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Abstract

In this dissertation we study the algebraic properties of ideals constructed from graphs. We

use algebraic techniques to study the PMU Placement Problem from electrical engineering which

asks for optimal placement of sensors, called PMUs, in an electrical power system. Motivated by

algebraic and geometric considerations, we characterize the trees for which all minimal PMU covers

have the same size. Additionally, we investigate the power edge ideal of Moore, Rogers, and Sather-

Wagstaff which identifies the PMU covers of a power system like the edge ideal of a graph identifies

the vertex covers. We characterize the trees for which the power edge ideal is unmixed, and we show

that such ideals are complete intersections. We also characterize the coronas for which the power

edge ideal is unmixed, and we show that such ideals are Cohen-Macaulay. For non-trees, we exhibit

graphs whose power edge ideals distinguish between the complete intersection, Gorenstein, Cohen-

Macaulay, and unmixed properties. We also provide Macaulay2 code that computes the minimal

PMU covers and the power edge ideal of a graph.
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Chapter 1

Introduction

Monomial ideals in polynomial rings are well-studied in commutative algebra. Recently,

ideals have been constructed from combinatorial objects. A big idea in this area is to use algebraic

information from the ideals to understand the combinatorial objects and vice versa. This originates in

works of Hochster [13], Reisner [25], and Stanley [27],[28]. The work in this disseration specifically

builds from ideas due to Villarreal [29],[30], and Moore, Rogers and Sather-Wagstaff [21]. The

literature in this area is extensive. The interested reader may wish to consult the texts of Miller and

Sturmfels [20], Bruns and Herzog [3], and Herzog and Hibi [12].

For a graph G with vertex set {x1, . . . , xd}, one may consider an associated polynomial

ring R = k[x1, . . . , xd] with d variables over a field k. From the graph, one may define several

monomial ideals in R, including the edge ideal, the closed neighborhood ideal, the power edge ideal,

and the double domination ideal, each of which provides information about the graph G. While

edge ideals and closed neighborhood ideals have been well studied, the power edge ideal and double

domination ideals have not; they are the main objects of study in this dissertation. Our main

priority in investigating these constructions is to understand when they are Cohen-Macaulay, which

is typically quite hard to detect. So it is useful to have combinatorial ways to detect it.

1.1 Edge Ideals

In 1990, Villarreal [29] defined the edge ideal IG of a graph G to be the ideal generated by

the edges of G within its associated polynomial ring R = k[x1, . . . , xd]. (See Section 2.2 below for
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precise definitions.) Villarreal discovered a number of connections between the structure of a graph

and the algebraic properties of its edge ideal. Some of these connections concern the minimal vertex

covers of the graph. Given a graph G = (V,E), a vertex cover of G is a set V ′ ⊂ V such that every

edge in E is incident to at least one member of V ′. A vertex cover of G is minimal if it does not

properly contain another vertex of G. We say that G is unmixed with respect to vertex covers (also

known as well covered [24]) if every minimal vertex cover of G has the same size.

A fundamental connection between the edge ideal IG and its corresponding graph G can be

found by taking the irredundant irreducible decomposition of an edge ideal IG = J1 ∩ · · · ∩ Jm and

noticing that the generators of each Ji form a minimal vertex cover of G. From this fact, Villarreal

showed that if the ring R/IG is Cohen-Macaulay (see Section 2.3), then G is unmixed with respect

to vertex covers. Villarreal went on to characterize the unmixed trees with respect to vertex covers

and prove that their corresponding edge ideals are Cohen-Macaulay.

Theoreom 1.1.1 ([29, Proposition 2.2]). If a graph G is the K1-corona (i.e., the “suspension” or

“whiskering”) of a subgraph G′ (see Definition 2.2.6), then IG is Cohen-Macaulay.

Example 1.1.2. Let

G′ = x1

x3 x2

and G = x1 x4

x6 x3 x2 x5

Note that G is the K1-corona of G′. Thus, IG is Cohen-Macaulay by Theorem 1.1.1. However, the

condition in Theorem 1.1.1 is not necessary as IG′ is also Cohen-Macaulay (See Example 2.3.19).

For trees, however, Villarreal shows that these conditions are in fact equivalent:

Theoreom 1.1.3 ([29, Theorem 2.4 and Corollary 2.5]). If IT is the edge ideal of a tree T , then

the following are equivalent:

(i) IT is unmixed, i.e, T is well covered.

(ii) IT is Cohen-Macaulay.

(iii) Every vertex of T with degree at least 2 is adjacent to exactly one vertex of degree at most 1.

(iv) T is K1 or the K1-corona of a subtree T ′.

2



Example 1.1.4. Let

T = x1 x2 x3

x4 x5 x6

and T ′ = x1 x2 x3

Note that T is the K1-corona of T ′. Thus, IT is Cohen-Macaulay by Theorem 1.1.3.

These ideas are the topic of Chapter 2 of this dissertation. They form significant motivation

for the subsequent new results.

1.2 Power Edge Ideals

Chapters 3 and 4 of this dissertation are devoted to a more recent algebraic construction

called the power edge ideal. This notion was motivated by a desire to use ideals like those from

Section 1.1 to understand the Phasor Measurement Unit (PMU) placement problem in electrical

engineering. See [1],[2],[9],[17],[18], and [23] for more about PMU placements. This problem asks for

the optimal placements of PMUs in an electrical power system to monitor the system for outages. If

we consider a simple graph G = (V,E) to be the representation of an electrical power system where

the edges represent power lines and the vertices represent buses, we can define a PMU cover of G

to be a set P ⊂ V such that the voltage and current of every power line and bus is monitored by a

PMU placed on the buses in P .

In 2015, Moore, Rogers, and Sather-Wagstaff [21] defined the power edge ideal IPG ( R =

k[x1, . . . , xd] of a graph G to be the intersection of the ideals generated by the minimal PMU covers

of G. This definition is analogous to the edge ideal being the intersection of ideals generated by the

minimal vertex covers of G.

Our main result in Chapter 3 is the characterization of the unmixed trees with respect to

PMU covers together with the proof that the power edge ideal of an unmixed tree is Cohen-Macaulay.

This result is similar to Theorem 1.1.3 for edge ideals and vertex covers.

Theoreom 1.2.1 (See Theorem 3.1.1). The following conditions on a tree T are equivalent:

(i) IPT is unmixed, i.e., all minimal PMU covers of T have the same size;

(ii) IPT is Cohen-Macaulay;

3



(iii) IPT is a complete intersection;

(iv) T is an edge-linked tree (see Definition 3.5.2);

(v) Every vertex of T with degree at least 3 is adjacent to exactly two vertices of degree at most 2.

The material in Chapter 3 is joint work with James Gossell, Alan Hahn, Frank Moore, and

Keri Sather-Wagstaff.

Our main result in Chapter 4 is the characterization of the unmixed K1-coronas with respect

to PMU covers. This result is similar to Theorem 1.1.3 for edge ideals and vertex covers.

Theoreom 1.2.2 (See Theorem 4.2.10). Let H be a graph such that H is the K1-corona of a

subgraph H ′. The following conditions are equivalent:

(i) IPH is unmixed.

(ii) IPH is Cohen-Macaualay.

(iii) For every spanning tree T of H, IPT is unmixed.

(iv) H ′ is K1, C4, or the K1-corona of a subgraph H ′′.

1.3 Closed Neighborhood and Double Domination Ideals

In 2020, Sharifan and Moradi [26] introduced the closed neighborhood ideal, NG, of a graph

to be the ideal whose generators are the closed neighborhoods of the vertices of G. As with edge

ideals, this is related to the well-studied problem of graph domination (see [10] and [11]). Given a

graph G = (V,E), a dominating set is a set D ⊂ V such that every vertex in G is either in D or

adjacent to at least one member in D. A dominating set is minimal if it does not properly contain

another dominating set.

In 2021, Honeycutt and Sather-Wagstaff [14] showed that the closed neighborhood ideal

NG is equal to the intersection of ideals generated by the minimal dominating sets of G. They

gave the following result regarding the closed neighborhood ideal of K1-coronas which is similar to

Theorem 1.1.1.
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Theoreom 1.3.1 ([14, Proposition 3.7]). If H is a K1-corona of G, then the closed neighborhood

ideal of H is a complete intersection.

In addition they characterized the trees T for which NT is Cohen-Macaulay, the result being

similar to Theorem 1.1.3.

Theoreom 1.3.2 ([14, Theorem 3.12]). If NT is the closed neighborhood ideal of a tree T , then the

following are equivalent:

(i) NT is unmixed.

(ii) NT is Cohen-Macaulay.

(iii) NT is a complete intersection.

(iv) Every vertex of T with degree at least two is adjacent to exactly one vertex of degree at most 1.

(v) T is K1 or the K1-corona of a subtree T ′.

In Chapter 5 we define the double domination ideal of a simple graph. Our goal is to gener-

ate Cohen-Macaulay rings from unmixed graphs with respect to double domination like the closed

neighborhood ideal. Double domination is another well-studied graph domination problem (see [10]

and [11]). Given a graph G = (V,E), a double dominating set is a set D ⊂ V such that for every

vertex x ∈ V (G), the closed neighborhood NG(x) has at least two elements in D.

In Chapter 5, we define the double domination ideal NG,2 ( R = k[x1, . . . , xd] of a graph

G and we show that NG,2 is equal to the intersection of the ideals generated by the minimal double

dominating sets of G. We also give a conjecture for a characterization of the trees T for which NT,2

is Cohen-Macaulay.

The material in Chapter 5 is joint work with Benjamin Bailey, Tyler Catoe, Aayahna Her-

bert, Brett Hungar, Yueran Ma, Xiangni Peng, Sam Pierce, Daniel Tedeschi, David Webber, and

Jiawen Zhang.
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Chapter 2

Background

This chapter consists of background material for use in the subsequent chapters, including

technical definitions and theorems, with examples, that are needed for Theorem 1.1.3. In Section 2.1,

we will give some background information on monomial ideals and we will describe how monomial

ideals can be decomposed and written as the intersection of irreducible monomial ideals. In Section

2.2, we will define the edge ideal of a graph. Then we explore the connection between vertex covers

of a simple graph and the irreducible decomposition of its edge ideal. Finally, in Section 2.3, we give

background to understand Cohen-Macaulay rings.

Throughout this chapter let k be a field and let R be a commutative ring with identity.

2.1 Monomial Ideals

The ideals from Chapter 1 are examples of monomial ideals. In this section we will see that

every monomial ideal can be decomposed into an intersection of irreducible monomial ideals. We

begin by introducing monomial ideals.

Definition 2.1.1 ([21, Definition 1.1.1]). A monomial in the elements x1, . . . , xd ∈ R is an element of

the form xn1
1 · · ·x

nd

d ∈ R where n1, . . . , nd ∈ N = {0, 1, 2, . . .}. For short, we write n = (n1 . . . , nd) ∈

Nd and xn = xn1
1 · · ·x

nd

d

Example 2.1.2. If R = k[x1, x2], then 1 = x01x
0
2, x1 = x11x

0
2, x2 = x01x

1
2, x1x2, x21x

3
2 are monomials

in x1, x2.
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Here are the main algebraic objects we investigate in this dissertation.

Definition 2.1.3 ([21, Definition 1.1.1]). Set R = k[x1, . . . , xd]. A monomial ideal in R is an ideal

of R that can be generated by monomials in x1, . . . , xd.

Example 2.1.4. The following are standard examples of monomial ideals:

(a) I = (x21, x1x2, x
2
2)R is a monomial ideal in R = k[x1, x2].

(b) J = (x1x2, x1x3, x1x4, x3x4)R is a monomial ideal in R = k[x1, x2, x3, x4].

Notation 2.1.5. Set R = k[x1, . . . , xd]. For each monomial ideal I ⊆ R, let JIK denote the set of

all monomials contained in I.

Next, we catalog a few useful results for later use.

Lemma 2.1.6 ([21, Lemma 1.1.3]). Set R = k[x1, . . . , xd]. If I is a monomial ideal of R , then

I = (JIK)R.

Theoreom 2.1.7 ([21, Theorem 1.1.4]). Set R = k[x1, . . . , xd]. Let I,J be monomial ideals of R.

(a) I ⊆ J if and only if JIK ⊆ JJK.

(b) I = J if and only if JIK = JJK.

The next result shows that the ideal membership problem is easily solved for monomial ide-

als.

Theoreom 2.1.8 ([21, Theorem 1.1.9]). Set R = k[x1, . . . , xd]. Let f, f1, . . . , fm be monomials in

R. Then f ∈ (f1, . . . , fm)R if and only if f ∈ fiR for some i.

Example 2.1.9. Let R = k[x1, x2, x3, x4] and J = (x1x2, x1x3, x1x4, x3x4)R. Note that x2x
2
3x

3
4 ∈ J

since x2x
2
3x

3
4 = x2x3x

2
4 · x3x4. However, x2x3 /∈ J since it is not a multiple of x1x2, x1x3, x1x4,

or x3x4.

The next result is a version of Hilbert’s basis theorem for monomial ideals.

Theoreom 2.1.10 (Dickson’s Lemma, [21, Theorem 1.3.1]). Set R = k[x1, . . . , xd]. Then every

monomial ideal of R is finitely generated; moreover, it is generated by a finite set of monomials.

7



Example 2.1.11. Consider the ideal I = {f ∈ R = k[x1, x2] | constant term is 0} ⊆ R. We have

I = (x1, x2)R.

Definition 2.1.12 ([21, Definition 1.3.4]). Let I be a monomial ideal of R = k[x1, . . . , xd]. Let

f1, . . . , fm ∈ JIK such that I = (f1, . . . , fm)R. The list f1, . . . , fm is an irredundant monomial

generating sequence for I if each i ∈ {1, . . . ,m} satisfies (f1, . . . , fi−1, fi+1, . . . , fm)R 6= I, that is

(f1, . . . , fi−1, fi+1, . . . , fm)R ( I. The list is a redundant monomial generating sequence for I if it is

not irredundant, that is, if there exists an index i such that I = (f1, . . . , fi−1, fi+1, . . . , fm)R

The following result will help us to determine when a monomial generating sequence is

irredundant.

Proposition 2.1.13 ([21, Proposition 1.3.5]). Set R = k[x1, . . . , xd]. Let I be a monomial ideal of

R, and let f1, . . . , fm ∈ JIK such that I = (f1, . . . , fm)R. The following conditions are equivalent:

(i) fi is not a monomial multiple of fj, i.e.,fi /∈ (fj)R, whenever i 6= j.

(ii) each i ∈ {1, . . . ,m} satisfies fi 6= (f1, . . . , fi−1, fi+1, . . . , fm)R.

(iii) the generating sequence f1, . . . , fm is irredundant.

Example 2.1.14. Let R = k[x1, x2, x3, x4] and consider the ideal I = (x1x2, x1x3, x1x2x3)R =

(x1x2, x1x3)R ⊆ R. Note that x1x2, x1x3, x1x2x3 is a redundant monomial generating sequence for

I since x1x2|x1x2x3. However, x1x2, x1x3 is an irredundant monomial generating sequence for I

since x1x2 6 |x1x3 and x1x3 6 |x1x2.

Theoreom 2.1.15 ([21, Theorem 1.3.6]). Set R = k[x1, . . . , xd] and let I be a monomial ideal of R.

(a) Every monomial generating sequence set S for I contains an irredundant monomial generating

sequence for I.

(b) The ideal I has an irredundant monomial generating sequence.

(c) Irredundant monomial generating sequences are unique up to reordering.

Here is an algorithm for finding an irredundant monomial generating sequence.

8



Algorithm 2.1.16. ([21, Algorithm 1.3.7]) Set R = k[x1, . . . , xd]. Fix monomials f1, . . . , fm ∈ JRK

and set J = (f1, . . . , fm)R. We assume m ≥ 1.

Step 1. Check whether the generating sequence f1, . . . , fm is irredundant using Proposition 2.1.13.

Step 1a. If all distinct indices i and j satisfy fj /∈ (fi)R, then the generating sequence is irredundant;

in this case the algorithm terminates.

Step 1b. If there exists indices i and j such that i 6= j and fj ∈ (fi)R, then the generating sequence

is redundant; in this case, continue to Step 2.

Step 2. Remove a generator that causes a redundancy in the generating sequence. By assumption,

there exists indices i and j such that i 6= j and fj ∈ (fi)R. Remove fj from the list, and apply

Step 1 to the new list of monomials f1, . . . , fj−1, fj+1, . . . , fm.

Since they are fundamental for this work, we next survey some material about intersections

of monomial ideals.

Theoreom 2.1.17 ([21, Theorem 2.1.1]). Set R = k[x1, . . . , xd]. If I1, . . . , In are monomial ideals

of R, then the intersection I1 ∩ · · · ∩ In is generated by the set of monomials in I1 ∩ · · · ∩ In. In

particular, the ideal I1 ∩ · · · ∩ In is a monomial ideal of R and JI1 ∩ · · · ∩ InK = JI1K ∩ · · · ∩ JInK.

Next we show how to identify generating sequences of intersections of monomial ideals,

which then shows us how to decompose arbitrary monomial ideals.

Definition 2.1.18 ([21, Definition 2.1.3]). Set R = k[x1, . . . , xd]. Let f = xm and g = xn for some

m, n ∈ Nd. For i = 1, . . . , d set pi = max{mi, ni}. Define the least common multiple or LCM of f

and g to be the monomial lcm(f, g) = Xp .

Example 2.1.19. Let R = k[x1, x2, x3]. Then lcm(x21x
3
2, x2x

5
3) = lcm(x21x

3
2x

0
3, x

0
1x

1
2x

5
3) = x21x

3
2x

5
3.

Theoreom 2.1.20 ([21, Theorem 2.1.5]). Set R = k[x1, . . . , xd]. Suppose I is generated by the set

of monomials {f1, . . . , fm} and J is generated by the set of monomials {g1, . . . , gn}. Then I ∩ J is

generated by the set of monomials {lcm(fi, gj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Example 2.1.21. Let R = k[x1, x2, x3].

(x1, x2)R ∩ (x2, x3)R = (lcm(x1, x2), lcm(x1, x3), lcm(x2, x2), lcm(x2, x3))R

= (x1x2, x1x3, x2, x2x3)R

= (x1x3, x2)R

9



Example 2.1.22. In order to decompose ideals, we reverse the process by iteratively “splitting

generators” and removing redundancies. Let R = k[x1, x2, x3].

(x1x2, x1x3, x2x3)R = (x1, x1x3, x2x3)R ∩ (x2, x1x3, x2x3)R

= (x1, x2x3)R ∩ (x2, x1x3)R

= (x1, x2)R ∩ (x1, x3)R ∩ (x2, x1x3)R

= (x1, x2)R ∩ (x1, x3)R ∩ (x2, x1)R ∩ (x2, x3)R

= (x1, x2)R ∩ (x1, x3)R ∩ (x2, x3)R

Irreducible monomial ideals defined next, are the indivisible elements in our decompositions.

Definition 2.1.23 ([21, Definition 3.1.1]). Set R = k[x1, . . . , xd]. A monomial ideal J ( R is

reducible if there are monomial ideals J1, J2 6= J such that J = J1 ∩ J2. A monomial ideal J ( R is

irreducible if it is not reducible.

Example 2.1.24.

Set R = k[x1, x2]. The monomial ideal J = (x31, x
2
1x2, x

3
2)R is reducible since we have:

J = (x21, x
3
2)R ∩ (x31, x2)R.

In addition, x21 ∈ (x21, x
3
2)R\J so J 6= (x21, x

3
2)R. Also, x2 ∈ (x31, x2)\J , so J 6= (x31, x2).

On the other hand, the ideals (x21, x
3
2)R and (x31, x2)R are irreducible by the next result.

Theoreom 2.1.25 ([21, Theorem 3.1.4 and 3.2.4]). Let R = k[x1, . . . , xd], and let J be a non-

zero monomial ideal of R. Then J is irreducible if and only if it is generated by pure powers, i.e.

J = (xe1i1 , . . . , x
en
in

)R for some positive integers i1, . . . , in, e1, . . . , en with 1 ≤ i1 < · · · < in ≤ d.

Definition 2.1.26 ([21, Definition 3.4.1]). Let J ( R be an ideal. An irreducible decomposition of

J is an expression J =
⋂n
i=1 Ji with n ≥ 1, where each Ji is irreducible.

An irreducible decomposition J =
⋂n
i=1 Ji is redundant if there exists an index i′ such that

J =
⋂
i 6=i′ Ji. An irreducible decomposition is irredundant if it is not redundant, that is, if for all

indices i′ one has J 6=
⋂
i 6=i′ Ji.

It turns out that every monomial ideal has an irreducible decomposition and that irredun-

dant irreducible decompositions are unique up to reordering.
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Theoreom 2.1.27 ([21, Theorem 3.3.3]). Set R = k[x1, . . . , xd]. Every monomial ideal J ( R has

an irreducible decomposition.

Theoreom 2.1.28 ([21, Theorem 3.3.8]). Set R = k[x1, . . . , xd]. Let J be a monomial ideal in R

with irredundant irreducible decompositions J =
⋂n
i=1 Ji =

⋂m
h=1 Ih. Then m = n and there is a

permutation σ ∈ Sn such that Jt = Iσ(t) for t = 1, . . . , n.

We conclude this section by defining an important notion for monomial ideals based on the

irreducible ideals in these irreducible decompositions.

Definition 2.1.29 ([21, Definition 5.3.5]). Let R = k[x1, . . . , xd] and J ( R be a monomial ideal

with an irredundant irreducible decomposition J =
⋂n
i=1 Ji. We say that J is unmixed if every

irreducible ideal Ji has the same number of generators. We say that J is mixed if it is not unmixed

Example 2.1.30. The monomial ideal

(x1x2, x2x3) = (x1, x3)R ∩ (x2)R ( R = k[x1, x2, x3]

is mixed.

Example 2.1.31. The monomial ideal

(x1x2, x1x3, x2x3)R = (x1, x2)R ∩ (x1, x3)R ∩ (x2, x3)R ( R = k[x1, x2, x3]

is unmixed.

2.2 Vertex Covers and Edge Ideals

In this section, we will survey the connections between vertex covers of a simple graph and

the irreducible decomposition of the edge ideal of the graph.

Definition 2.2.1 ([21, Definition 4.2.1]). (a) Let V = {x1, . . . , xd} be a finite set. A graph with

vertex set V is an ordered pair G = (V,E) where E is a set of unordered pairs xixj with xi 6= xj .

(Since the pairs are unordered we have xixj = xjxi.) The set E is the edge set of G. Given an

edge e = xixj , the endpoints of e are the vertices xi and xj .

11



(b) Two distinct vertices xi, xj ∈ V are adjacent in G if there is an edge e ∈ E with endpoints

xi and xj , that is if xixj ∈ E. In this case, we also say that the edge xixj is incident to its

endpoints xi and xj .

Remark 2.2.2. Our definition implies that our graphs are finite (have finite vertex sets), simple

(have no loops and no multiple edges) and undirected.

We continue by giving some standard classes of graphs.

Example 2.2.3. (a) The 1-path or path with 1 edge, denoted P1 can be represented as follows:

P1 = x1 x2 .

The 2-path or path with 2 edges, denoted P2 can be represented as follows:

P2 = x1 x2 x3 .

The 3-path or path with 3 edges, denoted P3 can be represented as follows:

P3 = x1 x2 x3 x4 .

In general, the n-path or path with n edges, denoted Pn, can be represented as follows:

Pn = x1 x2 · · · xn+1 .

(b) We denote the n-cycles as Cn. For example, we have the following.

x1 x2

x4 x3

C4 = C5 =

x1

x2x5

x4 x3

C3 =

x1

x2x3

x1

x2x3

12



(c) We denote the complete graph on n vertices as Kn. For example, we have the following.

x1 x2

x4 x3

K4 = K5 =

x1

x2x5

x4 x3

(d) We denote the complete bipartite graph between m vertices and n vertices as Km,n. For example,

we have the following.

x1

x3

x2

x4
K2,3 = K3,3 =

x4

x5

x1

x2

x6

K1,3 = x1 x3

x2

x4 x5 x3

Definition 2.2.4. A star, Sk, is the complete bipartite graph K1,k. That is, Sk is a tree with one

“internal” node and k leaves.

Example 2.2.5. Here is the graph of S5.

x6

x5

x3x4

x1

x2

Here we define a certain class of graphs that will be studied throughout this dissertation.

Definition 2.2.6. [7] Let G be a finite simple graph with vertex set V = {x1, . . . , xd}. The K1-

corona of G (also known as the suspension or whiskering of G) is a new graph G ◦K1 with vertex

set V (G ◦K1) = {x1, . . . , xd, y1, . . . , yd} and edge set E(G ◦K1) = E(G) ∪ {x1y1, x2y2, . . . , xdyd}.
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Example 2.2.7. Here are some examples of K1-coronas:

x1 x2

x4 x3

K4 ◦K1 =C3 ◦K1 =

x1

x2x3 x2x3

x1

y1

y2y3 y4

y2y1

y3

x1

y3

x2 x3

y1 y2

P2 ◦K1 =

We will now introduce edge ideals and vertex covers.

