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Abstract

Unsupervised contrastive learning has emerged as an important training strategy to learn rep-

resentation by pulling positive samples closer and pushing negative samples apart in low-dimensional

latent space. Usually, positive samples are the augmented versions of the same input and negative

samples are from different inputs. Once the low-dimensional representations are learned, further

analysis, such as clustering, and classification can be performed using the representations. Currently,

there are two challenges in this framework. First, the empirical studies reveal that even though

contrastive learning methods show great progress in representation learning on large model training,

they do not work well for small models. Second, this framework has achieved excellent clustering

results on small datasets but has limitations on the datasets with a large number of clusters such

as ImageNet. In this dissertation, our research goal is to develop new unsupervised contrastive

representation learning methods and apply them to knowledge distillation and clustering.

The knowledge distillation transfers knowledge from high-capacity teachers to small student

models and then improves the performance of students. And the representational knowledge

distillation methods try to distill the knowledge of representations from teachers to students. Current

representational knowledge distillation methods undesirably push apart representations of samples

from the same class in their correlation objectives, leading to inferior distillation results. Here, we

introduce the Dual-level Knowledge Distillation (DLKD) by explicitly combining knowledge alignment

and knowledge correlation instead of using one single contrastive objective. We show that both

knowledge alignment and knowledge correlation are necessary to improve distillation performance.

The proposed DLKD is task-agnostic and model-agnostic and enables effective knowledge transfer

from supervised or self-supervised trained teachers to students. Experiments demonstrate that DLKD

outperforms other state-of-the-art methods in a large number of experimental settings including

different (a) pretraining strategies (b) network architectures (c) datasets (d) tasks.
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Currently, the two-stage framework is widely used in deep learning-based clustering, namely,

learning representation first, then clustering algorithms, such as K-means, are usually performed

on representations to obtain cluster assignment. However, the learned representation may not be

optimized for clustering in this two-stage framework. Here, we propose Contrastive Learning-based

Clustering (CLC), which uses contrastive learning to directly learn cluster assignment. We decompose

the representation into two parts: one encodes the categorical information under an equipartition

constraint, and the other captures the instance-wise factors. We theoretically analyze the proposed

contrastive loss and reveal that CLC sets different weights for the negative samples while learning

cluster assignments. Therefore, the proposed loss has high expressiveness that enables us to efficiently

learn cluster assignments. Experimental evaluation shows that CLC achieves overall state-of-the-art

or highly competitive clustering performance on multiple benchmark datasets. In particular, we

achieve 53.4% accuracy on the full ImageNet dataset and outperform existing methods by large

margins (+ 10.2%).
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Chapter 1

Introduction

Given a machine learning task and enough data with labels, supervised learning can achieve

satisfactory performance, but requires manually collecting huge amounts of high-quality labels,

which is expensive and does not easily scale up. Considering that the amount of unlabeled data far

exceeds the amount of labeled data, recent research in deep learning has focused on unsupervised

representational learning. The goal of unsupervised representation learning is to use various pretext

tasks to obtain feature representations from data without expensive manual labels. These learned

representations can capture good semantic or structural meanings, which are beneficial to various

downstream tasks.

There are numerous pretext tasks in the literature, including the patch context prediction [29,

82], solving jigsaw puzzles [85, 86], predicting rotations [39], adversarial training [30, 31], and so on.

The autoencoding, which ensures an approximate one-to-one mapping between individual inputs and

feature representations, can also be considered as a kind of pretext task to learn latent representation.

This prevents the learned representation from collapsing to a single point, while similar functionality

is achieved in contrastive learning by negative samples. The implementation of autoencoding usually

includes two neural networks: an encoder infers the latent variable given the input and a decoder

maps the latent variable to the data space. One of the popular pretext tasks is instance contrastive

learning [32]. The key point of contrast learning is to create two random views from each training

sample, called the positive and anchor sample, and select one of the other training samples as the

negative. Usually, positive samples are the augmented versions of the same input and negative

samples are from different inputs.

1



Once the low-dimensional representations are learned, further analysis, such as clustering,

and classification can be performed using the representations. Currently, there are two challenges in

this framework. First, the empirical studies reveal that even though contrastive learning methods

show great progress in representation learning on large model training, they do not work well for

small models. Second, this framework has achieved excellent clustering results on small datasets but

has limitations on the datasets with a large number of clusters such as ImageNet. In this dissertation,

our research goal is to develop new unsupervised contrastive representation learning methods and

apply them to knowledge distillation and clustering.

1.1 Contrastive Representation Learning

The instance-wise contrastive objectives [115, 102, 51, 14, 10, 70, 17] have emerged as an

important training strategy to learn well-clustered representation via pulling positive samples closer

and pushing negative samples apart in the representation space. This Instance-level method considers

each sample in the dataset as its own class. Wu et al. [115] first propose to use a memory bank

to store previously-calculated features and utilize the noise contrastive estimation to learn feature

representations. He et al. [51] continue to improve the training strategy by introducing momentum

updates, which enables to build a large and consistent representations. SimCLR [14] is another

representative line of works, which apply a large batch instead of the memory bank. In a sense,

we can still consider that the autoencoding uses positive samples, which do not come from data

augmentation, but the sample reconstruction. A group of contrastive learning methods that rely

only on positive samples [44, 10, 126] has recently emerged. For example, they come from the

augmentation of inputs. These methods avoid the need for negative samples by regularizing the

dataset-level statistics of the feature representation.

While contrastive learning methods have made great progress in training large models, it

does not apply to small models [36]. The most likely reason is that smaller models with fewer

parameters cannot effectively capture instance-level discriminative information with large amounts of

samples. In addition, most of the existing methods still suffer from a major limitation [70] due to the

unsupervised setting. Some negative pairs from the same class should be closer in the representation

space, but are undesirably pushed apart by the contrastive objective.

Knowledge Distillation (KD) provides a promising solution to build lightweight models

2



by transferring knowledge from high-capacity teachers with additional supervision signals [8, 56].

Existing KD methods focus on either knowledge alignment or knowledge correlation according to

whether the transferred knowledge comes from an individual sample or across samples. The original

KD minimizes the KL-divergence loss between the probabilistic outputs of teacher and student

networks. This objective aims to transfer the dark knowledge [56], i.e., the assignments of relative

probabilities to incorrect classes. Our analysis demonstrates that this logit matching solution performs

knowledge alignment for an individual sample. Recently, CRD [97] has been proposed to learn the

structural representational knowledge based on the contrastive objective. SEED [36] is another

contrastive distillation method to encourage the student to learn from self-supervised pretrained

teachers. By analyzing these recent representational knowledge distillation methods, we find that

their correlation objectives undesirably push apart representations of samples from the same class,

leading to inferior distillation results.

1.2 Clustering

As an important unsupervised learning method, clustering has been widely used in many

computer vision applications, such as image segmentation [22], visual features learning [9], and 3D

object recognition [107]. Clustering becomes difficult when processing large amounts of high-semantic

and high-dimensional data samples [80]. For example, an image usually consists of thousands of

pixels, massive images need to be processed in a reasonable time, and images containing the same

object may not have any similarities from the pixel level. To overcome these challenges, many latent

space clustering approaches such as DEC [117], DCN [119], and ClusterGAN [81], have been proposed.

