1) Inside a TSX transaction, the
tree is traversed to reach a leaf and lock it, and the information of
whether a split is needed is propagated; (2) Outside a TSX transac-
tion, changes to the insertion leaf are applied: a leaf split if needed,
and the insertion of the key-value pair in the leaf. These operations
use persistence primitives which would trigger an abort if used in-
side a TSX transaction; (3) If a leaf split occurred in step 2, the inner
nodes are updated inside a second TSX transaction. This can be
done in two ways: either by directly updating the leaf’s parent node
if it did not split while modifying the leaf, or by re-traversing the
tree. The leaf lock is then released by setting it to 0. One can notice
in Algorithm 2 that no while loop is used for the second transaction
since inner nodes have no locks. Hence, there is no need to manually
abort the transaction.

When no leaf split is needed, the key-value pair and the fingerprint
are written to their respective slots and persisted. The order of
these writes does not matter since they are not visible as long as
the bitmap is not updated. Therefore, in case of a crash while
writing the key and the value, no action is needed and the operation
is considered as not completed. The bitmap is then p-atomically
updated and persisted. In brief, if a failure occurs before the bitmap
is persisted, the key-value pair was not inserted, otherwise, the
operation successfully executed. In both cases, no action is required.

Algorithm 3 represents the pseudo-code for a leaf split. To ensure
the consistency of the tree in case of failure during a split, we need
to use a micro-log that consists of two persistent pointers: one
pointing to the leaf to split, denoted PCurrentLeaf, and another
pointing to the newly allocated leaf, denoted PNewLeaf. Basically,
the concurrent FPTree contains split and delete micro-log arrays that
are indexed by transient lock-free queues. A micro-log is provided
by the lock-free queue and is returned at the end of the operation.
The split recovery function is shown in Algorithm 4. The split

operation starts by writing to PCurrentLeaf the persistent address
of the leaf to split. If a failure occurs at this point, we only need to
reset the micro-log, since PNewLeaf is still null. Then, we allocate
a new leaf and provide a reference to PNewLeaf to the allocator,
which persists the address of the allocated memory in PNewLeaf
before returning. If a crash occurs at this point, the split recovery
function checks whether PNewLeaf is null. If it is, it resets the
micro-log and returns. Otherwise, it detects that the allocation did
complete and thus continues the split operation. Thereafter, the
content of the split leaf is persistently copied into the new leaf. The
new key discriminator (split key) is then determined and the bitmap
of the new leaf is updated accordingly. If a crash occurs during
the latter two steps, the recovery function simply re-executes them
when it detects that PNewLeaf is not null. Afterwards, the bitmap
of the split leaf is updated and the next pointer of the split leaf is
set to point to the new leaf. The latter write does not need to be
p-atomic since in case of a failure at this point in time, the recovery
function will redo the split starting from the copy phase. Finally, the
micro-log is reset.

Algorithm 2 ConcurrentInsert(Key K, Value V)

1: Decision = Result::Abort;
2: while Decision == Result::Abort do
3: speculative_lock.acquire();
4: (Leaf, Parent) = FindLeaf(K);
5: if Leaf.lock == 1 then
6: Decision = Result::Abort; Continue;
7: Leaf.lock = 1; /* Writes to leaf locks are never persisted */
8: Decision = Leaf.isFull() ? Result::Split : Result::Insert;
9: speculative_lock.release();

10: if Decision == Result::Split then
11: splitKey = SplitLeaf(Leaf);
12: slot = Leaf.Bitmap.FindFirstZero();
13: Leaf.KV[slot] = (K, V); Leaf.Fingerprints[slot] = hash(K);
14: Persist(Leaf.KV[slot]); Persist(Leaf.Fingerprints[slot]);
15: Leaf.Bitmap[slot] = 1; Persist(Leaf.Bitmap);
16: if Decision == Result::Split then
17: speculative_lock.acquire();
18: UpdateParents(splitKey, Parent, Leaf);
19: speculative_lock.release();
20: Leaf.lock = 0;

Algorithm 3 SplitLeaf(LeafNode Leaf)

1: get µLog from SplitLogQueue;
2: set µLog.PCurrentLeaf to persistent address of Leaf;
3: Persist(µLog.PCurrentLeaf);
4: Allocate(µLog.PNewLeaf, sizeof(LeafNode))
5: set NewLeaf to leaf pointed to by µLog.PNewLeaf;
6: Copy the content of Leaf into NewLeaf;
7: Persist(NewLeaf);
8: (splitKey, bmp) = FindSplitKey(Leaf);
9: NewLeaf.Bitmap = bmp;

10: Persist(NewLeaf.Bitmap);
11: Leaf.Bitmap = inverse(NewLeaf.Bitmap);
12: Persist(Leaf.Bitmap);
13: set Leaf.Next to persistent address of NewLeaf;
14: Persist(Leaf.Next);
15: reset µLog;

Delete
The concurrency scheme of deletions, whose pseudo-code is shown
in Algorithm 5, is very similar to that of insertions. The traversal of
the tree is always done inside the TSX transaction which is aborted
if the leaf is already locked by another thread. Upon reaching the
leaf, three cases can arise: (1) The key to delete is not found in the
leaf; (2) The leaf contains the key to delete and other keys; (3) The
leaf contains only the key to delete.

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Algorithm 4 RecoverSplit(SplitLog µLog)

1: if µLog.PCurrentLeaf == NULL then
2: return;
3: if µLog.PNewLeaf == NULL then
4: /* Crashed before SplitLeaf:4 */
5: reset µLog;
6: else
7: if µLog.PCurrentLeaf.Bitmap.IsFull() then
8: /* Crashed before SplitLeaf:11 */
9: Continue leaf split from SplitLeaf:6;

10: else
11: /* Crashed after SplitLeaf:11 */
12: Continue leaf split from SplitLeaf:11;

In the first case, we simply return that the key was not found (not
indicated in Algorithm 5). In the second case that is similar to an
insertion with no split, the leaf is locked and the TSX transaction is
committed. Outside of the transaction, the bitmap position corre-
sponding to the value to delete is set to 0 and persisted. Then, the
leaf is unlocked. As discussed earlier this operation is crash-safe. In
the third case, the leaf will be deleted. The inner nodes are modified
inside the TSX transaction as no persistence primitives are needed.
Basically, the key and pointer corresponding to the leaf are removed
from its parent, possibly triggering further inner node modifications.
We note that the leaf to be deleted does not need to be locked be-
cause it will become unreachable by other threads after the update of
the inner nodes completes. The only node that needs to be updated
outside of the TSX transaction is the left neighbor of the deleted leaf;
its next pointer is updated to point to the next leaf of the deleted leaf.
Before committing the transaction, this left neighbor is retrieved
and locked. Finally, outside of the transaction, the next pointer of
the left neighbor is updated, its lock released, and the deleted leaf is
deallocated.

Algorithm 5 ConcurrentDelete(Key K)

1: Decision = Result::Abort;
2: while Decision == Result::Abort do
3: speculative_lock.acquire();
4: /* PrevLeaf is locked only if Decision == LeafEmpty */
5: (Leaf, PPrevLeaf) = FindLeafAndPrevLeaf(K);
6: if Leaf.lock == 1 then
7: Decision = Result::Abort; Continue;
8: if Leaf.Bitmap.count() == 1 then
9: if PPrevLeaf->lock == 1 then

10: Decision = Result::Abort; Continue;
11: Leaf.lock = 1; PPrevLeaf->lock = 1;
12: Decision = Result::LeafEmpty;
13: else
14: Leaf.lock = 1; Decision = Result::Delete;
15: speculative_lock.release();
16: if Decision == Result::LeafEmpty then
17: DeleteLeaf(Leaf, PPrevLeaf);
18: PrevLeaf.lock = 0;
19: else
20: slot = Leaf.FindInLeaf(K);
21: Leaf.Bitmap[slot] = 0; Persist(Leaf.Bitmap[slot]);
22: Leaf.lock = 0;

Algorithm 6 shows the pseudo-code for a leaf delete operation.
Similarly to leaf splits, a leaf deletion requires a micro-log to ensure
consistency. It consists of two persistent pointers, denoted PCur-
rentLeaf and PPrevLeaf that point respectively to the leaf to be
deleted and to its previous leaf. The leaf delete function first updates
PCurrentLeaf and persists it. If PCurrentLeaf is equal to the head
of the linked list of leaves, its head pointer must be updated. If a
crash occurs at this point, the delete recovery procedure (shown
in Algorithm 7) detects that PCurrentLeaf is set and either itself

or its next pointer is equal to the head of the linked list of leaves,
and continues the operation accordingly. If the leaf to be deleted is
not the head of the linked list of leaves, PPrevLeaf is updated and
persisted. Then, the next pointer of the previous leaf of the leaf to
be deleted is updated to point to the next pointer of the the latter. If
a crash occurs at this point, the delete recovery procedure detects
that the micro-log is fully set (i.e., both pointers are not null), and
thus, it repeats the latter operation. Thereafter, in both cases, the
deleted leaf is deallocated by passing PCurrentLeaf to the deallocate
function of the allocator, which resets it to null. If a crash occurs at
this point, the delete recovery function detects that PCurrentLeaf is
null and resets the micro-log. Finally, the micro-log is reset.