Definition 2.2.8 ([21, Definition 4.2.2]). The edge ideal associated to G is the ideal in R =

k[x1, . . . , xd] generated by the edges of G, i.e.,

I(G) = IG = 〈xixj | xixj is an edge in G〉 .

Example 2.2.9. Here we will give some examples of edge ideals.

(a) The edge ideal of P2 is

IP2
= 〈x1x2, x2x3〉 .

(b) The edge ideal of C3 is

IC3
= 〈x1x2, x1x3, x2x3〉 .

(c) The edge ideal of P2 ◦K1 is

IP2◦K1 = 〈x1x2, x2x3, x1y1, x2y2, x3y3〉 .

(d) The edge ideal of C3 ◦K1 is

IC3◦K1
= 〈x1x2, x1x3, x2x3, x1y1, x2y2, x3y3〉 .
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Definition 2.2.10 ([21, Definition 4.3.1]). A vertex cover of a graph G = (V,E) is a subset W ⊆ V

such that every edge is incident to an element in W . A minimal vertex cover of G is a vertex cover

W such that for all w ∈W , the set W\{w} is not a vertex cover of G.

Example 2.2.11. Here we will give some examples of minimal vertex covers.

(a) We consider the 2-path P2:

P2 = x1 x2 x3 .

Since {x1, x3} covers all edges of P2, it is a vertex cover of P2. Moreover, it is minimal since

neither {x1} nor {x3} is a vertex cover of P2. We also note that {x2} is a minimal vertex cover

of P2. It is straightforward to show that these are the only minimal vertex covers of P2.

(b) We consider the K1-corona of P2.

x1

y3

x2 x3

y1 y2

P2 ◦K1 =

Note that since {x1, x2, x3} covers all edges of P2◦K1, it is a vertex cover. Moreover, it is minimal

since {x1, x2},{x1, x3}, and {x2, x3} are not vertex covers. It is straightforward to show that

the other minimal vertex covers are {x1, x2, y3},{x1, y2, x3},{y1, x2, x3}, and {y1, x2, y3}.

(c) We consider C3.

x1

x2 x3

C3 =

Note that since {x1, x2} covers all edges of C3, it is a vertex cover. Moreover, it is minimal

since neither {x1} nor {x2} is a vertex cover. The other minimal vertex covers are {x1, x3} and

{x2, x3}.

We now give the fundamental connection between edge ideals and vertex covers.

Theoreom 2.2.12 ([21, Theorem 4.3.6]). If G is a finite simple graph, then the edge ideal can be
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decomposed as

I(G) =
⋂
W⊆V

W a vertex
cover

〈W 〉 =
⋂
W⊆V

W a minimal
vertex cover

〈W 〉 ,

where the first intersection is taken over all vertex covers of G and the second intersection is taken

over all minimal vertex covers of G. The second decomposition is also irredundant.

Example 2.2.13. We decompose some edge ideals as in Example 2.1.22.

(a) For P2, we have:

I(P2) = 〈x1x2, x2x3〉

= 〈x1, x2x3〉 ∩ 〈x2, x2x3〉

= 〈x1, x2x3〉 ∩ 〈x2〉

= 〈x1, x2〉 ∩ 〈x1, x3〉 ∩ 〈x2〉

= 〈x1, x3〉 ∩ 〈x2〉 .

Recall from Example 2.2.11(a) that the minimal vertex covers of P2 are {x1, x3} and {x2}.

(b) For C3, we have:

I(C3) = 〈x1x2, x1x3, x2x3〉

= 〈x1, x1x3, x2x3〉 ∩ 〈x2, x1x3, x2x3〉

= 〈x1, x2x3〉 ∩ 〈x2, x1x3〉

= 〈x1, x2〉 ∩ 〈x1, x3〉 ∩ 〈x2, x1x3〉

= 〈x1, x2〉 ∩ 〈x1, x3〉 ∩ 〈x2, x1〉 ∩ 〈x2, x3〉

= 〈x1, x2〉 ∩ 〈x1, x3〉 ∩ 〈x2, x3〉 .

Recall from Example 2.2.11(c) that the minimal vertex covers of C3 are {x1, x2},{x1, x3} and {x2, x3}.
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(c) For P2 ◦K1, we have:

I (P2 ◦K1) = 〈x1x2, x2x3, x1y1, x2y2, x3y3〉

= 〈x1, x2x3, x1y1, x2y2, x3y3〉 ∩ 〈x2, x2x3, x1y1, x2y2, x3y3〉

= 〈x1, x2x3, x2y2, x3y3〉 ∩ 〈x2, x1y1, x3y3〉

= 〈x1, x2, x2y2, x3y3〉 ∩ 〈x1, x3, x2y2, x3y3〉 ∩ 〈x2, x1y1, x3y3〉

= 〈x1, x2, x3y3〉 ∩ 〈x1, x3, x2y2〉 ∩ 〈x2, x1y1, x3y3〉

= 〈x1, x2, x3〉 ∩ 〈x1, x2, y3〉 ∩ 〈x1, x3, x2y2〉 ∩ 〈x2, x1y1, x3y3〉

= 〈x1, x2, x3〉 ∩ 〈x1, x2, y3〉 ∩ 〈x1, x3, x2〉 ∩ 〈x1, x3, y2〉 ∩ 〈x2, x1y1, v3w3〉

= 〈x1, x2, x3〉 ∩ 〈x1, x2, y3〉 ∩ 〈x1, y2, x3〉 ∩ 〈x2, x1y1, x3y3〉

= 〈x1, x2, x3〉 ∩ 〈x1, x2, y3〉 ∩ 〈x1, y2, x3〉 ∩ 〈x2, x1, x3y3〉 ∩ 〈x2, y1, x3y3〉

= 〈x1, x2, x3〉 ∩ 〈x1, x2, y3〉 ∩ 〈x1, y2, x3〉 ∩ 〈x2, x1, x3〉 ∩ 〈x2, x1, y3〉 ∩ 〈x2, y1, x3y3〉

= 〈x1, x2, x3〉 ∩ 〈x1, x2, y3〉 ∩ 〈x1, y2, x3〉 ∩ 〈x2, y1, x3y3〉

= 〈x1, x2, x3〉 ∩ 〈x1, x2, y3〉 ∩ 〈x1, y2, x3〉 ∩ 〈x2, y1, x3〉 ∩ 〈x2, y1, y3〉

= 〈x1, x2, x3〉 ∩ 〈x1, x2, y3〉 ∩ 〈x1, y2, x3〉 ∩ 〈y1, x2, x3〉 ∩ 〈y1, x2, y3〉 .

Recall from Example 2.2.11(b) that the minimal vertex covers of P2 ◦K1 are:

{x1, x2, x3}, {x1, x2, y3}, {x1, y2, x3}, {y1, x2, x3}, and {y1, x2, y3}.

A theme in this dissertation is characterizing graphs that are well dominated with respect

to different “covers”. Here we will define what it means for a graph to be well covered. This notion

will extend to other “covers”, i.e., PMU covers, dominating sets and double dominating sets.

Definition 2.2.14 ([21, Definition 5.3.5]). We say that a simple graph is well covered if every

minimal vertex cover has the same cardinality. We say that G is not well covered if not all minimal

vertex covers have the same cardinality.

Example 2.2.15. The path P2 is not well covered because its minimal vertex covers have different

cardinality, that is |{x1, x3}| 6= |{x2}|.

Example 2.2.16. The cycle C3 is well covered because its minimal vertex covers have the same
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cardinality, that is |{x1, x2}| = |{x1, x3}| = |{x2, x3}|.

2.3 Cohen-Macaulayness: Dimension and Depth

For commutative rings, the property of Cohen-Macaulayness is stronger than unmixedness

(see Theorem 2.3.18) and is important in commutative algebra, algebraic geometry and topology. We

will introduce Cohen-Macaulay rings without using homological techniques (see [3] for a homological

treatment).

Definition 2.3.1 ([21, Definition 5.1.1]). Let R be a commutative ring with identity. An ideal

I ⊆ R is prime if I 6= R and for all a, b ∈ R, if ab ∈ I, then a ∈ I or b ∈ I.

Example 2.3.2. Here are a few examples:

(a) The ideal (2)Z = 2Z = {. . . ,−4,−2, 0, 2, 4, . . .} is prime.

(b) The ideal (6)Z = 6Z = {. . . ,−6, 0, 6, 12, 18, . . .} is not prime since 2 · 3 = 6 ∈ (6)Z but 2 /∈ (6)Z

and 3 /∈ (6)Z.

(c) The ideal (2)Q = Q is not prime.

(d) The ideal (x1)Q[x1, x2, x3] is prime in R = Q[x1, x2, x3] because R/(x1)R ∼= Q[x2, x3] is an

integral domain.

We continue by defining the dimension of a ring.

Definition 2.3.3 ([21, Definition 5.1.1]). Let R be a commutative ring with identity. The Krull

dimension of R, denoted dim(R), is the supremum of the length of chains of prime ideals in R:

dim(R) = sup{n ≥ 0 | there is a chain of prime ideals p0 ( · · · ( pn in R}.

Example 2.3.4. Here are some examples:

(a) dim(Z) = 1 since (0)Z︸︷︷︸
p0

( (2)Z︸︷︷︸
p1

. Note: In general, if R is a PID, but not a field, then dim(R) = 1.
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(b) dim(Q[x1, x2, x3]) = 3 since the following is a chain of maximal length:

0︸︷︷︸
p0

( (x1)Q[x1, x2, x3]︸ ︷︷ ︸
p1

( (x1, x2)Q[x1, x2, x3]︸ ︷︷ ︸
p2

( (x1, x2, x3)Q[x1, x2, x3]︸ ︷︷ ︸
p3

.

(c) dim(Q) = 0 since 0 is the longest chain of prime ideals in Q. Note: in general, if R is a field,

then dim(R) = 0.

Here is a result that will allow us to compute the Krull dimension for our examples more eas-

ily.

Theoreom 2.3.5. [[21, Theorem 5.1.2]] Set R = k[x1, . . . , xd]. Let I be a monomial ideal in R with

an irreducible decomposition I =

m⋂
i=1

Ji. Then dim(R/I) = d− n where n is the smallest number of

generators needed for one of the Ji.

Example 2.3.6. Here are some examples:

(a) Set R = Q[x1, x2, x3] and set I = (x1x2x3)R. Note that

I = (x1x2x3)R = ( x1︸︷︷︸
1

)R ∩ ( x2︸︷︷︸
1

)R ∩ ( x3︸︷︷︸
1

)R.

By Theorem 2.3.5, dim(R/I) = 3− 1 = 2.

(b) Set R = Q[x1, x2, x3] and set I = (x1x2, x1x3, x2x3)R. Note that

I = (x1x2, x1x3, x2x3)R = (x1, x2︸ ︷︷ ︸
2

)R ∩ (x1, x3︸ ︷︷ ︸
2

)R ∩ (x2, x3︸ ︷︷ ︸
2

)R.

By Theorem 2.3.5, dim(R/I) = 3− 2 = 1.

(c) Set R = Q[x1, x2, x3, x4] and set I = (x1x2x4, x2x3x4)R. Note that

I = (x1x2x4, x2x3x4)R = (x1, x3︸ ︷︷ ︸
2

)R ∩ ( x2︸︷︷︸
1

)R ∩ ( x4︸︷︷︸
1

)R.

By Theorem 2.3.5, dim(R/I) = 4− 1 = 3.

We now work to define the depth of a quotient of a polynomial ring by a homogeneous ideal.
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Definition 2.3.7 ([21, Definition 5.3.6]). Let R be a non-zero commutative ring with identity and

let g ∈ R. Then g is R-regular if the map R
g−→ R given by p 7→ gp is injective and not surjective.

Example 2.3.8. Here are some examples:

1. Let R = Q[x1, x2, x3] Then g = x1 is R-regular. Note that any non-zero, non-unit will work.

2. Let R = Q[x1, x2, x3] and let I = (x1x2x3)R

(a) The polynomial x1 is not regular for R/I because 0 6= x2x3 + I ∈ R/I and 0 = x1(x2x3 +

I) ∈ R/I which implies that the map R
x1−→ R given by p 7→ x1p is not injective. Note

that there are no monomials in R that are regular on R/I.

(b) The polynomial x3 − x2 is regular on R/I. First, we show that R/I
x3−x2−−−−→ R/I is

injective. Let r ∈ R such that (x3 − x2)(r + I) = 0. We need to show that r ∈ I.

Note that

(x3 − x2)(r + I) = 0 =⇒ (x3 − x2)r ∈ I = (x1x2x3)R.

From the unique factorization property in R (which uses the fact that Q is a field), it

follows that r ∈ (x1x2x3)R = I. To show R/I
x3−x2−−−−→ R/I is not surjective, we argue as

follows where the first isomorphism is by the third isomorphism theorem:

(R/I)/[(x3 − x2)(R/I)] ∼= R/(I + (x3 − x2)R)

= Q[x1, x2, x3]/(x1x2x3, x3 − x2)R

∼=︸︷︷︸
x2=x3

Q[x1, x2]/(x1x
2
2)Q[x1, x2]

6= 0.

(c) One can also show that x2 − x1 is regular for R/(I + (x3 − x2)R) using similar reasoning

as above and the fact that

R/((I + (x3 − x2)R) + (x2 − x1)R) ∼= Q[x1, x2]/(x1x
2
2, x2 − x1)

∼= Q[x1]/(x31)Q[x1]

6= 0.
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3. Let R = Q[x1, x2, x3] and I = (x1x2, x1x3, x2x3)R.

(a) The polynomial x1 is not regular for R/I since x1x2 ∈ I but x2 /∈ I.

(b) The polynomial x2 − x1 is not regular for R/I since (x2 − x1)x3 ∈ I but x3 /∈ I.

(c) x1 − x2 − x3 is regular for R/I, by a straightforward linear algebra argument.

Definition 2.3.9 ([21, Definition 5.3.10]). Set R = k[x1, . . . , xd]. Consider an ideal I ( R. Then a

sequence g1, . . . , gm ∈ R is regular for R/I if it satisfies the following conditions:

1. The polynomial g1 is regular for R/I.

2. For i = 2, . . . ,m the polynomial gi is regular for R/(I + (g1, . . . , gi−1)R).

Example 2.3.10. Here are some examples:

1. The sequence x3 − x2, x2 − x1 is regular for Q[x1, x2, x3]/(x1x2x3)R by Example 2.3.8.2.

2. The sequence x1 − x2 − x3 is regular for Q[x1, x2, x3]/(x1x2, x1x3, x2x3) by Example 2.3.8.3.

Definition 2.3.11 ([21, Definition A.2.6]). A homogeneous polynomial is a polynomial whose non-

zero terms all have the same degree.

Example 2.3.12. The polynomial x5 + 3x4y + 7x3y2 is homogeneous of degree 5.

Definition 2.3.13 ([21, Definition 5.3.18]). Let R = k[x1, . . . , xd], and let I ( R be an ideal of R

generated by homogeneous polynomials. A homogeneous regular sequence g1, . . . , gm is maximal if

it cannot be extended to a longer homogeneous regular sequence on R/I.

A theorem of Rees shows that the following definition is independent of the choice of the

maximal regular sequence.

Definition 2.3.14 ([21, Definition 5.3.21]). Let R = k[x1, . . . , xd] and let I ( R be an ideal of R

generated by homogeneous polynomials. The length of a maximal homogenous regular sequence on

R/I is the depth of R/I, denoted depth(R/I).

Theoreom 2.3.15 ([21, Lemma 5.3.12]). Let R = k[x1, . . . , xd]. Let I ( R be an ideal of R

generated by homogeneous polynomials. Then

depth(R/I) ≤ dim(R/I).
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We can finally define the Cohen-Macaulay property.

Definition 2.3.16 ([21, Definition 5.3.13]). Set R = k[x1, . . . , xd]. Let I ( R be an ideal of R gen-

erated by homogeneous polynomials. We say that R is Cohen-Macaulay if dim(R/I) = depth(R/I).

Example 2.3.17. Here are some examples:

1. Consider R = k[x1, x2, x3] and I = (x1x2x3)R. From Example 2.3.10.1, the sequence x3 −

x2, x2 − x1 is homogeneous and regular on R/I which implies depth(R/I) ≥ 2. Also, from

Example 2.3.6(a) we have that dim(R/I) = 2. By Theorem 2.3.15, we have that depth(R/I) ≤

2. Putting everything together, we conclude that depth(R/I) = 2 = dim(R/I). Thus, R/I is

Cohen-Macaulay.

2. Consider R = k[x1, x2, x3] and I = (x1x2, x1x3, x2x3)R. From Example 2.3.10.2, we have that

x1 − x2 − x3 is a homogeneous regular sequence which implies depth(R/I) ≥ 1. Also, from

Example 2.3.6(b) we have that dim(R/I) = 1. By Theorem 2.3.15, we have that depth(R/I) ≤

1. Putting everything together, we conclude that depth(R/I) = 1 = dim(R/I). Thus, R/I is

Cohen-Macaulay.

The Cohen-Macaulay property is stronger than the unmixed property.

Theoreom 2.3.18 ([21, Theorem 5.3.16]). Let R = k[x1, . . . , xd] and J ( R be a monomial ideal

in R. If R/J is Cohen-Macaulay, then J is unmixed.

Example 2.3.19. The ideal (x1x2, x1x3, x2x3)R ( k[x1, x2, x3] is unmixed, and as we have seen,

the ring k[x1, x2, x3]/(x1x2, x1x3, x2x3)R is Cohen-Macaulay.

Example 2.3.20. The ideal (x1x2, x2x3)R = (x1, x3)R ∩ (x2)R ( k[x1, x2, x3] is mixed. It is

straightforward to show that the ring k[x1, x2, x3]/(x1x2, x2x3)R is not Cohen-Macaulay.

Example 2.3.21. The ideal (x1x2, x2x3, x3x4, x1x4)R = (x1, x3)R ∩ (x2, x4)R ( k[x1, x2, x3, x4]

is unmixed. However, the ring k[x1, x2, x3, x4]/(x1x2, x2x3, x3x4, x1x4)R is not Cohen-Macaulay;

indeed it is straightforward to show that k[x1, x2, x3, x4]/(x1x2, x2x3, x3x4, x1x4)R has depth 1 and

dimension 2.

We conclude this section with a notion that is stronger than Cohen-Macaulayness.
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Definition 2.3.22. Let R = k[x1, . . . , xd] and let J = (p1, . . . , pn) ( R be generated by homo-

geneous polynomials p1, . . . , pn. We say that R/J is a complete intersection if p1, . . . , pn is an

R-regular sequence.

Example 2.3.23. Neither k[x1, x2, x3]/I(P2) nor k[x1, x2, x3]/I(C3) are complete intersections be-

cause I(P2) and I(C3) are not generated by regular sequences.

Example 2.3.24. Let R = k[x1, . . . , xd]/(x1 · · ·xd1 , xd1+1 · · ·xd2 , . . . , xdn−1+1 · · ·xdn) where 1 ≤

d1 < · · · < dn ≤ d. Then R is a complete intersection.

Theoreom 2.3.25 ([3, Theorem 2.1.3, Corollary 2.1.8, and Corollary 2.2.6]). If a ring R is a

complete intersection, then R is Cohen-Macaulay.

The main result of Chapter 3 (see Theorem 3.1.1) includes conditions under which the

converse of Theorem 2.3.25 holds. This converse fails in general, as k[x1, x2, x3]/I(C3) is Cohen-

Macaulay but not a complete intersection by Examples 2.3.17 and 2.3.23.
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Chapter 3

Unmixed Trees with respect to

PMU Covers

3.1 Introduction

The work in this chapter is motivated by the PMU Placement Problem in electrical en-

gineering. This asks for the optimal placements of sensors, called PMUs, in an electrical power

system to monitor the system for outages. (Definitions are in Section 3.2 below.) This problem

asks how to place PMUs so that the entire system is monitored, but, because of the cost, to do so

optimally. Haynes, Hedetniemi, Hedetniemi, and Henning [9] show that this problem (which they

call the Power Dominating Set (PDS) Problem) is NP-complete. See the papers of Baldwin, Mili,

Boisen, and Adapa [1], Brueni and Heath [2], Kavasseri and Nag [17], Kavasseri and Srinivasan [18],

and Phadke [23] for more about PMU placements.

We approach this problem using tools and ideas from combinatorial commutative algebra.

Specifically, if G models a power system, then Moore, Rogers, and Sather-Wagstaff [21] introduce

the power edge ideal IPG of G, a monomial ideal in a polynomial ring which decomposes in terms of

the minimal PMU covers of the graph. A standard problem in combinatorial commutative algebra

is to determine when such a monomial ideal is Cohen-Macaulay. Since Cohen-Macaulay ideals are

unmixed, this suggests that one should identify the power systems for which all minimal PMU covers

have the same size. From an engineering perspective, this is reasonable: if a system is built so that
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all minimal PMU covers have the same size, then finding the smallest PMU covers will be easier.

The main result of this chapter solves the problem of identifying the trees for which all

minimal PMU covers have the same size. We prove this result over the course of Section 3.5; see

Theorems 3.5.4, 3.5.10, and 3.5.11.

Theoreom 3.1.1. The following conditions on a tree T are equivalent:

(i) IPT is unmixed, i.e., all minimal PMU covers of T have the same size;

(ii) IPT is Cohen-Macaulay;

(iii) IPT is a complete intersection;

(iv) T is an edge linked tree (see Definition 3.5.2);

(v) every vertex of T with degree at least 3 is adjacent to exactly two vertices of degree at most 2.

See Theorems 3.5.9 and 3.5.10 for computations of the minimal PMU covers and power edge

ideals in general for edge linked trees. At this time, we do not know how to describe the generators

for the power edge ideal of an arbitrary graph.

For power edge ideals of trees, Theorem 3.1.1 shows that the complete intersection, Goren-

stein, Cohen-Macaulay, and unmixed properties are equivalent. In Section 3.2, we show that this

fails for non-trees by exhibiting graphs whose power edge ideals distinguish between these properties.

3.2 Definitions, Macaulay2 Code, and Examples

In this section, we begin with relevant definitions, then we provide Macaulay2 code for com-

puting the minimal PMU covers and the power edge ideal of a given graph. It uses Francisco, Hoefel,

and Van Tuyl’s EdgeIdeals package [6]. Then we exhibit examples of power edge ideals that dis-

tinguish between the complete intersection, Gorenstein, Cohen-Macaulay, and unmixed properties.

In particular, these examples show that the tree assumption in Theorem 3.1.1 is necessary.

Definitions and Initial Examples

In an electrical power system, a bus is a substation where (transmission) lines meet. Each

line connects two buses. Throughout this chapter, we model electrical power systems as graphs
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where vertices and edges in a graph correspond to buses and lines in a power system. For the rest

of the chapter, we use the terms “graph”, “vertex”, and “edge” in place of “power system”, “bus”,

and “line”, respectively.

A phasor measurement unit (PMU) is a device placed at a vertex of G to monitor the voltage

at the vertex and the current in all edges incident to the vertex. (The name refers to the fact that

PMUs measure voltage phasors and current phasors.) A PMU placement is a set of vertices where

PMUs are placed, i.e., a PMU placement is a subset of V (G). The following laws determine whether

the voltage at a vertex or the current in an edge in a graph is observed by a PMU placement.

Incidence Law Every vertex containing a PMU is observable, and every edge incident to a vertex

containing a PMU is observable.

Ohm’s Law Any edge incident to two observable vertices is observable, and every vertex incident to an

observable edge is observable.

Kirchhoff’s Current Law If a vertex vi is incident to k > 1 edges, k− 1 of which are observable, than

all k of these edges are observable.

Note that the name Incidence Law is non-standard.

A PMU cover is a PMU placement which observes the entire graph, i.e., every edge and

every vertex. A PMU cover is minimal if it does not properly contain another PMU cover.

Example 3.2.1. In the following graph we place PMUs as indicated.

vPMU
1 v2 v3 v4 v5

vPMU
6 v7 v8 v9 v10

The Incidence Law guarantees the observability of the following edges and vertices.

vPMU
1

obs
vobs2 v3 v4 v5

vPMU
6

obs
vobs7 v8 v9 v10
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Ohm’s Law shows that another edge is observable

vPMU
1

obs
vobs2

obs

v3 v4 v5

vPMU
6

obs
vobs7 v8 v9 v10

and Kirchhoff’s Current Law applies to make two more edges observable.

vPMU
1

obs
vobs2

obs

obs
v3 v4 v5

vPMU
6

obs
vobs7

obs
v8 v9 v10

Continuing in this way, one checks that this PMU placement observes the entire graph, i.e., it is a

PMU cover. Moreover, if either vertex is removed from this PMU cover, then the resulting set is

not a PMU cover, so the set {v1, v6} is a minimal PMU cover of this graph. It is straightforward

(though time consuming) to show that the complete list of minimal PMU covers of the above graph

is

{v1, v6}, {v1, v7}, {v1, v8}, {v1, v9}, {v2, v6}, {v2, v7}, {v2, v8}, {v2, v9},

{v2, v10}, {v3, v6}, {v3, v7}, {v3, v8}, {v3, v9}, {v3, v10}, {v4, v6}, {v4, v7},

{v4, v8}, {v4, v9}, {v4, v10}, {v5, v7}, {v5, v8}, {v5, v9}, {v5, v10}.

