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Abstract

The topic of managing uncertain data has been explored
in many ways. Different methodologies for data storage and
query processing have been proposed. As the availability of
management systems grows, the research on analytics of un-
certain data is gaining in importance. Similar to the chal-
lenges faced in the field of data management, algorithms
for uncertain data mining also have a high performance
degradation compared to their certain algorithms. To over-
come the problem of performance degradation, the MCDB
approach was developed for uncertain data management
based on the possible world scenario. As this methodol-
ogy shows significant performance and scalability enhance-
ment, we adopt this method for the field of mining on uncer-
tain data. In this paper, we introduce a clustering method-
ology for uncertain data and illustrate current issues with
this approach within the field of clustering uncertain data.

1 Introduction

Database systems offer many possibilities to optimize
data mining algorithms [5, 20], such as indexes for near-
est neighborhood queries [19] or specialized mining oper-
ators [12, 18]. These functionalities are increasingly ex-
plored by several data mining vendors by implementing nu-
merous algorithms. With this increasingly tight integration
of database systems and data mining algorithms, the effi-
ciency and system leverage of both algorithms and database
systems increase.

In the field of database systems, current research work is
being performed in the field of uncertain data. While tra-
ditional database systems only consider data as exact val-
ues, these newly created systems utilize a data model much
closer to the real world. In general, they focus on the inte-
gration of the uncertainty into their data model. In almost
every scenario where database systems are used, uncertainty
definitions can be derived for the data. Integration systems,

for example, create uncertain values once the actual values
cannot be determined or an exact result must be approxi-
mated; e.g. the integration of addresses from heterogeneous
systems [7]. Differently written addresses might refer to
the same location. This difference could be expressed by
a similarity probability. A second example: If values are
rounded, the values become uncertain. This comes from the
fact that the exact value is, e.g. 2.45 and the rounded value
is 2. If the rounded value is used for further computation,
the actual range must also be taken into consideration. In
this example, the unrounded value of 2 is in the range be-
tween 1.5 and 2.49.

Fundamentally, uncertain data has been explored in
many applications. A traditional field where uncertainty is
evident, such as sensor data, is joined by many topics from
computer science and data analytics. For example, [4, 10]
explore data mining for continuous uncertainty. Continuous
uncertainty is a property of the uncertainty region. Here,
a continuous probability density function is set around a
data point defining the appearance probability of moving
objects or sensor data. Besides continuous uncertainty, the
field of uncertain discrete values has been attracting further
research interest in many ways. Agrawal et al. [2] work
only on discrete uncertainty; meaning that tuple instances
are assigned an appearance probability. With a high man-
ifold of various application areas for uncertainty, different
uncertainty models have been defined.

Most recent research in the field of data mining is per-
formed with a focus on clustering uncertain points. Here,
the main goal is to include the uncertainty information of
the data into the clustering algorithms. The common as-
sumption is: if the uncertainty information is explicitly used
in the clustering, then the resulting partitioning has a higher
quality than without this additional information. The valid-
ity of this assumption has been proven in various papers,
such as [10, 15].

As research emerges on mining uncertain data, the
database community develops more efficient models to han-
dle uncertain data. In this field, a high diversity of system
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capabilities can be found, such as the ability to store specific
uncertainty definition types and its flexibility to include new
models of uncertainty. In those systems the most effort is
spent on optimizing the performance of answering queries
on uncertain data [2, 3]. In contrast to those systems, the
approach presented in [13] introduces a greater level of flex-
ibility, scalability and performance. The approach is based
on the monte-carlo principle and the system is called monte-
carlo database system (MCDB).

While different approaches for uncertain data manage-
ment have been proposed and much work has been done on
uncertain data mining, no literature can be found in com-
bining these two principles. To tackle this problem we pro-
pose a new method to cluster uncertain data on the base of
the previously motioned MCDB approach in this paper. By
having the same computational principle in the mining algo-
rithm and the database system, the already established tight
integration of data mining algorithms and database system
is continued for the uncertain data field.