Algorithm 6 DeleteLeaf(LeafNode Leaf, LeafNode PPrevLeaf)

1: get the head of the linked list of leaves PHead
2: get µLog from DeleteLogQueue;
3: set µLog.PCurrentLeaf to persistent address of Leaf;
4: Persist(µLog.PCurrentLeaf);
5: if µLog.PCurrentLeaf == PHead then
6: /* Leaf is the head of the linked list of leaves */
7: PHead = Leaf.Next;
8: Persist(PHead);
9: else

10: µLog.PPrevLeaf = PPrevLeaf;
11: Persist(µLog.PPrevLeaf);
12: PrevLeaf.Next = Leaf.Next;
13: Persist(PrevLeaf.Next);
14: Deallocate(µLog.PCurrentLeaf);
15: reset µLog;

Algorithm 7 RecoverDelete(DeleteLog µLog)

1: get head of linked list of leaves PHead;
2: if µLog.PCurrentLeaf != NULL and µLog.PPrevLeaf != NULL then
3: /* Crashed between lines DeleteLeaf:12-14 */
4: Continue from DeleteLeaf:12;
5: else
6: if µLog.PCurrentLeaf != NULL and µLog.PCurrentLeaf == PHead

then
7: /* Crashed at line DeleteLeaf:7 */
8: Continue from DeleteLeaf:7;
9: else

10: if µLog.PCurrentLeaf != NULL and µLog.PCurrentLeaf→Next
== PHead then

11: /* Crashed at line DeleteLeaf:14 */
12: Continue from DeleteLeaf:14;
13: else
14: reset µLog;

Update
Algorithm 8 presents pseudo-code for the update operation. Al-
though the update operation looks like an insert-after-delete opera-
tion, it is in fact much more optimized. Indeed, the update operation
relies on the fact that the bitmap can be updated p-atomically to
reflect both the insertion and the deletion at the same time. This
has the advantage of maintaining the leaf size unchanged during an
update, which makes leaf splits required only if the leaf that contains
the record to update is already full. As for the recovery logic, it is
exactly the same as for insertions, where a micro-log is needed to
ensure consistency only in case of a leaf split.

Recovery
Algorithm 9 shows the pseudo-code for the concurrent FPTree recov-
ery function. It starts by checking whether the tree crashed during
initialization by testing a state bit. Then, for each micro-log in the
micro-logs arrays, it executes either the leaf split or the leaf delete
recovery function. Afterwards, it rebuilds inner nodes by traversing

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Algorithm 8 ConcurrentUpdate(Key K, Value V)

1: Decision = Result::Abort;
2: while Decision == Result::Abort do
3: speculative_lock.acquire();
4: (Decision, prevPos, Leaf, Parent) = FindKeyAndLockLeaf(K);
5: (Leaf, Parent) = FindLeaf(K);
6: if Leaf.lock == 1 then
7: Decision = Result::Abort; Continue;
8: Leaf.lock = 1;
9: prevPos = Leaf.FindKey(K);

10: Decision = Leaf.isFull() ? Result::Split : Result::Update;
11: speculative_lock.release();
12: if Decision == Result::Split then
13: splitKey = SplitLeaf(Leaf);
14: slot = Leaf.Bitmap.FindFirstZero();
15: Leaf.KV[slot] = (K, V); Leaf.Fingerprints[slot] = hash(K);
16: Persist(Leaf.KV[slot]); Persist(Leaf.Fingerprints[slot]);
17: copy Leaf.Bitmap in tmpBitmap;
18: tmpBitmap[prevSlot] = 0; tmpBitmap[slot] = 1;
19: Leaf.Bitmap = tmpBitmap; Persist(Leaf.Bitmap);
20: if Decision == Result::Split then
21: speculative_lock.acquire();
22: UpdateParents(splitKey, Parent, Leaf);
23: speculative_lock.release();
24: Leaf.lock = 0;

the leaves, resetting their locks, and retrieving the greatest key in
each leaf to use it as a discriminator key. This step is similar to how
inner nodes are built in a bulk-load operation. Finally, the queues of
micro-logs are rebuilt.

Please note that micro-logs are cache-line-aligned. Thus, back-
to-back writes to a micro-log that are not separated by other writes
can be ordered with a memory barrier and then persisted together.
Indeed, when two writes target the same cache line, the first write is
guaranteed to become persistent no later than the second one.

Algorithm 9 Recover()

1: if Tree.Status == NotInitialized then
2: Tree.init();
3: else
4: for each SplitLog in Tree.SplitLogArray do
5: RecoverSplit(SplitLog);
6: for each DeleteLog in Tree.DeleteLogArray do
7: RecoverDelete(DeleteLog);
8: RebuildInnerNodes();
9: RebuildLogQueues();

Variable-size keys
To support variable-sized keys (e.g., string keys), we replace the
keys in inner nodes by virtual pointers to keys and those in leaf
nodes by persistent pointers to keys. Ensuring consistency does not
require any additional micro-logging compared to the case of fixed-
size keys, although every insert or delete operation respectively
involves a persistent allocation or deallocation of a key. Appendix C
elaborates in detail on the FPTree base operations for variable-size
keys and their corresponding recovery procedures.

6. EVALUATION
In this section we compare the performance of the FPTree with that
of state-of-the-art persistent and transient trees.

6.1 Experimental setup
In addition to the PTree and the FPTree, we re-implemented the

wBTree with indirection slot arrays and the NV-Tree as faithfully as
possible with regard to their description in their respective origi-

Tree Inner size Leaf size Key size Memory
PTree 4096 32 8 bytes SCM + DRAM
FPTree 4096 56 8 bytes SCM + DRAM
NV-Tree 128 32 8 bytes SCM + DRAM
wBTree 32 64 8 bytes SCM
STXTree 16 16 8 bytes DRAM
FPTreeC 128 64 8 bytes SCM + DRAM
NV-TreeC 128 32 8 bytes SCM + DRAM
PTreeVar 256 32 16 bytes SCM + DRAM
FPTreeVar 2048 56 16 bytes SCM + DRAM
NV-TreeVar 128 32 16 bytes SCM + DRAM
wBTreeVar 32 64 16 bytes SCM
STXTreeVar 8 8 16 bytes DRAM
FPTreeCVar 64 64 16 bytes SCM + DRAM
NV-TreeCVar 128 32 16 bytes SCM + DRAM

Table 1: Chosen node sizes for the evaluated trees. Values are 8-byte
integers for all trees. The suffixes C and Var indicate respectively
the concurrent and variable-size keys versions of the trees.

nal paper. To ensure the NV-Tree has the same level of optimiza-
tion as the FPTree, we placed its inner nodes in DRAM. For the
same purpose, we replace the wBTree undo-redo logs with the more
lightweight FPTree micro-logs. As a reference transient implementa-
tion, we use the STXTree, an open-source optimized main memory
B+-Tree2. The test programs were compiled using GCC-4.7.2. We
use jemalloc-4.0 as DRAM allocator, and our own persistent alloca-
tor for SCM.

