

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-803739

Thomas Kissinger, Marcus Hähnel, Till Smejkal, Dirk Habich, Hermann Härtig, Wolfgang
Lehner

Energy-Utility Function-Based Resource Control for In-Memory
Database Systems LIVE

Erstveröffentlichung in / First published in:

SIGMOD/PODS '18: International Conference on Management of Data, Houston 10.-
15.06.2018. ACM Digital Library, S. 1717–1720. ISBN: 978-1-4503-4703-7

DOI: https://doi.org/10.1145/3183713.3193554

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-803739
https://doi.org/10.1145/3183713.3193554

Energy-Utility Function-Based Resource Control for
In-Memory Database Systems LIVE

Thomas Kissinger⋆ Marcus Hähnel# Till Smejkal# Dirk Habich⋆
Hermann Härtig# Wolfgang Lehner⋆

⋆Database Systems Group / #Operating Systems Group
Technische Universität Dresden

Dresden, Germany
{first.last}@tu-dresden.de

ABSTRACT
The ever-increasing demand for scalable database systems is limited
by their energy consumption, which is one of the major challenges
in research today. While existing approaches mainly focused on
transaction-oriented disk-based database systems, we are investi-
gating and optimizing the energy consumption and performance
of data-oriented scale-up in-memory database systems that make
heavy use of the main power consumers, which are processors and
main memory. In this demo, we present energy-utility functions as
an approach for enabling the operating system to improve the en-
ergy efficiency of scalable in-memory database systems. Our highly
interactive demo setup mainly allows attendees to switch between
multiple DBMS workloads and watch in detail how the system
responds by adapting the hardware configuration appropriately.

CCS CONCEPTS
• Information systems → Main memory engines; Relational
parallel and distributed DBMSs; • Software and its engineering
→ Power management;

KEYWORDS
in-memory, energy efficiency, adaptivity, elasticity
ACM Reference Format:
Thomas Kissinger, Marcus Hähnel, Till Smejkal, Dirk Habich, Hermann Här-
tig, Wolfgang Lehner. 2018. Energy-Utility Function-Based Resource Control
for In-Memory Database Systems LIVE. In SIGMOD’18: 2018 International
Conference on Management of Data, June 10–15, 2018, Houston, TX, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3183713.3193554

1 INTRODUCTION
To keep pace with the ever-increasing data volume, modern state-
of-the-art in-memory database systems need to scale up on server
hardware featuring an increasing amount of main memory and
compute resources usually implementing a non-uniform memory
access (NUMA). The power draw of this server hardware in general

©2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in SIGMOD’18, June
10–15, 2018, Houston, TX, USA

DOI: https://doi.org/10.1145/3183713.3193554

Figure 1: Architecture of Energy-utility function-based re-
source control of a data-oriented in-memory DBMS.

and especially database servers as a fundamental component of
mostly every service became a severe issue in the recent years.
Hardware vendors have become more and more aware of this prob-
lem and focus on increasing the energy efficiency (performance
per Watt) and energy proportionality (proportionality between sup-
plied performance and power draw) of processors and servers as a
whole by adding a rich set of energy-control knobs (e.g., sleep states,
separate core and uncore clocks). From the software perspective,
data-oriented in-memory database systems [2, 4, 5] were proposed
that employ worker threads, which exclusively operate on local
data partitions and communicate via a message passing layer (cf.,
Figure 1), exhibiting a superior scalability, which is a major prerequi-
site for achieving energy proportionality and thus energy efficiency.
However, those modern in-memory database systems do all the
thread scheduling on their own (e.g., to ensure NUMA awareness)
and threads are rarely blocked while waiting on secondary storage
devices. Hence, hardware and operating system have almost no
chance to appropriately configure the energy-related tuning knobs
of the hardware due to their limited DBMS insights. Thus, it is an es-
sential step to add more sophisticated energy-control mechanisms
to the operating system, which requires additional interfaces for
pushing down database-specific runtime information.

In this demo, we address this issue by extending our recent
approach of a DBMS-integrated hierarchical energy-control loop
(ECL) [3], which is organized in multiple socket-level ECLs and a
system-level ECL. While the first ones are responsible for config-
uring the socket-local hardware components using an adaptively

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1717–1720, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3193554

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1145/3183713.3193554
https://doi.org/10.1145/3183713.3193554

(a) compute-bound. (b) memory bandwidth-bound. (c) shared hash table insert.

