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Abstract

Phelan-McDermid syndrome (PMS) is a multi-system disorder characterized by significant

variability in clinical presentation. The genetic etiology is also variable with differing sizes of

deletions in the chromosome 22q13 region and types of genetic abnormalities (e.g., terminal

or interstitial deletions, translocations, ring chromosomes, or SHANK3 variants). Position

effects have been shown to affect gene expression and function and play a role in the clinical

presentation of various genetic conditions. This study employed a topologically associating

domain (TAD) analysis approach to investigate position effects of chromosomal rearrange-

ments on selected candidate genes mapped to 22q13 in 81 individuals with PMS. Data col-

lected were correlated with clinical information from these individuals and with expression

and metabolic profiles of lymphoblastoid cells from selected cases. The data confirmed

TAD predictions for genes encompassed in the deletions and the clinical and molecular data

indicated clear differences among individuals with different 22q13 deletion sizes. The results

of the study indicate a positive correlation between deletion size and phenotype severity in

PMS and provide evidence of the contribution of other genes to the clinical variability in this

developmental disorder by reduced gene expression and altered metabolomics.

Introduction

Phelan-McDermid syndrome (PMS) is a genetic disorder caused by chromosomal rearrange-

ments of the 22q13.3 region and pathogenic variants in SHANK3 [1, 2]. This disorder presents

with impressive genetic and clinical variability. The genetic alterations causing PMS are usually
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de novo and most cases present with terminal deletions, ranging from <100,000 bp to>9 Mb

[3–5]. About 20% of the total PMS population shows deletions or duplications caused by

unbalanced chromosomal translocations and in few rare cases the chromosomal imbalance is

inherited from one parent with a balanced translocation [3, 5]. In other cases a ring chromo-

some 22 (r22) has been reported, either isolated or as part of a more complex rearrangement

[6, 7].

By 2017, more than 1,500 individuals had registered with the Phelan-McDermid Syndrome

Foundation [8]. About 1% of individuals with autism (1 in 8,000–15,000 including 22q13.3

deletions and SHANK3 variants) are estimated to have PMS [9]. PMS features can appear from

birth to childhood [9], prenatally [10] or even in late teen years [11]. Currently, there is no

cure or treatment bespoke to specific needs of PMS, but therapies have been employed to man-

age individual symptoms. The early clinical presentation typically includes hypotonia and

developmental delay accompanied by a weak cry and poor head control [9]. Individuals with

PMS exhibit varying degrees of intellectual disability (ID), affecting particularly functional lan-

guage, and variable rates of ASD ranging up to 94% [12–15]. About 40% of individuals with

PMS develop seizures ranging from mild to severe. Gastrointestinal problems are commonly

reported and include constipation, gastroesophageal reflux, and poor feeding. Individuals with

PMS may have a high pain tolerance and tend to overheat due to poor regulation of body tem-

perature and impaired sweating. Other recurrent features include minor dysmorphic traits

such as large fleshy hands, dysplastic toenails, sacral dimples, and large prominent low-set

ears. The severity of these clinical features ranges from severe to mild [9, 16].

Several reports have highlighted the importance of SHANK3 haploinsufficiency or loss-of-

function variants in the etiology of PMS [16, 17]. SHANK3 plays an important role in synaptic

function by encoding a scaffolding protein in the postsynaptic density of glutamatergic synap-

ses [18]. However, individuals with larger deletions and therefore additional genes or regula-

tory regions involved, tend to be more severely affected, based largely on parental reports [4,

5]. A majority of individuals with PMS presenting with ASD and ID have SHANK3 variants

and deletions [19], while several other genes in the 22q13.3 region have been associated with

different disorders and are therefore hypothesized to contribute to PMS-related symptoms

[20, 21]. Some of the strongest evidence for the role of proximal genes of 22q13.3 in the pheno-

type of PMS comes from studies of interstitial deletions [22, 23]. One such study reports a girl-

boy pair of twins with PMS that does not involve the SHANK3 gene and this group of research-

ers found the clinical phenotype of patients without SHANK3 deletion to be similar to that of

patients with a SHANK3 deletion. This confirms the hypothesis that 22q13 genes other than

SHANK3 have contributory roles towards PMS symptoms [24].

Metabolic imbalances have been known to contribute to clinical phenotypes in complex

diseases in the past. One such study investigated neurodevelopmental manifestations in differ-

ent disorders, namely, autism spectrum disorder (ASD), idiopathic-developmental delays, and

Down syndrome (DS). The aim was to compare and correlate metabolic differences observed

in these patients with respect to typically developed controls [25]. The rationale for this study

was derived from other metabolomic impairments observed in patients with neurodevelop-

mental symptoms in the past, such as ASD and DS were associated with increased oxidative

stress [26–28], and trisomy 21 resulting in DS was found to aid in the overexpression of amy-

loid protein leading to an increased risk of Alzheimer’s Disease in DS patients [29]. These

demonstrations point towards the possibility that changes in certain metabolic pathways could

be responsible for severe neurodevelopmental features observed in PMS and it was this likeli-

hood that was exploited as the premises for conducting metabolomic studies in our cohort.

Publicly available chromatin contact information has been used to annotate and predict

regulatory elements and is increasingly valuable in correlating phenotypes with that of
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neighboring genes (TAD or position effect analysis). TAD has been applied to PMS in the past

to study the effect of disruption of genes resulting from breakpoints during the formation of

r22 [7]. A transcription factor (TCF20) in a TAD with a gene involved in the immune system

(NFAM1) was found to be misregulated due to the TAD perturbation caused by an inversion

within the gene. This transcription factor is in turn associated with genes essential for neuro-

development, leading to a plausible hypothesis that the TAD disruption contributed to the

neurodevelopmental features observed in the 3-year old PMS patient. A similar rationale that

was used for r22 formation for that publication was used in this project for patients with dele-

tions. We applied a previously published strategy for the identification of position effect candi-

date genes [30] to a series of selected PMS subjects with chromosomal deletions. In our cohort,

twelve position effect candidates were identified, and for nine of these genes we assessed a

position effect impact on their expression and function in lymphoblastoid cell lines (LCLs).

These genes were selected based on their roles in brain activity, expression in whole blood, and

their location on the 22q13.3 genomic region. This study aimed to investigate the potential

role of position effects on 22q13.3 genes and to assess the overall impact of such effects on the

clinical, metabolic, and gene expression variability in PMS.

