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ABSTRACT
Forecasting is used as the basis for business planning in many ap-
plication areas such as energy, sales and traffic management. Time
series data used in these areas is often hierarchically organized and
thus, aggregated along the hierarchy levels based on their dimen-
sional features. Calculating forecasts in these environments is very
time consuming, due to ensuring forecasting consistency between
hierarchy levels. To increase the forecasting efficiency for hierar-
chically organized time series, we introduce a novel forecasting ap-
proach that takes advantage of the hierarchical organization. There,
we reuse the forecast models maintained on the lowest level of
the hierarchy to almost instantly create already estimated forecast
models on higher hierarchical levels. In addition, we define a hier-
archical communication framework, increasing the communication
flexibility and efficiency. Our experiments show significant runtime
improvements for creating a forecast model at higher hierarchical
levels, while still providing a very high accuracy.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statistics—
Time series analysis; G.1.6 [Numerical Analysis]: Optimization—
Nonlinear programming

Keywords
Forecasting; Hierarchies; Time Series; Optimization

1. INTRODUCTION
Time series forecasting is an important statistical analysis tech-

nique used as a basis for manual and automatic planning in many
application domains [12]. Forecasts are calculated using mathe-
matical models that capture a parameterized relationship between
past and future values to express behavior and characteristics of a
historic time series. The parameters of these forecast models are
estimated on a training data set to fit the specifics of the time series
by minimizing the forecast error (i.e., difference between predicted
and actual values). This estimation is typically conducted using lo-
cal (e.g., LBFGS [16]) or global (e.g., Simulated Annealing [15])
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optimization algorithms and is typically very time consuming, due
to a parameter search space that increases exponentially with the
number of model parameters. Additionally, many application do-
mains exhibit a hierarchical data organization, with time series and
forecast models on multiple levels. Here, the time series are aggre-
gated along the hierarchy based on dimensional attributes such as
location [14, 7, 8]. Forecasting in these environments is especially
complex since it is necessary to involve data and entities across hi-
erarchical levels and to ensure forecasting consistency among them.

In the energy domain accurate forecasts are of special impor-
tance, because they are a fundamental pre-requisite for balancing
energy consumption and production. Previously, with a predomi-
nant usage of conventional energy sources, the energy supply could
be almost perfectly matched to the energy demand. However, with
an increasing share of renewable energy sources new requirements
are posed on the balancing and forecasting process [24, 5, 3]. In-
termittent renewable energy sources such as wind and solar power
are subject to frequent and strong fluctuations and thus, their pro-
duction is hard to predict [24, 3]. In addition, the amount of en-
ergy storage is rather limited, which means that the energy from
intermittent renewable energy sources must be directly used when
it is available [3]. As a consequence, a continuous and more fine-
grained balancing in real-time is required. Research projects such
as MIRABEL [19] and MeRegio [18] develop advanced technolo-
gies such as demand response systems and flexible energy requests
[1, 2] to further address the challenges of real-time energy balanc-
ing. A fundamental pre-requisite for these approaches is the avail-
ability of current and accurate forecasts at any point in time.

We tackle the issue of constantly available accurate forecasts by
introducing a novel hierarchical forecasting system that exploits
the hierarchical organization of the energy market. The approach
builds upon and enhances some early ideas [17]. We propose to de-
centralize the forecasting calculation by deploying forecast models
directly to the smart meters of customers. These individual cus-
tomer forecast models reflect the energy consumption or production
of its respective entity. Companies on higher hierarchical levels
can utilize the individual customer models to form a global fore-
cast model representing the measurements of all connected lower
level entities. This merging process is several magnitudes less ex-
pensive than the (re-)estimation of the forecast model parameters.
Thus, with the help of our hierarchical forecasting system balanc-
ing companies are able to rapidly calculate very accurate forecasts
and with that we enable them to balance energy in real-time. Over-
all, this paper makes the following contributions that also reflect the
organization of the paper. First, we discuss the organization of the
European energy market exploited in our hierarchical forecasting
system in Section 2. Second, we introduce an efficient forecasting
approach for hierarchical time series in Section 3. Third, we pro-
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Figure 1: Hierarchical EDMS from the MIRABEL project [2]

pose a communication protocol enabling hierarchical forecasting in
Section 4. Fourth, we present our experimental evaluation that sub-
stantiates the benefits of our approach in Section 5. We also discuss
related work in Section 6 and conclude the paper in Section 7.

