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ABSTRACT 

 

 

Electrostatics plays an essential role in molecular biology. Modeling 

electrostatics in molecular biology is a complicated task due to the water phase, 

mobile ions, and irregularly shaped inhomogeneous biological macromolecules. A 

particular approach to calculating electrostatics in such a system is to apply the 

Poisson-Boltzmann equation (PBE). This dissertation presents the popular DelPhi 

package that solves PBE using a finite-difference method and delivers the 

electrostatic potential distribution throughout the modeling box. Details descriptions 

of some of the examples DelPhi can handle, and their accuracy with the analytical 

solutions are presented. Receptor–ligand interactions are involved in various 

biological processes; therefore, understanding the binding mechanism and ability to 

predict the compulsory mode is essential for many biological investigations. So, this 

dissertation also presents the use of electrostatics for the proper orientation guidance 

and the pulling force to deliver the ligand close to the receptor. We use the newly 

developed DelPhiForce steered Molecular Dynamics (DFMD) approach to model the 

binding of barstar to barnase and demonstrate that the first-principles method can also 

model the binding. It shows DFMD can successfully dock barnstar to barnase even if 

both initial positions and orientations are entirely different from the correct one. 

Single nucleotide polymorphism (SNP) is a single nucleotide variation in the 

genome. Change of single amino acid in the corresponding protein due to these 

variations results in single amino acid variation (SAV). SAVs cause intense 
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alterations of the related biological processes and thus can be associated with many 

human diseases. This dissertation reflects the use of existing computational 

approaches to model the effects of SAVs to reveal molecular mechanisms related to 

human diseases. We use our supervised in-house combinatory in-silico predictor 

method to investigate the impact of unclassified missense mutations in the MEN1 

gene found in breast cancer tissue issues. We also examine the biophysical and 

biochemical properties to predict the effects of these missense variants on the menin 

protein stability and interactions. The results are compared with the impact of known 

pathogenic mutations in menin causing neoplasia. Together with our in-silico 

consensus predictor, we classify missense mutations in menin protein found in breast 

cancer tissue into pathogenic and benign, thus, suggesting an indicator for early 

detection of elevated breast cancer risk. 

In the end, we show the role of intravesicular pH in melanosome maturation 

and formation. Here, we computationally investigate the pH-dependent stability of 

several membrane proteins and compare them to the pH dependence of the strength 

of TYR. We confirm that the pH optimum of TYR is neutral, and we also find that 

proteins that are negative regulators of melanosomal pH are predicted to function 

optimally at neutral pH. In contrast, positive pH regulators were expected to have an 

acidic pH optimum. Our findings are consistent with previous work that demonstrated 

a correlation between the pH optima of stability and activity. They are compatible 

with the expected activity of positive and negative regulators of melanosomal pH. 

Furthermore, our data suggest that disease-causing variants impact the pH 
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dependence of melanosomal proteins; this is particularly prominent for the OCA2 

protein. In conclusion, melanosomal pH appears to affect the activity of multiple 

melanosomal proteins.  
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 1 

CHAPTER ONE 

 

INTRODUCTION 

 

This chapter covers the introduction to the fundamental ideas and tools that are important 

for the foundation of the work presented in this dissertation. It discusses the role of electrostatics 

in molecular biology, including protein stability and protein-protein interactions. The other 

sections of this chapter introduce Single Nucleotide Polymorphisms (SNPs) and their association 

Zwith different diseases highlighting their effects on proteins functions. In the end, it describes 

the role of pH on protein stability and activity. 

 

1.1 Role of Electrostatics in Molecular Biology 

Electrostatics is an essential component in the various biological process because each 

atom of biomolecules carries a charge and thus the electrostatic interactions are present at atomic 

levels of detail[1]. Electrostatic interactions dominate other forces when atoms or molecules are 

apart at a longer distance than the typical bond length. They facilitate molecular recognition, and 

biological activities of the biomolecules. For example, electrostatic forces participate in protein 

folding and binding, protein -DNA/RNA interactions, ion binding, dimerization, and protein-

microtubule binding[2]. Electrostatics is also responsible for the pH dependence on the stability 

of biomolecules. Electrostatics is the major component of total  solvation energy of 

biomolecules[3]. Furthermore, electrostatics is  associated with the disease since disease-causing 

mutants frequently alter wild-type interactions [4].  
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1.2 Single Nucleotide Polymorphisms (SNPs) 

Mutation is a change in the nucleotide sequence of DNA, which occurs during its 

replication, recombination, or other processes. The mutation results in substitution, deletion, or 

insertion. Many mutations are repaired before protein synthesis occurs, so they do not affect the 

function of the corresponding biomolecules. Some of the mutations positively affect the related 

organism, called beneficial mutations. However, other mutations may drastically reduce the 

organism's ability to survive, and such mutations are called harmful mutations[5]. The single 

nucleotide variation in the genome resulting in single amino acid variation is known as Single 

Nucleotide Polymorphisms (SNPs)[6, 7]. They can change the corresponding biological process 

causing various diseases[8, 9]. The human population shares about 99.5 percent of DNA codes, 

and the remaining 0.5 percent makes it unique among the organisms. So, the study of SNPs to 

reveal the molecular mechanism associated with human disease is essential. SNPs are of two 

types, synonymous and non-synonymous. Synonymous mutations do not change the amino acid 

(AA) sequence of the protein. Missense and nonsense mutations are two types of non-

synonymous mutations. Missense mutations change AA in the protein, and nonsense creates a 

stop codon and results in premature truncation [10]. This dissertation will discuss the effects 

caused by different missense mutations that are associated with various diseases.  

Disease-causing mutations affect the function of the corresponding proteins. They can affect 

proteins stability and their binding. They can also alter the conformation dynamics, hydrogen 

bonding, salt bridges, electrostatic interactions, and the pH dependence of the proteins[4, 5, 11-

14]. There is a relation between the properties mentioned above and the propensity given 

mutation to be pathogenic [15-19]. Therefore, the ability to correctly predict the change of wild-
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type properties of the corresponding macromolecules due to mutations is critical for disease 

diagnostics. 

 

1.3 Protein-Protein Interactions 

Protein-protein interactions (PPIs) are abundant in the cell, it is estimated that each 

protein on average interacts with four partners. It results in homodimers, heterodimers, enzyme 

inhibitors, and antibody-protein complexes[2, 20-22]. They are involved in various biological 

processes, so it is essential to understand the binding mechanism and predict the binding mode 

of the biomolecules. The deviation of the wild-type patterns and related physical properties are 

related to different diseases. PPIs alter the kinetic properties of the protein, and they are also the 

standard mechanism to allow for substrate channeling, formation of binding sites, and drug 

discovery[2, 22-24]. 

  Modeling PPIs is a two-fold problem: predicting the binding pose and revealing the 

binding trajectory. There are two major approaches for predicting binding pose as homology 

modeling and docking, while much less attention has been paid to predicting the binding 

pathway. This is very important for cases that require significant conformational changes 

affecting backbone motion and opening of the binding pocket[25-28]. This dissertation discusses 

the molecular dynamics (MD) simulation technique taking the electrostatic interactions into 

account and addresses PPIs' binding trajectory and pose. 
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1.4 pH dependence of Protein Stability 

The pH of a solution is an essential characteristic of many biological processes. pH 

controls the macromolecular activities, and for every macromolecule, there is a particular pH at 

which the macromolecule is the most stable and its activity is maximum. Macromolecular 

interactions are also pH dependents, and there is typically a pH optimum at which the binding 

affinity is maximum [14, 29, 30]. Subcellular compartments within a cell have different pHs, 

reflecting their function, from low pH in lysosomes to high pH in peroxisomes.  Increasing the 

scale of this idea, pH plays a crucial role in body organ function and varies from very acidic in 

the stomach to neutral in the blood. All the above examples indicate that the regulation and 

maintenance of pH are essential for many biological phenomena. The pKa values of titratable 

groups in macromolecules determine the pH dependence of their stability, interactions, and 

enzymatic activity. Any changes in the pKa's may affect the wild-type properties of the 

corresponding macromolecule[30-32]. This dissertation explains the pH dependence on the 

stability of the melanosome proteins for the melanin formation and functions.  
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CHAPTER TWO 

 

MODELING ELECTROSTATICS IN MOLECULAR BIOLOGY 

 

 

 

This chapter discusses popular software DelPhi and its associated resources to model 

biomolecules' electrostatic potentials and energies. It explains some features, examples with 

tutorials, and benchmarking results against analytical solutions. 

 

2.1 DelPhi  

As discussed in the previous chapter, electrostatics is an essential component in various 

biological processes. The modeling of electrostatics is complex process in molecular biology 

which is complicated due to the presence of water phase, mobile ions, and irregularly shaped 

inhomogeneous biological macromolecules. To overcome these difficulties, the Poisson-

Boltzmann method is developed, which is a particular approach to calculating electrostatics 

potential  by using the Poisson-Boltzmann equation (PBE)[33, 34]. DelPhi is the popular 

package that solves PBE using a finite difference method and delivers the electrostatics potential 

throughout the modeling box[35-37]. The new Delhi C++ is an object-oriented PBE  package 

supporting various multiprocessing and memory distribution levels. The multiprocessing results 

in a significant improvement in computational time. The memory distribution approach reduces 

RAM requirement for large macromolecular assemblages and permits large-scale modeling in 

Linux clusters with moderate architecture. The traditional implementation of PBE in molecular 

biology considers that the biological macromolecules are low dielectric cavities immersed in the 
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water phase, described as a continuum medium with a large dielectric constant. In this protocol, 

ions are point charges that obey the Boltzmann distribution and can be present outside the so-

called Stern layer. This implementation of PBE is two-dielectric PBE. In contrast, the Gaussian-

based smooth dielectric function treats the solute and solvent on the same footage, and the 

continuous dielectric function describes the entire computational space. This models the 

macromolecules as inhomogeneous objects, and there is no sharp boundary between solute-

solvent. Ions in such a scenario are point charges obeying Boltzmann distribution. Still, the 

argument of the Boltzmann function has a desolvation penalty which does not allow ions to 

propagate into the macromolecular interior unless there is a cavity. This approach is Gaussian 

PBE[37-39]. Both techniques are used in various computational investigations and show that 

they can be used for computing biologically measurable quantities. 

DelPhi is available to all users worldwide. It is available in a standalone version 

(http://compbio.clemson.edu/lab/delphisw/) and also can be used as the webserver 

(http://compbio.clemson.edu/sapp/delphi_webserver/). DelPhi's other resources include 

downloadable packages and webservers[40]. DelPhiPka [41]uses DelPhi to calculate the 

protonation states of polar residues of protein and DNA/RNA  at a given pH. DelPhiForce[42, 

43] uses DelPhi to calculate electrostatics forces between protein-ligand, protein-protein, and 

protein-DNA/RNA. There are packages available within the DelPhi to study the effect of 

missense mutations on the folding free energy of Protein (SAAFEC)[44] and the binding affinity 

of the protein-protein complexes (SAAMBE)[45] and protein-DNA complexes[46] (SAMPDI). 

 

http://compbio.clemson.edu/lab/delphisw/)%20and
http://compbio.clemson.edu/sapp/delphi_webserver/
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2.2 Benchmarking Against Analytical Solutions 

 This section shows the benchmarking results of DelPhi delivered electrostatic energies 

and their comparison with analytical solutions. This benchmarking is an ultimate test of the 

accuracy of the DelPhi protocol and computer code. Several cases for which analytic solutions 

can be delivered are shown in Figure 1-Figure 3. These include the electrostatic component of 

solvation energy of a sphere immersed in solvent (Figure 1), the total electrostatic energy of two 

charged sphere in a dielectric cavity (Figure 2), electrostatic energy of a spherical charge moving 

across semi-infinite dielectric solvent (Figure 3: A and B) and the same for a spherical charge 

approaching a cylinder (Figure 3: C and D). The semi-infinite dielectric solvent is modeled as a 

box with dimensions 25x25x25A, and thus represents an approximation. The result clearly 

indicates that DelPhi C++ delivered energies are matching analytical solutions. 

It should be, clarified that in case of Figure 1, electrostatic solvation energy of a sphere, 

the datapoint at scale=0.5 [grid/A] in case of sphere radius equal to 1A is not provided in the 

graph. The reason is that finite-difference algorithm requires the size of the object larger than the 

grid resolution (scale = 0.5 [grid/A] corresponds to grid resolution of 2A).  

 



 8 

Figure 1. (A) Schematic illustration of example 1: A charged sphere with low dielectric constant 

is inside a Media with a high dielectric constant. (B) Electrostatic component of solvation 

energies calculated by Delphi against the analytical solution 

 

 

 

Figure 2. (A) Schematic illustration of example 2: a cavity with low dielectric constant is inside 

a media with high dielectric constant. Two charged atoms are located inside the cavity. (B) 

Electrostatic component of solvation energy obtained from Delphi compared with analytical 

solution. 
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 Figure 3. (A) Schematic illustration of example3: A sphere in semi-infinite dielectric plane 

(Box). A sphere with low dielectric constant ε
1 

is initially positioned in region with high 

dielectric constant ε
2 

and moves into the region with low dielectric constant ε
1 
inside the box.(B) 

Electrostatic component of solvation energy derived from Delphi compared with analytical 

solution.(C) Schematic illustration of cylinder in two dielectric medium: A charged sphere with 

low dielectric constant ε
1
 initially positioned with high dielectric constant ε

2
 and moves into 

region of low dielectric constant ε
1
 inside the cylinder.(D) Electrostatic component of solvation 

energy obtained from Delphi compared with analytical solution. 

 

 

 

2.3 Tutorial Examples of DelPhi 

DelPhi reads parameters, instructions, and other necessary details from a parameter file. The 

parameter file contains names of files providing coordinates of biomolecules and if necessary, 

the files with atomic charges and radii. Details instructions of parameter file and other details of 

the syntax and methods are provided in online tutorial 
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(https://github.com/delphi001/delphi_tutorial_livecoms/tree/master/LiveCoMS_Examples). 

Here I describe two sets of examples showing how to set up parameter and other files to compute 

various electrostatic quantities. 

2.3.1 Computing solvation energy 

In this section, I describe how to calculate electrostatic component of solvation energy, i.e, 

∆𝐺𝑝for a single atom and a real protein, as shown in Figure 4. 

The case of single atom (a charged sphere) is considered because there is an analytical solution 

via Born formula of charged ion, and the numerical solution provided by DelPhi can be compared 

with the analytical. This also provide example of computing electrostatic solvation energy using 

traditional two-dielectric model as well as the Gaussian smooth dielectric function PBE. The 

corresponding files can be found in directory Example_3.1.1. and sub directories there in. 

I will begin with the simplest case of charged sphere (see Example-3.1.1/EX1) using 

traditional two-dielectric model. Consider a charged sphere of radius 3A carrying a charge +1 

e.u. (electron units). Let’s consider that internal and external dielectric constants are 1 and 80, 

respectively. Thus, the analytical solution is -92.33 kT. DelPhi can be executed using the files 

provide in the above-mentioned directories as: 

 

$DELPHI_EXE_param_charged_sphere.prm\   >Charged_sphere.log 

After the run is completed, the user can find the corrected reaction field energy from the 

output information in the log file, which is: 

Energy > Corrected reaction field energy: -92.50 kT 

https://github.com/delphi001/delphi_tutorial_livecoms/tree/master/LiveCoMS_Examples


 11 

Thus, the numerical solution delivered DelPhi matches the analytical solution. Users can 

check the sensitivity of results by changing their scale parameter. 

Applying Gaussian-based smooth dielectric function approach on the same problem, the 

charged sphere, results in different polar solvation energy. First, there is no analytical solution 

since there is no longer hard sphere, but rather a spherical object with smooth dielectric function 

having minimum value at the center of the sphere and smoothly reaching 80 in bulk solvent. 

DelPhi can be executed with this example as: 

$DELPHI_EXE_param_charged_sphere_gauss.prm\  > charged_sphere_gauss.log 

The calculated polar solvation energy is in the log file: 

Energy > Corrected reaction field energy: -211.20 kT 

The other example of how to calculate polar solvation energy of a protein, all the related 

files are kept in the directory Example_3.1.1/Ex2/. The DelPhi run for computing it via 

traditional two-dielectric approach can be initiated using command below: 

$DELPHI_EXE param_protein.prm > protein.log 

After the run, the user can find the output information in the log file: 

Energy > Corrected reaction field energy: -1005.07 kT 

Similarly, modeling the same protein with Gaussian-based smooth dielectric function can be 

done by invoking DelPhi and appropriate parameter file as: 

$DELPHI_EXE param_protein_gauss.prm \ > protein_gauss.log 

After the run is completed, one finds the output information in the log file: 

 

Energy > Corrected reaction field energy: -3583.05 kT 
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The slight difference in “corrected field energy” values for traditional two-dielectric and 

Gaussian-based methods is because traditional two-dielectric approach is intending to deliver 

solvation energy of a rigid molecule, while Gaussian-based methods intends to mimic the effect 

of conformational changes. Use of traditional two-dielectric model with higher than 1.0 dielectric 

constant represents a case of treating conformational changes uniformly, i.e, uniform flexibility. 

However, macromolecules are not homogeneous objects. Instead, Gaussian-based model assigns 

local dielectric values depending on atomic packing and thus reflects inhomogeneous nature of 

proteins. 

 

 



 13 

Figure 4.The schematic representation of computation of solvation for (a) a charged sphere and 

(b) a protein. The solvation of a molecular system consists of two components, non-polar 

component ∆𝑮𝒏𝒑and polar component ∆𝑮𝒑. The non-polar components account for the energy 

required to create a cavity to accommodate the molecular system (solute) in the solution or 

moving solute from gas phase into solvent keeping solute atoms partial charges turned off, and 

polar component accounts energy required to turn on the partial charges of solute atoms in the 

solvent. 