Materials and methods

Cohort of individuals with PMS to identify position effect candidate genes

A cohort of 114 individuals with PMS evaluated at the Greenwood Genetic Center was selected

for this study to identify candidate position effect genes (Fig 1). All individuals carried a termi-

nal deletion encompassing the 22q13.3 region; deletion breakpoints and sizes were assessed by

microarray (a custom 4344K 60-mer oligo-array designed to interrogate 22q12.3-qter by

Oxford Gene Technology (Oxford, UK) Sheet 1 in S1 File and converted from hg18 to hg19

using the UCSC LiftOver tool [31] Sheet 2 in S1 File. The custom 22q microarray spans

approximately 319 genes between the regions 35–50 Mb on chromosome 22q with a resolution

of 100 bp. In this technology, the sample from the patient, or family member, and a control

sample are labeled differently with distinct fluorophores and are then co-hybridized to the

micro-array. The ratio of the fluorescent intensity of the patient DNA to the control DNA is

determined to measure the copy number present. Clinical features of these individuals with

PMS have been reported previously [3] and were organized according to the International

Classification of Diseases, 10th version [32] Sheet 3 in S1 File. The study was approved by the

Self Regional Healthcare Institutional Review Board (IRB) for Human Research, under the

number Pro00058564, IRB Study #80. Informed written consent was reviewed and signed by

all participants and/or their legal guardians. Deidentified data were used for the computational

prediction algorithm as discussed below.

Selection of 12 candidate genes using position effect analysis

We used a computational prediction algorithm [30] to identify candidate position effect genes

in the PMS cohort of 81 individuals with phenotypic information. In summary, the pipeline

predicts the degree to which neighboring genes could be transcriptionally affected by a dele-

tion and does so using a combination of genomic features such as inclusion in topological

associating domains (TADs) and disruption of known or predicted regulatory contacts. Poten-

tial transcriptionally dysregulated genes are further evaluated by considering their haploinsuf-

ficiency (HI) scores as well as phenotypic overlap with the PMS individuals’ clinical features.

We searched for potential position effects by using windows extending up to 2 Mb on either

side of the deletion breakpoints. Position effect candidates were ranked given their disruption

of known or predicted regulatory contacts, location within the 2 Mb/TAD windows, HI scores
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(=<10%), and phenotypic overlap above the 75th percentile [30]. From this analysis, 12 candi-

date genes were identified. These 12 candidate genes were then selected for expression analysis

as one method of validation.

Validation sample

Five individuals with PMS (four males and one female, 3 from the cohort of 81 and two unre-

lated patients) were selected because of their diverse cytogenetic features for expression analy-

sis and available lymphoblastoid cell lines (Table 1). Terminal deletions were confirmed

independently by FISH and MLPA.

Fig 1. Flowchart for the selection of individuals with PMS. The initial cohort consisted of 114 patients; after applying

a series of conditions mentioned above, 3 individuals were selected for this study. Two unrelated individuals were

included in the study, reaching a total of 5 individuals.

https://doi.org/10.1371/journal.pone.0253859.g001

Table 1. Selected individuals with PMS for expression and metabolic analysis.

Individual Gender Age at sample collection Deletion start point (hg19) Deletion end point (hg19) Deletion size (Mb) Definition of deletion size

PMS 1 Male 4 years 42740931 51244566 8.503635 Large

PMS 2 Male 12 years 42816484 51244566 8.428082 Large

PMS 3 Male 18 years 43800990 51244566 7.443576 Mid

PMS 4 Female 3 years 47731071 51193680 3.462609 Small

PMS 5 Male 18 years 51123491 51224252 0.100761 Small

These individuals were classified into three groups, according to the size of their deletions: large- (PMS 1 and 2), mid- (PMS 3), and small-size (PMS 4 and 5). Such

definition is arbitrary and purely based on the distribution of the genes in the 22q13 region. The sole purpose of the distinction of the deletion size into three categories

is to provide a rough stratification of the contribution of different loci on 22q13. Position effects were assessed by gene expression, metabolic profiling, and clinical

features.

https://doi.org/10.1371/journal.pone.0253859.t001
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Lymphoblastoid Cell Lines (LCLs)

Peripheral blood samples were collected by venipuncture. Lymphoblastoid cell lines (LCLs)

were obtained by immortalization with Epstein-Barr virus of lymphocytes isolated from the

whole blood samples. The lymphoblastoid cell lines were cultured in Sigma RPMI-1640 with

15% fetal bovine serum (FBS) from Atlanta Biological (Flowery Branch, GA, USA) and 2 mM

L-Glutamine, 100 U/ml Penicillin, and 100 μg/ml Streptomycin from Sigma-Aldrich

(St. Louis, MO, USA).

Gene expression using quantitative Real-time PCR (qPCR)

Quantitative Real-time PCR (qPCR) was used to measure gene expression for the 12 candidate

position effect genes. Out of the 12 candidate genes, FBLN1, SHANK3, and SCO2 did not show

expression in blood cells. Hence, the remaining 9 genes were evaluated using qPCR (Fig 2).

Five individuals with deletions in the 22q13 region (four males and one female) and two con-

trols (one male and one female) were used for the study, with two biological replicates per sam-

ple. We selected a limited number of samples because we wanted to validate a mechanism, our

aim was not to study the expression profile on any available patient with PMS. Hence, we iden-

tified 5 patients with different deletion sizes.

Total RNA was extracted from LCLs using TRIzol reagent according to the manufacturer’s

protocol. RNA concentration and quality were determined with a NanoDrop one Spectropho-

tometer (Thermo Fisher Scientific) and was confirmed to be free of genomic DNA contamina-

tion by PCR for Ribosomal protein L2 (RPL2), using primers spanning two exons and an

intron. Five μg of RNA from each sample was subjected to reverse transcription using the

iScript™ cDNA Synthesis Kit from Bio-Rad. qPCR was performed with the CFX96 Touch™

Fig 2. Flowchart for selection of genes for qRT-PCR analysis. Twelve candidate genes were identified with 9 genes

being expressed in blood and able to be assessed with qRT-PCR. Seven of the 9 were predicted to be dysregulated due

to position effects and 2 were predicted to be dysregulated due to deletion.

https://doi.org/10.1371/journal.pone.0253859.g002
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Real-Time PCR Detection System (Bio-Rad Laboratories). Samples were amplified in a 20 μl

reaction containing 25 ng of cDNA from total RNA and 1 μl of gene-specific TaqMan probe-

primer set. mRNA levels were normalized to a housekeeping gene, TATA-Box Binding Protein

(TBP). Relative quantification for the gene of interest was calculated using the 2-ΔΔCt calcula-

tion method in the software with respect to a control. Relative expression levels�1.5 were con-

sidered elevated and levels�0.66 were considered decreased.

