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ABSTRACT 

Teleoperated robots have proven useful across various domains, as they can more readily 

search for survivors, survey collapsed and structurally unsound buildings, map out safe 

routes for rescue workers, and monitor rescue environments. A significant drawback of 

these robots is that they require the operator to perceive the environment indirectly. As 

such, camera angles, uneven terrain, lighting, and other environmental conditions can 

result in robots colliding with obstacles, getting stuck in rubble, and falling over (Casper 

& Murphy, 2003). To better understand how operators remotely perceive and navigate 

unmanned ground vehicles, the present work investigated operators’ abilities to negotiate 

corners of varying widths. In Experiment 1, we evaluated how instruction method 

impacts cornering time and collisions, looking specifically at the speed-accuracy tradeoff 

for negotiating corners. Participants navigated a virtual vehicle around corners under the 

instruction to focus on accuracy (i.e., avoiding collisions) or speed (i.e., negotiating the 

corners as quickly as possible). We found that as the task became more difficult, subjects’ 

cornering times increased, and their probability of successful cornering decreased. We 

also demonstrated that the Fitts’ law speed-accuracy tradeoff could be extended to a 

cornering task. In Experiment 2, we challenged two of the assumptions of Pastel et al.’s 

(2007) cornering law and assessed how corner angle and differences in path widths 

impacted cornering time. Participants navigated a virtual vehicle around corners of 

varying angles (45°, 90°, and 135°) and varying path widths. We found that increases in 

corner angle resulted in increased cornering times and a decreased probability of 

successful cornering. The findings from these experiments are applicable to contexts 
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where an individual is tasked with remotely navigating around corners (e.g., video 

gaming, USAR, surveillance, military operations, training). 
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CHAPTER I 

INTRODUCTION 

The use of teleoperated and autonomous robots has seen an increase in recent 

years. This is largely because the application of these vehicles spans across a variety of 

domains, such as surveillance (Di Paola et al., 2010; Milella et al., 2008; Rahmaniar & 

Wicaksono, 2020), inspection (Bengel et al., 2009; Katrasnik et al., 2010), space 

exploration (Ambrose et al., 2000; Bouloubasis et al., 2007; Gao & Chien, 2017), site 

maintenance (Luk et al., 2005; Sabater et al., 2006), and urban search and rescue (USAR; 

Casper et al., 2000; Casper & Murphy, 2003; Murphy, 2004; Shah & Choset, 2004). 

There are two primary purposes for these professional service robots. The first of which 

is to remove a human from harm’s way. Rescue workers are subject to the emotional 

demands of working in life and death situations (Murphy, 2004; Shah & Choset, 2004). 

They are also likely to sustain cuts, burns, broken bones, and respiratory illnesses (Shah 

& Choset, 2004). The second purpose of a professional service robot is to navigate tight 

spaces that are impossible for humans and dogs. Teleoperated robots can more readily 

access voids in remaining building structures, making them suitable to search for 

remaining survivors, survey collapsed or structurally unsound buildings, map out safe 

routes for rescue workers, and monitor rescue environments. 

Despite that teleoperated robots are relatively easy to replace and inexpensive 

compared to their human counterparts, remote perception (i.e., perceiving an environment 

indirectly) comes at a cost. For example, at the World Trade Center, camera angles, 

uneven terrain, lighting, and other environmental conditions made it difficult for 
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operators to perceive robot affordances. These issues ultimately resulted in robots 

colliding with obstacles, getting stuck in rubble, and falling over (Casper & Murphy, 

2003). The present work aims to further explore how remote perception impacts 

operators’ abilities to navigate unmanned ground vehicles (UGV) around corners of 

varying widths. In the following sections, we review in greater detail some of the factors 

that influence the successful teleoperation of UGVs, with a specific focus on navigating 

around corners.  

Direct Perception 

Before understanding how an operator remotely navigates a robot, it is first 

essential to understand navigation under normal circumstances (e.g., a human walking 

through a stable environment). This will allow us to highlight where remote perception 

can fail the operator.  

James J. Gibson, an influential perception researcher, is often regarded as the 

father of the ecological approach to perception. The ecological approach considers the 

animal and environment as a mutual system where units of measurement and action are 

scaled intrinsically, according to the dimensions of the animal (Gibson, 1979). Under the 

ecological approach to perception, “…the animal has direct knowledge of, and a 

relationship to, its environment through ecological laws” (Duchon & Warren, 1994, p. 

2272). In other words, no mental representation of the world is needed for control of 

movement and regulation of behavior; animals are capable of leveraging the information 

available in the global optic array to regulate their actions online (Blau & Wagman, 2022; 

Gibson, 1958; Warren, 1988). In a stationary environment, transformations in optic flow 
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patterns are revealed when an animal engages in self-produced motions (e.g., head 

bobbing, locomoting). This not only allows the animal to obtain information about the 

mapping of their environment but also to obtain information about their rate of self-

motion and heading direction within that environment (Gibson, 1958).  

That animals utilize direct perception for navigation and obstacle avoidance has 

been well-documented in the literature (Blau & Wagman, in press). For example, Lee and 

Reddish (1981) found that gannets’ streamlining behavior was based on the optical 

parameter tau (see Lee et al., 2009) instead of strategies based on constant velocity, time-

from-start, or height-from-start. There is also some research to suggest that humans 

utilize tau as opposed to first-order information like velocity and distance to engage in 

behaviors that require temporal prediction (e.g., Lee, 1976; but see, Tresilian, 1999). In 

addition, Srinivasan et al. (1991) showed that bees are sensitive to angular velocity and 

apparent motion, which allows them to fly through gaps and navigate around obstacles. 

This finding has also been documented in humans, who engage in optic flow equalization 

behavior (e.g., walking through the center of tunnels; Duchon & Warren, 2002; Lucaites, 

2021). An individual’s ability to perceive transformations in the global optic array, 

therefore, is crucial to navigation and collision avoidance in their environments (see 

Fajen & Warren, 2003).  

Remote Perception 

As previously mentioned, the ecological approach to perception maintains that 

humans are able to directly perceive transformations in the global optic array. How, then, 

is the human-environment interaction affected by the introduction of a robot?  
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Robots, in general, exhibit varying levels of autonomy (see e.g., Beer et al., 

2014). Teleoperated robots, however, are classified as the lowest level of human-robot 

interaction because the robot is fully dependent on the operator for its movements 

(Bruemmer et al., 2005; Marble et al., 2003). This type of operation has historically been 

classified as a master-slave system (Milgram et al., 1995; Sanders, 2009; Thrun, 2004), 

but we refer to it here as a leader-follower system. In this type of system, the follower 

(e.g., the robot) mimics the movements of the leader (e.g., the human). In the case of 

teleoperation, the leader might be a joystick or controller that is then operated by a human 

(Dede & Tosunoglu, 2006; Moore et al., 2009). This leader-follower system is also 

commonly seen in the medical field for performing surgeries (e.g., Low & Phee, 2006; 

Shin et al., 2017). The design of a leader-follower system requires an “indirect 

interaction” (Thrun, 2004) with the environment, and this interaction necessitates that, 

“…the human perceptual processor is decoupled from the environment being explored” 

(Tittle et al., 2002, p. 261). Thus, the agent-environment system becomes an agent-

console-robot-environment system (ACRE; Mantel et al., 2012). Therefore, in a 

teleoperation context, an operator’s interaction with the environment depends on 

characteristics of the robot (e.g., mobility, camera angle, camera height), characteristics 

of the interface (e.g., screen resolution, screen size) through which the interaction occurs, 

and characteristics of the input device (e.g., joystick, pointer, controller). All these 

characteristics contribute to an operator’s ability to perceive the remote environment 

veridically and navigate successfully.  
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Currently, there exists an overwhelming amount of research documenting poor 

performance when estimating distances, sizes, speeds, and impending collisions via 

virtual environments such as large screen displays, monitors, and head mounted displays 

(e.g., Banton et al., 2005; Geuss et al., 2012; Loomis & Knapp, 2003; Sahm et al., 2005; 

Solini & Andre, 2020; Thompson et al., 2004; Witmer & Kline, 1998; Witmer & 

Sadowski, 1998). The exact cause of this discrepancy between real and virtual 

environments is unclear; however, researchers contend that inaccurate performance in 

this context is likely due to a combination of factors including a lack of realism 

(Interrante et al., 2006), limited lamellar flow (Banton et al., 2005), and restricted field of 

view (Witmer & Sadowski, 1998). Ultimately, viewing a remote environment via video 

feed requires that the individual rely on monocular information (e.g., relative size, linear 

perspective) to scale the environment (Milgram et al., 1995). This lack of binocular 

information combined with poor image quality and poor camera angles can make it 

difficult for operators to perceive transformations in the global optic array, and thus, can 

result in deleterious effects on teleoperation performance.  

Affordance Perception 

One way in which teleoperation performance is impacted by the limitations of 

viewing environments remotely is an increased difficulty in perception of robot 

affordances. Several researchers have shown that in teleoperation conditions, operators 

were unable to accurately judge whether robots could pass through apertures (Casper & 

Murphy, 2003; Moore et al., 2009). For example, Moore et al. (2009) investigated how 

camera height and distance from an aperture influenced judgments of aperture passability 
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for robots in both teleoperation and direct line of sight conditions. They found that 

subjects made less accurate judgments in the teleoperation condition, such that they often 

judged apertures as passable, when they were too small for the robot to pass. 

Furthermore, they found that judgments of aperture passability were influenced by 

camera location and viewing distance. Specifically, they showed that judgments were less 

accurate when viewing the aperture from farther away and when the camera was located 

closest to the ground. That judgments of aperture passability improved when the camera 

was located higher off the ground is consistent with the ecological approach’s view that 

organisms rely on eye-height information to appropriately scale environments.  

In a similar experiment, Jones et al. (2011) found that subjects struggled to 

navigate robots through passable apertures without colliding with those apertures. That is, 

although it was possible for the robot to fit through the aperture, subjects did not always 

have to skills to navigate through the aperture without colliding with it. Thus, the 

passability of apertures not only depends on the dimensions of the robot passing through 

the aperture, but also the capabilities of the operator to navigate the robot. Additionally, 

research suggests that poor teleoperation performance can be exacerbated by the 

operator’s workload and spatial relations ability (Chen et al., 2007; Long et al., 2011). In 

USAR, for example, operators are frequently tasked with both navigating the robot and 

identifying survivors, which is cognitively demanding (Murphy, 2004). Over time, the 

operator can exhibit cognitive fatigue and cognitive tunneling, which are worsened by 

technological limitations (e.g., inadequate video feed, time delays) and high stress 

environments (Chen et al., 2007; Murphy, 2004; Thomas & Wickens, 2001). 
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Environmental factors play an important role as well, as camera views can be obstructed 

by objects in the environment and precipitation (Tittle et al., 2002), making the operator’s 

task increasingly difficult.  

Adaptation & Learning 

Because teleoperation extends the physical and perceptual capabilities of the 

operator, it can be considered tool use (Shaw et al., 1995). Consistent with the previous 

literature on tool use (e.g., Day et al., 2017), this means that despite technological 

limitations and environmental conditions, operators’ performance can improve. For 

example, in a reanalysis of Jones et al.’s (2011) data, Schmidlin and Jones (2016) showed 

that operators exhibit learning over time. That is, subjects’ judgments of robot passability 

improved throughout the experiment. Similarly, Helton et al. (2014) found that over the 

course of the experiment, subjects’ cornering times and number of collisions decreased. 

These findings suggest that providing the opportunity for exploration and interaction with 

the robot can result in an improvement in performance over time (Armstrong et al., 2014, 

2015). Again, this is consistent with the ecological approach’s view that, through 

exploration, observers can learn to attune to the information that best specifies an object’s 

property (Fajen, 2007; Gibson, 1969; Gibson & Gibson, 1995; Withagen & Michaels, 

2005), allowing the observer to scale their actions appropriately to realize affordances. 

Other research on improving distance perception in virtual environments and calibration 

to sensory perturbations also support this concept (Kelly et al., 2013, 2014; Solini et al., 

2021).  
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In addition to exploration, depth perception can be improved by providing radial 

outflow information. As mentioned, an issue with teleoperation is that information is 

degraded and/or lost when viewing the environment remotely, making it difficult to 

perceive transformations in optic flow patterns. Consequently, operators often struggle 

with perceiving depth information. When perceiving the environment directly, an animal 

can engage in head bobbing motions to obtain information about depth (e.g., Bingham & 

Pagano, 1998). However, head bobbing motions will not help an operator who is viewing 

the environment through video feed. Instead, Gomer et al. (2009) showed that providing 

radial outflow information by moving the robot’s camera back and forth, thus mimicking 

head bobbing, can result in an improvement in depth perception.  

Navigating Around Corners 

Navigating unknown or unsafe environments is one of the main uses of 

teleoperated robots. In many instances, these environments require that the operator 

navigate around different corners. Navigating a robot around physical corners (e.g., 

hallways inside a building) and artificial corners (e.g., obstacles) can be challenging 

because the dimensions of the corner may be unknown. Further, because colliding with a 

corner can damage the robot, cause the robot to fall over, damage the environment, create 

dust and debris, etc., it is important to understand how operators navigate around corners 

as well as the factors that play an important role in successful cornering. Some common 

metrics for quantifying performance when navigating an environment with corners 

include completion time, number of collisions, and cornering time. Here, completion time 

refers to the total time taken to navigate a course or driving circuit, whereas cornering 
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time refers to the time taken to round a given corner. Recently, researchers have shown 

that cornering time in teleoperation can be modeled using a cornering law (Cross et al., 

2018; Helton et al., 2014; Pastel et al., 2007).  

The cornering law is based on Fitts’ law for predicting movement time, where the 

time to move a cursor to a designated target depends on an index of difficultly (ID). 

Under Fitts’ law, the ID is based on two criteria: the distance to the target and the size of 

the target. Similarly, the cornering law utilizes an index of difficulty (IDC) to predict 

cornering time (CT) such that, 

 𝐶𝑇 =  𝑎 +  𝑏 ∗ 𝐼𝐷𝐶  (1)  

where a and b are derived from the regression analysis and correspond to the 

intercept and slope, respectively. There are, however, different ways in which the IDC can 

be quantified. For example, Pastel et al. (2007) derived the following equation for 

calculating the IDC, 

 𝐼𝐷𝐶1 =  
𝑝

(𝑤−𝑝)
 (2)  

where p corresponds to the width of the robot and w corresponds to the width of 

the corner width. The corner width is defined as the width of the oncoming path. These 

two phrases will be used synonymously for the remainder of this manuscript. Equation 2 

is based on the limiting case, meaning that the IDC approaches infinity as the corner 

width and vehicle width become equal (i.e., as the track clearance, w-p, becomes zero). 

Thus, corners comprised of the same corner width of the vehicle will be impossible to 

corner. It should be noted that the length of the vehicle is not considered but is assumed 

to be short enough to negotiate the corner successfully. In addition to the limiting case 



10 

 

equation, Pastel et al. (2007) also derived the mathematically similar equation for the IDC 

based on information theory. This is calculated as, 

 𝐼𝐷𝐶2 =  𝑙𝑜𝑔2 (
𝑤

𝑤−𝑝
) (3)  

where p and w are defined as before. Equations 2 and 3 both produce a dimensionless IDC 

that is intrinsically scaled; a corner that is 1.5 times the width of the vehicle will produce 

the same IDC value regardless of the physical dimensions of the corner. To assess how 

well cornering time could be modeled by each IDC proposed, Pastel et al. (2007) asked 

subjects to navigate a virtual hovercraft around 90° corners. When they modeled CT 

using both measures of IDC, the results were nearly identical. Further, both models had 

coefficients of determination (R2 values) that were greater than 0.85. Given its similarity 

to other indexes of difficulty, IDC is frequently quantified using Equation 3.  

It should be noted, however, that the cornering law necessitates that cornering 

times be averaged across each IDC. That is, a single, average cornering time is computed 

for each IDC value. Aggregating the data in this way allows for a better model fit but 

results in a loss of information about subject-to-subject variability as well as trial-by-trial 

variability. Furthermore, a limitation of the above measures of IDC, as noted by Chan et 

al. (2019), is that they do not account for the amplitude of the corner. In a traditional 

Fitt’s Law task, the amplitude is defined as the distance to the target; that is, how far 

away the target is located from the starting point. With respect to a cornering task, the 

amplitude would be measured as the distance from the start of the corner to the end of the 

corner, through the center of the current and oncoming paths (see Figure 1). A way of 

incorporating the amplitude of the corner is to define the IDC as,  
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 𝐼𝐷𝐶3 =  
𝐴

(𝑤−𝑝)
 (4) 

where A is the amplitude of the corner, and where w and p are defined as before. 

