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Abstract: Pediatric cardiology is a field that largely relies on translation of innovation in its adult 

counterpart in order to improve patient outcomes and introduce new technology to the field. 

Few FDA-approved pediatric cardiac devices are available for clinical use, thus leading to 

widespread off-label use within the field. Nonetheless, adaption of devices and technology 

from the adult field has proven to improve patient outcomes and overall wellness. However, 

the diversity of congenital heart disease, in terms of basic anatomy and treatment response, 

continues to complicate results. The combination of diversity of anatomy and small population 

size make it difficult for identifying control populations on which to test new devices, thus 

limiting the amount of safety and efficacy data that can be gathered. With little guidance and 

long-term data due to off-label use and poor reporting infrastructure, physicians are often left 

to devise solutions on a case-by-case basis. While surgery continues to be a mainstay of 

pediatric cardiology, transcatheter approaches to treating congenital heart disease have 

continued to gain momentum. With increasing data and multiplying device options, physicians 

have various options for approaching congenital heart disease. More recently, the creation of 

large databases such as Pediatric Interagency Registry for Mechanical Circulatory Support 

(PediMACS) has made evaluating the safety and efficacy of pediatric cardiac devices more 

realistic. In this review, various approaches to surgical and device treatment of congenital heart 

diseases and conditions will be explored in order to shed light on the current status of pediatric 

cardiac devices. 



 

Introduction 

 Advances in pediatric cardiology have largely ridden on the coattails of adult cardiology. 

Advancements in the field often come from technology originally developed for use in adults 

that has been adapted for use in a pediatric population in an off-label fashion(1, 2) . Rates off 

off-label use in pediatric patients has been reported to be as high as 99% in some cases (1).  

Commonly used devices range from defect closure devices to ventricular assist devices (3). 

Percutaneous devices are used as alternatives to surgical intervention, as a form of destination 

therapy, or as a bridge to either transplant, decision, or recovery (4, 5).  

Many of the pediatric patients that require cardiovascular intervention, whether surgical 

or device-based, are born with congenital heart disease (CHD).  The most common forms of 

CHD include ventricular septal defect (VSD), atrial septal defect (ASD), patent ductus arteriosus 

(PDA), and valvular disease (6, 7). Each of these has been implicated in contributing to heart 

failure or other mechanical issues with the heart within these patient populations (7-10). Rates 

of CHD are estimated to be between 6 and 8 in every 1,000 births (0.8%) (7, 11). Approximately 

85% of this population is expected to survive into adulthood with intervention (12).  

Despite advances, problems continue to plague the field of pediatric cardiac devices. 

Primary among these is the inability of devices to grow with the patient (13-16). This may lead 

to various reinterventions, either surgical or transcatheter, that are associated with increased 

mortality rates (17, 18). Recent years have seen little development, clinical testing, and clinical 

approval of cardiac devices designed specifically for use in pediatric cardiology despite the 

presence of various problems associated with current devices. However, pediatric devices 



continue to hold promise due to their lower level of invasiveness as compared to surgery in 

some cases and similar, if not better, rates of successful treatment (19-21).  

Though surgical approaches have changed relatively little over time, new devices, 

preclinical testing results, clinical testing results, and long-term results have continued to 

develop largely thanks to databases aimed at gathering more data surrounding the use and 

outcomes of cardiac devices in pediatrics becoming more common.  This includes databases 

such as PediMACS and initiatives such as Pumps for Kids, Infants, and Neonates (PumpKIN), 

sponsored by the National Institute of Health (NIH) and the National Heart, Lung, and Blood 

Institute (NHLBI), respectively (2, 13). This data has given a new outlook on the status of 

treatments options for CHD in pediatric patients. 

In this paper, current surgical methods will be compared to current and emerging 

device-based methods for treating various types CHD. Advancements related to device 

development and existing device complications will be discussed as well. Finally, the current 

issues and challenges for the field as a whole will be discussed. 

 

Closure of Defects 

 

Ventricular Septal Defect 

 Ventricular septal defect (VSD) is the most common form of CHD, occurring every 3.0-

3.5 per 1000 live births, with ~85%-90% of these defects closing spontaneously within one year 

of birth (7, 22). Approximately 10%-25% of VSD cases are large and/or hemodynamically 

important (7). VSDs are commonly closed either a surgically or with a transcatheter device. 



Typically, the method of closure depends on the type of VSD the patient presents with. The two 

main types of VSD are peri-membranous VSD (pmVSD) and muscular VSD (mVSD). pmVSD is the 

most common subtype, representing approximately 80% of cases of VSD (3, 19). For the two 

main types of VSD, surgery is the preferred method of closure for pmVSD and transcatheter 

closure is the preferred method of closure for mVSD (19). Presence of a left-to-right shunt due 

to a VSD can cause various cardiac issues including pulmonary arterial hypertension, pulmonary 

vascular disease, congestive heart failure, and aortic valve prolapse among other things (6, 23, 

24). Furthermore, VSD is often associated with and may be present in more complex anatomies 

and conditions such as Tetralogy of Fallot and conotruncal heart defects (25). As with many 

correctable congenital diseases, earlier intervention is preferred when possible, thus leading to 

the prevalence of VSD closure procedures in pediatric patients, both as a preventative measure 

and to ensure quality of life.  

 The first surgical closure of VSD was reported in 1955 by Lillehei et al. using cross-

circulation between the patient and a donor (26). Since then, open-heart surgical correction of 

VSD has come to use of cardiopulmonary bypass instead of cross-circulation, with surgical 

correction at a young age the treatment of choice (22, 23). Two common methods of repairing 

the defect surgically exist: patch closure and primary closure. Risk factors associated with 

adverse outcomes of surgery include low body weight, patient age, and pulmonary 

hypertension (25, 27). Modern surgical outcomes across age groups, including infants and 

pediatric patients, tend to be of an acceptable level (22, 24, 27, 28). That being said, there are 

various reported cases of patients requiring reintervention at a later date due to failure to fully 

occlude the VSD or the necessity to repair remaining abnormalities (15, 29, 30). 



 VSD closure patches used in surgery are made of various materials. These materials 

include Dacron (polyester terephthalate), Gore-Tex (polytetrafluoroethylene), tanned 

autologous pericardium, polyurethane foam with adhesive, Contegra xenografts, polyester felt, 

and bovine pericardium (14, 30, 31). However, as with any biomaterial, compliance mismatch 

and chronic inflammation due to the presence of the biomaterial are reasons for concern. Cases 

of endocarditis, thromboembolism, and hemolysis have been reported, however (32, 33).  

Various other materials are being developed and tested in efforts to improve material 

biocompatibility, including bacterial nanocellulose (14, 34). 