 

 

2.3.2 Computing electrostatic potential, energy of interaction and forces between two sets 

of atoms 

In this section, I will describe how to calculate the electrostatic potential, energy of 

interaction and force between two sets of atoms using ‘frc’ option. Scheme is shown in Figure 

5. 

In the parameter file we need to add command “site (argument)”, specially in this case site 

(a,p, f). This makes Delphi to report the potentials and electrostatic field component at the 

positions of the subsets of atoms in the frc file. This calculation requires two types of pdb files, 

one is “atoms.pdb” which contains co-ordinates of all atoms which contribute to the electrostatic 

potential, and another is “atom-1.pdb” which contains a dummy atom to specify the coordinate 

at which electrostatic potential and electric fields are required to be computed. The charge and 

size information for all atoms present in atoms.pdb have to be provided in charge and size files 

atoms.crg and atoms.siz respectively. In present case we attempt to calculate electrostatic 

potential and electrostatic field at the origin due to a system of two atoms A1 and A2 whose 

charges are q1 = 10 ec and q2 = 20ec respectively, the size of both atoms is 1.0�̇�, and coordinates 

of A1 and A2 are (5.0, 5.0,0.0) and (5.0,0.0,0.0) respectively. Here charges are in unit of charge 
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of proton i.e., ec and distance and coordinates are in �̇�. A schematic representation of the system 

is shown in Figure 5. 

The analytical expression for such system is known and shown in equation 1. Therefore, we can 

benchmark DelPhi results against analytical value. Since DelPhi unit of energy is 
𝐾𝐵𝑇

𝑒
, we shall 

convert the analytical energy also in 
𝐾𝐵𝑇

𝑒
 for comparison. Using Boltzmann constant 𝐾𝐵 =

1.38 × 10−23𝐽𝐾−1, absolute temperature T = 297.33K (default temperature in DelPhi), 

elementary charge 𝑒𝑐 = 1.6 ×  10−19𝐶, and external dielectric constant 𝜖𝑒𝑥𝑡 = 80, the potential 

computed from equation 1 comes to be 38.035 
𝐾𝐵𝑇

𝑒
, while potential computed from DelPhi is 

38.1317 
𝐾𝐵𝑇

𝑒
, which shows a relative error ~10−3 showing an excellent agreement to analytical 

value.  

 

 
∅ =  

1

4𝜋𝜀0𝜀𝑒𝑥𝑡
(

𝑞1

𝑑1
+

𝑞2

𝑑2
 ) 

(1) 

 

 

Similarly, analytical values of X- and Y- components of electric field Ex and Ey at 

position of A3 due to systems of charges A1 and A2 are -6.613 
𝐾𝐵𝑇

𝑒𝑐�̇�
 and -0.993 

𝐾𝐵𝑇

𝑒𝑐�̇�
, while value 

calculated from DelPhi are -6.7208 
𝐾𝐵𝑇

𝑒𝑐�̇�
  and -1.0031 

𝐾𝐵𝑇

𝑒𝑐�̇�
 respectively, which are also in good 

agreement to analytical values. All the required fields are provided in the directory 

Example_3.1.4/. 

Users can run DelPhi for this example using following command: 

$DELPHI_EXE param_frc.prm > delphi_frc.log 
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The output file i.e., atoms.frc contains necessary lines with all information regarding 

potential and components of electric field. They can be further used to calculate energy of 

interaction and force between two atoms. We can change the grid size and scale according to the 

need. 

 

 

Figure 5.The schematic representation of setup of example system for electrostatic potential, 

energy of interaction and force between two sets of atoms (A3 due to A1 and A2). 
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CHAPTER THREE 

 

STUDY OF PROTEIN-PROTEIN INTERACTIONS 

 

 

Ab-initio binding of barnase–barstar with DelPhiForce steered Molecular Dynamics 

(DFMD) approach  

 

3.1 Introduction 

Protein-protein interactions (PPIs) are essential for numerous biological processes such 

as cell to cell interactions, metabolic control and development [47]. This importance is 

demonstrated by the fact that deviations of the wild-type patterns of PPIs and the corresponding 

biophysical characteristics of protein complexes were shown to be associated with diseases [23, 

48-54]. Upon the binding a protein-protein complex is formed and depending on the participating 

monomers the complexes are classified as homo-dimers , hetero-dimers, enzyme-inhibitor and 

antibody-protein complexes [55], just to mention some. Furthermore, these complexes are 

characterized according to shape and size [56], complementarity between interfaces [57, 58], 

residue interface propensities [59, 60] including hydrogen bonding [61] and secondary structure 

[62]. Among the driving forces causing complex formation, the electrostatic interactions are the 

only long-range interactions and thus play primary role in guiding the monomers toward the 

binding. The electrostatics energies and forces were shown to play major role in different 
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molecular phenomena such as PPIs, ion binding [53, 63-65], protein folding and stability [66, 

67], protein -DNA/RNA interactions [68-70], and protein-microtubule binding [48, 71-73].  

 

Modeling PPIs is a two-fold problem: predicting the binding pose and revealing the 

binding trajectory. There are many approaches for predicting binding pose, including homology 

modeling [25]  and docking [26], while much less attention has been paid to predicting the 

binding pathway. The last is very important for cases involving binding that requires large 

conformational changes involving backbone motion [27]  and opening of the binding pocket 

[28].  

 

The technique capable in principle of addressing both, the binding trajectory and the 

binding pose, is molecular dynamics (MD) simulations of PPIs [74].  Essential component in 

these MD simulations is the treatment of water phase: either with explicit solvent waters [75] or 

Generalized Born (GB) implicit model [76, 77]. Explicit solvent model is computationally too 

expensive when large complexes are involved, and monomers are separated at large distances.  

Alternative is the GB model, which is much less computationally demanding. However, the 

default setup of GB model involves cut-offs for both of Born radii and pair-wise energies 

calculations. So, if the distance between receptor and ligand is large than the cut-off distance, 

the default setup of GB model will result in omitting contributions of distant atoms and thus 

affecting the modeling [78]. Increasing the cut-offs in MD setup presumably should solve this 

issue, however it results in dramatical slowdown of the calculations and in addition, still does 

not model electrostatic interactions correctly, as demonstrated in ref. [78].  
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To address such a deficiency, in our previous work, we introduced a hybrid method, the 

DelPhiForce steered MD (DFMD), that takes advantage of the accurate calculations of 

electrostatic forces at each atom of the ligand and ports these forces into steered MD [78]. It was 

demonstrated that DFMD correctly predicts the binding trajectory (the entrance of the binding 

pocket) and binding pose of a small ligand (spermidine) bound to a receptor (spermine synthase) 

[78]. However, DFMD has never been tested on PPIs. Here we extend the applicability of DFMD 

by applying it to model binding of barstar to barnase. We show that DFMD is capable of guiding 

barstar-barnase complex formation irrelevant of the starting positions and orientations of 

separated monomers. 

 

3.2 Materials and Methods 

3.2.1 Delphi 

Delphi is a popular software that solves the Poisson-Boltzmann equation (PBE), which uses 

finite difference method to compute electrostatic potential distribution throughout the modeling 

box [36, 79, 80]. 

3.2.2 DelPhiForce 

DelPhiForce (http://compbio.clemson.edu/delphi-force) is available within Delphi package 

to calculate the electric field, forces, and energy of a two-molecular system. In our study it is 

used to compute the electric force between receptor and ligand. The receptor’s atoms are charged 

using amber force field [81] and ligand’s atoms are kept neutral. Then Delphi uses finite 
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difference approach to solve the PBE and computes the electrostatic potential at each atom of 

ligands due to charge in the receptor atoms, and from there to deliver the atomic electrostatic 

forces [42, 43]. 

 

3.2.3 DelPhiForce steered Molecular Dynamics (DFMD) simulations 

We used DFMD [78] method to study the binding of ligand to receptor, the barstar binding 

to the barnase. The DFMD method  uses an approach that combines long range electrostatic force 

via DelPhiForce and NAMD MD simulation package [82]. The ligand (barstar) was offset 30 

Angstroms away from of its bound position to assure that the only none zero force is the long-

range electrostatic force. Then the electrostatic force on each atom of barstar was calculated with  

DelPhiForce [42, 43]. The forces are then given to steered MD module of NAMD [82]. 

Simulations were done with Generalized Born implicit solvent model (GBIS) [83]. The ion 

concentration was 0.15M, solvent dielectric was 80 and temperature was maintained at 300 K 

using a Langevin thermostat. In addition, cut off was taken at 18 Å and periodic boundary 

conditions were applied with a cubical box of 150 Å.  Constant pulling forces were applied in 

the simulations where the direction and magnitude of the steered forces were calculated by 

DelPhiForce [42, 43, 83]. The steered force was recalculated and updated every 500 steps of the 

simulations. The simulations were done using default value of steered electrostatic force range: 

low limit 0.2 kcal mol-1Å-1 and upper limit 1.18 kcal mol-1Å-1. 
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3.2.4 Selection and preparation of barnase and barstar monomers 

The barnase-barstar complex structure was taken from Protein Data Bank (PDB ID: 

1BRS)[84] and we selected chain ‘C’ as barnase and chain ‘F’ as barstar. The PDB file had two 

mutations, C80A and C82A with respect to wild-type and these mutations has been mutated back 

to wild-type residues. The reverse mutations were performed  using  UCSF Chimera [85] where 

rotameric state with highest occupancy in Dunbrach library of rotamers is utilized. 

The distance between the center of mass (CoM) of barnase and barstar complex is calculated 

as 23.39 Angstrom using VMD [86].  The CoM of barnase is positioned at the origin of the 

reference frame and barstar is rotated around the axes passing through the CoM of barnase so 

that CoM of barstar resides on X- axis (Figure 6). The starting positions for each simulation are 

obtained by offsetting barstar 30 Å away from its bound position (DD = 30 Å) along X-axis. To 

generate alternative unbound orientations for barnase and barstar, 64 initial structures with 

different relative orientations of barstar and barnase were created. The first set was generated 

keeping barnase orientation fixed, while barstar was rotated around X- and Z- axes passing 

through its CoM in increments of 90 degrees. Then the same procedure is repeated for 4 

orientations of barnase rotating it around Y-axis passing through its CoM (Figure 6a-d).  
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Figure 6. Selection and manipulations of  barnase and barstar monomers: (a) experimental 

structure of barnase-barstar complex with center of mass (CoM) distance denoted by D (left 

barnase and right barstar); (b) barnase-barstar complex separated by DD=30 Å between centers 

of mass; (c) different initial orientations of barnase created by rotating barnase about Y axis  

through its center of mass with increments of 90 degrees steps; (d) different initial orientations 

of barstar created by rotating barstar about  X- and Z- axes though its center of mass with 

increments of 90 degrees steps. 
 

3.2.5 Ligand RMSD and interface RMSD 

Ligand RMSD (L-RMSD) is the RMSD of ligand obtained through the superimposition of 

the  receptor docking model to its crystallographic structure and then computing the RMSD of 

the ligand [87]. The interface RMSD (I-RMSD) is the backbone RMSD of interface residues of 

the ligand [88]. 
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3.3 Results 

Sixty-four independent DFMD simulations were carried out staring from different positions 

and orientations of both barnase and barstar. The success of the modeling was monitored via 

several quantities, mentioned in Methods section: L-RMSD, I-RMSD and the offset from 

crystallographic bound position (D). Here we provide the results of the simulations by showing 

several showcase examples and then statistics of the entire set of simulations.   

3.3.1 Showcase examples 

It is not anticipated that each simulation will result in successful binding, because the 

simulation time is relatively short (5ns) and the binding process may involve transient binding 

at wrong places before the correct binding mode is found. Therefore, here we present two 

successful cases (Figure 7), simply to illustrate that DFMD can bind correctly relatively large 

proteins even the initial positions and orientations are completely away from the crystallographic 

ones (the same simulation without DelPhiForce assistance resulted in no binding). The first case 

is DFMD simulation with initial positions and orientations of monomers as: barnase fixed in its 

crystallographic position while barstar is moved away by D = 30 Å along X-axis and rotated 

90 degree around X-axis and 270 degree around Z- axis (see Figure 6 for more detail). In the 

second case the initial positions and orientations of monomers are: barnase rotated 90 degrees 

along Y-axis and barstar moved away along X-axis by D = 30 A and rotated 270 degree along 

Z- axis. Both cases clearly represent difficult binding initial conditions, especially the second 

case where both binding interfaces are in completely wrong orientations. Nevertheless, 5ns 

DFMD simulations are quite successful as shown in Figure 7 
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The results show the L-RMSD approaches 10 Å limit, which is the cutoff used in Critical 

Assessment of Predicted Interactions (CAPRI) to indicate acceptable predictions [87]. It is 

important to observe that once the near-binding-mode is achieved, the L-RMSD does not change 

much and the system is quite stable (Figure 7a, b). The assessment of the success of simulation 

is also done via monitoring D. Indeed, one sees that D goes quickly to near zero, indicating 

the binding partners are situated at almost the same distance as seen in crystallographic structure 

(Figure 7 a,b). Furthermore, we monitored I-RMSD for both cases (Figure 7a, b). Similar 

observations as above can be made – the system quickly reaches a binding pose that is very 

similar to the crystallographic one and stays stable during the rest of simulations. The reason 

why the system does not exactly reach the crystallographic conformation is the internal 

flexibility of both the receptor and the ligand. They sample conformations that are several Å 

RMSD away from their crystallographic structures, an observation that have been reported by 

other researchers as well [89]. The final positions of barnase-barstar at the end of simulation 

compared to their native structures are also shown for guidance of the eye (Figure 7c-d). 
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Figure 7. L-RMSD, D and I-RMSD as a function of simulation time (a) L-RMSD , I-RMSD & 

D of barnase-barstar  at different time steps during the simulation with barnase fixed and barstar 

rotated 90 degree around X-axis and 270 degree around Z- axis passing through CoM; (b) L-

RMSD, I-RMSD and D at different time step during the simulation with barnase rotated 90 

degree around Y-axis and barstar rotated 270 degree around Z- axis passing through CoM; (c,d): 

final position of barnase -barstar at the last step of simulation compared to experimental structure 

when the simulation is performed with initial orientations explained for  (a) and (b) respectively: 

barnase colored green and barstar colored purple, while experimental structures are colored red 

(barnase) and yellow (barstar). 

 

3.3.2 Statistical analysis 

Statistical analysis shows that most of the simulations are successful despite of the short 

simulation time. To illustrate the time evolution of the quantities (D, L-RMSD and I-RMSD) 

that are used in this work to access the success of simulations, we select several time-windows 

from the DFMD simulations (time-windows 2-3, 3-4, and 4-5ns). Each time window consists of 
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4000 frames. One anticipates that longer simulations will bring the ligand closer to the 

crystallographic binding position. Results are shown in Figure 8. Analyzing the offset distance, 

the D (Figure 8a), one sees that the number of cases with very small D is greater for the time-

windows 3-4ns and 4-5ns compared with the time-window 2-3ns. This indicates that indeed as 

the time of simulations progresses the DFMD brings the partners together close to the 

experimental positions. Furthermore, Figure 8b shows the time evolution of L-RMSD in these 

three time-windows separately. Here the trend is not as clear as it is for D. Practically there is 

no difference of the number of cases with low L-RMSD between the three time-windows. 

However, there is a tendency in the range of L-RMSD 60-90 Å, that longer simulations provide 

better outcome, i.e., less cases being with such large L-RMSD. It should be made clear that L-

RMSD has three components: L-RMSD due to (1) offset distance, (2) wrong orientation of the 

ligand and (3) conformational changes of the ligand. In addition, due to the fact that the receptor 

also undergoes conformational changes during the simulations, the structural superimposition of 

crystallographic 3D structure of the receptor and the corresponding snapshot is contributing to 

L-RMSD as well. Finally, the results about I-RMSD are shown in Figure 8c. Here we see both 

effects mentioned above: an enrichment of case with low I-RMSD for time-windows 3-4ns and 

4-5ns compared with case in the time window 2-3ns, and at the same time fewer cases in the 

regions 60-90 Å. The arguments about the factors contributing to I-RMSD are the same as 

outlined for L-RMSD.  

 

Overall, the statistical analysis indicates that DFMD facilitates the binding and attempts to 

bring the apartments to their crystallographic positions in the complex. However, none of 64 
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simulations resulted in perfect match of the binding mode of barnase-barstar complex as seen in 

the crystallographic structure, i.e. D = 0 Å, L-RMSD = 0 Å and L=RMSD = 0 Å. One plausible 

reason for that is in our protocol the structures are not rigid and they sample various 

conformations (away from crystallographic 3D structures) and thus even they are sampling the 

crystallographic binding mode, still the corresponding D, L-RMSD and I-RMSD will be 

different from zero.  

 

 

 

Figure 8. Statistical analysis of the results based on  ∆D, L-RMSD and I-RMSD during different 

time- windows of the simulations (a) analysis of ∆D; (b) analysis of L-RMSD; (c) analysis of I-

RMSD  

 

 

3.3.3 Role of electrostatics 

The work was done on diverse set of initial orientations and positions of both barnase 

and its ligand barstar. We did not observe preference of successful binding with respect to the 
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corresponding initial conditions. In some cases, as case 2 in the showcase section, the partners 

were positioned and oriented in completely wrong way (by wrong we mean positions and 

orientations completely different from crystallographic ones), and still DFMD was able to 

correctly bring them together very close to the crystallographic binding mode. What is the reason 

for that? Error! Reference source not found. illustrates two cases of initial conditions, an easy 

case where the barstar is simply moved away from its crystallographic position (Error! 