 

Figure 1 

Corner Amplitude Depiction  

 

 

Note: The amplitude is the distance from the start point through the center of the corner 

to the end point, which is denoted by the gray dotted line. The start and end points are 

equidistant from the center of the corner, which is denoted by the black circle.  

 

Lastly, a measure of task difficulty that incorporates subjects’ movements is the 

effective index of difficulty (IDe), calculated as, 

 𝐼𝐷𝑒 = 𝑙𝑜𝑔2 (
𝐴𝑒

4.133∗ 𝑆𝐷𝑥
+ 1) (5) 

The Ae term corresponds to the average amplitude of movements over a sequence of 

trials; this is also referred to as the effective distance travelled. The SDx term corresponds 

to the standard deviation of the subject’s position relative to the target. In the context of a 

cornering task, we define the target as the center of the corner, as depicted in Figure 1. 

The benefit of utilizing the IDe is that it quantifies the task each subject performed, 
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instead of the presented task (Brickler et al., 2020). Along with the index of difficulty 

measures, throughput is often quantified as a measure of task performance. Throughput 

(TP) is calculated as follows, 

 𝑇𝑃 =
𝐼𝐷𝑒

𝑀𝑇
 (6) 

where IDe is the effective index of difficulty and MT is the average movement time over 

a sequence of trials.  

Ultimately, the IDC for negotiating corners is a measure of the cornering 

affordance, or corner-ability; it quantifies whether a corner is passable and how 

challenging that task is. In other passability domains, such as aperture passability, the 

affordance is quantified by body-scaled information such as the ratio of the aperture 

width relative to the human’s shoulder width (e.g., Bhargava et al., 2020; Lucaites et al., 

2020; Warren & Whang, 1987). Therefore, the IDC might also be expressed as the ratio of 

the path width relative to the vehicle width, or, in more general terms, the ratio of the 

path width relative to the organism’s width.   

Since Pastel et al.’s (2007) original paper on the cornering law, there has been 

further research investigating the factors that influence cornering time. For example, 

Helton et al. (2014) investigated how camera view (bird’s eye view vs. first-person view) 

impacted cornering time. They found that cornering time and the number of collisions 

was not significantly impacted by camera view. In addition, they showed that Pastel et 

al.’s (2007) cornering law sufficiently modeled cornering time for both camera views. In 

a related study, Cross et al. (2018) assessed the effects of lighting conditions and time 

delays on teleoperation in indoor and outdoor settings. In the outdoor driving circuit, 
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subjects completed time trials for either a simple or complex circuit. They found that 

driving speed was reduced when there was a time delay and when the lighting conditions 

were harsh (i.e., at nautical dusk with a single spotlight). It was also clear from their 

results that the cornering tasks (i.e., driving around obstacles) were the most challenging 

for subjects. In their second experiment, Cross et al. (2018) investigated cornering time. 

They found that mean cornering time increased as the IDC increased and as the time delay 

increased. Anecdotally, they noted that under ambient and dark lighting conditions, 

subjects were more likely to collide with the inside of the corners, but in the spotlight 

condition, subjects were more likely to collide with the outside of the corner.  

To further test the cornering law, Chan et al. (2019) explored how the geometry of 

the corner impacted cornering time. Across three different corner geometries they found 

that performance was similar. Track clearance (i.e., the difference between the corner 

width and the robot width) appeared to be the most important factor predicting cornering 

time. Importantly, Chan et al. (2019) highlighted that the number of collisions was 

positively correlated with movement time. However, they could not conclude whether 

increases in movement time were related to the track clearance or the control method 

used by the operator. Interestingly, Helton et al. (2014) found that there was not a strong 

correlation between the number of collisions and movement time. Disambiguating this 

relationship requires a look at different instruction methods (e.g., emphasizing speed vs. 

accuracy). Thus, the aim of Experiment 1 was to assess the speed-accuracy tradeoff in the 

context of navigating around corners.  

Cornering Law Assumptions 
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In its current state, Pastel et al.’s (2007) index of difficulty holds several 

assumptions. A few of these assumptions are that (1) the negotiating corner is 90°, that 

(2) the current and oncoming path widths are equivalent, and that (3) the amplitude of the 

corner is irrelevant. Though these assumptions are not explicitly stated, the law itself was 

developed under these conditions, and additional research has failed to investigate how 

these factors might play a role in cornering time. In a user-interface study, however, 

Pastel (2006) showed that movement time depends on corner angle. In their experiment 

subjects negotiated corners of varying widths and angles using a cursor. It was found that 

movement time was greatest for 90° corners and smallest for sharp corners. Pastel (2006) 

suggested that the reason for the decrease in movement time for the sharp corners was 

because the subject could use their limb as a cantilever to engage in the cursor motion. 

Thus, the subject could engage in loaded and unloaded movements as they approached 

and exited the corners. The findings from Pastel’s (2006) study imply that cornering time 

in a teleoperation context may not only be impacted by the vehicle width and corner 

width, but the corner angle as well. Notably, negotiating corners in a teleoperation 

context does not often depend on hand and arm motions. Rather, operators utilize a 

controller, keyboard, smartphone, or other input device to control the robot. As such, the 

differences in movement time for different corner angles in a teleoperation context will 

likely differ from those found by Pastel (2006).  

Another assumption of the cornering law is that the path widths of the current 

path and the oncoming path are equivalent. In Pastel et al.’s (2007) original cornering 

law, corner width was defined as the width of the oncoming path. It is possible, however, 



15 

 

that in many real-world settings (e.g., driving, USAR) the path widths will not be 

equivalent. That is, the current path may be smaller or larger in width, relative to the 

oncoming path (see Figure 2). We denote this relationship as the path ratio, which is 

computed as follows 

 𝑃𝑎𝑡ℎ 𝑅𝑎𝑡𝑖𝑜 =
𝑤1

𝑤2
 (7) 

where w1 denotes the current path width and w2 denotes the oncoming path width. 

Therefore, a path ratio less than 1.0 would indicate that the current path is narrower than 

the oncoming path; a path ratio greater than 1.0 would indicate that the current path is 

wider than the oncoming path; and a path ratio equal to 1.0 would indicate that the 

current and oncoming path widths are equivalent. Given the limited research on how 

corner geometry plays a role in negotiating corners, the aim of Experiment 2 was to test 

how cornering time is impacted by corner angle and the widths of the current and 

oncoming paths (i.e., the path ratio).  

Purpose  

The purpose of the present work was twofold. First, Experiment 1, will 

empirically evaluate how instruction method impacts cornering time and number of 

collisions, looking specifically at the speed-accuracy tradeoff for negotiating corners. 

Second, a thorough test of the cornering law will be conducted. Much of the previous 

literature has focused on how cornering time is impacted by a number of environmental 

conditions and technological limitations. However, researchers have yet to examine how 

well the cornering law holds for corners that are not 90° or for corners that have varying 

path widths. Experiment 2, therefore, examined corning time and number of collisions for 
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a variety of corner angles and path widths. Ultimately, the goal of the present work was 

to further understand how operators negotiate corners as a function of instruction method 

and corner angle.   

 

Figure 2 

Path Ratio Depictions 

 

Note: This figure illustrates how the current path width (w1) might be smaller than (left), 

equal to (middle), or larger than (right) the oncoming path width (w2). UGV refers to the 

vehicle, with p defined as the vehicle’s width. The path ratio is calculated from Equation 

7. 
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CHAPTER II 

METHOD 

Experiment 1 

The aim of Experiment 1 was to understand how performance on cornering tasks 

differed depending on instruction method. That is, we investigated the speed-accuracy 

tradeoff in the context of navigating around corners. In this experiment, subjects 

navigated a virtual vehicle through driving courses under two different instruction 

methods. In the accuracy condition, subjects were asked to navigate around the corners in 

the driving course as accurately as possible – being careful not to collide with any walls. 

In the speed condition, subjects were asked to navigate around the corners in the driving 

course as quickly as possible. In addition to navigating around corners under different 

instruction methods, we manipulated the IDC of the corners. This allowed us to assess the 

speed-accuracy tradeoff as a function of IDC
 value. 

Hypotheses 

Consistent with previous cornering research (e.g., Cross et al., 2018; Pastel et al., 

2007), we hypothesized that cornering time and the number of collisions would increase 

as the IDC value increased. That is, we expected subjects to have longer cornering times 

and more collisions as the cornering task became more difficult. We also expected there 

to be an effect of instruction method on cornering time and collision count. Consistent 

with prior findings on the speed-accuracy tradeoff (e.g., MacKenzie & Isokoski, 2008), 

we hypothesized that cornering time would increase when subjects focused on accuracy 

instead of speed. We also expected that the number of collisions would be greater when 
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subjects focused on speed instead of accuracy. While this may seem counterintuitive, we 

expected that collisions in the speed condition would not be detrimental to their cornering 

times. Thus, these subjects would have more collisions, but shorter cornering times 

compared to those subjects in the accuracy condition.  

Method  

Experimental Design 

This experiment used a 2 (instruction method) by 3 (IDC value) by 3 (amplitude) 

mixed model design. Instruction method was a between-subjects variable, such that half 

of the subjects completed trials where accuracy was emphasized, and half of the subjects 

completed trials where speed was emphasized. The IDC was a repeated-measures 

variable. Subjects navigated through driving courses with corners of each IDC value, with 

path widths that were 1.4, 1.8, and 2.2 times the width of the virtual vehicle. Thus, the 

IDC values utilized for this experiment equated to 1.807, 1.17, and 0.874, respectively 

(see Table 1). These IDC values were similar to those used in previous cornering studies 

(see Table 2). We also manipulated the amplitude of the corner, which has no effect on 

the IDC value. The amplitude was defined as the distance of the straight-line path from 

the start of the corner to the end of the corner (see Figure 1). To manipulate the 

amplitude, we extended the start and end points, such that the amplitude of the corner 

was equivalent to 9, 12, and 15 times the width of the vehicle.  

The main dependent variables in this experiment were cornering time and the 

number of collisions. Cornering time was calculated as the time in seconds taken to round 

each corner from when the nose of the vehicle entered the start of the corner until the 
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nose of the vehicle exited the corner. The number of collisions was calculated as the total 

number of times the vehicle collided with the walls as it was navigated around each 

corner. The vehicle had collider indicators, which were distributed across the front, sides, 

and back of the vehicle. Furthermore, the walls that comprised the corners had collider 

indicators that logged whether the collision occurred on the outside of the corner or the 

inside of the corner. Therefore, a collision was counted when any part of the vehicle 

collided with any wall. Additionally, collisions were logged into two groups: collisions 

before the turn and collisions after the turn. A collision was denoted as occurring before 

the turn when the vehicle collided with any wall on the current path, and a collision was 

denoted as occurring after the turn when the vehicle collided with any wall on the 

oncoming path (see Figure 3). We also collected data on the duration of each collision, 

which was defined as the time in seconds from when the vehicle initially made contact 

with a wall to when it seceded making contact with a wall. Lastly, each participant 

session was screen recorded. 

To compute the effective index of difficulty, we collected data on the distance 

travelled between the straight-line paths and the deviations from the center targets. The 

center target was defined as the center of each of the corners. For each driving course, we 

obtained the distance travelled between the corner centers for the 13 straight-line paths 

that comprised the 14 corners. Additional detail on how these data were collected and 

calculated can be found in the Results section.  
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Table 1 

IDc Values for Experiment 1 

Vehicle Width (p) Path Width (w) IDC = log2(w/(w-p)) Corner Amplitude 

2.44 m 3.42 m 1.807 

21.96 m 

29.28 m 

36.6 m 

2.44 m 4.39 m 1.17 

21.96 m 

29.28 m 

36.6 m 

2.44 m 5.37 m 0.874 

21.96 m 

29.28 m 

36.6 m 

 

 

Table 2 

IDC Values in Previous Cornering Studies 

Study Vehicle Width (p) Path Width (w) IDC = log2(w/(w-p)) 

Pastel et al. (2007) 192 uu 

512 uu 0.68 

556 uu 0.61 

680 uu 0.48 

1,024 uu 0.3 

1,536 uu 0.19 

3,072 uu 0.09 

Helton et al. (2014) 21 cm 

31.5 cm 1.58 

35 cm 1.32 

38.5 cm 1.14 

Cross et al. (2018) 67 cm 

85 cm 2.24 

95 cm 1.76 

105 cm 1.47 

115 cm 1.26 

Chan et al. (2019) 

174 mm 

280 mm 1.4 

300 mm 1.25 

320 mm 1.13 

194 mm 

290 mm 1.6 

310 mm 1.42 

330 mm 1.28 

214 mm 

300 mm 1.8 

320 mm 1.6 

340 mm 1.43 

Note: “uu” denotes unreal units 
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Figure 3 

Wall Collision Locations. 

 

 

Participants 

To determine the number of participants needed for this study, we utilized the 

“simr” package in R (Green & MacLeod, 2016). This involves using pilot data or 

generated data to estimate the approximate number of subjects and trials needed to obtain 

sufficient power. Because we did not have pilot data, we instead used the fitted model 

from Pastel et al.’s (2007) second experiment to generate approximate cornering times 

for the three values of IDC we intended to utilize. These cornering times corresponded to 

the accuracy condition. To obtain approximate cornering times for the speed condition, 

we again used Pastel et al.’s (2007) fitted model to generate data, but reduced cornering 

times by 10%. In the simulation, we compared the full mixed effects model to a reduced 

model (i.e., a model without the interaction between IDC and instruction method). 

Ultimately, we found that we needed 10 participants to complete at least 24 trials (i.e., 

round 24 corners) for each instruction method and index of difficulty to obtain power 

above .80. Thus, 20 participants total were needed: 10 for the accuracy condition, and 10 
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for the speed condition. The R code for the analysis process described above can be 

found here: https://osf.io/87krn/.    

We recruited 22 Clemson University students (Mage = 20.91 years, SDage = 2.11) 

with visual acuity of 20/25 or better. Subjects were recruited through Clemson 

University’s Psychology SONA pool and through word of mouth, and they were 

compensated with partial course credit or with a $10 gift card.  

 

Apparatus 

The virtual environment was developed using Unity and consisted of a practice 

area and nine different driving courses (3 IDC values x 3 amplitudes). The virtual 

environment was viewed on a 19-inch Dell monitor with a 1440x900 pixel display. The 

refresh rate was 60 Hz. The practice area was a 40 by 40-meter room with five pillars 

(see Figure 4). The pillars were included to encourage the participant to practice corner 

negotiation. The virtual vehicle used front wheel steering and was based on Unity’s 

standard asset vehicle. It was 2.44 meters wide and 2.5 meters long, with a maximum 

speed of 10 miles per hour and a maximum steering angle of 40°. The camera was fixed 

just above virtual vehicle at 1.64 meters above the roadway. The camera was placed 1.38 

meters from the front axle and 0.02 meters from the rear axle, which allowed the hood of 

the vehicle to be in view (see Figure 5). The camera had a field of view of 60° and was 

rotated downward 20°; the camera’s viewpoint was not adjustable.   

 

  

https://osf.io/87krn/
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Figure 4 

Practice Area for Experiment 1.  

 

 

Figure 5 

Side Profile of the Virtual Vehicle (left), and the User’s Perspective (right). 

 

 

 

Each virtual driving course consisted of a hallway with 14 corners of the same 

width. An example driving course map can be seen in Figure 6; the remaining driving 
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course maps used in the Experiment can be found in Appendix D. We chose to use 14 

corners so that we could quantify the IDe of the 13 straight line paths between the center 

of each corner and so that the number of left and right turns would be the same. The 

utilization of at least 12 trials in a sequence for calculating the IDe is standard (Babu et 

al., 2020). The IDC and the amplitude of the corners remained the same within each 

driving course but varied across driving courses. Subjects used a wired Xbox Controller 

to navigate the virtual vehicle within the virtual environment (see Figure 7). The left 

joystick was used for forward and backward movements (i.e., acceleration and 

deceleration), and the right joystick was used for leftward and rightward movements of 

the virtual vehicle. Therefore, simultaneously pressing the left joystick forward and the 

right joystick leftward would move the virtual vehicle forward and to the left (i.e., it 

would produce a left turn).  

 

Figure 6  

 

Example Driving Course Map 

 
 

Note: Light blue corners correspond to left turns, and dark blue corners correspond to 

right turns. The star represents where the virtual alarm system was located. 
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Figure 7  

The Xbox One Controller 

 

 

Procedure 

After signing the informed consent, participants completed a visual acuity test. 