Such computations are simplified using our Macaulay2 [8] code which is described below in this

section; see Example 3.2.8. Note that the sets {v1, v10} and {v5, v6} are not PMU covers.

Here is an algorithm of Haynes, et al. [9, p. 520] containing notation for use throughout the

sequel.

Algorithm 3.2.2. Let G be a graph and P a PMU placement on G. The paper [9] gives an

algorithm to determine the sets of observable vertices CP (G) and edges FP (G). We will state that

algorithm with slightly different notation:

Set C0
P (G) = P and set F 0

P (G) to be the set of all edges incident to a vertex in P .

For each postive integer i starting at i = 1, define CiP (G) to be the set of all vertices in G

incident to an edge in F i−1P (G) and F iP to be the set of all edges x− y in G such that either
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1. x, y ∈ CiP (G) or

2. x ∈ CiP (G) has degree greater than 1 and all other edges incident to x are in F i−1P (G)

3. y ∈ CiP (G) has degree greater than 1 and all other edges incident to y are in F i−1P (G)

Finally, note that each CiP (G) ⊂ Ci+1
P (G) and F iP (G) ⊂ F i+1

P (G) for all i ∈ {0, 1, . . .} Denote

CP (G) =
⋃∞
i=1 C

i
P (G) and FP (G) =

⋃∞
i=1 F

i
P (G). Note that (CP (G), FP (G)) is the set of vertices

and edges of G observable by P .

Now we are ready for our algebraic notions.

Definition 3.2.3. Let the vertex set of G be V = {v1, . . . , vd}, and set R = k[X1, . . . , Xd] where k

is a field. For each subset V ′ ⊆ V , consider the ideal PV ′ = 〈Xi | vi ∈ V ′〉 of R. The power edge

ideal of G is

IPG =
⋂
V ′

PV ′

where the intersection is taken over all PMU covers V ′ of G, equivalently, over all minimal PMU

covers V ′ of G.

Example 3.2.4. For the graph of Example 3.2.1, one can use the list of minimal PMU covers found

there to show by definition that the power edge ideal is

IPG = 〈X6X7X8X9X10, X1X2X3X4X5,

X1X2X3X4X7X8X9X10, X2X3X4X5X6X7X8X9〉.

As with minimal PMU covers, our Macaulay2 code below computes power edge ideals; see Exam-

ple 3.2.8.

Example 3.2.5. Here is a tree satisfying the equivalent conditions of Theorem 3.1.1 (condition (v)

may be the easiest to check), where the vertices of degree at least 3 are red.

v1,1 v1,2 v1,3 v1,4 v1,5 v1,6

v2,1 v2,2 v2,3 v2,4

v3,1 v3,2 v3,3 v3,4 v3,5 v3,6 v3,7

v4,1 v4,2 v4,3 v4,4 v4,5
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One checks readily from the definitions that the minimal PMU covers of this tree are exactly the

sets of the form {v1,a, v2,b, v3,c, v4,d} and the power edge ideal of this tree is the ideal

IPG =

6⋂
a=1

4⋂
b=1

7⋂
c=1

5⋂
d=1

〈X1,a, X2,b, X3,c, X4,d〉

= 〈X1,1 · · ·X1,6, X2,1 · · ·X2,4, X3,1 · · ·X3,7, X4,1 · · ·X4,5〉.

In words, the minimal PMU covers are obtained by choosing one vertex from each horizontal path,

and the generators of IPG are the products of the variables from the horizontal paths.

Macaulay2 Code and Further Examples

The following Macaulay2 code is based on the algorithm in Definition 3.2.2. See also Re-

mark 3.2.7 below.

Code 3.2.6. For Example 3.2.8 below, the following code is stored in the file PMU.m2.

loadPackage "EdgeIdeals"

ohmClosure = method()

ohmClosure (Graph, List, List) := (G, C, F) -> (

newC := unique (C | flatten F);

newF := unique(F | select(subsets(newC, 2), p -> member(p, edges G)));

(reverse sort newC, reverse sort newF)

)

kirchhoffClosure = method()

kirchhoffClosure (Graph, List, List) := (G, C, F) -> (

newF := F;

for v in C do (

incidentToV := select(edges G, e -> member(v,e));

if #incidentToV > 1 and #select(F, e -> member(v,e)) ==
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(#incidentToV - 1) then newF = unique (newF | incidentToV);

);

(reverse sort C, reverse sort newF)

)

observedVerticesEdges = method()

observedVerticesEdges (Graph, List) := (G,C) -> (

oldC := C;

oldF := {};

newC := C;

newF := select(edges G, e -> any(C, v -> member(v,e)));

while oldC != newC or oldF != newF do (

oldC = newC;

oldF = newF;

(newC,newF) = ohmClosure(G,newC,newF);

(newC,newF) = kirchhoffClosure(G,newC,newF);

);

(newC,newF)

)

pmuCoversHelper = method()

pmuCoversHelper (Graph, List) := (G,C) -> (

(obsVert,obsEdge) := observedVerticesEdges(G,C);

if obsVert == vertices G then return {C};

newVerts := select(vertices G, v’ -> not member(v’,C) and

(any(select(edges G, e -> member(v’,e)), f -> not member(f,obsEdge))

or not member(v’, obsVert)));

flatten for v in newVerts list (

newC := reverse sort (C | {v});

unique pmuCoversHelper(G,newC)

)
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)

pmuCovers = method()

pmuCovers Graph := G -> (

rawPMUCovers := unique pmuCoversHelper(G,{});

-- now need to select those that are minimal wrt inclusion

select(rawPMUCovers, pmu -> #select(rawPMUCovers, pmu’ ->

isSubset(pmu’,pmu)) == 1)

)

powerEdgeIdeal = method()

powerEdgeIdeal Graph := G -> (

pmuCovs := pmuCovers G;

intersect apply(pmuCovs, cov -> ideal cov)

)

Here is a discussion of some aspects of the above code.

Remark 3.2.7. The ohmClosure method takes as input a graph, a list of observable vertices,

and a list of observable edges; it then adds the new vertices and edges that are observable by

Ohm’s Law. The kirchhoffClosure method works similarly using Kirchhoff’s Current Law. The

observedVerticesEdges method takes as input a graph and a PMU placement, and it outputs the

lists of observable vertices and edges obtained by an application of the Incidence Law followed by

repeated application of ohmClosure and kirchhoffClosure.

The pmuCoversHelper method takes as input a graph G and a list C of vertices. This method

uses a divide-and-conquer algorithm to find a list of PMU covers that contain C. In practice, it is

applied with C={} the empty list; in this case, the method returns a list of PMU covers of G that

contains all the minimal ones as follows:

Step 1. For each vertex v not in C, create a PMU cover candidate newC by adding v to C.

Step 2. If newC is a PMU cover of G, return the set newC; else, recursively apply Step 1 to newC.
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This description is not entirely faithful to our code. In Step 1, we do not create a new PMU cover

candidate for every v not in C: we do not use v to create a new PMU cover candidate if v is observed

by C and all edges incident to v are also observed by C. We do this because placing a PMU at v does

not change the observable edges or vertices. This tweak seems to improve run time by a factor of

10-20.

Example 3.2.8. Here we show how the code above can verify the conclusions of Examples 3.2.1

and 3.2.4, and we show that the power edge ideal in that example is not Cohen-Macaulay over

Q. In particular, it provides a power edge ideal that is unmixed but not Cohen-Macaulay. More

counterexamples will be given in Chapter 6.

i1 : load "PMU.m2"

i2 : R = QQ[x_1..x_10];

i3 : G = graph(R, {x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_5,x_6*x_7,x_7*x_8,x_8*x_9,

x_9*x_10,x_2*x_7,x_4*x_9});

i4 : pmuCovers G

o4 = {{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x },

1 6 1 7 1 8 1 9 2 6 2 7 2 8

-----------------------------------------------------------------------

{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x },

2 9 2 10 3 6 3 7 3 8 3 9 3 10

-----------------------------------------------------------------------

{x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x }, {x , x },

4 6 4 7 4 8 4 9 4 10 5 7 5 8

-----------------------------------------------------------------------

{x , x }, {x , x }}

5 9 5 10
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o4 : List

i5 : IPG = powerEdgeIdeal G

o5 = ideal (x x x x x , x x x x x , x x x x x x x x , x x x x x x x x )

6 7 8 9 10 1 2 3 4 5 1 2 3 4 7 8 9 10 2 3 4 5 6 7 8 9

o5 : Ideal of R

i6 : isCM(hyperGraph IPG)

o6 = false

3.3 PMU Covers and Associated Sets

This section consists of combinatorial results about PMU covers, for use in our algebraic

results in Section 3.5. We begin with the following.

Definition 3.3.1. Let G be a simple graph, P a PMU cover of G and v ∈ P . We say v is a minimal

vertex of P if P − {v} is not a PMU cover of G. We define Pmin ⊂ P to be all minimal vertices of

P .

Proposition 3.3.2. Let G be a simple graph, P a PMU cover of G and v ∈ P . The following are

true.

1. P is minimal if and only if P = Pmin

2. If v ∈ Pmin and deg(v) = 1 then its edge va is not in FP−{v}(G).

3. If v ∈ Pmin and deg(v) ≥ 2. Then there exist at least two edges incident to v not in FP−{v}(G).

Proof. Proof of (1)

( =⇒ ) By definition
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(⇐= ) Proving the contrapositive, suppose P is not minimal, meaning there exists a proper

subset P ′ ⊂ P that is a PMU cover, and let p ∈ P −P ′. Since P ′ is a PMU cover and P ′ ⊂ P −{p},

P − {p} is a PMU cover and so p /∈ Pmin.

Proof of (2)

By way of contradiction, suppose va is in F iP−{v}(G) for some i ≥ 0. Then F 0
P (G) =

F 0
P−{v}(G) ∪ {va} ⊂ F iP−{v}(G) and since v ∈ Ci+1

P−{v}(G), C0
P (G) ⊂ Ci+1

P−{v}(G) which means

F jP (G) ⊂ F i+jP−{v}(G) and CjP (G) ⊂ Ci+j+1
P−{v}(G) for all j ≥ 0. Therefore FP (G) ⊂ FP−{v}(G) and

CP (G) ⊂ CP−{v}(G) and since P is a PMU cover of G, P − {v} is a PMU cover of G which

contradicts the minimality of v in P .

Proof of (3)

By way of contradiction, suppose that at most one edge incident to v is not in FP−{v}(G).

Then v ∈ CP−{v}(G) and by Kirkoff’s Law, every edge incident to v is in F iP−{v}(G) for some

i. So just as in the proof of (2), F 0
P (G) ⊂ F iP−{v}(G) and C0

P (G) ⊂ Ci+1
P−{v}(G) which means

F jP (G) ⊂ F i+jP−{v}(G) and CjP (G) ⊂ Ci+j+1
P−{v}(G) for all j ≥ 0. Therefore FP (G) ⊂ FP−{v}(G) and

CP (G) ⊂ CP−{v}(G) and since P is a PMU cover of G, P − {v} is a PMU cover of G which

contradicts the minimality of v in P .

Definition 3.3.3. Let G be a simple graph and P a PMU placement on G. We say an edge ab is

directed away from a towards b if for some integer i, ab ∈ F iP (G) but b /∈ CiP (G).

Not every edge will be directed. Furthermore, note that by Algorithm 3.2.2, it is impossible

for ab to be directed towards b and away from b.

Proposition 3.3.4. Let G be a simple graph, P a PMU placement of G and v a vertex not in P

but in CP (G). The following are true.

1. There is at least one edge directed towards v.

2. There is at most one edge directed away from v.

Proof. Proof of (1)

Let i be the smallest integer for which v ∈ Ci+1
P (G). Since v /∈ P , by Algorithm 3.2.2, there

is some edge va ∈ F iP (G) and thus va is directed towards v.

Proof of (2)
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By way of contradiction, suppose there are two edges va and vb directed away from v. In

other words, there exist integers ia and ib such that va ∈ F iaP (G) and vb ∈ F ibP (G) but a /∈ CiaP (G)

and b /∈ CibP (G). This implies that a, b /∈ P and since v /∈ P , we know that va, vb /∈ F 0
P (G).

Set i = min{ia, ib} and without loss of generality, assume ia ≤ ib. Since va ∈ F iaP (G) and a /∈

CiaP (G), by Algorithm 3.2.2, v ∈ CiaP (G) and all other edges incident to v are in F ia−1P (G). So

vb ∈ F ia−1P (G) =⇒ b ∈ CiaP =⇒ b ∈ CibP . This is a contradiction.

Recall that there exists a unique path between any two vertices in a tree.

Definition 3.3.5. Let G be a tree, and ab an edge in G. We define brancha(b) ⊂ G to be the

smallest connected subgraph containing a and all vertices x such that the unique path from a to x

contains ab.

Lemma 3.3.6. Let G be a tree and P a PMU placement observing brancha(b). If ab is directed

towards a, then F iP∩brancha(b)
(G) ∩ brancha(b) = F iP (G) ∩ brancha(b) for all i. In particular, P ∩

brancha(b) observes all of brancha(b) since P observes all of brancha(b).

Proof. Let P ′ = P ∩ brancha(b) and note that F iP ′(G) ∩ brancha(b) ⊂ F iP (G) ∩ brancha(b) for all

i ≥ 0. We induct on i:

Base Case: i = 0: Both F 0
P (G)∩brancha(b) and F 0

P ′(G)∩brancha(b) consist precisely of the

edges in brancha(b) adjacent to a PMU in P ′. Therefore, F 0
P ′(G)∩brancha(b) = F 0

P (G)∩brancha(b).

Inductive Step: i ≥ 1 Suppose F i−1P ′ (G) ∩ brancha(b) = F i−1P (G) ∩ brancha(b). By Algo-

rithm 3.2.2, for every edge xy in F iP (G) ∩ brancha(b) either x, y ∈ CiP (G) or x ∈ CiP (G) has degree

greater than 1 and all other edges incident to x are in F i−1P (G) or y ∈ CiP (G) has degree greater

than 1 and all other edges incident to y are in F i−1P (G). We show that xy ∈ F iP ′(G) by addressing

each case as well as the case that xy = ab:

xy = ab: Since ab is directed towards a and ab ∈ F iP (G), a /∈ CiP (G) and so by Algo-

rithm 3.2.2, b ∈ CiP (G) has degree greater than 1 and all other edges incident to b are in F i−1P (G).

Since we assumed F i−1P ′ (G) ∩ brancha(b) = F i−1P (G) ∩ brancha(b), and all edges incident to b are in

brancha(b), we conclude that b ∈ CiP ′(G) and all edges other that ab incident to b are in F i−1P ′ (G)

and so by Algorithm 3.2.2, xy = ab ∈ F iP ′(G).

xy 6= ab and x, y ∈ CiP (G): By Algorithm 3.2.2, there exist edges wx and yz in F i−1P (G).

Since we assumed F i−1P ′ (G) ∩ brancha(b) = F i−1P (G) ∩ brancha(b) and since wx and yz are in
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brancha(b) (because xy 6= ab), we conclude that x, y ∈ CiP ′(G) and so by Algorithm 3.2.2, xy ∈

F iP ′(G).

xy 6= ab and one of x or y is in CiP (G) and has degree greater than 1 with all other edges

incident to it in F i−1P (G): Without loss of generality, suppose x ∈ CiP (G) has degree greater than

1 and all other edges incident to x are in F i−1P (G). Since we assumed F i−1P ′ (G) ∩ brancha(b) =

F i−1P (G)∩ brancha(b), and all edges incident to x are in brancha(b) (because xy 6= ab), we conclude

that x ∈ CiP ′(G) and all edges other than xy incident to x are in F i−1P ′ (G) and so by Algorithm 3.2.2,

xy ∈ F iP ′(G).

So we have shown that F iP (G) ∩ brancha(b) ⊂ F iP ′(G) ∩ brancha(b) and therefore F iP (G) ∩

brancha(b) ⊂ F iP ′(G) ∩ brancha(b) for all i.

Lemma 3.3.7. Let G be a tree and P a PMU cover of G. If P ′ = P ∩ brancha(b) observes

all of brancha(b) and consists exclusively of degree ≤ 2 vertices, then there exists a PMU cover

Pa = (P − {p}) ∪ {a} for some p ∈ P ′.

Proof. First of all, if a ∈ P , then we just let Pa = (P − {a}) ∪ {a} = P and we are done. Suppose

a /∈ P . Throughout the proof, we will talk about edges being directed with respect to the PMU

placement P ′ = P ∩ brancha(b). Since P ′ observes ab there exists a smallest integer i such that

ab ∈ F iP ′(G). We induct on i and we denote all vertices adjacent to b (other than a) as c1, c2, . . . , cn.

Base case, i = 0: If ab ∈ F 0
P ′(G) then b ∈ C0

P (G) = P since a /∈ P =⇒ a /∈ P ′. Let

Pa = (P − {b}) ∪ {a}. We show Pa is a PMU cover on G. We start with the fact that (P ∪ {a})

is a PMU cover on G. Since b ∈ brancha(b), by our assumption deg(b) ≤ 2. The PMU placement

{a} observes b and both edges incident to b, and so by Proposition 3.3.2, b /∈ (P ∪ {a})min. Thus

Pa = (P − {b}) ∪ {a} is also a PMU cover on G.

Inductive step, i ≥ 1: Suppose i ≥ 1 the above statement is true for i−1. Since ab /∈ F 0
P ′(G),

we know that a, b /∈ P ′. Also, since P ′ observes all of brancha(b) every vertex in brancha(b) not

in P ′ has at least one edge directed towards it by Proposition 3.3.4. Note that a, b, c1, c2, . . . , cn

are all in brancha(b) and a, b /∈ P ′. We will show exactly which edges are directed towards a and b

with respect to P ′.

ab is directed towards a: By Proposition 3.3.4, some edge xa is directed towards a. Suppose

x 6= b. This would imply by Lemma 3.3.6 that xa is observable by P ′ ∩ brancha(x) = ∅ which is

impossible. Therefore ab must be directed towards a with respect to P ′.
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bck is directed towards b for some k ∈ {1, . . . , n}: Since ab is directed away from b, one of

the bck must be directed towards b.

Every cj is observable on branchb(cj): If cj ∈ P ′, cj is observable on branchb(cj). Suppose

cj /∈ P ′ and recall that we have already shown that ab is directed away from b. By Proposition 3.3.4,

at most one edge can be directed away from b. Therefore, bcj cannot be directed toward cj and so

there must be some other vertex adjacent to cj , call it dj , such that cjdj is directed towards cj . By

Lemma 3.3.6, cj is observable by P ′ ∩ branchcj (dj) ⊂ P ′ ∩ branchb(cj).

We now go back to our assumption that ab ∈ F iP ′(G) and since ab is directed towards a,

then a /∈ CiP ′(G). Therefore by Algorithm 3.2.2, b ∈ CiP ′(G) and every edge bcj ∈ F i−1P ′ (G). Since

bck is directed towards b, by Lemma 3.3.6 implies that P ′ ∩ branchb(cj) observes branchb(cj) and

bck ∈ F i−1P ′∩branchb(ck)
(G) since bck ∈ F i−1P ′ (G). Furthermore, P ∩ branchb(ck) consists exclusively

of vertices of degree ≤ 2 since P ∩ branchb(ck) ⊂ P ′ and P ′ consists exclusively of degree ≤ 2.

Therefore, by our inductive hypothesis, there exists a PMU cover Pb = (P − {p}) ∪ {b} for some

p ∈ P ∩branchb(ck). We conclude by showing that Pa = (Pb−{b})∪{a} is a PMU cover on G. Note

that (Pb∪{a}) is a PMU cover on G. We claim that b /∈ (Pb∪{a})min. From above, for every j 6= k,

cj is observable by P ′ ∩ branchb(cj) ⊂ Pa. Also {a} observes ab and b and so by Ohms Law, Pa

observes every bcj for j 6= k. Since Pa observes all but one edge incident to b, by Proposition 3.3.2,

b /∈ (Pa ∪ {b})min and so Pa = (Pb − {b}) ∪ {a} = (P − {p}) ∪ {a} is also a PMU cover on G.

Lemma 3.3.8. Let G be a tree and let P be the set of leaves of G. Then P is a PMU Cover of G.

Proof. We begin by showing that for every edge ab in G, P ∩ brancha(b) observes brancha(b). We

induct on V = |V (brancha(b))|.

Base case, V = 2: Suppose V (brancha(b)) = {a, b} and E(brancha(b)) = {ab}. Then b is a

leaf in G, and so P ∩ brancha(b) = {b} observes brancha(b).

Inductive step, V ≥ 2: If b is not a leaf of G, then b is adjacent to vertices c1, . . . , cn in

addition to a. Since |V (branchb(ci))| < V for each i, by the inductive hypothesis, P ∩ branchb(ci)

observes branchb(ci). Therefore P ∩ brancha(b) =
⋃n
i=1 P ∩ branchb(ci) observes

⋃n
i=1 branchb(ci).

Since the vertex b and all the edges bci are observed by P ∩ brancha(b), ab is also observed by

P ∩ brancha(b) by Kirkoff’s Law, and a is observed by Ohm’s Law. Therefore, P ∩ brancha(b) ob-
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serves brancha(b).

We conclude by observing that when a is a leaf inG, brancha(b) = G and P∩brancha(b) = P .

Therefore, P is a PMU Cover of G.

Corollary 3.3.9. Let G be a tree. There exists a minimal PMU cover of G consisting only of leaves.

Lemma 3.3.10. Let G be a tree and P a PMU cover of G consisting only of leaves. Suppose

a1b1, a2b2, . . . , anbn are edges in G with each aibi directed towards ai with respect to P . Additionally,

suppose branchai(bi) and branchaj (bj) are disjoint for all i, j ∈ {1, . . . , n} with i 6= j. Then for any

m ∈ {0, . . . , n}, there exists a PMU cover Pa1,...,am of G with the following properties:

1. a1, . . . , am ∈ Pa1,...,am ,

2. For any q ∈ P \
⋃n
k=1 branchak(bk), q ∈ Pa1,...,am ,

3. |Pa1,...,am | = |P |, and

4. For each i ∈ [m+ 1, n], Pa1,...,am ∩ branchai(bi) observes all of branchai(bi).

Proof. We induct on m.

Base case, m = 0: We verify that P itself satisfies all three conditions of Lemma 3.3.10.

The first condition is satisfied vacuously, the second and third conditions are trivial, and the fourth

condition is satisfied because for each i ∈ [1, n], P ∩ branchai(bi) observes all of branchai(bi) by

Lemma 3.3.6, since aibi is directed towards ai with repect to P .

Inductive step, m ≥ 1: Assume that there exists a PMU cover Pa1,...,am−1 satisfying all

the conditions of Lemma 3.3.10. Then Pa1,...,am−1
∩ brancham(bm) observes all of brancham(bm).

Therefore, by Lemma 3.3.7, there exists a PMU cover P ′ = (Pa1,...,am−1
− {p}) ∪ {am} for some

p ∈ brancham(bm). We set Pa1,...,am = P ′ and verify that Pa1,...,am satisfies all three conditions:

The first and third conditions are trivial. The second condition holds because, for any q ∈ P \⋃n
k=1 branchak(bk), q ∈ Pa1,...,am−1

= (Pa1,...,am−1
− {p}) ∪ {am} and q 6= p since p ∈ brancham(bm).

To verify the fourth condition, we note that for any i ∈ [m + 1, n], Pa1,...,am−1 ∩ branchai(bi)

observes all of branchai(bi). Furthermore, Pa1,...,am−1
∩ branchai(bi) = Pa1,...,am ∩ branchai(bi) since

38



branchai(bi) and
⋃m−1
j=1 branchaj (bj) are disjoint. Therefore, Pa1,...,am ∩branchai(bi) = Pa1,...,am−1 ∩

branchai(bi) observes all of branchai(bi).

Corollary 3.3.11. Let G be a tree and P a PMU cover of G consisting only of leaves. Sup-

pose a1b1, a2b2, . . . , anbn are edges in G with each aibi directed towards ai. Additionally, suppose

branchai(bi) and branchaj (bj) are disjoint for all i, j ∈ {1, . . . , n} with i 6= j. Then there ex-

ists a PMU cover Pa1,...,an of G with |Pa1,...,an | = |P | containing a1, . . . , am and all q ∈ P \⋃n
k=1 branchak(bk)

Proof. This is Lemma 3.3.10 with m = n.

3.4 Existence of Certain Minimal PMU Covers

Definition 3.4.1. Some of the following definitions are given for completeness

• A rooted tree is a tree in which one vertex is designated as the root.

• The height of a vertex is the number of edges on the longest path between that vertex and a

leaf.

• The height of a rooted tree T with root v, denoted htv(T ), is equal to the height of the root

vertex v.

• The height of an unrooted tree T , denoted ht(T ), is given by

ht(T ) = min
v∈V

htv(T )

Example 3.4.2. The following tree is rooted at v1 with htv1(T ) = 3, height of v2 equal to 4, and

ht(T ) = 3.

v1

v2 v3 v4

v5 v6 v7 v8 v9

v10 v11 v12 v13
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Lemma 3.4.3. Let T be an arbitrary connected tree with at least two vertices. Then for any two

v, w ∈ V (T ) such that deg(v) = deg(w) = 1, there exists a minimal PMU cover, S, such that v ∈ S,

w /∈ S, and ∀u ∈ S, deg(u) = 1.