Reference source not found.a) and a difficult case, where barstar is moved away and rotated as 

well (Error! Reference source not found.b). In the first case (a) the binding interfaces are still 

facing each other and presumably the recognition should be easier. Indeed, as it can be seen in 

Error! Reference source not found.a, the resulting electrostatic force coming from barnase and 

acting on barsar is pointing toward the receptor, thus contributing to the association process. In 

the second case (Error! Reference source not found.b), the interfaces are not facing each other 

and if the barsar is simply pulled toward the barnase, the binding will be totally wrong. However, 

Error! Reference source not found.b indicates that the electrostatic play crucial role by 

providing a torque that makes barstar to rotate and thus to adopt correct orientation of the binding 

interface. Such an electrostatic torque effect was shown to be common for various binding 

partners [42].  
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Figure 9. Electrostatic forces generated by barnase (cartoon representation) to barstar placed 30 

Å away from its bound position. Orange arrows represent forces acting on each residue, while 

the green arrow is the total resultant force. The length of the arrow reflects calculated magnitude 

of the force. The side chain of residues of barstar are represented as line, of which blue and red 

positively charged residue and negatively charged residue respectively: (a) initial 

crystallographic structure of barnase-barstar separated by 30 Å from its bound position; (b) 

electrostatic torque formed when keeping barnase fixed, barstar is rotated around X-axis by 90 

degree and around Z-axis by 270 degree and separated by 30 Å to its bound position. 

 
 

3.3.4 Role of conformational flexibility and longer simulation time 

It was mentioned above that none of the simulations resulted in a perfect binding mode. The 

corresponding quantities, D, L-RMSD and I-RMSD were found to be different from zero in all 

64 runs. To probe what is the plausible reason for that, we carried out traditional MD simulations 
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(without DelPhiForce) staring from the crystallographic structure of barnase-barstar complex. 

The results of 5ns simulations are shown in Figure 10a. It can be seen that D, L-RMSD and I-

RMSD are different from zero, confirming our initial thought that conformational dynamics 

associated with MD results in deviation from crystallographic structure and thus one cannot 

expect that DFMD modeling will reproduce the binding mode seen in X-ray experiment.  

Furthermore, we tested if the DelPhiForce could be causing problems when monomers are 

in bound state. For this purpose, we carried out DFMD simulations starting from the X-ray 

structure of the complex (Figure 10b). One can compare Figure 10a and Figure 10b to observe 

that there is not significant difference. This indicates that DFMD in bound state delivers results 

similar to traditional MD and does not cause artifacts.  

Finally, one may expect that longer simulations will provide better results. To quickly probe 

this, we took a particular case of binding mode resulting in small ∆D, L-RMSD and I-RMSD 

(taken from the last frame of the simulations shown in Figure 10b) and subjected it to additional 

5ns NAMD. Results are shown in Figure 10c. Unfortunately, no improvement was observed. 

This suggests that DFMD should not be targeted to deliver the “perfect” binding mode, but rather 

to position the binding partners in a near-binding mode.  
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Figure 10. L-RMSD, I-RMSD and ∆D as a function of simulation time: (a) NAMD simulation 

of bound crystal structure; (b) DFMD simulation of bound crystal structure; (c) NAMD 

simulation of last frame of the successful DFMD simulation. 

 

 

3.4 Conclusions 

This work showed that DFMD is capable of assisting modeling of protein-protein binding 

and produces trajectories that describe various scenarios, including case at which the starting 

positions and orientations are completely different from the binding ones. At the same time, the 

approach is fast and computationally less expensive than traditional MD-based approaches.   
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CHAPTER FOUR 

 

EFFECT OF DISEASE-CAUSING DNA VARIANTS IN PROTEIN STABILITY,  

DYNAMICS, AND INTERACTION 

 

 In-silico analysis to identify the role of MEN1 missense mutations in breast cancer 

 

4.1 Introduction 

Variants in MEN1 gene has been found to have a strong association with multiple 

endocrine neoplasia type 1 that follows an autosomal dominant (AD) inheritance pattern in 

various tumor syndromes[90]. MEN1 triggered neoplasia type1 is involved in the development 

of various tumors such as parathyroid adenomas, duodenopancreatic neuroendocrine tumors, and 

pituitary (anterior) adenomas with a 94% penetrance by the age of 40[91]. MEN1 encodes for 

menin, a 610 amino acid oncosuppressor protein, found in the nucleus. Menin protein interacts 

with other proteins such as JunD/AP1, Smad3, NFκB, estrogen receptor (ER) and others to 

participate in various transcription and cell signaling processes[92]. 

The inheritance of germline MEN1 mutation such as a point mutation or deletion (leading 

to loss of heterozygosity (LOH)), disrupts the signaling pathway of menin protein, and thus 

predisposes an individual to develop tumor. The germline mutations occurring in MEN1 that 

truncate the menin protein result in dysfunctional product and thus affecting its role in tumor 

suppressor activity[92]. Studies based on mutagenesis performed previously indicate that the 

LOH of menin protein disrupts its interaction with histone methyltransferase (HMT) mixed 

lineage leukemia protein (MLL). This mechanism in turn impacts histone associated 

trimethylation (H3K4me3) transcription activation process thus fails to suppress the 

development of endocrine tumors[93]. 
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The oncosuppressor menin protein plays a vital role in suppression of ER-positive breast 

cancer as well[94]. Previous studies outline that the upregulation of menin protein which binds 

to the ER and thus enhances the ER activity which implicates that it acts as a growth stimulator 

in ER-positive breast cancer[95]. Menin also regulates ERα-mediated transcription by enhancing 

H3K4 (histone 3 lysine 4) methylation process leading to breast carcinogenesis and various other 

tumor progression mechanisms[96]..Loss of heterozygosity (LOH) and disruption in menin 

protein expression in a Dutch cohort strongly shows involvement of MEN1 in breast cancer 

carcinogenesis[97]. 

The goal of this study is to classify missense MEN1 variants reported to be identified in 

breast cancer tissues from COSMIC (Catalogue of Somatic Mutations in Cancer) database[98] 

with unknown pathogenicity. This is done by applying our combinatory in-silico predictor[99] 

approach to annotate the pathogenicity of these variants. We also analyzed the impact of these 

variants on biochemical and biophysical properties of the menin protein along with the in-house 

built menin-ER and menin-MLL complexes. In parallel the same is done for curated pathogenic 

variants causing neoplasia. Comparing the observations made for mutations associated with 

neoplasia and variants in COSMIC database along with predictions made by our in-silico 

predictor, we provide classification of pathogenic menin mutations associated with breast 

tumorigenesis. 
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4.2 Materials & Methods 

4.2.1 Selection of the MEN1 variants 

 We collected 19 unique missense variants in MEN1 gene (GRch37 version) from COSMIC 

database that are reported to be identified in breast cancer samples. Among these 19 variants, 

only 2 are listed in ClinVar[100]and they are annotated as variants of unknown significance 

(VUS). 

 In parallel, we obtained 8 MEN1 missense variants associated with multiple endocrine 

neoplasia type1 from ClinVar database categorized as pathogenic. We will use these pathogenic 

mutations to compare their effect on menin stability and interactions with the effect caused by 

variants taken from COSMIC database and 5 benign variants from VariSNP database[101], since 

there were no benign variants reported in ClinVar.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 summarizes the list of all variants used in this study. 
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Table 1. List of all the variants used in our study. The MEN1 missense variants associated with 

breast cancer are obtained from COSMIC database, whereas the MEN1 pathogenic missense 

variants associated with Multiple Endocrine Neoplasia are obtained from ClinVar (that is used 

as a benchmarking set) 

 

Protein 

Change 

Clinical 

Significance 

rs# (dbSNP) Phenotype List Source 

Breast Cancer Associated Variants (COSMIC) 

S606C Unknow . Breast Cancer COSMIC 

S606Y Unknow . Breast Cancer COSMIC 

L605V Unknow . Breast Cancer COSMIC 

M563I Unknow . Breast Cancer COSMIC 

K562M Unknow . Breast Cancer COSMIC 

P534A Unknow . Breast Cancer COSMIC 

T530I Unknow rs750591216 Breast Cancer COSMIC 

R490Q Unknow . Breast Cancer COSMIC 

Q398E Unknow . Breast Cancer COSMIC 

A289E Unknow . Breast Cancer COSMIC 

L272R Unknow . Breast Cancer COSMIC 

S258L Unknow rs386134259 Breast Cancer COSMIC 

V220M Unknow rs794728621 Breast Cancer COSMIC 

H204Y Unknow . Breast Cancer COSMIC 

E200K Unknow . Breast Cancer COSMIC 

C170Y Unknow . Breast Cancer COSMIC 

R108P Unknow . Breast Cancer COSMIC 

L89R Unknow . Breast Cancer COSMIC 

L36F Unknow 
 

Breast Cancer COSMIC 

Neoplasia Associated Variants (ClinVar) 

W441R Pathogenic rs104894259 Multiple endocrine neoplasia, type 1 ClinVar 

A373D Pathogenic rs1555164707 Multiple endocrine neoplasia, type 1 ClinVar 

E260K Pathogenic rs104894268 Multiple endocrine neoplasia, type 1 ClinVar 

V189E Pathogenic rs104894262 Multiple endocrine neoplasia, type 1 ClinVar 

A165P Pathogenic - Multiple endocrine neoplasia, type 1 ClinVar 

R280K Pathogenic - Multiple endocrine neoplasia, type 1 ClinVar 

D423N Pathogenic rs104894264 Hereditary cancer-predisposing syndrome; 

Multiple endocrine neoplasia, type 1 

ClinVar 

H139D Pathogenic rs104894263 Hereditary cancer-predisposing syndrome; 

Multiple endocrine neoplasia, type 1 

ClinVar 
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4.2.2 In-house algorithm for pathogenicity prediction 

 Recently we reported a combinatory in-silico predictor of pathogenicity[99] which combines 

the 8 best pathogenicity prediction algorithms such as Polyphen2 (Polymorphism Phenotyping 

V-2)[102], LRT (Likelihood ratio test)[103], MetaSVM[104], VEST3[105], PROVEAN 

(Protein Variation Effect Analyzer)[106], REVEL[107], Eigen[108], CADD (Combined 

Annotation Dependent Depletion)[109].  We used this method to characterize the pathogenicity 

of the missense variant. 

 

4.2.3 Annotating MEN1 missense variants 

 We also annotated these variants with allele frequency information from 1000 genome[110] 

and Genome Aggregation Database (gnomAD)[111] to see the distribution of these variants 

among various population groups. We also annotated the variants with GERP++ scores [112] to 

evaluate the evolutionary conservation on a functional sequence. We used this score along with 

another biochemical feature, the folding energy change, to build an in-house classification 

method (using KNN classification method) to characterize the pathogenicity of missense 

variants.    

MEN1 Benign Variants (VariSNP) 

P519S Benign rs150202288 NA VariSNP 

V555L Benign rs562257963 NA VariSNP 

I377T Benign rs115859693 NA VariSNP 

E371D Benign rs149383809 NA VariSNP 

G508D Benign rs375804228 NA VariSNP 
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4.2.4 3D model of Menin protein and generation of Menin-ER and Menin-MLL complexes 

 The crystal structure of menin protein was obtained from Protein Data Bank (PDB)[113]. 

The PDB file (ID: 3U84) contains two chains, chain A and chain B, and has missing residues. 

The structure was re-modeled using SWISS-model[25] resulting in a full-length protein. (Figure 

11A). The structure of ER was modeled with SWISS-modeling using its amino acid sequence 

taken from Uniprot (ID: Q99527)[114] and a template (PDB ID: 4ZNH) with high sequence 

similarity (sequence similarity of 0.59) to build the model (Figure 11B). The structure of MLL 

was taken from PDB file (ID:4GQ6). Then the structures of menin, ER and MLL were used to 

model the complexes menin-ER and menin-MLL. For this purpose, we used the docking 

methods ZDOCK[115] and HawkDock[116]. Among the different models given by both 

methods, one best model is chosen from each method, each with similar position and near to the 

binding site of the protein. The binding site is predicted using web server meta -PPISP[117] 

which gives consensus results based on three individual web servers: cons-PPISP[118], 

PINUP[119] and Promate[120] (Figure 12A-D).  
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Figure 11. 3D Protein Structure(A) 3D structure of menin; (B) 3D structure of Estrogen Receptor 
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Figure 12. 3D structure of menin –ER and menin –MLL complex (A) 3D structure of menin-ER 

complex from ZDOCK (blue colored chain menin and purple colored chain ER; (B) 3D structure 

of menin-ER complex from HawkDock (cyan colored chain menin and pink colored chain ER); 

(C) 3D structure of menin-MLL complex from ZDOCK (orange colored chain menin and purple 

colored chain ER); (D) 3D structure of menin-MLL complex from HawkDock (green colored 

chain menin and blue colored chain ER). 

 

4.2.5 Computing folding free energy change due to mutation 

 Folding free energy change due to mutation was computed via in-house tool, the 

SAAFEC[44] algorithm, along with third party webservers as DUET[121], CUPSAT[122], 

mCSM[123], SDM[124] and I-Mutant 2.0[125]. 

 

4.2.6 Computing binding free energy change due to mutation 

 The change of the binding free energy of menin-ER and menin-MLL complexes was 

computed with in-house algorithm, the SAAMBE[45] method, along with third party tools as 

BeAtMuSiC[126], mCSM-PPI2[127] and MutaBind[128]. 

4.2.7 K-Nearest Neighbors (KNN) classification 

K-nearest neighbors algorithm was used to classify the missense mutations using 

biochemical property along with rate of evolutionary conservation. The dataset includes total of 

32 missense mutations. We split this dataset set into two subset (1) train dataset that comprises 

of 13 (5 Benign and 8 pathogenic) mutations; (2) test dataset consists of all the 19 mutations 

from COSMIC database (non-classified/unknown effect mutations). The KNN classification was 

performed using R program and various numbers of K values were tested to obtain the best 

performance on the training dataset. 
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4.3 Results & Discussion 

4.3.1 Predicting pathogenicity of MEN1 variants 

 To evaluate the pathogenicity of the 19 MEN1 missense variants taken from COSMIC 

database we utilized the in-house combinatory approach described in method section[99]. Table 

3 (Appendix B) summarizes the score and the assessment from the approach. According to this, 

15 out of 19 variants are classified as “pathogenic” and 4 variants are categorized as “benign”. 

In order to add more evidence to our categorization we mined Uniprot database to see if any of 

15 predicted pathogenic variants has reported to have damaging effect on the menin protein, 

including associations with other disorders. We noticed that some of the variants from COSMIC 

database classified as pathogenic (by our in-house combinatory approach) such as V220M and 

A289E are also listed in Uniprot database as causing damage to menin protein and resulting in 

neoplasia. This provides additional confidence that our predictions are correct and indeed 

V220M and A289E are pathogenic mutations.  

We did not find any allele frequency information associated with 18 variants except for one 

variant (T530I) categorized as “benign” that shows an allele frequency of <5% from both 1000 

genome[110] and gnomAD[111] databases. The results from our conservation analysis from 

GERP++[112] on our dataset, show that all the pathogenic variants have evolutionary 

conservation rate of larger than 4, while the benign variants have evolutionary conservation rates 

ranging between 2 and 4.6. Studies have shown that high rates of evolutionary conservation 
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along with other factors such as biochemical changes could contribute to the disruption of protein 

function[129]. 

4.3.2 Mapping the missense mutations onto the Menin-MLL & Menin-ER complex 

All the 19 variants taken from the COSMIC database, out of which 15 were predicted to be 

pathogenic and 4 to be benign, are mapped in the complex structures of menin-ER and menin-

MLL complex, along with neoplasia-causing mutations and 5 benign mutations from VariSNP 

database[101]  (Figure 13). It can be seen that all the variants are scattered within the structure 

and no variants are found near the interface of the protein complexes, both menin-ER and menin-

MLL complexes. Neoplasia mutations are found in helixes, beta sheet and loops whereas, 

COSMIC pathogenic mutations are found in helixes and loops and benign mutations are found 

in loops except mutation L605Y which is found in helix. 
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Figure 13. Mapping of pathogenic and benign mutations to menin-ER and menin- MLL 

complexes (A) mapping of mutations to menin-ER complex from ZDOCK (red colored 

pathogenic mutations from COSMIC , yellow colored pathogenic mutations associated with 

Neoplasia from ClinVar, green colored benign mutations from COSMIC and VariSNP); (B) 

mapping of mutations to menin-ER complex from HawkDock (red colored pathogenic mutations 

from COSMIC , yellow colored pathogenic mutations associated with Neoplasia from ClinVar, 

green colored benign mutations from COSMIC and VariSNP); (C) mapping of mutations to 

menin-MLL complex from ZDOCK (blue colored pathogenic mutations from COSMIC, yellow 

colored pathogenic mutations associated with Neoplasia from ClinVar , green benign mutations 

from COSMIC and VariSNP), (D) mapping of mutations to menin-MLL complex from 

HawkDock (red colored pathogenic mutations from COSMIC, yellow colored pathogenic 

mutations associated with Neoplasia from ClinVar ,magenta colored benign mutations from 

COSMIC and VariSNP). 
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4.3.3 Effect of missense mutation on protein stability 

 We find that most of the mutations destabilize the menin protein Table 4 (Appendix B). The 

changes in stability are greater for the pathogenic mutations compared with the benign mutations. 