The visual acuity test was conducted using a Snellen Eye Chart placed 10 feet away. 

Subjects completed the test with both eyes open. Following this, the experimental 

procedure began. The experiment consisted of a practice phase and three blocks of 

driving courses. To start, subjects completed the practice phase, where they were told to 

take some time to familiarize themselves with the controls of the virtual vehicle. 

Participants were then randomly assigned to either the accuracy condition or speed 

condition. In the accuracy condition, subjects received the following instructions, which 

were adapted from Helton et al. (2014):  

You are working at a nuclear power plant. Your task is to navigate the vehicle 

through the building to get to the alarm system. Any collision, even a small one, 

can be serious and should be avoided. Generally, operations conducted with 
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unmanned ground vehicles take place in unstable environments. Collisions can 

further destabilize the environment, which could damage the vehicle, injure a 

civilian, or prevent the recovery of both the vehicle and civilian. As such, even 

small collisions, can be dangerous and should be avoided at all costs. 

In the speed condition, participants received the following instructions: 

You are working at a nuclear power plant. The alarm system needs to be disabled 

immediately to avoid the power plant from shutting down. Your task is to navigate 

the vehicle through the building to get to the alarm system. Your only concern is 

to get to the alarm system as fast as possible. 

In each condition, subjects navigated through a driving course with corners in a 

series of three blocks – one for each IDC value. The vehicle was located at the center of 

the path at the start of each driving course. Within each block, subjects navigated around 

42 corners (14 corners x 3 amplitudes). After each block, subjects completed the NASA-

TLX (Hart & Staveland, 1988; see Appendices A-B). The presentation of blocks was 

randomized across participants using a Latin square design, and the three driving courses 

within each block were presented in a randomized order. Once the subject completed all 

three blocks, they answered questions about their age, gender, and experience playing 

video games (see Appendix C). They were debriefed and provided with contact 

information prior to leaving. Each session took approximately 45 minutes.  In total, each 

subject navigated around 126 corners, which yielded a total of 2,772 observations across 

the 22 subjects.   

Results 
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Cornering Time 

Analysis Preparation. Prior to conducting any analysis, we visualized the 

distribution of the cornering time variable. Using the “moments” package in R (Komsta 

& Novomestky, 2015), we found that the cornering time variable had a skewness value of 

4.53 and kurtosis value of 38, which indicated that the distribution was positively skewed 

and leptokurtic. We also extracted the residuals from a linear mixed effects model 

predicting cornering time to evaluate the errors. A Quantile-Quantile (QQ) plot revealed 

that the normality assumption was violated. To address this issue, we performed a 

logarithmic transformation of the cornering time variable. We then refit the linear mixed 

effects model and removed standardized residuals with values greater than +/- 3. Less 

than 2% of the data were removed as a result of this outlier analysis. After performing the 

log-transformation and outlier analysis, the residuals were more normally distributed.  

Mixed Effects Modeling. We submitted IDC, instruction method, and amplitude 

to a linear mixed effects model predicting the log-transformed cornering times. The 

amplitude and IDC variables were mean-centered, and the accuracy condition was the 

reference category for the instruction method variable. A random effect of participant 

number was included in the model to account for nesting within participants. Results 

from the regression output can be found in Table 3. Because we performed a logarithmic 

transformation on the cornering time variable, the coefficients represent the change in 

log-transformed cornering times. For continuous variables, the coefficient has an additive 

effect on the log-transformed cornering times, where a one-unit increase in the predictor 

variable elicits a β value increase in log-transformed cornering times. For categorical 
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variables, the coefficient represents the difference in average log-transformed cornering 

times from the reference group. Exponentiating the coefficients provides the change in 

terms of the original cornering scale.  

There is not currently an agreed upon best method for computing and reporting 

individual effect sizes for mixed effects and multilevel models, as there are multiple 

sources of variance (see Hofmann, 1997). Instead, we used the “MuMIn” package in R 

(Barton, 2009) to compute the marginal and conditional R2 values, which represent the 

amount of variance explained by the fixed effects alone and the amount of variance 

explained by both the fixed effects and the random effect(s) in the model. We found that 

57.4% of the variance in log-transformed cornering times could be accounted for by the 

fixed effects alone, and 68.3% of the variance could be accounted for by both the fixed 

effects and the random effect of participant number. 

 

 

Table 3 

Mixed Effects Linear Regression Output Predicting Log-transformed Cornering Times 

Predictor β (SE) Exp(β) t 

IDC 0.53 (0.01) 1.69 37.77*** 

Instruction Method -0.15 (0.05) 0.86 -2.9** 

Amplitude 0.03 (< 0.001) 1.03 49.65*** 

IDC * Instruction Method  -0.17 (0.02) 0.85 -8.38*** 

Note: * denotes p < .05, ** denotes p < .01, *** denotes p < .001 
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As expected, IDC was a significant predictor of log-transformed cornering time, 

such that cornering time increased as the IDC increased. We also found that instruction 

method was a significant predictor of transformed cornering time; on average, cornering 

times were 18% greater in the accuracy condition (M = 8.52 seconds, SD = 3.7) 

compared to the speed condition (M = 7.22 seconds, SD = 2.65). There was also an effect 

of amplitude on transformed cornering time, with cornering time increasing as the 

amplitude increased (see Figure 8). 

 

Figure 8 

Estimated Cornering Time by Corner Amplitude. Gray shading around the lines indicates 

+/- 1 standard error 

 

   

 

Lastly, there was a significant interaction between the IDC and instruction 

method. The slope for the accuracy condition was significantly steeper than the slope for 

the speed condition, indicating that cornering times increased at a faster rate as the IDC 

increased when subjects were told to focus on accuracy as compared to speed (see Figure 
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9). A simple slopes analysis revealed that the slopes for both lines were significantly 

different from zero (ps < .001). 

 

Figure 9 

Estimated Cornering Time by IDC Value and Instruction Method. Gray shading around 

the lines indicates +/- 1 standard error 

 

 

 

Turn Type. We also investigated whether there were differences in cornering 

time based on the turning direction (left vs. right). We split the data by instruction 

method and conducted two independent samples t-tests using the log-transformed 

cornering times. Results indicated that there was not a statistically significant difference 

in transformed cornering times depending on turn type for the accuracy condition, 

t(1,362) = 1.83, p = .067, nor for the speed condition, t(1,360) = 1.83, p = .907 (see 

Figure 10).  
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Figure 10 

Average Cornering Times by IDC Value, Turn Type, and Instruction Method. Error bars 

represent +/-1 standard error 

 

 

 

Block Order. We also assessed the extent to which the order of the blocks 

impacted performance. The order of presented IDC values for each block number can be 

found in Table 4. We fit a mixed effects model predicted the log-transformed cornering 

times with block order, instruction method, and IDC as independent variables. A random 

effect of participant number was included in the model.  

There was an overall effect of order on the log-transformed cornering times, F(2, 

16) = 4.26, p = 0.033. Post-hoc comparisons revealed that, on average, log-transformed 

cornering times were greater in block order three compared to block order one, t(16) = 

2.91, p = 0.26. There was also a significant interaction between block order and IDC, F(2, 

2,704) = 50.63, p < .001. While the log-transformed cornering times increased as the IDC 

value increased, we found that the slope for block order three (β = 0.64, SE = 0.02) was 
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significantly steeper than the slope for block order two (β = 0.42, SE = 0.02, t(2,704) = 

6.44, p < .001) and for block order one (β = 0.32, SE = 0.02, t(2,704) = 9.97, p < .001). 

The slope for block order two was also significantly steeper than the slope for block order 

one, t(2,704) = 3.29, p = .003. A simple slopes analysis revealed that the slopes for each 

block order were all significantly different from zero, ps < .001.  

 

Table 4 

Cornering Time by Block Order and Instruction Method. 

Instruction 

Method 

Block 

Order 
Order of IDC values M (SD) Median Maximum 

Accuracy 

1 0.874, 1.17, 1.807 7.62 (2.37) 7.5 21.32 

2 1.17, 1.807, 0.874 8.09 (3.16) 7.74 21.94 

3 1.807, 0.874, 1.17 10.4 (5.02) 8.26 26.66 

Speed 

1 0.874, 1.17, 1.807 7.01 (2.39) 6.3 20.5 

2 1.17, 1.807, 0.874 7.6 (2.85) 7.61 19.86 

3 1.807, 0.874, 1.17 7.15 (2.71) 6.34 23.66 

 

 

There was also an interaction between block order and instruction method. Post-

hoc comparisons revealed that for the accuracy condition, log-transformed cornering 

times were significantly greater in block order three compared to block order two, t(16) = 

3.2, p = 0.15, and compared to block order one, t(16) = 3.74, p = .005. There were no 

other statistically significant differences.  

Lastly, there was a statistically significant three-way interaction between block 

order, instruction method, and IDC, F(2, 2,704) = 26.76, p < .001. For the accuracy 

condition, we found that the slope for block order three (β = 0.87, SE = 0.04) was 
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significantly steeper than the slope for block two (β = 0.51, SE = 0.03, t(2,704) = 7.39, p 

< .001) and the slope for block one (β = 0.3, SE = 0.03, t(2,704) = 11.74, p < .001). The 

slope for block two was also significantly steeper than the slope for block, t(2,704) = 

4.77, p < .001. There were no significant differences among the slopes for the speed 

condition. A simple slopes analysis revealed that the slopes for both accuracy and speed 

conditions all significantly differed from zero, ps < .001 (see Figure 11).  

 

Figure 11 

Estimated Cornering Times by IDC Value, Instruction Method, and Block Order. Gray 

shading around the lines indicates +/- 1 standard error 

 

 
 

Calibration. To determine whether subjects calibrated to the virtual environment, 

we looked at the median cornering times and the median number of collisions for each 

corner and for each driving course (i.e., across amplitude and IDC values) and instruction 

condition. We chose to use the median values as both cornering time and collision count 
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were positively skewed variables. The corner number refers to the negotiated corner 

within the driving course; corner one refers to the first corner in the course, and corner 14 

refers to the last corner in the course. For the accuracy condition, we saw that cornering 

times generally decreased as the corner number increased (i.e., as they progressed 

through the driving course). Further, median collision count was always fewer than one 

(see Figure 12). 

 

Figure 12 

Median Cornering Time (top) and Median Collision Count (bottom) for the Accuracy 

Condition 
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 For the speed condition, the median number of collisions was zero when the IDC 

value was 0.874 and 1.17. similarly, the median cornering time was consistent as corner 

number increased. For the most difficulty driving courses (i.e., when the IDC value was 

1.807), the median number of collisions was consistently greater than zero, but the 

median cornering time showed a general decrease as corner number increased (see Figure 

13).  

 

Figure 13 

Median Cornering Time (top) and Median Collision Count (bottom) for the Speed 

Condition 
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Number of Collisions 

Collision Count As a reminder, a collision was logged when any part of the 

vehicle collided with any wall. Therefore, when multiple parts of the vehicle hit a wall at 

the same time, multiple collisions were logged. To avoid inflating the total number of 

collisions, we rounded the collision start time to the nearest second and removed 

duplicate values. Therefore, when multiple parts of the vehicle collided with a wall at 

approximately the same time, only one collision was logged. In total, there were 2,625 

collisions, and 1,685 of those were considered unique collisions, according to how we 

defined them above. We utilized only the unique collisions to assess collision count.  

Distribution. We found the distribution of unique collision to be positively 

skewed and leptokurtic, with a skewness value of 8.06 and a kurtosis value of 104.79. 

This was expected, as the number of collisions was a count variable. However, further 

inspection revealed that the majority of observations (80.5%) had a count value of zero. 

As such, we decided to convert the collision count variable into a binary success variable; 

trials with a collision count of zero were considered successful trials, and trials with a 

collision count greater than zero were considered unsuccessful.  

Logistic Regression.  We conducted a mixed effects logistic regression to 

determine the impact of IDC value, instruction method, and amplitude on cornering 

success (see Table 5). The IDC and amplitude variables were both mean centered. A 

random effect of participant number was included in the model to account for nesting 

within participants. 
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In a logistic regression, the response variable represents the probability of 

success, π, at a given predictor variable, x; this probability is denoted, π(x). The logit, or 

logarithm of the odds, of this probability takes a linear form (Agresti, 2018), such that 

 logit[π(x)] = α + βx (8) 

The coefficients in a logistic regression have an additive effect on the logit; they 

represent the rate of change in the S-shaped curve for the probability of success (Agresti, 

2018). By exponentiating the coefficients, we obtain the odds ratio, which has a 

multiplicative effect on the dependent variable. Therefore, the odds of success increase 

when the odds ratio has a value greater than one, and they decrease when the odds ratio 

has a value less than one.  

Our results indicated that the IDC was a significant predictor of cornering success. 

For every one-unit increase in IDC value, the odds of successful cornering decreased by 

nearly 100%. This was somewhat expected, given that the difficulty of negotiating a 

corner approaches infinity as the IDC value increases. We also found that instruction 

method was a significant predictor of cornering success. The odds of cornering success 

decreased by 89.3% when participants were instructed to focus on speed instead of 

accuracy. In fact, we found that 73.6% of the unique collisions occurred in the speed 

condition. 

Although the odds of cornering success decreased as the corner amplitude 

increased, this relationship was not statistically significant. The interaction between 

instruction method and IDC value was also not a statistically significant predictor of 

cornering success (see Figure 14).  
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Table 5 

Logistic Regression Output Predicting Cornering Success in Experiment 1 

Predictor β (SE) 
Odds 

Ratio 

95% CI for Odds Ratio 

z Lower 

limit 

Upper 

limit 

IDC -4.99 (0.41) 0.007 0.003 0.015 -12.14*** 

Instruction Method -2.24 (0.7) 0.107 0.02 0.43 -3.22** 

Amplitude -0.02 (0.01) 0.98 0.96 1 -1.67 

IDC * Instruction Method 0.58 (0.48) 1.78 0.72 4.73 1.21 

 

 

 

Figure 14 

Predicted Probability of Cornering Success by IDC Value and Instruction Method 

 

 

Success Rate. We defined success rate as the overall percentage of successful 

trials by within each driving course for each instruction method. To reiterate, a trial was 
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considered successful if the corner was negotiated without collision. In general, the 

success rate decreased as the IDC value increased, which was expected. Further, success 

rate was, on average, greater in the accuracy condition compared to the speed condition 

(see Figure 15). 

 

Figure 15 

Percentage of Successful Trials for Experiment 1 

 

 

Video Gaming Experience 

At the end of each session, subjects rated the frequency at which they play video 

games on six-point scale from “Never” to “Very often”. Due to the little variability in 

videogaming experience, we created a binomial gaming variable to assess the effect. 

Subjects who responded that they play “Never”, “Almost Never”,  or “Not very often” 

were denoted as having limited gaming experience. Subjects who responded that they 

play at least “Often” were considered to have moderate gaming experience. Participants’ 

gaming experience ratings can be found in Table 6. 
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Table 6 

Video Gaming Experience for Experiment 1 Subjects 

Instruction 

Method 
Video Gaming Frequency N 

Gaming 

Experience 

Accuracy 

Never 3 

Limited Almost Never (Less than 1 time a month) 2 

Not Very Often (1-2 times a month) 1 

Often (1-2 times a week) 2 

Moderate Fairly Often (3-4 times a week) 2 

Very Often (5-7 times a week) 1 

Speed 

Never 8 

Limited Almost Never (Less than 1 time a month) 1 

Not Very Often (1-2 times a month) 0 

Often (1-2 times a week) 1 

Moderate Fairly Often (3-4 times a week) 0 

Very Often (5-7 times a week) 1 

 

 

 

We conducted a mixed effects linear model predicting the log-transformed 

cornering times with IDC, instruction method, and the binary gaming experience variable 

as predictors. Results indicated that the effect of gaming experience and the interactions 

involving gaming experience were not statistically significant, ps > .05. That is, gaming 

experience did not have a significant effect on cornering time.  

We also conducted a mixed effects logistic regression to determine whether 

gaming experience was a significant predictor of cornering success. We found that 

gaming experience was a significant predictor of cornering success (β= 2.52, SE = 0.98, z 

= 2.47, p = .013). The odds of cornering success increased by more than a thousand 

percent when gaming experience was moderate compared to limited. None of the 

interactions involving the gaming experience variable were statistically significant.  
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Collision Information 

Using the unique collision count, we found that collision durations were similar 

between right and left turns (see Table 7). Collision durations were similar between the 

two instruction methods, but they were slightly longer in the accuracy condition, with a 

maximum collision duration that was more than 1.5 times the maximum collision 

duration for the speed condition. For both instruction methods, we found that more than 

80% of collision durations were less than one second.  