To emulate different SCM latencies, we use a special system setup
based on DRAM that provides two additional capabilities: (1) Part
of the memory is separated out as a special memory region. We
treat this memory region as persistent memory. It is managed by
Persistent Memory File System (PMFS) [12], an open-source SCM-
aware file system that like tempfs, gives direct access to the memory
region with mmap; (2) Thanks to a special BIOS, the latency of
this memory region can be configured to a specified value. A full
description of this system can be found in [1].

This SCM evaluation platform is equipped with two Intel Xeon E5
processors. Each one has 8 cores, running at 2.6GHz and featuring
each 32 KB L1 data and 32 KB L1 instruction cache as well as 256
KB L2 cache. The 8 cores of one processor share a 20 MB last level
cache. The system has 64 GB of DRAM and 192 GB of emulated
SCM. The same type of emulation system was used in [5, 12, 21].
In the experiments, we vary the latency of SCM between 160 ns (the
lowest latency that can be emulated) and 650 ns. In addition, we
use ext4 with Direct Access3 (DAX) support to emulate a DRAM-
like latency of SCM (90 ns). DAX is a new feature in ext4 that
aims at supporting SCM-like devices. It is part of recent official
Linux kernels releases. Similarly to PMFS, ext4 DAX allows to do
zero-copy memory mapping of files.

Unfortunately, the emulation system does not support TSX which
prevents us from testing concurrency on this system. Hence, we
use for concurrency tests a system equipped with two Intel Xeon
E5-2699 v4 processors that support TSX. Each one has 22 cores (44
with HyperThreading) running at 2.1GHz. The system has 128 GB
of DRAM. The local-socket and remote-socket DRAM latencies are
respectively 85 ns and 145 ns. We mount ext4 DAX on a reserved
DRAM region to emulate SCM.

We conducted a preliminary experiment to determine the best
node sizes for every tree considered in the evaluation. Table 1
summarizes the results. We note that the best node sizes for the
single-threaded and the concurrent versions of the FPTree differ. This
is because larger inner nodes increase the probability of conflicts
inside TSX transactions.

2
https://panthema.net/2007/stx-btree/

3
https://www.kernel.org/doc/Documentation/filesystems/

dax.txt

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://panthema.net/2007/stx-btree/
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt

6.2 Single-threaded micro-benchmarks
In this sub-section, we focus on the single-threaded performance of
the base operations of the trees. In all our micro-benchmarks, we
use uniformly distributed generated data. For fixed-size keys, keys
and values are 8-byte integers, while for variable sized-keys, keys
are 16-byte strings and values are 8-byte integers.

Base operations
To study the performance of the Find, Insert, Update, and Delete
operations, we first warm up the trees with 50M key-values, then
we execute back-to-back 50M Finds, Inserts, Updates, and Deletes.
Figure 7 shows the performance results for different SCM laten-
cies. For fixed-size keys, we observe that with an SCM latency of
90 ns (DRAM’s latency), the FPTree outperforms the PTree, NV-Tree,
and wBTree by 1.18x/1.48x/1.08x/1.08x, 1.47x/1.83x/2.63x/1.79x, and
1.97x/2.05x/1.81x/2.05x for Find/Insert/Update/Delete, respectively.
The speedups increase up to 1.19x/1.63x/1.08x/1.02x, 1.92x/2.97x/3.65x/
2.82x, and 3.93x/4.89x/4.09x/5.48x, respectively, with an SCM latency
of 650 ns. We notice that compared with the STXTree, the FPTree
and the PTree have better Delete performance with the lower SCM
latencies because deletions consist in simply flipping a bit in the
bitmap, while it consists in a sorted delete for the STXTree. Be-
sides, the FPTree exhibits a slowdown of only 1.51x/1.67x/1.93x/1.21x
and 2.56x/2.17x/2.76x/1.70x, for SCM latencies of 250 ns and 650 ns,
respectively. The slowdowns for the PTree, NV-Tree, and wBTree
are respectively 1.76x/2.46x/2.04x/1.21x, 2.47x/3.51x/5.78x/2.60x, and
4.32x/5.16x/5.25x/4.26x for an SCM latency of 250 ns, and 3.05x/3.55x/
2.99x/1.73x, 4.92x/6.46x/10.09x/4.79x, and 10.07x/10.63x/11.30x/9.31x
for an SCM latency of 650 ns. Moreover, we notice that the differ-
ence in performance between the FPTree and the PTree is greater for
Inserts than for Finds and Deletes, showing the benefit of using leaf
groups in addition to fingerprints.

At an SCM latency of 650 ns, the average time of an FPTree Find
is 1.3 µs, which corresponds to the cost of two SCM cache misses:
the first one to access the bitmap and fingerprints of the leaf node,
and the second one to access the searched key-value. This is in line
with our theoretical result of Section 4.2.

As for variable-size keys, the benefit of using fingerprints is more
salient since any additional string key comparison involves a pointer
dereferencing, and thus a cache miss. Indeed, for Find/Insert/Update/
Delete, the FPTree outperforms the PTree, NV-Tree, and wBTree by
1.82x/1.65x/1.71x/1.24x, 1.72x/1.93x/4.80x/1.78x, and 2.20x/1.62x/2.15x/
1.64x respectively for an SCM latency of 90 ns, and by increased
speedups of 2.15x/2.16x/2.36x/1.35x, 2.50x/2.42x/8.19x/2.14x, and 2.93x
/2.93x/5.43x/2.86x for an SCM latency of 650 ns. Another impor-
tant observation is that the curves of the FPTree tend to be more
flattened than those of the other trees, which denotes a decreased
dependency with respect to the latency of SCM. Additionally, the
FPTree outperforms the STXTree for Find/Insert/Update/Delete by
2.10x/ 1.13x/1.71x/1.22x at a latency of 90 ns, and thanks to finger-
printing, it is still 1.23x/1.02x faster for Find/Update at a latency of
650 ns, while the STXTree is 2.04x/1.99x faster for Insert/Delete.

Recovery
We evaluate the recovery performance of the trees, both for fixed-
size and variable-size keys for different tree sizes and SCM latencies.
Figure 7 depicts the experimental results. Since the wBTree resides
fully in SCM, it exhibits constant recovery time, in the order of one
millisecond, and thus it is not depicted in the figure. We observe
that for a tree size of 100M entries, the FPTree recovers 1.52x/2.93x,
and 5.97x/6.38x faster than the PTree and the NV-Tree for an SCM
latency of 90 ns/650 ns, respectively. This difference between the
FPTree and the PTree is explained by the leaf groups that provide

SCM DRAM

FPTree
PTree

NV-T
ree

wBTree

STXTree
107

108

109

1010

U
se

d
m

em
.[

B
yt

e]

(a) Fixed-size keys
FPTree

PTree

NV-T
ree

wBTree

STXTree
107

108

109

1010

U
se

d
m

em
.[

B
yt

e]

(b) Variable-size keys
Figure 8: DRAM and SCM consumption of trees with 100M key-
value: 8-byte and 16-byte keys for fixed-size and variable-size keys
versions, respectively.

more data locality when traversing the leaves. The slower recovery
time of the NV-Tree is due to the inner nodes being rebuilt in a
sparse way, requiring a large amount of DRAM to be allocated. The
recovery of the FPTree is 76.96x and 29.62x faster than a full rebuild
of the STXTree in DRAM, for an SCM latency of 90 ns and 650 ns,
respectively.

Regarding variable-size keys, most of recovery time of the PTree,
the FPTree and the NV-Tree is spent dereferencing the persistent
pointers to the keys in the leaves to retrieve the greatest key in each
leaf. The rebuild of the inner nodes itself represents only a minor part
in the total rebuild time. This explains why all three implementations
tend to perform the same for recovery. Nevertheless, for a tree size
of 100M entries, the recovery of the FPTree is 24.68x and 5.68x faster
than a full rebuild of the STXTree in DRAM, for an SCM latency of
90 ns and 650 ns, respectively.