 In recent years, device closure has increasingly gained in popularity due to its 

significantly lower level of invasiveness and increasing doctor exposure and experience with 

transcatheter closure devices. At present, the most popular devices for VSD closure include the 

Amplatzer Perimembranous Ventricular Septal Defect Occluder (St. Jude Medical, St. Paul 

Minnesota) (ApmVO), the Amplatzer Muscular Ventricular Septal Defect Occluder (St. Jude 

Medical, St. Paul, Minnesota) (AmVO), the Nit-Occlud® Lê VSD Coil (PFM medical, Cologne, 

Germany), and the CERA® VSD Occluder (Lifetech Scientific., Shenzhen, China) (CVO) (14, 29, 

35-39). Other devices, such as PDA occluders and duct occluders, are often used off-label on an 

as-needed basis (40, 41). 

Both Amplatzer devices (ApmVO and AmVO) are double-disk devices made from nitinol 

wire with incorporated Dacron in order to promote thrombosis of the device. Both the ApmVO 

and AmVO contain platinum markers used for ensuring correct orientation of the device upon 

release from the sheath (42-44). The Amplatzer devices are, however, known for being stiff, 

though a newer, second-generation model is currently in clinical trials (3). The Nit-Occlud ® Lê 



VSD coil is a modified Nit-Occlud PDA made of double-layered nitinol wire with polyester fibers 

securely attached to help promote thrombosis (39, 40, 45). Finally, the CERA® VSD Occluder is a 

double-disk device made of nitinol wire with a ceramic coating. This device comes in both 

symmetric and asymmetric variations (46). 

Figure 1: a) The CERA Occluder (46) b) The Amplatzer membranous VSD Occluder (44) c) The Nit-
Occlud Lê VSD Coil (47)   

 

In addition, VSD patches have been inserted via a transcatheter approach in order to 

reduce invasiveness of the procedure, though this is not always the case (14, 30). Transcatheter 

device closure also allows closure of VSDs that are surgically impossible to achieve due to 

surgical complexity arising from patient anatomy or patient inability to undergo open-heart 

surgery (42). VSD device closures have been used by doctors for occluding VSDs in patients of 

various ages since the latter half of the 1980s (42, 48). Success with these devices in pediatric 

patients has been largely positive and success rates in the high 90s often being reported with 

low numbers of reported complete heart block (CHB) and aortic regurgitation (AR) (30, 38, 40, 

42, 43, 47, 49-51). Successful device closure has also been observed in more cases of more 

complex anatomies such as a patient with Gerbode defect (29, 36). Interestingly, reviews of 

transcatheter outcomes of VSD closure suggest that the efficacy and safety of transcatheter 



closure rivals that of surgical closure with promising short-term and midterm results despite the 

relative difficulty of the procedure (19, 37, 52). Nevertheless, there are specific situations in 

which surgical closure is the only practical option, such as in cases of low patient body weight 

and anatomy (25, 27). In recent years, device closure of pmVSD has been questioned due to 

high rates of CHB due to the size of the devices as well as high clamping pressure due to 

double-disk designs; in response, devices such as the Nit-Occlud® Lê VSD coil and other duct 

occluders have come in to use and have shown high success rates (39, 41, 45). 

Looking at the available data, it becomes apparent that both surgical and device-based 

closures of VSD are safe and effective. Current literature goes so far as to suggest that newer 

devices are capable of closing not only mVSD, but also pmVSD percutaneously. An argument 

can be made that device closures are the preferred method of closure when possible due to 

lower associated healthcare and societal costs associated with percutaneous closure in 

comparison to surgical closure thanks to lower complexity of the procedure and shorter 

hospital stays after the procedure (8, 19, 40). However, studying the safety and efficacy of such 

procedures in the pediatric population is challenging due to poor reporting infrastructure and 

small population size for sampling (3, 53). With mixed results in the early years of device 

closures of VSD and increasingly positive results in more recent years, it can be reasonably 

assumed that success rates of device closure will continue to improve and that device material 

and design will continue to mature in order to further mitigate concern of adverse effects. In 

the meantime, current data and published literature suggest that it is safe to assume that many 

cases of VSD can be solved with a percutaneous approach. To truly compete with surgical 



closure, however, devices will need to continue to achieve high success rates for all types of 

VSD while further minimizing the occurrence of residual shunts and adverse side effects. 

 

Atrial Septal Defect 

 Atrial septal defects (ASD) are generally considered to be the third most common form 

of CHD, with approximately 10% of these cases being of hemodynamic significance (8, 25, 54, 

55). There are four main types of ASD: ostium secundum, ostium primum, coronary sinus, and 

sinus venosus (25). Of these three, ostium secundum ASD is the most common (56, 57). 

Symptoms of untreated ASD include exercise intolerance, congestive heart failure, pulmonary 

vascular disease, atrial arrhythmias, fatigue, thrombosis of large pulmonary arteries, cyanosis, 

and syncope among other things (6, 54, 58). Similar to other forms of CHD, earlier intervention 

is preferred to prevent future complications.  

 As is the case with VSD closure, both surgical and device closure options exist. The first 

surgical closure of ASD occurred without direct vision in 1948, and the first reported surgical 

closure of ASD with direct vision occurred in 1952 using induced hypothermia and subsequent 

occlusion of blood flow into and out of the heart (59, 60). Similar to VSD, modern surgical 

closure procedures are more commonly done using cardiopulmonary bypass with median 

sternotomy (54, 61, 62). In recent years, robotic surgery and other alternative, less invasive 

surgical procedures have been explored as a way to decrease physiological and psychological 

impact on the patient as well as surgical cost and duration (62, 63). Currently, surgery is 

recommended as the treatment of choice for closure of sinus venous, primum, and coronary 

sinus ASD or in cases where patient anatomy prohibits device closure (25). Surgical outcomes 



are associated with excellent rates of successful ASD closure with few, if any, residual shunts or 

other unintended side effects such as arrhythmias. If present post-surgery, side effects tend to 

be transient (3, 54, 58, 64).  

Surgical closure is commonly done using either direct suturing or surgical placement of a 

patch (58, 65). Patches materials used include autologous pericardium (both treated and 

untreated), Teflon (polytetrafluorethylene), Dacron (polyethylene terephthalate) and 

autologous right atrial wall (66-69). Results with these materials has been mixed, with cases of 

calcification, thromboembolism, endocarditis, and hemolysis being reported (32, 66, 67). Novel 

materials are being investigated in hopes of maximizing biocompatibility while minimizing 

adverse side effects. One such material is a polyurethane nanocomposite membrane that is 

coated with heparin for enhanced antithrombogenicity (70).  

ASD can also be corrected using a percutaneous device closure. The first such reported 

device closure of ASD was done by King et al. in 1976 (71). Since then, transcatheter occlusion 

of ASD has become relatively commonplace in many hospitals (65, 72, 73). Success rates with 

percutaneous devices have varied, however the rates tend to be comparable, if not better than, 

those associated with surgery with closure rates greater than 95% and mortality rates as low as 

0% (72-74). Likewise, intermediate-term results have been largely positive with reported rates 

of minor and major complication rates around 5% and 1% respectively and mortality of 0% (54, 

75).  