 

Table 7 

Descriptive Statistics for Collision Durations (s) by Turn Type and Instruction Method 

Variable Levels M (SD) Median Maximum 

Turn Type 
Right 0.64 (0.9) 0.38 10.6 

Left 0.61 (0.87) 0.36 11.64 

Instruction Method 
Accuracy 0.68 (1.18) 0.38 11.65 

Speed 0.61 (0.76) 0.36 6.86 

 

 

To better understand vehicle collisions, we also looked at the total number of 

collisions, as opposed to the unique collision count. This allowed us to identify where on 

the corner and where on the vehicle any collision occurred. We found that 58% of 

collisions occurred on the inside of the corner, and 42% of collisions occurred on the 

outside of the corner. As previously mentioned, collisions were logged into two groups: 

collisions before the turn and collisions after the turn. For both before and after the turn, 

most collisions on the inside of the corner occurred on the side of the vehicle compared to 
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the front or back of the vehicle. Similarly, for both before and after the turn collisions on 

the outside of the mostly occurred at the back or sides of the vehicle compared to the 

front of the vehicle (see Table 8).  

 

Table 8 

Number of Collisions on the Vehicle and the Corner in Experiment 1 

Instruction 

Method 

Corner 

Location 
Front Back Left Side Right Side 

Accuracy 
Inside 107 (29.2%) 0 (0%) 151 (41.1%) 109 (29.7%) 

Outside 77 (24.7 %) 6 (2%) 111 (35.5%) 118 (37.8%) 

Speed 
Inside 435 (37.7%) 6 (.5%) 439 (38%) 275 (23.8%) 

Outside 181 (22.9%) 32 (4%) 360 (45.5%) 218 (27.6%) 

 

 

Workload 

Perceived workload was assessed using the NASA-TLX and was recorded after 

each block. This allowed us to determine the extent to which perceived workload was 

influenced by IDC value. As expected, we found that all facets of perceived workload 

increased as IDC value increased (see Figure 16). For performance, a higher NASA-TLX 

value is associated with poorer perceived performance.  

To determine whether there was an effect of IDC on each of the NASA-TLX 

scales, we conducted repeated measures analyses of variance. We treated IDC as a 

categorical variable so that we could assess whether there were significant differences in 

perceived workload at each value of IDC.  There was an effect of IDC on mental demand 

scores, F(2, 62) = 10.91, p < .001. Post-hoc comparisons revealed that scores were 
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significantly higher when the IDC value was 1.807 compared to 1.17, t(62) = 3.8, p < .001 

and compared to 0.874, t(62) = 4.23, p < .001. 

There was an effect of IDC on physical demand scores, F(2, 62) = 4.54, p = .014. 

Post-hoc comparisons revealed that scores were significantly higher when the IDC value 

was 1.807 compared to 0.874, t(62) = 2.85, p = .016. There was also an effect of IDC 

value on temporal demand scores, F(2, 62) = 8.16, p < .001. Post-hoc comparisons 

revealed that scores were significantly higher when the IDC value was 1.807 compared to 

1.17, t(62) = 3.2, p = .006 and compared to 0.874, t(62) = 3.74, p = .001. 

There was an effect of IDC on effort score, F(2, 62) = 11.96, p < .001. Post-hoc 

comparisons revealed that scores were significantly higher when the IDC value was 1.807 

compared to 1.17, t(62) =3.57, p = .002 and compared to 0.874, t(62) = 4.68, p < .001. 

Further, there was an effect of IDC on performance scores, F(2, 62) = 20.76, p < .001. 

Post-hoc comparisons revealed that scores were significantly higher when the IDC value 

was 1.807 compared to 1.17, t(62) = 5.58, p < .001 and compared to 0.874, t(62) = 5.58, 

p < .001.  

Lastly, there was an effect of IDC on frustration scores, F(2, 62) = 9.93, p < .001. 

Post-hoc comparisons revealed that scores were significantly higher when the IDC value 

was 1.807 compared to 1.17, t(62) = 3.41, p = .003 and compared to 0.874, t(62) = 4.19, 

p < .001. Table 9 provides an overview of which post-hoc comparisons were statistically 

significant. 
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Table 9 

Post-hoc Significance Tests for NASA-TLX Scales in Experiment 1 

 

 

 

 

 

 

Figure 16 

Average NASA-TLX Values by Corner Angle 

 

 

 

  

NASA-TLX Scale 0.874 vs. 1.17 1.17 vs 1.807 0.874 vs. 1.807 

Mental Demand - * * 

Physical Demand - - * 

Temporal Demand - * * 

Effort - * * 

Performance - * * 

Frustration - * * 

Note: * denotes p < .05, - denotes p > .05 
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Effective Index of Difficulty 

 Calculations. To calculate the effective index of difficulty, we obtained the 

average movement times to navigate the straight-line paths within the driving course, the 

standard deviation of the vehicle’s position relative to the center of the corners, and the 

average amplitude of movements (i.e., average distance travelled) between each of the 

straight-line paths. These data were collected for each driving course and for each 

instruction method, which yielded nine effective index of difficulty values for each 

instruction method 

The average movement time to navigate the straight-line paths within each 

driving course was computed by dividing the total time to navigate each course (in 

seconds) by the number of corners within each driving course, which was 14. To get the 

standard deviation of the error, we first logged the location of the center of the vehicle as 

it crossed the center of the corner (i.e., the target). The target width was defined as the 

width of the corner, as seen in Figure 17. We computed the distance between where the 

vehicle hit the target and the center of the target to obtain the error. We then computed 

the standard deviation of those error values. Lastly, the amplitude of movements, which 

represents the effective distance of the target, was calculated by taking the distance 

travelled between the corner centers. These data were obtained for each driving course 

and for each instruction method, which yielded nine effective index of difficulty values 

for each instruction method. The IDe was computed using Equation 5. 
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Figure 17 

Corner Definitions 

 

 

Analysis. As expected, we found that movement time increased as the IDe value 

increased (see Figure 18). For the accuracy condition, we found that MT = -15.64 + 

5.45*IDe, with an adjusted R2 value of .84. Similarly, for the speed condition, we found 

that MT = -10.72 + 4.39*IDe, with an adjusted R2 value of .89. In both instances, the 

regression was statistically significant, ps < .001. However, there was not a statistically 

significant difference in movement times between the two instruction methods. When 

collapsed across instruction method, we found that both the first order only and second 

order regression equations fit the data well (see Figure 19). 

In addition to movement time, we also evaluated the effect of IDe and instruction 

method on throughput (see Figure 20). Throughput was calculated according to Equation 

6. As expected, we found that IDe was a significant predictor of throughput, t(15) = -5.76, 

p < .001. Overall, estimated throughput decreasing by -0.11 bits/s as IDe value increased 

by one. Instruction method was not a significant predictor of throughput.  
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Figure 18 

Average Movement Times by Instruction Method and IDe Value 

 

 
 

 

Figure 19 

Average Movement Time by IDe Value fit to a First Order Regression Model (left) and a 

Second Order Regression Model (right) 
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Figure 20 

Average Throughput by IDe Value 

 

 

Cornering Law 

 Typically, analysis of Fitts’ law and cornering law experiments require the data be 

aggregated by the index of difficulty values (e.g., Cross et al., 2018; Pastel et al., 2007). 

Therefore, to assess Pastel et al.’s (2007) cornering law, we aggregated the data by IDC 

value and fit a linear model with the IDC as a predictor of cornering time (see Eq. 1). The 

IDc was calculated using Equation 3. Even though the data were aggregated across the 

different instruction conditions, we found that the model fit the data well, with an R2 

value of .94. Interestingly, we found that including the second order term of IDc 

produced a better model fit (see Figure 21). We should note that aggregating the data in 

this way not only inflates the R2 value, but also results in a loss of information about 

subject-to-subject variability and trial-by-trial variability.  
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Figure 21 

Average Movement Time by IDC Value fit to a First Order Regression Model (left) and a 

Second Order Regression Model (right) in Experiment 1. 

 

 

 

Discussion 

In Experiment 1, we evaluated teleoperation performance on a virtual navigation 

task in terms of both cornering time and the number of collisions. By having subjects 

focus on either speed or accuracy, we were able to evaluate the speed-accuracy tradeoff.  

With respect to cornering time, we hypothesized that increases in the IDC value 

and having subjects focus on accuracy would both yield greater cornering times. Our 

results supported these hypotheses. Cornering times increased as the task became more 

difficult, and this effect was more pronounced for subjects in the accuracy condition. 

These findings are consistent with the previous cornering literature (Chan et al., 2019; 

Cross et al., 2018; Helton et al., 2014; Pastel et al., 2007) as well as previous literature on 

the speed accuracy tradeoff (Brickler et al., 2021; MacKenzie & Isokoski, 2008). As 

expected, we found that cornering time increased as the amplitude increased. This was 

not surprising because increasing the amplitude of the corner necessitates that the subject 
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navigates the vehicle a longer distance. In general, we found that cornering times for a 

given IDC value varied drastically, even within the same instruction method. The 

considerable variability in cornering times may be explained by differences in operator 

skill and spatial abilities (see Lathan & Tracey, 2002; Long et al., 2011), but we did not 

explicitly investigate these differences. Furthermore, we failed to find a significant effect 

of videogaming experience on cornering time, which is inconsistent with prior findings 

that gaming experience can impact reaction times and task performance (Dye et al., 2009; 

Nenna & Gamberini, 2022).  

In addition to cornering time, we also hypothesized that the number of collisions 

would be impacted by the IDC value and instruction method. Instead of analyzing the 

number of collisions, we decided to analyze cornering success; that is, whether the 

subject could negotiate the corner without collision. We found that the probability of 

successfully negotiating a corner increased as the task became easier. This was consistent 

with the previous cornering literature (Chan et al., 2019; Pastel et al., 2007). Results also 

indicated that the probability of successful cornering was greater when subjects were told 

to focus on accuracy. In fact, one subject in the accuracy condition negotiated every 

single corner without collision. In addition, we found that subjects with moderate gaming 

experience, compared to limited gaming experience, were much more likely to negotiate 

corners without collision. This further suggests that operator skill has an impact on 

teleoperation performance. 

An important distinction between a point and click Fitts’ law task and a cornering 

task is the opportunity for collision. For instance, an error in a Fitts’ law task is usually 
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denoted when the subject misses the target (e.g., they click outside the target box). In a 

cornering task, an error occurs when the subject collides the vehicle into a wall. The main 

difference between these two tasks is that an error in a cornering task can have a 

detrimental impact on subjects’ cornering times. Therefore, the relationship between 

cornering time and collision count is critical. If cornering time and collision count are 

positively correlated, then subjects told to focus on speed would likely have more 

collisions and longer cornering times than subjects told to focus on accuracy. We found, 

however, that subjects in the speed condition had more collisions but maintained faster 

cornering times than subjects in the accuracy condition. To better illustrate this, we 

plotted the relationship between cornering time and the number of collisions (see Figure 

22). While there is a positive relationship between cornering time and number of 

collisions, this relationship is much more evident for the difficult corners (i.e., when the 

IDC value was 1.807). In other words, when the task was easy, there were fewer 

collisions, making it more difficult to establish a relationship between cornering time and 

collision count. In fact, for the accuracy condition, there was substantial variability in 

cornering time when the collision count was zero. This may explain why Helton et al. 

(2014) failed to find a strong association between cornering errors and cornering time, as 

they instructed participants to focus on accuracy.  

A possible explanation for our somewhat counterintuitive finding regarding 

cornering time and collision count for subjects in the speed condition could be the 

duration of the collisions. Our results indicated that subjects in the speed condition had 

somewhat shorter collision durations than subjects in the accuracy condition, which 
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suggests that they made more frequent, but shorter collisions. We reason that subjects in 

the accuracy condition travelled at slower speeds, which made them more likely to get 

stuck and unable to maneuver out of a tight corner.  

 

Figure 22 

Cornering Time and Collision Count by IDC Value and Instruction Method. 

 

 

 

An important extension we made to the previous cornering literature was the 

empirical evaluation of collision locations. Cross et al. (2018) noted that collision 

locations differed depending on lighting conditions, but this observation was purely 

anecdotal. In the present experiment, we recorded each collision instance and logged 

where those collisions occurred with respect to the path walls and the vehicle. For both 

instruction conditions, the data indicated that collisions occurred slightly more frequently 

on the inside of the corner compared to the outside of the corner. This implies that 

subjects attempted to cut the corners. On the inside corner, there were over three times 
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the number of total collisions in the speed condition compared to the accuracy condition, 

which may indicate that those subjects were more likely to attempt cutting the corner. 

There are various explanations for the frequent collisions on the inside of the 

corner. For those subjects focusing on accuracy, cutting off the corner could imply a lack 

of appropriate scaling of the environment; they may not have accurately perceived the 

space and dimensions of the virtual environment. While this is commonplace for 

perception of virtual environments (e.g., Guess et al., 2012), improvement in 

teleoperation performance over time would suggest that subjects eventually calibrated to 

the environment. Specifically for the speed condition, it is possible that subjects learned 

that they could collide with the inside of the corner without serious consequences to their 

cornering times. This is consistent with our finding that collision durations were, on 

average, shorter in the speed condition. For both the inside and outside of the corner, 

collisions most frequently occurred on the front and sides of the vehicle, with hardly any 

collisions occurring on the back of the vehicle. We believe that the minimal number of 

collisions on the back of the vehicle may indicate that there were few instances of 

reversing the vehicle to make corrective movements. It could also indicate that if the 

subject reversed the vehicle, they were able to correct their path without backing into the 

wall behind the vehicle.  

In this experiment, subjects negotiated 126 corners. As such, it was expected that 

there would be some evidence of a calibration effect. That is, we expected subjects to 

adapt to the dimensions of the vehicle and the controller inputs and exhibit improvements 

in teleoperation performance. We evaluated whether calibration was present in two ways: 
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by looking at the influence of block order on performance and by looking at teleoperation 

performance over time. We found that cornering times were, on average, shorter when 

subjects completed the most difficult driving courses in the last block; this effect was 

more evident for the accuracy condition. To investigate further, we looked at changes in 

the number of collisions and cornering time over the 14 corners within each driving 

course to see if performance improved as individuals progressed though the experiment. 

Looking at median cornering times, there was a general downward trend as subjects 

progressed through each driving course. At the same time, median collision counts 

consistently remained below a value of one. Taken together, these findings suggest that, 

over time, subjects were able to negotiate corners faster without sacrificing accuracy. For 

the speed condition, subjects’ cornering times and collisions were consistent for the two 

easier IDC values (0.874 and 1.17). For the more difficult corners, cornering times 

showed a decreasing trend, again suggesting an improvement in performance over time. 

Although all subjects were required to complete a practice phase, our findings indicate 

that there was an additional calibration effect, which is consistent with the previous 

teleoperation literature spanning a variety of tasks (Armstrong et al., 2014, 2015; Helton 

et al., 2014; Schmidlin & Jones, 2016).  

In addition to evaluating the impact of task difficulty on teleoperation 

performance, we also evaluated the IDe on teleoperation performance. To our knowledge, 

the present study is the only one to investigate whether the IDe could be applied to a 

cornering task. As previously discussed, the IDe quantifies the task completed, as 

opposed to the task presented. To apply this measure to a cornering task, we evaluated 
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performance along the straight-line paths that comprised the corners in the driving 

courses. This allowed us to calculate and evaluate the IDe and compare our findings to 

other Fitts’ law tasks that involve moving a cursor between two points. Our results were 

consistent with previous findings (e.g., Brickler et al., 2020) wherein movement time 

increased as the IDe increased, and throughput decreased as the IDe increased. 

Furthermore, the lack of difference in movement time between the instruction methods 

was consistent with previous findings (MacKenzie & Isokoski, 2008) and is in 

accordance with the IDe’s ability to account for differences in speed and accuracy.  

However, there were several limitations to quantifying the IDe for a cornering 

task. Because the user was constrained by the corner walls, it was unlikely for them to 

navigate the vehicle toward the outside of the corner center. That is, they were more 

likely to cut the corner than overshoot the corner. This type of constraint is not typical of 

a Fitts’ law task and inherently limits the amount of deviation that can be made from the 

corner center. As such, there can be greater deviation as the corner width increases. The 

corner walls also meant that subjects could make collisions, which is also atypical for a 

Fitts’ law task. Subjects could also reverse directions to correct for collisions, which 

increases the effective distance travelled for a given straight-line path. Lastly, looking at 

the straight-line paths between corner centers means that the performance on the current 

path of a corner was coupled with performance on the oncoming path of the previous 

corner. So, while our results are consistent with previous findings, it is not entirely clear 

whether the IDe, as quantified in the present work, truly represented the task completed. 