Memory consumption
Figure 8 shows DRAM and SCM consumption of the trees with 100M
key-values and a node fill ratio of ~70%. Since the wBTree resides
fully in SCM, it does not consume DRAM. We observe that for fixed-
size keys, the FPTree needs 2.24 GB of SCM and only 64.12 MB of
DRAM, i.e., only 2.71% of the total size of the tree. The PTree needs
slightly more DRAM (5.19% of the size of the tree) because of its
smaller leaves that lead to more inner nodes. The NV-Tree requires
much more SCM and DRAM than the FPTree and the PTree: 3.62 GB
of SCM and 1.09 GB of DRAM–which corresponds to 23.19% of the
size of the tree. On the one side, the increase in SCM consumption is
due to the additional flag that is added to every key-value and to the
alignment of the leaf entries to be cache-line-aligned. On the other
side, the increase in DRAM consumption is due to creating one leaf
parent per leaf node when rebuilding the contiguous inner nodes.
We observe similar results with variable-size keys, where consumed
DRAM corresponds to 1.76% (108.73 MB), 3.78% (194.56 MB), and
12.67% (1.20 GB) of the total size of the tree for the FPTree, PTree,
and NV-Tree, respectively. We note that the FPTree consumes slightly
more SCM than the PTree due to the additional fingerprints in the
leaves. The most salient observation is that the FPTree consumes
one order of magnitude less DRAM than the NV-Tree.

6.3 Concurrent micro-benchmarks
For concurrency experiments, we use the HTM system that supports
Intel TSX. We compare the fixed-size and variable-size concurrent
versions of the FPTree and the NV-Tree. The experiments consist in
warming up the trees with 50M key-values, then executing in order
50M concurrent Finds, Inserts, Updates, and Deletes with a fixed
number of threads. We also consider a mixed workload made of
50% Inserts and 50% Finds. To eliminate result variations, we use
the numactl utility to bind every thread to exactly one core. The
resource allocation strategy is to first allocate all physical cores

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

PTree FPTree NV-Tree wBTree STXTree

90 250 450 650

2

4

Latency [ns]

A
vg

.t
im

e/
op

.[
µs

]

(a) Find

90 250 450 650

2

4

6

Latency [ns]
(b) Insert

90 250 450 650
0

2

4

6

Latency [ns]
(c) Update

90 250 450 650

2

4

6

Latency [ns]
(d) Delete

105 106 107 108
100
101
102
103
104
105

Size [#values]

R
ec

ov
er

y
tim

e
[m

s]

(e) Recovery 90ns

105 106 107 108
100
101
102
103
104
105

Size [#values]
(f) Recovery 650ns

PTreeVar FPTreeVar NV-TreeVar wBTreeVar STXTreeVar

90 250 450 650

5

10

Latency [ns]

A
vg

.t
im

e/
op

.[
µs

]

(g) Find

90 250 450 650

5

10

15

20

Latency [ns]
(h) Insert

90 250 450 650
0

10

20

Latency [ns]
(i) Update

90 250 450 650

5

10

15

20

Latency [ns]
(j) Delete

105 106 107 108
100
101
102
103
104
105

Size [#values]

R
ec

ov
er

y
tim

e
[m

s]

(k) Recovery 90ns

105 106 107 108
100
101
102
103
104
105

Size [#values]
(l) Recovery 650ns

Figure 7: Effect of the latency of SCM on treess Find, Insert, Update, Delete, and Recovery operations performance.

before allocating the HyperThreads. When the two sockets are used,
the cores are split equally between them.

We evaluate concurrency in three scenarios: on a single socket (up
to 44 logical cores), on two sockets (up to 88 logical cores), and on
one socket with a higher SCM latency. For each scenario we depict
throughput figures alongside speedup figures over single-threaded
execution. Ideal speedup is depicted with the mark-less line.

Single-socket experiments
Figure 9 depicts the results for scalability experiments on one socket.
We observe that the FPTree scales well for both fixed-size and
variable-size keys throughout the range of threads considered. In
the case of fixed-size keys, performance is increased with 22 threads
over single-threaded execution by a factor of 18.3/18.4/18.3/18.5/18.4
for the Find/Insert/Update/Delete/Mixed benchmarks, respectively.
With 44 threads, and thus HyperThreading limiting the scaling, per-
formance is increased over the execution with 22 threads by a factor
of 1.57/1.55/1.56/1.63/1.56 for the Find/Insert/Update/Delete/Mixed
benchmarks, respectively. Compared with the FPTree, the NV-Tree
has lower base performances, and scales less. For fixed-size keys, its
performance is increased with 22 threads over single-threaded execu-
tion by a factor of 16.4/11.5/14.1/11.2/15.1 for the Find/Insert/Update/
Delete/Mixed benchmarks, respectively. With 44 threads, perfor-
mance is increased over the execution with 22 threads by a factor
of 1.49/1.73/1.07/1.74/1.61 for the Find/Insert/Update/Delete/Mixed
benchmarks, respectively. We witness the same scalability pat-
terns with variable-size keys. Between 45 and 88 threads, the per-
formance of both the FPTree and the NV-Tree is stable and resists
over-subscription.

Two-socket experiments
Results of the two-socket experiments are presented in Figure 10.
We notice that the FPTree scales well for both fixed-size and variable-
size keys. In the former case, the performance of the FPTree is in-
creased using 44 threads compared with single-threaded execution
by a factor of 36.8/36.3/37.5/37.6/36.7 for the Find/Insert/Update/
Delete/Mixed benchmarks, respectively. Using HyperThreading,
performance is increased with 88 threads over the execution with
44 threads by a factor of 1.50/1.30/1.34/1.53/1.37 for the Find/Insert/
Update/Delete/Mixed benchmarks, respectively. As for the NV-Tree,
it scales less than in the single socket scenario: performance is
increased with 44 threads compared with single-threaded execu-
tion by a factor of 31.2/10.5/10.9/9.1/15.6 for the Find/Insert/Update/

Delete/Mixed benchmarks, respectively. With 88 threads, perfor-
mance is increased over the execution with 44 threads by a factor
of 1.18/1.81/2.01/1.97/1.61 for the Find/Insert/Update/Delete/Mixed
benchmarks, respectively.

Regarding variable-size keys, the FPTree’s performance is in-
creased with 44 threads compared with single-threaded execution by
a factor of 37.2/35.0/38.4/38.5/34.9 for the Find/Insert/Update/Delete/
Mixed benchmarks, respectively. Using HyperThreading, perfor-
mance is increased with 88 threads over the execution with 44 threads
by a factor of 1.54/1.63/1.63/1.62/1.67 for the Find/Insert/Update/
Delete/Mixed benchmarks, respectively.

Single-socket experiments with a higher latency
To emulate a higher SCM latency, we bind the CPU and DRAM
resources to one socket and use the memory of the second socket
as emulated SCM. Hence, latency is increased from 85 ns (local
socket latency) to 145 ns (remote socket latency). Figure 11 depicts
the results for scalability experiments on one socket with an SCM
latency of 145 ns. We observe that both the FPTree and the NV-Tree
scale the same as with an SCM latency of 85 ns. The only difference
is the decrease in throughput which is expected due to the higher
emulated latency of SCM. Therefore, the scalability of our selective
concurrency scheme is not affected by the latency of SCM.

Overall, the FPTree has better scaling and throughput performance
than the NV-Tree, both for fixed-size and variable-size keys, for the
three scenarios, namely using one socket, two sockets, and one
socket with a higher SCM latency.

6.4 End-to-end evaluation
We integrated the evaluated trees in two systems: a single-level
database prototype, and memcached, a popular key-value cache.

Database experiments
We replace the dictionary index of the dictionary-encoded, columnar
storage engine of the database by the evaluated trees. Only the fixed-
size keys versions of the trees are needed for the dictionary index.
To measure the impact of the persistent trees on transaction perfor-
mance, we run the read-only queries of the Telecom Application
Transaction Processing Benchmark4 (TATP) with 50M subscribers
and 8 clients on the emulation system. The database size is ~45 GB.