2. THE EUROPEAN ENERGY MARKET
In this paper we focus on the European energy market, which is

currently changing very drastically with the goal of creating a com-
petitive, sustainable and integrated single European energy market
by 2014 [10, 21]. Since the energy market is hierarchically or-
ganized, energy data management systems (EDMS) are typically
organized accordingly. Figure 1 illustrates the hierarchical EDMS
of the research project MIRABEL[19], which reflects a simplified
version of the target role model for the European energy market [2,
6]. The lowest level nodes are made up by industrial energy pro-
ducers as well as private and industrial consumers. Furthermore,
customers consuming and producing energy (e.g., solar panels) at
the same time are called prosumer. At this level, smart meters con-
tinuously monitor the consumed or produced energy. Producers,
consumers and prosumers are pooled into balance groups, with the
goal of balancing the energy consumption and production within
these groups. Companies taking the role of a balance responsible
party (BRP) are managing the balance groups. The third level com-
prises the transmission system operators (TSOs), which account for
a stable operation of the grid and the transportation of electricity.

3. FORECASTING IN HIERARCHICAL
ENVIRONMENTS

Figure 2: Estimation vs. Aggregation Approach

To allow efficient forecasting in hierarchical environments, we
propose to exploit the hierarchical organization of time series and
to decentralize the forecasting process. More specifically, the re-
sponsibility to build and maintain a forecast model is pushed to
the base level of the hierarchy. In the energy domain this is moti-
vated by the fact that smart meters are expected to be widely de-
ployed and thus, we can exploit their available computing capacity.
Hence, next to their task of recording current measurements, smart
meters gain the capability to predict the future consumption or pro-
duction of a customer. The employed forecast models can be seen
as a compact representation of the customer data and in an ideal
case the forecast model describes values that are identical to the

actual time series. While, in the real-world forecast models always
exhibit a certain error, this error is typically reduced with an in-
creasing aggregation level, since in the entirety single fluctuations
are neutralized to a large extend. Accordingly, the idea is to trans-
mit the forecast models of the single customers and aggregate them
to directly determine a global forecast model describing the energy
consumption and production of the entire group. Forecast model
aggregation in this sense means, that each of the global forecast
model components (i.e., the combination of a forecast model coef-
ficient x and its parameter p) is calculated using a weighted linear
combination of the respective single customer components. Figure
2 compares our forecast model aggregation on the right-hand side,
with the conventional model construction using time series aggre-
gation on the left-hand side. Despite using the energy domain as
an example, our approach can also be adapted to other application
domains exhibiting hierarchical time series such as sales or retail.

The proposed forecast model aggregation is far less time con-
suming compared to the conventional forecast model estimation.
As a result, our hierarchical forecasting approach provides a very
efficient way for higher-level entities to create accurate global fore-
cast models in several orders of magnitudes less time (experiments
in Section 5). In addition, our hierarchical forecasting approach
enables a more dynamical communication between the entities on
both layers. Instead of transmitting values in a fixed interval as
typically done in the conventional approach, a lower level entity
initiates an information exchange depending on the accuracy of its
forecast model; as long as the base model is up-to-date there is no
need to exchange information between the hierarchy levels.

3.1 Classification of Forecast Model Coeffici-
ents and Parameters

Forecast model coefficients can be divided into endogenous and
exogenous coefficients depending on their characteristics and their
handling in forecast models. Endogenous coefficients describe the
main time series that is aggregated through the hierarchical levels:
x =

∑K
k=1 xk. Typical endogenous coefficients in the energy do-

main are energy consumption, seasonal information and past fore-
cast errors. In contrast, exogenous coefficients describe an exter-
nal factor influencing the main time series. Exogenous coefficients
occur as additional time series or dummy variables (existence/non-
existence using 0 or 1), where the external influence is determined
by the combination of time series value and parameter value when
using an additional time series and by the parameter value only
when using a dummy variable. Typical examples for exogenous
coefficients are the current day of the week (dummy variable, e.g.,
Monday=0 or 1) or the temperature (time series, e.g., temperature
at customer k is 15 ◦C). External influences are typically aggre-
gated by using the average of all entities: x = 1

k

∑K
k=1 xk.