Metabolic profiling via Biolog metabolic arrays

Metabolic profiling was measured to assess the impact of position effects on metabolism. The

Phenotype Mammalian MicroArray (PM-M) developed by Biolog (Hayward, CA, USA) is

designed to assess the metabolic activity by measuring cellular production of NADH (nicotin-

amide adenine dinucleotide, reduced form) in the presence of different compounds. LCLs

were used to measure metabolic dysregulation in Biolog Metabolic Arrays. These cell lines

generated from the patient’s blood sample via Epstein-Barr virus transfection were counted

utilizing a TC20™ Automated Cell Counter in order to measure the amount and the percentage

of viable cells. The methodology employs microplates with diverse molecules, which act either

as energy sources (plates PM-M1 to M4) or as metabolic effectors (plates PM-M5 to M8). Each

well contains a single chemical, and the production of NADH per well is monitored using a

colorimetric redox dye chemistry. In other words, NADH production is used as an indicator

of metabolic dysregulation. The energy sources include carbohydrates, nucleotides, carboxylic

acids, and ketone bodies in plate PM-M1, and amino acids, both alone and as dipeptides in

plates PM-M2 to M4. The metabolic effectors include ions (PM-M5), hormones, growth fac-

tors, and cytokines (PM-M6 to M8). The custom tryptophan plate (Trp) generated by Biolog

in collaboration with the Greenwood Genetic Center was also employed in consideration of

previously published data showing decreased utilization of tryptophan as an energy source by

cells from individuals with Autism Spectrum Disorder (ASD) [33]. This plate consists of twelve

8-well columns containing glucose, empty well, tryptophan alone, and five dipeptides in which

tryptophan is combined respectively with glycine, lysine, leucine, arginine, and alanine. PM-M

plates were incubated with 20,000 lymphoblastoid cells per well (40,000/well for the Trp plate)

in a volume of 50 μL, using the modified Biolog IF-M1 medium. Media for plates PM-M1 to

M4 were prepared by adding the following to 100 mL of Biolog IF-M1: 1.1 mL of 100× penicil-

lin/streptomycin solution, 0.16 mL of 200 mM Glutamine (final concentration 0.3 mM), and

5.3 mL of fetal bovine serum (final concentration 5%). For the Trp plate, 1.1 mL of fetal bovine

serum was added instead of 5.3, for a final concentration of 1%. For plates PM-5 to M8, 5.5 mL

of 100mM glucose (final concentration 5%) were added in place of the fetal bovine serum.

Cells were incubated for 48 h at 37˚C in 5% CO2. After this first incubation, Biolog Redox Dye

Mix MB was added (10 μL/well) and plates were incubated under the same conditions for an

additional 24 h, during which time cells metabolize the sole carbon source in the well. As the

cells metabolize the carbon source, tetrazolium dye in the media is reduced, producing a pur-

ple color according to the amount of NADH generated. During the 24 h of exposure to dye,

plates were incubated in the Omnilog system, which measured the optical density of each well

every 15 minutes, generating 96 data points. The information collected during the 24 hours

was analyzed by the kinetic software of the system to generate kinetic curves of the NADH

generation for each well and calculate kinetic parameters, such as slope, endpoint, and area

under the curve. At the end of the 24-h incubation, plates were analyzed utilizing a microplate

reader with readings at 590 and 750 nm. The first value (A590) indicated the highest absorbance

peak of the redox dye and the second value (A750) gave a measure of the background noise.

The relative absorbance (A590-750) was calculated per well.
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For Phenotype Mammalian data, the absorbance endpoint readings and the 96 data points

of kinetic optical density collected over the 24 h of incubation with the tetrazolium dye in the

Omnilog system were used for data normalization and statistical analysis using R (opm R

package) [34]. Readings were normalized using the triplicate absorbance readings from the

corresponding empty plate (plates run with no cells, just media and dye). These values were

then transformed to a logarithmic scale for the analysis and compared versus the average val-

ues generated by 50 LCLs from healthy controls, previously utilized in a study on ASD [33].

Our goal was to identify wells in which the levels of NADH generated by PMS cells were signif-

icantly different from ones measured in controls. We utilized the R package to implement the

non-parametric Mann-Whitney approach of a two-sided t-test with the cut-off of p-value

�0.05. Using this approach, metabolites differentially metabolized were identified distinguish-

ing individuals with PMS and controls.

Results

The computational prediction algorithm, which considered the clinical features and the 22q13

deletion breakpoints from 81 individuals with PMS, generated a list of 12 genes predicted to be

dysregulated. As a validation, the expression levels of these genes were measured in five indi-

viduals. Metabolic profiling was performed to assess the response of LCLs from the five indi-

viduals to different compounds.

Computational prediction algorithm

Twelve genes were predicted to be dysregulated: eight due to position effects and four due to

deletion (Fig 4). The eight genes identified as potential candidates for transcriptional misregu-

lation due to long-range position effects were A4GALT, ADSL, EP300, FBLN1, NAGA,

TNFRSF13C, TRMU, and TUBGCP6 (Sheet 4 in S1 File). Except for A4GALT, all candidate

genes have been associated with phenotypic traits compatible with the clinical features

reported in the cases analyzed (Sheet 3 in S1 File). Only ADSL and EP300 have haploinsuffi-

ciency (HI) scores =<10%, which makes them even more meaningful candidates for func-

tional follow-up for these cases. Noteworthy, not all candidate genes were detected in every

individual with PMS analyzed. Some of the genes were detected in one individual (i.e.,

TUBGCP6) and others in up to nine individuals (i.e., ADSL), which indicates a heterogeneous

contribution of position effects to the overall clinical presentation.

The four candidate genes identified for transcriptional misregulation due to short-range

effects of the deletion were ARSA, SBF1, SCO2, and SHANK3. Contrary to the position effect can-

didates which could act over long genomic distances, these genes are almost invariably included

within the deletion coordinates (Fig 3A and Table 2). Of note, SHANK3 was deleted in all cases

analyzed. The functions of all of these genes are described in the Table in S2 File. The presence or

absence of these selected genes and genes in the TAD region for each patient are reported in

Table 2. Fig 4 shows exactly the same data displayed with two different shading schemes according

to the genes predicted to be dysregulated by long-range or short-range effects.