Contribution and Structure of This Paper:

This paper is organized as follows: First—in Section 2—
we give an overview of current uncertain clustering algo-
rithms and review them specifically under the consideration
of the used distance functions. Then, we investigate the
algorithms in regard to their ability to work with different
distance functions. Furthermore, we review work done in
the field of uncertain data management. Second—Section
3—, we propose our new clustering approach based on the
MCDB approach [13]. Fundamentally, the major advan-
tage of our clustering approach is that we can utilize any
common clustering algorithm in combination with any ar-
bitrary distance function. Third—Section 4—, we illustrate
(1) optimization possibilities, (2) test our proposed cluster-
ing approach and (3) present future work aspects. Section
5 presents our evaluation, based on performance and qual-
ity. Finally Section 6 will draw a conclusion of all chapters
conclusion.

2 Related Work

In this section, we illustrate related work in two fields:
we review (1) the field of uncertain data stores as well as (2)
the field of clustering uncertain data. Both fields are rele-
vant since our newly proposed method aims to be integrated
as closely as possible into an existing database system.

2.1 Probabilistic Storage

Database systems for uncertain data have the focus of
storing, managing and querying data annotated with un-
certainty. Many different methods have been proposed to

optimize query processing and storage. The main con-
cepts of the different systems are proposed in [2, 3, 21].
While the common base is the storage of uncertain data and
query methods on this data, the detailed concepts differ very
greatly. Fundamentally, the main difference between the ap-
proaches lies in the way the uncertainty definition is stored
and the capability of storing different types of uncertainty.
For example, the Trio system [2] can only process nomi-
nal uncertainty in various forms, while the Mystiq [3] and
the Orion system [21] use a more complete model since the
uncertainty is stored more flexible.

Orion, introduced in [21] is an extension of the open
source database system PostgreSQL. Each tuple in a table
is annotated with its uncertainty definition by extending the
relational table model by additional information for the un-
certainty definition. With this extension, new methods were
developed to answer queries on uncertain data. One of the
main ideas is to store the uncertainty definition on a sym-
bolic base. This means that a density function is represented
by a string (e.g. GAUS) with the parameters needed for this
one specific data point. By this means, the amount of stor-
age needed for the uncertainty definition is reduced com-
pared to an exact definition of the functional dependencies
of the uncertainty. Furthermore, Orion contains specially
developed index structures to speed up the query process-
ing. To answer queries, Orion stores a histogram represen-
tation of the PDF of a tuple once it is used for query process-
ing. Therefore, the amount of memory needed to answer
complex queries can become very large. Furthermore, the
uncertainty model can be extended by implementing stored
procedures. These customized uncertainty definitions are
handled differently than the built-in definitions. Therefore,
the optimized query processing can be applied to only a
small extent on the custom defined uncertainty definition.

A different approach is chosen by Trio [2]. The foun-
dation of the query processing lies in tracking the lineage
of the tuples during the query process. With the computa-
tion model in Trio it is possible to calculate the uncertainty
of intermediate and final result with high precision. This
results in a major drawback of high memory usage during
processing time. Furthermore, the current published results
show only the possibility of storing nominal values with its
possible worlds. With the limitation of being able to store
only nominal data, this system is not applicable to all use
cases and has only a very small usage base.

Compared to the approaches highlighted above, the
Monte Carlo DataBase (MCDB) approach from [13] pro-
poses a completely different approach. The main concept is
to create different possible worlds of the uncertain data, via
value generator functions (VG-Functions), which are then
processed independently of each other. In a last step, the
data is aggregated to a final result. Compared to other ap-
proaches, the MCDB approach does not alter the traditional
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table model but leverages different stages within the query
execution plan to perform the probabilistic queries. Fur-
thermore, with the help of the VG-Functions, the MCDB
approach handles a very broad range of uncertainty classes.
The MCDB approach is, to our knowledge, the most flex-
ible and efficient way of managing and querying uncertain
data. For this reason, we use the basic concept of MCDB
and transfer it into a clustering approach for uncertain data.

2.2 Uncertain clustering

Related work in clustering uncertain data can be classi-
fied in four different groups. The classification is based on
the underlying base clustering method. The first class, pro-
posed in [10, 15, 24], is density-based algorithms. In this
case, clusters consist of dense regions and the number of
clusters is not predetermined. In [1, 4], uncertain clustering
algorithms are introduced based on k-means [11] (second
class). Here the goal is to minimize the total expected dis-
tance between the points within a cluster. Conceptual clus-
tering is proposed in [22] (third class). While other algo-
rithms use a more general approach within the density func-
tion, conceptual clustering limits the uncertainty to categor-
ical data. With this side condition the categorical cluster-
ing performs better compared to other approaches. The last
class is based on hierarchical clustering and can be found
in [16]. Further publications, such as [6, 14, 17], intro-
duce techniques to enhance the clustering performance but
do not introduce a novel concept of clustering or distance
functions.