3.2 Aggregation in Detail
Creating aggregated global time series x(ti) on a higher level

means to sum the time series of all lower level entities xk(ti), with
k referring to the k-th customer and t to the current point in time.
Accordingly, following our assumption that a forecast model ap-
proximately describes its underlying time series, we create the next
level global forecast model M(ti) by aggregating the forecast mod-
els of all lower level entities Mk(ti) as illustrated in Equation 1.

x(ti) =

n∑

k=1

xk(ti) ≈
n∑

k=1

Mk(ti) = M(ti). (1)

In the following, we omit the notation (ti) for readability reasons.
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A forecast model M can be divided into separate components
M(C1, ..., Cn), where we define a model component C as a fore-
cast model coefficient x combined with its parameter p so that
C = p·x. A linear model a·x+b for example consist of two model
components a · x and b (where the coefficient is 1). To create the
global forecast model M , we separately aggregate the components
Ck of all corresponding lower level forecast models (Mk, k ∈ K),
including their coefficients xk and parameters pk. Accordingly,
the calculation of the global forecast model component C, which
likewise consists of a global parameter p and a global aggregated
coefficient x =

∑K
k=1 xk, is defined as shown in Equation 2.

C = p · x =
K∑

k=1

pkxk. (2)

Since the aggregated time series of the coefficient x is available
to the upper level entity, the only missing factor for calculating a
global forecast model component is the global parameter p. We
adapt Equation 2, to define a general aggregation rule for determin-
ing the parameter of a global forecast model component and arrive
at Equation 3. Dividing the single entity time series value xk by
the global aggregated time series coefficient x, as done in Equation
3, is equivalent to determining the current share of a single entity
value on the global value. Thus, the global forecast model parame-
ter p is derived by creating a linear combination of the single entity
parameters multiplied by their share on the global time series.

p =

K∑

k=1

pkxk

x
. (3)

Equation 3 has the disadvantage of considering the coefficient val-
ues of the individual entities xk and the values of the respective
global coefficient x. Thus, we would have to request and process
the current measurements of all lower level entities each time the
global forecast model is adapted, which clearly contradicts to our
target of a more efficient communication. To solve this issue, we
approximate the current share (xk/x) of an individual entity by
its average historic share (δ). Since the average share of an entity
is typically relatively stable over time, it is not necessary to re-
calculate it for every adaptation of the global forecast model. We
define the historic share of an individual entity as:

δk =
x̄k∑K
k=1 x̄k

where, x̄k =
1

N

N∑

i=1

xk(ti). (4)

Thus, the average historic share of an entity is the ratio between
the arithmetic mean over a time series sample (1...N ) of the single
entity to the summed arithmetic mean of all entities. The sam-
ple size is configuration-specific, where we found a sample size
of one day as most beneficial. The necessary historic values for
creating the average historic share δk are transmitted in conjunc-
tion to the forecast models of individual entities. Accordingly, the
initial share is determined during the system initialization, where
the higher-level entities receive the forecast models and average
historic values from all lower level entities. During runtime, we
adapt the share of an individual entity, whenever it transmits an
adapted forecast model. In the energy domain the determination of
the shares is even simpler, because for billing purposes all lower
level entities transmit their actual measurements once per account-
ing period anyway. Since this transmission is done asynchronous
to the forecasting process, it still increases the communication effi-
ciency compared to transmitting values for every model adaptation.
Using δk in Equation 3, we calculate the model parameters on the
next level as a weighted linear combination as shown in Equation 5.

p =

K∑

k=1

pkδk. (5)

The global forecast model is now created by applying the aggre-
gation rule to all components of the model M(C1, ..., Cn). Thus,
for aggregating an individual global forecast model component we
plug in equation 5 into C = p · x and finally arrive at Equation 6.

C =

K∑

k=1

pkδkx. (6)

For exogenous coefficients we adapt Equation 3 to the fact that
for this coefficient type customer values are aggregated instead of
summed. Thus, x = x̄ = 1

K

∑K
k=1 xk and the aggregation rule is:

p =

K∑

k=1

pkxk

x̄
=

K∑

k=1

pkσk. (7)

This means that we scale the parameters of exogenous coefficients
by the ratio of the single entity value to the global average value
σ = xk/x̄. Like for endogenous parameters we approximate the
current ratio by the historic ratio based on entity values communi-
cated during the last forecast model transmission. For exogenous
coefficients exhibiting the same value for all entities (in most cases
dummy variables), we can further simplify the aggregation rule. In
this case the global parameters p can be calculated by simply sum-
ming the parameters of the individual lower level entities.