In these latent space clustering methods, the original high-dimensional data is first projected to low-

dimensional feature representation, then clustering algorithms, such as K-means [76], are performed

on the latent space. To avoid learning the random discriminative representations, their training

objectives are usually coupled with data reconstruction loss or data generation constraints, which

allows to rebuild or generate the input samples from the latent space. These objectives force the latent

space to capture all key factors of variations and similarities, which are essential for reconstruction

or generation. Therefore, these learned low-dimensional representations are not just related to

clusters, and may not be the optimal latent representations for clustering. In addition, IIC [61] and

IMSAT [59] propose to learn the clusters assignment by maximizing the mutual information between
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features of images and their augmented version. Since these clustering methods rely on network

initialization, they may focus on low-level features, such as color and texture, which are prone to

degenerate solutions [9]. It’s still difficult to effectively integrate low-dimensional representation

learning and clustering algorithm. The performance of distance-based clustering algorithms, such

as K-means [76], are highly dependent on the selection of proper similarity and distance measures.

Although constructing latent space can alleviate the problem of computing the distance between

high-dimensional data, defining a proper distance in latent space is still central to obtaining superior

clustering performance.

Much of the recent research also combines representation learning and clustering together.

DeepCluster [9] and Self-labelling [4] propose to combine clustering and representation learning

together as the pretext task. Although their goals are to learn good representations from unlabeled

samples, we can also consider them as clustering methods that can be trained in an end-to-end

manner. In general, these methods perform continuous iterative optimization of the clusters by

obtaining supervised signals from the most confident samples. However, these methods that rely

on the initial feature representation of the network are prone to degenerate solutions. The current

state-of-the-art clustering method is SCAN [104], which proposes a two-step approach including

feature representation learning and clustering. First, SCAN uses a contrastive representation learning

task to obtain semantically meaningful representation. Second, it uses the assumption that nearest

neighbors tend to belong to the same class as a prior for learning clusters assignment. But this

assumption is not always true, considering the representation quality of existing contrastive learning

methods. Therefore, SCAN shows excellent results on small datasets but still has limitations on large

datasets, such as ImageNet.

1.3 Research Questions

The two-stage framework is widely used in deep learning-based clustering, namely, learning

representation first, then clustering algorithms, such as K-means [76], are usually performed on

representations to obtain cluster assignment. However, there are two challenges in this framework.

• The empirical studies reveal that even though contrastive learning methods show great progress

in representation learning on large model training, they do not work well for small models.
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• This framework has achieved excellent clustering results on small datasets but has limitations

on the datasets with a large number of clusters such as ImageNet.

In this dissertation, our research goal is to develop new unsupervised contrastive representa-

tion learning methods and apply them to knowledge distillation (Chapter 2) and clustering (Chapter

3). In addition, there are several scenarios where data augmentation is difficult to implement, such

as single-cell RNA sequencing data. We propose to achieve clustering via unsupervised conditional

generation, which directly learns cluster assignments from disentangled latent space without addi-

tional clustering methods (Chapter 4). We identify the future works and conclude the dissertation in

Chapter 5.
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Chapter 2

Dual-level Knowledge Distillation

via Knowledge Alignment and

Correlation

To improve feature representations on small models, we employ knowledge distillation

which provides a promising solution by transferring knowledge from high-capacity teachers. By

analyzing the recent representational knowledge distillation methods, we find that their correlation

objectives undesirably push apart representations of samples from the same class, leading to inferior

distillation results. Thus, we introduce the Dual-level Knowledge Distillation (DLKD) by explicitly

combining knowledge alignment and correlation together instead of using one single contrastive

objective. We show that both knowledge alignment and correlation are necessary to improve the

distillation performance. The proposed DLKD is task- agnostic and model-agnostic, and enables

effective knowledge transfer from supervised or self-supervised pretrained teachers to students.

Experiments demonstrate that DLKD outperforms other state-of-the-art methods on a large number

of experimental settings including different (a) pretraining strategies (b) network architectures (c)

datasets (d) tasks.
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2.1 Related Work

Knowledge Distillation. Hinton et al. [56] first propose KD to transfer dark knowledge

from the teacher to the student. The softmax outputs encode richer knowledge than one-hot labels

and can provide extra supervisory signals. SRRL [121] performs knowledge distillation by leveraging

the teacher’s projection matrix to train the student’s representation via L2 loss. However, these works

rely on a supervised pretrained teacher (with logits), and they may not be suitable for self-supervised

pretrained teachers. SSKD [118] is proposed to combine the self-supervised auxiliary task and KD to

transfer richer dark knowledge, but it cannot be trained in an end-to-end training way. Similar to

logits matching, intermediate representation [92, 124, 123, 101, 53] are widely used for KD. FitNet [92]

proposes to match the whole feature maps, which is difficult and may affect the convergence of the

student in some cases. Attention transfer [124] utilizes spatial attention maps as the supervisory

signal. In flow-based distillation [123], inter-layer flow matrices of the teacher are computed to

guide the learning of the student. AB [53] proposes to learn the activation boundaries of the hidden

neurons in the teacher. SP [101] focuses on transferring the similar (dissimilar) activations between

the teacher and student. However, most of these works depend on certain architectures, such as

convolutional networks. Since these distillation methods involve knowledge matching in an individual

sample, they are related to knowledge alignment. Our work also includes the knowledge alignment

objective, but doesn’t rely on pretraining strategies or network architectures.

2.1.1 Knowledge alignment and self-supervised learning

Self-supervised learning [88, 5, 14, 51, 10] focuses on learning low-dimensional representations

by the instance discrimination, which usually requires a large number of negative samples. Recently,

BYOL [44] and DINO [11] utilize the momentum encoder to avoid collapse without negatives. The

momentum encoder can be considered as the mean teacher [96], which is built dynamically during the

student training. For distillation, the teacher is pretrained and fixed during distillation. Although

different views (augmented images) are passed through networks in self-supervised learning, they

are from the same original sample for feature alignment. These self-supervised methods perform

knowledge alignment between the student and the momentum teacher during each iteration. In

particular, DINO focuses on local-to-global knowledge alignment based on multi-crop augmentation.
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2.1.2 Relational Knowledge distillation

Besides knowledge alignment, another research line of KD focuses on transferring relationships

between samples. DarkRank [19] utilizes cross-sample similarities to transfer knowledge for metric

learning tasks. Also, RKD [89] transfers distance-wise and angle-wise relations of different feature

representations. Recently, CRD [97] is proposed to apply contrastive objective for structural knowledge

distillation. However, it randomly draws negative samples and inevitably selects false negatives,

hence leading to a suboptimal solution. SEED [36] is another contrastive distillation method to

transfer relational knowledge between different samples from a self-supervised pretrained teacher.

It only considers knowledge correlation between the sample and a queue. But due to the use of a

large queue, it cannot effectively transfer knowledge between different semantic samples. Our work

proposes an effective knowledge correlation objective.

2.2 Method

To uncover the relationships between existing distillation methods, we reformulate the

standard KD and CRD objectives and identify distillation methods as knowledge alignment or

knowledge correlation according to whether the transferred knowledge comes from an individual

sample or across samples. We find that standard KD indirectly performs knowledge alignment

through the class prototypes, while CRD applies a distillation objective similar to self-supervised

contrastive loss [88, 5, 14] which can be decomposed into knowledge alignment and correlation.

Therefore, both KD and CRD include the knowledge alignment objective and CRD has an extra

correlation objective. However, we find that the knowledge correlation objective of CRD aims to

distribute the negative samples (samples from different instances) more uniformly, which undesirably

pushes apart samples from the same class and results in inferior distillation performance. Thus, it’s

necessary to propose a novel knowledge correlation objective. Besides, the standard KD method

relies too much on specific pretraining strategies and network architectures, which requires a more

general distillation solution to effectively combine knowledge alignment and correlation together.