Proof. Let T be an arbitrary connected tree with at least two vertices. Let n = ht(T ). Since

ht(T ) = n, there exists v0 ∈ V (T ) such that htv0(T ) = n. Let T be rooted at v0. Note that if

|V (T )| > 2, then deg(v0) > 1. Otherwise, |V (T )| > 2 and deg(v0) = 1 implies v0 has a child v1 and

v1 has a child v1,1. Thus, htv1(T ) < htv0(T ) which contradicts ht(T ) = htv0(T ). We want to show

that for any two v, w ∈ V (T ) such that deg(v) = deg(w) = 1, there exists a minimal PMU cover, S,

such that v ∈ S, w /∈ S, and ∀u ∈ S, deg(u) = 1. We will prove this by using strong induction on n.

For the base case, let n = 1. Let v1, . . . , vm be children of v0, for some m ∈ N≥1. Then

V (T ) = {v0, v1, . . . , vm} and E(T ) = {v0 − v1, . . . , v0 − vm}. If m = 1, then the vertices in V (T ) of

degree equal to one are v0 and v1. Let v = vi for some i ∈ {0, 1}. Then w = vj where j = 1 − i.

Let S = {vi}. By the Incidence Law, vi and vi − vj is observable. In addition, vj is observable by

Ohm’s Law. Thus T is observable by S. So, S is a PMU cover of T . Also, S is minimal since if we

remove vi from S, then S = ∅ and thus none of T is observable by S. If m > 1, then the vertices

of V (T ) of degree equal to one are v1, . . . , vm. Let v = vi for some i ∈ {1, . . . ,m} and let w = vj

for some j ∈ {1, . . . ,m}\{i}. Let S = {v1, . . . , vm}\{vj}. By the Incidence Law, vk and v0 − vk

are observable for all k ∈ {1, . . . ,m}\{j}. By Ohm’s Law, v0 is observable. By Kirchhoff’s Current

Law, v0 − vj is observable and again by Ohm’s Law, vj is observable. Thus, S is a PMU cover of

T . Also, S is minimal since if we remove vk from S for some k ∈ {1, . . . ,m}\{j}, we cannot apply

Kirchhoff’s Current Law. Thus, vk, vj , v0 − vj and v0 − vk will not be observable by S.

Assume the result holds for ht(T ) ≤ n. We must show the result holds for ht(T ) = n + 1.

Let v1, . . . , vm be the children of v0 for some m ∈ N>1.

Case 1 (v, w are descendants of vi for some i ∈ {1, . . . ,m}): Consider the subtree T̃i that

contains vi and all of its descendants. Note that the vertices in V (T̃i) whose degree is equal to

one in T̃i are the vertices in V (T̃i) whose degree is equal to one in T and vi if the degree of vi in T is

2. Also note that ht(T̃i) ≤ htvi(T̃i) ≤ n. By the inductive hypothesis, there exists a minimal PMU

cover, Si of T̃i, such that v ∈ Si, w /∈ Si, and every vertex in Si has degree equal to one in T̃i.

Case 1a (vi /∈ Si, m = 2): Instead, let T̃i be the subtree that contains v0, vi and all of its

descendants. Note that the vertices in V (T̃i) whose degree is equal to one in T̃i are the vertices

in V (T̃i) whose degree is equal to one in T and v0. Also note that ht(T̃i) ≤ htvi(T̃i) ≤ n. By the
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inductive hypothesis, there exists a minimal PMU cover, Si of T̃i, such that v ∈ Si, w /∈ Si, and

every vertex in Si has degree equal to one in T̃i.

If v0 /∈ Si, set S̃i = Si. Let k ∈ {1, 2}\{i}. Consider the subtree, T̃k, containing v0, vk and

all descendants of vk. Note that the vertices in V (T̃k) whose degree equals one in T̃k are v0 and the

vertices in V (T̃k) whose degree equals one in T . Also, note that ht(T̃k) ≤ htvk(T̃k) ≤ n. Thus, by

the inductive hypothesis, there exists a minimal PMU cover, Sk of T̃k, such that v0 ∈ Sk, and every

vertex in S̃k has degree equal to one in T̃k. Set S̃k = Sk\{v0}.

Otherwise, if v0 ∈ Si, set S̃i = Si\{v0}. For k ∈ {1, 2}\{i}. Consider the subtree, T̃k,

containing v0, vk and all descendants of vk. Note that the vertices in V (T̃k) whose degree equals

one in T̃k are v0 and the vertices in V (T̃k) whose degree equals one in T . Also, note that ht(T̃k) ≤

htvk(T̃k) ≤ n. Thus, by the inductive hypothesis, there exists a minimal PMU cover, S̃k of T̃k, such

that v0 /∈ S̃k, and every vertex in S̃k has degree equal to one in T̃k.

We claim that S = S̃1 ∪ S̃2 is a minimal PMU cover of T such that v ∈ S, w /∈ S and all the

vertices in S have degree equal to one in T . Note that for each r ∈ {1, 2}, S̃r only contains vertices

of degree equal to one in T . Thus, S only contains vertices of degree equal to one in T . Also, note

that v ∈ S but w /∈ S.

If v0 /∈ Si, then S̃i is a PMU cover of T̃i. Thus, by the Incidence Law, we have that v0, vi,

all descendants of vi and the edges connecting all such vertices are observable by S̃i. By Kirchhoff’s

Current Law, we have that v0 − vk is observable. Thus, v0 is strongly observable. Recall Sk is a

PMU cover for T̃k and S̃k = Sk\{v0}. However, we have shown that v0 is strongly observable by S.

Thus, S is a PMU cover for T . Suppose we remove some u from S̃i. Suppose v0 is no longer covered.

Note that S̃k cannot cover v0 because otherwise this would contradict the minimality of Sk. Thus,

T is no longer covered. On the other hand, suppose v0 is still covered. Then S\{u} being a cover

for T will contradict the minimality of Si. Suppose we remove some u from S̃k. Note that S\{u}

being a cover for T will contradict the minimality of Sk in T . Thus, S is minimal.

If v0 ∈ Si, then S̃k is a PMU cover of T̃k. Thus, by the Incidence Law, we have that v0,

vk, all descendants of vk and the edges connecting all such vertices are observable. By Kirchhoff’s

Current Law, we have that v0−vi is observable. Thus, v0 is strongly observable. Recall Si is a PMU

cover for T̃i and S̃i = Si\{v0}. However, we have shown that v0 is strongly observable by S. Thus,

S is a PMU cover for T . Suppose we remove some u from S̃k. Suppose v0 is no longer covered. Note

that S̃i cannot cover v0 because otherwise this would contradict the minimality of Si. Thus, T is
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no longer covered. On the other hand, suppose v0 is still covered. Then S\{u} being a cover for T

will contradict the minimality of Sk. Suppose we remove some u from S̃i. Note that S\{u} being a

cover for T will contradict the minimality of Si in T . Thus, S is minimal.

Case 1b (vi /∈ Si, m > 2): Set S̃i = Si. Pick k ∈ {1, . . . ,m}\{i}. Consider the subtree,

T̃k, containing v0, vk and all descendants of vk. Note that the vertices in V (T̃k) whose degree

equals one in T̃k are v0 and the vertices in V (T̃k) whose degree equals one in T . Also, note that

ht(T̃k) ≤ htvk(T̃k) ≤ n. Thus, by the inductive hypothesis, there exists a minimal PMU cover, Sk of

T̃k, such that v0 ∈ Sk, and every vertex in S̃k has degree equal to one in T̃k. Set S̃k = Sk\{v0}.

For each j ∈ {1, . . . ,m}\{i, k}, consider the subtree T̃j containing vj and all of its descen-

dants. If the degree of vj in T is one, then V (T̃j) = {vj} and E(T̃j) = ∅. Thus, Sj = {vj} is a

minimal PMU cover of T̃j . If the degree of vj in T is 2, then the degree of vj in T̃j is one. Thus, the

vertices in V (T̃j) whose degree equals one in T̃j are vj and all the vertices in V (T̃j) whose degree

equals one in T . Note also that ht(T̃j) ≤ htvj (T̃j) ≤ n. So, by the inductive hypothesis, there exists

a minimal PMU cover, Sj of T̃j , such that vj /∈ Sj , and every vertex in Sj has degree equal to one

in T̃j . Otherwise, if the degree of vj in T is at least 3, the vertices in V (T̃j) whose degree equals one

in T̃j are the vertices in V (T̃j) whose degree equals one in T. Again, ht(T̃j) ≤ htvj (T̃j) ≤ n. So, by

the inductive hypothesis, there exists a minimal PMU cover, Sj of T̃j , such that every vertex in Sj

has degree equal to one in T̃j .

If v0 is observable by S̃i ∪ S̃k ∪
m⋃
j=1
j 6=i,k

Sj , then set S̃j = Sj for all j ∈ {1, . . . ,m}\{i, k}.

Otherwise, pick ` ∈ {1, . . . ,m}\{i, k}. Consider the subtree T̃` consisting of v0, v` and all descendants

of v`. Thus, the vertices in V (T̃`) whose degree equals one in T̃` are v0 and all the vertices in V (T̃`)

whose degree equals one in T . Note also that ht(T̃`) ≤ htv`(T̃`) ≤ n. So, by the inductive hypothesis,

there exists a minimal PMU cover, S̃` of T̃`, such that v0 /∈ S̃`, and every vertex in S̃` has degree

equal to one in T̃`. Set S̃j = Sj for all j ∈ {1 . . . ,m}\{i, k, `}.

We claim that S = S̃1 ∪ · · · ∪ S̃m is a minimal PMU cover of T such that v ∈ S, w /∈ S

and all the vertices in S have degree equal to one in T . Note that for each r ∈ {1, . . . ,m}, S̃r only

contains vertices of degree equal to one in T . Thus, S only contains vertices of degree equal to one

in T . Also, note that v ∈ S but w /∈ S.

If v0 is observable by S̃i ∪ S̃k ∪
m⋃
j=1
j 6=i,k

Sj , then S̃j = Sj for all j ∈ {1, . . . ,m}\{i, k}. Thus, v0

is observable by S. Note for all r ∈ {1, . . . ,m}\{k}, S̃r = Sr is a minimal PMU cover for T̃r. Thus,
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T̃r is covered by S. By Ohm’s Law, v0 − vr is observable by S. Thus, by Kirchhoff’s Current Law

v0 − vk is observable by S. Thus, v0 is strongly observable by S. Since Sk is a minimal PMU cover

for T̃k and S̃k = Sk\{v0}, we have that T̃k is covered by S. Thus, T is covered by S. If we remove

some u from S̃k, then S\{u} being a cover for T will contradict the minimality of Sk. Otherwise,

suppose we remove some u from S̃r for r ∈ {1, . . . ,m}\{k}. Note that if vr is observable by S̃r\{u},

then T̃r being observable by S\{u} contradicts the minimality of Sr. If vr is not observable by

S̃r\{u}, then we can no longer apply Ohm’s Law to get v0 − vr observable. Thus, neither v0 − vr

nor v0 − vk is observable and so we can also no longer apply Kirchhoff’s Current Law. Thus, T is

not observable by S\{u}.

If v0 is not observable by S̃i∪ S̃k∪
m⋃
j=1
j 6=i,k

Sj , then S̃` is a minimal PMU cover for T̃` which also

includes v0. Thus, v0 is observable by S. Note for all r ∈ {1, . . . ,m}\{k, `}, S̃r = Sr is a minimal

PMU cover for T̃r. Thus, T̃r is covered by S. By Ohm’s Law, v0 − vr is observable by S. Thus,

by Kirchhoff’s Current Law v0 − vk is observable by S. Thus, v0 is strongly observable by S. Since

Sk is a minimal PMU cover for T̃k and S̃k = Sk\{v0}, we have that T̃k is covered by S. Thus, T

is covered by S. If we remove some u from S̃k, then S\{u} being a cover for T will contradict the

minimality of Sk. Suppose we remove some u from S̃`. If v0 is not observable by S̃`\{v0}, then v0 is

not observable by S\{u}. If v0 is observable by S̃`\{u}, then v0− v` must have first been observable

by S̃`\{u}. Thus, T̃` being covered by S\{u} contradicts the minimality of S̃`. Otherwise, suppose

we remove some u from S̃r for r ∈ {1, . . . ,m}\{k, `}. Note that if vr is observable by S̃r\{u}, then

T̃r being observable by S\{u} contradicts the minimality of Sr. If vr is not observable by S̃r\{u},

then we can no longer apply Ohm’s Law to get v0− vr observable. Thus, neither v0− vr nor v0− vk

is observable and so we can also no longer apply Kirchhoff’s Current Law. Thus, T is not observable

by S\{u}.

Case 1c (vi ∈ Si): Set S̃i = Si\{vi}. For each j ∈ {1, . . . ,m}\{i}, consider the subtree T̃j

containing vj and all of its descendants. If the degree of vj in T is one, then V (T̃j) = {vj} and

E(T̃j) = ∅. Thus, Sj = {vj} is a minimal PMU cover of T̃j . If the degree of vj in T is 2, then the

degree of vj in T̃j is one. Thus, the vertices in V (T̃j) whose degree equals one in T̃j are vj and all

the vertices in V (T̃j) whose degree equals one in T . Note also that ht(T̃j) ≤ htvj (T̃j) ≤ n. So, by

the inductive hypothesis, there exists a minimal PMU cover, Sj of T̃j , such that vj /∈ Sj , and every

vertex in Sj has degree equal to one in T̃j . Otherwise, if the degree of vj in T is at least 3, the
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vertices in V (T̃j) whose degree equals one in T̃j are the vertices in V (T̃j) whose degree equals one

in T. Again, ht(T̃j) ≤ htvj (T̃j) ≤ n. So, by the inductive hypothesis, there exists a minimal PMU

cover, Sj of T̃j , such that every vertex in Sj has degree equal to one in T̃j .

If v0 is observable by S̃i ∪
m⋃
j=1
j 6=i

Sj , then set S̃j = Sj for all j ∈ {1, . . . ,m}\{i}. Otherwise,

pick ` ∈ {1, . . . ,m}\{i}. Consider the subtree T̃` consisting of v0, v` and all descendants of v`. Thus,

the vertices in V (T̃`) whose degree equals one in T̃` are v0 and all the vertices in V (T̃`) whose degree

equals one in T . Note also that ht(T̃`) ≤ htv`(T̃`) ≤ n. So, by the inductive hypothesis, there exists

a minimal PMU cover, S̃` of T̃`, such that v0 /∈ S̃`, and every vertex in S̃` has degree equal to one

in T̃`. Set S̃j = Sj for all j ∈ {1 . . . ,m}\{i, `}.

We claim that S = S̃1 ∪ · · · ∪ S̃m is a minimal PMU cover of T such that v ∈ S, w /∈ S

and all the vertices in S have degree equal to one in T . Note that for each r ∈ {1, . . . ,m}, S̃r only

contains vertices of degree equal to one in T . Thus, S only contains vertices of degree equal to one

in T . Also, note that v ∈ S but w /∈ S.

If v0 is observable by S̃i ∪
m⋃
j=1
j 6=i

Sj , then S̃j = Sj for all j ∈ {1, . . . ,m}\{i}. Thus, v0 is

observable by S. Note for all r ∈ {1, . . . ,m}\{i}, S̃r = Sr is a minimal PMU cover for T̃r. Thus,

T̃r is covered by S. By Ohm’s Law, v0 − vr is observable by S. Thus, by Kirchhoff’s Current Law

v0−vi is observable by S. Thus, v0 is strongly observable by S. Since Si is a minimal PMU cover for

T̃i and S̃i = Si\{v0}, we have that T̃i is covered by S. Thus, T is covered by S. If we remove some

u from S̃i, then S\{u} being a cover for T will contradict the minimality of Si. Otherwise, suppose

we remove some u from S̃r for r ∈ {1, . . . ,m}\{i}. Note that if vr is observable by S̃r\{u}, then T̃r

being observable by S\{u} contradicts the minimality of Sr. If vr is not observable by S̃r\{u}, then

we can no longer apply Ohm’s Law to get v0 − vr observable. Thus, neither v0 − vr nor v0 − vi is

observable and so we can also no longer apply Kirchhoff’s Current Law. Thus, T is not observable

by S\{u}.

If v0 is not observable by S̃i ∪
m⋃
j=1
j 6=i

Sj , then S̃` is a minimal PMU cover for T̃` which also

includes v0. Thus, v0 is observable by S. Note for all r ∈ {1, . . . ,m}\{i, `}, S̃r = Sr is a minimal

PMU cover for T̃r. Thus, T̃r is covered by S. By Ohm’s Law, v0 − vr is observable by S. Thus,

by Kirchhoff’s Current Law v0 − vi is observable by S. Thus, v0 is strongly observable by S. Since

Si is a minimal PMU cover for T̃i and S̃i = Si\{v0}, we have that T̃i is covered by S. Thus, T is
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covered by S. If we remove some u from S̃i, then S\{u} being a cover for T will contradict the

minimality of Si. Suppose we remove some u from S̃`. If v0 is not observable by S̃`\{u}, then v0 is

not observable by S\{u}. If v0 is observable by S̃`\{u}, then v0− v` must have first been observable

by S̃`\{u}. Thus, T̃` being covered by S\{u} contradicts the minimality of S̃`. Otherwise, suppose

we remove some u from S̃r for r ∈ {1, . . . ,m}\{i, `}. Note that if vr is observable by S̃r\{u}, then

T̃r being observable by S\{u} contradicts the minimality of Sr. If vr is not observable by S̃r\{u},

then we can no longer apply Ohm’s Law to get v0− vr observable. Thus, neither v0− vr nor v0− vi

is observable and so we can also no longer apply Kirchhoff’s Current Law. Thus, T is not observable

by S\{u}.

Case 2 (v, w are descendants of vi, vk respectively for i, k ∈ {1, . . . ,m}, i 6= k.) Consider the

subtree, T̃k, containing v0, vk and all descendants of vk. Note that the vertices in V (T̃k) whose de-

gree equals one in T̃k are v0 and the vertices in V (T̃k) whose degree equals one in T . Also, note

that ht(T̃k) ≤ htvk(T̃k) ≤ n. Thus, by the inductive hypothesis, there exists a minimal PMU cover,

Sk of T̃k, such that v0 ∈ Sk, w /∈ Sk and every vertex in S̃k has degree equal to one in T̃k. Let

S̃k = Sk\{v0}.

Consider the subtree T̃i containing vi and all of its descendants. If the degree of vi in T

is one, then V (T̃i) = {vi} and E(T̃j) = ∅. Thus, Si = {vi} is a minimal PMU cover of T̃i. If the

degree of vi in T is 2, then the degree of vi in T̃i is one. Thus, the vertices in V (T̃i) whose degree

equals one in T̃i are vi and all the vertices in V (T̃i) whose degree equals one in T . Note also that

ht(T̃i) ≤ htvi(T̃i) ≤ n. So, by the inductive hypothesis, there exists a minimal PMU cover, Si of T̃i,

such that v ∈ Si, vi /∈ Si, and every vertex in Si has degree equal to one in T̃i. Otherwise, if the

degree of vi in T is at least 3, the vertices in V (T̃i) whose degree equals one in T̃i are the vertices in

V (T̃i) whose degree equals one in T. Again, ht(T̃i) ≤ htvi(T̃i) ≤ n. So, by the inductive hypothesis,

there exists a minimal PMU cover, Si of T̃i, such that v ∈ Si and every vertex in Si has degree equal

to one in T̃i.

For each j ∈ {1, . . . ,m}\{i, k}, consider the subtree T̃j containing vj and all of its descen-

dants. If the degree of vj in T is one, then V (T̃j) = {vj} and E(T̃j) = ∅. Thus, Sj = {vj} is a

minimal PMU cover of T̃j . If the degree of vj in T is 2, then the degree of vj in T̃j is one. Thus, the

vertices in V (T̃j) whose degree equals one in T̃j are vj and all the vertices in V (T̃j) whose degree

equals one in T . Note also that ht(T̃j) ≤ htvj (T̃j) ≤ n. So, by the inductive hypothesis, there exists

a minimal PMU cover, Sj of T̃j , such that vj /∈ Sj , and every vertex in Sj has degree equal to one
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in T̃j . Otherwise, if the degree of vj in T is at least 3, the vertices in V (T̃j) whose degree equals one

in T̃j are the vertices in V (T̃j) whose degree equals one in T. Again, ht(T̃j) ≤ htvj (T̃j) ≤ n. So, by

the inductive hypothesis, there exists a minimal PMU cover, Sj of T̃j , such that every vertex in Sj

has degree equal to one in T̃j .

If v0 is observable by S̃k ∪
m⋃
j=1
j 6=k

Sj , then set S̃j = Sj for all j ∈ {1, . . . ,m}\{k}. Otherwise,

pick ` ∈ {1, . . . ,m}\{k}. Consider the subtree T̃` consisting of v0, v` and all descendants of v`.

Thus, the vertices in V (T̃`) whose degree equals one in T̃` are v0 and all the vertices in V (T̃`) whose

degree equals one in T . Note also that ht(T̃`) ≤ htv`(T̃`) ≤ n. So, by the inductive hypothesis, there

exists a minimal PMU cover, S̃` of T̃`, such that (v ∈ S̃` if i = `), v0 /∈ S̃`, and every vertex in S̃`

has degree equal to one in T̃`. Set S̃j = Sj for all j ∈ {1 . . . ,m}\{k, `}.

We claim that S = S̃1 ∪ · · · ∪ S̃m is a minimal PMU cover of T such that v ∈ S, w /∈ S

and all the vertices in S have degree equal to one in T . Note that for each r ∈ {1, . . . ,m}, S̃r only

contains vertices of degree equal to one in T . Thus, S only contains vertices of degree equal to one

in T . Also, note that v ∈ S but w /∈ S.

If v0 is observable by S̃k ∪
m⋃
j=1
j 6=k

Sj , then S̃j = Sj for all j ∈ {1, . . . ,m}\{k}. Thus, v0 is

observable by S. Note for all r ∈ {1, . . . ,m}\{k}, S̃r = Sr is a minimal PMU cover for T̃r. Thus,

T̃r is covered by S. By Ohm’s Law, v0 − vr is observable by S. Thus, by Kirchhoff’s Current Law

v0 − vk is observable by S. Thus, v0 is strongly observable by S. Since Sk is a minimal PMU cover

for T̃k and S̃k = Sk\{v0}, we have that T̃k is covered by S. Thus, T is covered by S. If we remove

some u from S̃k, then S\{u} being a cover for T will contradict the minimality of Sk. Otherwise,

suppose we remove some u from S̃r for r ∈ {1, . . . ,m}\{k}. Note that if vr is observable by S̃r\{u},

then T̃r being observable by S\{u} contradicts the minimality of Sr. If vr is not observable by

S̃r\{u}, then we can no longer apply Ohm’s Law to get v0 − vr observable. Thus, neither v0 − vr

nor v0 − vk is observable and so we can also no longer apply Kirchhoff’s Current Law. Thus, T is

not observable by S\{u}.

If v0 is not observable by S̃k ∪
m⋃
j=1
j 6=k

Sj , then S̃` is a minimal PMU cover for T̃` which also

includes v0. Thus, v0 is observable by S. Note for all r ∈ {1, . . . ,m}\{k, `}, S̃r = Sr is a minimal

PMU cover for T̃r. Thus, T̃r is covered by S. By Ohm’s Law, v0 − vr is observable by S. Thus,

by Kirchhoff’s Current Law v0 − vk is observable by S. Thus, v0 is strongly observable by S. Since
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Sk is a minimal PMU cover for T̃k and S̃k = Sk\{v0}, we have that T̃k is covered by S. Thus, T

is covered by S. If we remove some u from S̃k, then S\{u} being a cover for T will contradict the

minimality of Sk. Suppose we remove some u from S̃`. If v0 is not observable by S̃`\{u}, then v0 is

not observable by S\{u}. If v0 is observable by S̃`\{u}, then v0− v` must have first been observable

by S̃`\{u}. Thus, T̃` being covered by S\{u} contradicts the minimality of S̃`. Otherwise, suppose

we remove some u from S̃r for r ∈ {1, . . . ,m}\{k, `}. Note that if vr is observable by S̃r\{u}, then

T̃r being observable by S\{u} contradicts the minimality of Sr. If vr is not observable by S̃r\{u},

then we can no longer apply Ohm’s Law to get v0− vr observable. Thus, neither v0− vr nor v0− vk

is observable and so we can also no longer apply Kirchhoff’s Current Law. Thus, T is not observable

by S\{u}.

Theoreom 3.4.4. Let T be an arbitrary connected tree with at least two vertices. Then for any two

v, w ∈ V (T ), there exists a minimal PMU cover, S, such that v ∈ S, w /∈ S.

Proof. Let T be an arbitrary connected tree with at least two vertices. Let T be rooted at v and let

v1, . . . vn be the children of T . Now, for each i, 1 ≤ i ≤ n, we consider the subtree Ti that contains

v, vi and all descendants of vi. Note that in each Ti, the degree of v is one. Thus, by lemma 1, there

exists a minimal PMU cover Si containing vertices of degree equal to one in Ti such that v ∈ Si.