With both aggregation rules, our hierarchical forecasting works
for models involving either endogenous or exogenous coefficients.
However, when combining both coefficient groups we found a lack
in accuracy. The reason is a varying influence of each coefficient
group that is usually automatically addressed during the conven-
tional parameter estimation. Since we do not estimate the parame-
ters in our hierarchical forecasting approach, we address this issue
by introducing an influence weight for each coefficient group. Ac-
cordingly, we adapt Equations 5 and 7 for endogenous coefficients
p(end) and exogenous coefficients p(exo) respectively leading to:

p(end) = ω1

K∑

k=1

pkδk and p(exo) = ω2

K∑

k=1

pkσk (8)

The weights ω1 and ω2 have to be estimated using optimization
algorithms, but the estimation of two parameters is computation-
ally very cheap, especially when compared to the large number of
parameters typically estimated during conventional forecasting.

With our hierarchical forecasting approach it is possible to cre-
ate higher-level forecast models without a time-intensive param-
eter estimation. Our approach does not only work between con-
secutive hierarchical levels, but across all hierarchy levels. Thus,
in the energy domain balance responsible parties (BRP) as well
as transmission system operators (TSO) are likewise enabled to
rapidly provide accurate forecasts as needed for real-time balanc-
ing. Also customers might benefit from the availability of forecast
models in their smart meters, since smart home and smart building
systems might use the forecasting capabilities to provide improved
and enhanced functionalities. Even the usage of concepts such as
the MIRABEL flex-offers or other demand-response systems [11]
can be better implemented with the availability of local forecasts.

4. HIERARCHICAL COMMUNICATION
In this Section we specify the communication protocol for trans-

mitting information between hierarchy levels. Previously the lower
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level entities provided measurements in fixed intervals (e.g., every
5 minutes). With our protocol we establish a more flexible com-
munication, where information are only transmitted when they are
needed. The protocol is illustrated in Figure 3. First, an initializa-
tion is conducted when using our hierarchical forecasting for the
first time or when a re-initialization is necessary (e.g., large organi-
zational changes). (1) During the initialization the upper level en-
tity requests the individual forecast models Mk of all correspond-
ing lower level entities. (2) The lower level entities estimate their
forecast models and afterwards transmit the model parameters to
the next level entity. (3) The higher-level entity creates its global
forecast model M by aggregating all transmitted forecast models.

Figure 3: Communication protocol for hierarchical forecasting

(4a) During runtime the higher-level entities calculate forecasts
based on the global forecast model M , (4b) while the lower level
entities append new measurements to their time series. (5) The new
values are used to evaluate the accuracy of the individual forecast
models Mk. (6) Whenever the forecast error εk exceeds a spec-
ified error threshold εT , the respective entity adapts its forecast
model M ′

k and transmits the adapted model to the next level en-
tity. (7) The next level entity uses the received forecast model to
adapt the global forecast model M . Our communication protocol
also works between multiple hierarchy levels in a cascading way.
The lowest level entities provide information to their second level
entity, which adapts its global forecast model accordingly. After-
wards the entity on the third level of the hierarchy is informed by
the respective second level entity and so on.

For our approach to work we assume that higher-level entities
still have access to the most recent aggregated time series (e.g., bal-
ance group consumption, company revenue, global sales figures).
This is the case in many application domains, since the time series
at higher aggregation levels are recorded separately. In the energy
domain for example, BRPs have metering devices at the level of
their balance group. Recordings at this level are necessary to guar-
antee the balancing of energy demand and supply for the entire
group. In addition, with an increasing employment of smart grids,
TSOs have much finer monitoring capabilities and could also pro-
vide the necessary information to entities on other levels.

To sum up, our hierarchical communication protocol provides
an efficient way for exchanging information within a hierarchy. In
most cases it is sufficient to just transmit data when forecast models
are adapted at lower level entities. While there might still be the
need to transmit the actual measurements for accounting purposes,
this transmission can be handled asynchronously and independent
of the forecasting calculation. Data can for example be transmitted
and processed in a bulk mode when free resources are available.

5. EXPERIMENTAL EVALUATION
In our experimental evaluation we show that our hierarchical

forecasting approach can rapidly calculate forecasting results, while
still providing a high accuracy. In this evaluation we use two fore-
cast models the Double Seasonal HWT (DSHWT) and the multi-
equation EGRV forecast model [22]. The single-equation DSHWT

model as introduced by Taylor et al. is a domain-specific adap-
tation of the general Holt-Winters exponential smoothing model
[23]. It exhibits four parameters and includes the daily and the
weekly season. The EGRV model uses a separate sub-model per
hour and different models for working days and weekends. This
results in a total number of 48 sub-models. For our evaluation we
did not consider temperature data. Altogether, our implementation
of the EGRV model exhibits 28 parameters in total. The parameter
estimation was conducted using the local Nelder Mead Downhill
Simplex algorithm [20] and the global simulated annealing [15]
algorithm. For the global simulated annealing algorithm we em-
pirically determined a time budget, where we found a steady state
of the forecast after around 90 seconds for the EGRV model and
17 seconds for the DSHWT model. Accordingly, we set the time
budget to 100 seconds and 20 seconds respectively.