In this chapter, we extract the common part of the existing distillation methods and propose

a L2-based knowledge alignment objective. We find that a spindle-shaped transformation plays a

pivotal role in knowledge alignment. Then, we introduce an effective knowledge correlation objective

to capture structural knowledge of the teacher. Both of our alignment and correlation objectives
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Figure 2.1: The overview of knowledge alignment and correlation. (a) our distillation framework:
hT and hS indicate representations of the teacher and student. zS1 and zS2 are two different
transformations for distillation. Knowledge alignment (b) focuses on direct feature matching, and
knowledge correlation (c) captures relative relationship between samples. The blue (the teacher) and
yellow (the student) circles represent different samples. ? indicates that A and B samples could be
mapped to different locations (gray circles). Given the decision boundary, different mappings lead to
different classification results. The dotted circle in (b) indicates possible feature alignment results
and dotted lines in (c) indicate that two different mappings share the same relationship between
samples. (b) and (c) illustrate the necessity of knowledge alignment and correlation. It could not
achieve the optimal distillation via one single objective.

focus on the feature representation. Therefore, our method is independent of the specific pretraining

tasks or architectures, which provides a more flexible knowledge distillation. We demonstrate that

knowledge alignment and correlation are necessary to improve the distillation performance. In

particular, knowledge correlation can serve as an effective regularization to enable the student to learn

generalized representations. We identify the proposed method as Dual-Level Knowledge Distillation

(DLKD) to emphasize that it effectively combines both knowledge alignment and correlation, as

shown in Figure 2.1. Besides, we introduce an optional supervised distillation objective by leveraging

the labels, which can indirectly transfer the category-wise structural knowledge between networks.

To summarize, our main contributions are as follows:

• We introduce a novel knowledge distillation method, Dual-Level Knowledge Distillation (DLKD),

which provides a general and model-agnostic solution to transfer richer representational knowl-

edge between networks.
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• We define a general knowledge quantification metric to measure and evaluate the consistency

of visual concepts in the learned representation.

• We show that knowledge alignment and correlation can provide effective supervisory signals for

knowledge distillation, and allow students to learn more generalized representations.

• We demonstrate that DLKD consistently outperforms state-of-the-art methods over a large set

of experiments including different pretraining strategies (supervised, self-supervised), network

architectures (vgg, ResNets, WideResNets, MobileNets, ShuffleNets), datasets (CIFAR-10/100,

STL10, ImageNet, Cityscapes) and tasks (classification, segmentation, self-supervised learning).

2.3 Dual-Level Knowledge Distillation

2.3.1 Reformulating KD and CRD

Given a pair of teacher and student networks, fTη (·) and fSθ (·), the distillation methods

train the student via extra supervisory signals from the supervised or self-supervised pretrained

teacher. fTη (·) and hT denote the feature extractor and representation vector of the teacher. Take

the supervised teacher as an example, besides fTη (·), there is also a projection matrix WT ∈ RD×K

to map the feature representation to K category logits, where D is the feature dimensionality. We

denote by s(·) the softmax function and the standard KD loss [56] can be written as:

LKD = −
K∑
k=1

s(WT
k hT ) log s(WS

khS)

= −
K∑
k=1

s(WT
k hT )[log s(WS

khS) + log s(WT
k hϕ(hS))

− log s(WT
k hϕ(hS))] = −

K∑
k=1

s(WT
k hT ) log s(WT

k hϕ(hS))

+

K∑
k=1

s(WT
k hT ) log

s(WT
k hϕ(hS))

s(WS
khS)

, (2.1)

where hϕ(·), hS and WS
k are trainable, hT and WT

k are frozen. hϕ(·) represents a feature transfor-

mation function of aligning the student’s representation to the teacher’s representation. We observe

that when hT = hϕ(hS), the first loss item achieves the optimal solution, and the second loss item

becomes the KL divergence between softmax distributions. In other words, the standard KD objective
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is related to knowledge alignment, and can minimize the discrepancy between networks’ outputs

indirectly through the class prototypes WT and WS . Recently, CRD shows that indirect learning

of the teacher’s knowledge is not sufficiently effective, and proposes the contrastive representation

distillation. Inspired by [110], the softmax formulation of CRD’s objective can be reformulated into

two parts:

LCRD = −zSi zTi /τ + log

exp
(
zSi zTi /τ

)
+

N∑
j=1

exp
(
zSi zTj /τ

) , (2.2)

where zSi and zTi are the positive representation pair of the teacher (T) and student (S) from the

sample xi. τ is the temperature parameter, N indicates the total number of negative samples, and

j indicates the jth(j 6= i) negative sample of zSi . Intuitively, the first term encourages the outputs

of the teacher and student for the same sample to be similar (alignment), while the second term

encourages representations of samples from negatives to be more dissimilar (correlation). However,

because negative samples usually are randomly chosen as long as they are different from xi, the

second term causes many negative samples from the same class (false negatives) be undesirably

pushed apart in the representation space.

The distinction of knowledge alignment and correlation provides a novel viewpoint to analyze

different distillation methods by reformulating their objectives. From the above analysis, we find

that both KD and CRD contain the knowledge alignment objective. We also find that although

CRD considers transferring the relationship between samples, it’s not optimal due to the problem

of false negatives. Here, we propose a novel knowledge correlation objective to capture structural

knowledge of samples. And we apply two independent objectives to perform knowledge alignment

and correlation respectively. Both of the proposed objectives are calculated at the feature level,

which allows our method to be extended to new pretraining strategies and architectures.

2.3.2 Knowledge Alignment

A well-trained teacher already encodes excellent representational knowledge, i.e., categorical

knowledge. The stronger supervision is necessary for better matching between the teacher’s repre-

sentation (fTη (x)) and the transformation of the student’s representation (hϕ(fSθ (x))). To meet the

requirement of knowledge alignment (hT = hϕ(hS)), we propose a L2-based knowledge alignment
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objective:

LAlign = Ex
[∥∥hϕ(fSθ (x))− fTη (x)

∥∥2
2

]
. (2.3)

This objective forces the student to directly mimic the teacher’s representation, thus can provide

stronger supervisory signals of inter-class similarities than the standard KD loss [56]. Eq. 2.3 applies

the feature representation (penultimate layer) to perform knowledge alignment. Our method is better

than previous FitNet loss which matches whole feature maps and may cause training to become

difficult or even fail when hϕ(·) is only regarded as dimensionality matching. In section 2.6, we

confirm that appropriate representation capability of hϕ(·) plays a key role in knowledge alignment.

The knowledge alignment can be further expressed as:

Lϕ,θ = Ex
[
l
(
hϕ(fSθ (x)), gφ(fTη (x))

)]
, (2.4)

where l(·, ·) loss function is used to penalize the difference between networks in different outputs.

This is a generalization of existing KD objectives [56, 92, 123, 124, 121]. For example, Hinton et

al. [56] calculate KL-divergence between fT and fS in which the linear functions hϕ and gφ map

representations to logits. SRRL [121] utilizes the teacher’s pre-trained projection matrix WT to

enforce the teacher’s and student’s feature to produce the same logits via the L2 loss. These methods

rely on the logits of the classification task. In contrast, our method is task-agnostic. Although

knowledge alignment is the common part of the existing distillation methods, it doesn’t ensure that

the teacher’s knowledge is fully transferred, as it neglects the structural knowledge between different

samples.