Also, note that if w is a degree one vertex in Ti, by lemma 1, we can choose Si such that w /∈ Si.

We claim that S =
⋃n
i=1 Si is a minimal PMU cover of T such that v ∈ S and w /∈ S. Note that by

construction we have v ∈ S and w /∈ S. Also, since T =
⋃n
i=1 Ti and Si is a PMU cover for Ti for

each i, then S is a PMU cover for T . So, we must show S is minimal. For the sake of a contradiction,

suppose S is not minimal. Let S̃ ( S be a minimal PMU cover for T . First, suppose v /∈ S̃. Thus,

v must be observable by Ohm’s Law or Kirchhoff’s Current Law. If v is observable by Ohm’s Law,

then there exists a child vi of v, where 1 ≤ i ≤ n, such that vi ∈ S̃. This implies vi ∈ Si. However,

this gives that Si\{v} is a minimial PMU cover for Ti since v is observable by Ohm’s Law in Ti. This

contradicts the minimality of Si. If v is observable by Kirchhoff’s Current Law, then there exists a

child vi of v such that vi is observable by Si\{v} in Ti and all edges adjacent to vi except v − vi

are observable by Si\{v} in Ti. This implies by Ohm’s Law and Kirchhoff’s Current Law that v is

observable by Si\{v} in Ti. This contradicts the minimality of Si. Thus, v ∈ S̃. Now, suppose v ∈ S

and that there is a ṽ 6= v such that ṽ ∈ S\S̃. Note that ṽ ∈ Si for some i, 1 ≤ i ≤ n. Since v ∈ S̃, the

vertices and edges that are observable by S̃ is precisely the edges and vertices that are observable
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by Si\{ṽ}. Thus, S̃ a PMU cover for T implies Si\{ṽ} a PMU cover for Ti. This contradicts the

minimality of Si. Thus, S is a minimal PMU cover of T such that v ∈ S and w /∈ S.

3.5 Power Unmixed Trees

In this section, we introduce the class of edge linked trees and show that all minimal PMU

covers of an edge linked tree have the same size. Then we prove (i) =⇒ (v) =⇒ (iv) =⇒ (iii) from

Theorem 3.1.1. The implications (iii) =⇒ (ii) =⇒ (i) from this result are standard. Here are the

relevant definitions.

Definition 3.5.1. A pointed path is a path P equipped with a connecting vertex set, i.e., a subset

W ⊂ V (P ) such that

(P1) the set W does not contain either endpoint of P , and

(P2) the set W is independent in P , i.e., if v1 ∈W and v2 adjacent to v1, then v2 /∈W .

Definition 3.5.2. An edge linked tree is a tree T containing pointed path subgraphs P1, . . . , Pn

with connecting vertex sets W1, . . . ,Wn, respectively, such that

(T1) one has V (Pi) ∩ V (Pj) = ∅ for all i 6= j, and V (T ) = V (P1) ∪ · · · ∪ V (Pn);

(T2) each e ∈ E(T ) \ E(P1) ∪ · · · ∪ E(Pn) is of the form e = wiwj for some wi ∈ Wi and wj ∈ Wj

with i 6= j; and

(T3) each w ∈W1 ∪ · · · ∪Wn has deg(w) ≥ 3.

In (T3) above, the set W1 ∪ · · · ∪Wn is called the connecting vertex set of T , and in (T2), the set

E(T ) \ E(P1) ∪ · · · ∪ E(Pn) is called the connecting edge set of T .

Example 3.5.3. The tree from Example 3.2.5 is edge linked. Indeed, the connecting vertices are

red, the horizontal sub-paths are the pointed paths, and the vertical edges are the connecting edges.

The next result contains the implications (iv)⇐⇒ (v) from Theorem 3.1.1.

Theoreom 3.5.4. A tree T is edge linked if and only if every vertex of T of degree at least 3 is

adjacent to exactly two vertices of T of degree at most 2.
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Proof. ( =⇒ ) Let T be an edge linked tree with pointed paths P1, . . . , Pn and corresponding

connecting vertex sets W1, . . . ,Wn. Note that Definition 3.5.2 implies that the connecting vertex

set of T is precisely the set of vertices of degree at least 3. Let wi ∈ Wi ⊆ V (Pi) be an arbitrary

connecting vertex. Suppose v ∈ V (T ) is adjacent to wi. Then Definition 3.5.2(T2) implies either

v ∈ Wj for some j 6= i, or v ∈ V (Pi). For v ∈ Wj for some 1 ≤ j ≤ n, j 6= i, Definition 3.5.2(T3)

implies deg(v) ≥ 3. If v ∈ V (Pi), then Definition 3.5.1(P2) implies v /∈ W1 ∪ · · · ∪ Wn. Thus

deg(v) ≤ 2. Now, Definition 3.5.1(P1) implies that wi is adjacent to two vertices in V (Pi). Thus,

wi is adjacent to precisely two vertices of degree at most 2.

(⇐= ) Suppose every vertex of T of degree at least 3 is adjacent to precisely two vertices of

T of degree at most 2. Note that if there are no vertices of T of degree at least 3, then T is a path.

Thus, set P1 = T, W1 = ∅ so that T is an edge linked tree with pointed path P1. Now, suppose

there is a vertex of degree at least 3. Set the connecting vertex set of T to be equal to the set of

vertices of T of degree at least 3. Thus Definition 3.5.2(T3) is satisfied. Note that by assumption,

every vertex of T of degree at least 3 is adjacent to at least one other vertex of degree at least 3. Set

the connecting edge set of T to be the set of all edges which connect vertices of degree at least 3.

Pick an arbitrary w1 of the connecting vertex set of T . Let P1 be the the induced subgraph on the

vertices which are contained in a path which contains w1 and which does not contain a connecting

edge of T , considered as a subgraph of T .

The claim is that P1 is a pointed path. For the sake of contradiction, suppose P1 is not a

path. Then there exists v ∈ V (P1) such that the degree of v in P1 is at least 3. As P1 ⊆ T , the

degree of v in T is at least 3. Let v1, v2, v3 ∈ V (P1) and vv1, vv2, vv3 ∈ E(P1). As P1 does not

contain connecting edges of T , v1, v2, v3 have degree at most 2 in T . This contradicts the assumption

that every vertex of T of degree at least 3 is adjacent to precisely two vertices of T of degree at most

2. Thus, P1 is a path.

It remains to show that P1 is a pointed path.

Let W1 = {v ∈ V (P1) : the degree of v in T is at least 3}. By construction of P1, Defini-

tion 3.5.1(P2) is satisfied. Let w̃1 ∈W1 be a connecting vertex of P1. As deg(w̃1) ≥ 3, w̃1 is adjacent

to exactly two vertices of degree at most 2, v1, v2. Note that w̃1v1, w̃1v2 are not in the connecting

edge set of T . Thus w̃1v1, w̃1v2 ∈ E(P1), and v1, v2 ∈ V (P1). Thus, w̃1 is not a leaf of P1. Thus

Definition 3.5.1(P1) is satisfied. Thus P1 is a pointed path with connecting vertex set W1.

Now, choose an arbitrary vertex w2 of the connecting vertex set of T such that w2 /∈
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V (P1). Let P2 be defined as above, i.e., let P2 be the induced subgraph on the vertices which

are contained in a path which contains w2 and which does not contain a connecting edge of T ,

considered as a subgraph of T , and let W2 = {v ∈ V (P2) : the degree of v in T is at least 3}. Note

that V (P1) ∩ V (P2) = ∅. Continuing, choose an arbitrary w3 of the connecting vertex set of T such

that w3 /∈ V (P1)∪V (P2), and define P3, W3 as above. Then P1∩P3, P2∩P3 = ∅, and P3 is a pointed

path with connecting vertex set W3. Continuing in this way, pointed paths P1, . . . , Pn are obtained

with connecting vertex sets W1, . . . ,Wn, respectively, such that W1 ∪ · · · ∪ Wn is the connecting

vertex set of T , and V (Pi) ∩ V (Pj) = ∅ for i 6= j. Thus, Definition 3.5.2(T1) is satisfied. [(T1) now

has 2 parts]

It remains to show that Definition 3.5.2(T2) is satisfied. To this end, observe that for each

1 ≤ i ≤ n, E(Pi) does not contain any connecting edges of T . Let e = ṽ1ṽ2 ∈ E(T ) be arbitrary. If

deg(ṽ1), deg(ṽ2) ≥ 3, then e is in the connecting edge set of T . By construction, ṽ1 ∈Wi ⊆ V (Pi) for

some 1 ≤ i ≤ n and ṽ2 ∈Wj ⊆ V (Pj) for some 1 ≤ j ≤ n so that in this case it remains to show i 6= j.

For the sake of contradiction, suppose i = j. Then either e ∈ E(Pi) or T contains a cycle. Note that

e ∈ E(Pi) contradicts the observation that E(Pi) does not contain any connecting edges of T , and T

containing a cycle contradicts the assumption that T is a tree. Thus i 6= j. Without loss of generality,

if deg(ṽ1) ≥ 3, deg(ṽ2) ≤ 2, then e ∈ E(Pi) = E(Pj) ⊆ E(P1∪· · ·∪Pn). If deg(ṽ1), deg(ṽ2) ≤ 2, then

there exists ṽ3 ∈Wk for some 1 ≤ k ≤ n such that there is a path which contains e and v3 which does

not contain a connecting edge of T . Thus, e ∈ E(Pk) = E(Pi) = E(Pj) ⊆ E(P1∪· · ·∪Pn). Therefore

Definition 3.5.2(T2) is satisfied. Thus, T is an edge linked tree with pointed paths P1, . . . , Pn.

Lemma 3.5.5. Let T be an edge linked tree with pointed paths P1, . . . , Pn with connecting vertex

sets W1, . . . ,Wn, respectively. Then ∃ 1 ≤ i ≤ n such that |Wi| ≤ 1 and deg(wi) = 3 for wi ∈ Wi.

In particular, if n ≥ 2, ∃ 1 ≤ i ≤ n such that |Wi| = 1 and deg(wi) = 3 for wi ∈Wi.

Proof. Let T be an edge linked tree with pointed paths P1, . . . , Pn with connecting vertex sets

W1, . . . ,Wn, respectively. If n = 1, then T = P1 and W1 = ∅ so that |W1| = 0.

Let n ≥ 2. Choose an arbitrary Pi, 1 ≤ i ≤ n. As T is connected, |Wi| ≥ 1 or |Wi| = 1

and deg(w) ≥ 3 for w ∈ Wi; if |Wi| = 1 and deg(w) = 3 for w ∈ Wi, stop and the lemma holds. If

|Wi| > 1 or |Wi| = 1 and deg(w) > 3 for w ∈ Wi, then go to one of the neighboring Pj , i.e., one

of the Pjs for which ∃wj ∈ Wj such that wj is adjacent to some v ∈ Wi. Again, if |Wj | = 1 and

deg(w) = 3 for w ∈ Wj , stop and the lemma holds. If |Wj | > 1 or |Wj | = 1 and deg(w) > 3 for
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w ∈Wj , choose a new neighboring Pk and do not choose the previous path, in this case Pi. Continue

this process. Note that at each stage when a new neighboring Pi is chosen, the Pi chosen has not

been chosen previously as T does not contain cycles. As n is finite this process terminates at some

Pt with |Wt| = 1 and deg(w) = 3 for w ∈ Wt as if |{i, j, . . . , t}| < n, if |Wt| > 1 or |Wt| = 1 and

deg(w) > 3 for w ∈Wt, then the process could be continued, and if |{i, j, . . . , t}| = n with |Wt| > 1

or |Wt| = 1 and deg(w) > 3 for w ∈Wt, then T would contain a cycle.

Remark 3.5.6. Note that the pointed paths P for which |W | ≤ 1 and deg(w) = 3 for w ∈ W are

analogous to leaves of trees and as such the above proof is similar to proving a tree contains a leaf.

Definition 3.5.7. If a vertex v is observable and every line incident to v is observable, then v is

called strongly observable.

Remark 3.5.8. Note that v being strongly observable is equivalent to having a PMU placed at v.

Theoreom 3.5.9. Let T be an edge linked tree with pointed paths P1, . . . , Pn. the minimal PMU

covers of T are exactly sets of the form {v1, . . . , vn}, where vi ∈ Pi.

Proof. The claim that a PMU cover must contain a vertex from each of the pointed paths is first

proven.

Let T be an edge linked tree with pointed paths P1, . . . , Pn and connecting vertex sets

W1, . . . ,Wn, respectively. For some i, consider placing a PMU on all vertices in {v ∈ T : v /∈ V (Pi)}.

The claim is that this is not a PMU cover. From the placement of the PMUs, the Incidence Law

implies T \ Pi is observable. Note that for w ∈ Wi, Definition 3.5.2(T2) and Definition 3.5.2(T3)

imply that w is adjacent to a vertex w̃ such that w̃ /∈ V (Pi). Thus by assumption, w̃ has a PMU so

that edge ww̃ is observable by the Incidence Law and thus w is observable by Ohm’s Law. Thus Wi

is observable. Note that Definition 3.5.1(P1) implies that for w ∈ Wi, w is adjacent to two vertices

in V (Pi), v1 and v2, with v1, v2 /∈ Wi by Definition 3.5.1(P2). As w ∈ V (Pi), w does not have

a PMU so that the Incidence Law does not apply for edge wv1 to be observable. Also, v1 is not

observable so that Ohm’s Law does not apply. None of the lines in E(Pi) are observable so that

neither Ohm’s Law nor Kirchhoff’s Current Law applies and thus T remains unobservable and the

PMU placement is not a PMU cover. Thus a vertex is needed from each pointed path Pi for a PMU

cover.

That sets of the form {v1, . . . , vn} with vi ∈ V (Pi) are vertex covers is proven next.
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Base Case, n = 1: T = P1 is a path and the result is clear.

Assume the statement is true for l ≤ k, and that n > 1: Suppose T is a tree with pointed

paths P1, . . . , Pk+1 and with connecting vertex sets W1, . . . ,Wk+1, respectively. Consider the set

{v1, . . . , vk, vk+1}, where each vi ∈ V (Pi). The lemma above says that there is an index i for which

|Wi| = 1 and deg(w) = 3 for w ∈Wi. Without loss of generality, let i = k+ 1 and let wk+1 ∈Wk+1.

Definition 3.5.2(T2) and Definition 3.5.2(T3) imply that wk+1 is adjacent to a vertex wj ∈ Wj for

some index j 6= k+ 1. Consider T̃ = T \ (Pk+1 ∪wjwk+1), i.e., the induced subgraph on the vertices

not in Pk+1. Note that T̃ is an edge linked tree with pointed paths P1, . . . , Pk and by the inductive

hypothesis, sets of the form {v1, . . . , vk} with vi ∈ V (Pi) are PMU covers for T̃ . This implies that

in T , wj is observable and one edge in E(Pj) incident to wj is observable. By the Incidence Law

vk+1 is observable and edges incident to vk+1 are observable. If vk+1 = wk+1 then as all remaining

vertices in Pk+1 are of degree at most 2, Ohm’s Law and Kirchhoff’s Current Law apply so that

Pk+1 is observable.

If vk+1 6= wk+1, again note that deg(v) ≤ 2 for all v ∈ V (Pk+1) \ wk+1. The Incidence

Law applies so that the vertices adjacent to vk+1 are observable and Ohm’s Law and Kirchhoff’s

Current Law applied d(wk+1, vk+1)−1 times shows that wk+1 is observable. By Ohm’s Law, wjwk+1

is observable, and by Ohm’s Law and Kirchhoff’s Current Law the remaining vertices in Pk+1 are

observable in T . It remains to show that T̃ is observable as a subgraph of T .

Case 1, the degree of wj in T is 3: Kirchhoff’s Current Law may be applied so that the

remaining edge incident to wj is observable and thus wj is strongly observable. This is equivalent

to having a PMU placed at wj . This implies that T̃ is observable in T and thus T is observable.

Case 2, the degree of wj in T is greater than 3: Suppose wj is adjacent to wj1 , . . . , wjm , wk+1,

where wji ∈Wji and m ≥ 1 as the degree of wj in T is greater than 3. For each 1 ≤ r ≤ m, remove

wjrwj and consider the connected subgraph which contains wjr , T̂ . T̂ is an edge linked tree whose

number of pointed paths s is less than k. Denote by P̂1, . . . , P̂s such paths. Then by the inductive

hypothesis, sets of the form {v1, . . . , vs} with vi ∈ V (P̂i) are PMU covers of T̂ . This implies that

in T , wjr is observable. By Ohm’s Law, wjwjr is observable, and by Kirchhoff’s Current Law, the

remaining edge in Pj is observable. Thus, wj is strongly observable in T , which is equivalent to

having a PMU placed at wj . This implies T̃ is observable in T and thus T is observable.

Our next result follows directly from Theorem 3.5.9. It contains the implication (iv) =⇒ (iii)
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from Theorem 3.1.1.

Theoreom 3.5.10. Let T be an edge linked tree with pointed paths P1, . . . , Pn. Then

IPT =

〈 ∏
xj∈Pi

xj | i = 1, . . . , n

〉
.

In particular, IPT is a complete intersection.

We conclude by proving that (i) =⇒ (v) from Theorem 3.1.1.

Theoreom 3.5.11. Let G be a unmixed tree. Then every vertex of degree ≥ 3 is adjacent to exactly

2 vertices of degree ≤ 2.

Proof. Suppose G is an unmixed tree and P is a minimal PMU cover of G containing only leaves.

We will show each of the following:

1. If an edge ab is directed towards b with respect to P , then either deg(a) ≤ 2 or deg(b) ≤ 2.

2. If an edge ab is undirected with respect to P , then both deg(a) ≥ 3 and deg(b) ≥ 3.

3. For any vertex a with deg(a) ≥ 3, there is exactly one edge directed towards a.

4. For any vertex a with deg(a) ≥ 3, there is exactly one edge directed away from a.

Note that the above imply that if deg(a) ≥ 3 then a must be adjacent to exactly 2 vertices of degree

≤ 2.

Proof of (1): Suppose, by way of contradiction, that ab is directed towards b with respect

to P , and both deg(a) ≥ 3 and deg(b) ≥ 3. Then a /∈ P , and by Proposition 3.3.4, there is at least

one edge directed towards a, call it ca. We denote the other neighbors of a as p1, . . . , pm ∈ P and

q1, . . . , qn /∈ P with m+ n ≥ 1. We denote the other neighbors of b as b1, . . . , bl with l ≥ 2.
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r1

��

· · · rn

��

c

++

p1 · · · pm q1 · · · qn

a

��

b

b1 · · · b`

By Proposition 3.3.4, ab is the only edge directed away from a. Therefore, each aqi is not

directed towards qi. By Proposition 3.3.4, there exists at least 1 edge directed towards each qi call

them riqi. By Proposition 3.3.4, at most one of the bbi are directed away from b. Since l ≥ 2,

there exists a bbi that is not directed towards bi. Without loss of generality, assume that bb1 is not

directed towards b1. We divide the proof of (1) into 2 subcases and show that G is mixed:

Case 1: b1 ∈ P : Since ca is directed towards a, each riqi is directed towards qi, b1, p1, . . . , pm /∈

brancha(c) ∪ branchq1(r1) ∪ · · · ∪ branchqn(rn), and brancha(c),branchq1(r1), . . . ,branchqn(rn) are

pairwise disjoint, by Corollary 3.3.11, there exists a PMU Cover Pa,q1,...,qn containing a, q1, . . . , qn, p1, . . . , pm, b1

with |Pa,q1,...,qn | = |P |. However, {q1, . . . , qn, p1, . . . , pm, b1} ⊆ Pa,q1,...,qn \{a} observes all edges inci-

dent to a. Therefore, by Proposition 3.3.2, Pa,q1,...,qn\{a} is a PMU cover, and |Pa,q1,...,qn\{a}| < |P |

which contradicts the minimality of P in the unmixed tree G.
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r1 · · · rn
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1 · · · qPMU

n

aPMU

b

bPMU
1 · · · b`

Case 2: b1 /∈ P : By Proposition 3.3.4, there is at least one edge directed towards b1, call

it b1d. Since ca is directed towards a, each riqi is directed towards qi, b1d is directed towards b1,

p1, . . . , pm /∈ brancha(c) ∪ branchq1(r1) ∪ · · · ∪ branchqn(rn) ∪ branchb1(d), and

brancha(c),branchq1(r1), . . . ,branchqn(rn),branchb1(d)

are pairwise disjoint, by Corollary 3.3.11, there exists a PMU Cover Pa,q1,...,qn,b1 containing

a, q1, . . . , qn, p1, . . . , pm, b1

with |Pa,q1,...,qn,b1 | = |P |. However, {q1, . . . , qn, p1, . . . , pm, b1} ⊆ Pa,q1,...,qn,b1 \ {a} observes all

edges incident to a. Therefore, by Proposition 3.3.2, Pa,q1,...,qn,b1 \ {a} is a PMU cover, and

|Pa,q1,...,qn,b1 \ {a}| < |P | which contradicts the minimality of P in the unmixed tree G.
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r1 · · · rn

c pPMU
1 · · · pPMU

m qPMU
1 · · · qPMU

n

aPMU

b

bPMU
1 · · · b`

Proof of (2): Suppose, by way of contradiction, that ab is undirected with respect to P , and

deg(a) ≤ 2. We divide the proof into four cases and show that there exists a PMU cover containing

both a and b, leading to a contradiction:

Case 1: a, b ∈ P : We note that {b} ⊆ P \ {a} observes all edges incident to a. Therefore,

by Proposition 3.3.2, P \ {a} is a PMU cover, and |P \ {a}| < |P | which contradicts the minimality

of P in the unmixed tree G.

Case 2: a ∈ P, b /∈ P : By By Proposition 3.3.4, there is at least one edge directed towards

b, call it bd. Since bd is directed towards b, and a /∈ branchb(d), by Corollary 3.3.11, there exists

a PMU Cover Pb containing a and b with |Pb| = |P |. However, {b} ⊆ Pb \ {a} observes all edges

incident to a. Therefore, by Proposition 3.3.2, Pb \ {a} is a PMU cover, and |Pb \ {a}| < |P | which

contradicts the minimality of P in the unmixed tree G.

Case 3: a /∈ P, b ∈ P : By By Proposition 3.3.4, there is at least one edge directed towards

a, call it ac. Since ac is directed towards a, and b /∈ brancha(c), by Corollary 3.3.11, there exists

a PMU Cover Pa containing a and b with |Pa| = |P |. However, {b} ⊆ Pa \ {a} observes all edges

incident to a. Therefore, by Proposition 3.3.2, Pa \ {a} is a PMU cover, and |Pa \ {a}| < |P | which

contradicts the minimality of P in the unmixed tree G.
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Case 4: a /∈ P, b /∈ P : By By Proposition 3.3.4, there is at least one edge directed towards

a, call it ac, and one edge directed towards b, call is bd.

c // a b doo

Since ac is directed towards a, bd is directed towards b, and brancha(c) and branchb(d) are

disjoint, by Corollary 3.3.11, there exists a PMU Cover Pa,b containing a and b with |Pa,b| = |P |.

c aPMU bPMU d

However, {b} ⊆ Pa,b \ {a} observes all edges incident to a. Therefore, by Proposition 3.3.2,

Pa,b \ {a} is a PMU cover, and |Pa,b \ {a}| < |P | which contradicts the minimality of P in the

unmixed tree G.

Proof of (3): Suppose deg(a) ≥ 3 and there are two edges ba and ca directed towards a.

c // a boo

By (1), deg(b) ≤ 2 and deg(c) ≤ 2. We divide the proof into two cases and show that there

exists a PMU cover containing both b and c, leading to a contradiction:

Case 1: b, c ∈ P : Since ac is directed towards a, and b /∈ brancha(c), by Corollary 3.3.11,

there exists a PMU Cover Pa containing a and b with |Pa| = |P |.

c aPMU bPMU

However, {a} ⊆ Pa \ {b} observes all edges incident to b. Therefore, by Proposition 3.3.2,

Pa \ {b} is a PMU cover, and |Pa \ {b}| < |P | which contradicts the minimality of P in the unmixed

tree G.

Case 2: At least one of b, c /∈ P : Without loss of generality, assume b /∈ P . By By

Proposition 3.3.4, there is at least one edge directed towards b, call it bd. Since ac is directed

towards a, bd is directed towards b, and b /∈ brancha(c), by Corollary 3.3.11, there exists a PMU
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Cover Pa containing a and b with |Pa| = |P |.

c aPMU bPMU

However, {a} ⊆ Pa \ {b} observes all edges incident to b. Therefore, by Proposition 3.3.2,

Pa \ {b} is a PMU cover, and |Pa \ {b}| < |P | which contradicts the minimality of P in the unmixed

tree G.

Proof of (4): Suppose deg(a) ≥ 3 and there are no edges directed away from a. By By

Proposition 3.3.4, there is at least one edge directed towards a, call it ab and let ac1, ac2, . . . , acn be

n ≥ 2 additional undirected edges. By (2), c1, . . . , cn all have degree ≥ 3 and thus c1, . . . , cn /∈ P .