The basis for our evaluation is the real-world data set from the
MeRegio project [18]. The data set contains the hourly energy de-
mand of 86 private customers from the 1st Novermber 2009 to the
22nd March 2010. For the lowest level in the hierarchy we directly
used the 86 customers from the MeRegio data set. To form the sec-
ond level entity, we aggregated the time series of all 86 customers.
While this data set is rather small, it still shows the applicability
and advantages of our approach on a real-world data set. Larger
datasets will lead to an even larger benefit.

The results are presented with respect to forecast error and ef-
ficiency. We measured the forecast error using the SMAPE error
metric [13]. The efficiency is represented by the execution time as
well as the number of iterations the respective optimization algo-
rithms needed. The results are the average of multiple runs from
different starting points and 30 repetitions. For the experiments we
used an Intel Core 2 Duo P8400 (2.26 GHz), 8 GB RAM, Mac OSX
10.7. The prototype was implemented in C++ using gcc 4.2.1.

5.1 Model Aggregation using DSHWT
In this experiment we compare our hierarchical forecasting to

conventional forecasting using the DSHWT model. For the hi-
erarchical forecasting, we first estimated the parameters of all 86
customer forecast models and aggregated them to form the second
level model. The DSHWT model contains endogenous parameters
only, which means that solely Equation 5 applies. For the conven-
tional forecasting we estimated the second level model using the
local Nelder Mead and the global Simulated Annealing algorithm.

The results are illustrated in Figure 4, where Figure 4(a) com-
pares the runtime for the Nelder Mead algorithm and Figures 4(b)
and 4(c) compare the final accuracy. We can see that our hierar-
chical forecasting is multiple orders of magnitudes faster than the
conventional parameter estimation. The model aggregation takes
only 0.16 ms compared to 3,400 ms when using the Nelder Mead
algorithm. For a larger number of values the runtime difference is
expected to even increase, since the conventional parameter estima-
tion iterates over the dataset multiple times. In contrast, the model
aggregation does not iterate over the time series and thus, remains
stable with an increasing number of values. However, an increasing
number of entities slightly increases the time for solving a weighted
linear combination, but this remains computationally inexpensive,
compared to a parameter estimation using optimization algorithms.

With respect to the accuracy, our hierarchical forecasting pro-
vides almost as accurate results as the conventional forecasting.
The forecast error increases only slightly by 0.04% compared to
the regular estimation using the Nelder Mead algorithm. For Sim-
ulated Annealing, the accuracy also differs only marginally. Our
hierarchical forecasting exhibits an error of 3.73% and the conven-
tional estimation provides an error of 3.62%. We also evaluated the
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(a) Efficiency (Nelder Mead) (b) Accuracy (Nelder Mead) (c) Accuracy (Simulated Annealing)

Figure 4: Results for the hierarchical forecasting with the DSHWT model

(a) Efficiency (Nelder Mead) (b) Accuracy (Nelder Mead) (c) Accuracy (Simulated Annealing)

Figure 5: Results for the hierarchical forecasting with the EGRV model

accuracy, when significantly reducing the time budget for the Simu-
lated Annealing algorithm to only 4 s (hierarchical forecasting took
0.16 ms). In this case, the forecast error increases to 4.20%. Thus,
it is not possible to conform the runtime of Simulated Annealing
to our hierarchical forecasting without sacrificing accuracy. As a
result, for the single-equation DSHWT model we can significantly
reduce the runtime, while still providing a high accuracy.

5.2 Results EGRV Parameter Adjustment
In this experiment we compare our hierarchical forecasting to

the conventional parameter estimation using the EGRV model. The
general settings for this experiment are the same as for the DSHWT
model. However, since the EGRV model contains both exogenous
and endogenous coefficients, we also compared the accuracy when
using our weighted aggregation described in Equation 8.