Figure 2: Energy-utility functions (EUF) for a compute-bound, memory bandwidth-bound, and shared hash table insert work-
load for a single socket. Circles are hardware configurations. Inner color shows uncore frequency; outer color the average core
frequency; diameter indicates the number of active cores.

maintained energy-utility function (EUF), the latter one keeps track
of current query latencies and uses a best-effort strategy to stay
within a user-defined latency limit. As shown in Figure 1, our ex-
tension comprises (1) the decomposition of EUFs into a hardware
energy model and a software model to reduce EUF maintenance
efforts [1] and (2) the outsourcing of the energy-control mechanism
to the operating system to pave the way for multi-DBMS instance
energy management on a single machine.

2 ENERGY-UTILITY FUNCTION-BASED
RESOURCE CONTROL

In this section, we discuss our overall approach for adaptive energy-
control of data-oriented in-memory database systems running on
NUMA-based scale-up hardware architectures and cover the foun-
dations of EUF-based hardware resource control. Figure 1 visualizes
the architecture of our approach. The application under control is
a data-oriented in-memory DBMS that implicitly partitions all data
objects and stores them in the local memory of the individual sock-
ets. Each hardware thread runs a worker that processes requests
on the local partitions, which are exclusively locked during the
processing phase to eliminate the need of non-scaling fine-grained
data structure latches. During query processing worker threads
communicate via a message passing layer. The operating system
leverages and maintains workload-dependent energy-utility func-
tions that reflect the trade-off between a certain utility (e.g., query
throughput) and energy consumption. An EUF is maintained per
energy domain (i.e., per socket) to select the most energy-efficient
hardware configuration for a specific system load. The operating
system pulls monitoring information from the DBMS (e.g., query
throughput and worker utilization) and from the hardware perfor-
mance counters (e.g., memory bandwidth) for its decision making.
Energy-Utility Functions (EUF). An EUF consists of configura-
tions representing a specific system state in terms of hardware
energy-control settings for a single socket. Configurations itself are
workload-agnostic, but exhibit different energy and utility charac-
teristics when being evaluated in the context of a specific workload.
Hence, a configuration is expressed as:

cx = ({coreHyperThread}, {(core, fcore)}, funcore) (1)

For instance a configuration c1 can be instantiated as:

c1 = ({11, 12, 21}, {(1, 1.2GHz), (2, 2.1GHz)}, 3GHz) (2)

This configuration activates the first physical core and both Hy-
perThread siblings as well as the second physical core with one
HyperThread. The core frequency of the first physical core is set to
1.2 GHz and the clock of the second core is set to 2.1 GHz. The un-
core clock (operating frequency of caches and memory controllers)
is pinned to 3GHz. During the evaluation process of a configura-
tion, it is enriched with the utility metric and a power consumption.
A covering set of configurations create an EUF as shown in Figure 2.
The color of the outer circles encodes the average core frequency
(ranging from green to red), the inner color the uncore frequency,
and the diameter the number of active cores. The x-axis indicates
the utility as the utility metric normalized to the peak utility. The
y-axis shows the energy efficiency of a configuration normalized
to the measured peak energy efficiency. Database systems without
energy-control mechanisms usually use all available cores at the
highest frequency as long as enough work is available, which is
known as race-to-idle (RTI). Therefore, the baseline in the figure
shows the respective energy efficiency that is achieved for differ-
ent performance demands using this approach. Obviously, a more
energy-efficient way is using a RTI strategy that switches between
idle mode and the most energy-efficient configuration, which is
depicted as the ECL RTI line. In general, only the skyline configu-
rations are of interest for our energy-control mechanism, because
they are the most energy-efficient ones for a specific utility.

As shown by Figure 2, EUFs are workload-dependent. For in-
stance, Figure 2(a) show the EUF for a compute-bound workload
(all threads increment a local counter). However, the shape of an
EUF starts to change as soon as hardware resource contention is
created as shown in Figure 2(b) and 2(c). In the first figure, memory
controller contention occurs (i.e., a parallel column scan) result-
ing in configuration clusters with the same uncore frequency or
cacheline contention that is generated in the latter EUF. As shown,
hardware resource contention usually widens the gap between the
configurations regarding their energy efficiency.
EUF Decomposition. To evaluate the energy and utility metric
of a configuration, we need to map all possible workload types
and configurations to their respective energy draw. Due to the vast
configuration space, this becomes quickly unfeasible to benchmark

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1717–1720, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3193554

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Figure 3: Web-based demo user interface.