During the warm-up phase where the database is created, Sub-
sriber Ids are sequentially generated, thus creating a highly skewed
4
http://tatpbenchmark.sourceforge.net/

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

10

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://tatpbenchmark.sourceforge.net/

1 22 44 88
0

20

40

60

HT OS

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(a) FPTreeC

14 8 16 22 32 44
0

20

40

HT

Threads

Sp
ee

du
p

(b) FPTreeC Speed-up

1 22 44 88
0

20

40

60

HT OS

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(c) NV-TreeC

14 8 16 22 32 44
0

20

40

HT

Threads

Sp
ee

du
p

(d) NV-TreeC Speed-up

Find
Insert

Update
Delete
Mixed

1 22 44 88
0

10

20

30

HT OS

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(e) FPTreeCVar

14 8 16 22 32 44
0

20

40

HT

Threads

Sp
ee

du
p

(f) FPTreeCVar Speed-up

1 22 44 88
0

10

20

30

HT OS

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(g) NV-TreeCVar

14 8 16 22 32 44
0

20

40

HT

Threads

Sp
ee

du
p

(h) NV-TreeCVar Speed-up

Find
Insert

Update
Delete
Mixed

Figure 9: Concurrency performance on one socket – 50M key-values warmup followed by 50M operations.

1 22 44 88
0

50

100

HT

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(a) FPTreeC

1 22 44 88
0

20

40

60

80

HT

Threads

Sp
ee

du
p

(b) FPTreeC Speed-up

1 22 44 88
0

50

100

HT

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(c) NV-TreeC

1 22 44 88
0

20

40

60

80

HT

Threads

Sp
ee

du
p

(d) NV-TreeC Speed-up

Find
Insert

Update
Delete
Mixed

1 22 44 88
0

20

40

HT

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(e) FPTreeCVar

1 22 44 88
0

20

40

60

80

HT

Threads

Sp
ee

du
p

(f) FPTreeCVar Speed-up

1 22 44 88
0

20

40

HT

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(g) NV-TreeCVar

1 22 44 88
0

20

40

60

80

HT

Threads

Sp
ee

du
p

(h) NV-TreeCVar Speed-up

Find
Insert

Update
Delete
Mixed

Figure 10: Concurrency performance on two sockets – 50M key-values followed by 50M operations.

PTree FPTree NV-Tree wBTree STXTree

250 450 650
0.2

0.6

1

1.4

1.8

Latency [ns]

T
hr

ou
gh

.[
1
0
6

T
X

/s
]

(a) DB throughput

250 450 650
10−2

10−1

100

101

102

Latency [ns]

Ti
m

e
[s

]

(b) DB restart time
Figure 12: Trees impact on database throughput and restart perfor-
mance – TATP with 50M subscribers, DB size ~45GB.

insertion workload, a situation that the NV-Tree was unable to handle.
Indeed, highly skewed insertions happen most often in the same
leaf node. A last-level inner node will then quickly become full and
trigger a costly rebuild of the inner nodes. The workload-adaptivity
scheme of the NV-Tree tries to space the rebuild phases by dynami-
cally increasing the size of write-intensive nodes at split time, which
defers but does not solve the issue of frequent rebuilds in presence of
sorted insertions. Eventually, the NV-Tree will have one parent node
per leaf node which provokes a memory overflow in our system. To
avoid this issue, we set the size of leaf nodes to 1024 and that of
inner nodes to 8. The large leaf nodes aim at decreasing the number
of inner node rebuilds, while the small size of inner nodes aims at

keeping the memory footprint of inner nodes small, even in the case
of having one parent node per leaf node.

The results are depicted in Figure 12a. We observe that com-
pared with using the fully transient STXTree, the FPTree incurs an
overhead of only 8.74%/12.80% for an SCM latency of 160 ns/650 ns,
while the overheads incurred by the PTree, NV-Tree, and wBTree are
16.98%/16.89%, 39.61%/51.77%, and 24.27%/48.23%, respectively. On
the one side, the limited slowdown caused by the FPTree and the
PTree shows the significant benefit of selective persistence from
which stems a decreased dependency with respect to the latency of
SCM. On the other side, the FPTree outperforming the PTree shows
the benefits of the fingerprints. The decrease in throughput with
higher SCM latencies is due to other database data structures being
placed in SCM. One can note that because of its larger leaf nodes,
the NV-Tree performs worse than the wBTree.

To measure the impact on database recovery, we simulate a crash
and monitor the restart time. We use the same benchmark settings as
in the previous experiment. Recovery consists in checking the sanity
of SCM-based data and rebuilding DRAM-based data. The recovery
process is parallelized and uses 8 cores. Figure 12b shows restart
time results. Since the wBTree resides fully in SCM, recovery is near-
instantaneous –in the order of tens of milliseconds. However, using
the wBTree incurs a severe overhead on query performance, as shown
in Figure 12a. We observe that the FPTree, PTree, and NV-Tree allow
respectively 40.17x/21.56x, 26.05x/8.32x, and 21.42x%/9.58% faster

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

11

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

1 22 44 88
0

20

40

60

HT OS

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(a) FPTreeC

14 8 16 22 32 44
0

20

40

HT

Threads

Sp
ee

du
p

(b) FPTreeC Speed-up

1 22 44 88
0

20

40

60

HT OS

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(c) NV-TreeC

14 8 16 22 32 44
0

20

40

HT

Threads

Sp
ee

du
p

(d) NV-TreeC Speed-up

Find
Insert

Update
Delete
Mixed

1 22 44 88
0

10

20

30

HT OS

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(e) FPTreeCVar

14 8 16 22 32 44
0

20

40

HT

Threads

Sp
ee

du
p

(f) FPTreeCVar Speed-up

1 22 44 88
0

10

20

30

HT OS

Threads

T
hr

ou
gh

pu
t[

M
O

ps
]

(g) NV-TreeCVar

14 8 16 22 32 44
0

20

40

HT

Threads

Sp
ee

du
p

(h) NV-TreeCVar Speed-up

Find
Insert

Update
Delete
Mixed

Figure 11: Concurrency performance on one socket with an SCM latency of 145 ns – 50M key-values warmup followed by 50M operations.

restart times for an SCM latency of 160 ns/650 ns than using the
STXTree. One can note that the NV-Tree performs on par with the
PTree thanks to its larger leaves which allow for more data locality
while scanning the leaf nodes during recovery. Still, the FPTree
outperforms the NV-Tree thanks to rebuilding compact inner nodes,
and outperforms the PTree thanks to using leaf groups that provide
better data locality when traversing the leaves during recovery.

Memcached experiments
Memcached5 is a key-value cache that uses a main-memory hash
table internally. It employs a locking mechanism on two levels:
the first is global locks on the LRU lists of items, and the second is
locks on the buckets of the hash table. We replace the hash table by
the variable-size keys versions of the evaluated trees. Besides, we
remove the bucket locking mechanism and replace it by global locks
for non-concurrent trees and rely on the concurrency scheme of the
concurrent ones. Another necessary change was to insert the full
string key in the trees instead of its hash value to avoid collisions.

To measure the impact on performance, we run the memcached
server on the HTM system, and the mc-benchmark6 with 50 clients
on the emulation system. The measured network bandwidth between
the two machines is 940 Mbits/s. We found that using 2 workers in
memcached yielded the best results for the single-threaded trees
while 4 workers was the optimal for the concurrent ones. The
mc-benchmark executes 50M SET requests followed by 50M GET
requests. In addition, we use the same method as in the concurrency
experiments to emulate a higher latency, that is, we bind memcached
to one socket and use the memory of the other socket for SCM.