Another important finding regarding the IDe is that, like the aggregating cornering 
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analysis, the data were modelled equally well with inclusion of the quadratic term of the 

IDe. Again, these findings question whether the relationship between movement time and 

task difficulty is truly linear.  

Our results further indicated that perceived workload increased as the task 

difficulty increased. In fact, scores on all six of the workload scales were significantly 

greater for the driving courses with an IDC of 1.807 (i.e., the hardest driving courses) 

compared to the driving courses with an IDC of 0.874 (i.e., the easiest driving courses). 

These results are consistent with previous findings that perceived workload increases as 

task demands increase (Shao et al., 2020). However, Helton et al. (2014) found that the 

dimensions of perceived workload were stable as time on task increased. Taken together, 

these results suggests that task difficulty may have a stronger impact on perceived 

workload than time spent completing the task.  

With respect to Pastel et al.’s (2007) cornering law, we found that our model fit 

the data well, despite being aggregated across the different instruction methods (accuracy 

vs. speed). We found that adding the quadratic term for the IDC also fit the data well, 

which could suggest that the relationship is not entirely linear, but it might also be a case 

of overfitting the model. It is important to consider that for this analysis, the data were 

aggregated to obtain a single average cornering time for each index of difficulty value; 

thus, only three data points were used to fit the model. Although aggregating data in 

some manner is typical for analysis of the cornering law and Fitts’ law tasks (e.g., 

Brickler et al., 2021; Pastel et al., 2007), the loss of variability as a result of data 
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aggregation effectively changes the dependent variable (Osborne, 2000) and can produce 

misrepresented relationships among the variables (Raudenbush & Bryk, 1992). 

In sum, Experiment 1 replicated previous cornering law findings. We showed that 

cornering time and cornering success were associated with Pastel et al.’s (2007) index of 

difficulty for cornering. As the task became more difficult, subjects’ cornering times 

increased, and their probability of successful cornering decreased. We also showed that 

teleoperation performance was moderated by instruction method. That is, we 

demonstrated that the Fitts’ law speed-accuracy tradeoff could be extended to a cornering 

task.   
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CHAPTER III 

Experiment 2 

Previously, researchers have validated Pastel et al.’s (2007) cornering law, finding 

that cornering time can be modeled using an index of difficulty derived from information 

theory (Eq. 3). Despite finding that cornering time can be appropriately modeled under 

different lighting conditions (Cross et al., 2018), time delays (Cross et al., 2018), and 

camera perspectives (Helton et al., 2014), it remains unclear how corner angle and the 

path ratio impact cornering time and whether the index of difficulty can sufficiently 

capture these aspects of the task. Thus, in Experiment 2 we assessed the impacts of 

corner angle and the path ratio on cornering time and number of collisions. In this 

experiment, subjects navigated a virtual robot around 45°, 90°, and 135° corners. The 

current and oncoming path widths were manipulated for each corner angle to create three 

path ratio conditions: a path ratio that was less than one, a path ratio that was equal to 

one, and a path ratio that was greater than one.  

Hypotheses  

 Like Experiment 1, we hypothesized that cornering time and the number of 

collisions would increase as the IDC value increased. That is, we expected subjects to 

have longer cornering times and more collisions as the cornering task became more 

difficult. Given Pastel’s (2006) earlier finding that corner angle impacts movement times 

when navigating interfaces, we hypothesized that there would be an effect of corner angle 

on teleoperation performance. Specifically, we expected that cornering time and the 

number of collisions would increase as the corner angle increased. Lastly, we 
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hypothesized that there would some effect of the path ratio on cornering time and the 

number of collisions.  

Method  

Experimental Design 

This experiment used a 3 (corner angle) by 4 (IDC value) by 3 (path ratio) 

repeated measures design. Corner angle was defined as the degree of deviation from the 

initial heading direction (see Figure 23). The corner angles used in this experiment were 

45°, 90°, and 135°. IDC values were based on the oncoming path width (as opposed to the 

current path width), and these oncoming path widths were 2.2, 2.6, 3.0, and 3.4 times the 

width of the virtual vehicle. Thus, the IDC values utilized for this experiment were 0.874, 

0.7, 0.585, and 0.503, respectively. Path ratio corresponded to the relationship between 

the current path width relative to the oncoming path width and was calculating using 

Equation 7. Here, the oncoming path width was less than, equal to, or greater than the 

current path width (see Table 10). Like Experiment 1, the main dependent variables in 

this experiment were cornering time and the number of collisions. We also collected data 

on the duration of each collision and the collision locations on the corner and vehicle. 

These variables were obtained and calculated in the same manner as in Experiment 1. 
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Table 10 

Vehicle Widths, Oncoming Path Widths, and Current Path Widths for each IDC Value 

 

Vehicle 

Width (p) 

Oncoming Path 

Width (w2) 

Current Path 

Width (w1) 

Path Ratio 

w1/w2 
IDc = log2(w2/(w2-p)) 

2.44 m 

5.37 m 

4.29 m 0.8 

0.874 5.37 m  1.0 

6.44 m 1.2 

6.34 m 

5.08 m 0.8 

0.7 6.34 m 1.0 

7.61 m 1.2 

7.32 m 

5.86 m 0.8 

0.585 7.32 m 1.0 

8.78 m 1.2 

8.3 m 

6.64 m 0.8 

0.503 8.3 m 1.0 

9.96 m 1.2 

 

 

 

Figure 23 

Corner Angles Used in Experiment 2 
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Participants 

Like Experiment 1, we generated data using the “simr” package in R (Green & 

MacLeod, 2016) to determine the number of participants and trials needed. We, again, 

used the fitted model from Pastel et al.’s (2007) second experiment to generate 

approximate cornering times for the three values of IDC we intend to utilize. These 

cornering times corresponded to the 90° corner angle condition. To obtain approximate 

cornering times for the 135° corner angle condition, we used Pastel et al.’s (2007) fitted 

model to generate data, but increased cornering times by 20%. Similarly, we decreased 

estimated cornering times by 20% for the 45° corner angle condition. Due to the lack of 

previous research on cornering times and path width, we did not have a hypothesized 

effect for how the path ratio would impact cornering time. As such, we were mainly 

interested in the interaction between IDC and corner angle. In the simulation, we 

compared the full mixed effects model to a reduced model (i.e., a model without the 

interaction between IDC and corner angle). Ultimately, we found that we needed 42 

subjects to complete six trials (i.e., round six corners) for each corner angle and index of 

difficulty to obtain power above .80. This would produce 72 observations for each 

subject, for a total of 3,024 observations. The R code for the analysis process described 

above can be found here: https://osf.io/87krn/  

 We recruited 42 Clemson University students (Mage = 21.9 years, SDage = 4.92) 

with visual acuity of 20/32 or better. Subjects were recruited through Clemson 

University’s Psychology SONA pool and through word of mouth, and they were 

compensated with partial course credit or with a $10 gift card.  

https://osf.io/87krn/
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Apparatus 

The virtual environment was developed using Unity and consisted of a practice 

area and 36 different corners (4 IDC values x 3 corner angles x 3 path ratios). The virtual 

environment was viewed on a 19-inch Dell monitor with a 1440x900 pixel display. The 

refresh rate was 60 Hz. The practice area was a 40 by 40-meter room with five pillars 

(see Figure 24). The pillars were included to encourage the participant to practice corner 

negotiation. Like Experiment 1, the virtual vehicle used front wheel steering and was 

based on Unity’s standard asset vehicle. The virtual vehicle was 2.44 meters wide and 

6.33 meters long with a maximum speed of 10 miles per hour and a maximum steering 

angle of 40°. The camera was fixed just above the virtual vehicle at 4.04 meters above the 

roadway. The camera was located 3.11 meters from the front axle and 0.46 meters from 

the rear axle, which allowed the hood of the vehicle to be in view (see Figure 25). The 

camera had a field of view of 60° and was rotated downward 30°; the camera’s viewpoint 

was not adjustable. Like Experiment 1, subjects used a wired Xbox Controller to navigate 

the virtual vehicle within the virtual environment. The controls were the same as in 

Experiment 1.  
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Figure 24 

Practice Area (left) and Virtual Vehicle Used (right) in Experiment 2 

 

 

Figure 25 

Camera Perspectives by Corner Angle.

 

 

Procedure 

After signing the informed consent, participants completed a visual acuity test. 

The visual acuity test was conducted using a Snellen Eye Chart placed 10 feet away. 

Subjects completed the test with both eyes open. All participants had visual acuity of 

20/32 or better. Following this, the experimental procedure began. The experiment 

consisted of a practice phase and three blocks of trials. To start, subjects completed the 
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practice phase, where they were told to take some time to familiarize themselves with the 

controls of the virtual vehicle. After spending time in the practice environment, subjects 

completed a block of 24 trials (2 trials x 4 IDC values x 3 path ratios) for each corner 

angle. Each trial consisted of a single corner. To mitigate an effect of turn type, half of 

the trials were left turns, and the other half were right turns. At the start of each block of 

trials, subjects were instructed to navigate around each corner as quickly and accurately 

as possible. The virtual vehicle was located at the center of the path at the beginning of 

every trial. The presentation of blocks was randomized across subjects using a Latin 

square design, and trials within each block were presented in a randomized order. After 

each block of trials, subjects completed the NASA-TLX questionnaire. Once subjects 

completed all three blocks, they answered questions about their age, gender, and 

experience playing video games (see Appendix C). They were debriefed and provided 

with contact information prior to leaving. Each session took approximately 45 minutes.   

Results 

Cornering Time 

Analysis Preparation. Prior to conducting any analysis, we visualized the 

distribution of the cornering time variable. We found that the cornering time variable had 

a skewness value of 10.06 and kurtosis value of 170.33, which indicated that the 

distribution was positively skewed and leptokurtic. We extracted the residuals from a 

linear mixed effects model predicting cornering time to evaluate the errors. A QQ plot 

revealed that the normality assumption was severely violated. In an effort to normalize 

the residuals without performing an elaborate and difficult-to-interpret transformation, we 
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decided to perform a log-transformation on the cornering time variable. We then refit the 

linear mixed effects model predicting log-transformed cornering time and removed 

standardized residuals with values greater than +/- 3. Less than 2% of the data were 

removed as a result of this outlier analysis. After performing the log-transformation and 

outlier analysis, the residuals were more normally distributed. While this did not 

completely resolve the lack of normality in the residuals, researchers have shown that 

minor violations in normality are well-tolerated (Knief & Forstmeier, 2021; Schmidt & 

Finan, 2018), especially with a larger sample size, like we have here.  

Mixed Effects Modeling. We submitted corner angle, IDC, and path congruency 

to a linear mixed effects model predicting the log-transformed cornering times. The IDC 

variable was mean-centered, and a random effect of participant number was included in 

the model to account for nesting within participants. This model yielded a marginal R2 

value of .42, indicating that the fixed effects alone accounted for 42% of the variance in 

log-transformed cornering times. The amount of variance explained increased to 63% 

with both the fixed effects and the random effect of participant number. All post-hoc 

comparisons include p-values adjusted using the Tukey method. Results from the 

Omnibus F test can be found in Table 11. 

As expected, IDC value was a significant predictor of log-transformed cornering 

times (β = 0.61, SE = 0.08 t(2,914) = 7.61, p < .001), with time increasing as the IDC 

value increased. This can be seen in Figure 26. There was also a significant effect of the 

path ratio. On average, log-transformed cornering times differed between the 1.2 path 

ratio and the 1.0 path ratio conditions, t(2,914) = -6.77, p < .001, between the 1.2 path 



66 

 

ratio and the 0.8 path ratio conditions, t(2,914) = -18.01, p < .001, and between the 1.0 

path ratio and the 0.8 path ratio conditions, t(2,914) = -11.26, p < .001. In general, 

cornering times increased as the path ratio decreased (see Table 11).  

 

Table 11 

Omnibus F Test Results for the Model Predicting Log-transformed Cornering Times in 

Experiment 2 

 

Predictor df1 df2 F 

IDC 1 2,914 1,609.96*** 

Path Ratio 2 2,914 167.77*** 

Corner Angle 2 2,914 79.63*** 

IDC * Path Ratio 2 2,914 33.33*** 

IDC * Corner Angle 2 2,914 658.53*** 

Path Ratio * Corner Angle 4 2,914 60.81*** 

IDC * Path Ratio * Corner Angle 4 2,914 4.24** 

Note: * denotes p < .05, ** denotes p < .01, *** denotes p < .001 

 

 

Table 12 

Descriptive Statistics for Cornering Times by Path Ratio and Corner Angle 

Variable Levels M (SD) Median Maximum 

Path Ratio 

0.8 10.9 (6.52) 8.64 66 

1.0 9.6 (4.52) 8.57 52.1 

1.2 8.91 (3.74) 8.37 49.6 

Corner Angle 

45° 8.85 (1.58) 8.64 34.9 

90° 9.31 (3.54) 8.24 46.7 

135° 11.3 (7.85) 7.72 66 
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Figure 26 

Cornering Time by IDC Value in Experiment 2 

  

 

There was a significant effect of corner angle. Post-hoc comparisons indicated 

that log-transformed cornering times differed between 135° corners and 90° corners, 

t(2,914) = 8.99, p < .001, between 135° and 45° corners, t(2,914) = 11.46, p < .001, and 

between 90° and 45° corners, t(2,914) = 2.46, p = .037. Overall, cornering times 

increased as corner angle increased (see Table 12).  

For the significant interaction between path ratio and corner angle, post-hoc 

comparisons revealed that, for 45° corners, there were no statistically significant 

differences in log-transformed cornering times among the three path ratios. For the 90° 

corners, log-transformed cornering times were significantly different between the 0.8 and 

1.0 path ratio conditions, t(2,914) = 5.2, p < .001, and between the 0.8 and 1.2 path ratio 
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conditions, t(2,914) = 7.56, p < .001. There was not a statistically significant difference in 

log-transformed cornering times between the 1.0 and 1.2 path ratios. For 135° corners, 

log-transformed cornering times were different between the 0.8 and 1.0 path ratio 

conditions, t(2,914) = 13.5, p < .001, between the 0.8 and 1.2 path ratio conditions, 

t(2,914) = 22.25, p < .001, and between the 1.0 and 1.2 path ratio conditions, t(2,914) = 

8.77, p < .001. In terms of the original scale, cornering times increased as the path ratio 

decreased; this effect was more pronounced as the corner angle increased (Figure 27).   

 

Figure 27 

Average Cornering Times by Corner Angle and Path Ratio. Error bars represent +/- 1 

standard error. 
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For the following interactions involving IDC, we evaluated the slope of the line as 

the IDC value increases for each condition of the specified categorical variable. For 

example, post-hoc comparisons for the interaction between corner angle and IDC revealed 

that the slope for 45° corners (β = 0.12, SE = 0.05) was significantly shallower than the 

slope for 90° corners (β = 0.69, SE = 0.05, t(2,914)= -8.67, p < .001) and the slope for 

135° corners (β = 2.43, SE = 0.05, t(2,914) = -34.97, p < .001). Additionally, the slope 

for 90° corners was significantly shallower than the slope for 135° corners, t(2,914) = -

26.3, p < .001. We also conducted a simple slopes analysis to determine whether the 

slopes of the lines for each of the three corner angle conditions differed from zero. We 

found that the slopes for the 90° and 135° corners both significantly differed from zero, 

ps < .001. The slope for 45° corners was not significantly different from zero, which 

suggests that cornering times were essentially unaffected by changes in IDC value. In 

terms of the original scale, cornering times increased as IDC increased, but they increased 

at a more drastic rate as the corner angle increased (see Figure 28). 

There was also a significant interaction between path ratio and IDC value (see 

Figure 29). Post-hoc comparisons revealed that the slope for 0.8 path ratio (β = 1.37, SE 

= 0.05) was significantly steeper than the slope for 1.0 path ratio (β = 1.02, SE = 0.05, 

t(2,914) = 5.4, p < .001) and the slope for 1.2 path ratio (β = 0.84, SE = 0.05, t(2,914) = 

8.02, p < .001). Additionally, the slope for 1.0 path ratio was significantly steeper than 

the slope for 1.2 path ratio, t(2,914) = 2.66, p = .021). A simple slopes analysis revealed 

that the slopes for all path ratio conditions significantly differed from zero, ps < .001.   
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Figure 28 

Cornering Time by Corner Angle and IDC Value. Gray shading around the lines indicates 

+/- 1 standard error. 