Various devices exist for device closures of ASD. Among these are the Septal Occluder 

(ASO) Amplatzer (St. Jude Medical, St. Paul, Minnesota), the Nit Occlud ASD-R® (NOAR) (PFM 

Medical, Cologne, Germany), the CERA™ ASD Occluder (CAO) (Lifetech Scientific Co., Ltd., 



Shenzhen, China), the GORE® CARDIOFORM ASD Occluder (GCAO) (W.L. Gore and Associates, 

Flagstaff, Arizona), and the Figulla Flex II (FF2) (Occulotech®, Helsingborg, Sweden) (3, 37, 76-

78). Of these, the ASO is the most commonly used device (79, 80).  

The ASO device is a double-disk device with a nitinol frame. The frame is filled with 

polyester fibers for enhanced thrombogenicity (81). NOAR is a self-expanding, double-umbrella 

device made from a single nitinol wire with a titanium oxide coating. In addition to self-

centering, the device contains a polyester membrane sutured to the nitinol frame for enhanced 

thrombogenicity (73). The CAO is a self-expanding, double-disk device made of nitinol which is 

coated with titanium nitride to minimize thrombosis and nickel ion dissociation. The device also 

features a polyethylene terephthalate membrane (82). The  GCAO is a double-disk device made 

of a nitinol frame filled with titanium and covered in an ePTFE membrane (78). Finally, the FF2 

is a self-centering, double-disk, nitinol device with a titanium-oxide coating. The discs are filled 

with ultrathin, nonwoven polyurethane for enhanced thrombogenicity (80). These devices have 

largely been used to close ostium secundum ASD (72, 73, 80). 

Figure 2: a) The Amplatzer Septal Occluder (83) b) The CERA ASD Occluder (83) c) The Figulla 
Flex II (83) d) the GORE CARDIOFORM ASD Occluder  (78) e) The Nit-Occlud ASD-R (73)  

 
Similar to VSD, ASD has been closed using patch systems as well. Polyurethane patches 

have been previously reported in experimental trials with piglets (14, 84). The Immediate 

Release Patch (Custom Medical Devices, Athens, Greece) consists of a porous polyurethane 

foam sleeve with an inner latex balloon and has been used to successfully close ASD in animal 



models (85). These balloons also feature a biodegradable safety thread and a second Nylon 

safety thread in order to allow correction of device position if needed. The Nylon safety thread 

can be removed after correct device positioning is confirmed (86). The Immediate Release 

Patch is also bioabsorbable, meaning there are no concerns over device erosion. The device 

demonstrated little to no thrombosis and successful endothelialization in animal models (85, 

86).  

Due to wider use of transcatheter approaches in ASD closure as compared to VSD 

closure, randomized, controlled trials exist to explore device performance. One such trial 

revolving around the ASO and FF2 found first successful first attempt device placement rates to 

be 90.2% and 99.1%, respectively; early efficacy rates were reported as 90.2% and 94.4%, 

respectively. Major complication rates were found to be 5.6% for the FF2 and 9.8% for the ASO 

Average age in this trial was 20.4 for the FF2 and 21.1 for the ASO, with the lowest age being 3 

years old for both groups; all patients were 13kg or greater (80). Studies using the NOAR device 

have found success rates of 98.6% (73) in 74 patients (median age 17.2) with 98.6% (72) cases 

of complete occlusion. No complications were documented in any of the 74 patients(73). The 

CAO has reported similar success rates with 94.3% occlusion rates in a 201-patient trial. Of the 

201 total patients, 79 were pediatric patients; however, the procedure was aborted in 7 of 

these patients due to presence of multiple defects, residual shunting after placement, or 

inadequate size of the patient’s atrial septum relative to the device (82). The GCAO has been 

associated with similar findings (78). However, incidents of tulip deformity or cobra deformity, 

a potential major complication, have been reported for various types of ASD occlusion devices, 

including the ASO and CAO (79, 87, 88). Reports regarding complications encountered 



attempting transcatheter closures on patients of low body weight have been published as well, 

detailing complications related to low body weight (89). Reports have also been published 

regarding atrioventricular block in pediatric patients due to closure of ASD with the FF2 device, 

highlighting the dangers of device-patient size mismatch (90). Finally, reports of device erosion 

and embolism have led to fears of future occurrences and the altering of the manufacturer’s 

Indications for Use; resultingly, ASD closure in pediatric populations has trended back towards 

surgical closure as opposed to transcatheter closure (89, 91-94). However, rates of erosion are 

low, occurring in 0.1%-0.3% of cases (91).  

As transcatheter closure has increased in popularity, multiple studies have been 

conducted to compare cost and effectiveness of device closure versus surgical closure. A large, 

randomized, controlled trial has been conducted and found that of 596 patients (442 device 

closures and 154 surgical closures) , device closure with the ASO had a success rate of 95.7% 

and surgical closure had  a success rate of 100%. Complication rates were 7.2% and 24.0% for 

the device and surgical groups respectively. Median age was 9.8 years for the device group and 

4.1 years for the surgical group. Efficacy rates were found to not be significantly different 

between groups, however device closure had significantly lower complication rates and hospital 

stay lengths (74). Other trials have found similar results in both adults and children (20, 95). 

Likewise, multiple studies have been published further confirming the safety and efficacy of 

transcatheter closure and its ability to compete with the success rates demonstrated by surgical 

closure of ostium secundum ASD (72, 96).  

With shorter hospital stays, lower hospital charges,  and lower overall societal costs, 

percutaneous closure has become preferred, and even superior in some ways to surgical 



closure (8). However, overall cost relies on various factors including location, with some 

countries reporting lower surgical costs due to the cost of device import (97). Nonetheless, with 

containing device material and cost improvements, percutaneous closure will likely continue to 

be the method of choice for closing ASD in patients. Surgery does, however, hold the unique 

advantage of allowing closure regardless of anatomy or patient size. Thus, a need for devices to 

address for complicated anatomies such as coronary sinus ASD or ostium primum ASD and for 

low-weight patients is apparent. In the meantime, data continues to suggest that device closure 

of ostium secundum is a safe and effective alternative to surgical closure.   

 

Patent Ductus Arteriosus  

Patent ductus arteriosus (PDA) is a form of CHD in which the ductus arteriosus, which 

normally closes prenatally, remains patent after birth. PDA represents approximately 10% of all 

cases of CHD (98). Historically, incidence of PDA is higher in preterm births (7). Spontaneous 

closure of PDA is common and is estimated to occur in approximately 24% of cases (6). 