While the various approaches differ in detailed aspects,
the common base is the property of clustering on data that is
annotated with uncertainty. This annotation is constructed
by a probability density function (PDF). Within the algo-
rithms, the PDF is integrated into well-known distance mea-
sures. For example, in [4] the expected distance E from a
point xi to a cluster Cj mean cj is defined as:

E(cj , x) =
k∑
j=1

∑
i∈Cj

∫
‖cj − xi‖2 PDF (xi)dxi (1)

and the cluster mean cj of cluster j defined as

cj =
1
Cj

∑
i∈Cj

∫
xiPDF (xi)dxi (2)

Equations 1 and 2 both contain integral equations that have
to be approximated. These approximations consume the
majority of the computation time of the distance compu-
tation as depicted in [1].

While k-means-based algorithms minimize the expected
total distance within one cluster, the density-based ap-
proaches modify the distance function and the associated

definitions of distance, reachability and the property of a
core object as defined by DBSCAN in [8]. First, the def-
inition of a distance is transformed to a distance density
function:

P (a ≤ d(o, o′) ≤ b) =
∫ b

a

PDFd(o, o′)(x)dx (3)

P denotes the probability that the distance between two ob-
jects, d(o, o′), lies between a and b and PDFd(o, o′) is the
probability distribution function of the distance function be-
tween the two points. Second, on this base the reachabil-
ity and core object definitions are redefined as reachability
probability and core object probability. To be able to clus-
ter data the properties of each point, within the dataset D,
have to be checked at least against the property of density
reachability from DBSCAN . DBSCAN also introduces
two parameters for the density property, with ε defining the
range around a point and µ defining the number of points
within the ε range needed to classify the point as a clus-
ter. The reachability property of two points p and o from a
database D with respect to the density parameters µ and ε
is defined as:

P reachε,µ,d,D(p, o) = P coreε,µ−1,d,D\{p}(o) · Pd(p, o)(ε) (4)

The core object probability is defined as:

P coreε,µ,d,D(o) =∑
A⊆D
|A|≥µ

∏
p∈A

Pd(p, o)(ε)
∏

p′∈D\A

(1− Pd(p′, o)(ε)) (5)

Clearly eqations 3, 4 and 5 are of complex nature because of
the operations on the PDF and the high number of data sub-
sets in equation 5. Furthermore, FDBSCAN proposes to
solve the integrals by approximation methods on the func-
tion. Therefore, FDBSCAN cannot scale appropriately in
terms of number of data points within the data set D.

The approach proposed in [10], named DBSCANEA,
introduces means for clustering the data on the base of ob-
jects with a specific bound. As the previous examples show,
the PDF itself is abstractly defined as a function. Since the
PDF does not necessarily need to have a zero-point, the
method cannot be applied to all PDF functions. For ex-
ample, a commonly used PDF is the normal distribution
function. The normal distribution does not have a zero-
point. Therefore, a determination of a zero point is neces-
sary. Furthermore, DBSCANEA requires calculating the
minimum and maximum distances between two arbitrary
shapes. This is solved by sampling the objects and calcu-
lating the distance between the sampling points. From this
calculation the minimum and maximum is determined. Be-
cause the mesh of the sampling points on the objects needs
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Figure 1. Possible Worlds Mining

to be very dense to approximate the minimum and maxi-
mum distances accordingly, the distance computation time
increases accordingly.

The approaches illustrated in [1, 22, 24] work on similar
complex distance functions and therefore have the similar
shortcomings in scalability towards large datasets.

3 Possible World Clustering

In this section we introduce our new approach based on
possible world scenario from the MCDB database. The
complete process is illustrated in Figure 1. From a database
D with Nu tuples annotated with uncertainty definitions,
we generate M possible worlds, with each world contain-
ing Nu tuples. To generate the possible worlds we leverage
the value generator functions (VG-Function) from [13]. A
VG-Function uses the uncertainty definition fromD to gen-
erate random values derived from the tuple. Since the VG-
Functions generate the new tuples on the base of the PDF,
the union of all M can be seen as a representation of the
PDFs of the original points from D.