 

 
   

Figure 29 

Estimated Cornering Time by IDC Value and Path Ratio 
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Lastly, there was a statistically three-way interaction among corner angle, path 

ratio, and IDC. To evaluate this interaction, we first split the data by corner angle and 

evaluated differences among the path ratios as a function of IDC. For 45° corners, there 

were no differences in the slopes among the different path ratio conditions. A simple 

slopes analysis revealed that the slope for the 0.8 path ratio was significantly different 

from zero, t(2,914) = 2.56, p = .011. The slopes for the 1.0 and 1.2 path ratio conditions 

were not significantly different from zero.  

For 90° corners, the slope for the 1.2 path ratio (β = 0.35, SE = 0.08) was 

marginally different than the slope for the 1.0 path ratio (β = 0.61, SE = 0.08, t(2,914) = -

2.31, p = .055) and significantly shallower than the slope for the 0.8 path ratio (β = 1.1, 

SE = 0.08, t(2,914) = -6.63, p < .001). In addition, the slope for the 1.0 path ratio was 

significantly shallower than the slope for the 0.8 path ratio, t(2,914) = -4.33, p < .001. A 

simple slopes analysis revealed that all slopes significantly differed from zero, ps < .001. 

Looking at the original scale, cornering times increased as the IDC increased, but they 

increased at a more drastic rate as the path ratio decreased (see Figure 30).  

For 135° corners, the slope for the 0.8 path ratio (β = 2.81, SE = 0.08) was 

significantly steeper than the slope for the 1.0 path ratio (β = 2.33, SE = 0.08, t(2,914) 

=4.2, p < .001) and significantly steeper than the slope for the 1.2 path ratio (β = 2.15, SE 

= 0.08, t(2,914) = -5.72, p < .001). There was not a significant difference in the slopes 

between the 1.0 and 1.2 path ratio conditions. A simple slopes analysis revealed that all 

slopes significantly differed from zero, ps < .001. On the original scale, cornering times, 
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again, increased as the IDC increased, and the rate of increase was the most drastic for the 

smallest path ratio.  

 

Figure 30 

Estimated Cornering Time for each Corner Angle by IDC Value and Path Ratio 

 

 

We also split the data by path congruency condition and evaluated differences 

among corner angles as a function of IDC. For the 0.8 path ratio condition, the slope for 

135° corners (β = 2.81, SE = 0.08) was significantly steeper than 90° corners (β = 1.1, SE 

= 0.08, t(2,914) = 14.77, p < .001) and 45° corners (β = 0.2, SE = 0.08, t(2,914) =22.68, p 

< .001). The slope for 90° corners was significantly steeper than the slope for 45° 

corners, t(2,914) = 7.9, p < .001. The simple slopes analysis revealed that all slopes were 

significantly different from zero, ps < .05. 

Similarly, for the 1.0 path ratio condition, the slope for 135° corners (β = 2.33, SE 

= 0.08) was significantly steeper than 90° corners (β = 0.61, SE = 0.08, t(2,914) = 15.06, 
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p < .001) and 45° corners (β = 0.12, SE = 0.08, t(2,914) =19.41, p < .001). Further, the 

slope for 90° corners was significantly steeper than the slope for 45° corners, t(2,914) = 

4.33, p < .001. The simple slopes analysis revealed that the slopes for 90° and 135° 

corners were significantly different from zero, ps < .001.  

Lastly, for the 1.2 path ratio condition, the slope for 135° corners (β = 2.15, SE = 

0.08) was significantly steeper than 90° corners (β = 0.35, SE = 0.08, t(2,914) = 15.71, p 

< .001) and 45° corners (β = 0.04, SE = 0.08, t(2,914) =18.46, p < .001). The slope for 

90° corners was significantly steeper than the slope for 45° corners, t(2,914) = 2.76, p = 

.016. The simple slopes analysis revealed that the slopes for 90° and 135° corners were 

significantly different from zero, ps < .001. Looking at the original scale, it is evident that 

cornering times increase at a more drastic rate for the 135° corners as the task became 

more difficult, and this was the case for all path ratio conditions (see Figure 31). 

 

Figure 31 

Estimated Cornering Time for each Path Ratio by IDC Value and Corner Angle. 
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Turn Type. We also investigated whether there were differences in cornering 

time based on the turning direction (left vs. right). Using the log-transformed cornering 

times, we conducted an independent samples t-test between left turns and right turns. 

Results indicated that there was not a statistically significant difference in log-

transformed cornering times depending on turn type, t(2,944) = 1.67, p = .09. Upon 

plotting the average cornering times by corner angle, IDC, and turn type, it was clear that 

there were only minor differences in the cornering times between the left and right turns 

(see Figure 32). While overall average cornering times were greater for left turns (M = 

9.97, SD = 5.48) compared to right turns (M = 9.62, SD = 4.72), this discrepancy was 

trivial.  

 

Figure 32 

Average Cornering Times by IDC, Corner Angle, and Turn Type. Error bars represent 

+/-1 standard error. 
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Block Order. Furthermore, we assessed the extent to which the order of the 

blocks impacted performance. The order of presented corner angles for each block 

number can be found in Table 13. We fit a mixed effects model predicted the log-

transformed cornering times with block order, corner angle, and IDC as independent 

variables. A random effect of participant number was included in the model. There was 

not a significant effect of block order on the log-transformed cornering times, but there 

was a significant interaction between block order and corner angle, F(4, 2,922) = 4.31, p 

= .002. However, after controlling for family-wise error rate, post-hoc comparisons did 

not yield any significant differences. In other words, cornering times were, on average, 

faster when the most difficult corners (i.e., 135° corners) were negotiated last, but this 

effect was not statistically significant (see Figure 33).  

 

Table 13 

Average Cornering Times by Block Order in Experiment 2 

Block Order Order of Corner Angles M (SD) Median Maximum 

1 135°, 90°, 45° 10.07 (5.39) 8.62 66 

2  90°, 45°, 135° 9.1 (3.91) 8.52 44.83 

3  45°, 135°, 90° 10.17 (5.82) 8.54 52.06 
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Figure 33 

Average Cornering Times by Corner Angle and Block Order 

 

 

 

The interaction between IDC and block order was also a significant predictor of 

log-transformed cornering times, F(2, 2922) = 3.31, p = .037. Post-hoc comparisons 

revealed that the slope for block one (β = 1.12, SE = 0.06) was significantly steeper than 

the slope for block two (β = 0.92, SE = 0.06 t(2,922) = 2.37, p = .047). There was not a 

significant difference between the slopes for block one and block three (β = 1.1, SE = 

0.06) nor between block two and block three. A simple slopes analysis revealed that all 

three slopes for block order significantly differed from zero, ps < .001 (see Figure 34). 
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Figure 34 

Estimated Cornering Times by Block Order. Gray shading around the lines indicates +/- 

1 standard error. 

 

 

 

Number of Collisions 

Collision Count. As a reminder, a collision was logged when any part of the 

vehicle collided with any wall. Like Experiment 1, we rounded the collision start time to 

the nearest second and removed duplicate values. This yielded a single collision count 

when multiple parts of the vehicle collided with a wall at approximately the same time. 

Due to a technical error, one participant’s collision data was not collected. In total, there 

were 4,426 collisions, and 1,388 of those were considered unique collisions, according to 

how we defined them above.  
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Distribution. We found the distribution of the number of unique collisions 

variable to be positively skewed and leptokurtic, with a skewness value of 13.52 and a 

kurtosis value of 252.1. Further inspection revealed that the majority of observations 

(86.4%) had a count value of zero. Like Experiment 1, we decided to convert the 

collision count variable into a binary success variable; trials with a collision count of zero 

were considered successful trials, and trials with a collision count greater than zero were 

considered unsuccessful.  

Logistic Regression. Using the unique collision data, we conducted a mixed 

effects logistic regression to determine the impact of IDC value, corner angle, and path 

ratio on cornering success. A random effect of participant number was included in the 

model. The IDC variable was mean-centered, and the 90° corner angle condition and 1.0 

path ratio condition were set as the reference categories for the corner angle and path 

ratio variables, respectively. Therefore, changes in the odds ratios for these variables 

reflect changes from their respective reference group. To compare across all three levels 

of corner angle and path ratio, we changed the reference categories and refit the model. 

Our results indicated that IDC was a significant predictor of cornering success (see 

Table 14). As the IDC value increased by one, the odds of successful cornering decreased 

by nearly 100%. This was somewhat expected, given that the difficulty of negotiating a 

corner approaches infinity as the IDC value increases. 
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Table 14 

Logistic Regression Output Predicting Cornering Success in Experiment 2. 

Predictor β (SE) 
Odds 

Ratio 

95% CI for Odds Ratio 

z Lower 

limit 

Upper 

limit 

IDC -10.38 (1.85) < 0.001 < 0.001 0.001 -5.62*** 

Corner Angle      

45° 0.85 (0.62) 2.33 0.69 7.86 1.37 

135° -2.14 (0.4) 0.12 0.05 0.26 -5.29*** 

Path Ratio       

0.8 0.01 (0.48) 1.01 0.4 2.55 0.01 

1.2 0.69 (0.52) 1.99 0.72 5.48 1.33 

IDC * Corner Angle       

IDC * 45°  9.32 (2.81) 11,187 45.25 2,765,873 3.32*** 

IDC * 135°  -6.65 (1.98) 0.001 < 0.001 0.06 -3.36*** 

IDC * Path Ratio       

IDC * 0.8 -7.32 (2.14) < 0.001 < 0.001 0.04 -3.41*** 

IDC * 1.2 0.77 (2.06) 2.17 0.04 123.73 0.37 

Corner Angle * Path Ratio      

45° * 0.8  0.04 (0.79) 1.04 0.22 4.86 0.05 

135° * 0.8 -1.23 (0.53) 0.29 0.1 0.83 -2.31* 

45° * 1.2 0.7 (1.22) 2.01 0.18 22.17 0.57 

135° * 1.2  0.48 (0.51) 1.61 0.59 4.39 0.93 

 

 

With respect to corner angle, we found that the odds of successful cornering 

decreased by 82% when the corner angle was 135° compared to 90°. Although not 

statistically significant, results indicated that the odds of successful cornering increased 

by 133% when the corner angle was 45° compared to 90°. Overall, the odds of successful 
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cornering increased as the corner angle decreased. Results indicated that there were no 

significant differences in the odds of cornering success depending on path ratio.  

We found that the effect of IDC was moderated by corner angle. Results indicated 

that all slopes were significantly different from each other, ps < .001. As seen in Figure 

35, the probability of successful cornering decreased at a more rapid rate as the corner 

angle increased. The IDC also moderated by path ratio. Results indicated that the slope for 

the 0.8 path ratio was significantly different from the slope for the 1.0 and 1.2 path ratios, 

ps < .001. There was not a significant difference in the slopes between the 1.0 and 1.2 

path ratios (Figure 36). 

 

Figure 35 

Predicted Probability of Cornering Success by Corner Angle 
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Figure 36 

Predicted Probability of Cornering Success by Path Ratio 

  
 

 

To evaluate the interaction between path ratio and corner angle on cornering 

success, we first split the data by corner angle to assess the change in odds ratios among 

the different path ratios. For 45° corners, there was not a significant difference between 

the path ratios on cornering success (see Table 16). That is, the odds of successful 

cornering were similar regardless of path ratio.  

For both 90° and 135° corners, the odds of successful cornering decreased 

significantly when the path ratio was 0.8 compared to 1.0 and when the path ratio was 1.0 

compared to 1.2. Additionally, the odds of successful cornering increased when the path 

ratio was 1.2 compared to 0.8. In other words, the odds of successful cornering increased 

as the path ratio also increased.  
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We also split the data by path ratio condition to evaluate changes in the odds 

ratios among the different corner angles. Across all path ratios, we found that the odds of 

cornering success increased by more than 100% when the corner angle was 45° compared 

to 90° and when the corner angle was 90° compared to 135° (see Table 16). Furthermore, 

across all path ratios, the odds of cornering success decreased by nearly 100% when the 

corner angle was 135° compared to 45°. In other words, the odds of cornering success 

increased as the angle decreased across all path ratio conditions. 

 

Table 15 

Odds Ratios for each Path Ratio by Corner Angle 

Corner Angle Path Ratio Odds Ratio 
95% CI for Odds Ratio 

z 
Lower Limit Upper Limit 

45° 

0.8 (ref. = 1.0) 0.56 0.14 1.88 -0.92 

1.0 (ref. = 1.2) 0.24 0.01 1.68 -1.25 

1.2 (ref. = 0.8) 7.33 1.28 138 1.85 

90° 

0.8 (ref. = 1.0) 0.32 0.17 0.6 -3.52*** 

1.0 (ref. = 1.2) 0.44 0.19 0.97 -1.98* 

1.2 (ref. = 0.8) 7.11 3.4 16.24 4.96*** 

135° 

0.8 (ref. = 1.0) 0.25 -.14 0.43 -4.92*** 

1.0 (ref. = 1.2) 0.24 0.13 0.43 -4.67*** 

1.2 (ref. = 0.8) 17.26 9.06 34.65 8.35*** 

Note: * denotes p < .05, ** denotes p < .01, *** denotes p < .001 
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Table 16 

Odds Ratios for each Corner Angle by Path Ratio 

   95% CI for Odds Ratio  

Path Ratio Corner Angle Odds Ratio Lower Limit Upper Limit z 

0.8 45° (ref. = 90°) 11.82 5.18 30.72 5.51*** 

 90° (ref. = 135°) 37.71 17.24 91.19 8.57*** 

 135° (ref. = 45°) 0.002 0.001 0.006 -10.93*** 

1.0 45° (ref. = 90°) 6.36 2.26 22.63 3.23*** 

 90° (ref. = 135°) 18.23 9.36 38.17 8.14*** 

 135° (ref. = 45°) 0.009 0.002 0.02 -8.18*** 

1.2 45° (ref. = 90°) 11.94 2.17 223.3 2.31* 

 90° (ref. = 135°) 18.61 8.14 48.26 6.48*** 

 135° (ref. = 45°) 0.005 < 0.001 0.023 -5.1*** 

Note: * denotes p < .05, ** denotes p < .01, *** denotes p < .001 

 

 

 

Success Rate. Like Experiment 1 success rate was defined as the overall 

percentage of successful trials by corner angle, path congruency, and IDC. To reiterate, a 

trial was considered successful if the corner was negotiated without collision. As 

expected, subjects negotiated 45° corners quite successfully, with a success rate 

consistently greater than 90%, regardless of path congruency and IDC value (see Figure 

37). For 90° corners, success rate exceeded 93% across all IDC values except the most 

difficult one: 0.874. On those more difficult trials, the success rate fell, and even hit 

below 50% for the narrow path congruency. Lastly, for 135° corners, success rate 

decreased as IDC value increased (i.e., as the task became more difficult). These results 

are further supported by looking at the average collision count by corner angle (see 

Figure 38). 
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Figure 37 

Percentage of Successful Trials in Experiment 2 

 

 

Figure 38 

Average Collision Counts by IDC and Corner Angle in Experiment 2 
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Video Gaming Experience 

Like Experiment 1, we asked subjects to rate the frequency at which they play 

video games. We again converted this into a binary gaming experience variable, where 

those individuals who responded on the lower end of the scale (options 1-3) were denoted 

as having limited gaming experience, and those individuals who responded on the higher 

end of the scale (options 4-6) were denoted as having moderate gaming experience. 

Participants’ gaming experience ratings can be found in Table 17.  

We fit a linear mixed model predicting log-transformed cornering time with IDC, 

corner angle, and gaming experience as predictor variables. The IDC variable was mean-

centered, and a random effect of participant number was included in the model. Here, we 

only focus on the results involving the gaming variable. Results indicated that there was 

not a main effect of gaming experience on log-transformed cornering times, but there was 

a significant interaction between gaming experience and corner angle, F(2, 2935) = 

15.52, p < .001. However, post-hoc comparisons revealed that there were no significant 

differences between limited and moderate gaming experience for each corner angle. 

There was also a significant interaction between gaming experience and IDC value, F(2, 

2,925) = 5.35, p = .02, such that the slope for individuals with limited gaming experience 

was significantly steeper than the slope for individuals with moderate gaming experience 

(see Figure 39). We also conducted a mixed effects binomial logistic regression to 

determine whether gaming experience was a significant predictor of cornering success. 

There was, however, no significant difference in cornering success depending on gaming 

experience. This can easily be seen in Figure 40.  
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Table 17 

Video Gaming Experience for Experiment 2 Subjects. 