2.3.3 Knowledge Correlation

The pretrained teacher also encodes the knowledge of rich relationships between samples, and

knowledge correlation allows the student to learn a structure of the representation space similar to the

teacher. Here, we propose a novel knowledge correlation objective to capture structural knowledge

from the teacher. To be specific, we calculate the relational scores for each (N+1)-tuple samples as

the cross-sample relational knowledge. The correlation objective can be expressed as

LCorr =

N∑
i=1

l(ψ
(
fTη (x̃i), f

T
η (x1), .., fTη (xN )

)
, ψ
(
fS(x̃i), f

S(x1), .., fS(xN )
)
), (2.5)
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where N is the batch size, ψ is the relational function that measures the relational scores between

the augmented x̃i and samples {xi}i=1:N . l(·, ·) is a loss function. The samples in each batch have

different semantic similarities, and ψ needs to assign higher scores to samples with similar semantic

meaning and lower relational scores otherwise. Here, we apply the cosine similarity to measure the

semantic similarity between representations, and transform them to softmax distribution for the

knowledge correlation objective. All similarities between {x̃i}i=1:N and {xi}i=1:N can be written as

matrix A. For the teacher network, Ai,j is calculated by the representations hS . For the student

network, we also apply a transformation function to the representation zS for loss calculation.

We apply the softmax function as the relational function ψ and KL-divergence loss as l(·, ·)

to transfer these relationships from the teacher to the student.

LCorr =

N∑
i

N∑
j

− exp (Ai,j/τ)∑
j exp (Ai,j/τ)

· log
exp (Ai,j/τ)∑
j exp (Ai,j/τ)

(2.6)

where τ is the temperature parameter to soften peaky distributions and f(·) is the teacher or student

network.

We also compare our knowledge correlation objective with other relational distillation

objectives. RKD [89] proposes distance-wise and angle-wise losses for relational knowledge distillation.

The former has a significant difference in scales and makes training unstable. The latter utilizes a

triplet of samples to calculate angular scores (O(N3) complexity. Our KL-based solution achieves

high-order property with O(N2) complexity. SEED [36] is proposed to transfer knowledge from a

self-supervised pretrained teacher by leveraging similarity scores between a sample and a queue.

However, the large queue results in sparse softmax outputs due to lots of dissimilar samples, which

makes it not effective to transfer knowledge between different semantic samples. We directly calculate

mutual relationships in each batch and utilize KL divergence loss, which does not require additional

queue and large-size batch, thus has high computation efficiency.

2.3.4 Supervised Knowledge Distillation

Both above objectives are related to feature representations and therefore independent of

specific pretraining tasks. Here, we also propose an additional distillation objective for supervised

pretrained teachers based on the InfoNCE loss. We overcome the false negative problem in CRD by

leveraging the true labels to construct positives from the same category and negatives from different
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categories. There are two kinds of anchors (teacher and student anchor) in distillation:

LT/SSup = − 1

C

N∑
i=1

2N∑
j=1

1i 6=j · 1yi=yj · log
exp (zi · zj/τ)∑2N

k=1 1i6=k · exp (zi · zk/τ)
, (2.7)

where C = 2Nyi − 1 and Nyi is the number of images with the label yi in the minibatch. The feature

vectors z are transformed from hT or hS via MLP heads. zi is the anchor representation of the

teacher or student. zj and zk represent positive and negative features, respectively. When zi is

from the teacher, zj and zk are from the student, vice versa. This objective provides categorical

similarities to encourage a student to map samples from the same category into close representation

space and samples from different categories be far away. Our formulation is similar to the supervised

contrastive loss [62], with the difference that our objective requires fixed anchors for knowledge

transfer.

2.3.5 DLKD objective

The total distillation objective for any pretraining teacher is a linear combination of knowledge

alignment and correlation objectives:

L = λ1LAlign + λ2LCorr, (2.8)

where λ1 and λ2 are balancing weights. For the supervised pretrained teacher, we also add the above

supervised distillation loss LSup and the standard cross-entropy loss LCE with different balancing

weights. This objective forces a student network to learn multiple facets of representational knowledge

from a teacher, as shown in Figure 2.1.

2.4 Knowledge Quantification Metric

To evaluate the distillation performance, it’s necessary to understand the representation

knowledge by quantifying the knowledge encoded in networks. Cheng et al. [20] proposed to quantify

the visual concepts of networks on foreground and background, which requires annotations of the

object bounding box. However, these kinds of ground-truth bounding boxes are not always available.

Here, we define more general metrics to explain and analyze the knowledge encoded in networks
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based on the conditional entropy.

Let X denotes a set of input images. The conditional entropy H(X|z = f(x)) measures how

much information from the input image x to the representation z is discarded during the forward

propagation [45, 20]. A perturbation-based method [45] is proposed to approximate H(X|z). The

perturbed input x̃ follows Gaussian distribution with the assumption of independence between pixels,

x̃ ∼ N
(
x,Σ = diag

(
σ2
1 , . . . , σ

2
n

))
, where n denotes the total number of pixels. Therefore, the image-

level conditional entropy H(X|z) can be decomposed into pixel-level entropy Hi (H(X|z) =
∑n
i=1Hi),

where Hi = log σi + 1
2 log(2πe). High pixel-wise entropy Hi indicates that more information

is discarded through layers. The pixels with low pixel-wise entropy are more related with the

representation, thus the low-entropy pixels can be considered as reliable visual concepts.

We define two general quantification metrics from the view of knowledge quantification and

consistency: average and IoU. The average entropy H̄ = 1
n

∑
iHi of the image indicates how much

information is discarded in the whole input. A smaller H̄ indicates that the network utilizes more

pixels to compute feature representation from the input. However, more visual concepts don’t always

lead to the optimal feature representation, which might result in the over-fitting issue [6]. Ideally, a

well-learned network is supposed to encode more robust and reliable knowledge. Thus, we measure

the knowledge consistency by the IoU metric, which quantifies the consistency of visual concepts

between two views of the same image, i.e., two augmented images x1 and x2.

IoU = Ex∈X

[∑
i∈x1∩x2

(
S1
concept (xi) ∩ S2

concept (xi)
)∑

i∈x1∩x2

(
S1
concept (xi) ∪ S2

concept (xi)
)] ,

where, Sconcept(x) = 1
(
H̄ > Hi

)
, (2.9)

where 1 is the indicator function, and Sconcept(x) denotes the set of visual concepts (pixels with lower

entropy than H̄). i ∈ x1∩x2 denotes the same pixels of two augmented images. These same pixels are

supposed to obtain similar visual concepts and keep a good consistency between augmented images.

We choose the ratio between number of visual concepts overlap and number of visual concepts union

(IoU) to measure the knowledge consistency of the learned representations. Our IoU metric meets

the requirements of generality and coherency [20], and can be used to quantify and analyze the visual

concepts without relying on specific architectures, tasks or datasets.
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2.5 DLKD and mutual information bound

Considering the representations of teacher and student in terms of T and S (T = fTη (x), S =

fSθ (x)), we define a distribution q with binary variable C to denote whether a pair of representations

(fTη (xi), f
S
θ (xj)) is drawn from the joint distribution p(T, S) or the product of marginals p(T )p(S)

: q(T, S|C = 1) = p(T, S), q(T, S|C = 0) = p(T )p(S). The joint distribution indicates positive

pairs from close representation space, and the product of marginals indicates negative pairs from

far representation space. CRD only considers the same input provided to fTη (·) and fSθ (·) as the

positives, and samples drawn randomly from the training data as the negatives, which leads to

sampling bias problem [21].