Clinical features of selected individuals with PMS

Clinical features are summarized in Table 3 with details following. Clinical traits for patients 2

and 5 were described in detail in a previous study [35] and only the most relevant features are

reported herein.

PMS 1. PMS 1 is a 14-year-old Caucasian male, born from non-consanguineous parents

after an uneventful pregnancy. He was diagnosed with PMS secondary to an 8.5 Mb de novo
terminal deletion with the proximal breakpoint mapped to 22q13.2.
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At the evaluation, PMS 1 was non-ambulatory but would take steps with maximum sup-

port. He was not using a walker. His mother reported that he had regression in his develop-

ment when he had any type of illness. He continued to receive physical and occupational

therapy.

His interim history revealed that he had hip surgery at the age of 6 years and had significant

complications requiring hospitalization with the removal of plates 2.5–3 years later. His

parents reported respiratory issues and problems with the regulation of body temperature. He

has also been hospitalized for kidney reflux and flu and fevers of unknown etiology. His

Fig 3. (a) UCSC Genome Browser (GRCh37/hg19 build) showing deletion breakpoints for each of the five chosen individuals with TAD region (2 Mb upstream

from the deletion starting breakpoint) in gray dotted line, and genes predicted to be dysregulated by position effects or deletion at the bottom. The genes shown in

group 1 were predicted to be dysregulated by position effect. The genes shown in group 2 were predicted to be affected when deleted. Haploinsufficiency scores (%HI)

from DECIPHER v9.30 are provided in green. High ranks (e.g., 0–10%) indicate a gene is more likely to exhibit haploinsufficiency. (b) Parametric analyses of PM-M1

plate for PMS 1 (left) and PMS 3 (right). These analyses were generated by OD (optical density) measurement every 15 minutes for 24 hours after adding the dye. Each

smaller box represents each well. The yellow area represents the overlap between the control and the sample, pink represents the underutilization of the substrate by the

sample and green represents the overutilization of the substrate by the sample. (c) Bar chart representing an increase or decrease in utilization of selected compounds

on Biolog plates for each individual with PMS. The x-axis represents selected compounds on Biolog plates (PM-M1 through PM-M8 and PM-Trp). The y-axis represents

the difference between the utilization for individuals and the average of 50 controls. The line at 0 represents the utilization for the average of 50 controls.

https://doi.org/10.1371/journal.pone.0253859.g003
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Table 2. Expression levels of 9 genes on 22q13 investigated as candidates for transcriptional misregulation.

Gene Gene coordinates,

hg19

Patients and deletion sizes Average 2-ΔΔCt

when not deleted

Average 2-ΔΔCt

when deleted

Average 2-ΔΔCt when within

2 Mb of deletion regionPMS 1

8.5 Mb

PMS 2

8.4 Mb

PMS 3

7.4 Mb

PMS 4

3.5 Mb

PMS 5

0.1 Mb

ADSL chr22:40,742,504–

40,762,575

✓ ✓ ✓ ✓ ✓ 0.92 N/A 1.03

EP300 chr22:41,488,614–

41,576,081

✓ ✓ ✓ ✓ ✓ 0.88 N/A 0.85

TNFRSF13C chr22:42,321,036–

42,322,821

✓ ✓ ✓ ✓ ✓ 0.82 N/A 0.79

NAGA chr22:42,454,338–

42,466,846

✓ ✓ ✓ ✓ ✓ 0.81 N/A 0.99

A4GALT chr22:43,088,127–

43,116,876

✘ ✘ ✓ ✓ ✓ 2.71 1.49 2.23

TRMU chr22:46,731,298–

46,753,237

✘ ✘ ✘ ✓ ✓ 0.9 0.51 0.87

TUBGCP6 chr22:50,656,118–

50,683,400

✘ ✘ ✘ ✘ ✓ 1.1 0.6 1.1

SBF1 chr22:50,883,431–

50,913,464

✘ ✘ ✘ ✘ ✓ 1.19 0.53 1.19

ARSA chr22:51,061,182–

51,066,601

✘ ✘ ✘ ✘ ✓ 1.15 0.85 1.15

The ‘✓‘ represents presence of the gene in the individual, the ‘✘’ represents deletion of the gene in the individual. Shaded cells represent the genes within 2 Mb for the

individual mentioned in the first row of that column. Hg19 UCSC genome browser [31].

https://doi.org/10.1371/journal.pone.0253859.t002

Fig 4. (a) Heat map of expression of genes in five individuals relative to control with deleted genes in gray cells. (b) Heat map of

expression of genes in the five individuals relative to control with pre genes in gray cells. Numbers are relative fold changes in

expression (2-ΔΔCt). These heat maps give an account of exactly the same data displayed with two different shading schemes,

expression differences due to dysregulation by position effects in (a) and by deletion in (b). The third row in both show causes of

dysregulation predicted for each gene by position effect analysis as either dysregulated by position effect or by deletion.

https://doi.org/10.1371/journal.pone.0253859.g004
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current medications included Risperidone 1.5 mg twice a day, Ativan gel as needed, MiraLAX

(Polyethylene glycol 3350) as needed, and Tylenol (Paracetamol) or Motrin (Ibuprofen) as

needed. He frequently requires ear tubes due to recurrent otitis media and had had six sets at

the time of evaluation. Seizures were reported but no current medication was prescribed. His

swallowing had improved but he was having problems with constipation.

He had a height of roughly 130 cm (~5th percentile). His weight was 78 pounds (50th-75th

percentile), and head circumference was 56.8 cm (slightly above the 97th percentile). He was a

healthy-appearing 13-year-old male with a somewhat round face with mild facial asymmetry

and plagiocephaly with flattening of the right occiput and the left forehead. The eyes revealed a

bilateral red reflex. The nasal tip was broad, and he had mild periorbital puffiness. The ears

were slightly asymmetric. Two small sacral dimples were noted. He had some mild stiffness of

his extremities, but they could be gradually fully extended. He had mild hyperreflexia at the

knees and mild ankle clonus. The fingernails were slightly hyperconvex. The toenails were thin

and flaky with some hyperplasia of individual nails. His seizures were reported to be occurring

more frequently. He had had a normal EEG, but the parents had noted several tonic clonic

seizures.