Video Gaming Frequency N Gaming Experience 

Never 10 

Limited Almost Never (Less than 1 time a month) 13 

Not Very Often (1-2 times a month) 7 

Often (1-2 times a week) 6 

Moderate Fairly Often (3-4 times a week) 2 

Very Often (5-7 times a week) 4 

 

 

Figure 39 

Estimated Cornering Time by IDC and Gaming Experience in Experiment 2 
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Figure 40 

Predicted Probability of Successful Cornering by Video Gaming Experience 

 

 

Collision Information 

Using the unique collision count, we found that collision durations increased as 

corner angle increased and that collision durations were, on average, slightly greater for 

right turns compared to left turns (see Table 18). We found that 68.5% of collisions were 

less than one second.  

As previously mentioned, collisions were logged into two groups: collisions 

before the turn and collisions after the turn. For both before and after the turn, most 

collisions on the inside of the corner occurred on the side of the vehicle compared to the 

front or back of the vehicle (see Table 19). This was not the case for collisions on the 
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outside of the corner. When collisions on the outside of the corner occurred before the 

turn, they mostly occurred at the back (40.4%) or sides (55.1%) of the vehicle compared 

to the front of the vehicle (4.5%). Collisions after the turn most frequently occurred at the 

front of the vehicle (86.5%) compared to the back (0.5%) or sides (13%) of the vehicle. 

 

Table 18 

Descriptive Statistics for Collision Durations (s) by Turn Type and Corner Angle 

Variable Levels M (SD) Median Maximum 

Turn Type 
Right 1.66 (3.77) 0.58 40.2 

Left 1.25 (1.9) 0.64 15.74 

Corner Angle 

45° 1.11 (1.62) 0.55 13.5 

90° 1.38 (2.78) 0.62 27.5 

135° 1.69 (3.54) 0.64 40.2 

 

 

Table 19 

Number of Collisions on the Vehicle and the Corner in Experiment 2. 

Corner Location Front Back Left Side Right Side 

Inside 140 (2.5%) 81 (4.3%) 1,677 (51.7%) 1,345 (41.5%) 

Outside 239 (20.2%) 544 (46%) 185 (15.6%) 215 (18.2%) 

 

 

Workload 

Perceived workload was assessed using the NASA-TLX and was recorded after 

each block of trials. This allowed us to determine the extent to which perceived workload 

was influenced by corner angle. As expected, we found that all facets of perceived 
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workload increased as the corner angle increased (see Figure 41). For performance, a 

higher NASA-TLX value is associated with poorer perceived performance.  

We conducted repeated measures analyses of variance to determine whether 

NASA-TLX scores for each scale varied significantly by corner angle. There was an 

effect of corner angle on mental demand scores, F(2, 122) = 63.11, p < .001. Post-hoc 

comparisons revealed that mental demand scores were significantly different between 

135° corners and 90° corners, t(122) = 8.37, p < .001 and between 135° and 45° corners, 

t(122) = 10.68, p < .001. There was a marginally significant difference in mental demand 

scores between 90° and 45° corners, t(122)= 2.31, p = .058. 

There was also an effect of corner angle on physical demand scores, F(2, 122) = 

5.43, p = .005. Post-hoc comparisons revealed that there was a significant difference 

between 135° and 45° corners, t(122) = 3.25, p = .004. Similarly, there was an effect of 

temporal demand scores, F(2, 122) = 6.25, p = .003, with a significant difference in 

scores between 135° and 45° corners, t(122) = 3.49, p = .002. 

There was an effect of corner angle on effort scores, F(2, 122) = 33.48, p < .001. 

Post-hoc comparisons revealed that all corner angles were significantly different from 

each other ps < .01. There was also an effect of corner angle on performance scores, F(2, 

122) = 61.67, p < .001. Post-hoc comparisons revealed that performance scores were 

significantly different between 135° corners and 90° corners, t(122) = 8.24, p < .001 and 

between 135° and 45° corners, t(122) = 10.57, p < .001. There was a marginally 

significant difference in mental demand scores between 90° and 45° corners, t(122) = 

2.34, p = .055.   
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Lastly, there was a significant effect of corner angle on frustration scores, F(2, 

122) = 26.53, p < .001. Post-hoc comparisons revealed that mental demand scores were 

significantly different between 135° corners and 90° corners, t(122) = 8.24, p < .001 and 

between 135° and 45° corners, t(122) = 10.57, p < .001. There was a marginally 

significant difference in mental demand scores between 90° and 45° corners, t(122) = 

2.34, p = .055.  Table 20 provides an overview of which post-hoc comparisons were 

statistically significant.  

 

Figure 41 

Average NASA-TLX Values by Corner Angle 
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Table 20 

Post-hoc Significance Tests for NASA-TLX Scales in Experiment 2 

 

 

 

 

 

 

 

Cornering Law 

 Like Experiment 1, we assessed Pastel et al.’s (2007) cornering law by 

aggregating the data by IDC value and fitting a linear model with the IDC as a predictor of 

cornering time (see Eq. 1). The IDc was calculated using Equation 3. Even though the 

data were aggregated across the different cornering angles and path ratios, we found that 

the model fit the data well, with an R2 value of .93. Like Experiment 1, we again found 

that including the second order term of IDc produced a better model fit (see Figure 42). 

Looking at average cornering times by corner angle yielded similar findings (see Figure 

43). That is, simply using the IDC to predict cornering time for each corner angle was 

sufficient but incorporating the second order term of IDC fit the data better.  

 

  

NASA-TLX Scale 45° vs. 90° 90° vs. 135° 45° vs. 135° 

Mental Demand - * * 

Physical Demand - - * 

Temporal Demand - - * 

Effort * * * 

Performance - * * 

Frustration - * * 

Note: * denotes p < .05, - denotes p > .05 
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Figure 42 

Average Cornering Time by IDC fit to a First Order Regression Model (left) and a Second 

Order Regression Model (right) in Experiment 2. 

 

 

 

We also conducted a series of Pearson product moment correlations to examine 

the relationship between log-transformed cornering time and the oncoming path width, 

the current path width, and the IDC value. For 45° corners, there was a statistically 

significant correlation between log-transformed cornering time and oncoming path width, 

r(1,005) = - .15, p < .001, between log-transformed cornering time and current path width 

r(1,005) = - .15, p < .001, and between the IDC and log-transformed cornering time, 

r(1,005) = .16, p < .001. For 90° corners, there was a statistically significant correlation 

between log-transformed cornering time and oncoming path width, r(995) = - .37, p < 

.001, between log-transformed cornering time and current path width r(995) = - .38, p < 

.001, and between the IDC and log-transformed cornering time, r(995) = .39, p < .001. 

Similarly, for 135° corners, there was a statistically significant correlation between log-

transformed cornering time and oncoming path width, r(967) = - .62, p < .001, between 
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log-transformed cornering time and current path width r(967) = - .61, p < .001, and 

between the IDC and log-transformed cornering time, r(967) = .64, p < .001. In sum, the 

oncoming path width, current path width, and IDC were all similarly related to log-

transformed cornering times. Additionally, the correlations were stronger as the corner 

angle increased.  

 

Figure 43 

Average Cornering Time by IDC and Corner Angle fit to a First Order Regression Model 

(left) and a Second Order Regression Model (right) 

 

 

 

 

Adapted Index of Difficulty. Given the large discrepancies in cornering time 

across the various corner angles and path ratios, we investigated how to adapt the IDC 

equation to incorporate the influence of these variables. As shown above, cornering times 

varied drastically for 135° corners. While these corners required more turning of the 
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vehicle, there was also the opportunity to cut off the corner, decreasing the distance 

travelled and the cornering time. Thus, for corners greater than 90°, we believed 

incorporating an estimated distance travelled into the task difficulty was appropriate. We 

adapted the IDC equation as follows: 

 𝐼𝐷𝐶4 = {  

𝐴

𝐶𝑤
(0.003(𝑥 − 90) + 1), 𝑥 ≤ 90°

𝐴𝑒

𝐶𝑤
(0.003(𝑥 − 90) + 1), 𝑥 > 90°

 (9) 

where A is the amplitude of the corner, Ae is the effective amplitude of the corner, Cw is 

the weighted track clearance of the corner, and x is the corner angle. Because we did not 

capture the vehicle’s distance travelled from start to finish for each corner in this 

experiment, we calculated the effective corner amplitude as, 

 𝐴𝑒 = 𝐶𝑇 ∗ 𝑣𝑚𝑎𝑥 (10) 

where CT is the cornering time and vmax is the maximum speed of the vehicle. Finally, the 

weighted track clearance was computed as,  

 𝐶𝑤 = 𝑐1(𝑤1 − 𝑝) +  𝑐2(𝑤2 − 𝑝) (11) 

where w1 is the current path width, w2 is the oncoming path width, p is the vehicle widths, 

and c1 and c2 are weights whose values sum to one. We found that using weight values of 

0.5 worked best. In other words, the Cw was simply the average track clearance. Here, we 

should note that Equation 11 assumes that the vehicle width is smaller than both path 

widths. The last part of the adapted IDC equation incorporates an adjustment for the 

corner angle. This adjustment term takes on a value of one when the corner angle is 90°, 

and it deviates by a value of 0.003 for every degree of deviation from 90°. Therefore, the 

ratio, Ae/Cw, is multiplied by a value greater than one when the corner angle exceeds 90°, 
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resulting in a larger IDC value, and the ratio term is multiplied by a value less than one 

when the corner angle is less than 90°, resulting in a smaller IDC value.  

This adapted IDC is based on Equation 4. In fact, when the path widths are equal 

and the corner angle is 90°, Equations 4 and 9 become identical. To maintain similarity 

with information theory, we can adapt the IDC further to,  

 𝐼𝐷𝐶5 = {  
𝑙𝑜𝑔2 (

𝐴

𝐶𝑤
(0.003(𝑥 − 90) + 1)) , 𝑥 ≤ 90°

𝑙𝑜𝑔2 (
𝐴𝑒

𝐶𝑤
(0.003(𝑥 − 90) + 1)) , 𝑥 > 90°

 (12) 

The adapted IDC equations should yield an IDC value for each corner angle, 

amplitude, oncoming path width, and current path width combination. For the data from 

Experiment 2, we obtained 36 adapted IDC values. To evaluate how well our adapted IDC 

equations performed, we first fit linear regression predicting cornering time with the 

adapted IDC from Equation 9 as the predictor variable. We found that the data fit the 

model well, with an R2 value of .96 (see Figure 44). Using Equation 12, we fit a second 

order regression model and found that the data fit the model equally well, with an R2 

value of .97 (see Figure 45).  
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Figure 44 

Average Cornering Time by Adjusted IDC Value  

 

Note: The adjusted IDC value was computed using Equation 9.  

 

Figure 45 

Average Cornering Time by Adjusted IDC Value fit to a Second Order Regression Model 

 

Note: The adjusted IDC value was computed using Equation 12.  
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Discussion 

In Experiment 2, we tested how teleoperation performance varied as the corner 

angle, IDC value, and path ratio were manipulated. With respect to cornering time, we 

hypothesized that time would increase as the IDC increased and as the corner angle 

increased. We also anticipated that there would be some effect of path ratio on cornering 

time. Consistent with the prior cornering law studies (Chan et al., 2019; Cross et al., 

2018; Helton et al., 2014; Pastel et al., 2007), we found that cornering time did increase 

as the IDC increased; subjects took longer to negotiate corners that had a higher task 

difficulty. We extended previous cornering research by showing that corner angle is an 

important aspect of the cornering task difficulty. In general, we found that cornering 

times increased as the corner angle increased, but the increase in cornering times between 

45° and 90° corners was not nearly as drastic as the increase in cornering times between 

90° and 135° corners. An important exception to this finding was when the IDC value was 

lowest (IDC = 0.5). In this instance, cornering times were shortest for 135° corners. Upon 

reviewing the video recordings, we found this was because subjects were consistently 

cutting the corners. They travelled a shorter distance, and therefore, negotiated the corner 

in a shorter period of time.  

That cornering time increased as the corner angle increased is somewhat 

inconsistent with Pastel’s (2006) findings. In their study, subjects negotiated corners of 

varying angles using a cursor. They found that movement time was shortest for the sharp 

corners and longest for 90° corners. This difference in findings is likely due to the 

difference in nature between the two tasks. When negotiating corners with an optical 
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mouse, the cursor mimics the movements of one’s hand/arm, but when negotiating 

corners with a controller, the virtual vehicle mimics the movements of the controller 

input. As Pastel (2006) noted, when specifically negotiating the sharp corner, subjects’ 

arms could engage in a loaded and unloaded movement, which could explain the shorter 

movement time. The ability to negotiate the corner is inherently dependent on numerous 

factors of the vehicle, such as its weight, speed, dimensions, and turning radius, to name a 

few. For example, Wynn et al. (2015) found that quolls (a small marsupial similar to the 

opossum) reduced their turning speed when negotiating corners with greater angles, 

which allowed for an increase in turning rate and a decrease in turning radius. For 

consistency across different path widths, we kept various aspects of the vehicle the same 

(e.g., maximum speed, weight), but future research is needed to understand better how 

these factors influence teleoperation performance.  

Another important distinction between our task and Pastel’s (2006) task is the 

point of view. Pastel’s (2006) subjects viewed the entirety of the corner from a top-down 

perspective, while subjects in our experiment viewed the corner from a first-person 

perspective. For our subjects, this made it more difficult to determine the length of the 

vehicle, which may provide some explanation for the frequent collisions on the inside of 

the corner. There is some research to suggest that perspective does have an impact of 

driving performance and corner negotiation. For example, Helton et al. (2014) noted that 

cornering times were somewhat faster when viewing in a top-down perspective compared 

to a first-person perspective. However, Bateman et al. (2001) found that virtual driving 



99 

 

performance was worse when viewing from an overhead perspective compared to a first-

person or third-person point of view.  

Similar to Experiment 1, we found that cornering times for a given IDC value 

varied drastically. Again, we contend that the considerable variability in cornering times 

is likely due to differences in operator skill and spatial abilities. Unlike Experiment 1, we 

found that subjects with moderate gaming experience negotiated corners faster than 

subjects with limited gaming experience, which is consistent with previous findings (Dye 

et al., 2009; Nenna & Gamberini, 2022).  

Regarding the path ratio, we found that overall cornering times increased as the 

path ratio decreased. That is, subjects took longer to negotiate corners when the current 

path was narrower than the oncoming path. A possible explanation for this finding is that 

subjects had more space to reorient the vehicle prior to the turn when the current path was 

wider than the oncoming path. When starting out on a narrower path, relative to the 

oncoming path, there is less room to reposition the vehicle as it approaches the apex of 

the corner. Looking at the collision data, we found that there were more collisions when 

the current path was narrower than the oncoming path (i.e., when the path ratio was 0.8), 

which could explain the increased cornering time and decreased probability of cornering 

success.  

We also hypothesized that the number of collisions would increase as the IDC 

increased and as the corner angle increased. Like Experiment 1, we analyzed cornering 

success; that is, whether the subject could negotiate the corner without collision. As 

expected, we found that the probability of successful cornering decreased as IDC value 
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increased, and this effect was more pronounced as the corner angle increased and as the 

path ratio decreased. In other words, subjects were more likely to negotiate the corner 

without collision when the corner angle was 45° and when the path ratio was 1.2 (i.e., 

when the current path was wider than the oncoming path). The increased probability of 

collision at larger corner angles is consistent with Wynn et al.’s (2015) findings for 

quolls’ turning behaviors.  

Because we manipulated both the corner angle and the oncoming and current path 

widths, Experiment 2 utilized lower IDC values than Experiment 1. As a result, the 

relationship between collision count and cornering time was less straightforward (Figure 

46). For the most part, there were few collisions for 45° and 90° corners, across all IDC 

values. The positive association between these two variables only becomes somewhat 

clear for 135° corners with an IDC value of 0.87. Our findings in both experiments 

highlight that the relationship between cornering time and collision count is not so 

straightforward. The relationships among corner angle, path ratio, instruction method, 

and vehicle mechanics all play an important role in defining the relationship between 

cornering time and collision count. As we have shown in Experiment 2, corners with a 

lower task difficulty and corners that require fewer degrees of turning elicit a decreased 

likelihood of collision. However, we contend that the vehicle’s maximum speed 

moderates this relationship. If the vehicle can travel at high speeds, the operator might be 

more likely to lose control of the vehicle and make a collision, regardless of turning angle 

and the path widths. Conversely, if the vehicle’s maximum speed is quite low, the 

likelihood of making a collision could be reduced for more difficult turns. An important 
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caveat is that a slower vehicle speed could make the vehicle more likely to get stuck in a 

tight corner, as we noted in Experiment 1.  