Given Np positive samples and Nn negative samples, we consider the positives in T and

S from p(T, S) are empirically related and semantically similar, e.g., representations of the same

sample, augmented sample, and samples from the same category, and the negative samples are

drawn empirically from different categories. The contrastive-based distillation methods aim to

encourage student’s representations to be close to teacher’s representations in positives, and those of

negatives to be more orthogonal. Then, the priors can be written as: q(C = 1) = Np/(Np + Nn),

q(C = 0) = Nn/(Np +Nn). According to the Bayes’ rule, the posterior q(C = 1|T, S) can be written

as:

q(C = 1|T, S) =
p(T, S)

p(T, S) + p(T )p(S)(Nn/Np)
, (2.10)

log q(C = 1|T, S) = − log

(
1 + (Nn/Np)

p(T )p(S)

p(T, S)

)
≤ − log(Nn/Np) + log

p(T, S)

p(T )p(S)
. (2.11)

Taking expectation over both sides w.r.t. q(T, S|C = 1), we have the mutual information

bound as follows:

I(T ;S) ≥ log(Nn/Np) + Eq(T,S|C=1) log q(C = 1|T, S). (2.12)

The first term log(Nn/Np) is constant for the given dataset. Previous studies [97] suggest that a

larger batch size can obtain a better lower bound. But our analysis indicates that the influence factor

is the ratio of negative and positive samples, which depends on the training data. The second term
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is to maximize the expectation w.r.t. the student parameters to increase the lower found. But the

true distribution q(C = 1|T, S) is intractable. We note that this equation is similar to the InfoNCE

loss [88], which provides a tractable estimator.

When the teacher’s representation zTi and the student’s representation zSi form a positive

pair, we can relate our knowledge alignment objective to the dot product of positive samples in the

InfoNCE through Eq. 2.13, where we maximize the similarity of teacher and student’s representations

via knowledge alignment.

LAlign = − zSi · zTi∥∥zSi ∥∥ · ∥∥zTi ∥∥ =
1

2
·
∥∥zSi − zTi

∥∥2
2
− 1. (2.13)

For the knowledge correlation objective, it doesn’t directly align representations between

networks. Instead, it considers the relationship between an anchor zTi and the jth sample zTj in the

teacher by the softmax function:

ψ
(
zTi , z

T
j

)
=

exp
(
zTi zTj /τ

)∑N
k=1 exp

(
zTi zTk /τ

) . (2.14)

In practice, we convert the relationships between all samples in the batch to the softmax

distribution. Then we apply KL-divergence loss to transfer the relationships from the teacher to the

student. Because the teacher already encodes the relational knowledge between samples, our knowledge

correlation objective encourages the student to learn the similar relationships between samples. Thus

it enables the student to map samples from the same category to be closer, and indirectly models the

binary classification problem, which is related to q(C = 1|T, S). Because the objectives for knowledge

alignment and correlation don’t rely on an explicit definition of positives/negatives, it’s applicable in

supervised/self-supervised pretrained teachers.

2.6 Experiments

In this section, we first compare our method with state-of-the-art methods in the knowledge

distillation tasks (supervised, structured and self-supervised knowledge distillation). Then we

conduct an ablation study to verify each loss of DLKD via classification accuracy and knowledge

quantification metric. We also perform experiments to evaluate the transferability of representations

and the performance under a few-shot scenario.
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Table 2.1: Distillation performance comparison between similar architectures. It reports Top-1
accuracy (%) on CIFAR100 test dataset. We denote the best and the second-best results by Bold
and underline. The results of all compared methods are from [118].

Teacher wrn40-2 wrn40-2 resnet56 resnet32×4 vgg13
Student wrn16-2 wrn40-1 resnet20 resnet8×4 vgg8

Teacher 76.46 76.46 73.44 79.63 75.38
Student 73.64 72.24 69.63 72.51 70.68

KD [56] 74.92 73.54 70.66 73.33 72.98
Fitnets [92] 75.75 74.12 71.60 74.31 73.54
AT [124] 75.28 74.45 71.78 74.26 73.62
FT [64] 75.15 74.37 71.52 75.02 73.42
SP [101] 75.34 73.15 71.48 74.74 73.44
VID [1] 74.79 74.20 71.71 74.82 73.96
RKD [89] 75.40 73.87 71.48 74.47 73.72
AB [53] 68.89 75.06 71.49 74.45 74.27
CRD [97] 76.04 75.52 71.68 75.90 74.06
SSKD [118] 76.04 76.13 71.49 76.20 75.33

DLKD (ours) 77.20 76.74 72.34 77.11 75.40

Network architectures. We adopt vgg [94] ResNet [52], WideResNet [125], MobileNet [57],

and ShuffleNet [129] as teacher-student combinations to evaluate the supervised KD on CIFAR100

dataset [67] and ImageNet dataset [27]. Their implementations are from [97]. For structured KD,

we implement DLKD based on [73] and evaluate it on Cityscapes dataset [24]. The teacher model

is the PSPNet architecture [130] with a ResNet101 and the student model is set to ResNet18. For

self-supervised KD, the teachers are pretrained via MoCo-V2 [16] or SwAV [10] and we directly

download the pretrained weights for our evaluation. The student network is set to smaller ResNet

networks (ResNet18, 34). We also perform the transferability evaluation of representations on STL10

dataset [23] and TinyImageNet dataset [25, 27].

Implementation details. Our implementation is mainly to verify the effectiveness of

DLKD. We follow the same training strategy based on the existing solutions without any tricks.

For supervised KD, we use the SGD optimizer with the momentum of 0.9 and the weight decay of

5×10−4 in CIFAR100. All the students are trained for 240 epochs with a batch size of 64. The initial

learning rate is 0.05 and then divided by 10 at the 150th, 180th and 210th epochs. In ImageNet, we

follow the official implementation of PyTorch 1 and adopt the SGD optimizer with a 0.9 momentum

and 1× 10−4 weight decay. The initial learning rate is 0.1 and is decayed by 10 at the 30th, 60th,

and 90th epoch in a total of 100 epochs. For these two datasets, we apply normal data augmentation

1https://github.com/pytorch/examples/tree/master/imagenet
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Table 2.2: Distillation performance comparison between different Architectures. It reports Top-1
accuracy (%) on CIFAR100 test dataset. We denote the best and the second-best results by Bold
and underline. The results of all compared methods are from [118].

Teacher vgg13 ResNet50 ResNet50 resnet32×4 resnet32×4 wrn40-2
Student MobileV2 MobileV2 vgg8 ShuffleV1 ShuffleV2 ShuffleV1

Teacher 75.38 79.10 79.10 79.63 79.63 76.46
Student 65.79 65.79 70.68 70.77 73.12 70.77

KD [56] 67.37 67.35 73.81 74.07 74.45 74.83
Fitnets [92] 68.58 68.54 73.84 74.82 75.11 75.55
AT [124] 69.34 69.28 73.45 74.76 75.30 75.61
FT [64] 69.19 69.01 73.58 74.31 74.95 75.18
SP [101] 66.89 68.99 73.86 73.80 75.15 75.56
VID [1] 66.91 68.88 73.75 74.28 75.78 75.36
RKD [89] 68.50 68.46 73.73 74.20 75.74 75.45
AB [53] 68.86 69.32 74.20 76.24 75.66 76.58
CRD [97] 68.49 70.32 74.42 75.46 75.72 75.96
SSKD [118] 71.53 72.57 75.76 78.44 78.61 77.40

DLKD (ours) 72.52 73.18 76.15 78.89 79.54 78.01

Table 2.3: Top-1 and Top-5 error rates (%) on ImageNet. We denote the best and the second-best
results by Bold and underline.