So by Proposition 3.3.4, there is at least one edge directed towards each ci, call them cidi.

d1 // c1

... a boo

dn // cn

Since ab is directed towards a, each cidi is directed towards ci, and brancha(b), branchc1(d1),

. . . ,branchcn(dn) are pairwise disjoint, by Corollary 3.3.11, there exists a PMU Cover Pa,c1,...,cn

containing a, c1, . . . , cn with |Pa,c1,...,cn | = |P |.

d1 cPMU
1

... aPMU b

dn cPMU
n

However, {c1, . . . , cn} ⊆ Pa,c1,...,cn \ {a} observes all edges incident to a. Therefore, by

Proposition 3.3.2, Pa,c1,...,cn \ {a} is a PMU cover, and |Pa,c1,...,cn \ {a}| < |P | which contradicts the

minimality of P in the unmixed tree G.
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Conclusion: Therefore, every vertex a ∈ G with deg(a) ≥ 3 must be adjacent to exactly 2

vertices of degree ≤ 2.
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Chapter 4

Unmixed Coronas with respect to

PMU Covers

4.1 Introduction

The work in this chapter is motivated by Theorem 1.1.1 and is an application of Theorem

3.1.1. Villarreal showed that the edge ideals of K1-coronas are Cohen-Macaulay [29]. Later on, Hon-

eycutt and Sather-Wagstaff showed that the closed neighborhood ideals are complete intersections

[14]. One might wonder if either of these is true for power edge ideals, that is, are the power edge

ideals of K1-coronas Cohen-Macaulay and if so are they complete intersections? The answer to this

question is no. This can be seen from the following example.

Example 4.1.1. Let R = k[x1, x2, x3, y1, y2, y3]. Consider the K1 corona of P2:

x1 x2

y1

x3

y1 y2

P2 ◦K1 =

Note that deg(x2) = 3 but x2 is adjacent to three vertices of degree at most 2. Thus, by Theorem

3.1.1, the power edge ideal of P2 ◦K1 is not Cohen-Macaulay.
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As the above example shows, the power edge ideal of a K1-corona is not Cohen-Macaulay

in general. However, the power edge ideal of graphs that are K1-coronas of K1-coronas is Cohen-

Macaulay and in fact is a complete intersection. As we will see in Theorem 4.2.10, this will charac-

terize when the power edge ideal of a K1-corona is Cohen-Macualay, with a couple exceptions.

4.2 Power Unmixed K1-Coronas

In this section we will give a characterization for K1-coronas that are Cohen-Macaulay.

First, we will start with a theorem that is analogous to Theorem 1.3.2.

Theoreom 4.2.1. If H is a K1-corona of a graph H ′, and H ′ is a K1 corona of a graph H ′′, then

the power edge ideal of H is a complete intersection.

Proof. Let V (H ′′) = {x1, . . . , xn}, V (H ′) = {x1, . . . , xn, y1, . . . , yn}, and

V (H) = {x1, . . . , xn, y1, . . . , yn, z11, . . . , z1n, z21, . . . , z2n}.

Also, let E(H ′) = E(H ′′) ∪ {x1y1, . . . , xnyn} and let

E(H) = E(H ′) ∪ {x1z11, . . . , xnz1n, y1z21, . . . , ynz2n}.

Let Hi = {xi, yi, z1i, z2i}. We claim that the minimal PMU covers of H are of the form {h1, . . . , hn}

where hi ∈ Hi. Let S = {h1, . . . , hn} be such a set. We must show that S is a minimal PMU cover.

Let x̃ be a vertex in V (H). It suffices to show that x̃ is observable by S in H. Note that x̃ is either

in S, adjacent to a vertex in S, or adjacent to a vertex of degree two that is adjacent to a vertex in

S. If x̃ is in S then x̃ is observable by the Incidence Law. If x̃ is adjacent to a vertex x′ in S, then x′

and x̃x′ are observable by the Incidence Law and x̃ is observable by Ohm’s Law. If x̃ is adjacent to

a vertex, x′, of degree two that is adjacent to a vertex x′′ in S, then x′′ and x′x′′ are observable by

the Incidence Law. Furthermore, x′ is observable by Ohm’s Law, x̃x′ is observable by Kirchhoff’s

Law, and x̃ is observable by Ohm’s Law. Thus, we have shown that S is a PMU cover.

Next, we must show that S is minimal. In fact, let T = V (H)\Hi for some i. We claim

that T is not a PMU cover of H. Note that every vertex in V (H)\{xi, yi, z1i, z2i} is observable by

the Incidence Law. If the connected component of H ′′ that contains xi contains no other vertex,
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then none of xi, yi, z1i, z2i will be observable by T in H and the result follows. So, suppose that the

connected component of H ′′ that contains xi contains at least one other vertex, xj , that is adjacent

to xi. Note that xj ∈ T and so xj and xixj are observable by T in H by the Incidence Law. In

addition, xi is observable by Ohm’s Law. Note that xi is adjacent to yi and z1i. Thus, we cannot

apply Kirchhoff’s Law. Furthermore, removing xi disconnects yi, z1i and z2i from the rest of H.

Thus, yi, z1i and z2i are not observable by T in H. So, this shows that S is a minimal PMU cover

and that all minimal PMU covers of H have the form {h1, . . . , hn} where hi ∈ Hi. It follows that

IPH =

〈 ∏
z∈Hi

z | i = 1, . . . , n

〉

Furthermore, it follows that IPH is a complete intersection.

Theoreom 4.2.2. Let H be a finite, simple graph such that H is the K1-corona of a subgraph H ′.

Every spanning tree of T of H, IPT is unmixed if and only if H ′ is K1, C4, or the K1 − corona of a

subgraph H ′′.

Proof. First we will prove sufficiency. Note that if H is the K1-corona of K1, then H is a tree that

satisfies Theorem 3.1.1. If H is the K1-corona of C4, then for every spanning tree of T of H, IPT is

unmixed by Example 4.2.11(c). If H = (H ′′ ◦K1) ◦K1 for some graph H ′′, then every vertex in H ′′

is adjacent to a leaf and one vertex of degree two in H. This will also be true for any spanning tree

of H. Furthermore, the degree of every vertex of H ′′ in any spanning tree of H will be at least three

(see Example 4.2.11(b) for a visual aid). Thus, each spanning tree of H satisfies Theorem 3.1.1.

Next, we will prove necessity. To do so, we will break this proof up into cases.

Case 1, H contains C3 as a subgraph: If H contains C3 as a subgraph, then it must contain

C3 ◦K1 as a subgraph (see Figure 4.1(left)).

Let x1, x2, x3 be the veritices of C3 in H. Let yi be the leaf adjacent to xi. Note that

there exists a spanning tree of H that contains the edges x1x3 and x2x3 but not x1x2 (see Figure

4.1(center)). If there are no other vertices in H, then x3 is a vertex of degree three and it is adjacent

to three vertices of degree two or less (which violates Theorem 3.1.1). Therefore, one of x1, x2, x3

must have a neighbor. Without loss of generality, suppose x1 has a neighbor, x4. Since H is a

K1-corona, there exists a leaf, y4 adjacent to x4 (see Figure 4.1(right))

There exists a spanning tree of H that contains x1x2 and x1x3 but not x2x3 (see Fig-

62



x3

x1

x2

y1

y2y3

x3

x1

x2

y1

y2y3

x4 y4

x3

x1

x2

y1

y2y3

Figure 4.1:

x3

x1

x2

y1

y2y3

x4 y4

x3

x1

x2

y1

y2y3

x4 y4

x5 y5x3

x1

x2

y1

y2y3

x4 y4

Figure 4.2:

ure 4.2(center)). If x2 and x3 have no neighbors outside the set {x1, x2, x3, y2, y3}, then x1 is vertex

of degree at least three and it is adjacent to more than two vertices of degree at most two (which

violates Theorem 3.1.1). Therefore, x2 or x3 has a neighbor, x5. Without loss of generality, let x5

be the neighbor of x2. Let y5 be the leaf adjacent to x5 (see Figure 4.2(right)).

There exists a spanning tree of H that contains x1x3 and x2x3, but not x1x2 (see Fig-

x3

x1

x2

y1

y2y3

x4 y4

x5 y5 x3

x1

x2

y1

y2y3

x4 y4

x5 y5 x3

x1

x2

y1

y2y3

x4 y4

x5 y5x6y6

Figure 4.3:

ure 4.3(center)). If x3 has no neighbors outside the set {x1, x2, y3}, then x3 is a vertex of degree

three and is only adjacent to one vertex of degree two or less (which violates Theorem 3.1.1). Thus,
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x3 must be adjacent to a vertex, x6, of degree two. Let y6 be the leaf of x6. Furthermore, x3 can

only be adjacent to one vertex of degree two. Similarly, if we take the spanning tree that contains

x1x2 and x1x3 but not x2x3, we can conclude that x1 is adjacent to one and only one vertex of

degree two. Let x4 be such a vertex. In addition, if we take the spanning tree that contains x1x2

and x2x3 but not x1x3, we can conclude that x2 is adjacent to one and only one vertex of degree

two. Let x5 be such a vertex. We conclude this case by noting that for each C3 that H contains C3

as a subgraph, it must actually contain (C3 ◦K1) ◦K1 as a subgraph. Furthermore, each vertex of

C3 is adjacent to exactly one vertex of degree two.

Case 2, H contains C4 as a subgraph: SupposeH contains C4 as a subgraph. Let x1, x2, x3, x4

be the vertices of C4 and x1x2, x2x3, x3x4, x1x4 be the edges. It suffices to assume that x1x3 and

x2x4 are not edges of H since otherwise we could appeal to Case 1. Since H is a K1-corona, H must

contain a K1-corona of C4. Let yi be the leaf adjacent to xi.

If H is equal to the K1-corona of C4, then for every spanning trees T of H, IPT is unmixed.

x1 x2

x4 x3

y2y1

y4 y3

x5y5 x1 x2

x4 x3

y2y1

y4 y3

x5y5 x1 x2

x4 x3

y2y1

y4 y3

x5y5 x6 y6

x7 y7x8y8

Figure 4.4:

In addition, IPH is also unmixed (see Example 4.2.11(c)). So, suppose H is not equal to the K1-

corona of C4. Then one of x1, x2, x3, x4 must be adjacent to a vertex, x5. Without loss of generality,

suppose x1 is adjacent to x5. Let y5 be the leaf adjacent to x5 (see Figure 4.4(left)). Consider the

spanning tree of H that contains the edges x2x3, x3x4, x1x4 but not x1x2 (See Figure 4.4(center)).

Note that x1 must be adjacent to a vertex of degree two. Let x5 be such a vertex. Furthermore, x1

cannot be adjacent to anymore vertices of degree two. In addition, x3 and x4 must each be adjacent

to one and only one vertex of degree two. Let x7 and x8 be such vertices, respectively. Let y7 be the

leaf adjacent to x7 and y8 be the leaf adjacent to x8. Furthermore, if we consider the spanning tree

that x1x2, x2x3, x3x4 but not x1x4, we see that x2 must also be adjacent to one and only one ver-
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tex of degree two. Let x6 be such a vertex and let y6 be the leaf adjacent to x6 (see Figure 4.4(right)).

Case 3, H contains Cn (n ≥ 5) as a subgraph: Suppose H contains Cn as a subgraph

where n ≥ 5. Let x1, . . . , xn be the vertices of Cn and x1x2, x2x3, . . . , x1xn be the edges. It suf-

fices to assume that there are no additional edges between the xi where 1 ≤ i ≤ n. Since H is a

K1-corona, H must contain a K1-corona of Cn. Let yi be the leaf adjacent to xi (see Figure 4.5(left)).

x1

xn x2

x4 x3

y1

yn

y3y4

y2

x1

xn x2

x4 x3

y1

yn

y3y4

y2

x1

xn x2

x4 x3

y1

yn

y3y4

y2

Figure 4.5:

Consider the spanning tree of H that contains x1x2,x2x3,x4x5, . . . , x1xn, but does not con-

tain x3x4 (see Figure 4.5(center)). This implies x1 must be adjacent to exactly one vertex of degree

two. Taking the appropriate spanning tree, we also get that each xi must be adjacent to exactly one

vertex of degree two for 1 ≤ i ≤ n. Thus, we have shown that if H contains Cn for n ≥ 5, for each

Cn that H contains, H contains a (Cn ◦K1) ◦K1 and each vertex of Cn is adjacent to exactly one

vertex of degree two.

Putting the three cases together, we have shown the desired result.

In order to prove our main result for this section, we will first give some lemmas.

Lemma 4.2.3. Let H be a finite, simple graph such that H is the K1-corona of a subgraph H ′.

There exists a PMU cover of H that contains only vertices of H ′.

Proof. Let V (H ′) = {x1, . . . , xn} and let V (H) = {x1, . . . , xn, y1, . . . , yn}. Also let E(H) = E(H ′)∪

{x1y1, . . . , xnyn}. Note that the yi are the leaves of H. Let P = {x1, . . . , xn}. We claim that P

is a PMU cover for H. Indeed, for each i such that 1 ≤ i ≤ n, xi and xiyi are observable by the
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Incidence Law. Furthermore, yi is observable by Ohm’s Law. Thus, H is observable by P .

Lemma 4.2.4. Let H be a finite, simple graph such that H is the K1-corona of a subgraph H ′.

There exists a PMU cover of H that contains only leaves of H.

Proof. Let V (H ′) = {x1, . . . , xn} and let V (H) = {x1, . . . , xn, y1, . . . , yn}. Also let E(H) = E(H ′)∪

{x1y1, . . . , xnyn}. Note that the yi are the leaves of H. Let P = {y1, . . . , yn}. We claim that P

is a PMU cover for H. Indeed, for each i such that 1 ≤ i ≤ n, yi and xiyi are observable by the

Incidence Law. Furthermore, xi is observable by Ohm’s Law. Thus, H is observable by P .

Lemma 4.2.5. Let H be a finite, simple graph such that H is the K1-corona of a subgraph H ′ with

V (H ′) = {x1, . . . , xn}. If there exists a vertex xi ∈ V (H ′) that is adjacent to more than one vertex

of degree one in H ′, then IPH is mixed.

Proof. Let V (H ′) = {x1, . . . , xn} and let V (H) = {x1, . . . , xn, y1, . . . , yn}. Also let E(H) = E(H ′)∪

{x1y1, . . . , xnyn}. Let xi ∈ V (H ′) such that xi is adjacent to more than one vertex of degree one in

H ′. Also, let xj1 , . . . , xjm be the vertices of degree one that are adjacent to xi in H ′. By assumption

we have m ≥ 2. Thus, xi is adjacent to one leaf, yi, in H and m vertices of degree two, xj1 , . . . , xjm ,

each of which are adjacent to leaves yj1 , . . . , yjm . By Lemma 4.2.4 there exists a PMU cover of H

containing only leaves of H. Let P be such a cover and let it be minimal. Note that P must contain

m vertices in the set Y = {yi, yj1 , . . . , yjm}. Let P̃ = (P ∩ Y c) ∪ {xi}. Note that P being a PMU

cover of H implies P̃ is a PMU cover of H (not necessarily minimal). In addition, since m ≥ 2, we

have |P̃ | < |P |. Thus, IPH is mixed.

The next four lemmas will give a more general version of Lemma 4.2.5.

Lemma 4.2.6. Let H be a finite, simple graph such that H is the K1-corona of a subgraph H ′ with

V (H ′) = {x1, . . . , xn}. Let xi ∈ V (H ′) and suppose that xj1 , . . . , xjm are neighbors of xi such that

for each s where 1 ≤ s ≤ m, the only neighbors of xjs in H ′ are in the set {xi, xj1 , . . . , xjm}. If

m > 1 then IPH is mixed.

Proof. Let V (H ′) = {x1, . . . , xn} and let V (H) = {x1, . . . , xn, y1, . . . , yn}. Also let E(H) = E(H ′)∪

{x1y1, . . . , xnyn}. Let xi ∈ V (H ′) and suppose that xj1 , . . . , xjm are neighbors of xi such that for

each s where 1 ≤ s ≤ m, the only neighbors of xjs in H ′ are in the set {xi, xj1 , . . . , xjm}. Suppose

m > 1. We can assume that xi is adjacent to at most one vertex of degree one in H ′ because
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otherwise we can apply Lemma 4.2.5. Thus, there must exists two vertices in the set {xj1 , . . . , xjm}

that are adjacent to one another in H ′. Without loss of generality, suppose xj1 and xj2 are adjacent

to one another in H ′.

By Lemma 4.2.4 there exists a PMU cover of H containing only leaves of H. Let P be such a

cover and let it be minimal. Note that P must contain at least one vertex in the set Y = {yi, yj1 , yj2}.

If P contains two vertices in the set Y = {yi, yj1 , . . . , yjm} then let P̃ = (P ∩ Y c) ∪ {xi}. Note that

P being a PMU cover of H implies P̃ is a PMU cover of H (not necessarily minimal). We have

|P̃ | < |P |. Thus, IPH is mixed. Suppose P only contains one vertex in the set Y . This vertex must

also be in Y . Note that yi cannot be such a vertex because then yj1 , . . . , yjm are not observable by

P . So, suppose yj1 or yj2 is in P . Without loss of generality, let yj1 ∈ P . In order for H to be

observable by P , there must exist a neighbor x` of xi in H ′ such that x` /∈ {xj1 , . . . , xjm} and such

that Kirchoff’s Law was applied in order to determine that xi is observable by P in H. This would

imply y` ∈ P . Let P̃ = (P\{yj1 , y`}) ∪ {xi}. Note that P̃ is a PMU cover of H (not necessarily

minimal) such that |P̃ | < |P |. Thus, IPH is mixed.

The following three lemmas are analogous to Lemma 4.2.6 and the proofs follow similarly.

Lemma 4.2.7. Let H be a finite, simple graph such that H is the K1-corona of a subgraph H ′ with

V (H ′) = {x1, . . . , xn}. Let xi1 , xi2 ∈ V (H ′) and suppose there exists vertices xj1 , . . . , xjm such that

for each s where 1 ≤ s ≤ m, xjs is a neighbor of at least one vertex from the set {xi1 , xi2} in H ′ and

the only neighbors of xjs in H ′ are in the set {xi1 , xi2 , xj1 , . . . , xjm}. If m > 2 then IPH is mixed.

Lemma 4.2.8. Let H be a finite, simple graph such that H is the K1-corona of a subgraph H ′ with

V (H ′) = {x1, . . . , xn}. Let xi1 , xi2 , xi3 ∈ V (H ′) and suppose there exists vertices xj1 , . . . , xjm such

that for each s where 1 ≤ s ≤ m, xjs is a neighbor of at least one vertex from the set {xi1 , xi2 , xi3}

in H ′ and the only neighbors of xjs in H ′ are in the set {xi1 , xi2 , xi3 , xj1 , . . . , xjm}. If m > 3 then

IPH is mixed.

Lemma 4.2.9. Let H be a finite, simple graph such that H is the K1-corona of a subgraph H ′ with

V (H ′) = {x1, . . . , xn}. Let xi1 , xi2 , xi3 , xi4 ∈ V (H ′) and suppose there exists vertices xj1 , . . . , xjm

such that for each s where 1 ≤ s ≤ m, xjs is a neighbor of at least one vertex from the set

{xi1 , xi2 , xi3 , xi4} in H ′ and the only neighbors of xjs in H ′ are in the set {xi1 , xi2 , xi3 , xi4 , xj1 , . . . , xjm}.

If m > 4 then IPH is mixed.
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Now we are ready to prove the main theorem of the section.

Theoreom 4.2.10. Let H be a finite, simple graph such that H is the K1-corona of a subgraph H ′.

The following conditions are equivalent:

(i) IPH is unmixed.

(ii) IPH is Cohen-Macaualay.

(iii) For every spanning tree T of H, IPT is unmixed.

(iv) H ′ is K1, C4, or the K1-corona of a subgraph H ′′.

Proof. Let H be a finite, simple graph such that H is the K1-corona of a subgraph H ′. Let V (H) =

{x1, . . . , xn, y1, . . . , yn} and let E(H) = E(H ′) ∪ {x1y1, . . . , xnyn}. First, note that (ii) =⇒ (i) is

standard, (iii) ⇐⇒ (iv) follows from Theorem 4.2.2, and (iv) =⇒ (ii) follows from Example 4.2.11.

It remains to show (i) =⇒ (iv). Note that if H ′ does not contain a cycle, then H is a tree and

we are done by Theorem 4.2.2 and Theorem 3.1.1. So, suppose H ′ contains a cycle. We first claim

that if H ′ contains a cycle, Cn, then H ′ is either equal to C4 or each vertex of the cycle is adjacent

to exactly one vertex of degree one in H ′. Equivalently, each vertex of the cycle must be adjacent

to exactly one vertex of degree one and exactly one vertex of degree two in H. We will prove this

claim by cases.

Case 1, H ′ contains C3 as a subgraph: Without loss of generality, let x1, x2, x3 be the

vertices of C3. We want to show that each vertex of C3 must be adjacent to exactly one vertex of

degree one and exactly one vertex of degree two in H. So, suppose this is not the case. First we

reduce to the case where H ′ contains C3 as a subgraph and any other vertex in V (H ′) must be

adjacent to at least one of x1, x2, x3. Applying Lemma 4.2.6, Lemma 4.2.7, and Lemma 4.2.8, we
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have the following subcases to consider:
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Note that in each subcase, we give minimal PMU covers of different sizes. Thus, in each

subcase, IPH is mixed. Now, suppose H ′ is any finite, simple graph that contains C3 as a subgraph.
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Again, let x1, x2, x3 be the vertices of C3. Let

P = {x ∈ V (H ′) | x /∈ {x1, x2, x3} and x is not adjacent to x1, x2, or x3}.

Note that the induced subgraph that contains x1, x2, x3 and the vertices adjacent to at least one of

x1, x2, x3 must match one of the subcases above. Consider the larger PMU cover of this induced

subgraph and place those vertices in P . Note that P is a PMU cover of H. Reduce P to a minimial

PMU cover, P ′. Observe that P ′ must still contain the vertices that came from the larger PMU

cover. Remove the vertices that came from the larger PMU cover of the induced subgraph and

replace them with the vertices that come from the smaller cover to obtain P ′′. Note that P ′′ is a

PMU cover of H and |P ′′| < |P ′|.

Case 2, H ′ contains C4 as a subgraph: Without loss of generality, let x1, x2, x3, x4 be the

vertices of C4. We want to show that each vertex of C4 must be adjacent to exactly one vertex of

degree one and exactly one vertex of degree two in H. So, suppose this is not the case. First we

reduce to the case where H ′ contains C4 as a subgraph and any other vertex in V (H ′) must be

adjacent to at least one of x1, x2, x3, x4.

By Case 1, we can assume thatH ′ does not contain C4 as a subgraph. Applying Lemma 4.2.6,
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Lemma 4.2.7, Lemma 4.2.8 and Lemma 4.2.9, we have the following subcases to consider:
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Note that in each subcase, we give minimal PMU covers of different sizes. Thus, in each

subcase, IPH is mixed. Now, suppose H ′ is any finite, simple graph that contains C4 as a subgraph.

Again, let x1, x2, x3, x4 be the vertices of C4 and let x1x2, x2x3, x3x4, x1x4 be the edges. Let

P = {x ∈ V (H ′) | x /∈ {x1, x2, x3, x4} and x is not adjacent to x1, x2, x3 or x4}.

Note that the induced subgraph that contains x1, x2, x3, x4 and the vertices adjacent to at least one

of x1, x2, x3, x4 must match one of the subcases above (with one exception which we give below).

Consider the larger PMU cover of this induced subgraph and place those vertices in P . Note that P

is a PMU cover of H. Reduce P to a minimial PMU cover, P ′. Observe that P ′ must still contain

the vertices that came from the larger PMU cover. Remove the vertices that came from the larger

PMU cover of the induced subgraph and replace them with the vertices that come from the smaller

cover to obtain P ′′. Note that P ′′ is a PMU cover of H and |P ′′| < |P ′|.
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The one subcase that is not handled above is when each of x1, x2, x3, x4 is adjacent to exactly

one vertex in H and there is no other vertex only adjacent to vertices in the set {x1, x2, x3, x4}.

Since we are assuming H ′ is not equal to C4, there must exist a vertex, xi /∈ {x1, x2, x3, x4} that is

adjacent to one of x1, x2, x3, x4. Without loss of generality, suppose xi is adjacent to x1. Let

P = {x ∈ V (H ′) | x /∈ {x1, x2, x3, x4} and x is not adjacent to x1, x2, x3 or x4}.

Add y2, y4, and xi to P . Observe that P is a PMU cover of H. Reduce P to a minimial PMU cover,

P ′. Observe that P ′ must still contain y2, y4, and xi. Replace y2, y4 with x3 to obtain P ′′. We note

that P ′′ is also a PMU cover of H such that |P ′′| < |P ′|

Case 3, H ′ contains Cm as a subgraph form ≥ 5: Without loss of generality, let x1, x2, . . . , xm

be the vertices of Cm. We want to show that each vertex of Cm must be adjacent to exactly one

vertex of degree one and exactly one vertex of degree two in H. So, suppose this is not the case.