Out of fifteen pathogenic mutations, eight are predicted to cause folding free energy change 

greater than or equal to 1.50 kcal/mol, four to result in folding free energy change less than 1.5 

kcal/mol and three to less than 1 kcal/mol. Out of nine benign mutations, only one is predicted 

to cause change in folding free energy greater than 1.5kcal/mol, six are predicted to cause change 

in folding free energy less than 1 kcal/mol and two greater than 1kcal/mol and but less than 1.5 

kcal/mol. The results indicate that pathogenic mutations tend to cause larger changes of folding 

free energy compared with predicted for benign mutations. Some of the pathogenic mutations as 

A289E, R108P and L36F are predicted by all predictors to result in similar change of stability 

which provides confidence that they are correct. These results can be compared with the change 

in folding free energy due to pathogenic mutations associated with neoplasia reported to ClinVar 

(Table 5, Appendix B). It is shown out of eight mutations associated with neoplasia, six have 

folding free energy change greater than 1.5 kcal/mol and two have less than 1.5 kcal/mol.  This 

shows that pathogenic mutations associated with neoplasia and mutations from COSMIC 

database predicted to be pathogenic have similar effect on protein stability.  

 

4.3.4 Effect of missense mutation on binding affinity 

 Table 6 and Table 7 (Appendix B) show the change in binding free energy due to mutations 

in menin-ER and menin-MLL complexes, respectively. For both complexes, all the mutations 
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destabilize the protein binding but the changes in binding energy are greater for pathogenic 

mutation compared with benign mutations. Out of 15 pathogenic mutations, 9 from menin-ER 

complex are predicted to cause binding free energy to change greater than 0.5 kcal/mol and 6 to 

less than 0.5 kcal/mol. In menin-MLL complex, 11 mutations are predicted to cause change in 

binding free energy greater than 0.5 kcal/mol and only four to less than 0.5kcal/mol. Mutations 

as A289E, C170Y and L272R are predicted to have largest effect on binding free energy change 

for all methods. Most of the benign mutations of both complexes are predicted to cause change 

in binding energy less than 0.5kcal/mol which is lower in comparison to pathogenic mutations. 

These can be compared with the change in binding free energy due to mutations associated with 

neoplasia reported in ClinVar (Table 8 and Table 9, Appendix B). It is shown that out of eight 

pathogenic mutations associated with neoplasia in menin_ER complex, four are predicted to 

cause binding free energy to change greater than or equal to 1.0 kcal/mol, three to cause change 

in binding free energy greater than 0.5 kcal/mol and less than 1.0 kcal/mol and one to less than 

0.5kcal/mol. For menin-MLL complex, five are predicted to cause binding energy change to 

greater than 1.0 kcal/mol, two to greater than 0.5 kcal mol and less than 1.0 kcal/mol and one to 

less than 0.5kcal/mol. This shows the similar binding effects of pathogenic mutations associated 

with neoplasia and mutations predicted to be pathogenic and associated with breast cancer from 

COSMIC database. 

 

4.3.5 Biophysical properties-based pathogenicity classification using KNN model 

 Here we use KNN method along with biophysical features such as folding free energy (ΔΔG) 

and conservation score (GERP++) to characterize the 19 MEN1 missense variants from 
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COSMIC database. The dataset has a total of 32 mutation that encompasses 23 pathogenic 

mutations and 9 benign mutations. These 32 mutations were partitioned into 13 mutations 

(composed from ClinVar and VariSNP data sources) and 19 mutations with unknow significance 

(obtained from COSMIC database) and then subjected to the KNN classifications. The 13 well 

curated mutations were randomly split into 80% as train dataset and 20% as test data and we 

preformed 10-fold cross validation. At 100% accuracy we identified the best K value is 5. Using 

the validated KNN classification model with a K = 5 we performed the categorization of the 19 

mutations with unknown significance with both features (GERP++ and ΔΔG) and just folding 

free energy (ΔΔG). Table 10 (Appendix B) summarizes the predictions results from our KNN 

classification and compares with the results obtained from our combinatory approach. When we 

use the both the GERP++ scores and ΔΔG as features, two mutations that were predicted benign, 

Q398E and L605V, in our combinatory in-silico approach were predicted to be pathogenic. But 

when only ΔΔG was used as a feature, three mutation, S606Y, H204Yand M563I that was 

predicted as benign using KNN classification differs from the results our combinatory in-silico 

method prediction. Previous studies on contribution of biophysical property such as folding free 

energy change (ΔΔG) has been used characterization of the pathogenicity of the missense 

variants in MEN1[130]. Our results from KNN classification shows that the biophysical property 

such as folding free energy along with evolutionary conservation rates provide more evidence in 

characterizing the mutation deleteriousness. 



 45 

4.4 Conclusions 

 The study investigated the effects of MEN1 missense mutations and their role in breast 

cancer. Our utilization of combinatory in-silico predictor approach characterized the 

pathogenicity of the 19 missense variants with unknown clinical significance taken from 

COSMIC database.  The results from the biophysical analysis using the menin protein along with 

its complexes (menin-MLL and menin-ER) aided in providing more evidence to the pathogenic 

impact caused by the variants in breast cancer tissues. The results from our in-house KNN 

classification method show strong correlation with the results from our in-silico combinatory 

approach. Furthermore, the benchmarking of the results using the neoplasia exclusive variants 

indicates that mutations clearly alter the protein stability of menin, and the changes are 

comparable with predicted pathogenic mutations taken from COSMIC database.  Taken together, 

we provide classification of variants found in breast cancer tissues as pathogenic and benign 

based on several features.   
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CHAPTER 5 

 

pH DEPENDANCE OF STABILITY DUE TO MUTATIONS  

 

 

Computational Investigation of the pH Dependence of Stability of Melanosome Proteins: 

Implication for Melanosome formation and Disease 

 

5.1 Introduction 

The pH of a solution is an important characteristic for many biological processes. On a 

molecular level, the pH controls macromolecular stability and at extreme pH (acidic or basic 

extremes) macromolecules unfold. Typically, for every macromolecule, there is a particular pH 

at which the macromolecule is the most stable and activity is maximum, termed the pH-

optimum[68, 131]. Macromolecular interactions are also pH-dependent[31, 132, 133] and 

typically there is a pH-optimum at which the binding affinity is maximum[134]. Within a cell, 

subcellular compartments have different pHs, reflecting their function, from low pH in 

lysosomes to high pH in peroxisomes. Thus, macromolecules tend to have a pH-optimum that is 

ideal for the pH of the subcellular compartment where they reside[135]. Increasing the scale of 

this idea, pH plays a crucial role for body organ function and varies form very acidic in the 

stomach to neutral in the blood. All above examples indicate that the regulation and maintenance 

of pH is essential for many biological phenomena.  

pH is maintained in a given cellular compartment by channels and/or pumps either 

directly trafficking H+ or indirectly providing environments that affect local H+ concentration. 

These channels and/or pumps can be termed positive (increase pH) or negative (decrease pH) 
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regulators[136, 137]. Reaching and maintaining the desired pH depends on the balance of H+ 

flux controlled by these regulators, including the passive transport across the membrane (Figure 

14). One would expect that the positive regulators have activity at acidic pH and almost no 

activity at basic pH since their role is to increase pH from low to high pH. The converse would 

be expected for negative regulators; activity increases as the pH rises. At a particular pH, the 

inward and outward flux of H+ induced by positive and negative regulators become equal and 

the pH set-point is established (Figure 14).  

 

 

Figure 14. Schematic representation of the induced H+ flux of positive (increase pH) and negative 

(decrease pH) regulators. With vertical arrow we indicate the desired pH, at which the total 

induced H+ flux is zero.  

 

Melanocytes are a specialized cell type that resides in the skin, eyes, brain, ear, heart, 

lung and adipose tissue[138]. One of the primary functions of melanocytes is the production of 
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melanin, a polymer of tyrosine derivatives that has important chemical properties in a wide range 

of tissues[139]. Melanin is synthesized in a specialized organelle called the melanosome. The 

pH of this organelle varies during the development of the organelle (a multistage process called 

maturation) and contributes to common pigmentation variation in human skin, hair, and eye 

color. Biallelic rare variants in proteins critical for the production of melanin, hair, and eyes, 

(TYR) or in pH regulation of the melanosome (OCA2 and SLC45A2) lead to a significant 

reduction in melanin pigmentation in skin and give rise to Oculocutaneous albinism (OCA) 

(OCA1, OCA2 and OCA4 respectively). Melanin synthesis is critical for the protection of the 

skin and eyes from ultraviolet radiation and a reduction in melanin synthesis increases the risk 

of cancer. Furthermore, a dramatic reduction of melanin production in the eye is also correlated 

with foveal hypoplasia, reduced visual acuity, and photophobia among individuals with 

OCA[140]. Taken together, the link between altered melanin pigment production and disease is 

well documented,  however it remains poorly understood how the pH set-point of this organelle 

affects protein function which is critical for melanin synthesis or organelle pH maintenance 

[141]. 

Melanosomes originate from the endosome (Figure 15); thus, early melanosomes have a 

low pH (~ 3–4), whereas in the latter stages the pH reaches a near neutral pH of about 7. The 

near neutral pH of the mature melanosome is thought to provide a favorable environment for 

tyrosinase (TYR), the rate-limiting melanin synthesizing enzyme[142-144]. The change in pH 

during melanosome maturation is thought to be controlled by several membrane proteins[137] 

(e.g., OCA2, SLC45A2, and TPC2/TPCN2) (Figure 15). OCA2 and SLC45A2 are presumed to 

be positive pH regulators, while TPC2 is considered to be a negative pH regulator. Based on the 
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proposed role of positive and negative pH regulators (Figure 14), we anticipated that these 

proteins have different pH profiles of stability and activity. In addition, there are other 

melanosome proteins important for melanin synthesis (e.g., the ATP7A protein, which is altered 

in individuals with Menkes disease, and which supplies Cu2+ to the melanosome for TYR 

catalytic activity) that may exhibit pH-dependent stability and activity. It can be expected that 

the ATP7A protein, which supplies copper to TYR, should have a similar pH-dependence on 

activity as compared to TYR[145, 146]. 

 

Figure 15. Schematic representation of the multistage processes of melanosome formation and 

proteins participating in pH regulation and melanin synthesis. The characteristic pH for each 

melanosome stages are indicated in the figure as well.  

 

We anticipate that OCA2 and SLC45A2 have maximal activity at acidic pH, while TPC2 

has maximal activity at basic pH. OCA2 plays a major role in human lighter skin and hair 

pigmentation and blue vs brown eye color variation[147]  and regulates melanosomal pH and 
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maturation[147-149]. It may also be involved in small molecule transport for the biosynthesis of 

melanin[150, 151]. SLC45A2 also acts as a melanocyte differentiation agent and participates in 

the transport of substances required for melanin biosynthesis[149, 152, 153]. TPC2 affects 

pigmentation by regulating melanosome pH and size by mediating Ca2+ release from the 

organelle[154, 155].  

Thus, understanding how melanosomal pH affects the activity of these proteins is 

essential. Furthermore, these proteins are commonly mutated in disease and those variants may 

impact the normal pH-optimum of these proteins. Predicting pH-optimum of activity is not an 

easy task and requires modeling of the details of the corresponding biochemical reactions as a 

function of pH. Here, we take advantage of the observation that pH-optima of activity and 

stability typically are the same as indicated in our earlier work[156]. Thus, our goal is to 

computationally determine the pH-dependence of stability of OCA2, SLC45A2, TPC2, TYR, 

and ATP7A proteins. Furthermore, we analyze the effects of common pigmentation and disease 

associated variant alleles in these proteins on the pH-dependence of their stability.  

 

 5.2 Results 

As pointed earlier, in this work we focus on several proteins participating in melanosome 

formation, with the goal to contrast their stability pH-dependence and the effect of pathogenic 

variants. We use the observation made in our previous work that pH-optimum of activity is 

correlated with the pH optimum of stability[29]. This allows us to speculate that the results 

obtained on stability can be inferred to activity of these proteins. We present the results according 
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to the classification of the proteins as “positive” and “negative” regulators and probe our 

hypothesis that “positive” regulators should have lower pH-optimum as compared with 

“negative” regulators. Firstly, we present the results of the wild type proteins and sequentially 

the results about the mutants.  

 

5.2.1 pH dependence of folding free energy on wild type proteins 

For each wild type protein, the magnitude of the “constant” in equation (2) is unknown, 

because there is no experimental data of the folding free energy at a given pH for any of the 

proteins modeled in this work. Because of that it was set to be zero at the beginning of the 

simulated pH interval, pH=4.0. Here we present the calculated pH-dependence of the folding 

free energy using energy minimized structure (Figure 16) and we averaged results over 20 snap 

shots taken from MD simulations (Figure 25, Appendix C). We do not focus heavily on the 

results obtained with MD snap shots because DelPhiPKa was developed to calculate pKa’s of 

ionizable groups using static structures. However, we probe the sensitivity of the results using 

MD snap shots to investigate the role of plausible conformational changes on the pH-dependence 

of stability. We see no significant difference of the results obtained with energy minimized 

structure and averaged results over 20 snap shots which suggests that there are no structural 

changes contributing to the stability pH-dependence.  
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Figure 16.  The pH-dependence of the folding free energy of wild type proteins from minimized 

structures within pH range 4-8.  

 

TYR has the highest pH-optimum of stability, the pH-optimum about 8.0 or higher 

(Figure 16). In contrast, OCA2 protein (the positive regulator protein) has the lowest pH-

optimum of stability, pH-optimum about 5.0 – 6.0. The other positive regulator, the SLC45A2 

protein, also has pH-optimum lower that neutral pH, pH-optimum of 6.5. Presumed negative 

regulator TPC2 and the ATP7A protein which supplies copper to TYR both have pH-optima 

close to neutral pH. Thus, there is distinctive pH difference of the stability of OCA2, SLC45A2, 

TYR, ATP7A, and TPC2. Furthermore, the modeling confirms the experimental observation that 

TYR is most active at neutral pHs and with reduced activity at acidic pHs[144]. 
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The origin of pH-dependence of the folding free energy is the difference of the pKa’s of ionizable 

groups in folded and unfolded state. Thus, if the pKa’s in folded and unfolded states are the same, 

there will be no pH-dependence. Furthermore, even if they are different but are outside the pH 

region of interest, the pH-dependence of the folding free energy will be affected as well. It is not 

expected that the pKa’s of titratable groups in the unfolded state will be perturbed from standard 

pKa values[157], and thus most of the pH-dependence of the folding free energy should originate 

from perturbed pKa’s in folded state. However, for completeness, in Claculated PKa’s  

 

 

 

 (Appendix C), we provide the calculated pKa’s for both states, folded and unfolded. Indeed, 

one can see that for “positive” regulators most of perturbed pKa’s are for acidic groups, thus 

resulting in pH-dependence at low pH. In contrast, most of perturbed pKa’s for TYR, ATP7 and 

the “negative” regulator TCP2 are of His residues, resulting in pH-dependence at neutral pH.  

 

5.2.2 Effect of pathogenic variants on protein stability 

Error! Reference source not found.. shows the average change of folding free energy due 

to variants based on predictions made using the methods described above. The low standard 

deviations reported reflects the consistency of results obtained with different tools. Most of the 

variants appear to destabilize the proteins by a modest amount. However, some mutants, such as 

A481T and N489D in OCA2, C1002F and I1264V in ATP7A, are predicted to significantly effect 

protein stability. In the case of OCA2 A481T and N489D variants, both of which have been 

observed among individuals with albinism, the predicted large change of the folding free energy 

can be attributed to the change of the physio-chemical properties of the wild type residues: A→T 

and N→D. A→T representing a hydrophobic to polar residue change, while N→D represents a 

polar to charge residue change. In contrast, C1002F (and I1264V in ATP7A are conservative 

variants but are also predicted to result in a large change of the folding energy. In this case, the 
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change in folding energy is thought to be caused by the distortion of the residue packing caused 

by the different geometries of the side chains [158]. The structure of the proteins with variant 

sites mapped are provided in Figure 17.  

 

 

Figure 17. 3D structures with variants (shown in red color): (a) TYR; (b) OCA2; (c) TPC2; (d) 

SLC45A2; (e) ATP7A 

 

 

 Table 2. Change in folding free energy due to variants 

Change in folding free energy (∆∆G) due to variants(kcal/mol) 

Protein variant Avg ∆∆G SD 

TYR R402Q -0.5 0.5 

 S192Y 

Double MT*                                      

-0.27 

-0.77 

0.78 

1.09 
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OCA2 A481T -1.01 0.52 

 H615L 0.17 0.39 

 N489D -1.05 1.08 

 P743L -0.9 0.45 

 R419Q -0.54 0.33 

 V443I -0.54 0.48 

 

SLC45A2 G198V -0.51 0.25 

 L374F -0.84 0.47 

 

TPC2 K376R -0.49 0.3 

 M484L -0.86 0.33 

 M546I -0.1 0.67 

 V219I -0.11 0.32 

 

ATP7A C1002F -1.2 0.74 

 G666R -0.21 0.7 

 D1044E -0.8 0.53 

 I1264V -1.1 0.74 

 K742R 0.01 0.35 

 M1311V -0.79 0.35 
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 R844C -0.48 0.39 

 S653Y -0.45 0.54 

Note: Positive and negative sign of ∆∆G represents stabilization and destabilization due to variant respectively. 

                     * indicates double mutants (R402Q and S192Y) for TYR and ∆∆G is calculated by taking sum of individual changes. 

 

Overall, the predicted changes of the folding free energy are not extremely large, 

however, since we do not know the absolute folding free energy of the proteins and how the 

change in protein stability affects the activity, it is impossible to assess how these moderate 

changes affect protein activity. However, we can reasonably assume that the activity will 

decrease when folding free energy changes, even when the variants appear to make the protein 

more stable (e.g., H615L in OCA2 protein), because in most cases any significant deviation of 

wild type properties is deleterious for protein function[66, 67].  

 

 5.2.3 pH dependence of folding free energy on mutants 

We compared the effect of non-synonymous variants on the pH-dependence of protein 

stability of the wild type and corresponding variant proteins using both free energies minimized 

structures (Figure 18) and snap shots generated via MD simulations (Figure 26, Appendix C). 