Teacher Student SP KD AT CRD SSKD SRRL [121] DLKD

Top-1 26.70 30.25 29.38 29.34 29.30 28.83 28.38 28.27 27.88
Top-5 8.58 10.93 10.20 10.12 10.00 9.87 9.33 9.40 9.30

methods, such as rotation with four angles, i.e., 0◦, 90◦, 180◦, 270◦. To perform structured KD, the

student is trained with an SGD optimizer with the momentum of 0.9 and the weight decay of 5×10−4

for 40000 iterations. The training input is set to 512×512, and normal data augmentation methods,

such as random scaling and flipping, are used during the training. The self-supervised KD is trained

by an SGD optimizer with the momentum of 0.9 and the weight decay of 1× 10−4 for 200 epochs.

More detailed training information can be found in the compared methods(CRD [97], SKD [73] and

SEED [36]). The temperature τ in LCorr and LSup is set to be 0.5 and 0.07. For the balancing

weights, we set λ1 = 10 and λ2 = 20 according to the magnitude of the loss value. During supervised

KD, we set the weights of LSup and LCE loss to be 0.5 and 1.0. All models are trained using Tesla

V100 GPUs on an NVIDIA DGX2 server.
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2.6.1 Supervised knowledge distillation

CIFAR100. DLKD is compared with the existing distillation methods, as shown in Table 2.1

and Table 2.2. Following CRD [97] and SSKD [118], Table 2.1 and Table 2.2 compare teacher-student

pairs with similar and different architectures. Our method achieves a large improvement compared

with KD and CRD methods, which validates the effectiveness of combination of knowledge alignment

and correlation. SSKD is an improved KD method combined with contrast learning, yet only

applicable to supervised pretrained teachers for classification tasks, and is more complex which

requires two steps. In contrast, our method is simpler, meanwhile still achieve better distillation results

and can be applied to supervised and self-supervised pretrained teachers. For similar-architecture

comparisons, DLKD increases the performance of the students by an average of 0.66% compared

to the other best methods. Taking the teacher resnet32× 4 as an example, two different types of

student networks resnet8× 4 and ShuffleV2 achieve 77.11% and 79.54% performance respectively.

This demonstrates that DLKD can break through the architecture-specific limitation to achieve

excellent performance. Notably, we find that DLKD enables the student to obtain better performance

than the teacher in three out of five pairs. While comparing the teacher-student pairs with different

architectures, DLKD also enables the student to learn better than the teacher.

ImageNet. We further conduct the experiment (teacher: ResNet34, student: ResNet18) on ImageNet.

As shown in Table 2.3, our DLKD achieves the best classification performances for both Top-1 and

Top-5 error rates, which demonstrate the efficiency and scalability on the large-scale dataset.

2.6.2 Structured Knowledge Distillation

Semantic segmentation can be considered as a structured prediction problem, with different

levels of similarities among pixels. To transfer the structured knowledge from the teacher to the

student, it’s also necessary to perform the pixel-level knowledge alignment and correlation in the

feature space. The former encourages the student to learn similar feature representations for each

pixel from the teacher, even though their receptive fields (convolutional networks) are different. The

latter focuses on maintaining the similarity between pixels belonging to the same class, and the

dissimilarity of pixels between different classes. SKD [73] proposes to transfer pair-wise similarities

among pixels in the feature space. IFVD [111] proposes to transfer similarities between each pixel and

its corresponding class prototype. In contrast, our distillation method can achieve better distillation
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results than the existing structured KD methods (Table 2.4).

Table 2.4: The segmentation performance
comparison on Cityscapes val dataset.
Teacher: ResNet101 and Student:ResNet18.

Method val mIoU (%) Params (M)

Teacher 78.56 70.43
Student 69.10 13.07
SKD [73] 72.70 13.07
IFVD [111] 74.54 13.07
DLKD (ours) 75.73 13.07

Table 2.5: Top-1 k-NN classification accuracy(%)
on ImageNet. + and ∗indicates the teachers
pretrained by MoCo-V2 and SwAV.

Teacher ResNet18 ResNet34

Supervised 69.5 72.8
Self-supervised 36.7 41.5
R-50+ + SEED 43.4 45.2
R50x2∗ + SEED 55.3 58.2
R50x2∗ + Ours 56.4 59.6

2.6.3 Self-supervised knowledge distillation

We evaluate the self-supervised distillation with the k-NN nearest neighbor classifier (k=10)

as in SEED [36], which does not require any hyperparameter tuning, nor augmentation. Table 2.5

shows the distillation results from different teacher-student pairs. The results of all compared methods

are from [36]. The first two rows show the supervised training and self-supervised (MoCo-V2) training

baseline results. The k-NN accuracy of self-supervised pretrained ResNet-50(R-50) and ResNet-

50w2(R50x2) are 61.9% and 67.3% [11]. We apply the same pretrained R50x2 teacher as [36], to

train students (ResNet18 and ResNet34) using the same training strategy. The results show that our

solution can further improve the classification accuracy of students.

Table 2.6: ImageNet test accuracy(%) using linear classification. + and ∗indicates the teachers
pretrained by MoCo-V2 and SwAV.

Methods ResNet18 ResNet34
Top-1 Top-1 Top-5 Top-1 Top-5

Supervised 69.5 72.8
Self-supervised 52.5 77.0 57.4 81.6
R-50+ + SEED 67.4 57.9 82.0 58.5 82.6
R50x2∗ + SEED 77.3 63.0 84.9 65.7 86.8
R50x2∗ + Ours 77.3 65.8 86.5 67.9 87.7

We also evaluate the self-supervised KD by linear classification following previous works in

SEED [36]. We apply the SGD optimizer and train the linear classifier for 100 epochs. The weight

decay is set to be 0, and the learning rate is 30 at the beginning then reduced to 3 and 0.3 at 60

and 80 epochs. Table 2.6 reports the Top-1 and Top-5 accuracy and indicates that our method also

works well in self-supervised settings.
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Table 2.7: Distillation performance comparison of different hϕ(·) on the resnet32×4 and ShuffleV2.
It reports Top-1 accuracy (%) on CIFAR100 test dataset. It denotes multiples of dim(zT ).

Hidden size 0.25 × 0.5 × 1 × 2 × 4 × 8 × 16 × 32 × 64 ×
Top-1 78.54 78.63 78.58 78.62 78.43 78.57 79.01 78.81 78.66

Table 2.8: Ablation study of DLKD. It reports Top-1 accuracy (%) of two teacher-student pairs on
CIFAR100 test dataset.

Teacher resnet32×4 resnet32×4
Student resnet8×4 ShuffleV2
LAlign 76.59 79.01
LCorr 74.94 76.06
LSup 74.73 75.98
LAlign + LSup 76.99 79.26
LCorr + LSup 75.90 77.35
LAlign + LCorr 76.90 79.17
All 77.11 79.54

Table 2.9: Ablation study of DLKD. Top-1 accuracy (%) of linear evaluation on two datasets using
learned representation on CIFAR100 dataset (teacher: resnet32×4, student: resnet8×4).