Figure 13 summarizes the experimental results. We observe
that the NV-Tree and the concurrent version of the FPTree (denoted
FPTreeC in the figure) perform nearly equally to vanilla memcached
with the hash map table, for both latencies (85 ns and 145 ns)
because their concurrent nature allows them to service requests
in parallel and saturate the network. Indeed, the incurred over-
heads are less than 2% for the concurrent FPTree, and less than
3% for the NV-Tree. The single-threaded trees however incur sig-
nificant overheads. Indeed, for SET/GET requests, the overheads
incurred by the single-threaded FPTree, PTree, and wBTree are respec-
tively 11.45%/0.29%, 40.37%/3.40%, and 45.57%/3.81% for an SCM la-
tency of 85 ns. These overheads surge to respectively 37.28%/2.39%,
54.90%/24.06%, and 59.88%/32.40% with a higher SCM latency of

5
http://memcached.org/

6
https://github.com/antirez/mc-benchmark

SCM latency 85 ns SCM latency 145 ns

FPTree

FPTree
C
PTree

NV-T
ree

C

wBTree

STXTree

Hash
M

ap
0

5

10

15

T
hr

ou
gh

pu
t[
1
0
4

O
ps

]

(a) SET requests

FPTree

FPTree
C
PTree

NV-T
ree

C

wBTree

STXTree

Hash
M

ap
0

5

10

15

T
hr

ou
gh

pu
t[
1
0
4

O
ps

]

(b) GET requests
Figure 13: Trees impact on memcached performance for different
latencies – mc-benchkark with 50M operations.

145 ns. As for the STXTree that resides fully in DRAM, it incurs an
overhead of 28.29%/4.83% for SET/GET requests, respectively.

In conclusion, in both micro-benchmarks and end-to-end scenar-
ios, the FPTree performs nearly equally to transient counterparts,
significantly outperforms state-of-the-art persistent trees, and scales
well in highly-concurrent situations.

7. CONCLUSION
In this paper, we proposed the FPTree, a novel hybrid SCM-DRAM
persistent, concurrent B+-Tree that supports both fixed-size and
variable-size keys. Pivotal to the design of the FPTree are the follow-
ing key principles: (1) fingerprinting; (2) selective persistence; (3)
selective concurrency; and (4) state-of-the-art unsorted leaves.

These design principles make it possible to achieve the goals we
put forward for our work: (1) the FPTree is persistent and guaran-
tees any-point crash recovery to a consistent state without loss of
information; (2) the FPTree exhibits fast recovery compared to a
full rebuild; (3) the performance of the FPTree is similar to transient
data structures, is resilient to high SCM latencies, and scales well in
highly concurrent scenarios.

We perform an extensive experimental evaluation which shows
that our FPTree exhibits significantly better base operation perfor-
mance compared with state-of-the-art persistent trees, while using
DRAM for less than 3% of its total size. Moreover, the FPTree recov-
ery performance is almost one order of magnitude faster than a full
rebuild. We conduct an end-to-end evaluation using memcached and
a prototype database. We show that compared with a fully transient
tree, the overhead of using the FPTree is limited to less than 2% and
13% for memcached and the prototype database, respectively, while
using state-of-the-art persistent trees incur overheads of up to 60%
and 52%, respectively.

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

12

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://memcached.org/
https://github.com/antirez/mc-benchmark

Acknowledgements
We thank the anonymous reviewers for their constructive comments
that helped us improve the paper. We also thank Qingsong Wei for
his help in figuring out the implementation details of the NV-Tree.
Special thanks go to Ingo Müller for the fruitful discussions that
helped refine the ideas of the paper, and to Roman Dementiev for
his valuable help with TSX. This work is partially supported by the
German Research Foundation (DFG) within the Collaborative Re-
search Center “SFB 912/HAEC” as well as the Cluster of Excellence
“Center for Advancing Electronics Dresden (cfaed)”.

8. REFERENCES
[1] SR. Dulloor. Systems and Applications for Persistent Memory.

PhD Thesis, 2016.
https://smartech.gatech.edu/bitstream/handle/

1853/54396/DULLOOR-DISSERTATION-2015.pdf.
[2] Intel R©Architecture Instruction Set Extensions Programming

Reference. Technical report, 2015. http://software.
intel.com/en-us/intel-isa-extensions.

[3] SNIA NVM Programming Model V1.1. Technical report,
2015. http://www.snia.org/sites/default/files/
NVMProgrammingModel_v1.1.pdf.

[4] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang,
D. Lottis, K. Moon, X. Luo, E. Chen, A. Ong,
A. Driskill-Smith, and M. Krounbi. Spin-transfer torque
magnetic random access memory (stt-mram). ACM J. Emerg.
Technol. Comput. Syst., 9(2), 2013.

[5] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s talk about
storage & recovery methods for non-volatile memory database
systems. In ACM SIGMOD, 2015.

[6] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto,
K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A.
Lastras, A. Padilla, et al. Phase change memory technology.
Journal of Vacuum Science & Technology B, 28(2), 2010.

[7] A. Chatzistergiou, M. Cintra, and S. D. Viglas. Rewind:
Recovery write-ahead system for in-memory non-volatile
data-structures. PVLDB, 8(5), 2015.

[8] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database
algorithms for phase change memory. In CIDR, 2011.

[9] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main
memory. PVLDB, 8(7), 2015.

[10] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. Nv-heaps: Making
persistent objects fast and safe with next-generation,
non-volatile memories. ACM SIGPLAN Not., 47(4), 2011.

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through
byte-addressable, persistent memory. In ACM SOSP, 2009.

[12] S. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
R. Sankaran, J. Jackson, and D. Subbareddy. System software
for persistent memory. In EuroSys, 2014.

[13] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang. High
performance database logging using storage class memory. In
IEEE ICDE, 2011.

[14] G. Graefe. A survey of b-tree locking techniques. ACM
Transactions on Database Systems (TODS), 35(3):16, 2010.

[15] G. Graefe. Modern b-tree techniques. Foundations and Trends
in Databases, 3(4):203–402, 2011.

[16] G. Graefe and H. Kimura. Orthogonal key-value locking. In
BTW, 2015.

[17] T. Karnagel, R. Dementiev, R. Rajwar, K. Lai, T. Legler,
B. Schlegel, and W. Lehner. Improving in-memory database
index performance with intel R© transactional synchronization
extensions. In IEEE HPCA, 2014.

[18] H. Kimura. Foedus: Oltp engine for a thousand cores and
nvram. In ACM SIGMOD, 2015.

[19] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The Bw-Tree:
A B-tree for new hardware platforms. In IEEE ICDE, 2013.

[20] D. Narayanan and O. Hodson. Whole-system persistence. In
ASPLOS XVII, 2012.

[21] I. Oukid, W. Lehner, T. Kissinger, T. Willhalm, and
P. Bumbulis. Instant recovery for main-memory databases. In
CIDR, 2015.

[22] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage
Management in the NVRAM Era. PVLDB, 7(2), 2013.

[23] J. Rao and K. A. Ross. Making B+- Trees cache conscious in
main memory. In ACM SIGMOD.

[24] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H.
Campbell. Consistent and durable data structures for
non-volatile byte-addressable memory. In USENIX FAST,
2011.

[25] S. Viglas. Write-limited sorts and joins for persistent memory.
PVLDB, 7(5), 2014.

[26] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. SIGPLAN Not., 47(4), 2011.

[27] T. Wang and R. Johnson. Scalable logging through emerging
non-volatile memory. PVLDB, 7(10), 2014.

[28] J. Yang, Q. Wei, C. Wang, C. Chen, K. Yong, and B. He.
Nv-tree: A consistent and workload-adaptive tree structure for
non-volatile memory. IEEE Transactions on Computers,
PP(99), 2015.

[29] J. J. Yang and R. S. Williams. Memristive devices in
computing system: Promises and challenges. ACM J. Emerg.
Technol. Comput. Syst., 9(2), 2013.

[30] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln:
Closing the performance gap between systems with and
without persistence support. In IEEE/ACM MICRO-46, 2013.

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

13

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://smartech.gatech.edu/bitstream/handle/1853/54396/DULLOOR-DISSERTATION-2015.pdf
https://smartech.gatech.edu/bitstream/handle/1853/54396/DULLOOR-DISSERTATION-2015.pdf
http://software.intel.com/en-us/intel-isa-extensions
http://software.intel.com/en-us/intel-isa-extensions
http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.1.pdf
http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.1.pdf

APPENDIX
A. PAYLOAD SIZE IMPACT
In this appendix we study the effect of the payload (value) size on
the performance of the evaluated trees. We follow the same exper-
imental setup as in Section 6 while varying the payload size from
8 bytes to 112 bytes. Figures 14b to 14d depict single-threaded
performance results with an SCM latency set to 360 ns, while Fig-
ures 14e to 14f depict multi-threaded performance on a single socket
with 44 threads. We observe two patterns: (1) The NV-Tree stands
out as the tree that is most affected by larger payloads, which is
explained by the fact that full linear scan of leaves needs to read
larger amounts of data; (2) Insert operations tend to suffer more
from larger payloads, which stems from the need for larger, more
expensive SCM allocations. In general however, the performance
of the FPTree and wBTree vary only slightly with larger payloads,
thanks to them having respectively constant and logarithmic average
leaf scan costs.