One can see that there is no significant difference in the results obtained with different protocols. 

As mentioned in the method section, we considered that the “constant” in equation 2 is the 

predicted folding free energy change caused by the variants (Error! Reference source not 

found.). The most drastic effects were found for OCA2, whereas the variants in other proteins 

have moderate effects on the pH-dependence of folding free energy. In the case of OCA2, most 



 57 

of the variants (except one, H615L) were predicted to alter the pH-dependence of stability 

suggesting that the variant protein will be less stable at neutral pHs.  

 

Figure 18. The pH-dependence of the folding free energy of wild type proteins and their mutants 

from minimized structures within pH range 4-8.  

 

Furthermore, many variants in OCA2 (R419Q, N489D and V443I) result is a shift of pH-

optimum to lower pH. This will result in a shift of maximal activity of OCA2 towards the lower 

pH range and could result in a shift in the balance between positive and negative regulators such 

that the resulting pH set point will be lower that the wild type melanosome. Low pH in the 

melanosome in turn will result in reduced TYR activity.  

The above observations focused on the shape of the pH-dependence curve of folding free 

energy without considering the magnitude of the change. It should be mentioned that the changes 

in the folding free energy of OCA2 are within several kcal/mol, while the changes of the pH-
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dependence of folding free energy caused by variants in other proteins are sometimes larger 

(Figure 18). Despite this, the predicted changes in the stability will likely affect protein activity 

and alter the balance of pH in melanosome.  

The reason why variants in OCA2 have significant effects on the pH-dependence of 

folding free energy can be found in Table S1. Our study focuses on the pH interval 4.0 to 8.0 

and the pH-dependence is induced by titratable groups that have different pKa values in folded 

versus unfolded state. Such titratable groups are Asp, Glu and His.  One can see that in the case 

of OCA2, variants result in perturbed pKa’s of Glu and Asp, while having almost no effect on 

pKa’s of His. This is the reason why the pH-dependence of the folding free energy of OCA2 is 

mostly affected over acidic pHs.  

 

5.3 Discussions 

We studied the effect of coding variants[149] of melanosome proteins on protein stability 

and the pH-dependence of their folding free energy. In TYR, both variants (R402Q and S192Y) 

individually do not affect pH-dependence, because they either do not involve titratable groups 

or involve titratable groups with very high pKa, outside the pH interval of the study. Of note, a 

single haplotype allele in which these two alleles, R402Q and S192Y, are found together in cis 

has been suggested to present as a pathogenic haplotype for OCA1[159] . Therefore, we 

examined whether the presence of both variants affected protein stability; TYR modeled with 

both variants had modest change in protein stability (Error! Reference source not found.). In 

the case of ATP7A, modest changes of the pH-dependence caused by variants are predicted to 
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occur at neutral and higher pHs. Overall, the changes of stability are quite small. The reason for 

modest changes in the stability and little effects on the pH-dependence can be attributed to the 

conservative nature of the variants. In all cases, the physio-chemical properties of wild type sites 

are preserved. Considering SLC45A2, both variants do not involve titratable groups and do not 

cause alteration of the wild type pH-dependence of the folding free energy. However, significant 

change of the protein’s stability is predicted which would affect SLC45A2 function. Significant 

alterations of pH-dependence of the folding free energy caused by variants are predicted for the 

OCA2 protein. Indeed, most of the variants alter the wild type physio-chemical properties of the 

protein. As a result, all variants have a shifted pH-optimum shifted from the wild type OCA2 

pH-optimum. Lastly, the variants in TPC2 do not cause significant changes of either stability or 

pH-dependence of the folding free energy.  

Our data suggests that variants predicted to be pathogenic (e.g., OCA2: N489D, V443I) 

likely function by affecting protein stability and/or pH-dependence of folding free energy, our 

data also identifies known variants with conflicting interpretations/unknown significance (e.g., 

OCA2: A481T, R419Q) that may affect protein stability and/or pH-dependence of folding free 

energy. OCA2*R419Q is thought to modify the penetrance of the OCA2 locus and may affect 

the risk of melanoma[160]; therefore, our data suggest that melanosomal pH may have a 

functional role in melanoma genesis. These variants require biological testing to prove this 

association. However, our analysis failed to find any pH or protein stability effects of variants 

predicted to be pathogenic (e.g., TYR: R402Q; OCA2: P743L; or ATP7A: G666R). Thus, it is 

not a foregone conclusion that variants in protein coding sequences affect protein stability and/or 

pH-dependence of folding free energy suggesting other mechanisms of protein inactivation 
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occur. The TPC2 variants (K376R, M484I and V219I) are conservative variants and their 

identification by GWAS may reflect these variants may reside in LD with other variants or 

structural alleles, that impact expression, protein stability or function. Furthermore, SLC45A2 

(rs16891982 = L374F) was a top SNV associated with altered SLC45A2 mRNA expression 

levels and may be mediating GWAS association via this mechanism [161]. Given the uncertainty 

of variant associations with function, our data suggests that assessing the function of protein 

variants on a large scale by structural modeling may be helpful. Perhaps, the addition of a pH 

polygenic score that takes into consideration the pH impact on the melanosome and all of its 

channels and enzymes will help in the assignment of variants to predicted functional groups. 

5.4 Materials and Methods 

The method section consists of four components: (1) obtaining 3D structures of the proteins 

of interest; (2) generation of mutants in silico; (3) molecular dynamics simulations; and (4) 

calculating pH-dependence of the folding free energy.  

 

 5.4.1 Structures used in the modeling   

TYR protein: The 3D structure of TYR was modeled using SWISS-MODEL[162] from an 

amino acid sequence of length (529 aa) taken from UniProt (ID: P14679)[114]. A template (PDB 

ID: 5M8P)[163] with percentage identity of 44 percent and covering 81 percent (19-452) of total 

sequence of TYR was selected. The corresponding model and template are shown in Figure 19.  
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Figure 19. 3D model of TYR: (left) 3D structure of TYR; (right) superimposition of the TYR 

model (green) with its template (red)  

 

OCA2 protein: The 3D structure of OCA2 was modeled using Phyre2 [164]. The full 

length sequence of OCA2 is 838 aa and is taken from UniProt (ID: Q04671)[114]. A template 

(PDB ID: 4F35)[165] was selected with percentage identity of 20 percent to query and covering 

60 percent of the sequence of OCA2 (Figure 20). The helical content was well preserved between 

the template and the model (Figure 20). 
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Figure 20. 3D model of OCA2: (left) 3D structure of OCA2; (right) superimposition of the OCA2 

model (cyan) with its template (red)  

 

 

TPC2 protein:  A crystal structure for TPC2 is available (PDB ID: 6NQ2)[166] and is a 

homodimer with 752 residues (Figure 21). 
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Figure 21. 3D model of TPC2: (blue) monomer A; (green) monomer B  

 

SLC45A2 protein: The 3D structure of SLC45A2 was modeled using Phyre2 [164]. Its 

sequence was taken from UniProt (ID: Q9UMX9)[114] with a sequence length of 530 amino 

acids. The chosen template (PDB ID: 4YBQ) [167] covers 94 percent of the sequence with 

identity of 14 percent (Figure 22).  
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Figure 22. 3D model of SLC45A2: (left) 3D structure of SLC45A2; (right) superimposition of 

the SLC45A2 model (cyan) with its template (red)  

 

ATP7A protein: The 3D modelling of this protein was also done by using Phyre2 [164] 

. The sequence was taken from UniProt (ID: Q04656)[114] with a sequence length of 1500 amino 

acids. The template (PDB ID: 3RFU)[168] covers 57 percent of the sequence (646-1411) with 

identity of 41 percent (Figure 23). 
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Figure 23. 3D model of ATP7A: (left) 3D structure of ATP7A; (right) superimposition of the 

ATP7A model (green) with its template (red)  

 

5.4.2 List of non-synonymous GWAS identified pigmentation associated variants 

The NHGRI-EBI catalog of human genome-wide association studies (GWAS)[169] was 

queried April 4th, 2020 to identify all non-synonymous variants in genes TYR, OCA2, SLC45A2 

TPCN2 and ATP7A found associated with common human pigmentation variation of skin and 

hair (see Error! Reference source not found.).  

Of note the variants identified by GWAS are associations. In the case of non-synonymous 

coding variants, they may impact protein function or alternatively they may, like those 

associations identified in non-coding regions of the genome, be in tight linkage disequilibrium 

(LD) with other variants that may function to impact expression levels or proper splicing.  These 

studies are important as they measure the impact of protein variation on the pH-dependence of 
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the folding free energy and can help to establish whether a variant directly impacts the protein 

in question. 

 5.4.3 Generation of mutants 

To generate 3D structure of protein variants while avoiding the introduction of artificial 

errors, we used the model of the wild type protein and the corresponding residue was mutated 

using UCSF Chimera[85]. The folded wild type structures and variant sites mapped onto a 3D 

structure of folded TYR, OCA2, TPC2, and ATP7A are shown in  Figure 17. One can see 

(sequence alignment, Appendix C) that most of the variants are within well preserved structural 

regions, away from the loops, which reduces the uncertainty of the 3D modeling.  

 5.4.4 Molecular dynamics (MD) simulations  

MD simulations were performed under periodic boundary conditions using NAMD2.9[82] 

with atomic parameters of the CHARMM forcefield[170]. The protein structures were prepared 

for the simulations using VMD[86] and TIP3P water molecules were applied to build the explicit 

water solvated systems. Finally, the neutralized system with NaCl were added wherever 

neutralization was needed.  

Simulations were performed for 20 ns for each protein structure with different initial atomic 

velocities. In the production stages of the simulations, they were equilibrated under constant 

volume−temperature (NVT) conditions for 100 ps followed by 2000 ps (= 2 ns) of constant 

pressure−temperature (NPT) equilibration at 1 atm pressure and 310 K (with the same restraints). 

The first 15 ns of the simulations were not equilibrated, so they were removed. The structural 

analysis was sampled from the last 5 ns at every 250ps. This produced 20 snapshots per structure; 



 67 

all of them were subjected to DelPhiPKa[41, 171, 172] calculations after removing the explicit 

water molecules.  

 5.4.5 Modeling pH-dependence of folding free energy 

To model the pH-dependent folding free energy, we built a 3D model of the unfolded 

state[157]. The unfolded structure ensembles of the wild type proteins were generated using the 

“flexible meccano” approach[173, 174] and among them we selected one representative structure 

(the structure with no helices and strands) (Figure 24). The unfolded mutants were then generated 

by using UCSF Chimera[85]. 

 

Figure 24. Unfolded structure of wild type proteins 

 

The pKa’s and net charge of the wild type protein and mutants, both in the folded and 

unfolded states, were calculated using DelPhiPKa[41, 171, 172]. We also calculated the pKa’s 
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and net charge for each of the 20 snapshots taken from the MD simulation to obtain the average 

net charge and its difference with respect to wild type proteins.  

The change in folding free energy (ΔΔG folding) was calculated from the net charge 

difference between the folded state and the unfolded state, taking the unfolded state as the initial 

state. The following equation is used over the pH-range of interest, giving an explicit pH-

dependent form of the folding free energy [29, 175]. 

 

 

 ∆∆𝐺𝑓𝑜𝑙𝑑𝑖𝑛𝑔 = 2.3𝑘𝑇 ∑ ∆𝑞𝑑𝑝𝐻 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡     (2) 

 

 

where, ∆𝑞 is the change of net charge from unfolded to folded state and 𝑑𝑝𝐻 is the pH interval. 

The constant is the absolute folding free energy at a given pH.  

For the analysis of the wild type proteins, the “constant” was considered to be zero at the 

beginning of the pH interval because there is no information about the absolute folding free 

energy of the individual proteins and predicting it would introduce significant and unwanted 

noise. However, for the mutants, there are many algorithms that are benchmarked against 

experimental data and shown to perform well, and this gives us the opportunity to predict the 

change of the folding free energy caused by variant with acceptable confidence. Thus, for the 

mutants, the “constant” was considered to be the free energy difference between wild type and 

mutant proteins caused by the variant. The folding free energy changes were modeled using an 

in-house algorithm, the SAAFEC-SEQ[44] method, along with third party tools such as 
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INPS3D[176], INPS-SEQ[176], mCSM[123], SDM[124], DUET[121], I-Mutant-SEQ[125], 

MUpro-SEQ[177], iStable-SEQ[178] and DeepDDG[179]. 

 

5.5 Conclusions 

The importance of melanosomal pH for the regulation of organelle maturation is well 

studied[150, 154], but how the melanosomal proteins regulate the desired pH remains unknown. 

The same applies for their genetic variants[154]. Here we suggest a mechanism of competitive 

pH-dependence of stability and activity of “positive” and “negative” pH regulators. Our data 

suggests that the “positive” regulators of melanosomal pH should be having maximal activity 

(and thus maximal stability) at low pH, while the opposite is expected from “negative” 

regulators. Indeed, we have shown that OCA2 and SLC45A2 have low pH-optimum as 

compared to TPC2 protein. Furthermore, the TYR and its partner ATP7A are also shown to have 

a pH-optimum at neutral and higher pHs. We predict that similar mechanisms of pH regulation 

can be expected for other melanosomal proteins.  
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Appendix B 

 

 

Tables for chapter four 

 

 

Table 3. Summary of annotation of the 19 variants from COSMIC database. This consists of in-

silico prediction scores that is used by combinatory approach to make our pathogenicity 

classification. We also have GERP++ score that shows higher rates of evolutionary conservation 

for   pathogenic variants compared to the benign. 

 

AA 

Mutati

on 

Polyphe

n2 

LRT Meta 

SVM 

VEST3 PROVEAN REVEL Eigen CADD Our Prediction GREP++ gnomAD Clnsig 

S606C 0.965 0.024 1.062 0.437 -2.320 0.565 4.351 25.9 Pathogenic 4.57 . . 

S606Y 0.948 0.024 1.064 0.451 -1.770 0.578 4.324 26.8 Pathogenic 4.57 . . 

L605V 0.821 0.000 1.042 0.178 0.070 0.365 2.095 22.8 Benign 4.57 . . 

M563I 0.932 0.000 1.069 0.826 -3.060 0.883 5.017 29.5 Pathogenic 4.48 . . 

K562M 0.998 0.000 1.042 0.788 -4.930 0.858 5.063 29 Pathogenic 4.48 . . 
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P534A 0.849 0.723 0.772 0.144 -0.720 0.318 2.038 6.224 Benign 2.34 . . 

T530I 0.011 0.148 0.551 0.048 -1.800 0.296 0.519 5.558 Benign 2.63 4.035E-06 . 

R490Q 0.988 0.000 1.045 0.521 -0.340 0.622 4.880 27.1 Pathogenic 4.54 . . 

Q398E 0.001 0.052 0.165 0.157 0.520 0.351 1.187 3.064 Benign 3.89 . . 

A289E 0.994 0.000 1.079 0.967 -2.700 0.967 6.548 29.7 Pathogenic 4.24 . . 

L272R 1.000 0.000 1.044 0.979 -5.100 0.954 6.031 30 Pathogenic 4.39 . . 

S258L 0.979 0.000 1.063 0.974 -3.100 0.913 6.209 27.1 Pathogenic 4.80 . VUS 

V220M 0.896 0.002 1.088 0.785 -1.820 0.799 3.983 24.4 Pathogenic 4.80 . VUS 

H204Y 0.975 0.000 1.054 0.911 -5.020 0.969 8.195 27.4 Pathogenic 4.76 . . 

E200K 0.985 0.000 1.053 0.954 -3.550 0.948 7.484 34 Pathogenic 4.76 . . 

C170Y 0.995 0.000 1.029 0.979 -9.330 0.953 7.550 29.3 Pathogenic 4.8 . . 

R108P 0.700 0.000 1.081 0.668 -1.280 0.655 4.143 25.4 Pathogenic 5.02 . . 

L89R 0.998 0.000 1.036 0.996 -4.640 0.923 6.063 24.5 Pathogenic 5.02 . . 

L36F 0.994 0.000 1.048 0.826 -2.540 0.901 5.751 26.8 Pathogenic 4.89 . 
 

 

*Clnsig: Clinical Significance from ClinVar Database 

*VUS: Variant of Unknow Significance 

 

 

 Table 4. Calculation of Folding Free Energy Change (kcal/mol) of variants from COSMIC & 

VariSNP database. The calculated folding free energy changes in kcal/mol of menin protein due 

to mutations from COSMIC and VariSNP database. The positive value indicates destabilization 

and negative value indicates stabilization. 
 