PMS 2. PMS 2 is a 26-year-old Hispanic-Caucasian male. No parental consanguinity was

reported. Prenatal chromosome analysis was performed due to advanced maternal age and

revealed a 22q13.2-q13.33 deletion, later confirmed by microarray as an 8.4 Mb de novo termi-

nal deletion, validating the clinical diagnosis of PMS.

He was born at 32 weeks of a pregnancy complicated by HELLP syndrome (Hemolysis, Ele-

vated Liver enzymes, and Low Platelet count) and preeclampsia. Birth length was 33 cm (<3rd

centile, 50th centile for 24.5 weeks of gestation) and weight was 1.1 kg (<3rd centile, 50th centile

for 27.5 weeks of gestation). The early developmental history was characterized by feeding

issues that required a feeding tube at age 4 years, severe delay of all early milestones, and pre-

scription glasses for extreme nearsightedness at 4 years of age. He started to walk with some

assistance at age 8. A brain MRI detected an arachnoid cyst around age 10. Seizures began at

14 and became constantly more frequent, requiring daily treatment with ONFI (Clobazam),

Keppra (Levetiracetam), and Banzel (rufinamide). Sleeping issues were reported in association

Table 3. Summary of clinical features for each individual with PMS.

Signs and symptoms PMS 1 PMS 2 PMS 3 PMS 4 PMS 5

Developmental delay ✔ ✔ ✔ ✔ ✔
Language delay ✔ ✔ ✔ ✔ ✔
Seizures ✔ ✔ ✔
Hypotonia ✔ ✔ ✔ ✔
Sleep issues ✔ ✔ ✔
Gastrointestinal issues (including liver steatosis) ✔ ✔ ✔
Cranial dysmorphic traits

• Abnormal head shape/facial asymmetry ✔ ✔ ✔
• Periorbital puffiness ✔ ✔
• Eye abnormalities ✔ ✔ ✔
• Ear abnormalities ✔ ✔ ✔ ✔
• Broad nasal tip/bridge ✔ ✔ ✔ ✔

Behavioral issues ✔ ✔ ✔ ✔ ✔
Kidney reflux ✔ ✔
Skeletal abnormalities ✔ ✔
Hyperconvex fingernails ✔ ✔

https://doi.org/10.1371/journal.pone.0253859.t003
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with the beginning of the therapy with anti-epileptic drugs and seemed to worsen gastrointestinal

issues. At age 22 his height was 157.4 cm (<3rd centile, 50th centile for age 13) and his weight was

36.3 kg (<3rd centile, 50th centile for age 11). The patient had jaw surgery, spinal surgery due to

scoliosis, and hip surgery due to hip dysplasia. He developed moderate steatosis and a cataract.

After back surgery, he lost the ability to walk alone or crawl but can walk with assistance.

PMS 3. PMS 3 is a 20-year-old Caucasian male with a diagnosis of PMS secondary to the

detection by array-CGH of a 7.4 Mb terminal 22q13 deletion. He had a history of vertebral

anomalies, ear tags, epibulbar dermoids, and hemifacial microsomia, suggesting a diagnosis of

facioauriculovertebral dysplasia spectrum or Goldenhar syndrome. Significant developmental

delay was reported followed by the diagnosis of the 22q13.3 deletion, along with fairly continu-

ous drooling, partially managed with Scopolamine patches. He suffered a spiral fracture of his

right tibia and has a history of kidney reflux which had resolved.

At the evaluation, his head circumference was 54.5 cm (35th centile). He presented with

mild facial asymmetry due to the left side of the face being slightly smaller than the right. His

face had a somewhat triangular shape with mild prominence of his chin. He had a history of

mild periorbital puffiness, which had resolved. His habitus appeared somewhat tall and thin.

His eyelashes were very long and thick. He had a broad nasal tip, remnants of ear tags present

on the left side of his face, mildly prominent ears, thin and hyperconvex fingernails, and gener-

alized hypotonia.

PMS 4. PMS 4 is a 7-year-old Caucasian female with a 22q13 terminal deletion of 3.5 Mb

detected by array-CGH. She had dyspraxia and verbal apraxia. She used to form various sylla-

bles and make animal sounds but had regressed. She was very interactive, had good play skills,

and was very aware of her environment. She showed high levels of anxiety and had problems

with adaptive behavior.

At birth, her weight was 2.67 kg (10th-25th centile), height was 49 cm (50th centile), and

head circumference was 33 cm (25th centile). She suffered from jaundice. At the evaluation, at

age 5 years, her weight was 12 kg and her height was 93 cm (both<3rd centile, as well as her

head circumference); her mother reported some progress in speech, leading to speaking a few

words and phrases, but mostly non-functional, and singing some songs.

PMS 5. PMS 5 is a 21-year-old Caucasian male carrying a 100.76 Kb 22q13 deletion

encompassing the SHANK3 gene detected by array-CGH. He was born from non-consanguin-

eous parents at the 38th week of a pregnancy complicated by hyperemesis gravidarum and

threatened miscarriage. Length at birth was 52 cm (>90th centile), weight was 3,650 gr (75th-

90th centile), head circumference was 36 cm (>90th centile), and Apgar scores were 7 and 9.

Digestive problems and hypotonia were reported in the first years of life. Mild delay of devel-

opmental milestones was recorded: babbling at 9–10 months, crawling at 13 months, and inde-

pendent walking at 18 months. During a clinical evaluation at age 4 years, following an

epileptic episode, ID and disharmonic organization of personality were diagnosed, significant

sleep disturbance was also noted, and diffuse hypomyelination of the brain’s white matter was

detected by an MRI. Seizures became more frequent over time and eventually the continuous

and severe episodes of drug-resistant seizures Lennox Gastaut-type required a partial corpus

callosotomy, which provided limited benefit. The diagnosis of PMS was confirmed by CGH

microarray (hg19), which detected two independent chromosomal rearrangements: a 12p13.2

trisomy (10,572,751–10,593,748) and a 22q13.33 (51,123,491–51,224,252) deletion, including

SHANK3; parental tests confirmed both rearrangements as de novo. Since there is no evidence

in the literature supporting a pathogenic role for the 12p13.2 trisomy, we included the patient

in the study assuming that the phenotype was entirely determined by the 22q13.33 deletion.