First we reduce to the case where H ′ contains Cm as a subgraph and any other vertex in V (H ′)

must be adjacent to at least one of x1, x2, . . . , xm. Applying Cases 1 and 2, it suffices to assume

that H ′ does not contain Ck as a subgraph for k < m. Thus, we have two subcases to consider.

The first subcase is where H ′ is equal to Cm. By Lemma 4.2.4, there exists a minimal PMU cover

containing the leaves of H. Observe that for any i where 1 ≤ i ≤ m, two of yi, yi+1, yi+2, yi+3 must

be in any minimal PMU cover containing only the leaves of H where if i + k > m for some k then

we let yi+k = ym−(i+k). Furthermore, any set that satisfies this condition for all i will be a PMU

cover of H. Thus, there exists a minimal PMU cover containing the leaves of H of size dm2 e. Let

P ′ be such a cover. By Lemma 4.2.3, there exists a minimal PMU cover containing the vertices of

H ′. Observe that for any i where 1 ≤ i ≤ m, one of xi, xi+1, xi+2 must be in any minimal PMU

cover containing only the vertices of H ′ where if i+ k > m for some k then we let yi+k = ym−(i+k).

Furthermore, any set that satisfies this condition for all i will be a PMU cover of H. Thus, there

exists a minimal PMU cover containing the vertices of H ′ of size dm3 e. Let P ′ be such a cover. Since

dm2 e < d
m
3 e for n ≥ 5, we have |P ′′| < |P ′|.

The second subcase to consider is where at least one of x1, . . . , xm is adjacent to exactly one

vertex of degree one in H ′. By assymption, H ′ is not the K1-corona of a subgraph H ′′. Thus, at

least one of the x1, . . . , xm is not adjacent to any vertex outside the set {x1, . . . , xm}. Furthermore,

there must exist neighbors, xi and xj , such that xi is adjacent to exactly one vertex, xk (where
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m < k ≤ n), of degree one in H ′ and xj is not adjacent to any vertex outside the set {x1, . . . , xm}.

Suppose x` (where 1 ≤ ` ≤ m) is the other vertex adjacent to xj in H ′. Observe that x` is either

adjacent to zero or one vertices of degree one in H ′. Either way, we let P = {y1, . . . , yn}\{yj , y`}

and observe that P is a PMU cover of H. Reduce P to a minimal PMU cover P ′ of H. Observe that

yi, yk ∈ P ′. Let P ′′ = (P ′\{yi, yk})∪{xi}. Note that P ′′ is a PMU cover of H such that |P ′′| < |P ′|.

Note that in each subcase, we give minimal PMU covers of different sizes. Thus, in each

case, IPH is mixed. Now, suppose H ′ is any finite, simple graph that contains Cm as a subgraph.

Again, let x1, x2, . . . , xm be the vertices of Cm. Let

P = {x ∈ V (H ′) | x /∈ {x1, x2, . . . , xm} and x is not adjacent to x1, x2, . . . , xm}.

Note that the induced subgraph that contains x1, x2, . . . , xm and the vertices adjacent to at least

one of x1, x2, . . . , xm must match one of the subcases above. Consider the larger PMU cover of this

induced subgraph and place those vertices in P . Note that P is a PMU cover of H. Reduce P to a

minimial PMU cover, P ′. Observe that P ′ must still contain the vertices that came from the larger

PMU cover. Remove the vertices that came from the larger PMU cover of the induced subgraph

and replace them with the vertices that come from the smaller cover to obtain P ′′. Note that P ′′ is

a PMU cover of H and |P ′′| < |P ′|.

Thus, we have shown if H ′ contains a cycle, Cm, then H ′ is either equal to C4 or each vertex of the

cycle is adjacent to exactly one vertex of degree one in H ′. If H equals C4 then we are done, so

suppose H ′ contains a cycle, Cm. It remains to show that any vertex of degree at least two in H ′

that is not part of a cycle must be adjacent to exactly one vertex of degree one in H ′. Let x ∈ V (H)

that is not contained in a cycle. If there does not exist a path between x and a cycle in H, then

the connected component that contains x must be a tree. Thus, we can apply Theorem 4.2.2 and

Theorem 3.1.1. Suppose there does exist a path between x and a cycle in H. By Cases 1, 2, and

3, the vertices that are part of the cycle must be adjacent to exactly one vertex of degree one and

exactly one vertex of degree two in H. Continue along the path that contains x until you get to

a cycle. Let xi1 be the first vertex of the cycle that is reached by continuing along the path. Let

xj1 be the vertex of degree two in H that is adjacent to xi1 . Delete the edges of the cycle incident

to xi1 and let D1 be the connected component of H that contains x. Note that D2 also contains

xi1 , xj1 , yi1 , and yj1 . If there exists a path between x and a cycle in D1, then repeat the process
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above to obtain D2. Continuing this process, we will end up with a connected component Dk that

contains x, xi1 , xj1 , yi1 , yj1 , . . . , xik , xjk , yik , yjk . Note that IPDk
mixed implies IPH mixed. Since Dk is

a tree, we must have that each vertex of Dk ∩H ′ must be adjacent to exactly one vertex of degree

one in H ′ by Theorem 4.2.2 and Theorem 3.1.1. Since x was an arbitrary vertex not contained in a

cycle, we have proven our desired result.

Example 4.2.11. Here are the three cases given in (iii) of Theorem 4.2.10.

(a)

H ′ = x1 , H = x1 x2

Note that H is itself a tree and satisfies the conditions of Theorem 3.1.1 trivially since it does

not contain any vertices of degree 3. Thus, IPH is a complete intersection. This can also be

verified from looking at generators the power edge ideal:

IPH = 〈x1x2〉

(b) Let the graphs of H, H ′ and H ′′ be as follows:

H ′′ = x1

x3 x2

H ′′ is C3. Note, however, that H ′′ can be any graph G and the results still follow.

H ′ = x1 x4

x5 x3 x2 x6

H ′ is the K1-corona of C3

H = x7 x1 x4 x10

x11 x5 x3 x2 x6 x12

x9 x8

H is the K1-corona of the K1-corona of C3. Note that there are three spanning trees of H. One
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can be obtained by deleting the edge x1x2, one can be obtained by deleting the edge x1x3, and

the last one can be obtained by deleting the edge x2x3. Deleting the edge x2x3 we obtain the

following spanning tree of H:

x7 x1 x4 x10

x11 x5 x3 x2 x6 x12

x9 x8

Note that this spanning tree satisfies the conditions in Theorem 3.1.1. That is, every vertex of

degree 3 or greater is adjacent to two vertices of degree at most two. The other two spanning

trees are similar and also satisfy the conditions in Theorem 3.1.1.

The power edge ideal of H is:

IPH = 〈x1x4x7x10, x3x5x9x11, x2x6x8x12〉

Note that IPH is a complete intersection.

(c)

H ′ = x1 x2

x4 x3

, H = x5 x1 x2 x6

x8 x4 x3 x7

Note that there are four spanning trees of H, each of which can be obtained by removing an

edge of H ′. Deleting the edge x1x2, we obtain the following subgraph of H:

x5 x1 x2 x6

x8 x4 x3 x7

Note that this spanning tree satisfies the conditions in Theorem 3.1.1. That is, every vertex of

degree 3 or greater is adjacent to two vertices of at degree most two. The other three spanning

trees are similar and also satisfy the conditions in Theorem 3.1.1.

The power edge ideal of H is:

IPH = 〈x1x2x3x4x5x7, x1x2x3x4x6x8, x1x2x3x5x6x7, x1x2x4x5x6x8, x1x3x4x5x7x8, x2x3x4x6x7x8〉
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Note that IPH is not a complete intersection, which is different from the previous two cases.

However, it is still Cohen-Macaulay.

4.3 Power Unmixed Coronas

In this section, we will characterize H-coronas that are Cohen-Macaulay, where H is any

finite, simple graph.

Definition 4.3.1. Let G and H be finite, simple graphs. Let V (G) = {x1, . . . , xn} and V (H) =

{y1, . . . , ym}. The H-corona of G is a new graph, denoted G ◦ H, with vertex set V (G ◦ H) =

{x1, . . . , xn, y11, . . . , y1m, y21, . . . , y2m, . . . , yn1, . . . , ynm} and edge set E(G ◦H) = E(G) ∪ {yii1yii2 |

yi1yi2 ∈ E(H), 1 ≤ i ≤ m} ∪ {xiyij | xi ∈ V (G), yj ∈ V (H)}.

Example 4.3.2. Let G = C3 and H = P2, then the H-corona of G is given below:

x1

x2 x3

G =
H = y1 y2 y3

y11 y12 y13

y21

y22

y23

y31

y32

y33

x1

x2 x3

G ◦H =

Theoreom 4.3.3. Let G = (V,E) be a finite simple graph with vertex set V = {x1, . . . , xn} and let

H be any finite simple graph except K1 such that every minimal PMU cover of H has size one. The

minimal PMU covers of G ◦H are of the form {z1, . . . , zn} where zi ∈ {xi, yi1, . . . , yim}.
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Proof. Let S ⊆ V (G ◦H) be of the form {z1, . . . , zn} where zi ∈ {xi, yi1, . . . , yim}. We must show

that this is a minimal PMU cover. First we will show that S is a PMU cover. Let x̃ ∈ V (G ◦H). It

suffices to show that x̃ is observable by S. Note that if x̃ = xi then x̃ is either in S or it is adjacent to

a vertex in S. If x̃ is in S, then x̃ is observable by the Incidence Law. If x̃ is adjacent to a vertex, yij

in S where 1 ≤ j ≤ m, then yij and x̃yij are observable by the Incidence Law. Thus, x̃ is observable

by Ohm’s Law. Now, we suppose x̃ = yij where 1 ≤ j ≤ m. If x̃ ∈ S, then x̃ is observable by the

Incidence Law. If xi ∈ S, then xi and xix̃ are observable the Incidence Law and x̃ is observable by

Ohm’s Law. Suppose yik ∈ S where j 6= k and 1 ≤ k ≤ m. Note that yik and xiyik are observable

by the Incidence Law and xi is observable by Ohm’s Law. Furthermore, all edges incident to yik

are observable by the Incidence Law and every vertex adjacent to yik are observable by Ohm’s Law.

Furthermore, every vertex adjacent to yik is also adjacent to xi. Thus, the edges that are incident

to the adjacent vertices of yik and xi are observable by Ohm’s Law. Note that the Incidence Law

will no longer be applied. Now, suppose x̃ is not yet observable since otherwise we are done. Let

H̃ be the copy of H that contains the vertices {yi1, . . . , yim}. Since yi1, . . . , yim are observable by

yik in H̃, we must be able to apply Ohm’s Law and/or Kirchhoff’s Law to obtain another vertex, ỹ

that is observable in H̃. Since the edges that are incident to the adjacent vertices of yik and xi are

observable, we can also apply the same laws that we applied in H̃ to G ◦H to get ỹ is observable in

G◦H. Furthermore, xiỹ is observable by Ohm’s Law. We can continue this process to show that all

the vertices in {yi1, . . . , yim} are observable. Thus, x̃ is observable by S. Therefore, we have shown

that S is a PMU cover. Next we must show that S is minimal. Suppose that there is a PMU on

every vertex in V (G ◦H) except the set {xi, yi1, . . . , yim} for some i where 1 ≤ i ≤ n. Let T be the

set of vertices with PMUs. We claim that yij are not observable by T for all j where 1 ≤ j ≤ m.

Note that if the connected component of G that contains xi contains no other vertices then the

desired result follows. So, suppose that the connected component of G that contains xi contains at

least one other vertex, xk, where i 6= k and 1 ≤ k ≤ n. Note that every vertex in T is observable by

the Incidence law. By our assumption, xk ∈ T . Thus, xk is observable by T . In addition, xixk is

observable by the Incidence Law and xi is observable by Ohm’s Law. Also by assumption, none of

the yij are in T . Furthermore, the only vertices that the yij are adjacent to in G ◦H are each other

and xi. Since H 6= K1, we have m > 1. Thus, we cannot apply Kirchhoff’s Law. So, the yij are

not observable by T . This shows that S is a minimal PMU cover and that all minimal PMU covers

must be of the form {z1, . . . , zn} where zi ∈ {xi, yi1, . . . , yim}.
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Theoreom 4.3.4. Let G = (V,E) be a finite simple graph with vertex set V = {x1, . . . , xn} and let

H be any finite simple graph except K1 such that every minimal PMU cover of H has size one. Let

Hi = {xi, yi1, . . . , yim}. Then

IPG◦H =

〈 ∏
z∈Hi

z | i = 1, . . . , n

〉

Proof. This follows directly from Theorem 4.3.3.

Theoreom 4.3.5. Let G = (V,E) be any finite simple graph with vertex set V = {x1, . . . , xn} and

let H be any finite simple graph except K1 (which has already been characterized in Theorem 4.2.10).

Then IPG◦H is a complete intersection if and only if every minimal PMU cover of H has size 1.

Proof. The sufficient condition follows from Theorem 4.3. It remains to show the necessary condition.

Suppose there exists a minimal PMU cover of H that has size greater than one. It suffices to show

that IG◦H is mixed. We will construct a minimal PMU cover of size n and a minimal PMU cover

of size greater than n. Let S1 = {x1, . . . , xn}. We claim that this is a minimal PMU cover. Indeed,

all of the xi are observable by the Incidence Law where 1 ≤ i ≤ n. Furthermore, all of the yij are

incident to xi for each j where 1 ≤ j ≤ m. Thus, all the edges xiyij are observable by the Incidence

Law and all the yij are observable by Ohm’s Law. Thus, S1 is a PMU cover for G ◦H. In fact, S1

is a minimal PMU cover since if we remove any xk, then the ykj are no longer observable. Now,

we will construct a PMU cover of size greater than n. Let H̃ be the copy of H that contains the

vertices {y11, . . . , y1m}. By assumption, H̃ contains a minimal PMU cover of size greater than one.

Without loss of generality, let y11 be an element of the minimal PMU cover of size greater than one.

Let S2 = {y11, x2, . . . , xn}. We claim that this is not a PMU cover for G ◦ H̃. This follows since y11

is not a minimal PMU cover for H̃. Thus, we must add more vertices from {y11, . . . , y1m} to S2 to

get a minimal PMU cover. This will give us a PMU cover of size greater than n.

Example 4.3.6. Let G = C3 and H = P2 (refer to Example 4.3.2). Note that the minimal PMU

covers of P2 are {{y1}, {y2}, {y3}}, all of which have size one. This satisfies the condition in Theorem

4.3.5. The power edge ideal of G ◦H is:

IPG◦H = (x1y11y12y13, x2y21y22y23, x3y31y32y33).
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Note that the IPG◦H is a complete intersection.
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Chapter 5

Unmixed Trees with respect to

Double Dominating Sets

5.1 Introduction

The work in this chapter is motivated by another graph domination problem called double

domination. This research is inspired by Villarreal’s work in [29]. He came up with the notion of

an edge ideal, I(G), of a graph G which is an ideal generated by the edges of the graph. A great

amount of research has been done showing connections between the algebraic properties of I(G) and

the combinatorial properties of G. One important property is that the edge ideal of a graph G is

equal to the intersection of the minimal vertex covers of G.

Later on, mathematicians began to make variations to the construction of edge ideals and

showed connections between their graphs and the new ideals. A variation that is of particular inter-

est to this dissertation is called the closed neighborhood ideal which was introduced by Sharifan and

Moradi [26] in 2020. In 2021, Honeycutt and Sather-Wagstaff [14] showed that the closed neighbor-

hood ideal, NG, is equal to the intersection of the ideals generated by the minimal dominating sets

of G.

In this chapter, we introduce a new graph ideal called the double domination ideal NG,2.

We then show that the double domination ideal is equal to the intersection of the ideals generated

by the minimal double dominating sets of G.
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In this chapter, let k be a field.

5.2 Double Domination Ideal and Double Dominating Sets

Definition 5.2.1. Let G be a finite simple graph (we assume that all graphs considered further are

finite and simple). A subset D ⊂ V (G) is a double dominating (DD) set of G if for every vertex

x ∈ V (G), the set NG(x) has at least two elements in D where NG(x) is the closed neighborhood of

x in G. A subset D is a minimal DD-set if no proper subset of D is a DD-set. We say G is unmixed

if every minimal DD-set of G has the same size.

Example 5.2.2. Let R = k[x1, x2, x3] and let G = C3. Recall that I(C3) = (x1x2, x1x3, x2x3)R.

The minimal DD-sets of C3 are {x1, x2},{x1, x3}, and {x2, x3}.

Example 5.2.3. Let R = k[x1, x2, x3] and let G = P2. Recall that I(P2) = (x1x2, x2x3)R. Note

that {x1, x2, x3} is the only minimal DD-set of P2.

Remark 5.2.4. Note that in order for a graph G to contain a double dominating set, G must

contain no isolated vertices. Therefore, for the remainder of this chapter, we will assume this to be

the case for any graph G.

Fact 5.2.5. Let G be a graph. Then

• For any D1, D2 ⊆ V , if D1 is a DD-set and D1 ⊆ D2, then D2 is a DD-set.

• Every DD-set that is not minimal contains a minimal DD-set.

Definition 5.2.6. Let G be a graph with vertex set V = {x1, . . . , xd}, and let R = k[x1, . . . , xd].

Let N(xi) be the closed neighborhood of a vertex xi. Let

N ′(xi) = {U ⊂ N(xi) | |U | = |N(xi)| − 1}.

Finally, we define the double domination ideal, NG,2, of G as:

NG,2 =

(∏
u∈U

u | U ∈ N ′(x) for some x ∈ V

)
R.
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Example 5.2.7. Let R = k[x1, x2, x3] and let G = C3. Recall that IC3 = (x1x2, x1x3, x2x3)R. By

Definition 5.2.6 we have

N(x1) = {x1, x2, x3}

N(x2) = {x1, x2, x3}

N(x3) = {x1, x2, x3}

N ′(x1) = {{x1, x2}, {x1, x3}, {x2, x3}}

N ′(x2) = {{x1, x2}, {x1, x3}, {x2, x3}}

N ′(x3) = {{x1, x2}, {x1, x3}, {x2, x3}}

NC3,2 = (x1x2, x1x3, x2x3)R

Note that IC3
= NC3,2. This, however, is not true in general as seen by the following example.

Example 5.2.8. Let R = k[x1, x2, x3] and let G = P2. Recall that IP2
= (x1x2, x2x3)R. By

Definition 5.2.6 we have

N(x1) = {x1, x2}

N(x2) = {x1, x2, x3}

N(x3) = {x2, x3}

N ′(x1) = {{x1}, {x2}}

N ′(x2) = {{x1, x2}, {x1, x3}, {x2, x3}}

N ′(x3) = {{x2}, {x3}}

NP2,2 = (x1, x2, x3, x1x2, x1x3, x2x3)R = (x1, x2, x3)R

Note that in this case, we have IP2 6= NP2,2.

Definition 5.2.9. Given a subset V ′ ⊆ V , we define PV ′ to be the ideal “generated by the elements

in V ′”;

PV ′ = ({vi | vi ∈ V ′})R.

By definition, a double domination ideals is a monomial ideal; hence, has an irreducible

decomposition. So, we find such decomposition for any double domination ideal of a given graph.
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Theoreom 5.2.10. Let G be a graph with vertex set V = {x1, . . . , xd}, and let R = k[x1, . . . , xd] be

a polynomial ring. The double domination ideal has the following m-irreducible decomposition

NG,2 =
⋂
V ′

PV ′ =
⋂

V ′ min

PV ′

where the first intersection is taken over all DD-sets in G, and the second intersection is taken over

all minimal DD-sets in G. In particular, the second decomposition is irredundant.

Proof. Since for any A,B ⊆ V , we have PA ⊆ PB iff A ⊆ B, the second intersection is irredundant.

Let V ′′ ⊆ V be a DD-set which is not minimal. Then V ′′ contains a minimal DD-set. So, we have⋂
V ′ PV ′ =

⋂
V ′ 6=V ′′ PV ′ . Since V is finite, by repeating the same argument finitely many times, we

conclude that
⋂
V ′ PV ′ =

⋂
V ′ min. PV ′ . Next, we must show that NG,2 =

⋂
V ′ min. PV ′ .

First, we want to show that NG,2 ⊆
⋂
V ′ min. PV ′ . It suffices to show that the generators

of NG,2 are in
⋂
V ′ min. PV ′ . As given in Definition 5.2.6, suppose U ∈ N ′(x) for some x ∈ V . Let

V ′ be a minimal DD-set. By definition, there are at least two elements in V ′ ∩N(x), so there must

be at least one element in V ′ ∩ U (since there is only one element in N(x) that is not in U). Thus,∏
u∈U u ∈ PV ′ . Since

∏
u∈U u ∈ PV ′ for every minimal DD-set V ′, we have

∏
u∈U u ∈

⋂
V ′ min. PV ′ .

Thus, NG,2 ⊆
⋂
V ′ min. PV ′ .

Next we must show NG,2 ⊇
⋂
V ′ min. PV ′ . Since NG,2 and

⋂
V ′ min. PV ′ are both monomial

ideals, it suffices to show the monomial elements of
⋂
V ′ min. PV ′ are in NG,2. Let x = xk11 x

k2
2 · · ·xknn

be a monomial element of
⋂
V ′ min. PV ′ . Let X = {xi | ki 6= 0}. Suppose for the sake of contradiction

that x /∈ N2
G. We claim V \X is a DD-set. To verify, let z ∈ V be any vertex. Let U be a set in

N ′(z). (Note that U is nonempty since we are assuming that G has no isolated vertices). Since

x /∈ N2
G, we have

∏
u∈U u does not divide x. This implies that we have some z′ ∈ U such that z′ /∈ X.

Since U is nonempty, the set U ′ = N(z)\{z′} ∈ N ′(z) is distinct from U . By the same reasoning as

above, there is a vertex z′′ ∈ U ′ such that z′′ /∈ X. Thus, z′, z′′ are two distinct vertices in the closed

neighborhood of z that satisfy z′, z′′ ∈ V \X. This implies that V \X is a double dominating set

as desired. However, this contradicts the fact that x ∈
⋂
V ′ min. PV ′ , since

⋂
V ′ min. PV ′ ⊆ (V \X)R

and x /∈ (V \X)R. Therefore, x ∈ NG,2. Thus, NG,2 ⊇
⋂
V ′ min. PV ′ . By double inclusion, we have

NG,2 =
⋂
V ′ min. PV ′ .

Example 5.2.11. Let R = k[x1, x2, x3]. By Example 5.2.2, the minimal DD-sets of C3 are
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{x1, x2},{x1, x3}, and {x2, x3}. By Example 5.2.7, we have NC3,2 = (x1x2, x1x3, x2x3)R. Veri-

fying Theorem 5.2.10, we have

(x1x2, x1x3, x2x3)R = (x1, x2)R ∩ (x1, x3)R ∩ (x2, x3)R.

Example 5.2.12. Let R = k[x1, x2, x3]. By Example 5.2.3, the minimal DD-set of P2 is {x1, x2, x3}.

By Example 5.2.8, we have NP2,2 = (x1, x2, x3)R. Verifying Theorem 5.2.10, we have

(x1, x2, x3)R = (x1, x2, x3)R.

5.3 Macualay2 Code and Examples

In this section, we provide Macaulay2 code for computing the minimal DD-sets and the

double domination ideal of a given graph. It uses Francisco, Hoefel, and Van Tuyl’s EdgeIdeals

package [6].

Code 5.3.1. The following Macaulay2 code is based on Definition 5.2.6. For Example 5.3.2 below,

the following code is stored in the file DoubleDomination.m2.

loadPackage "EdgeIdeals"

MinKdomSet = method()

MinKdomSet(Graph,ZZ) := (G,k) -> (

V := for i from 0 to #(vertices G)-1 list i;

D := for i in V list degreeVertex (G,i);

d := min D;

if d < k-1 then error "Graph is too small.";

NOpen := for i in V list neighbors(G,i);

NClosed := for i in V list append(NOpen#i,(vertices G)#i);

S := for i in V list subsets(NClosed#i,#(NClosed#i)-k+1);

IR := for i in V list apply(S#i,product);

I := monomialIdeal(flatten(IR));

return irreducibleDecomposition(I);

)
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Example 5.3.2. Here we show how the code above can give an example of a double domination

ideal that is unmixed but not Cohen-Macaulay over Q.

i1 : load "DoubleDomination.m2"

i2 : R=QQ[x_1..x_6];

i3 : G=graph(R,{x_1*x_2,x_2*x_3,x_3*x_4,x_4*x_5,x_5*x_6,x_1*x_6});

i4 : DDSets = MinKdomSet(G,2)

o4 = {monomialIdeal (x , x , x , x ), monomialIdeal (x , x , x , x ),

1 2 4 5 1 3 4 6

-----------------------------------------------------------------------

monomialIdeal (x , x , x , x )}

2 3 5 6

o4 : List

i5 : DDideal = intersect DDSets

o5 = monomialIdeal (x x , x x , x x , x x , x x , x x , x x , x x , x x , x x , x x , x x )

1 2 1 3 2 3 2 4 3 4 1 5 3 5 4 5 1 6 2 6 4 6 5 6

o5 : MonomialIdeal of R

i6 : isCM(hyperGraph DDideal)

o6 = false

More counterexamples will be given in Chapter 6.
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5.4 Conjecture

In this section, we give a conjecture for the characterization of trees T for which NG,2 is

Cohen-Macaulay.