AA 

Mutation 

Our 

Prediction 

SAAFEC mCSM SDM DUET CUPSAT I-Mutant Average 

Missense Variants from COSMIC DB 

S606C Pathogenic 2.23 0.27 -0.75 -0.20 -0.73 2.18 1.56 

S606Y Pathogenic 0.29 0.43 -0.54 0.16 0.95 0.51 0.47 

L605Y Benign -2.53 0.48 0.6 0.52 0.53 -0.03 0.53 

M563I Pathogenic -1.08 1.10 0.32 0.68 -1.18 -0.48 -0.91 

K562M Pathogenic 5.90 -0.48 0.06 0.56 -0.01 -0.23 2.13 

P534A Benign 2.57 0.27 -0.69 -0.11 1.62 0.98 1.36 

T530I Benign 0.23 0.16 -1.31 -0.41 2.97 0.11 0.87 

R490Q Pathogenic 2.50 0.67 0.32 0.59 -0.61 0.56 0.93 

Q398E Benign 2.07 0.03 -0.97 -0.46 1.25 -1.44 1.12 

A289E Pathogenic 11.39 2.71 2.97 3.04 2.94 0.75 3.96 

L272R Pathogenic -4.26 2.30 3.02 2.36 5.55 0.51 2.75 
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S258L Pathogenic 1.80 0.03 -0.22 -0.18 1.7 0.95 1.12 

V220M Pathogenic -0.65 0.75 0.14 0.57 2.2 2.15 1.16 

H204Y Pathogenic -1.42 -1.32 -0.02 -1.35 -1.52 -0.25 -1.14 

E200K Pathogenic -4.06 2.14 1.15 2.20 -4.5 0.5 1.50 

C170Y Pathogenic -1.00 1.01 1.9 1.32 4.5 0.78 1.90 

R108P Pathogenic 6.49 0.31 2.23 0.87 0.71 0.81 1.90 

L89R Pathogenic -2.33 1.54 1.76 1.47 5.16 2.1 2.41 

L36F Pathogenic 1.17 1.51 1.39 1.77 2.02 0.84 1.45 

VariSNP Benign Variants 

P519S Benign 1.00 0.95 -0.72 0.47 -2.93 1.43 0.96 

V555L Benign -2.58 0.63 0.86 0.45 0.41 0.35 0.54 

I377T Benign -0.99 2.46 3.46 2.80 4.46 4.18 3.47 

E371D Benign -4.08 1.04 1.39 1.04 0.31 0.81 0.92 

G508D Benign -0.88 0.40 -0.26 -0.06 0.53 1.34 0.76 

 

Table 5. Calculation of Folding Free Energy Change (kcal/mol) of variants from ClinVar 

database. The calculated folding free energy change in kcal/mol of menin protein taken from 

ClinVar associated with Neoplasia. The positive value indicates destabilization and negative 

value indicates stabilization. 
 

AA 

Mutation 

Conditions Clinical 

Significance 

SAAFEC mCSM SDM DUET CUPSAT Average 

 

A373D Neoplasia Pathogenic 6.39 1.93 3.23 2.82 2.25 3.22 

E260K Neoplasia Pathogenic -3.32 -0.26 0.77 -0.46 2.13 -1.35 

V189E Neoplasia Pathogenic 5.73 2.83 3.34 3.21 4.24 3.87 

A165P Neoplasia Pathogenic 0.42 -0.99 4.45 -0.25 0.17 1.67 

R280K Neoplasia Pathogenic 1.95 0.66 0.1 0.46 -0.17 0.85 

W441R Neoplasia Pathogenic -1.92 2.56 1.11 2.21 5.34 2.81 

D423N Neoplasia Pathogenic -0.98 1.66 0.83 1.59 3.7 1.94 

H139D Neoplasia Pathogenic 5.81 0.32 1.65 0.49 1.25 1.90 
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 Table 6. Calculation of Binding Free Energy change of Menin-ER complex dues to COSMIC 

and VariSNP mutations. The calculated binding free energy changes in kcal/mol of menin-ER 

complex due to mutations from COSMIC and VariSNP database. The positive value indicates 

destabilization and negative value indicates stabilization. 
 

AA 

Mutation 

Our 

Prediction 

SAAMBE BeAtMuSiC mCSM-

PPI2 

MutaBind Average 

Unclassified mutations from COSMIC Database 

S606C Pathogenic 0.30 -0.09 0.19 0.60 0.37 

S606Y Pathogenic 0.29 0.05 -0.04 0.55 0.30 

L605Y Benign 0.29 0.01 -0.24 0.62 0.31 

M563I Pathogenic 0.39 0.25 0.49 1.75 0.72 

K562M Pathogenic 0.52 0.15 0.25 1.05 0.50 

P534A Benign -0.27 0.13 0.59 -0.24 0.36 

T530I Benign 0.20 0.09 -0.01 0.51 0.27 

R490Q Pathogenic 0.37 0.25 0.11 0.75 0.45 

Q398E Benign 0.42 0.07 0.14 0.47 0.28 

A289E Pathogenic 0.57 0.68 -0.55 2.63 1.30 

L272R Pathogenic 0.34 0.92 0.38 2.00 0.91 

S258L Pathogenic 0.40 0.53 0.21 1.53 0.67 

V220M Pathogenic 0.26 0.19 -0.22 0.71 0.39 

H204Y Pathogenic 0.34 0.38 0.32 0.44 0.37 

E200K Pathogenic -0.24 0.39 0.77 0.90 0.69 

C170Y Pathogenic 0.57 0.23 -0.34 2.75 1.18 

R108P Pathogenic 0.70 0.16 1.08 1.27 0.80 

L89R Pathogenic 0.54 0.48 0.20 1.16 0.60 

L36F Pathogenic 0.29 0.34 0.43 1.55 0.73 
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Benign mutations from VariSNP Database 

P519S Benign -0.22 -0.37 -0.16 -0.43 -0.29 

V555L Benign 0.40 0.22 0.15 0.49 0.32 

I377T Benign 0.27 1.27 0.10 1.53 0.79 

E371D Benign 0.22 0.19 -0.13 1.68 0.70 

G508D Benign 0.70 0.33 -0.27 0.75 0.59 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Calculation of Binding Free Energy change of Menin-MLL complex dues to COSMIC 

and VariSNP mutations. The calculated binding free energy changes in kcal/mol of menin-MLL 

complex due to mutations from COSMIC and VariSNP database. The positive value indicates 

destabilization and negative value indicates stabilization. 

AA 

Mutation 

Our 

Prediction 

SAAMBE BeAtMuSiC mCSM-PPI2 MutaBind Average 

COMSIC Mutations 

S606C Pathogenic 0.24 -0.09 0.19 0.76 0.40 

S606Y Pathogenic 0.44 0.05 -0.01 0.70 0.41 

L605Y Benign 0.34 0.01 -0.17 0.55 0.30 

M563I Pathogenic 0.39 0.25 0.45 1.59 0.67 

K562M Pathogenic 0.43 0.05 0.24 0.99 0.43 

P534A Benign 0.09 0.2 0.47 -0.19 0.25 

T530I Benign 0.30 0.09 -0.03 0.56 0.32 

R490Q Pathogenic 0.44 0.25 -0.06 0.91 0.53 

Q398E Benign 0.41 0.07 -0.18 0.36 0.28 

A289E Pathogenic 1.00 1.02 -0.70 2.20 1.40 

L272R Pathogenic 0.86 0.88 0.32 2.35 1.10 

S258L Pathogenic 0.18 0.64 0.23 1.32 0.59 

V220M Pathogenic 0.25 0.19 0.23 0.57 0.31 

H204Y Pathogenic 0.73 0.29 -0.05 1.12 0.71 

E200K Pathogenic 0.49 0.39 0.84 1.42 0.78 

C170Y Pathogenic 0.75 0.23 -0.34 2.67 1.22 

R108P Pathogenic 0.78 0.16 1.04 1.16 0.78 

L89R Pathogenic 0.86 0.48 0.18 1.17 0.67 

L36F Pathogenic 0.71 0.34 0.37 1.36 0.71 

VariSNP Mutations 

P519S Benign 0.01 -0.37 -0.14 -0.19 -0.18 
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Table 8. Calculation of Binding Free Energy change of Menin-ER complex dues to ClinVar 

mutations. The calculated binding free energy changes in kcal/mol of menin-ER complex due to 

mutations from ClinVar. The positive value indicates destabilization and negative value indicates 

stabilization. 

 

 

 

 

 Table 9. Calculation of Binding Free Energy change of Menin-MLL complex dues to ClinVar 

mutations. The calculated binding free energy changes in kcal/mol of menin-MLL complex due 

to mutations from ClinVar. The positive value indicates destabilization and negative value 

indicates stabilization. 
 

AA 

Mutation 

Conditions Clinical 

Significance 

SAAMBE BeAtMuSiC mCSM-

PPI2 

MutaBind Average 

 

A373D Neoplasia Pathogenic 0.21 0.78 -0.65 2.11 1.03 

E260K Neoplasia Pathogenic 0.40 0.39 0.68 1.20 0.67 

V189E Neoplasia Pathogenic 0.30 1.92 0.40 2.3 1.23 

A165P Neoplasia Pathogenic 0.58 1.20 0.17 2.5 1.11 

R280K Neoplasia Pathogenic 0.25 0.06 0.30 0.30 0.23 

V555L Benign 0.60 0.22 0.16 0.74 0.43 

I377T Benign 0.50 0.99 0.17 1.73 0.85 

E371D Benign 0.29 0.27 0.28 0.77 0.4 

G508D Benign 0.64 0.33 -0.19 1.06 0.68 

AA 

Mutation 

Conditions Clinical 

Significance 

SAAMBE BeAtMuSiC mCSM-

PPI2 

MutaBind Averag

e 

 

A373D Neoplasia Pathogenic 0.58 1.29 -0.61 2.26 1.38 

E260K Neoplasia Pathogenic 0.08 0.30 0.64 0.90 0.56 

V189E Neoplasia Pathogenic 0.53 1.92 0.21 2.06 1.18 

A165P Neoplasia Pathogenic 0.68 1.24 0.18 2.90 1.25 

R280K Neoplasia Pathogenic 0.08 0.15 0.16 0.31 0.18 

W441R Neoplasia Pathogenic -0.74 1.23 1.83 2.33 1.80 

D423N Neoplasia Pathogenic 0.12 0.16 0.98 1.20 0.62 

H139D Neoplasia Pathogenic 0.51 0.51 0.34 1.63 0.75 
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W441R Neoplasia Pathogenic 0.53 1.01 0.55 2.79 1.22 

D423N Neoplasia Pathogenic 0.63 0.23 0.74 1.43 0.76 

H139D Neoplasia Pathogenic 1.70 0.79 0.75 1.84 1.27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10. KNN Classification Results of the 19 mutations from COMSIC database. The training 

dataset was constructed using well curated mutations from ClinVar and VariSNP. The features 

used for this supervised learning method is evolutionary conservation score (GERP++) and 

folding energy change (ΔΔG). And with a K=5 we were able to classify at a higher accuracy. 

 
AA 

Change 

GERP++ ΔΔG Combinatory 

Insilco Prediction 

KNN Classification Features 

GERP++ and 

ΔΔG 

ΔΔG 

S606C 4.57 1.56 P P P 

S606Y 4.57 0.47 P P B 

A289E 4.24 3.96 P P P 

L272R 4.39 2.75 P P P 

S258L 4.8 1.12 P P P 

V220M 4.8 1.16 P P P 

H204Y 4.76 -1.14 P P B 

Q398E 3.89 1.12 B P B 

L605V 4.57 0.53 B P B 

M563I 4.48 -0.91 P P B 

K562M 4.48 2.13 P P P 

P534A 2.34 1.36 B B B 

T530I 2.63 0.87 B B B 

R490Q 4.54 0.93 P P P 

E200K 4.76 1.5 P P P 

C170Y 4.8 1.9 P P P 

R108P 5.02 1.9 P P P 
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L89R 5.02 2.41 P P P 

L36F 4.89 1.45 P P P 

 

P* denotes Pathogenic and B* denotes Benign 

*Highlighted are the difference in prediction between KNN classification and 

Combinatory insilco prediction approach 

 

 

 

 

 

 

Appendix C 

Additional materials for chapter five 

 

 

List of abbreviations  

TYR- tyrosinase 

OCA2- oculocutaneous albinism 2 

 SLC45A2- solute carrier 45 member 2 

 TPC2- two-pore channel 2 

 ATP7A- copper-transporting ATPase 1 
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Figures from the result of MD snapshot 

 

 

Figure 25. The pH-dependence of the folding free energy of wild type proteins from 20 MD snap 

shots within pH range 4-8. 
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 Figure 26. The pH-dependence of the folding free energy of wild type proteins and their mutants 

from 20 MD snapshots within pH range 4-8.  

 

 

 

Sequence alignments : 

Sequence alignment of all the models with its template by using T-Coffee web server 

[180] are shown below. An asterisk (*) indicates positions which have a single, fully conserved 

residue; a colon (:) indicates conservation between groups of strongly similar properties; a period 

(.) indicates conservation between group of weakly similar properties. 
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Figure 27. Sequence alignment of TYR with percentage identity of 44 percent with its template, 

E-value=0 and Score=920.38 

 

 



 83 

 

 

Figure 28. Sequence alignment of ATP7A with percentage identity of 47 percent with its 

template, E-value=0 and Score=1181.05 
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Figure 29. Sequence alignment of OCA2 with percentage identity of 20 percent with its template, 

E-value=0 and Score=388.81 
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Figure 30. Sequence alignment of SLC45A2 with percentage identity of 14 percent with its 

template, E-value=4.4e-26 and Score=153.21 
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Claculated PKa’s  

 

 

 

 Table 11.Calculated pKa’s for the folded and unfolded structures.  

 

TYR Folded/Unfolded 

ResName WT S192Y R402Q 

ASP0042P 3.38/3.71 3.72/3.71 3.49/3.71 

ASP0075P 2.22/3.77 2.42/3.77 2.52/3.77 

ASP0076P 2.45/3.99 3.19/3.99 3.1/3.97 

ASP0125P 3.57/3.33 3.32/3.33 3.47/3.32 

ASP0132P 3.58/3.78 3.71/3.78 3.58/3.77 

ASP0148P 3.19/2.97 3.49/2.97 3.57/2.96 

ASP0169P 3.76/3.88 3.47/3.88 3.15/3.88 

ASP0174P 2.56/3.68 2.84/3.67 2.67/3.72 

ASP0186P 2.95/3.49 3.43/3.49 3.09/3.53 

ASP0197P 3.54/3.83 3.59/3.83 2.99/3.81 

ASP0199P 3.51/3.54 2.32/3.54 1.92/3.54 

ASP0228P 3.03/3.41 2.65/3.41 3.45/3.4 

ASP0237P 3.36/3.83 2.43/3.83 2.36/3.85 

ASP0240P 3.38/3.94 2.27/3.95 2.99/3.93 

ASP0245P 2.84/3.35 3.42/3.35 3.58/3.32 

ASP0249P 3.54/3.58 3.5/3.58 3.5/3.54 
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ASP0305P 3.56/3.54 3.49/3.54 3.28/3.52 

ASP0317P 3.34/3.86 3.42/3.86 3.34/3.86 

ASP0333P 2.59/3.05 3.41/3.06 2.82/3.04 

ASP0356P 3.75/3.96 3.44/3.97 3.68/3.96 

ASP0383P 2.03/3.76 2.25/3.76 2.27/3.76 

ASP0394P 2.19/3.78 2.25/3.78 2.23/3.79 

ASP0437P 3.16/3.41 2.52/3.41 2.53/3.41 

ASP0444P 3.46/4.03 3.36/4.03 2.71/4.02 

ASP0448P 2.83/3.76 3.34/3.76 3.56/3.75 

ASP0454P undet/3.79 3.24/3.79 3.58/3.79 

GLU0032P 3.05/3.81 3.99/3.81 3.59/3.8 

GLU0034P 3.51/3.99 3.68/3.99 3.19/3.98 

GLU0078P 3.23/4.37 2.75/4.37 2.86/4.35 

GLU0114P 3.76/3.64 3.79/3.64 3.68/3.64 

GLU0130P 3.38/3.95 3.02/3.95 2.63/3.95 

GLU0193P 3.83/3.79 4.09/3.8 3.86/3.8 

GLU0203P 3.14/3.83 3.28/3.83 3.23/3.84 

GLU0219P 2.57/3.39 2.72/3.39 2.7/3.38 

GLU0221P 3.1/4.01 2.83/4.01 3.02/4 

GLU0229P 3.8/3.9 3.05/3.9 3.43/3.9 

GLU0242P 3.51/3.77 3.54/3.78 3.49/3.76 
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GLU0250P 3.92/3.96 3.76/3.96 3.64/3.96 

GLU0280P 3.74/3.45 3.61/3.45 3.54/3.42 

GLU0281P 3.28/3.82 3.02/3.82 3.45/3.82 

GLU0294P 2.97/3.05 3.44/3.05 2.94/3.05 

GLU0319P 3.74/4 2.71/4 3.89/4 

GLU0328P 2.02/3.59 2.89/3.58 2.03/3.56 

GLU0345P 1.55/3.57 2.37/3.57 1.82/3.56 

GLU0398P 2.09/3.85 2.08/3.85 2.53/3.98 

GLU0409P 3.82/3.53 3.74/3.53 3.91/3.6 

GLU0413P 3.73/3.77 3.59/3.77 3.85/3.77 

GLU0423P 3.55/3.86 3.46/3.92 3.55/3.86 

HIS0019P 6.33/6.5 6.38/6.5 6.37/6.5 

HIS0143P 6.47/6.36 6.49/6.36 6.46/6.37 

HIS0180P 5.38/6.32 5.9/6.32 7.04/6.35 

HIS0202P 6.64/7.24 6.87/7.24 6.42/7.27 

HIS0211P 5.9/6.38 5.95/6.38 5.71/6.38 

HIS0256P 6.55/6.48 6.27/6.48 6.33/6.49 

HIS0285P 6.68/6.67 6.83/6.67 6.66/6.67 

HIS0304P 6.66/6.63 6.04/6.62 6.54/6.62 

HIS0363P 6.04/6.5 6.39/6.5 6.35/6.51 

HIS0367P 5.98/6.48 6.12/6.49 5.76/6.48 
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HIS0389P 5.64/6.52 6.08/6.52 5.87/6.52 

HIS0390P 3.59/6.5 5.29/6.5 4.35/6.51 

HIS0404P 6.56/6.3 6.68/6.3 6.58/6.46 

HIS0420P 6.06/6.85 6.64/6.85 6.97/6.86 

 

 