for all imaginable workloads. We argue that re-benchmarking all
possible configurations upon a workload change is too invasive
and costly for a practical application. To overcome this issue and
be able to quickly adapt a socket’s EUF, we take the step to de-
compose an EUF into a calibrated software model and hardware
energy model. This approach allows us to generate the software
and hardware models separately. In particular, we benchmark the
hardware once, using a wide range of benchmarks that are indepen-
dent of the actual workload, but are able to trigger many different
usage characteristics of the CPU. This step yields a hardware en-
ergy model that maps various CPU resource usage patterns to the
power draw of the CPU. Accordingly, to create the software model
it is no longer necessary to actively apply various hardware con-
figurations, since this configuration space is already covered by
the hardware model. Instead, we choose a fixed hardware configu-
ration and monitor the behavior of the changed DBMS workload.
This step provides us with a software model that maps the DBMS
utility (e.g., query throughput) to the corresponding CPU resource
usage pattern. Combining both models allows accurate prediction
of power consumption and utility.

The main challenge using the aforementioned approach is to find
an abstraction between the hardware energy model and the soft-
ware model that is versatile enough to express different workloads
and at the same time abstract enough to avoid hardware-specific
metrics in the software model. For instance, the key feature set for
CPU power draw are frequencies, active cores (hardware configu-
ration) and the instruction mix issued by the application. Memory
bandwidth-intensiveness and the types of computations used are
key factors that define the instruction mix and thus the power draw
of a specific hardware configuration. Vector instructions for in-
stance use more power than basic ALU instructions, while the CPU

draws considerably less power when mostly waiting for memory. A
CPU hardware energy model is thus a mapping from these metrics
to power described by the following equation:
PCPU = f (cx ,memory bandwidth, vector instruction ratio) (3)

The hardware energy model needs to be trained for each configu-
ration (cx) with a set of workloads, which adequately capture the
memory bandwidth and vector instruction ratio metrics.

The corresponding software model maps the software-specific
performance metric, such as query throughput, to the characteris-
tics of the instruction stream needed by the hardware model. We
found that a good – hardware-independent –metric for the software
to specify the two key features is the number of memory-accesses
per retired instruction and the number of vector instructions per re-
tired instruction. These metrics are only dependent on the programs
instruction stream and the cache-size, which are both constant for
a given workload in our setup as we neither recompile our software
nor migrate to a different machine. So a software model that char-
acterizes the database can be described by the following metrics
which are functions of the workload and the database configuration:
(1) instructions per query, (2) memory accesses per instruction, and
(3) vector instructions per instruction. These two models then can
be combined to compute the EUFs seen in Figure 2. If the workload
composition of the DBMS changes during runtime, the operating
system monitors the software model metrics and the DBMS exe-
cutions statistics and re-adjusts the software model accordingly
without the need to re-benchmark all configurations.

3 DEMO DESCRIPTION
In this section, we describe our overall demo setup and especially
focus on the interaction points, visualizations, and interesting sce-
narios for demo attendees. The database system is executed on a

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1717–1720, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3193554

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

2-socket Intel server system running a Linux with our EUF-based
power management component and features the web-based demo
interface for interaction shown in Figure 3. The main objective of
the demo is to show the audience how the system responds to a
changing workload type and system load by visualizing internal
structures such as calculated energy-utility functions, the current
hardware configuration, and important metrics such as power draw
and query latency. In the following, we describe the individual
interaction points and visualizations in detail:
(1) Workload. This interaction point allows the attendee to chose
from a set of predefined workloads. This workload set includes
corner case workloads such as the indexed and non-indexed key-
value store workloads generating an either memory latency-bound
workload or a memory bandwidth-bound workload. Moreover, the
set includes typical database benchmarks that generate OLTP or
OLAP-like workloads. Changing the workload during the demo
causes an adaptation of the EUFs on both sockets (shown in 7),
usually resulting in a hardware reconfiguration (shown in 6).
(2) Load Profile. While the workload describes the types of
queries executed by the DBMS, the load profile describes the sys-
tem load in number of queries per second. The load profile allows
us to measure the energy efficiency for different loads, which ef-
fectively shows the energy proportionality of the database system.
The attendee is able to switch between two static load profiles
(low and high load) as well as two dynamic load profiles executing
either a spike load to show the energy proportionality or the twit-
ter load profile to simulate a real-life load scenario. Changing the
system load typically results in a changing hardware configuration
(6) that is chosen from the socket-local EUFs (7).
(3) Load & Power Monitor. This visualization shows the live
power and system load measurements over time. Attendees are
able to observe the correlation between system load and power
draw effectively showing the energy proportionality as well as the
adaptation speed to a changing load. Moreover, this area shows
the power savings of our approach if used in combination with
energy-control master switch (5).
(4) Query Latency Monitor. Since energy savings are usually a
result of trading energy for query execution latency, this monitor
visualizes the current average query latency relative to the user-
defined latency limit. While the green zone indicates a good and
acceptable latency, the red zone indicates a violation of this limit.
The demo audience can observe how the latency fluctuates during
sudden system load peaks, while our energy-control mechanism
tries to keep the query latency below the preset limit.
(5) Energy-Control Master Switch. The energy-control master
switch either enables our approach or disables it by switching
back to traditional operating system power management without
energy-utility function assistance. Switching between both modes
causes an increased power draw visible in the power monitor (3)
as well as increased core and uncore frequency as it is visualized
in the hardware configuration (6). Attendees can use this switch
to see the benefits of our energy-control mechanism in terms of
energy efficiency and energy proportionality.
(6) Hardware Configuration. The hardware configuration mon-
itor effectively visualizes the topology of the system as well as
its configuration in terms of energy-control knobs. In particular,
we schematically show both sockets of the systems including the