 

Figure 46 

Cornering Time and Collision Count by IDC Value and Corner Angle 

 

 

Like Experiment 1, we investigated collision locations. In general, we found that 

the majority of collisions occurred when the corner angle was 135° and that these 

collisions mostly occurred on the inside of the corner. The frequent collisions on the 

inside of the corner suggest that subjects were attempting to cut the corner, which is 

consistent with our review of the video recordings. As expected, collisions on the inside 

of the corner were the result of the sides or front of the vehicle colliding with the wall. 

The length of the vehicle likely contributed to the increased number of collisions on the 

inside of the corners vs. the outside of the corners. For instance, the length of the vehicle 

was more than 2.5 times the width of the vehicle, which could have made it more difficult 

for subjects to (initially) determine whether they could negotiate the corner without 
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collisions. For collisions that occurred on the two walls comprising the outside of the 

corner, there was difference in collision location on the vehicle depending on whether the 

collision was on the current path or the oncoming path. Collisions before the turn mostly 

occurred on the back or sides of the vehicle, which suggests that subjects reversed the 

vehicle to negotiate the corner and/or drove too close to the outer edge of the path when 

trying to take a wide turn. Collisions after the turn almost exclusively occurred at the 

front of the vehicle.  

It was more difficult to assess a calibration effect in this experiment as each 

unique corner was only negotiated twice. However, looking at overall cornering times as 

a function of block order, corner angle, and IDC value revealed that average cornering 

times for the 135° corners were faster when these corners were negotiated last. This could 

suggest that subjects, to some degree, improved over time, which is consistent with 

previous studies (Armstrong et al., 2014, 2015; Helton et al., 2014; Schmidlin & Jones, 

2016). Like Experiment 1, subjects completed the NASA-TLX after each block. Unlike 

Experiment 1, blocks were sectioned by corner angle as opposed to IDC value. This 

allowed us to assess changes in perceived workload by corner angle. In general, 

perceived workload increased as the corner angle increased, but the increase was 

statistically significant for all six scales between 45° corners and 135° corners. Again, 

these results are consistent with findings that perceived workload increases as the task 

demands increase (Shao et al., 2020).  

One of the main goals of Experiment 2 was to test the efficacy of the cornering 

law. We wanted to determine whether the cornering law could account for differences in 
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corner angle and path ratios. Given the significant differences in cornering time 

depending on the angle of the negotiating corner, it was expected that we would need to 

adapt the equation for quantifying the task difficulty. First, to evaluate how well the IDC 

could predict cornering time, according to Pastel et al.’s (2007) cornering law, we 

aggregated the data by IDC value. We found that the data fit the model well, despite being 

aggregated across the various corner angles and path ratios. Consistent with our findings 

from Experiment 1, we discovered that adding the quadratic IDC term to the model 

improved the model fit. The findings were similar when split by corner angle. Overall, 

our results indicated that for each IDC value, cornering times varied depending on the 

corner angle, and fitting the models separately for each corner angle sufficiently captured 

average cornering time performance. We maintain, however, that the relationship 

between cornering time and the IDC value is likely quadratic; this becomes more evident 

as the corner angle increases (see Figure 43). 

Despite finding that the original cornering law equation could model cornering 

time for each corner angle separately, we investigated further how the IDC equation could 

be adapted so that the aggregated cornering times could be fit to a single model. Our 

findings revealed that the distance travelled varied drastically for 135° corners. When the 

path widths were wider, subjects were able to cut off more than 10 meters of the corner’s 

amplitude, resulting in a significant reduction in cornering times. When the path widths 

were narrower, subjects were unable to negotiate the corner with a single turning 

movement, resulting in longer cornering times. Although all corner amplitudes were the 

same, subjects travelled much shorter distances by cutting the corners for wider paths and 
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much longer distances by reversing and repositioning the vehicle for narrower paths. For 

the 45° and 90 corners, there was much less cutting off of the corner. To adapt the IDC 

equation, we incorporated the amplitude of the corner, with an adjustment specifically for 

corners greater than 90° that includes the effective amplitude of the corner. This value 

decreases when the subject cuts off the corner and increases when the subject makes 

corrective movements to negotiate the corner. Ultimately, we were able to adapt the IDC 

equation to incorporate changes in corner angle and path width. While our adapted IDC fit 

our data well, it is unclear the extent to which the equation will generalize to other 

datasets. 

 Experiment 2 tested several assumptions of Pastel et al.’s (2007) cornering law. 

We found that corner angle, path ratio, and IDC value influenced cornering time and 

cornering success. Although we found that the cornering law could account for these 

differences to some extent, we developed a new method for quantifying the IDC that 

captures differences in path widths and corner angles without the need to fit separate 

models. In conclusion, we demonstrated that numerous factors that influence 

teleoperation performance and that the relationship between cornering time and the 

number of collisions is not clear cut.  
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CHAPTER IV 

GENERAL DISCUSSION 

Previously, researchers have shown that cornering time could be modeled as a 

function of an index of difficulty specifically for corners (e.g., Pastel et al., 2007). This 

relationship is referred to as the cornering law and is similar to Fitts’ law. The cornering 

index of difficulty, denoted IDC, is based on information theory and has been shown to 

adequately model average cornering times under various conditions, such as time delays 

and lighting conditions (Cross et al., 2018). Given the cornering law’s recent 

development, there exist various gaps in our understanding of how outside factors might 

contribute to an operator’s cornering performance.  

In Experiment 1, cornering performance (i.e., cornering time and probability of 

successful cornering) was evaluated as a function of instruction method. We aimed to 

understand the relationship among instruction method, cornering time, and collision 

frequency. Results indicated that as the IDC value increased, cornering time increased, 

and the probability of negotiating the corner without collision decreased. Furthermore, 

we found that subjects instructed to focus on accuracy had longer cornering times and 

fewer collisions than subjects instructed to focus on speed.  

In Experiment 2, cornering performance was evaluated for different corner angles 

and path ratios. Up until now, the cornering law had only been tested for 90° corners and 

for corners whose current path width and oncoming path width were equivalent. 

Therefore, the aim of Experiment 2 was to evaluate how well the cornering law could 

model cornering time for various changes in the corner’s geometry. Results indicated that 
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as the IDC value increased, cornering time increased, and the probability of negotiating 

the corner without collision decreased. Additionally, cornering time and collision count 

increased as the corner angle increased and as the path ratio decreased.  

Contributions 

Teleoperation continues to be widely leveraged across a variety of domains 

spanning from USAR to entertainment and gaming. We believe the present experiments 

provide additional context for understanding how teleoperation performance is influenced 

by instruction method, corner angle, and the path widths of a given corner. In Experiment 

1, we not only showed how teleoperation performance differs depending on instruction 

method, but we also provided a method for applying the IDe to a cornering task. To our 

knowledge, this is the first study to do so. In Experiment 2, we showed that corner angle 

and path ratio are relevant factors of corner geometry that have significant impacts on 

teleoperation performance.  

Across both experiments, we provided additional support for the cornering law. 

We demonstrated that average cornering time can be modeled as a function of the IDC, 

even when the data are aggregated across instruction method, corner angle, and path 

ratio. In other words, the cornering law sufficiently quantifies average cornering time for 

corners of varying geometries. To appropriately model cornering time for the different 

corner angles, a separate model can be fit for each corner angle. To plot the average 

cornering times for each path ratio and corner angle combination using a single model, 

we developed a new method for quantifying the IDC (see Equations 9 and 12). Results 
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indicated that the models for both equations fit the data well, accounting for over 95% of 

the variance in aggregated cornering times.  

Consistent with much of the previous literature (Helton et al., 2014; Schmidlin & 

Jones, 2016), both experiments yielded some evidence of a calibration effect, showing 

that teleoperation performance does improve with time. In addition to cornering time, we 

also evaluated the probability of successful cornering. Consistent with previous findings 

(Chan et al., 2019; Pastel et al., 2007), we found that collisions were much more likely to 

occur as the IDC value increased. We also noted that there were nearly three times the 

number of unique collisions in the speed condition compared to the accuracy condition. It 

was not surprising, therefore, that the probability of successful cornering was 

significantly greater when subjects were told to focus on accuracy. As expected, we 

found the subjects were more likely to negotiate 45° corners successfully than 90° and 

135° corners.  

One of the main contributions provided in this series of experiments is the 

empirical evaluation of collision locations. In both experiments, the majority of collisions 

occurred on the inside of the corner, indicating that subjects frequently attempted to cut 

the corner. This was a consistent trend across the different instruction methods, corner 

angles, and path ratios. The extent to which subjects could cut the corner increased as the 

corner angle increased. Therefore, there was much more of the corner to cut off for 135° 

corners than for 45° corners. This explains why for the widest turns, cornering times 

were, on average, much shorter for the 135° corners than for the 45° corners. There were 

also several instances where the back of the virtual vehicle collided with the outside of 
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the corner; this was most evident for 135° corners. This type of collision suggests that 

subjects reversed the vehicle to make corrective movements. 

 As expected, we found that perceived workload increased as the IDC value 

increased and as the corner angle increased. For scenarios where operators may be 

negotiating these more difficult corners, it may be beneficial to utilize more autonomous 

robots that may be able to alleviate some of the cognitive burden associated with 

teleoperation. 

Teleoperation Design Recommendations 

 From both experiments, we were able to highlight aspects of the teleoperation 

experience that worked well and those that could be improved. For instance, we provided 

various information about the vehicle in a directly perceivable manner. Placement of the 

camera above the vehicle, with the vehicle’s hood in view, allowed subjects to perceive 

the width of the vehicle. Additionally, the textured walls allowed subjects to leverage 

optic flow in the environment, thus allowing them to perceive their rate of self-motion 

and heading direction. Despite being able to view the hood of the vehicle and 

environment periphery, subjects struggled to perceive the length of the vehicle, as evident 

in the frequent collisions that occurred on the sides of the vehicle. Therefore, providing 

an additional perspective such as a rear-facing camera or overhead camera may be 

beneficial to collision avoidance. In addition to the initial practice phase, where subjects 

were provided the opportunity to calibrate to the vehicle dimensions and maneuverability, 

subjects were also provided auditory feedback when a collision occurred. We believe 

these two factors helped mitigate the total number of collisions. Based on our findings, 
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we derived recommendations for the development and use of teleoperated robots and 

their respective input devices These recommendations can be found in Table 21.  

 

Table 21 

Teleoperation Recommendations 

Teleoperation Factor Recommendation(s) 

Camera • Place camera so hood of the vehicle is in view 

• Provide an additional rear camera viewpoint and/or an overhead 

viewpoint 

• Place camera above ground level (i.e., closer to one’s eye-height) 

Note: Providing too many viewpoints may yield cognitive tunneling 

Field of View • Provide a wide field of view that allows the operator to perceive 

the optic flow in the periphery 

Collision Feedback • Provide feedback when a collision occurs 

Latency & Time Delays • Minimize any latency or time delay where possible 

• Provide operators the opportunity to calibrate to latency and/or 

time delays 

Operator Experience • Provide operator the opportunity to calibrate to the vehicle 

dimensions, the vehicle’s maneuverability, the video feed quality, 

and the input device (i.e., let operators practice) 

 

 

Future Research 

The studies presented here provide a thorough investigation of how instruction 

method and corner geometry influence teleoperation performance. Throughout the 

process of data collection and analysis, we identified various avenues for additional 

research. First, we believe that future research should evaluate cornering time for more 

IDC values to understand better the relationship. As we highlighted here, there was some 
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evidence to suggest that the relationship between task difficulty and cornering time is 

quadratic. Future research should be aimed at disentangling this relationship.  

 In Experiment 2, we manipulated the path ratio by changing the width of the 

current path width for a given oncoming path width. We found that cornering times were 

shorter when the current path was wider than the oncoming path (i.e., when turning onto 

a narrower path). While we believe this to be because the wider current path afforded 

more space for a larger turning radius, future research should further evaluate the effect 

of path ratio by manipulating the width of the oncoming path width. This will help 

increase our understanding of how the relationship between the current and oncoming 

path widths influences teleoperation performance. 

 Across both experiments, we noted that the relationship between cornering time 

and collision count was somewhat ambiguous. We believe this to be in large part because 

of the virtual vehicle’s mechanics and maneuverability. If the vehicle travels at a slower 

speed, particularly if it can only travel at a slow speed, it is less likely for the vehicle to 

crash. If the vehicle’s maximum speed is extremely high, then there may be more 

opportunities for a collision. Other relevant vehicle factors are the vehicle’s dimensions, 

its weight, and its turning radius, as mentioned above. While we did not manipulate any 

of these variables, we believe they are relevant to an operator’s teleoperation 

performance. Additional research should empirically test how these various factors 

influence both cornering time and collision frequency so that we can understand better 

how these two variables interact.  
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 Furthermore, the effect of gaming experience was weak and somewhat ambiguous 

in both experiments. While it is possible that gaming experience is not strongly 

associated with teleoperation performance, it is also possible that our quantification of 

gaming experience was flawed. Perhaps a better method for quantifying gaming 

experience would be whether individuals had any experience instead of whether they had 

limited or moderate experience. In other words, it is likely that any amount of gaming 

experience is associated with improved teleoperation performance relative to zero gaming 

experience. It might be useful for future research to better quantify subjects’ gaming 

experience and investigate differences between novice and expert video gamers.  

Lastly, we believe that further research is needed to evaluate teleoperation 

performance under a variety of environmental conditions. Although conducting these two 

experiments virtually allowed us to easily track cornering time, collision count, collision 

locations, and collision durations, there was minimal ecological validity. The two 

experiments presented above were more akin to gaming than to USAR. As such, we 

believe future research should evaluate the cornering law under more realistic settings 

and quantify the effects of fog, rain, uneven terrain, and so forth on teleoperation 

performance. In addition, future research should quantify how contextual variables (e.g., 

sleep deprivation, adrenaline) influence teleoperation performance on cornering tasks.  

Conclusion 

The findings from these experiments highlight how teleoperation performance is 

impacted by instruction method and corner geometry. We showed that despite differences 

in cornering times across the various experimental conditions, Pastel et al.’s (2007) 
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cornering law could adequately model cornering time as a function of IDC value. We also 

demonstrated that the IDe could be applied to a cornering task, which has not been done 

prior to this work. Ultimately, the results from the experiments presented here emphasize 

that operator’s ability to perform successfully in a teleoperation setting depends on 

variety of factors, and we present a new equation for computing the IDC that can capture 

the influence of path ratio and corner angle.   
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APPENDIX A 

 

Rating Scale Definitions for NASA-TLX 

 

Title Endpoints Description 

Mental Demand Low/High 

How much mental and perceptual activity was 

required (e.g., thinking, deciding, calculating, 

remembering, looking, searching, etc.)? Was the task 

easy or demanding, simple or complex, exacting or 

forgiving? 

Physical Demand Low/High 

How much physical activity was required (e.g., 

pushing, pulling, turning, controlling, activating, 

etc.)? Was the task easy or demanding, slow or 

brisk, slack or strenuous, restful or laborious? 

Temporal 

Demand 
Low/High 

How much time pressure did you feel due to the rate 

or pace at which the tasks or task elements occurred? 

Was the pace slow and leisurely or rapid and frantic? 

Effort Low/High 

How hard did you have to work (mentally and 

physically) to accomplish your level of 

performance? 

Performance Good/Poor 

How successful do you think you were in 

accomplishing the goals of the task set by the 

experimenter (or yourself)? How satisfied were you 

with your performance in accomplishing these 

goals? 

Frustration Level Low/High 

How insecure, discouraged, irritated, stressed and 

annoyed versus secure, gratified, content, relaxed 

and complacent did you feel during the task? 
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APPENDIX B 

NASA-TLX Scale  

 

 
  



115 

 

APPENDIX C 

 

Post-Experiment Questions 

 

1. How often do you play video games (via console, PC)? 

o Very often (5-7 times a week)   

o Fairly often (3-4 times a week)  

o Often (1-2 times a week)   

o Not very often (1-2 times a month)   

o Almost never (Less than 1 time per month)    

o Never   

 

 

2. Gender 

o Male 

o Female   

o Non-binary 

o Prefer to self-describe:___________________________   

 

3. Age 

________________________________________________________________ 

 

4. What do you think this experiment was testing? 

________________________________________________________________ 

 

5. Was there anything in particular you really liked or disliked about this 

experiment? 

________________________________________________________________ 

 

6. Do you have any other questions/comments? 

________________________________________________________________ 
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APPENDIX D 

 

Virtual Driving Courses 

 

 
 

Note: Light blue corners correspond to left turns, and dark blue corners correspond to 

right turns. The star represents the end of the driving course where the virtual alarm 

system was located. 
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