TPC2 Folded/Unfolded 

ResName WT K376R V219I M546I M484L 

ASP0043A 3.93/3.84 3.55/3.84 3.81/3.84 3.3/3.83 3.52/3.84 

ASP0047A 3.37/3.86 3.05/3.86 3.27/3.86 2.71/3.83 3.53/3.86 

ASP0055A 2.57/3.89 2.82/3.89 2.3/3.89 2.88/3.87 2.41/3.89 

ASP0067A 3.04/3.75 2.95/3.75 2.84/3.75 3.04/3.75 3.25/3.75 

ASP0110A 2.18/3.92 3.34/3.92 2.96/3.92 2.45/3.85 2.76/3.92 

ASP0139A 2.99/3.06 2.71/3.06 3.26/3.06 2.88/2.69 3.15/3.06 

ASP0171A 2.11/3.54 2.54/3.54 2.4/3.54 2.72/3.53 2.3/3.54 

ASP0244A 3.54/3.63 3.53/3.63 3.92/3.63 3.48/3.58 2.83/3.63 

ASP0245A 3.82/3.95 3.74/3.95 3.04/3.95 3.68/3.95 3.8/3.95 

ASP0248A 3.76/3.46 3.53/3.46 3.62/3.46 3.77/3.12 3.67/3.46 

ASP0276A 3.32/3.95 3.37/3.95 3.43/3.95 3.48/3.93 3.49/3.95 

ASP0372A 3.14/3.24 2.99/3.22 3.23/3.24 2.99/3.23 3.14/3.24 

ASP0404A 2.78/3.77 3.46/3.77 2.78/3.77 3.18/3.58 3.26/3.77 
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ASP0435A 3.23/3.89 3.49/3.89 3.03/3.89 3.11/3.87 2.71/3.89 

ASP0456A 3.92/3.56 3.72/3.56 3.6/3.56 3.68/3.55 3.48/3.56 

ASP0458A 3.83/3.31 3.76/3.31 3.63/3.31 2.79/3.06 3.12/3.31 

ASP0465A 3.65/4 3.39/4 3.65/4 3.76/3.94 3.9/4 

ASP0466A 3.03/4.09 3.49/4.09 3.51/4.09 3.53/3.63 3.49/4.09 

ASP0505A 2.48/3.72 3.03/3.72 2.52/3.72 2.47/3.7 2.6/3.72 

ASP0542A 3.28/3.79 3.38/3.79 2.43/3.79 3.16/3.77 2.05/3.79 

ASP0637A 2.35/3.9 2.87/3.9 2.85/3.9 2.82/3.84 2.84/3.9 

ASP0638A 1.95/3.97 2.35/3.97 2.77/3.97 2.2/3.97 3.33/3.97 

ASP0660A 3.21/3.76 3.01/3.76 2.36/3.76 3.3/3.72 3.39/3.76 

GLU0054A 2.17/3.85 2.97/3.85 2.44/3.85 3.42/3.82 2.32/3.85 

GLU0100A 1.32/3.94 1.91/3.94 2.25/3.94 2.49/3.93 1.84/3.94 

GLU0119A 3.85/3.54 4.02/3.54 3.95/3.54 3.92/3.5 3.97/3.54 

GLU0126A 2.74/3.83 2.44/3.84 2.42/3.83 3.05/3.8 3.06/3.83 

GLU0129A 1.75/3.9 1.79/3.9 2/3.9 1.98/3.87 1.93/3.9 

GLU0182A 3.12/3.85 3.44/3.85 3.38/3.85 2.76/3.85 3.54/3.85 

GLU0215A 3.84/3.97 3.8/3.97 3.75/3.97 3.65/3.93 3.82/3.97 

GLU0250A 2.75/2.83 2.87/2.83 3.4/2.83 1.96/2.87 3.38/2.83 

GLU0260A 3.7/4.1 3.59/4.1 3.74/4.1 2.95/4.07 3.72/4.1 

GLU0339A 3.66/3.94 3.78/3.94 3.49/3.94 3.78/3.93 3.5/3.94 

GLU0347A 3.75/3.91 4.04/3.91 3.87/3.91 3.86/3.91 3.83/3.91 
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GLU0381A 3.68/3.56 2.76/3.44 3.64/3.56 3.43/3.48 2.82/3.56 

GLU0394A 3.55/3.85 3.44/3.85 3.74/3.85 2.68/3.83 3.72/3.85 

GLU0395A 3.7/3.46 3.53/3.46 2.45/3.46 3.67/3.43 2.94/3.46 

GLU0402A 3.44/4.01 2.14/4.01 2.83/4.01 2.66/3.97 3.01/4.01 

GLU0410A 3.18/3.93 3.83/3.93 2.36/3.93 3.41/3.88 3.76/3.93 

GLU0416A 3.8/3.53 3.78/3.53 3.35/3.53 3.55/3.53 3.37/3.53 

GLU0463A 3.87/3.62 3.89/3.62 3.68/3.62 3.74/3.44 3.8/3.62 

GLU0483A 2.02/3.96 2.28/3.96 2.53/3.96 3.1/3.94 3.5/3.96 

GLU0516A 3.51/3.97 3.95/3.97 3.95/3.97 3.93/3.97 3.85/3.97 

GLU0533A 3.58/3.45 3.5/3.45 2.91/3.45 3.78/3.2 3.49/3.45 

GLU0627A 2.8/3.97 3.44/3.97 3.49/3.97 3.02/3.96 3.78/3.97 

GLU0630A 3.41/3.99 4.01/3.99 3.77/3.99 4.11/3.97 4.01/3.99 

GLU0695A 2.55/4 2.66/4 2.82/4 2.65/4.01 2.47/4 

HIS0064A 6.5/6.46 6.05/6.46 6.3/6.46 6.15/6.47 6.28/6.46 

HIS0151A 6/6.48 5.81/6.47 5.98/6.48 5.92/6.47 5.69/6.48 

HIS0181A 6.82/6.5 6.68/6.5 6.71/6.5 6.74/6.49 6.73/6.5 

HIS0226A 6.22/6.73 6.22/6.73 6.02/6.73 6.17/6.73 6.28/6.73 

HIS0375A 6.18/6.55 6.52/6.53 6.35/6.55 6.51/6.53 6.46/6.55 

HIS0411A 6.04/6.49 5.96/6.49 5.96/6.49 6.26/6.49 6.64/6.49 

HIS0431A 6.61/6.25 6.5/6.25 6/6.25 6.46/6.24 6.21/6.25 

HIS0527A 6.65/6.49 5.82/6.49 6.66/6.49 6.62/6.49 6.47/6.49 
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HIS0699A 5.99/6.88 6.26/6.88 6.33/6.88 5.86/6.86 5.76/6.88 

 

 

 

SLC45A2 Folded/Unfolded 

ResName WT G198V I374F 

ASP0093X 1.73/3.31 2.19/3.31 2.19/3.31 

ASP0153X 4.16/3.82 4.2/3.82 4.2/3.82 

ASP0157X 3.92/3.94 4.07/3.94 4.07/3.94 

ASP0160X 2.05/3.78 2.62/3.78 2.62/3.78 

ASP0169X 3.08/3.86 3.49/3.86 3.49/3.86 

ASP0175X 2.87/3.19 3.25/3.19 3.25/3.19 

ASP0201X 3.99/3.99 4.02/3.99 4.02/3.99 

ASP0257X 3.79/3.98 3.83/3.98 3.83/3.98 

ASP0263X 3.66/3.84 3.84/3.84 3.84/3.84 

ASP0340X 3.69/3.7 3.7/3.7 3.7/3.7 

ASP0475X 2.64/3.72 3.49/3.72 3.49/3.72 

GLU0026X 3.85/3.81 3.97/3.81 3.97/3.81 

GLU0046X 3.43/3.83 3.6/3.83 3.6/3.83 

GLU0052X 4.41/3.74 4.46/3.74 4.46/3.74 

GLU0177X 3.04/3.45 3.72/3.45 3.72/3.45 
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GLU0206X 3.65/2.88 4.04/2.88 4.04/2.88 

GLU0214X 4.04/3.84 4.19/3.84 4.19/3.84 

GLU0239X 3.73/3.77 3.78/3.77 3.78/3.77 

GLU0244X 3.62/3.82 3.79/3.82 3.79/3.82 

GLU0267X 3.72/3.99 4.01/3.99 4.01/3.99 

GLU0272X 2.96/3.66 3.07/3.68 3.07/3.68 

GLU0368X 3.96/3.82 3.98/3.82 3.98/3.82 

GLU0448X 3.2/3.64 3.68/3.64 3.68/3.64 

HIS0038X 5.55/6.48 6.24/6.48 5.55/6.48 

HIS0094X 6.24/6.31  6.54/6.31 6.03/6.31 

HIS0173X 6.24/6.13 6.35/6.13 6.17/6.13 

HIS0181X 6.03/6.26 6.36/6.26 6.3/6.26 

HIS0183X 6.22/5.69 6.69/5.69 6.03/5.69 

HIS0204X 6.76/6.72 6.69/6.72 6.97/6.72 

HIS0233X 4.84/6.46 5.63/6.46 6.07/6.46 

HIS0316X 6.22/6.33 6.73/6.33 6.25/6.33 

HIS0324X 6.32/6.68  6.51/6.68 6.12/6.68 

HIS0450X 6.6/6.34 5.66 /6.34 6.61/6.34 
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OCA2 Folded/Unfolded 

ResName WT V433I R419Q P743L N489D H615L A481T 

ASP0372U 3.66/3.85 3.63/3.56 3.05/3.94 3.64/3.83 3.48/3.94 3.02/3.86 3.73/3.88 

ASP0384U 4.06/4.46 3.92/4.01 4.14/3.94 4.04/3.99 3.98/3.94 3.91/4.02 3.98/4.08 

ASP0408U 3.54/4.03 3.19/3.53 3.56/3.93 3.44/3.79 3.36/3.95 3.74/3.84 3.56/3.77 

ASP0441U 3.05/4.16 2.74/2.91 1.97/3.94 2.68/3.88 3.37/3.94 3.47/3.79 2.94/3.83 

ASP0463U 2.51/3.85 2.96/2.81 2.35/3.93 2.98/3.97 2.69/3.94 2.51/4.16 2.73/3.71 

ASP0486U 3.43/4.01 3.51/3.73 3.47/3.95 3.38/3.98 2.52/3.94 3.59/3.87 3/3.99 

ASP0504U 3.48/4.13 3.46/3.29 3.26/4.04 3.49/3.76 3.46/3.94 3.69/3.68 3.52/3.75 

ASP0601U 2.83/4.09 3.42/2.77 3.11/3.79 2.54/3.53 2.7/3.96 3.25/3.76 2.46/3.32 

ASP0619U 2.99/3.73 2.2/2.81 2.86/3.89 2.98/3.89 3.22/3.94 2.87/3.64 2.35/3.83 

ASP0649U 3.91/3.79 3.5/3.85 3.56/3.76 3.95/3.75 3.8/3.93 3.18/3.71 3.7/3.63 

ASP0666U 4.03/4 3.79/4.1 3.98/3.93 3.97/4.3 4.04/3.94 4.07/3.46 4.02/3.44 

ASP0669U 3.57/3.64 3.42/3.71 3.63/3.94 3.75/3.99 3.5/3.94 3.8/3.87 3.54/4.04 

ASP0740U 3.49/3.99 3.05/4.05 3.6/4.06 2.33/3.87 3.4/3.93 2.53/3.97 3.5/3.87 

ASP0758U 3.93/4.05 3.5/3.99 2.98/4.02 3.9/3.67 4.11/3.96 3.53/3.77 3.88/3.85 

GLU0328U 3.77/4.19 3.9/3.54 3.06/4.01 3.5/3.87 3.57/3.92 3.57/4.01 3.48/4.03 

GLU0348U 3.32/3.8 3.7/3.2 3.53/4.01 3.2/3.79 3.3/4.02 3.87/3.52 3.01/3.97 

GLU0381U 3.81/4.03 3.98/3.48 3.59/4.01 3.91/4.02 3.8/4.04 3.9/3.93 3.89/4.08 

GLU0386U 3.31/4.68 3.63/3.86 4.25/4.01 3.55/4.07 3.43/4 3.84/3.91 3.69/4.05 

GLU0403U 3.95/4.26 3.54/3.76 3.78/4 3.62/4.17 3.92/4.02 3.65/3.85 3.6/3.96 
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GLU0458U 3.35/4.09 3.73/3.96 3.4/4 3.85/3.87 3.61/4.03 3.94/4.04 3.75/3.79 

GLU0471U 2.5/4.21 3.99/4.01 4.03/4.02 3.92/3.96 3.87/4 4.13/3.98 2.67/4.19 

GLU0497U 3.7/3.96 3.6/3.23 3.61/4 3.24/3.97 3.81/4 3.42/3.74 3.59/3.95 

GLU0540U 3.76/4.4 3.72/3.51 3.68/4.03 3.91/4 3.44/4.02 3.89/4.05 3.43/4.01 

GLU0543U 3.55/4.38 3.75/3.82 2.31/4.02 3.75/3.85 3.98/4 3.78/3.84 3.76/3.26 

GLU0546U 2.78/3.92 3.26/3.2 3.55/4 2.83/3.94 3.08/4 3.28/3.98 2.94/3.96 

GLU0550U 3.16/3.63 2.92/3.8 3.77/4.03 3.52/3.65 2.65/4 3.62/3.78 3.56/3.71 

GLU0567U 2.27/4.05 3.27/3.58 3.02/4.01 3.09/3.95 3.74/4 3.86/3.66 3.93/3.72 

GLU0568U 2.25/4 4.03/3.6 3.41/4.03 3.34/3.77 2.34/4 1.89/3.43 3.94/3.49 

GLU0583U 3.83/4.12 3.73/3.7 3.08/4.07 3.75/3.78 3.39/4.02 3.47/3.54 3.63/3.56 

GLU0600U 3.82/4.05 2.8/3.98 2.71/4.01 3.78/4.06 3.07/4 3.79/3.42 3.73/3.55 

GLU0605U 2.5/4.01 2.46/3.22 3.77/3.95 2.33/3.68 2.46/4.04 2.85/3.2 2.82/3.72 

GLU0610U 3.19/3.98 3.87/3.56 3.82/3.97 2.4/3.97 2.01/4 2.87/3.8 2.43/3.84 

GLU0671U 3.98/3.41 3.96/3.89 3.79/3.86 3.88/3.04 3.98/4.02 3.91/3.96 3.98/4.05 

GLU0678U 3.22/4.15 2.49/3.31 3.62/3.97 3.41/3.85 3.72/4 2.99/3.82 3.55/3.94 

GLU0693U 3.07/4 3.42/2.81 2.54/3.63 3.07/3.82 2.54/3.84 3/3.62 2.81/4.04 

GLU0702U 3.96/4.21 4.03/3.84 3.32/3.99 3.6/4.03 4.15/3.68 3.88/4.01 3.78/3.93 

GLU0706U 3.22/4.29 3.89/4.08 4.15/3.77 3.97/3.83 4.12/3.96 4.05/4.12 4.08/3.78 

GLU0717U 4.05/3.56 3.91/4.05 4.08/3.92 4.06/3.83 4.15/4.04 4.01/3.95 4.01/3.82 

GLU0718U 3.45/3.5 3.97/4.07 4.04/4.33 4.03/3.93 4.24/3.97 4.02/4.15 4.01/3.53 

GLU0760U 3.29/3.8 3.98/4.08 3.92/3.98 3.92/4.01 3.94/3.8 4/3.99 3.8/4 
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GLU0798U 4.07/4.56 3.65/3.51 3.96/3.96 3.81/3.82 3.7/3.74 3.02/3.97 3.78/3.89 

GLU0808U 1.92/3.53 1.98/1.74 2.46/6.48 1.97/3.65 1.79/3.92 2.35/3.83 2.3/3.95 

HIS0351 6.4/6.64 6.2/5.97 6.1/6.48 6.1/6.62 6.3/3.76 6.2/6.82 6.5/6.5 

HIS0378 6/6.85 6.9/6.62 6/6.49 6.7/6.51 6.5/6.49 6.1/6.33 6.8/6.37 

HIS0511 6.8/6.53 6.3/6.66 6.4/6.49 6.5/6.55 6.6/6.49 6.9/6.39 6.6/6.26 

HIS0549 6.5/6.33 6.2/6.54 6.3/6.49 6.3/6.44 6.2/6.48 6.4/6.68 6.2/6.29 

HIS0552 6.2/7.12 6.3/6.44 6.3/6.5 5.8/6.81 6.5/6.49 6.3/6.37 6.4/6.8 

HIS0584 6.1/6.38 6/5.6 6.3/6.49 6.3/6.37 6.1/6.49 6.5/6.67 5.7/6.52 

HIS0591 6.2/6.58 6.2/5.8 6.2/6.49 5.7/5.98 6.1/6.49 6.1/5.95 6.1/6.15 

HIS0594 5.9/5.82 6.2/6.01 6.1/6.27 6.3/6.51 6.2/6.49 6.1/5.83 6.6/6.58 

HIS0647 6.2/6.76 6.6/7.02 6.6/7.01 6.3/6.54 6.7/6.5 6.8/6.52 6.2/6.17 

HIS0668 6.8/6.9 6.9/6.76 7.1/6.72 6.6/6.72 6.5/6.49 6.8/6.38 6.4/6.54 

HIS0675 6.6/6.64 6.7/6.72 6.8/6.86 6.7/6.29 6.7/6.49 6.7/6.5 6.7/6.52 

HIS0697 6.6/6.59 6.6/6.76 6.7/6.55 6.6/6.21 6.8/6.18 6.7/6.64 6.7/6.26 

HIS0699 6.5/6.55 6.1/7.03 6.6/6.78 6.9/6.4 7.1/6.9 6.5/6.84 6.4/6.29 

HIS0757 6.7/7.22 7.1/6.59 6.7/6.67 6.8/7 7/6.51 6.7/6.53 6.9/6.54 

HIS0800 6.5/6.77 6.4/6.46 6.7/10.77 6.6/6.63 6.6/6.76 6.5/10.66 6.4/6.82 
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ATP7A Folded/Unfolded 