available hardware threads. Each column shows the hardware
threads that share the same physical core (simultaneous multi-
threading). The bar within each hardware thread visualizes the
utilization of a hardware thread (height of the bar) and the fre-
quency setting of the underlying physical core (color of the bar).
Hardware threads without a visible bar are currently turned off
and reside in a sleep state (C-state). The border color of a socket
visualizes the current uncore clock of the socket. In general, the
hardware configuration monitor visualizes the current hardware
configuration as it was picked from the EUF (7) respectively from
the traditional operating system mechanism in case of a turned off
master switch (5). With the help of this monitor, demo attendees
are able to observe how the configuration changes in case of an
increasing system load (2) or a changing workload (1).
(7) Energy-Utility Functions. The EUF monitor visualizes the
energy-utlity functions for each socket as they were calculated by
the operating system using the decomposition approach. The EUFs
of the sockets may differ, because of an asymmetric workload or
due to different energy characteristics of the processors as a result
of the manufacturing process. Each EUF employs an indicator to
show the currently selected skyline configuration that is applied
to the hardware. Additionally, the audience is able to see the shape
of the current EUFs and is able to watch how the EUFs adapt in
case of a changing workload (1).

4 CONCLUSIONS
Energy is the key-limiter for the scalability of scale-up database
systems. This demo aimed at reducing the energy consumption
of data-oriented in-memory database systems that make heavy
use of the main power consumers, namely CPU cores and main
memory. Our approach relies on energy-utility functions that are
efficiently obtained using a combination of a calibrated software
model and hardware energy model. While we acknowledge that our
decompositional approach leads to a slight loss of accuracy of the
EUF, results show that these accuracy losses are in the low single
digit percent range. We deem the benefit of being able to directly
generate EUFs without costly re-benchmarking worth the cost.
Our sophisticated demo setup offers multiple interaction points
and visualizations to show how our approach behaves in case of a
changing workload type or system load to provide demo attendees
with valuable insights into EUF-based power management.

5 ACKNOWLEDGMENTS
This work is partly funded within the DFG-CRC 912 (HAEC).

REFERENCES
[1] Hermann Hartig et al. 2013. The case for practical multi-resource and multi-level

scheduling based on energy/utility. In RTCSA.
[2] Thomas Kissinger et al. 2014. ERIS: A NUMA-Aware In-Memory Storage Engine

for Analytical Workloads. In ADMS.
[3] Thomas Kissinger et al. 2018. Adaptive Energy-Control for In-Memory Database

Systems. In SIGMOD.
[4] Ippokratis Pandis et al. 2010. Data-Oriented Transaction Execution. PVLDB

(2010).
[5] Danica Porobic et al. 2014. ATraPos: Adaptive Transaction Processing on Hard-

ware Islands. In ICDE.

Final edited form was published in "SIGMOD/PODS '18: International Conference on Management of Data. Houston 2018", S. 1717–1720, ISBN 978-1-4503-4703-7
https://doi.org/10.1145/3183713.3193554

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	Abstract
	1 Introduction
	2 Energy-utility Function-based Resource Control
	3 Demo Description
	4 Conclusions
	5 Acknowledgments
	References