B. LEAF GROUPS MANAGEMENT
In this appendix we discuss how insert and delete operations make
use of leaf groups in the single-threaded version of the FPTree.

Insert
The insert operation using leaf groups differs from the concur-
rent version of the FPTree in the split operation. Indeed the non-
concurrent version of the FPTree employs leaf groups and does not
allocate memory on every split. The same recovery logic as for
insert operations without leaf groups applies and only the leaf allo-
cation step is replaced by a call to the GetLeaf function (described
in Algorithm 10). This function requires a micro-log that contains a
single persistent pointer, denoted PNewGroup. Instead of directly
allocating a new leaf, GetLeaf first checks whether there is a leaf
that is available in the queue of free leaves, and if not, it will allocate
a leaf group, add it to the linked list of leaf groups, and insert its
members into the transient queue of free leaves, except the one that
is returned. The corresponding recovery function is shown in Algo-
rithm 11: if PNewGroup is not null, this means that the allocation
took place and we can continue the operation as indicated in the
pseudo-code. Otherwise, no action is required since the queue of
free leaves is transient and rebuilt at recovery time.

Algorithm 10 GetLeaf(PLeafNode PLeaf)

1: µLog = Tree.GetLeafLog;
2: if Tree.FreeLeavesQueue.IsEmpty() then
3: allocate(µLog.PNewGroup, sizeof(LeafNode)*GROUP_SIZE);
4: Tree.PGroupsListTail.Next = µLog.PNewGroup;
5: Persist(Tree.PGroupsListTail.Next);
6: Tree.PGroupsListTail = µLog.PNewGroup;
7: Persist(Tree.PGroupsListTail);
8: µLog.Reset();
9: insert Tree.PGroupsListTail in FreeLeavesQueue;

10: return Tree.FreeLeavesVector.Pop();

Algorithm 11 ReoverGetLeaf(GetLeafLog µLog)

1: if µLog.PNewGroup != NULL then
2: if Tree.PGroupsListTail == µLog.PNewGroup then
3: /* Everything was done except resetting the micro-log */
4: µLog.Reset();
5: else
6: Continue from line GetLeaf:4;

Delete
The only difference between the Delete operation of the concurrent
FPTree and the single-threaded FPTree is the leaf delete procedure.
Indeed, the FPTree uses leaf groups and does not require a dealloca-
tion on every leaf deletion. Algorithm 12 shows the pseudo-code of
the FreeLeaf function that replaces the deallocation function. This
operation requires a micro-log that contains two persistent point-
ers, denoted PCurrentGroup and PPrevGroup. First, the procedure
checks whether the leaf group to which the deleted leaf belongs is
completely free. If it is, it will deallocate the leaf group and update
the head of the linked list of groups if needed. Otherwise, it will
push the deleted leaf into the transient queue of free leaves. The
corresponding recovery function is depicted in Algorithm 13 and
follows the same logic as the leaf delete recovery function that is
detailed in Section 5: if PCurrentGroup is not null, this means that
the micro-log was set but the deallocation did not take place. We
can continue the operation starting by either updating the head of
the linked list of groups, or by deallocating the group, as indicated
in Algorithm 13. If PCurrentGroup is null, no action is needed since
the queue of free leaves is transient and rebuilt at restart time.

Algorithm 12 FreeLeaf(LeafNode Leaf)

1: get head of the linked list of Groups PHead;
2: µLog = Tree.FreeLeafLog;
3: (Group,PPrevGroup) = getLeafGroup(Leaf);
4: if Group.IsFree() then
5: delete Group from FreeLeavesQueue;
6: set µLog.PCurrentGroup to persistent address of Group;
7: Persist(µLog.PCurrentGroup);
8: if µLog.PCurrentGroup == PHead then
9: /* Group is the head of the linked list of Groups */

10: PHead = Group.Next;
11: Persist(PHead);
12: else
13: µLog.PPrevGroup = PPrevGroup;
14: Persist(µLog.PPrevGroup);
15: PrevGroup.Next = Group.Next;
16: Persist(PrevGroup.Next);
17: /* the deallocate function resets PCurrentGroup */
18: deallocate(µLog.PCurrentGroup);
19: reset µLog;
20: else
21: push Leaf in FreeLeavesVector;

Algorithm 13 RecoverFreeLeaf(FreeLeafLog µLog)

1: get head of linked list of groups PHead;
2: if µLog.PCurrentGroup != NULL and µLog.PPrevGroup != NULL then
3: /* Crashed between lines FreeLeaf:15-18 */
4: Continue from FreeLeaf:15;
5: else
6: if µLog.PCurrentGroup != NULL and µLog.PCurrentGroup ==

PHead then
7: /* Crashed at line FreeLeaf:10 */
8: Continue from FreeLeaf:10;
9: else

10: if µLog.PCurrentGroup != NULL and
µLog.PCurrentGroup→Next == PHead then

11: /* Crashed at line FreeLeaf:14 */
12: Continue from FreeLeaf:18;
13: else
14: reset µLog;

We note that to speed up GetPrevGroup, it can be implemented
using a transient index on top of the linked list of free leaves.

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

14

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

PTreeVar FPTreeVar NVTreeVar wBTreeVar STXTreeVar Find Insert Update Delete Mixed

8 48 112

2

4

6

8

Payload Size [Byte]

A
vg

.t
im

e/
op

.[
µs

]

(a) Find

8 48 112

5

10

15

Payload Size [Byte]
(b) Insert

8 48 112

5

10

15

20

Payload Size [Byte]
(c) Update

8 48 112

5

10

Payload Size [Byte]
(d) Delete

8 48 112
0

10

20

30

Payload Size [Byte]

T
hr

ou
gh

pu
t[

M
O

ps
]

(e) FPTreeVar – 44 thr.

8 48 112
0

5

10

Payload Size [Byte]
(f) NVTreeVar – 44 thr.

Figure 14: Impact of payload size on the single-threaded and multi-threaded performance of the evaluated trees.

Algorithm 14 ConcurrentInsert_String(Key K, Value V)

1: Decision = Result::Abort;
2: while Decision == Result::Abort do
3: speculative_lock.acquire();
4: (Leaf, Parent) = FindLeaf(K);
5: if Leaf.lock == 1 then
6: Decision = Result::Abort; Continue;
7: Leaf.lock = 1;
8: Decision = Leaf.isFull() ? Result::Split : Result::Insert;
9: speculative_lock.release();

10: if Decision == Result::Split then
11: splitKey = SplitLeaf(Leaf);
12: slot = Leaf.Bitmap.FindFirstZero();
13: allocate(Leaf.KV[slot].PKey, strlen(K));
14: set NewKey to key pointed to by Leaf.KV[slot].PKey;
15: NewKey = K; Persist(NewKey);
16: Leaf.KV[slot].Val = V; Leaf.Fingerprints[slot] = hash(K);
17: Persist(Leaf.KV[slot].Val); Persist(Leaf.Fingerprints[slot]);
18: Leaf.Bitmap[slot] = 1; Persist(Leaf.Bitmap);
19: if Decision == Result::Split then
20: speculative_lock.acquire();
21: UpdateParents(splitKey, Parent, Leaf);
22: speculative_lock.release();
23: Leaf.lock = 0;

Recovery
The recovery function of the non-concurrent FPTree is similar to that
of its concurrent version, except that instead of iterating over the
arrays of micro-logs, the non-concurrent version contains only one
leaf split micro-log and one leaf delete micro-log. In addition, they
differ in how the inner nodes are rebuilt. Indeed, the single-threaded
FPTree traverses the linked list of leaf groups instead of traversing
the linked list of leaves, which allows for more data locality. Besides,
the keys that are retrieved from the leaves are unsorted and require to
be sorted before proceeding to rebuilding inner nodes. Nevertheless,
the benefits of increased data locality outperformed the cost of the
additional sort, as shown in Section 6.2. We note that the transient
vector of free leaves is rebuilt while traversing the list of leaf groups.