At the evaluation, PMS 5’s height was around the 50th centile, weight between 50th and 75th

centile, and head circumference between 75th and 90th centile. He presented with
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dolichocephaly, broad nasal bridge, low-set ears, and protruding lower lip. He was nonverbal,

hyperactive, slightly irritable, had reports of constipation and reduced pain perception, and

was diagnosed with moderate liver steatosis.

Expression analysis by qPCR for selected candidate genes

TAD computational analysis predicted 12 genes mapping in 22q13 to have abnormal expres-

sion. RNA levels of the 9 of these 12 genes expressed in blood were measured in LCLs via qPCR.

Deletion sizes for each patient are shown in Fig 3A. A consistent pattern was observed

according to whether the gene was present or deleted in the patient, with the deleted genes

generally showing overall decreased expression as compared to the preserved genes (Figs 3A,

4A and Table 2). The enzyme A4GALT was elevated for all individuals with PMS, whether one

copy was deleted or not.

PMS 1 (8.5 Mb). A4GALT had unexpectedly elevated expression in both individuals of this

group (1.52 and 1.46). The remaining genes with haploid copy number had reduced expres-

sion in PMS 1, while preserved genes had expression levels within normal ranges.

PMS 2 (8.4 Mb). Reduced expression was observed for all of the six deleted genes. Among

preserved genes, NAGA expression was increased by 50% (1.54) while the other genes had

expression levels within normal ranges.

PMS 3 (7.4 Mb). TNFRSF13C had reduced expression (0.66) consistent with the TAD pre-

diction. A4GALT had unexpectedly high expression (2.23) even though it was not deleted.

PMS 4 (3.5 Mb). Two of the four deleted genes showed reduced expression (TUBGCP6
(0.56) and SBF1 (0.55)). A4GALT transcript levels were elevated (2.84), as in other cases. ADSL
(0.64) and NAGA (0.55) showed decreased expression even if not deleted.

PMS 5 (0.1 Mb). None of the genes tested for expression by qPCR are deleted in this indi-

vidual. A4GALT mRNA levels were increased (3.14) with the remaining genes unaffected.

Genes predicted to be dysregulated due to deletion (ARSA, SBF1). SBF1 showed a con-

siderable reduction in expression when deleted as compared to when preserved. ARSA was

deemed to have inconclusive results due to variable expression.

Genes predicted to be dysregulated due to position effects (A4GALT, ADSL, EP300,

NAGA, TNFRSF13C, TRMU, and TUBGCP6). ADSL showed reduced expression only in

PMS 4 although this gene was not included in the 2Mb TAD region for this individual. This

could be due to some other mechanism. Whereas similarly reduced expression is seen in PMS

3 for TNFRSF13C, where unlike PMS 4, this is attributed to position effect due to this gene

being within the ±2 Mb TAD region from the deletion for this individual. EP300 was preserved

in all individuals and showed no changes pertaining to position effects. NAGA was not deleted

in any of the five individuals; however, it showed an increase in expression in PMS 2 as well as

a decrease in PMS 1 and PMS 4. A4GALT showed an increased expression overall (even when

deleted in PMS 1 and PMS 2) but shows an especially higher expression when preserved (PMS

4 and PMS 5), while being considerably higher when in the TAD region for PMS3. TRMU,

when present in the TAD region (PMS 4), shows increased expression as compared to when

deleted, but a lower expression than when preserved (PMS 5), pointing towards a diminished

position effect. TUBGCP6 had decreased expression when deleted but was unaffected when

within the TAD region.

Data processing and statistical analysis of Phenotype Mammalian

MicroArray (PM-M) data

Data generated by the metabolic arrays indicated a common trend in 4 out of 5 individuals,

with PMS 5 (the individual with the smallest deletion limited to a major part of SHANK3)
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showing a different profile (Fig 2 in S2 File). The utilization of energy sources (PM-M1 to M4

plates) was largely decreased in the two individuals with large deletions (PMS 1 and 2), which

is consistent with a more severe metabolic imbalance due to a larger number of genes deleted.

The findings from the PM-M1 plate showed similar profiles in the samples with small- and

mid-size deletions, with a dominating trend toward increased utilization of carbon energy

sources, although PMS 5 produced significant differences (adjusted p value <0.05) only in 45

out of the 96 wells of the array, versus 70 and 83 in PMS 4 and 3, respectively (Fig 2 in S2 File).

Therefore, the abnormal utilization of energy sources from the PM-M1 plate seems to correlate

with the deletion size: PMS 5 has the lowest number of wells with significant differences while

PMS 1 and 2 have the highest ones.

Interestingly, PMS 3 alone showed increased NADH levels in the presence of the intermedi-

ates of the Krebs cycle (Fig 2 in S2 File), this might suggest a different type of energetic disrup-

tion as compared to the other samples.

In the plates containing amino acids and dipeptides as energy sources (PM-M2 to M4 and

Trp), a similar trend as for PM-M1 was observed: PMS 1 and 2 produced lower levels of

NADH than controls in most wells, while PMS 3 and 5 produced mostly higher levels. PMS 4,

on the other hand, produced a metabolic profile for amino acids more similar to the cell lines

with large deletions (prevalence of lower NADH levels) than to the ones with similar deletion

sizes (PMS 3 and 5). Reduced utilization of tryptophan as an energy source has been reported

in individuals with ASD [33], and the same trend has been observed in PMS 2, 3, and 4, while

in PMS 1 the differences did not reach statistical significance and in PMS 5 an increased utili-

zation of tryptophan as compared to controls was detected (Fig 2 in S2 File).

In plates PM-M5 to M8 the energy source (glucose) was distributed equally to all cells via

suspension media and the goal was to assess how the cells metabolized the provided glucose in

the presence of different metabolic effectors: ions (PM-M5), growth factors (PM-M7), cyto-

kines (PM-M7 and M8), and other hormones (PM-M6 to M8).

The metabolic trend emerging from these arrays confirmed that the two cell lines with the

largest deletions (PMS 1 and 2) produced significant metabolic disruption as compared to con-

trols (p values<0.05, Sheet 6 in S1 File), although PMS 1 showed significant differences only

in 43/96 (44.8%) wells from plate PM-M6 and 15/96 (15.6%) from PM-M7, containing growth

factors, cytokines, and other hormones. On the other hand, PMS 3 and 5 showed an increased

production of NADH (p<0.05) across all wells from plates PM-M5 to M8, as observed also for

plates PM-M1 to M4. The metabolic profile of PMS 4 was in agreement with the one noted in

plates PM-M2 to M4: reduced energetic response to most wells, precisely 76/96 (79.2%) from

PM-M5, 88/96 (91.7%) from PM-M6, 94/96 (97.9%) from PM-M7 and 96/96 (100%) from

PM-M8 (Sheet 6 in S1 File).