AfterM possible worlds are generated, the next step is to
perform the data analysis on each possible world. As a re-
sult each possible world has its own cluster model. Each
cluster model represents only a local model to its possi-
ble world. Hence, we generate M possible cluster models.
As the VG-Functions generate independent possible worlds,
each world can be processed parallel to other worlds. Hence
this method achieves a high parallelism. With multi-core
and multi-CPU systems, this method can achieve a high
speedup for the complete process compared to the classical
uncertain clustering approaches. Since the goal is to gen-
erate a global cluster model for the database D, the local
cluster models have to be merged. The MCDB approach,
which we use as a design reference, uses the single values
of the possible worlds and generates histograms from the
results.

The final clustering result must be derived from the lo-
cal cluster models in some way. For this purpose we use
the method of clustering aggregation and pair-wise similar-
ity, as introduced in [9]. At first we build M local similar-

Figure 2. Dataset used for evaluation

ity graphs. A local similarity graph is constructed as fol-
lows: Each point Pi is a node. All points within the same
cluster in a local cluster model are connected with an edge
weighted with 1. As a result we have derived M similar-
ity graphs from the M local cluster models. In the next
step the local similarity graphs are aggregated to one global
similarity graph using the techniques introduced in [9]. The
resulting global similarity graph can now be used to derive
a global cluster model.

Although this approach is a more extensive algorithm
than current approaches for uncertain clustering it offers a
more scalable approach as the following section shows.

4 Possible Optimizations

As the proposed new algorithm is of complex nature wen
now illustrate an optimization strategy for the algorithm and
its impact on the clustering result. Furthermore, we will
present further research interest within this topic. For all
evaluations in this section we use a data set as illustrated
in Figure 2. It consists of 5 Gaussian clusters. We vary
the number of data points from 10’000 to 50’000. As an
uncertainty definition we use a rectangular function with a
maximum error of 5% of the coordinate in the 3σ area of the
PDF. Furthermore, we use DBSCAN from [8] to generate
the local cluster models.

The usage of the previously introduced algorithm is con-
nected with the usage of parallel components. Since it is
necessary to produce many possible worlds to approximate
the PDF properly, the number of parallel resources required
can exceed current CPU technology for parallel processing.
Therefore, multiple possible worlds have to be executed in
a serial fashion thus reducing the speed of the algorithm
tremendously. To tackle this problem we illustrate an op-

Final edited form was published in "IEEE 25th International Conference on Data Engineering. Shanghai, 2009". S. 1625-1632. ISBN 978-1-4244-3422-0 
https://doi.org/10.1109/ICDE.2009.174  

4 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



Figure 3. Reduction of Possible Worlds

timization approach in this section. The optimization anal-
yses the effect of the distribution of the possible worlds to
a reduced number of threads. With a very low number of
threads the total runtime of the algorithm can further be im-
proved since they can be executed fully in parallel.

4.1 Possible World Distribution

As illustrated in the previous section, the VG-Functions
generate M possible worlds. Since the possible worlds are
independent of each other, we can perform the clustering of
the worlds in parallel. Therefore, we distribute each possi-
ble world on one thread. This produces the need of P = M
threads. Parallelism on modern architecture is limited in
many ways. If P exceeds the number of available paral-
lel processing units then not all M possible worlds can be
processed in parallel. Therefore, parallel processes are exe-
cuted sequentially, reducing the clustering speed.

To ensure that all possible worlds are executed in paral-
lel, we propose an extension to the possible world clustering
called possible world distribution. After the VG-Functions
generate M possible worlds we distribute the worlds on P
processes with P < M . To perform a reduction from M
possible worlds to P independent datasets, as illustrated in
Figure 3, a few side conditions must be considered and also
their effect on the resulting clustering.

At first, we generate M possible worlds for one data
point U fromD. Then, we create a histogram withNb num-
ber of bins from the values. Figure 4 illustrates a histogram
of a normal distributed function around the value µ. Each
bin contains the same number of data points. Therefore, the
width of the bin is of interest rather than the occurrence fre-
quency. This property of the bins is used later in the process
to generate the data sets for the processes. For the number
of generated possible worlds we consider the side condition
that the number M is an integer multiple of P . This guar-
antees that each process becomes the same number of data
points. Furthermore we use this side condition to consider
that each processPi has the same number of possible worlds
from one data pointU . This is important for the aggregation
process, as we present in more detail later on.