However, risks of untreated PDAs include increased likelihood of infective endocarditis, 

pulmonary hemorrhage, necrotizing enterocolitis, bronchopulmonary dysplasia and 

intraventricular hemorrhage (6, 9, 99). PDA may be dealt with in various ways including medical 

therapy, surgical litigation or clipping, or transcatheter occlusion (25, 100). Medical therapy 

typically uses indomethacin for PDA closure, however studies suggest that this route of 

treatment may be ineffective in anywhere from 10% to 40% of cases (101). Surgical closure and 

transcatheter occlusion are options in cases where medical therapy is impossible or fails to 

succeed. Closure of PDA typically occurs early in life, as patency of the ductus arteriosus is 



associated with increased morbidity. However, there is debate over if there is an ideal time for 

intervention and when that timing may be; most studies suggest closure while still in infancy. 

(99, 102, 103).  

The first surgical closure of PDA was accomplished by Gross and Hubbard in 1939 and is 

considered to be the first surgical treatment of CHD (6, 104). Various techniques exist for the 

surgical closure of PDA. One such method is a complete thoracotomy or sternotomy with 

sedation and intubation in order to litigate the PDA under direct vision. Other surgical methods 

include video-assisted thoracoscopic surgery (VATS), a method that in less invasive and 

traumatic than a traditional sternotomy or thoracotomy, as well as a minithoracotomy (98, 

105). The VATS method involves creating three incisions of 5mm, 3mm, and 3mm each 

followed by compression of the left lung via insufflation with CO2 (98). VATS decreases cosmetic 

scarring as well as overall invasiveness of the procedure compared to a full thoracotomy while 

still maintaining the option for transition to full thoracotomy if necessary (105). Both of these 

procedures involve the clipping of the ductus arteriosus with an endovascular clip, often made 

of titanium, whose size varies as needed (98, 100, 105). 

 Studies have shown VATS procedures are associated with shorter hospital stays in 

comparison to thoracotomies, with the median length of stay for patients older than 45 days 

being 1 day for VATS and 4 days for a thoracotomy (100). Though surgical procedures are 

generally associated with permanent PDA litigation, both techniques carry risks of post-

thoracotomy pain syndromes, rupture of intercostal ligaments which may lead to scoliosis, 

pneumothorax, and nerve palsy (99, 100, 105). Surgical outcomes have been shown to be 

statistically similar, though rates of complications and mortality remain high with both 



procedures in infants with low birth weight (< 2500g) (98, 99). In a single-center study, the rates 

of mortality in infants with low body weight were 8.5% and 17.9% for VATS and traditional 

thoracotomy, respectively; no mortality was reported in infants not classified as low body 

weight for either procedure. However, this difference was found to be insignificant. Post-

surgical complication rates were low among both groups eluding to the safety of the procedure 

(98). Various other studies have found similar results showing that VATS and a traditional 

thoracotomy have similar mortality and success rates (98, 106, 107).  

Device closure is another popular option for the litigation of PDA. Such litigation is 

usually done by occlusion of the PDA via an occlusion coil or other occlusion device. The first 

reported device closure of PDA was reported in 1967 by Porstmann et al. (108). PDA closure via 

a transcatheter approach has become commonplace in many hospitals. Reported closure rates 

of PDA via catheterization have been acceptable with rates in the range of 90% upwards. 

Accordingly, mortality rates reported have been at or around 0% (55, 100, 109, 110).  

Various device options exist for PDA closure. These devices exist in two main categories: 

occluders and coils. Popular devices used for PDA occlusion include the Amplatzer Duct 

Occluder (ADO) (St. Jude Medical, St. Paul, Minnesota), the Amplatzer Duct Occluder II (ADOII) 

(St. Jude Medical, St. Paul, Minnesota), the Amplatzer Duct Occluder II Additional Sizes (ADOII-

AS) (St. Jude Medical, St. Paul, Minnesota), the Nit-Occlud PDA  (NOP) (PFM Medical, Cologne, 

Germany), and Gianturco coils (GC) (William Cook Europe A/S Inc., Sandet, Denmark) (55, 109-

111).  



 Figure 3: A) The Nit-Occlud PDA (109)  B) Schematic of NOP implantation (109) C) THE 
Amplatzer Duct Occluder-Additional Sizes (112)   

 
The ADO is a nitinol mesh device in the shape of a mushroom with platinum marker 

bands on the ends of the wires. The device is self-expanding and features sewn-in polyester 

fibers to promote thrombosis (113). The ADOII is also a nitinol mesh device, however it has a 

symmetrical double-disk design with markers on each disk. This device was designed to be 

more flexible than the ADO and does not feature polyester fibers (114). The ADOII-AS is made 

of two layers of braided nitinol wire with two symmetrical discs and one central plug. The 

ADOII-AS does not include polyester fiber and can be delivered in a 4F catheter (112). The NOP 

is a nitinol wire coil and is made in flex and medium forms; the flex has thinner wiring than the 

medium. Upon deployment, the coil initially forms a cone shape; as the device is further 

deployed, a “reverse cone” shape is created to give the device a hyperboloid shape (109). 

Gianturco coils can be made in various sizes and are typically made of stainless steel with wool 

fibers attached (115, 116).  



Trials to determine the efficacy of each of these devices have been completed with 

overall results being favorable (37, 117). Trials using the ADO have found closure rates over 

90% within 24 hours and of 97% mid-term (~4 years). These trials have also reported no 

mortality or morbidity associated with the procedure (111, 118, 119). The ADO, however, is 

typically reserved for large PDAs due to its size and design (21). The ADOII has been associated 

with similarly high rates of occlusion (98%) and low rates of mortality and morbidity (0%) (21). 

Like the aforementioned Amplatzer devices, the ADOII-AS also associated with closure rates 

near 100% and near-zero morbidity and mortality rates (110, 112, 120). With the NOP, closure 

rates 6 months after intervention have been reported in the 90s with little to no mortality or 

morbidity (55, 109). Gianturco coils also have high closure rates, though reports of embolization 

with these coils have been markedly higher than other closure devices (111, 121-123).  

Despite great success, closing PDA in small patient still proves difficult (3). PDA devices 

have reported cases of embolization and residual shunts occurring in anywhere from 3% to 38% 

of cases (3, 110, 124, 125). Other risks include device protrusion into the vessels, using a large 

sheath size in small vessels, embolization, and complication of retrieval if necessary (126). 

Nonetheless, the previously mentioned rates of closure, mortality, and morbidity suggest that 

device closure of PDA is as safe and effective with various devices (111).  

Both surgical approaches and transcatheter approaches to PDA litigation report 

favorable outcomes and low rates of adverse events. For most patients, with the exception of 

low birth weight neonates, both options prove to be safe and effective. Nonetheless, due to 

complications associated with weight, there is no clear choice as to which approach is more 

favorable. While transcatheter approaches are minimally invasive and are associated with 



shorter hospital stays, surgical techniques have continued to improve in order to become less 

invasive and carry no risk of long-term complications due to a device (126). No direct 

comparisons of device closure versus surgical closure could be found during literature research, 

suggesting a lack of evidence for one approach or the other at this time for all types of patients.   