Only three compounds shared similar trends across the five cell lines: manganese chloride

(PM-M5 well C8, increased NADH production), iodine (PM-M5, wells C10-C11, increased

NADH levels in the four samples in which it was significant), and D-glucose-1-phosphate

(PM-M1, well B2, decreased NADH levels in the four samples in which it was significant).

Discussion

Many studies have generated consistent evidence suggesting a prominent role for SHANK3
haploinsufficiency or loss-of-function variants in the pathogenesis of the neurobehavioral fea-

tures of PMS [16, 17]. However, the extensive clinical variability exhibited by individuals with

PMS and the different sizes of chromosomal rearrangements detected in the 22q13 region

have led to the hypothesis that other genes may contribute to PMS phenotypes. Some reports

have indeed demonstrated a correlation between 22q13 deletion sizes and the severity of
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certain clinical traits, such as developmental and language delay [4, 5], and other studies have

proposed a series of genes mapping in 22q13 whose haploinsufficiency or disruption will likely

determine alterations leading to signs and symptoms compatible with PMS phenotypes [20,

21]. In order to investigate further pathogenic mechanisms in PMS, we explored the position

effect of genes in 22q13 by TAD analysis of a cohort of 81 individuals with PMS. The results of

the predictions were validated by assessing clinical information, expression studies, and meta-

bolomic arrays in five selected cases.

Genes that were predicted to be dysregulated due to deletion seem to follow a general trend

of lower expression upon deletion, particularly for SBF1. Among candidate genes for dysregu-

lation due to position effects, ADSL and EP300 do not show significantly distinct expression

values when in the 2 Mb TAD region as compared to when farther away. However, in PMS 3,

TNFRSF13C shows a slightly lower expression as compared to when not in the TAD region.

A4GALT represents an exception to some extent because its expression pattern was not as

expected and differs from ones of surrounding genes with increased expression regardless of

the deletion size. One possible explanation for this unexpected trend is that it encodes an

enzyme and could therefore be regulated by a compensatory mechanism aimed to prevent

haploinsufficiency: in case one allele was either lost by deletion or inactivated, the remaining

allele would be over-expressed to maintain a physiological level of protein. This result implies

that in a contiguous gene deletion syndrome even deleted genes can have a presumably com-

pensatory increase in expression. Both TRMU and TUBGCP6, when in the TAD region, show

expression levels close to that of the control.

NAGA in PMS 2 was predicted to be in the TAD region for a possible position effect—it

shows an unexpected increase in expression pointing towards potential position effects from

the deleted region of chromatin. One caveat for all the five cases considered in this paper is

that there may be structural complexity at the breakpoints of the deletions because those

regions were not sequenced. For this project’s analysis, the minimum size of deletions was

determined by the first deleted probe in the microarray. In PMS 5, all genes in the TAD show

increased expression as compared to control, pointing towards a probable position effect

mediated by the deletion of the major part of SHANK3. All these results hold true with the

hypothesis that rearrangements in the 22q13 regions cause position effects among candidate

genes within the same region. According to %HI (shown in Fig 3A), EP300, and ADSL are

most susceptible to be haploinsufficient. ADSL deficiency is known to cause epilepsy or autistic

features among other characteristics, and EP300 is known to play a role in Rubinstein-Taybi

syndrome which includes features overlapping with PMS (e.g., typical facial features, micro-

cephaly, and ID) (S2 File). In PMS 4, ADSL shows an unexpected decrease in expression,

which could be possibly attributed to haploinsufficiency. In order to dissect how these effects

manifest in PMS individuals, clinical and metabolic information was correlated with this

expression data. For the expression data, as shown in Fig 1C and 1D, the values�1.5 have

been considered increased with respect to the control, and values�0.66 have been considered

decreased with respect to the control.

Three genes, namely, SHANK3, SCO2, and FBLN1, did not show any expression in blood

cells, resulting in exclusion from the qPCR studies. Out of these, FBLN1 was predicted to be

dysregulated due to a position effect, whereas SHANK3 and SCO2 were predicted to be dysre-

gulated when deleted. SHANK3 was deleted in all individuals. FBLN1 was deleted in PMS 1

through PMS 3, and SCO2 was deleted in PMS 1 through PMS 4. As SHANK3 is the primary

gene correlated with PMS, all individuals show symptoms that are characterized as PMS symp-

toms. SCO2 is responsible for causing Fatal Infantile Cardioencephalomyopathy, and even

though this disorder is not seen in individuals with PMS, this gene might be responsible indi-

rectly for the heart-related defects observed.
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PMS 1

This male individual shows clinical features that align with the genetic and metabolic features.

For example, TRMU was deleted and had decreased gene expression. This gene is associated

with deafness (S2 File) and this individual has had several placements of ear tubes due to recur-

rent otitis media. TUBGCP6 was deleted and had decreased expression. Its absence can cause

delayed psychomotor development and visual impairment (S2 File). PMS 1 presents with

developmental regression and ocular bilateral red reflex that was observed whenever the

patient was ill. SBF1 is associated with Charcot-Marie-Tooth disease 4B3 and its deletion in

this individual may be the cause of mild stiffness of the extremities, mild hyperreflexia, and

mild ankle clonus. SHANK3 is associated with seizures and other dysmorphic features seen in

PMS 1 (S2 File). General decreased utilization for most metabolites on all Biolog plates was

observed (i.e., carbon energy sources, amino acids and dipeptides as energy sources, and glu-

cose utilization in the presence of different metabolic effectors–ions, growth factors, cytokines,

and other hormones); only 44.8% and 15.6% significant differences were seen for plates

PM-M6 and M7, respectively.

PMS 2

Severe delay of all early milestones was noted in this male individual with deletion of A4GALT,

associated with general cognitive ability, even though A4GALT expression was increased over-

all for all individuals. TUBGCP6 showed reduced expression consistent with its deletion.