Datset STL10 TinyImageNet
LAlign 75.86 40.50
LCorr 73.73 36.70
LAlign + LCorr 77.48 42.17
All 77.95 42.32

2.6.4 Ablation Study

Section 2.3 demonstrates that it’s crucial to set suitable modelling capability for the trans-

formation function hϕ(·). We apply 2-layer MLPs to implement hϕ(·) for knowledge alignment and

correlation on student’s output, which is widely used in self-supervised learning [14, 44]. We set

different dimensions for the hidden layer to model different capabilities in knowledge alignment, which

only include LAlign and LCE losses. Table 2.7 shows the comparison results of different multiples of

the student representation’s dimension (dim(zT )). A spindle-shaped MLP (16 times) can achieve

the best alignment results. We have not found similar trends in the knowledge correlation, and we

directly set all dimensions to dim(zS). For the additional LSup and LCE losses, only linear projections

are used.

To verify the importance of the transformation function hϕ(·), we apply 2-layer multi-layered

perceptron (MLP), which is widely used in self-supervised learning [14, 44], for LAlign and LCorr on

student’s output. We set different dimensions for the hidden layer to model different capabilities.

Table 2.7 compares different multiples of the student representation’s dimension (dim(zT )), and shows
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that the choice of representation’s dimension is important to achieve the optimal performance. A

spindle-shaped MLP (16 times) can achieve best alignment results. For LCorr, we have not observed

similar trends and directly set all dimensions to dim(zS). For the additional LSup and LCE losses,

we apply linear projections.

We also perform the ablation study to examine the effectiveness of each distillation objective,

LAlign, LCorr and LSup. The students are trained via different combinations of these objectives, as

shown in Table 2.8. We find that combinations of objectives can obtain better results than single

objective, indicating that multiple supervisory signals can improve the representation quality of the

student. And among these objectives, LAlign plays a more important role than others in knowledge

distillation. To demonstrate that LCorr is also critical in distillation, we compare the transferability

of learned representations by using LAlign and LCorr, as shown in Table 2.9. We find that LCorr can

boost the performance of transfer learning by capturing structural knowledge between samples, which

is helpful to learn generalized representations.

To visually understand the different roles of LAlign and LCorr, we perform t-SNE visualization

on cifar100 dataset (randomly select 10 categories from 100 categories), as shown in Figure 2.2. LAlign

tends to make the student learn representations with the large margin between different classes. In

contrast, LCorr enables the student to capture better intra-class structure for certain classes. It’s

necessary to combine them to improve the distillation performance.

2.6.5 Transferability of representations

We also examine whether the representational knowledge learned by DLKD can be transferred

to the unseen datasets. We perform six comparisons with three teacher-student pairs. The students

are fixed to extract feature representations of STL10 and TinyImageNet datasets (all images resized

to 32× 32). We then compare the quality of the learned representations by training linear classifiers

to perform 10-way and 200-way classification. As shown in Table 2.10, DLKD achieves a significant

performance improvement compared to multiple baseline methods, demonstrating the superior

transferability of learned representations. Notably, most distillation methods improve the quality of

the student’s representations on STL10 and TinyImageNet. The reason why the teacher performs

worse on these two datasets may be that the representations learned by the teacher are biased towards

the training dataset and are not generalized well. In contrast, DLKD encourages the student to learn

more generalized representations.
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Figure 2.2: The t-SNE visualization of student’s representations: (a) LAlign loss and (b) LCorr loss
(teacher: resnet32×4, student: resnet8×4). LAlign enables the student to learn representations with
the large margin between different classes. LCorr enables the student to learn better intra-class
structure.

2.6.6 Quantification of knowledge consistency

Table 2.12 compares the knowledge consistency of student networks trained by different

distillation methods. It verifies that representation distillation can learn more reliable knowledge,

compared with other distillation methods. Table 2.11 shows the average score H̄ of pixel-level

conditional entropy as mentioned in Section 2.4. It indicates that the representation of lower H̄

tends to achieve better classification performance. A lower H̄ also means that the network focuses on

more visual concepts to compute the feature representation. Our method has a lower H̄, indicating

that the student can learn richer representational knowledge from the teacher. Further, we utilize

the IoU score to quantify the knowledge consistency and evaluate the reliability of visual concepts,

as shown in Table 2.12. We show that both of the average and IoU scores can provide additional

insights about the knowledge distillation, in addition to classification accuracy.
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Table 2.10: Classification accuracy (%) of STL10 (10 classes) and TinyImageNet (200 classes) using
linear evaluation on the representations from CIFAR100 trained networks. We denote compared
results from [118] by *. We denote the best and the second-best results by Bold and underline.

Dataset STL10 TinyImageNet
Teacher resnet32×4 vgg13 wrn40-2 resnet32×4 vgg13 wrn40-2
Student resnet8×4 vgg8 ShuffleV1 resnet8×4 vgg8 ShuffleV1
Teacher 70.45 64.45 71.01∗ 31.92 27.20 31.69
Student 71.26 67.48 71.58∗ 35.31 30.87 32.43∗

KD [56] 71.29 67.81 73.25∗ 33.86 30.87 32.05∗

Fitnets [92] 72.93 67.16 73.77∗ 37.86 31.20 33.28∗

AT [124] 73.46 71.65 73.47∗ 36.53 33.23 33.75∗

FT [64] 74.29 69.93 73.56∗ 38.25 32.73 33.69∗

SP [101] 72.06 68.43 72.28 35.05 31.55 34.74
VID [1] 73.35 67.88 72.56 37.38 31.12 35.62
CRD [97] 73.39 69.20 74.44∗ 37.13 33.04 34.30∗

SSKD [118] 74.39 71.24 74.74∗ 37.83 34.87 34.54∗

DLKD 77.95 74.49 77.43 42.31 38.74 42.48

Table 2.11: Quantification of representational knowledge. It reports average scores of two students
trained by different distillation methods on CIFAR100 test dataset.

Teacher resnet32×4 resnet32×4
Student resnet8×4 ShuffleV2
KD 0.4400 0.6307
CRD 0.1460 0.4454
LAlign 0.0934 0.1641
LCorr 0.2533 0.4288
LSup 0.2746 0.3816
DLKD 0.0887 0.1622

Table 2.12: Quantification of knowledge consistency. It reports IoU scores (0.0 - 1.0) of students
trained by different distillation methods on CIFAR100 dataset, and higher is better.

Teacher resnet32×4 resnet32×4
Student resnet8×4 ShuffleV2
KD 0.4647 0.2769
CRD 0.7288 0.4612
LAlign + LCorr 0.7394 0.7449
DLKD 0.7512 0.7528

2.6.7 Teacher-Student similarity

DLKD can encourage the student to learn richer structured representational knowledge under

the dual-level supervisory signals of the teacher. Thus, we conduct the similarity analysis between

the teacher’s and the student’s representations to further understand the contrastive representation

distillation. We calculate the CKA-similarity [66] (RBF Kernel) between the teacher and student

networks, as shown in Figure 2.3. Combined with Table 2.10, we find that forcing students to be
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Figure 2.3: CKA-similarity between the representations from the teacher (vgg13) and student (vgg8)
networks.

Figure 2.4: Top-1 accuracy on CIFAR100 test data under a few-shot scenario. The student network
is trained with only 25%, 50%, 75% and 100% of the available training data.

more similar to teachers does not guarantee that students can learn more general representations.