 

Ventricular Assist Devices 

 Heart failure is common among CHD patients, with CHD being one of the leading causes 

of heart failure (10). Studies have shown that, though rare, up to 43.1% patients presenting in 

the emergency department with heart failure related to CHD (127). However, heart failure can 

occur for various other reasons, including onset due to mispositioning of a cardiovascular 

device, valve stenosis, bundle branch blockages, and myocardial infarction (3, 124, 128, 129). 

Severe heart failure typically ends with a prognosis of patient placement on the transplant list. 

However, children with end-stage heart failure who are placed on the transplant list have the 

highest wait-list mortality in medicine (4). As such, various treatment options exist to help 

combat heart failure. Options include medication, typically in the form of diuretics, and 

mechanical circulatory support; mechanical circulatory support is typically reserved for heart 

failure patients in which diuretics do not work (130). Research has shown that resistance to 

diuretics is associated with poorer clinical outcomes including death or the need for mechanical 

circulatory support (130).  

 As one of the last lines of defense against death due to heart failure, mechanical 

circulatory support is of critical importance in pediatric patients as a bridge to transplant, bridge 

to therapy, or bridge to destination. Popular forms of mechanical circulatory support include 



extracorporeal membrane oxygenation (ECMO) and ventricular assist devices (VAD) (2). ECMO 

has been used as the standard for mechanical circulatory support in pediatric patients for many 

years, but VADs have been increasingly used in lieu of ECMO (2). Part of the move away from 

ECMO may be related to the large risk of adverse events associated with long-term use of 

ECMO (13). Despite advances in ECMO, survival rates on ECMO, especially long-term survival 

rates, tend to be poor, with mortality rates often being in excess of 50% and 30-day survival 

rates being reported as low as 44% (131-133).  

Long-term options for alternative mechanical circulatory support have been increasingly 

investigated due to organ shortages world-wide and the fact that children waiting for a heart 

transplant having the highest risk of death out of all patients awaiting organ transplant (134, 

135). VADs have been increasingly used as bridge-to-transplant, and occasionally bridge to 

recovery, devices in recent years, especially as an alternative to ECMO. Only two FDA-approved 

pediatric VADs are currently available: the Berlin Heart EXCOR (EXCOR) (Berlin Heart, Berlin, 

Germany) and the Micromed HeartAssist 5 (HA5) (formerly known as the DeBakey VAD Child) 

(ReliantHeart  Inc., Houston, Texas). Both of these devices were originally approved under the 

Humanitarian Device Exemption policy and require anticoagulation treatment for the life of the 

device (13, 136).  

The EXCOR is an electro-pneumatically-driven pulsatile flow device and is available in 10, 

25, 30, 50, and 60mL chamber sizes and pump coordination can be set as needed. The device 

features a polyurethane pump that has a multilayer membrane for separation of the air and 

blood chambers. Any surface that comes in contact with blood is coated with heparin to 

enhance anticoagulative properties (137). The device can be used as either a left ventricular 



assist device or a biventricular assist device (4). The EXCOR is currently the device of choice for 

VAD support in children (2, 13). In 2014 alone, the EXCOR was implanted over 1500 times (138). 

Various studies have been performed to investigate the effectiveness of the EXCOR as a bridge-

to-transplant alternative to ECMO. Generally, studies have shown the EXCOR to be equally, if 

not more, effective than ECMO for bridge to transplant, especially long-term (4, 13, 138, 139). 

However, bridge to transplant rates, especially in cases with biventricular support, still fluctuate 

widely and tend to be lower than desired. One study reports bridge to transplant rates to be 

45% and 50% mortality in patients supported with the EXCOR (139). Another study, meanwhile, 

reports 100% survival with 55% of patients having already been bridged to transplant. Median 

duration on device was 312 days and the longest support period was 661 days at time of 

reporting (138). However, rates of neurological dysfunction with the device have been reported 

as high as 29% (4). Some researchers have suggested as much as 88%-92% of pediatric patients 

requiring mechanical circulatory support could be bridged to transplant with the EXCOR, 

making it a promising alternative to ECMO (4).   

Figure 4: a) The Berlin Heart EXCOR (13) b) The MicroMed DeBakey VAD Child (140)  

 



The HA5 is the only other FDA-approved device for use in pediatric patients (13). The 

HA5 is an intracorporal device made of titanium with a titanium impeller. The inflow cannula 

connected to the ventricular apex is made of titanium as well, while the outflow cannula is 

made of Vascutek Gelweave (137). The pump uses axial (continuous) flow that is actuated 

electromagnetically. The device weighs only 92g, allowing it to sit above the diaphragm. An 

ultrasonic probe sits around the outflow cannula to measure blood flow (137, 141). The HA5 is 

approved for use in patients ages 5-16 and with body surface areas 0.7-1.5 m2 (13).  In addition, 

the system has an external controller system, data recording system, and patient home care 

support system (137). The HA5 allows for patient data and alerts to be sent directly to the 

attending physician electronically, potentially minimizing patient admission to hospital and 

physician response time (141).  

The HA5, as the name would suggest, is a later iteration of the original DeBakey VAD for 

children. The original DeBakey VAD was rarely used due to high rates of thrombosis of the 

pump, thromboembolic events, and high mortality rates in bridge to transplant patients. These 

values were reported as 22%, 11-36%, and 45% respectively (142-144). In response, blood-

contacting surfaces are now coated with heparin and the bearings and impeller have been 

modified, thus reducing thrombogenicity (144, 145).  

Other VAD options exist for treating heart failure. However, the two devices mentioned 

above are the only two devices currently FDA approved for use in pediatric patients. Other 

commonly used devices include the Thoratec HeartMate II (Thoratec, Pleasanton, California) 

and the HeartWare HVAD (HeartWare International Inc., Framingham, Massachusetts). For 

right ventricular heart failure, the Impella RP System (Abiomed, Inc., Danvers, Massachusetts) is 



an FDA-approved alternative. In cases of total heart failure, the CardioWest Total Artificial 

Heart (SynCardia Systems, LLC, Tucson, Arizona) has also been used in pediatric patients (146). 

Other device option have been explored, such as the Jarvik 2015 VAD (Jarvik Heart Inc., New 

York, New York). The Jarvik 2015 was explored as an option to use in place of the EXCOR. In 

2015, the FDA launched a two-arm trial, however the trail was ended in 2017 with no patients 

enrolled (5, 147). Other initiatives sponsored by PumpKIN have been attempted, however none 

of these devices have managed to gain an Investigative Device Exemption (IDE) from the FDA 

(147).  