C. VARIABLE-SIZE KEY OPERATIONS
In this appendix we discuss the insert and delete operations of the
concurrent FPTree with variable-size keys (string keys).

Insert
Algorithm 14 shows the pseudo code of the concurrent Insert oper-
ation. It is similar to its fixed-size keys counterpart. In particular,
the leaf split operation is identical to that of fixed-size keys. The
only difference is that for variable-size keys, we need to allocate
persistent memory to store the insertion key. To ensure consistency,
we do not need any additional micro-logging compared to fixed-size
keys. When the insertion position is found, the new key is allocated
by passing the key persistent pointer of the insertion position to
the allocator that persistently writes the persistent address of the

allocated memory to the provided persistent pointer. Then, the key
to insert is persistently copied into the newly allocated key. There-
after, the value and the fingerprint are persistently written in any
order as they remain invisible until the bitmap is updated. Finally,
the bitmap is persistently updated to make changes visible. If a
crash occurs after the new key is allocated but before the bitmap
is updated, the newly allocated key is a persistent memory leak.
To detect this problem during recovery, it is sufficient to add the
following additional check while traversing the leaves to rebuild
inner nodes: for every unset bit in the bitmap of leaf, check whether
its corresponding key persistent pointer is null (as it should be). If
it is not, then we might have crashed during an insert operation,
after having allocated the new key but before having updated the
bitmap to reflect the insertion. Deallocating the key, as shown in the
recovery procedure (Algorithm 17), is sufficient to set the tree back
to a state of leak-free consistency.

Delete
Algorithm 15 shows the pseudo code of the concurrent Delete op-
eration. It is similar to its fixed-size key counterpart. In particular,
the leaf delete operation is identical to that of fixed-size keys. The
only difference is that in this case, we need to deallocate the key
that is deleted. Similarly to insert operations, there is no additional
micro-log required to ensure crash-safety. Once the position of the
key to be deleted is determined, the bitmap is updated and persisted
to reflect the deletion. Finally, the deleted key is deallocated. A
crash after updating the bitmap but before deallocating the key will
lead to a persistent memory leak. Indeed, the key will be invisible
since the bitmap has been updated and thus the key will never get
deallocated. During recovery however, it is sufficient to conduct the
same additional check as for insert operations: for every unset bit in
the bitmap of leaf, check whether its corresponding key persistent
pointer is null (as it should be). If it is not, then we might have
crashed during a delete operation, after having updated the bitmap
but before having deallocation the deleted key. All there is to do
to recover to a consistent and leak-free state is to deallocate the
keys pointed to by these non-null persistent pointers, as shown in
Algorithm 17.

Update
Algorithm 16 shows the pseudo code of the concurrent Update
operation. Similarly to the fixed-size key case, this operation is
an optimized insert-after-delete operation where both the insertion
and the deletion are made p-atomically visible by updating the
bitmap. Compared to an insert operation, an update operation does
not allocate memory, except when a split is needed. Indeed, instead
of allocating a new key, the persistent pointer of the key is copied
into a new location. After updating the bitmap, the persistent pointer
of the old record location must be reset in order to ensure that a
reference to a key exists only once. In the case of a crash after
reflecting the update but before resetting the persistent pointer of
the old record location, the recovery function might be mislead and

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

15

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Algorithm 17 RebuildInnerNodes_String()

1: let MaxVector be a vector of keys;
2: for for Leafi in linked-list of leaves do
3: let MaxKey be a key set to the smallest value of its domain;
4: for each slot in Leafi.Bitmap do
5: if Leafi.Bitmap[slot] == 1 then
6: /* Find max key */
7: set K to key pointed to by Leafi.KV[slot].PKey;
8: MaxKey = MAX(K, MaxKey);
9: else

10: /* Test whether there is a memory leak */
11: if Leafi.KV[slot].PKey != NULL then
12: if KeyExists(Leafi, Leafi.KV[slot].PKey) then
13: Leafi.KV[slot].PKey.reset();
14: else
15: deallocate(Leafi.KV[slot].PKey);
16: MaxVector[i] = MaxKey;
17: rebuild inner nodes using MaxVector;

Algorithm 15 ConcurrentDelete_String(Key K)

1: Decision = Result::Abort;
2: while Decision == Result::Abort do
3: speculative_lock.acquire();
4: /* PrevLeaf is locked only if Decision == LeafEmpty */
5: (Leaf, PPrevLeaf) = FindLeafAndPrevLeaf(K);
6: if Leaf.lock == 1 then
7: Decision = Result::Abort; Continue;
8: if Leaf.Bitmap.count() == 1 then
9: if PPrevLeaf->lock == 1 then

10: Decision = Result::Abort; Continue;
11: Leaf.lock = 1; PPrevLeaf->lock = 1;
12: Decision = Result::LeafEmpty;
13: else
14: Leaf.lock = 1; Decision = Result::Delete;
15: speculative_lock.release();
16: slot = Leaf.FindInLeaf(K);
17: Leaf.Bitmap[slot] = 0; Persist(Leaf.Bitmap);
18: deallocate(Leaf.KV[slot].PKey);
19: if Decision == Result::LeafEmpty then
20: DeleteLeaf(Leaf, PPrevLeaf);
21: PrevLeaf.lock = 0;
22: else
23: Leaf.lock = 0;

might treat this as a crash during an insert or a delete operation,
and deallocate the key, as described previously. To avoid this issue,
whenever a deleted record with a non-null key persistent pointer is
found, the recovery function checks whether there is a valid record
in the same leaf that points to the same key. If there is one, the key
persistent pointer simply needs to be reset. Otherwise, this means
that the crash occurred during an insert or a delete operation and the
key needs to be deallocated.

Algorithm 16 ConcurrentUpdate_String(Key K, Value V)

1: Decision = Result::Abort;
2: while Decision == Result::Abort do
3: speculative_lock.acquire();
4: (Decision, prevPos, Leaf, Parent) = FindKeyAndLockLeaf(K);
5: speculative_lock.release();
6: if Decision == Result::Split then
7: splitKey = SplitLeaf(Leaf);
8: slot = Leaf.Bitmap.FindFirstZero();
9: Leaf.KV[slot].PKey = Leaf.KV[prevSlot].PKey;

10: Leaf.KV[slot].Val = V;
11: Leaf.Fingerprints[slot] = Leaf.Fingerprints[prevSlot];
12: Persist(Leaf.KV[slot]); Persist(Leaf.Fingerprints[slot]);
13: copy Leaf.Bitmap in tmpBitmap;
14: tmpBitmap[prevSlot] = 0; tmpBitmap[slot] = 1;
15: Leaf.Bitmap = tmpBitmap; Persist(Leaf.Bitmap);
16: Leaf.KV[prevSlot].PKey.reset();
17: if Decision == Result::Split then
18: speculative_lock.acquire();
19: UpdateParents(splitKey, Parent, Leaf);
20: speculative_lock.release();
21: Leaf.lock = 0;

Recovery
The recovery procedure of the FPTree with variable-size keys is
identical to that with fixed-size keys, except for rebuilding inner
nodes where the additional checks described above to catch memory
leaks are added. Algorithm 17 shows the pseudo-code of the inner
node rebuilding function.

Final edited form was published in "SIGMOD/PODS'16: International Conference on Management of Data. San Francisco 2016", S. 371–386, ISBN 978-1-4503-3531-7
https://doi.org/10.1145/2882903.2915251

16

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	Introduction
	SCM programming model
	Related Work
	FPTree Design principles
	Selective persistence
	Fingerprints
	Amortized persistent memory allocations
	Selective concurrency

	Base operations
	Evaluation
	Experimental setup
	Single-threaded micro-benchmarks
	Concurrent micro-benchmarks
	End-to-end evaluation

	Conclusion
	References
	Payload size impact
	Leaf groups management
	Variable-size key operations