To compare the actual distribution methods with each

Figure 4. Histogram of the generated possi-
ble worlds

other we measure the similarity of the cluster models. As
a similarity measure we use the pair-wise distance measure
from [9]. At first, the dissimilarity of two points (u and v in
D) in two cluster models(C1 and C2) is calculated with the
dissimilarity measure:

dv,u(C1, C2) =

 1 if C1(u) = C2(v)andC1(u) 6= C2(v)
or C1(u) 6= C2(v)andC1(u) = C2(v)

0 else
(6)

The total distance S of two cluster models is then calculated
by the sum of all dissimilarities of all tuple pairs in D:

SD(C1, C2) =
∑

(u,v)∈D×D

dv,u(C1, C2) (7)

The maximum distance of two cluster models is equal to the
number of data points within the cluster model. Further-
more, we generate 30 possible worlds and distribute them
to 5 processes.

For the actual distribution we consider two different
methods. The first method is the most obvious: The random
distribution of the possible worlds on the processes. Each
process is assigned Nu number of possible worlds with

Nu =
M

P
(8)

With this random distribution of possible worlds on the pro-
cesses the resulting cluster models are very similar to each
other since they are a good mix of generated values. Fig-
ure 5 illustrates the differences of the local cluster models
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Figure 5. Normalised local cluster model sim-
ilarities

Figure 6. Disimilarity of final cluster models

for a random mix of worlds. Clearly the differences of the
models are only very limited.

The second method is to leverage the histogram of the
generated possible worlds. We generate Nb = Nu bins and
assign each bin to exactly one process. Figure 5 shows the
normalized distance of the local cluster models with differ-
ent dataset sizes. Furthermore, we normalized the distances
by the maximum distance to create a more comprehensi-
ble evaluation. This way the local cluster models have a
high diversity of points compared with each other, which is
also reflected in the differences in the local cluster model,
as Figure 5 shows.

Next, we compare the two final clustering results gener-
ated with the two distribution methods. Figure 6 shows the
measured results for different dataset sizes. Clearly Figure
6 shows that the more data points within the dataset are, the
higher the difference between the two methods is. There-
fore, it shows that the selection of the distribution is an im-
portant decision to ensure high cluster quality.

Finally, we compare the clustering performance between
the distributed and the undistributed method. Table 1 shows
that for different dataset sizes the distribution of the possi-
ble worlds to lower number of processes increases the clus-
tering performance. Therefore, the distribution is a good
method to increase the clustering performance. Further-
more, an increase of possible worlds increases the quality
of taking the uncertainty into consideration, since the PDF
is approximated with a higher accuracy.

Distribution Method 10’000 20’000 30’000
None 1911s 7652s 24898s
Random 321s 1264s 4898s
Histogramm 345s 1302s 4965s

Table 1. Clustering time with different distri-
bution models

4.2 Further Issues

As the above optimization reduces the number of se-
quential operations still, further research interest exists on
this topic. At first, the question arises for the optimal M .
With an increasing number of generated possible worlds,
the precision of the system increases. This is possible since
the base PDF is approximated with a higher precision than
with a lower M . Surely the optimal M strongly depends
on the PDF itself. The number of possible worlds needed
to approximate a normal distribution is obviously higher
than to approximate an equally distributed PDF. Therefore,
an extensive analysis of the PDF under consideration with
the selected algorithm is necessary. Furthermore, if we al-
low different number of possible worlds per PDF then it is
not possible to evaluate the possible worlds separately from
each other since not every process contains a representation
of U from D.

By recalling the distribution models, as illustrated above,
there are also possible additional optimizations for the ag-
gregation method. Since the distribution is performed on
histograms from the PDF, each bin of the histogram can be
assigned a weight according to its position within the his-
togram. With a modification of the construction of the sim-
ilarity graph it is possible to integrate this weight into the
similarity graph. In this way the graph also is created with
respect to the PDF.