Despite the improvements of VADs over ECMO for long-term bridge to transplant, there 

remains considerable ground to cover. Currently, small and young patients tend to fare far 

worse than their older, heavier counterparts, suggesting a need for improved device design and 

size for these patients (139). Furthermore, the overall lack of device options for children lead to 

off-label device use in many patients, meaning there is no long-term, or even short-term, data 

to explore the safety and efficacy of these devices (2). VADs have continued to be plagued with 

problems as well. Sensitization of patients on the transplant list has become a major issue, as 

this sensitization leads to higher rates of transplant rejection. One study  done with adults 

found sensitization in 10 out of 60 patients in the study and acute rejection of the transplant in 

16 of the 45 patients who were bridged to transplant (148). Other studies have also described 

use of a VAD as a risk factor developing sensitization in pediatric patients, further solidifying the 

risks associated with VADs (137, 149). Moreover, LVAD use has been shown to be associated 

with right ventricular failure in up to 42% of pediatric patients. The suggested reason for this is 

due to increased preload of the right ventricle in comparison to before implantation of the 



LVAD; theoretically, LVAD speed could be optimized to improve the function of both ventricles, 

however current pump models do not support this (150).  

There has also been debate in choosing between pulsatile and continuous flow in VADs 

for children. Some suggest pulsatile flow increases ventricular unloading and increases the 

change of myocardial recovery, while others suggest continuous flow is associated with better 

survival rates (132, 151). Furthermore, studies have suggested that continuous flow devices 

show lower rates of sensitization that pulsatile flow devices, likely due to the lack of biological 

membranes and lower surface area (148). Meanwhile, pulsatile VADs are believed to result in 

better tissue perfusion (137). With no apparent consensus between the two, it is obvious that 

more research needs to be done into maximizing the utility of a continuous versus pulsatile 

flow device on a situation-by-situation basis in pediatric patients.   

Adverse events continue to be a problem that plagues the use of VADs as a whole. Rates 

of survival in children using VADs as bridge to transplant equal to those who do not use a VAD, 

as shown by recent studies (151). The PediMACs registry has shown high levels of adverse 

events in patients with VADs. In the first analysis of PediMACs data, 502 complications occurred 

in 200 patients. Of these complications, 16% were due to device malfunction, 16% were due to 

infection, 14% were due to major bleeding, and 10% were due to neurologic events (152). 

Evidence suggests that VADs are a good alternative to ECMO for bridging pediatric transplant 

patients to transplant, especially over long periods of time. However, with no clear consensus 

and high complication rates, it becomes readily apparent that there is much work to be done in 

the field of pediatric VADs despite the benefits already conferred by use of these devices.  

 



Artificial Valves and Conduits 

 Various forms of CHD involve considerable malformation of the ventricular outflow 

tracts (VOT), valve stenosis, or, in some cases, the absence of a valve. One such case is 

Tetralogy of Fallot (ToF). ToF is defined as a combination of four CHDs: VSD, right VOT 

obstruction, overriding of the aorta, and a right ventricular hypertrophy. ToF occurs in 

approximately 0.19 to 0.28 per 1,000 live births, representing approximately 3.5% of CHD cases 

(153-155). Untreated ToF typically results in a young death due to stroke, hypoxemia, brain 

abscess, and sometimes myocardial infarction (6).  Another form of CHD resulting in improper 

formation of VOTs is truncus arteriosus, a CHD resulting in fusion of the aorta and pulmonary 

trunk to form a single artery that serves both circulations (156). Finally, there are single-

ventricle hypoplastic heart syndromes where only one ventricle and one outflow valve form in 

the heart and the respective atrio-ventricular valve is either closed or atretic (6). Various other 

forms of valve dysfunction beyond those listed exist in pediatric patients. Regardless of original 

anatomy, each of these CHDs requires reconstruction or replacement of heart valves, which can 

either be done surgically or via a transcatheter approach in some cases.  

 Surgical approaches to CHDs involving valve replacement vary according to initial 

anatomy and can be quite complex. For such reasons, only the basics of a few procedures along 

with relevant statistics will be reported here. The first procedure of interest is repair of ToF. The 

first recorded surgical procedure to correct ToF was done by Lillehei et al. in 1954, and was also 

the first recorded instance of open-heart surgery (157). Modern surgical approaches still 

involve open-heart surgery accompanied by the use of cardiopulmonary bypass. There are two 

main surgical approaches: complete repair or staged repair. Complete repair typically occurs 



while still an infant, while the staged repair approach involves a palliative procedure as an 

infant and a follow-up procedure for complete repair at an older age (158). Surgical approaches 

vary according to anatomy, but typically, surgery involves the use of a transannular patch 

and/or the insertion of an artificial valve or conduit (159). Studies have shown mortality rates 

over a 50-year period to be 7.2% in early stages (30 days or fewer after operation) and 7.9% 

long-term with no difference in mortality rates between complete and staged repairs (159). 

More modern publications report risk of death to be approximately 6% (158). Another study 

exploring the mortality rates in neonates between complete and staged repairs reported 239 

deaths in 2363 patients (10%) with higher mortality rates in the neonates receiving complete 

repair as opposed to staged repair (158). Currently, the suggested age for repair is at an age of 

3-6 months (155). Materials used for patching include autologous untreated pericardium, 

bovine pericardium, and Dacron among other materials (160-162). Conduits for this used 

include the Matrix P® conduit (decellularized porcine conduit) (AutoTissue, Berlin, Germany), 

Contegra® bovine jugular vein xenografts (Medtronic Inc, Minneapolis, Minnesota), and 

allografts (162-164). Replacement valves used include the Melody® Transcatheter Pulmonary 

Valve (Medtronic Inc, Minneapolis, Minnesota), the HARMONY valve (Medtronic Inc, 

Minneapolis, Minnesota) (which is not FDA-approved at this time), and the various Edwards 

Sapien valves (Edwards Lifesciences, Irvine, California) (165, 166). 

 Truncus arteriosus may also be corrected by surgery. The surgery requires 

cardiopulmonary bypass and a sternotomy due to the complexity of the procedure. Generally, 

the truncus arteriosus repair procedure involves separation of the pulmonary arteries from the 

aorta, closure of the ventricular septal defect using a patch, and connection of the right 



ventricle to the pulmonary arteries via conduit or sometimes direct anastomosis (167). One 

study examining survival rates over 40 years found survival rates to be 67%, while another 

examining survival rates over a 20-year period to be 68% ± 6% (168, 169). Reoperation rates are 

also high, with certain truncal valve repairs having reported 100% reoperation rates at 8 years 

(169). Conduits used for the procedures include Gore-Tex non-valved, mono-, 2, and 3 cusp 

conduits (W.L. Gore & Associates, Newark, Delaware), polyester conduits, aortic and pulmonary 

homografts, glutaraldehyde-treated equine pericardium, autologous pericardial conduits, and 

the Matrix P plus N valved conduit (AutoTissue, Berlin, Germany) (168, 169). However, rates of 

conduit replacement remain high, with studies reporting as much as 97% of patients needing 

conduit reoperation (168, 169). 