TRMU, also deleted in this individual, has been related to transient infantile liver failure (S2

File). PMS 2 was born with HELLP syndrome (hemolysis, elevated liver enzymes, and low

platelet count) and also shows increased liver echogenicity and of the liver/kidney and liver/

vascular gradient, as observed in moderate steatosis. He also was prescribed glasses for extreme

nearsightedness which could be a manifestation of TUBGCP6 deletion. SHANK3 deletion is a

reasonable etiology for seizures and other dysmorphic features (S2 File). SBF1 and ARSA are

also deleted in this individual. The expression for NAGA is seen to be increased considerably,

augmenting its expression because it is within a distance of ±2 Mb from the deletion. All the

Biolog plates, including Tryptophan, show decreased utilization for energy sources as com-

pared to controls.

PMS 3

Significant developmental delay in this individual could be a result of TUBGCP6 deletion.

SBF1 deletion in PMS 3 could underlie the generalized hypotonia. Deletions in SHANK3 are

associated with dysmorphic features, which are observed in this individual (S2 File). The Bio-

log profile is similar to that of individuals with small deletions, i.e., increased utilization of car-

bon energy sources, increased metabolism in presence of Krebs cycle intermediates, and

increased utilization of amino acids and dipeptides. Reduced utilization of tryptophan was

observed, as reported in ASD. Although not deleted, TNFRSF13C has reduced expression,

which is in line with the TAD prediction; this gene has been associated with schizophrenia

(S2 File).

PMS 4

Decreased expression in ADSL and NAGA was found for PMS 4 even though they were pre-

served. ADSL is associated with adenylosuccinase deficiency (ADSLD), a disorder marked

with psychomotor retardation, epilepsy, and autistic features. NAGA is associated with Schin-

dler disease types I and II, and thus could be the etiology underlying cognitive impairment.

PLOS ONE Position effects in Phelan-McDermid syndrome

PLOS ONE | https://doi.org/10.1371/journal.pone.0253859 July 6, 2021 15 / 20

https://doi.org/10.1371/journal.pone.0253859


Deletion of SHANK3 could underlie high levels of anxiety and problems with adaptive behav-

ior in this individual (S2 File). TUBGCP6, SBF1, and ARSA are deleted in this individual con-

cordant with levels of expression lower than when preserved, except in ARSA, which is

inconclusive. The Biolog plate PM-M1 has a similar profile as for PMS 3 and PMS 5, with

increased utilization of carbon energy sources in 70 out of 96 wells. The profile for amino acids

is more similar to PMS 1 and PMS 2 (large deletion-size). As reported in individuals with

ASD, reduced utilization of tryptophan was observed. In PM-M5, 79.2% of the 96 wells showed

a reduced energetic response. A similarly reduced energetic response was observed in M6 and

M7, with 91.7% and 97.9% respectively. On the other hand, all the wells in M8 showed the

same trend.

PMS 5

Intragenic SHANK3 deletion is a probable etiology for the observed intellectual disability,

disharmonic organization of personality, significant sleep disturbance, seizures, and other

symptoms (S1 File). All the preserved genes within the TAD region (TUBGCP6, SBF1, and

ARSA) show an elevated expression. The metabolic profile of this case appeared different from

the others probably because of the smallest deletion size encompassing only part of SHANK3.

PM-M1 shows a similar profile to PMS 3 and PMS 4 (mid and small deletion-sizes), with

increased utilization of carbon energy sources only in 45 out of 96 wells. There was a general

trend of a lower number of wells with abnormal response as the deletion-size decreased; PMS

5 has the lowest number of wells whereas PMS 1 and PMS 2 have the highest numbers.

Increased utilization of amino acids, dipeptides, and tryptophan was also observed for this

individual.

Correlation between clinical, genetic, and metabolic features

The major trends emerging from the metabolic profiling were mostly aligned with the deletion

sizes, with the exception of PMS 4. No particular metabolic pattern appeared to be shared by

all five individuals with PMS, confirming that the variability observed in PMS clinical presen-

tation and genetic etiology is reflected in the metabolic profile at the cellular level. As expected,

individuals with the largest deletions (PMS 1 and PMS 2) showed more disrupted pathways

and their metabolic profiles indicated an overall decrease in the cells’ capacity to generate

energy from different sources, an impairment that can severely affect cell types with high

energy needs such as neurons, therefore, resulting in abnormalities in neurodevelopment.

Interestingly, PMS 5 shows a correlation between genetic and metabolic features, having an

intragenic SHANK3 deletion and the least severe metabolic profile, but not between genetic

and clinical features, as he presented with severe neurobehavioral and gastrointestinal issues.

This suggests that other genetic factors may contribute to the individual’s phenotype even if

they do not appear to be able to significantly affect the metabolic profile. In fact, PMS 5 has a

duplication on 12p13.2, in addition to the SHANK3 deletion and, even if there are no known

phenotypic traits associated with this duplication, this indicates a complex genomic rearrange-

ment that may involve different pathogenic mechanisms than ones usually observed in PMS.

Limitations and future studies

The validation portion of the study was performed on five individuals with deletions represen-

tative of the spectrum of deletion sizes and demonstrates the confirmation of computational

algorithm predictions with qPCR and Biolog. A larger sample size in future studies can provide

validation for our findings. qPCR was performed using blood-derived LCLs which was a limi-

tation for the expression analysis of genes not expressed in blood (FBLN1, SHANK3, and
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SCO2). The qPCR approach represents only the first level of validation for TAD prediction;

next steps that may be considered include high throughput analyses such as RNA sequencing,

which would also show an impact on all genes in the target area and not only on target genes.

Overall, the results confirmed clinical and genetic variability within the PMS cohort, with

more frequent and severe features associated with larger 22q13 deletions. Such correlation was

observed also in the metabolic arrays, where individuals with the largest deletions (PMS 1 and

PMS 2) showed clearly distinct profiles, characterized by significant impairment of several

energetic pathways. Although metabolomics is becoming more and more important for clini-

cal diagnostics of genetic disorders, and the technique is still in its infancy and reliable data

require a number of patients and controls well above those used in this study, the numbers are

still significant for a rare disorder. The TAD analysis successfully predicted the disruptive posi-

tion effects for the genes deleted, except for A4GALT as discussed. Other candidate genes for

dysregulation by position effect had decreased transcript levels when deleted, suggesting that

their loss, regardless of the mechanism, will affect their expression.

Our findings presented in this study support a contributory role of several genes in 22q13,

and in some cases suggest some specific correlations with PMS features, such as SBF1 and

ARSA for neurological symptoms. The results also suggest that novel strategies of investiga-

tion, such as the TAD analysis and the Biolog PM-M arrays, may be instrumental for better

characterizing the complex genotype-phenotype correlation in PMS.
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