The results are illustrated in Figure 5, where Figure 5(a) com-
pares the runtime when using the Nelder Mead algorithm and Fig-
ures 5(b) and 5(c) present the accuracy results. The hierarchical
forecasting (Aggregation) exhibits the best runtime with only re-
quiring 0.86 ms, while the conventional estimation using Nelder
Mead required 11,900 ms. However, the sole aggregation caused
a substantial increase of the forecast error to 8.10% compared to
3.39% when estimating the parameters. The results are similar
when using Simulated Annealing (hierarchical forecasting: 8.42%,
estimation: 3.57%). The weighted aggregation significantly re-
duces the forecast error to 3.72% and 3.73% respectively, which
brings it very close to the conventional estimation again. Hence,
the experiment clearly shows the need for the weighted aggrega-
tion when dealing with forecast models comprising both coeffi-
cient types. At the same time the weighted aggregation requires
to estimate two weights for the two parameter groups, which in-
creases the runtime to 300 ms. However, the weighted aggregation
is still several magnitudes cheaper in both the runtime (300 ms vs
11,900 ms) and the number of iterations (61 iterations vs. 2,144
iterations). We also again evaluated the accuracy when reducing
the time budget for the Simulated Annealing algorithm from 100 s
(326,983 iterations) to 20 s (63,475 iterations). This reduction sig-

nificantly increased the forecast error to 17.10%, which means a
drastic drop in accuracy.

As a result, for the EGRV model our hierarchical forecasting
again provides a significant runtime improvement, allowing an al-
most instant calculation of accurate forecasts. However, to still
allow for a high accuracy, the separate weighting of both param-
eter groups is very important. Overall, the accuracy difference is
slightly higher than for the DSHWT forecast model, but still well
in range given the significant runtime benefits.

6. RELATED WORK
Forecasting of hierarchical time series is an emerging issue that

gains more and more attention in research and industry. Multi-
ple studies [4, 9, 25] analyzed this topic and especially examined
the most beneficial aggregation. In general, they distinguish be-
tween bottom-up and top-down approaches. Using the bottom-up
approach forecasts are calculated at the lowest level and aggregated
through the hierarchy. In contrast, using the top-down approach
forecasts are calculated at the top level and disaggregated to lower
levels. The studies do not arrive at a common solution since it is
not ultimately decidable which approach is more beneficial.

Hyndman et al. [14] propose a hierarchical forecasting that aims
at providing a better accuracy than either a complete top-down or
bottom-up approach. They calculate independent forecasts on all
hierarchical level and combine them in accordance to the hierarchi-
cal structure using a regression model. In contrast to our approach,
Hyndman et al. aim at increasing the forecasting accuracy instead
of optimizing the efficiency. In particular, their approach is more
expensive, since they estimate models on all hierarchical levels.

Recently, Fischer et al [7] published a hierarchical forecasting
approach that uses only a sample of base models. Forecasts on
a specific hierarchy level may be based on a subset of optimized
models on other levels. Despite limiting the number of base mod-
els they achieved a reliable accuracy comparable to aggregating all
base models. In contrast to our approach, the concept of Fischer et
al. is based on aggregating time series, instead of aggregating fore-
cast models. Thus, all forecast models involved are estimated us-
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ing numerical optimization algorithms. In addition, we only trans-
mit information through the hierarchy, when forecast models were
changed, while Fischer et al. transmit data for any forecasting cal-
culation. In general, they aim at increasing the forecasting accuracy
rather than the forecasting efficiency.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel hierarchical forecasting ap-

proach that substantially increases the forecast calculation efficiency
for higher-level entities. The core idea of our approach is to decen-
tralize the forecast process and to distribute the responsibility for
building and maintaining forecast models to the lowest level of the
hierarchy. Our approach is motivated by the energy domain, where
smart meters are more and more deployed to private and industrial
customers. Smart meters provide some data processing capabil-
ities that we exploit for maintaining individual customer forecast
models. These individual forecast models are utilized on higher
hierarchy levels to rapidly create global forecast models without
conducting a time-consuming parameter estimation. Thus, with the
help of our approach we significantly reduce the time for calculat-
ing forecasts. In addition, we defined a communication protocol,
increasing the flexibility of the forecasting related communication
within the hierarchy. In our experiments we demonstrated that our
hierarchical forecasting approach significantly reduces the time for
calculating forecasting results, while still providing a very high ac-
curacy. Despite describing our approach exemplarily by means of
the energy domain, it can be easily adapted to other application
domains such as the retail domain.

In the future we want to enhance our approach by allowing the
use of heterogeneous forecast models on the different hierarchical
levels. There, we want to capture the gradient of forecast model
adaptations and exploit this information to ease the estimation of
different forecast models on higher hierarchical levels. Addition-
ally, we plan to examine if we can determine the global forecast
model when only using a subset of the base models.
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