Definition 5.4.1. Let T = (V,E) be a tree and let x ∈ V (T ). The double domination weight of x,

dd2T (x), is given by:

dd2T (x) =



0 if x is a leaf

0 if there exists a leaf x′ ∈ V (T ) such that d(x, x′) = 1

0 if there exists leaves x′, x′′ ∈ V (T ) such that d(x, x′) = d(x, x′′) = 2

1 if there exists a leaf x′ ∈ V (T ) such that d(x, x′) = 2 and for all leaves x′′ ∈ V (T )\{x′}, d(x, x′′) > 2

2 otherwise

Now, we will create a vertex-weighted graph, T̃ = (Ṽ , Ẽ). Let Ṽ = {x ∈ V (T ) | x is not a leaf or a neighbor of a leaf}

and Ẽ = {xixj ∈ E(T ) | xi, xj ∈ V ′(T̃ )}. We let the weight of a vertex, x ∈ V ′(T̃ ), be equal to its

double domination weight in G. We call a subset D ⊂ Ṽ a cover of Ṽ if every vertex of weight 2 is

double dominated and every vertex of weight 1 is dominated.

Example 5.4.2. Let R = k[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14]. Consider the fol-

lowing tree T .

x1 x2

x12

x11

x13

x14

x6x3 x4 x5x7 x8

x9

x10
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Using Code 5.3.1, we compute the minimal DD-sets of T :

{{x1, x2, x4, x5, x7, x8, x9, x10, x11, x12, x13, x14},

{x1, x3, x4, x5, x7, x8, x9, x10, x11, x12, x13, x14},

{x1, x3, x4, x6, x7, x8, x9, x10, x11, x12, x13, x14},

{x1, x3, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14},

{x2, x3, x4, x5, x7, x8, x9, x10, x11, x12, x13, x14},

{x2,3 , x4, x6, x7, x8, x9, x10, x11, x12, x13, x14},

{x2, x3, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14}}

Using Definition 5.4.1, we have

dd2T (x6) = dd2T (x7) = dd2T (x8) = dd2T (x9) = dd2T (x10) = dd2T (x11) = ddTG(x12) = dd2T (x13) = dd2T (x14)

dd2T (x1) = dd2T (x3) = 1

dd2T (x2) = dd2T (x4) = dd2T (x5) = 2

Here is the graph, T̃ :

x11 x22 x06x13 x24 x25

Note that the minimal covers of T̃ are

{x1, x2, x4, x5}, {x1, x3, x4, x5}, {x1, x3, x4, x6}, {x1, x3, x5, x6}, {x2, x3, x4, x5}, {x2,3 , x4, x6}, {x2, x3, x5, x6}

Note that these covers correspond to the minimal DD-sets of T .

Conjecture 5.4.3. Let T = (V,E) be a tree. Then NT,2 is unmixed (equiv. Cohen-Macaulay) if and

only if T̃ can be constructed by connecting weighted stars, S1, . . . , Sn by edges, such that S1, , . . . , Sn

are unmixed w.r.t covers and for any minimal cover F ⊂ V (Si) and any minimal cover D ⊂ V (T̃ ),

we have |V (Si) ∩D| = |F |.
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Example 5.4.4. Recall from Example 5.4.2 that T̃ is:

x11 x22 x06x13 x24 x25

Consider the stars S1 and S2 below:

x11 x22

x06

x13

x24 x25

S1 =

S2 =

Note that T̃ can be constructed by connecting x3 of S1 and x4 of S2 with an edge. In addition, the

minimal covers of S1 are

{x1, x2}, {x1, x3}, {x2, x3}}

and the minimal covers of S2 are

{x4, x5}, {x4, x6}, {x5, x6}.

Note that both S1 and S2 are unmixed w.r.t minimal covers and the size of the minimal covers for

both S1 and S2 is 2. Recall that that the minimal covers of T̃ are

{x1, x2, x4, x5}, {x1, x3, x4, x5}, {x1, x3, x4, x6}, {x1, x3, x5, x6}, {x2, x3, x4, x5}, {x2,3 , x4, x6}, {x2, x3, x5, x6}

Note that

|{x1, x2, x3} ∩ {x1, x2, x4, x5}| = 2

|{x1, x2, x3} ∩ {x1, x3, x4, x5}| = 2

Note that T satisfies Conjecture 5.4.3 and from Example 5.4.2 we see that NT,2 is unmixed.

95



Chapter 6

Counterexamples

6.1 Introduction

In this chapter, let k be a field. In general, for any ideal I, we have the following implications:

I is a complete intersection =⇒ I is Gorenstein =⇒ I is Cohen-Macaulay =⇒ I is unmixed.

By Theorem 1.1.3, the edge ideal for trees is unmixed if and only if it is Cohen-Macualay. This,

however, does not hold in general for edge ideals.

Example 6.1.1. LetG = C4 and letR = k[x1, x2, x3, x4]. Recall that IC4 = (x1x2, x2x3, x3x4, x1x4)R.

By Example 2.3.21, IC4
is unmixed but not Cohen-Macaulay. Also, recall that the minimal vertex

covers are {{x1, x3}, {x2, x4}}

There exists counterexamples for the other reverse implications as well.

Example 6.1.2. Let G = C3 and let R = k[x1, x2, x3]. Recall that IC3
= (x1x2, x2x3, x1x3)R. By

Example 2.3.19, IC3
is Cohen-Macaulay. However, IG is not Gorenstein [22, Theorem 2.2]. Also,

recall that the minimal vertex covers are {{x1, x2}, {x1, x3}, {x2, x3}}.

Example 6.1.3. LetG = C5 and letR = k[x1, x2, x3, x4, x5]. Recall that IC5
= (x1x2, x2x3, x3x4, x4x5, x1x5)R.

We note that IC5 is not a complete intersection, however, it is Gorenstein [22, Theorem 2.2]. The min-

imal vertex covers are {{x1, x2, x4}, {x1, x2, x5}, {x1, x3, x4}, {x1, x3, x5}, {x2, x3, x5}, {x2, x4, x5}} .
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In general, Cohen-Macaulayness is dependent on the field, k. In the next example, we give

a graph whose edge ideal whose Cohen-Macaulayness is dependent on k.

Example 6.1.4. Let R = k[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12]. Consider the following

graph, G:

x12 x3

x7

x5

x11

x6

x4

x9

G =

x1 x8

x10 x2

The edge ideal of G is given by:

IG = (x1x2, x1x3, x1x7, x1x8, x1x10, x2x3, x2x8, x2x9, x2x12,

x3x7, x3x9, x3x11, x4x5, x4x6, x4x8, x4x11, x5x6, x5x7, x5x12,

x6x9, x6x10, x7x10, x7x11, x7x12, x8x10, x8x11, x8x12

x9x10, x9x11, x9x12, x10x11, x10x12, x11x12)R

IG is Cohen-Macaulay if and only if the characteristic of k is not two.[16]

In this chapter, we will provide counterexamples for both power edge ideals and double

domination ideals. We will give a construction that allows us to use counterexamples for edge ideals

and turn them into counterexamples for power edge ideals. We will also show how this construction

does not necessarily give the “smallest” possible examples. We will conclude the chapter by giving

counterexamples for the double domination ideal.
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6.2 Edge Ideal - Power Edge Ideal Connection

In this section we will give a construction that will allow us to turn the counterexamples for

edge ideals in Examples 6.1.1, 6.1.2, 6.1.3 and 6.1.4 into counterexamples for power edge ideals.

Construction 6.2.1. Let G be a finite, simple graph with vertex set V = {x1, . . . , xn}. We will

build a new graph, G as follows. For each xi ∈ V (G), let Ki = K2mi be a subgraph of G where

deg(xi) = mi. Let xi1, . . . , xi2mi
∈ V (Ki) . If xjxk ∈ E(G), we pick two vertices xjp, xjq ∈ V (Kj)

and two vertices xkr, xks from V (Kk) and let xjpxkr, xjqxks ∈ E(G) such that the only edges that

xjpxkr and xjqxks are incident to in G are in E(Kj) ∪ E(Kk).

Example 6.2.2.

G =

x3

x4

x2

x5

x1

x51 x52

x41 x42

x44 x43

x11 x12

x16

x15 x14

x13

x31 x32

x34 x33

x21 x22

x24 x23

G =

Definition 6.2.3. Let R = k[x1 . . . , xn] be a polynomial ring and w : {x1, . . . , xn} → N be a

function. We call w a weight function on the set of variables of R and use wi to denote the value of
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the function w at variable xi.

Let I ⊆ R = k[x1. . . . , xn] be a monomial ideal and w be a weight function on {x1, . . . , xn}.

The weighted ideal of I with respect to w is denote (I, w) and defined as

(I, w) = (xw(b))

where w(b) = (w1b1, . . . , wnbn) for an exponent vector b = (b1, . . . , bn) ∈ Nn.

Example 6.2.4. Let IG = (x1x2, x1x3, x1x4, x2x3, x4x5) be the edge ideal of G in Example 6.2.2

and let (6, 4, 4, 4, 2) be the weights of the variables, in order. The weighted ideal of IG is

(IG, w) = (x61x
4
2, x

6
1x

4
3, x

6
1x

4
4, x

4
2x

4
3, x

4
4x

2
5).

Definition 6.2.5. Let R = k[x1, . . . , xn] be a polynomial ring over a field k. Suppose M =

xa11 · · ·xann is a monomial in R. Then we define the polarization of M to be the square-free monomial

P(M) = x11x12 . . . x1a1x21 . . . x2a2 . . . xn1 . . . , xnan

in the polynomial ring S = k[xij | 1 ≤ i ≤ n, 1 ≤ j ≤ ai].

If I is an ideal of R generated by monomials M1, . . . ,Mq, then the polarization of I is defined

as:

P(I) = (P(M1), . . . ,P(Mq))

which is a square-free monomial ideal in a polynomial ring S.

Example 6.2.6. Consider the weighted ideal,

(IG, w) = (x61x
4
2, x

6
1x

4
3, x

6
1x

4
4, x

4
2x

4
3, x

4
4x

2
5),

given in Example 6.2.4. We have

P((IG, w)) = (x11x12x13x14x15x16x21x22x23x24, x11x12x13x14x15x16x31x32x33x34,

x11x12x13x14x15x16x41x42x43x44, x21x22x23x24x31x32x33x34,

x41x42x43x44x51x52).
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Theoreom 6.2.7. Let I ⊆ R = k[x1, . . . , xn] be a monomial ideal and let w be a weight function

on {x1, . . . , xn}.

(i) I is unmixed if and only if P((I, w)) is unmixed.

(ii) I is Cohen-Macaulay if and only if P((I, w)) is Cohen-Macaulay.

(iii) I is Gorenstein if and only if P((I, w)) is Gorenstein.

(iv) I is a complete intersection if and only if P((I, w)) is a complete intersection.

Proof. Let I ⊆ R = k[x1, . . . , xn] be a monomial ideal and let w be a weight function on {x1, . . . , xn}.

(i) If I =
⋂m
i=1 qi is the irredundant primary decomposition ofI, then (I, w) = ∩mi=1(qi, w) =

∩mi=1(x
ai1
1 , . . . , x

ain
n ) is the irredundant primary decomposition of (I, w) where the aij are nonneg-

ative integers, and if aij = 0 we assume that x
aij
j = 0. Note that if aij 6= 0, then aij = wj . [15,

Corollary 5.14]. Furthermore, P((I, w)) has the following irreducible primary decomposition (some

primes might be repeated):

P((I, w)) =
⋂

1≤i≤m

⋂
1≤cj≤aij
1≤j≤n

(x1c1 , . . . , xncn)

where when aij = 0, we assume that cj = xj,0 = 0 [5, Proposition 2.5]. The desired result follows

from the decomposition.

(ii) I is Cohen-Macaualay if and only if (I, w) is Cohen-Macaulay [15, Corollary 5.9] if and only if

P((I, w)) is Cohen-Macaulay [5, Proposition 2.8]

(iii) I is Gorenstein if and only if (I, w) is Gorenstein [15, Corollary 5.8 and Corollary 5.9 ] if

and only if P((I, w)) is Gorenstein [5, Proposition 2.8]

(iv) The desired result follows from the decomposition of P((I, w)) in (i).

Theoreom 6.2.8. Let G = (V,E) be a finite, simple graph with edge ideal IG. Construct G as in

Construction 6.2.1. The power edge ideal of G is:

IP
G

= (xi11xi12 · · ·xi1mi1
xi21xi22 · · ·xi2mi2

| xi1xi2 ∈ E(G)).
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If {xi1 , . . . , xif } is a minimal vertex cover of G, then the minimal PMU covers of G can be obtained

by choosing a vertex from each of Ki1 , . . . ,Kif . Repeating this for all minimal vertex covers will

generate all of the minimal PMU covers.

Proof. Let G = (V,E) be a finite, simple graph with edge ideal IG. Let S = {xi1 , . . . , xif } be a

minimal vertex cover of G. We must show that the minimal PMU covers of G can be obtained by

choosing a vertex from each of Ki1 , . . . ,Kif . Let S be such a set. Let xjs be a vertex in V (G).

We must show that xjs is observable by S. Let xk1 , . . . , xkr be the neighbors of xj in G. If S is

a vertex cover, then either xj ∈ S or xkt ∈ S for some 1 ≤ t ≤ r. If xj ∈ S, then xjv ∈ S for

some 1 ≤ v ≤ 2mj . If v = s, then xjs is observable by the Incidence Law. If v 6= s, then xjv is

observable by the Incidence Law. Furthermore, xjsxjv is also observable by the Incidence Law and

xjs is observable by Ohm’s Law. If xj /∈ S, then xkt ∈ S for some 1 ≤ t ≤ r. Thus, xktv ∈ S for

some 1 ≤ v ≤ 2mkt . Note that all of the vertices and edges of Kkt are observable by the Incidence

Law and Ohm’s Law. In addition, xjs is adjacent to a vertex in Kkt . We will let e denote the edge

that is incident to these two vertices. Note that all other edges that are incident to the vertex in

Kkt are in E(Kkt), thus they are all observable. Therefore, e is observable by Kirchhoff’s Current

Law. Thus, xjs is observable. We have shown that the desired sets are PMU covers. It remains to

show that they are minimal. Suppose for some xig . Again, we let S = {xi1 , . . . , xif } be a minimal

vertex cover of G. Now, we choose a vertex from each of Ki1 , . . . ,Kif , except one. Let’s call this

set S̃. We must show that S̃ is not a PMU cover. Without loss of generality, suppose no vertex was

chosen from Ki1 . Since S is a minimal vertex cover, there must be an edge, e = xi1xj ∈ G such that

xi1 , xj /∈ S\{xi1}. There are two edges e1 = xi1s1xjs2 and e2 = xi1t1xjt2 that connect Ki1 to Kj in

G. In addition, none of the vertices of Ki1 and Kj are in S̃. Note that none of xi1s1 , xjs2 , xi1t1 , xjt2

are observable by S̃ because all other vertices that are adjacent to one of these vertices is in fact

adjacent to two of them. Therefore, we cannot apply Kirchhoff’s Law. Thus, S is a minimal PMU

cover.

In order to show,

IP
G

= (xi11xi12 · · ·xi1mi1
xi21xi22 · · ·xi2mi2

| xi1xi2 ∈ E(G)),

we just apply the decomposition results in [15, Corollary 5.14] and [5, Proposition 2.5] to our

characterization of the minimal PMU covers.
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Example 6.2.9. The power edge ideal of G in Example 6.2.2 is equal to P((IG, w)) from Example

6.2.6:

IPG = P((IG, w)) = (x11x12x13x14x15x16x21x22x23x24, x11x12x13x14x15x16x31x32x33x34,

x11x12x13x14x15x16x41x42x43x44, x21x22x23x24x31x32x33x34,

x41x42x43x44x51x52).

Note that the minimal vertex covers of G from Example 6.2.2 are

{x1, x2, x4}, {x1, x2, x5}, {x1, x3, x4}, {x1, x3, x5}, {x2, x3, x4}

The minimal PMU covers of G are of the following form:

{x1a, x2b, x4c}, {x1a, x2b, x5c}, {x1a, x3b, x4c}, {x1a, x3b, x5c}, {x2a, x3b, x4c}

Theoreom 6.2.10. Let G = (V,E) be a finite, simple graph with edge ideal IG. Construct G as in

Construction 6.2.1.

(i) IG is unmixed if and only if IP
G

is unmixed.

(ii) IG is Cohen-Macaulay if and only if IP
G

is Cohen-Macaulay.

(iii) IG is Gorenstein if and only if IP
G

is Gorenstein.

(iv) IG is a complete intersection if and only if IP
G

is a complete intersection.

Proof. The desired results follow from Theorem 6.2.7 and Theorem 6.2.8.

Example 6.2.11. Let R = k[x11, x12, x13, x14, x21, x22, x23, x24, x31, x32, x33, x34, x41, x42, x43, x44]

Applying Construction 6.2.1 to Example 6.1.1, we obtain:
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x11 x12

x14 x13

x21 x22

x24 x23

x41 x42

x44 x43

x31 x32

x34 x33

G =

Note that

IP
G

=(x11x12x13x14x21x22x23x24, x21x22x23x24x31x32x33x34, x31x32x33x34x41x42x43x44,

x11x12x13x14x41x42x43x44)R

By Theorem 6.2.10, IP
G

is unmixed but not Cohen-Macaulay.

Example 6.2.12. Let R = k[x11, x12, x13, x14, x21, x22, x23, x24, x31, x32, x33, x34] Applying Con-

struction 6.2.1 to Example 6.1.2, we obtain:

x31 x32

x34 x33

x21 x22

x24 x23

G =

x11 x12

x14 x13

Note that

IP
G

=(x11x12x13x14x21x22x23x24, x21x22x23x24x31x32x33x34, x11x12x13x14x31x32x33x34)R

By Theorem 6.2.10, IP
G

is Cohen-Macaulay but not Gorenstein.
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Example 6.2.13. Let

R = k[x11, x12, x13, x14, x21, x22, x23, x24, x31, x32, x33, x34, x41, x42, x43, x44, x51, x52, x53, x54].

Applying Construction 6.2.1 to Example 6.1.3, we obtain:

x51 x52

x54 x53

x21 x22

x24 x23

x41 x42

x44 x43

x31 x32

x34 x33

G =

x11 x12

x14 x13

Note that

IP
G

=(x11x12x13x14x21x22x23x24, x21x22x23x24x31x32x33x34, x31x32x33x34x41x42x43x44,

x41x42x43x44x51x52x53x54, x11x12x13x14x51x52x53x54)R

By Theorem 6.2.10, IP
G

is Gorenstein but not a complete intersection.

Example 6.2.14. Applying Construction 6.2.1 to Example 6.1.4, we obtain a graph, G with 132

vertices such that I
G

P is Cohen-Macaulay if and only if k is not characteristic 2.

6.3 Minimal Power Edge Ideal Counterexamples

In the previous section, we gave a construction that allowed us to turn counterexamples for

edge ideals into counter examples for power edge ideals. One downside to the construction is that

the number of variables in the polynomial rings for G can get very large. One natural question one
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might ask is for the fewest number of variables in a polynomial ring that will produce our desired

counterexamples. We will give a few examples and then use Macaulay2 [8] to show that those

examples are the “smallest” or we will at give bounds for the “smallest”. The code uses Francisco,

Hoefel, and Van Tuyl’s EdgeIdeals package [6] and uses McKay and Piperno’s Nauty package [19].

Code 6.3.1. The following code is used to find bounds on the “smallest” examples of Cohen-

Macaualay and Gorenstein power edge ideals.

isGorensteinNotCI = method()

isGorensteinNotCI ZZ := ell -> (

S = QQ[x_1..x_ell];

G = generateGraphs(S, OnlyConnected => true);

isPEIGor = method();

isPEIGor Graph := N -> (

PCN := pmuCovers N;

IPN := intersect apply(PCN, cov -> ideal cov);

if not isCM(hyperGraph IPN) then Q = "null" else if isGorenstein(S/IPN)

and not isCI(S/IPN) then Q = N else Q = "null";

Q

);

P := apply(#G, i -> isPEIGor(G_i));

V := unique P

)

isCMNotGorenstein = method()

isCMNotGorenstein ZZ := ell -> (

S = QQ[x_1..x_ell];

G = generateGraphs(S, OnlyConnected => true);

isPEICM = method();

isPEICM Graph := N -> (

PCN := pmuCovers N;

IPN := intersect apply(PCN, cov -> ideal cov);
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if isCM(hyperGraph IPN) and not isGorenstein(S/IPN) then Q = N else Q = "null";

Q

);

P := apply(#G, i -> isPEICM(G_i));

V := unique P

)

Example 6.3.2. Let G be a finite, simple graph. Note that the polynomial ring in Example 6.1.2

contains 12 variables. The polynomial ring with the fewest number of variables such that IPG is

Cohen-Macaulay but not Gorenstein is R = k[x1, x2, x3, x4, x5, x6] where k is a field. There is one

graph, G = K3,3 whose power edge ideal satisfies the desired conditions:

G =

x1

x2

x3

x4

x5

x6

The power edge ideal is:

IPG = (x1x2x3x4x5, x1x2x3x4x6, x1x2x3x5x6, x1x2x4x5x6, x1x3x4x5x6, x2x3x4x5x6)R.

Example 6.3.3. Let G be a finite, simple graph. Note that the polynomial ring in Example 6.1.3

contains 20 variables. The polynomial ring, R = k[x1, . . . , xn] with the fewest number of variables,

n, such that IPG is Gorenstein but not a complete intersection satisfies 11 ≤ n ≤ 14. The lower bound

was computed using Macaulay2 [8] and the upperbound can be seen from two different examples.

(a) Let R = k[x11, x12, x13, x14, x21, x31, x32, x33, x34, x41, x51, x52, x53, x54]. Consider the following

graph G′:
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G′ = x11 x12

x14 x13

x21

x31

x34 x33

x32

x41

x51

x54

x52

x53

The edge ideal is given by:

IG′P = (x11x12x13x14x21, x21x31x32x33x34, x31x32x33x34x41,

x41x51x52x53x54, x11x12x13x14x51x52x53x54)R

Note that IPG′ is similar to IPG in Example 6.1.3. The vertices have just been weighted and polar-

ized, similar to what happens in Construction 6.2.1. Thus, by Theorem 6.2.7, IPG′ is Gorenstein

and not a complete intersection because IPG is Gorenstein and not a complete intersection.

(b) Let R = k[x11, x12, x21, x22, x31, x32, x41, x42, x51, x52, x61, x62, x73, x74]. Consider the following

graph G′′:

G′′ =

x11 x12

x21 x22

x31

x41

x51

x61

x71

x32

x42

x52

x62

x72
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The edge ideal is given by:

IPG′′ = (x11x12x21x22x31x32, x21x22x31x32x41x42, x31x32x41x41x51x52, x41x42x51x52x61x62,

x51x52x61x62x71x72, x11x12x61x62x71x72, x11x12x21x22x71x72)R

Note that IPG is similar to J = (x1x2x3, x2x3x4, x3x4x5, x4x5x6, x5x6x7, x1x6x7, x1x2x7)S where

S = k[x1, x2, x3, x4, x5, x6, x7]. In fact, IPG can be obtained by weighting the variables in S

and polarizing, similar to what happens in Construction 6.2.1. Thus, by Theorem 6.2.7, IPG′

is Gorenstein and not a complete intersection because J is Gorenstein and not a complete

intersection [4, Theorem 6.1].

6.4 Double Domination Ideal Counterexamples

Recall that Conjecture 5.4.3 hypothesizes that when we restrict to trees, the double domi-

nation ideal is unmixed if and only if it is Cohen-Macaulay. This is not, however, true for a general

graph G. In fact, in this section, we will give examples of double domination ideals that are unmixed

but not Cohen-Macaulay, Cohen-Macaulay but not Gorenstein, and Gorenstein but not a complete

intersection.

Example 6.4.1. Let R = k[x1, x2, x3, x4, x5, x6] and let G = C6. Using Macaulay2 [8], we have that

NC6,2 = (x1x2, x1x3, x1x5, x1x6, x2x3, x2x4, x2x6, x3x4, x3x5, x4x5, x4x6, x5x6)R is unmixed (The

minimal DD-sets are {{x1, x2, x4, x5}, {x1, x3, x4, x6}, {x2, x3, x5, x6}}) but not Cohen-Macaulay

Example 6.4.2. Let R = k[x1, x2, x3] and let G = C3. Recall from Example 5.2.7 that the double

domination ideal, NC3,2 = IC3
= (x1x2, x1x3, x2x3)R. Thus, NC3,2 = IC3

is Cohen-Macaulay but

not Gorenstein by Example 6.1.2 .

Example 6.4.3. Let R = k[x1, x2, x3, x4, x5, x6, x7] and let G = C7. Using Macaulay2 [8], we have

that NC7,2 = (x1x2, x1x3, x1x6, x1x7, x2x3, x2x4, x2x7, x3x4, x3x5, x4x5, x4x6, x5x6, x5x7, x6x7)R is

Gorenstein but not a complete intersection.
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