ResName WT C1002F D1044E G666R I1264V K742R M1311V R844C S653Y 

ASP0675P 3.52/3.47 3.23/3.53 3.19/3.35 3.52/3.47 3.73/3.35 3.36/3.2 3.65/3.35 undet/3.55 3.54/3.47 

ASP0747P 2.46/2.23 2.75/2.7 2.99/2.68 2.91/3.1 3.07/3.78 3.18/2.81 3.15/3.78 2.52/2.28 2.58/2.7 

ASP0782P 3.37/3.65 3.53/3.35 3.62/3.69 3.46/3.48 3.32/3.91 3.51/3.49 3.7/3.91 3.55/3.62 3.75/3.77 

ASP0826P 3.38/3.31 3.48/3.13 3.58/3.89 3.43/3.84 3.79/3.93 3.52/3.9 3.89/3.93 3.01/3.05 4/3.23 

ASP0828P 3.95/4 3.94/3.99 3.98/3.96 4.1/3.96 3.86/3.98 3.93/3.96 3.57/3.98 3.79/3.73 3.99/4 

ASP0838P 3.95/3.98 3.91/3.9 3.95/3.84 3.87/3.95 3.95/4.11 3.82/3.94 3.93/4.11 3.93/3.91 3.97/3.88 

ASP0846P 3.58/3.76 3.72/3.67 3.81/3.71 3.59/3.77 3.68/2.98 3.7/3.71 3.74/2.98 3.84/3.85 3.77/3.69 

ASP0859P 1.79/1.5 2.31/2.37 3.15/2.71 2.05/2.72 2.64/3.28 2.78/2.51 2.55/3.28 2.51/2.19 2.44/2.45 

ASP0870P 3.74/3.54 3.48/3.49 3.66/3.68 3.93/3.53 3.5/3.95 3.41/3.59 3.57/3.95 2.73/2.83 3.89/3.91 

ASP0910P 3.51/3.56 3.13/3.39 3.56/3.92 3.64/3.46 3.38/3.78 3.73/3.71 3.75/3.78 3.58/3.47 3.43/3.52 

ASP0935P 3.35/3.44 2.66/2.93 2.53/2.32 3.11/3.08 3.28/3.77 3.35/3.08 3.08/3.77 2.23/2.19 2.65/2.57 

ASP1044P 2.75/2.4 2.45/2.46 1.56/3.66 2.55/3.57 2.69/3.54 3.14/3.25 2.34/3.54 2.51/2.49 2.32/2.79 

ASP1101P 3.74/3.84 3.73/3.58 3.57/3.67 3.44/3.53 3.64/3.74 3.76/3.76 3.67/3.74 3.85/3.84 3.7/3.7 

ASP1110P 3.4/3.31 3.57/3.55 3.66/3 3.7/3.53 3.22/3.8 3.13/3.2 3.36/3.8 3.49/3.55 3.3/3.67 

ASP1139P 3.34/3.84 3.7/3.69 3.75/3.65 3.67/3.48 3.58/3.86 3.78/3.85 3.39/3.86 3.73/3.7 3.77/3.57 

ASP1151P 3.65/3.72 3.44/3.49 3.81/3.41 2.88/3.69 3.75/3.88 3.81/3.94 3.8/3.88 3.83/3.85 3.54/3.84 

ASP1166P 3.81/3.82 3.81/3.85 3.49/3.59 3.48/3.78 3.56/4.26 3.71/3.46 3.75/4.26 3.82/3.76 3.93/3.84 

ASP1198P 3.78/3.42 3.76/3.78 3.64/3.72 3.75/3.7 3.47/3.98 3.72/3.6 3.57/3.98 3.62/3.57 3.37/3.63 

ASP1201P 3.74/3.71 3.76/3.76 3.6/2.16 3.65/3.15 3.62/3.82 3.7/3.72 3.69/3.82 3.77/3.69 3.7/3.81 

ASP1219P 3.65/3.47 3.34/3.44 2.05/3.59 3.18/3.93 2.33/3.82 3.53/3.35 2.59/3.82 3.52/3.5 3.19/3.71 

ASP1220P 3.04/2.7 3.35/3.62 3.58/2.69 3.97/2.96 3.95/3.77 2.97/3.41 2.99/3.77 3.33/3.35 3.13/3.4 

ASP1230P 2.87/3.2 2.93/3.31 2.66/3.25 2.46/3.17 1.97/3.96 2.51/2.27 2.72/3.96 2.19/2.24 3.01/3.05 

ASP1256P 2.72/2.62 2.97/2.94 3.61/3.62 2.98/2.68 2.53/3.67 3.05/2.81 2.72/3.67 2.82/2.92 3.01/2.99 

ASP1301P 3.52/3.33 3.38/3.52 3.61/2.66 3.36/3.01 3.95/3.83 3.43/3.41 3.49/3.83 3.15/3.19 3.02/3.01 

ASP1305P 2.42/2.65 2.89/2.65 2.74/3.31 2.55/3.56 2.3/3.56 2.46/2.23 2.74/3.55 2.46/1.94 2.11/1.98 
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ASP1323P 3.73/3.79 3.74/3.78 3.53/3.47 3.58/3.41 3.73/3.76 3.6/3.58 3.6/3.76 3.5/3.57 3.56/3.55 

ASP1330P 2.71/2.8 2.67/2.38 3.56/3.16 3.46/3.68 3.44/3.8 3.29/3.24 2.65/3.8 2.88/2.79 3.41/3.49 

ASP1337P 3.57/3.65 3.46/3.44 3.17/2.91 3.18/3.54 2.89/3.93 3.26/3.49 3.21/3.93 3.51/3.56 3.18/3.49 

ASP1340P 2.71/2.98 2.31/2.43 2.94/2.71 3.67/2.7 3.05/3.7 3.67/3.84 2.66/3.7 2.9/3.09 3.47/3.41 

ASP1346P 2.38/2.39 2.54/2.84 2.8/3.49 2.46/3.54 2.63/3.85 2.78/2.85 2.78/3.85 2.47/2.53 2.33/2.47 

GLU0646P 3.37/2.39 3.83/3.66 3.9/3.87 3.56/3.84 3.78/4 3.13/2.72 3.72/4 3.72/3.73 3.21/3.56 

GLU0690P 3.73/3.86 3.59/3.81 3.97/2.22 3.65/3.91 3.9/3.98 3.75/3.81 3.74/3.98 3.28/3.14 3.95/3.95 

GLU0691P 3.83/3.96 3.75/4.01 2.18/3.44 3.75/2.72 3.75/3.99 2.78/3.69 3.94/3.99 3.88/3.95 3.77/3.94 

GLU0702P 3.83/3.49 3.8/3.96 3.77/3.05 1.53/3.15 3.85/4.01 3.71/3.8 3.46/4.01 3.71/3.66 3.43/3.48 

GLU0771P 3/3.46 3.42/3.48 3.26/3.03 3.62/2.69 2.86/3.65 3.12/2.76 3.42/3.65 3.45/3.64 3.23/3.05 

GLU0798P 3.23/3.15 2.56/2.93 2.49/3.93 2.89/3.24 3.02/3.74 2.41/3.14 3.38/3.74 2.61/2.63 3.07/2.49 

GLU0807P 3.71/3.83 4.01/3.93 4.14/4.01 3.84/4.02 3.24/3.81 4.05/3.92 3.95/3.81 2.84/3.13 3.69/3.29 

GLU0819P 4.09/4.02 4.04/3.94 3.95/3.69 4.01/3.44 4.09/4.51 3.9/3.85 3.98/4.51 4.14/4.11 3.87/3.69 

GLU0834P 3.47/3.52 3.26/3.45 3.52/4.13 3.12/4.04 2.97/3.94 3.06/3.48 3.27/3.94 3.49/3.47 3.29/3.21 

GLU0835P 4.11/4.2 4.24/4.13 4.27/4.16 4.28/3.97 4.07/4.15 4.24/4.06 4.13/4.15 4.07/4.09 4.32/4.1 

GLU0840P 4.06/4.05 4.02/4.04 4.01/3.74 4.02/3.74 3.94/4.01 3.96/4.08 4.01/4.01 4/3.98 3.98/3.98 

GLU0864P 3.64/3.74 3.52/3.78 3.64/3.03 3.8/2.96 3.54/3.94 3.81/3.82 3.48/3.94 3.55/3.64 3.82/3.66 

GLU0871P 3.33/2.81 3.17/3.23 2.92/4.06 2.83/3.76 3.3/3.81 3.34/3.43 3.45/3.81 3.67/3.86 3.49/3.46 

GLU0877P 3.53/3.75 3.78/3.73 3.95/3.95 3.19/3.86 3.59/3.76 3.54/3.61 3.66/3.76 3.38/3.16 3.88/3.94 

GLU0921P 3.76/3.76 3.8/3.91 3.57/3.55 3.32/4 3.74/3.73 3.97/4.02 3.45/3.73 3.72/3.87 3.75/3.13 

GLU0922P 3.81/3.84 2.84/3.76 3.73/3.96 3.57/3.87 3.38/3.49 3.54/2.96 3.65/3.49 3.87/3.24 3.8/3.93 

GLU0965P 3.26/4 4/3.78 4.15/3.96 3.87/4 2.75/3.97 4.01/3.73 1.99/3.97 4.01/3.88 2.69/2.77 

GLU0968P 3.97/4.02 4.02/3.99 3.97/3.72 3.82/2.84 3.97/4.01 4/4.01 3.98/4.01 3.96/4.01 4.03/3.98 
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GLU0982P 3.76/3.14 3.54/3.51 3.7/3.14 3.51/3.54 2.7/3.77 2.88/2.77 3.02/3.77 3.52/3.54 3.69/3.82 

GLU1030P 3.06/2.7 3.36/3.48 3.05/1.12 3.77/3.07 3.63/4.07 2.45/2.48 3.12/4.07 3.09/3.31 3.03/3.3 

GLU1033P 3.1/2.99 3.05/3.08 2.23/2.1 3.03/2.39 2.94/3.83 3.12/3.1 3.23/3.83 2.76/2.78 2.83/2.93 

GLU1064P 3.56/3.72 3.54/3.82 3.73/3.72 3.76/3.72 3.11/3.87 3.91/3.88 3.58/3.87 3.81/3.9 3.87/3.48 

GLU1081P 2.27/3.29 2.85/3.18 3.5/3.49 3.33/3.34 2.63/4.01 3.39/3.53 3.47/4.01 3.47/3.46 2.36/2.3 

GLU1085P 2.99/2.85 3.85/3.94 3.91/3.96 3.83/3.98 3.98/3.68 3.68/3.9 3.97/3.68 3.79/4.01 3.84/3.85 

GLU1099P 3.85/3.79 3.56/3.67 3.85/4 3.97/3.97 3.97/3.23 3.96/3.97 3.93/3.23 3.56/3.58 3.87/3.98 

GLU1103P 3.84/3.73 3.3/3.86 3.3/2.64 3.57/3.16 2.97/3.92 3.13/3.86 3.27/3.92 3.81/3.75 3.54/2.65 

GLU1127P 3.16/3.73 3.86/3.6 3.84/3.87 3.99/3.83 3.84/3.87 3.73/3.67 3.83/3.87 3.79/3.72 2.75/3.64 

GLU1138P 3.77/3.93 3.74/3.71 3.78/3.97 4/3.94 3.74/3.95 3.99/4.04 3.98/3.95 3.82/3.78 3.82/3.94 

GLU1155P 3.74/3.85 4.01/4 3.96/3.85 3.75/3.66 4.07/4.01 3.96/3.68 3.02/4.01 3.69/3.85 4.04/3.97 

GLU1186P 3.4/2.45 2.25/3.19 2.98/2.8 2.36/2.85 2.48/3.84 3.41/3.15 3.46/3.84 3.54/3.43 3.49/3.47 

GLU1205P 3.52/3.42 3.27/3.22 2.86/2.93 3.23/3.03 2.98/3.22 2.98/3.18 3.25/3.22 3.05/2.79 3.47/3.06 

GLU1207P 2.73/2.68 3.07/3.38 2.93/3.49 2.5/2.46 3.34/3.47 3.12/3.46 3.22/3.47 2.74/3.33 3.39/3.41 

GLU1221P 2.91/3.67 4.12/4.1 2.94/3.54 4.07/4.07 3.15/3.55 4.06/3.71 4.09/3.55 4.11/4.12 3.53/3.68 

GLU1235P 3.92/3.82 3.49/3.38 2.58/2.48 3.52/3.4 3.81/4.04 3.59/3.56 3.83/4.04 3.53/3.61 3.54/3.74 

GLU1237P 3.92/3.92 3.59/3.76 3.8/3.93 3.77/3.83 3.78/4 3.85/3.67 3.56/4 3.75/3.75 3.78/3.84 

GLU1249P 2.35/3.11 2.89/2.74 2.98/2.62 3.04/2.99 3.15/3.32 3.15/2.85 3.66/3.32 2.52/2.8 2.86/2.72 

GLU1276P 3.42/3.52 3.51/3.58 3.61/3.6 3.49/3.57 3.46/3.96 3.6/3.67 3.36/3.96 3.34/3.08 3.48/3.55 

GLU1291P 3.73/3.79 3.88/3.92 3.51/3.49 4.02/3.21 3.34/3.95 3.68/3.78 3.89/3.95 3.3/3.55 3.42/3.02 

GLU1292P 3.55/3.81 3.93/3.8 3.94/3.63 3.97/3.82 3.83/3.77 3.77/3.6 3.82/3.77 3.55/3.94 3.56/3.72 

GLU1327P 3.53/2.95 3.72/3.63 3.52/3.77 3.18/3.51 3.7/3.7 3.09/2.92 3.36/3.7 4/4 3.06/2.55 

HIS0676P 6.05/6.51 6.65/6.41 6.33/6.49 6.66/6.57 6.71/6.51 6.66/6.69 6.46/6.51 6.46/6.52 6.29/6.48 
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* undet = Indetermined  

HIS0677P 6.48/6.42 6.46/6.34 5.95/4.17 6.32/6.52 6.53/6.95 6.04/6.33 6.19/6.95 6.2/6.29 6.19/6.33 

HIS0682P 5.54/5.97 6.46/6.56 6.46/6.33 6.42/6.5 6.41/6.85 6.45/6.34 6.45/6.85 6.48/6.43 6.46/6.48 

HIS0683P 6.49/6.46 6.51/6.28 6.04/6.17 6.34/6.54 6.04/6.54 6.49/6.45 6.2/6.54 6.34/6.33 6.25/6.28 

HIS0696P 6.64/6.51 6.45/6.52 6.57/6.55 6.67/6.51 6.66/6.47 6.66/6.5 6.71/6.47 6.5/6.49 6.53/6.54 

HIS0741P 6.37/6.46 6.32/6.46 6.14/6.18 6.51/6.48 6.17/6.49 6.14/6.18 6.3/6.49 6.17/6.13 6.21/5.62 

HIS0799P 6.3/6.38 6.29/6.35 6.35/6.26 5.99/6.54 6.47/6.33 6.32/6.16 6.38/6.33 6.3/6.24 6.34/6.52 

HIS0866P 6.46/6.45 5.85/5.81 5.53/6.25 5.63/6.16 5.99/6.47 6.28/6.36 6.18/6.47 6.29/6.31 6.29/6.34 

HIS0906P 6.47/6.51 6.54/6.25 6.32/6.66 6.49/6.3 6.78/6.06 6.62/6.64 6.36/6.06 6.56/6.53 6.47/6.67 

HIS1036P 5.67/5.81 5.76/5.78 5.5/5.78 5.77/5.7 5.99/6.79 5.96/6.11 5.88/6.79 5.71/5.77 5.75/5.37 

HIS1051P 6.37/6.46 6.44/6.29 6.3/6.22 6.34/6.34 6.47/6.24 6.48/6.44 6.33/6.24 6.27/6.2 6.05/6.34 

HIS1070P 6.17/5.93 5.94/6.29 5.76/6.06 6.14/6.17 5.98/6.44 6.04/6.06 6.18/6.44 6.07/6.14 5.48/5.57 

HIS1071P 6.31/6.68 6.52/6.56 6.6/6.53 6.36/6.18 6.5/6.48 6.16/6.22 6.51/6.48 6.22/6.47 6.46/6.35 

HIS1086P 6.53/6.34 6.47/6.65 6.64/6.56 6.2/6.33 6.01/6.27 6.57/6.27 6.15/6.27 6.38/6.45 6.55/6.65 

HIS1131P 6.49/6.48 5.95/6.45 6.56/6.54 6.65/6.68 6.61/6.46 6.74/6.53 6.52/6.46 6.35/6.26 6.48/6.24 

HIS1206P 6.25/6.15 6.06/5.96 6.06/6.01 6.13/5.93 5.93/6.71 5.99/6.06 6.18/6.71 6.18/6.17 6.16/6.02 

HIS1241P 6.49/6.51 6.5/6.54 6.32/6.46 6.49/6.45 6.46/6.51 6.49/6.46 6.54/6.51 6.34/6.35 6.28/6.46 

HIS1281P 6.12/5.52 5.83/6.11 6.22/6.26 5.76/6.45 6.05/6.47 6.33/6.29 6.05/6.47 5.36/5.98 6.2/6.27 
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pKa (Folded-Unfolded) Color code 

0.5 ≤ ∆𝑝𝐾𝑎 < 1.0  

∆𝑝𝐾𝑎 ≥ 1.0  

−1.0 < ∆𝑝𝐾𝑎 ≤ −0.5  

∆𝑝𝐾𝑎 ≤ −1.0  
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