 As is readily apparent, there is considerable room for improvement in terms of conduit 

functionality and durability. Major risks for conduit replacement include in-conduit stenosis, 

branch pulmonary artery stenosis, and conduit regurgitation (15, 168-170). Current options for 

conduit repair include conduit dilation via catheter balloon dilation, enlargement of the conduit 

via grafting, placement of a transcatheter valve, or conduit replacement (3, 168, 169, 171). 

Another major problem encountered with conduits is the inability of the conduit to grow with 

the patient, leading to a mismatch between patient and device size (15). While biological valves 

solve the growth problem, they often become diseased and need replacement as well, 

increasing rates of reoperation (15, 18). Other recent attempts involve creating conduits from 

expanded polytetrafluorethylene (ePTFE) so that the conduit may be expanded via catheter as 

the patient grows (15, 18). Studies on such valves have shown little change in mechanical 



properties after expansion of up to 2.5x, however further testing is needed before patient use is 

plausible (18).  

 The Melody valve is a transcatheter valve that, as previously mentioned, can be used to 

help correct various forms of CHD or to help dilate otherwise occluded conduits. The Melody 

valve was approved in 2010 to help correct obstruction in right VOTs under the humanitarian 

device exemption (HDE) (172, 173). The valve itself is made from a glutaraldehyde-treated 

bovine jugular vein valve in a platinum iridium stent (174). The valve has shown high rates of 

success in both short-term function and procedural success, with studies reporting no more 

than mild regurgitation in most patients after device placement in both conduits and orthotopic 

positions (173, 175, 176). Despite the promise of minimizing necessity of reoperation, the valve 

carries risks. During implantation, especially in cases of abnormal anatomy, the valve has shown 

it may cause compression of the coronary arteries. Observed rates were low, however, 

coronary artery compression poses a serious risk as it may lead to ischemia, and possible 

infarction, of the heart (172, 177, 178). Other documented risks included fracture of the stent, 

especially in severely obstructed conduits, and endocarditis (179-182).  

Figure 5: The Melody Valve and the Sapien XT Valve (3)  

 



 The first Sapien valve, approved by the FDA in 2011 for aortic valve replacement, was 

quickly used across a variety of procedures with good short-term results. The Sapien is made of 

three bovine pericardium leaflets of equal size sewn to a stainless-steel stent that can then be 

expanded by balloon catheterization. The pericardium is treated with Thermafix to help prevent 

calcification. The device also has a polyethylene terephthalate (PET) cuff on the lower end of 

the stent to help prevent paravalvular leak (183). Reported regurgitation rates were low and 

successful implantation was achieved in >90% of patients with little to no complication (184, 

185). One major advantage of the Sapien valve was the inclusion of the larger 23mm and 26mm 

sizes, using 22F and 24F sheaths respectively (186). At the time, the Melody valve was only 

available in 18-22mm sizes (185).  

The second iteration of the valve came as the Sapien XT. The Sapien XT features a stent 

made of cobalt chromium that is smaller than its stainless-steel predecessor. The valve itself is 

made of bovine pericardium treated with Thermafix to reduce calcification and has scalloped 

leaflets to enhance durability over the original Sapien valve (187). The Sapien XT boasts a 

smaller sheath size, using 18F and 19F sheaths for the 23mm and 26mm sizes, respectively 

(186). The Sapien XT is also available in 20mm and 29mm sizes using 18F and 20F gauges, 

respectively (188, 189). Multicenter trials have shown the efficacy and safety of the Sapien XT 

in real-world settings as well, though no long-term studies on the safety of these valves in a 

pediatric setting have been performed (190, 191).  

The latest iteration of the Sapien valve is the Sapien 3. The Sapien 3 is available in 20, 

23, 26, and 29mm sizes, with the 20-26mm sizes using a 14F gauge sheath and the 29mm size 

using a 16F gauge sheath (190). The Sapien 3 again features a cobalt chromium stent frame and 



a tri-leaflet valve made from bovine pericardium. The Sapien 3 also features an additional PET 

skirt designed to decrease paravalvular leakages, something its predecessors lacked (190). The 

design of the stent was modified to increase radial strength as compared to the Sapien XT 

(192). Similar to previous iterations, the Sapien 3 has been reported to have high rates of 

successful implantation across all age ranges (190, 193-196). Though considered off-label use, 

the valve, which is FDA approved for aortic valve replacement, has been used successfully to 

replace the tricuspid and pulmonary valves in pediatric patients with low complication rates 

(190, 196).  

 As is the case with any medical device, there is a risk for complications after implant. 

Complications associated with implantable valves include aortic compression, damage to other 

valves, paravalvular regurgitation, stroke, and other vascular complications (190, 196-198). In 

addition, cases of collapse of transcatheter valves after chest compression have been reported, 

though the valve was able to be re-dilated (195). However, overall reported complication rates 

with the Sapien valves have decreased with improved device design, with studies showing rates 

of major vascular complications to be 15.3%, 10.2%, and 4.2% for the Sapien, Sapien XT, and 

Sapien 3 valves respectively (193). Reported 30-day mortality rates have also been low, with 

various studies reporting mortality rates ranging from 3.5%-5.2% (193, 198-201). One study 

cites pooled mortality rates of 1.4% (197). Likewise, studies using the Melody valve found little 

to no mortality, though there are reports of issues with regurgitation (190, 197). Other 

complications reported include coronary artery compression, embolization of the valve, and 

pulmonary artery obstruction (197). Pre-stenting is common to help reduce incidence of 

fracture due to high initial rates of fracture (3, 173). Moreover, previous studies have shown 



that crimping of treated bovine pericardium can cause tears, cracks, and other forms of fiber 

damage to the valve, thus potentially increasing the thrombogenicity of the implant (202). The 

inability of valves to grow with the patient also presents a challenge for pediatric patients. 

Because valves cannot grow, reintervention is necessary; reintervention is commonly 

associated with higher mortality rates (17, 18). However, long-term efficacy of the valves is 

uncertain (3). 

 Though many forms of CHD requiring valve replacement necessitate surgery in some 

capacity, hybrid procedures using transcatheter valves present an exciting opportunity to 

minimize invasiveness and potential complications. Reports have been made in which hybrid 

procedures utilize transcatheter delivery of valves to minimize invasiveness (190, 203-205). 

Hybrid procedures have also reportedly been used for more complex surgeries, such as for the 

completion of the Fontan procedure (206). Transcatheter valve replacement also allows valve 

replacements in pediatric patients who are otherwise ineligible for surgery (190, 196, 198). 

Furthermore, transcatheter valve replacement costs and mortality have been found to be 

similar to or better than those of surgical approaches (207, 208). With high success rates, low 

complication rates, minimal invasiveness, and similar costs transcatheter valve replacement in 

pediatric patients appear to be a sound alternative to surgery in applicable cases.  