5 Evaluation

In this section we compare our approach with existing
approaches. Currently no clustering performance measure-
ments for uncertain data are known. Therefore, we com-
pare our approach only against existing methods. At first,
we compare the time needed to cluster data (performance)
with the other approaches and show that our new approach
scales with an increasing number of data points as well as
number of possible worlds. Furthermore, we compare the
results with existing algorithms such as FDBSCAN from
[15] and DBSCANEA. For all experiments we use the
dataset illustrated in Section 4. All experiments are exe-
cuted on a quad core xeon IBM blade providing a physical
parallelization of a factor 4.
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Figure 7. Comparison of clustering times

5.1 Performance

Our new approach offers the possibility of creating the
local clustering models in parallel. With this parallelism
we can create the final clustering result faster compared
to other uncertain clustering algorithms. At first we per-
formed performance tests with DBSCAN , FDBSCAN ,
DBSCANEA and our new approach. Figure 7 shows the
results of our experiments. DBSCAN clearly is the algo-
rithm with the shortest time needed to create the final clus-
ter models, since the uncertain algorithms FDBSCAN ,
DBSCANEA and possible world clustering all contain
DBSCAN as a base. All modifications of the algorithm
to include the uncertainty into DBSCAN produce the spe-
cific algorithm overhead, compared to DBSCAN .

Figure 7 shows that FDBSCAN has a short run time
for a small number of data points. This comes from the
small overhead added by the distance function. The dis-
tance function is performed n2 times to create each cluster-
ing. Since FDBSCAN adds a very costly operation to the
distance function, the costs for this modification are expo-
nentially added. Therefore, FDBSCAN does not scale
very well for larger number of data points compared to
DBSCAN .
DBSCANEA also adds a specific overhead to the dis-

tance function. Since we choose the PDF function as a rect-
angular function, the min-/max- distance calculation adds
only very limited overhead. Therefore, the increase of
time needed for the clustering also increases. Since the
overhead is not as large as with FDBSCAN , the total
time for DBSCANEA does not increase as fast as for
FDBSCAN .

Finally, our Possible World clustering performs best
from the uncertain clustering algorithms. The overhead
in the Possible World clustering is derived from two
points: (i) possible world generation and distribution on
the threads, (ii) cluster aggregation. Figure 7 shows that
for a small number of tuples the management overhead is
larger than the overhead produced by FDBSCAN . Since
the overhead is not produced during the distance computa-
tion, it does not grow exponentially as the overhead from
FDBSCAN does. Therefore, the Possible World cluster-
ing performs better for larger data sets than FDBSCAN .

5.2 Quality

Clustering quality is an important measure in compar-
ing new algorithms with existing methods. Typically, a
prelabled dataset is used to determine how good the cluster-
ing algorithms can determine the labels. A second approach
is to use quality metrics such as the Xi-Beni index intro-
duced in [23]. Since no clustering metrics and prelabled
datasets are known for uncertain data, we compare our re-
sults only with the results from existing algorithms. The
goal is to have similar results as FDBSCAN produces
since our focus lies on creating a method to cluster data
faster compared to other approaches.

Similarity Sampling DBSCANEA FDBSCAN

Sampling 0 90% 69%
DBSCANEA 90% 0% 80%
FDBSCAN 69% 80% 0%

Table 2. Clustering Difference.

Table 2 shows the normalized similarity of the final clus-
ter models to each other. The parameters for all clustering
algorithms were kept constant. Also in this experiment we
generated 4 possible worlds. Hence, we choose a very low
approximation of the PDF. Clearly, the error introduced by
this small number of possible worlds is only minimal com-
pared to the other algorithms.

6 Conclusion

In this paper we presented a novel clustering technique
for uncertain data. As more algorithms are included into
database systems, we propose a method similar to the
Monte Carlo Database for uncertain data to be able to in-
clude the algorithm into the database management system.
The method is divided into three steps. In the first step, mul-
tiple possible worlds are generated from a dataset according
to their uncertainty definition. In the second step, a cluster
model is built for each world. For a final clustering the local
clustering, results are aggregated into one clustering.
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Furthermore, we illustrate possible extensions to the
method. With these extensions the algorithm may achieve a
higher clustering quality than without the extensions. Also
we can show that with the extension we can leverage mod-
ern multicore CPU architectures more efficiently than with
the naı̈ve method.
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