 

Current Challenges 

 Despite advances in pediatric cardiovascular devices, various problems still exist. Among 

these problems is sensitization in patients being bridged to transplant using VADs. As briefly 

mentioned before, studies have shown that use of VADs can lead to increased or de novo 



sensitization in all age groups (148, 209-211). Sensitization has been well-documented to be 

associated with poor transplant outcomes which is problematic in a patient group that largely 

relies on transplants for survival (212-215). Desensitization therapies have been largely 

ineffective and tend to only have transient and/or limited effects and immunosuppression 

therapies lack data to support their effectiveness (215-219). However, the etiology of 

sensitization in patients supported with VADs is unclear at this time, making it difficult to create 

effective therapies (215, 219).  Some theories suggest that it is linked to the interactions 

between the host immune system and the surfaces of the device (219). Uncovering the cause of 

VAD-linked sensitization is critical for ensuring maximal transplant success in both children and 

adults and improving device safety and efficacy. 

  Thrombosis of VAD devices has continued to be a challenge in pediatric-supported 

patients as well (220). The immature coagulation systems in children present an exceptional 

challenge, as children are associated with poor inhibition of clot formation and high resistance 

to anticoagulative treatments (221). Currently, VADs are accompanied with anticoagulative 

treatments, though there is no universal set of standards for management of thrombosis in 

pediatric VADs (220). These high rates of pump thrombosis place the physician in a position 

necessitating constant revision of anticoagulative therapies in order to ensure maximum quality 

of life and a minimum number of adverse events. For this reason, it is necessary that more 

formalized strategies for dealing with thrombosis prevention and treatment become available 

for physician use if necessary. Furthermore, increased anticoagulative properties of VADs and 

other cardiac devices such as conduits is necessary so that anticoagulative treatment need not 



be pursued as aggressively. Reducing anticoagulative treatment would lead to better quality of 

life in the patients as well as reduce the risk of problematic bleeding situations. 

 Due to the wide range of body size within the pediatric population, there is seldom a 

one-size-fits-all solution to any problem. Though some devices have approached this issue, such 

as the release of additional sizes of the ASO or decreasing delivery sheath sizes for 

transcatheter heart valves, other devices have fewer options to match patient size. VADs, for 

example, must support hearts of various sizes in patients with diverse body surface areas and 

weights (2). Over-sized devices have been reported to cause issues in patients due to this size 

mismatch (90). Existing models of device use and management developed for use in adults do 

not always translate to children, complicating device management and management of adverse 

events in children (137). Transcatheter valves and conduits are incapable of growing with 

patients and require replacement as the patient grows. This issue has been approached through 

the testing of radially expandable conduits, however no clinically-approved solutions are 

currently available (18). Biological heart valves have also been attempted, but these are often 

far too large for use in young pediatric patients. Biological heart valves are also subject to 

degradation by the same mechanism as the original valve, meaning they serve only as a 

temporary solution. For such reason, physicians often decide to tolerate defects until such a 

time that an adult device can be implanted in the patient so that complications related to 

patient-device size mismatch can be minimized (18, 222) . This, in turn, creates issues in 

determining the optimal device implantation time (222). With few appropriate devices sized for 

children and no devices that can grow with children from a young age, it is clear that more 

research and device development is necessary. 



 Despite the clear need for pediatric devices, few, if any, new devices designed for 

children make it to market each year. This can mainly be tied to the lack of an adequate 

population of children with CHD and the range of complex anatomies of children with CHD (1, 

2, 223). This small population size makes it difficult to perform clinical trials to test the safety 

and efficacy of devices, and as a result very few device are developed (72). Furthermore, the 

small population size gives industry little incentive to develop a device due to little profit 

potential (13). In 2007, Congress passed the Pediatric Medical Device Improvement and Safety 

Act in an attempt to spur industry interest in pediatric devices by  allowing profits to be made 

on devices approved through the HDE pathway (1). However, this is proved to be little 

incentive, as few new devices have made it to market, with the approval of the Impella RP 

System (Abiomed, Inc., Danvers, Massachusetts), used for right ventricular bypass, in 2015 

being the most the most recently approved device. Since the creation of HDE in 1990, only 5 

cardiovascular devices specifically mentioning pediatric use (EXCOR, Contegra conduit, Melody 

valve, DeBakey VAD Child [now HeartAssist 5], and Impella RP) have been approved through 

this pathway. This leads physicians to turn to the use of off-label devices in many pediatric 

patients. 

 Off-label use is widespread in the field of pediatric cardiology and has become the 

standard of care in many hospitals (53, 224). After FDA approval, the FDA has little control over 

how a device is used after issuing labelling for said device, and thus many devices are still 

considered off-label despite frequent use (1, 118). Many recommendations for pediatric 

interventions refer to the off-label use of devices (3).  One study found 63% of devices and 50% 

of catheter interventions in children over a three-year period were considered off-label. Of 



these, occlusion devices and embolization coils were found to be used in an off-label fashion 

92% and 71% of the time, respectively, indicating the prevalence of off-label use (1). Though 

off-label use of devices has proven to be beneficial in many cases, it carries various risks that 

cannot be adequately assessed due to the aforementioned small population size for studies. 

Also, off-label use is often times not reported, thus making it difficult to truly asses the variety 

of outcomes and frequency of use. Due to the FDA regulations, devices cannot be marketed for 

off-label uses and companies cannot update guidelines to reflect off-label use, thus few 

guidelines exist (225). Furthermore, due to lack of rigorous testing of these devices in pediatric, 

there remains the risk of adverse events not usually seen in adult populations appearing in 

pediatric cases (13, 124). However, at the present time, off-label use is a necessary evil. The 

lack of pediatric devices necessitates the creativity of physicians in solving complex cases 

related to CHD.  

Though off-label use will continue to occur for the foreseeable future, the lack of data 

for pediatric patients has been addressed through the creation of databases and initiatives such 

as Pumps for Kids, Infants, and Neonates (PumpKIN), the Pediatric Interagency Registry for 

Mechanically Assisted Circulatory Support (PediMACS), the Manufacturer and User Facility 

Device Experience (MAUDE) database, and the Pediatric Heart Network (13, 16, 220, 223). As 

data continues to be collected, it will undoubtedly be invaluable in determining standard care 

practices as well as the safety and efficacy of the devices used in pediatric patients. 

 

Conclusions 



 The breadth of devices used in pediatric cardiology presents many avenues for 

treatment of CHD in pediatric patients. Off-label devices and the occasional HDE device 

continue to be the standard of care in many hospitals. Transcatheter approaches have largely 

reached an equal or higher level of efficacy in comparison to traditional surgical techniques, 

suggesting the effectiveness of this approach. There remains a need for determining safety and 

efficacy in off-label use devices and promotion of creating pediatric-specific devices, as current 

methods have proven inadequate. In the meantime, current approaches continue to improve 

and corrective procedures continue to become less invasive. As new devices are created and 

old devices are explored for new uses, outcomes and quality of life will likely continue to 

improve for pediatric patients.  
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