2.6.8 Few-Shot Scenario.

DLKD enables the student to learn enough representational knowledge from the teacher,

instead of relying entirely on labels. It’s necessary to investigate the performance of DLKD under

limited training data. We randomly sample 25%, 50%, 75%, and 100% images from CIFAR100 train

set to train the student network and test on the original test set. The comparisons of different methods

(Figure 2.4), show that DLKD maintains superior classification performance in all proportions. As the

training set size decreases, dual-level supervisory signals in DLKD serve as an effective regularization

to prevent overfitting.
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2.7 Conclusion

In this work, we summarize the existing distillation methods as knowledge alignment and

correlation and propose an effective and flexible dual-level distillation method called DLKD, which

focuses on learning individual and structural representational knowledge. We further demonstrate

that our solution can increase the lower bound on mutual information between distributions of

the teacher and student representations. We conduct thorough experiments to demonstrate that

our method achieves state-of-the-art distillation performance under different experimental settings.

Further analysis of student’s representations shows that DLKD can improve the transferability of

learned representations. We also demonstrate that our method can work well with limited training

data in the few-shot scenario. Due to the hardware limitation, we have not carried out more systematic

hyperparameter tuning, which can be done in future works to further obtain better performance.
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Chapter 3

CLC: Cluster Assignment via

Contrastive Representation

Learning

Image clustering has been widely used in many computer vision, such as such as image

segmentation [61] and visual features learning [70, 10]. Since images are usually high-semantic and

high-dimensional, it is difficult to achieve better performance when clustering on large-scale datasets.

Earlier clustering studies [117, 119, 59, 61] focus on end-to-end training solutions. For example,

IMSAT [59] and IIC [61] develop clustering methods from a mutual information maximization

perspective, and DEC [117] and DCN [119] perform clustering on initial features obtained from

autoencoders. Since these methods rely on network initialization and are likely to focus on low-level

non-semantic features [104], such as color and texture, they are prone to cluster degeneracy solutions.

The recently developed clustering methods usually consist of two key steps: representation learning

and cluster assignment. Representation learning aims to learn semantically meaningful features, i.e.,

samples from the same category are projected to similar features so that all samples are linearly

separable. One popular representation learning is self-supervised contrastive learning [32, 115, 51, 14]

that greatly improve the learned representation. To obtain categorical information without labels,

additional step such as K-means clustering [117, 9, 70] or training of a classifier [104] is required for

cluster assignment. K-means clustering [117, 9, 70] is widely used for clustering on learned features.
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Figure 3.1: The training framework of CLC, illustrated by MoCo [51]. The dot product between q
and k is written as q · k = znq · znk + zcq · zck. After training, we obtain the categorical probability by
applying softmax function on zc.

It requires the proper selection of distance measures, thus suffering from the uneven assignment of

clusters and leading to a degenerate solution [9]. SCAN [104] proposes a novel objective function to

train a classifier instead of using K-means. Its performance relies heavily on the feature quality such

that nearest neighbors of each sample in the feature space belong to the same category. Due to the

presence of noisy nearest neighbors, there is still room for improvement in clustering performance on

large-scale datasets.

In this Section, we propose Contrastive Learning based Clustering (CLC), a novel cluster-

ing method that directly encodes the categorical information into the part of the representation.

Specifically, we formulate contrastive learning as a proxy task to learn cluster assignments, which

enables us to take advantage of the powerful contrastive learning frameworks. Figure 3.1 shows an

illustration of CLC. First, each representation is decomposed into two parts: zc and zn, where zc

represents categorical information (logits) and zn is used for capturing instance-wise factors. Then,

zc and zn are concatenated together for the training of typical contrastive learning. After training,

we can obtain cluster assignments from zc. To avoid the collapse of assignment, we introduce the
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equipartition constraint on zc to ensure that the clusters are evenly assigned. We demonstrate that

this constraint can enforce zc to encode the categorical information. By considering zc as part of the

representation, which can handle well a large number of clusters, we achieve the efficient learning of

cluster assignment through contrastive learning.

3.1 Related work

Self-supervised learning applies various pretext tasks to obtain feature representations from

images without any manual annotation. There are numerous pretext tasks in the literature, including

Autoencoding [105, 117, 50], patch context prediction [29, 82], solving jigsaw puzzles [85, 86],

predicting rotations [39], adversarial training [30, 31], and so on. More recently, instance-wise

contrastive learning [32, 115, 51, 14], has become an important research area due to its excellent

performance in representation learning.

Contrastive learning. The instance-wise contrastive learning considers each sample as its

own class. Wu et al. [115] first propose to utilize a memory bank and the noise contrastive estimation

for learning. He et al. [51] continue to improve the training strategy by introducing momentum

updates. SimCLR [14] is another representative work that applies a large batch instead of the memory

bank. SwAV [10] and PCL [70] bridges contrastive learning with clustering to improve representation

learning. There are also some recent works [44, 17, 11] that consider only the similarity between

positive samples. Although the typical contrastive loss enables learning a latent space where each

instance is well-differentiated, it cannot deal well with the uniformity of the hard negative samples.

In our work, the proposed contrastive loss with self-adjusting negative weights solves this problem

well. Once the feature representation is obtained, cluster assignment is either obtained by K-means

clustering [117, 9, 70] or training an additional component [37, 104]. However, they still cannot

achieve promising clustering results on a large-scale dataset, e.g., ImageNet, which requires to develop

an efficient objective function that jointly learns cluster assignment and representation learning.

Clustering. Another main line of recent research is jointly learning feature representation

and cluster assignment in an alternating or simultaneous manner. Earlier studies (e.g. IMSAT [59],

IIC [61]) focus on learning a clustering method from a mutual information maximization perspective.

Since these methods may only focus on low-level features, such as color and texture, they don’t

achieve excellent clustering results. DeepCluster [9] performs clustering and representation learning
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alternatingly, which is further improved with online clustering [128]. Self-labelling [4] is another

simultaneous learning method by maximizing the information between labels and data indices.

However, due to the lack of a powerful representation learning framework, many of these methods

cannot achieve superior clustering performance. We propose to utilize the powerful contrastive

learning framework as a proxy task to learn clustering. Also, the introduction of cluster assignment

task allows the contrastive learning equipped with the mechanism of self-adjusting negative weights.

3.2 Method

Our goal is to learn cluster assignments via contrastive learning. There are several repre-

sentation learning methods [9, 4, 70, 10] that jointly learn clustering and feature representation.

For example, SwAV [10] proposes an online codes assignment to learn feature representation by

comparing prototypes corresponding to multiple views. These methods either require representation

learning and clustering to be performed alternately or require learning additional prototypes, which

may be not efficient enough for cluster assignment without labels. It’s still necessary to propose a

novel objective function to directly obtain cluster assignment. Our method learns cluster assignment

via self-adjusting contrastive loss and improves the clustering performance on the large-scale dataset.

The proposed contrastive loss can be combined with many contrastive learning methods for cluster

assignment. Our method demonstrates that contrastive learning can not only achieve remarkable

performance in representation learning, but also high efficiency for cluster assignment.

Our method can be interpreted as instance-wise contrastive learning with self-adjusting

weights, which learns to set different weights to distinguish different negative samples. Typical

contrastive learning methods aim to force positive pairs to achieve high similarity (dot product)

and negative pairs to achieve low similarity on zn. Our method adjusts the order of magnitude

corresponding to each dimension of zc to distinguish between intra-class and inter-class samples. For

example, positive pairs yield high similarity scores because they are from the same instance, and

negative pairs from different categories yield low similarity scores due to different semantics. Note

that negative pairs from the same category yield moderate similarity scores during the instance-wise

setting. We demonstrate that the similarity of zc provides a mechanism to adjust different weights

for negative samples and improves the uniformity property of negative samples in the representation

space, therefore beneficial for representation learning. Our contributions can be summarized as
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follows:

• We propose CLC, a Contrastive Learning based Clustering method that encodes categorical

information into the part of the representation. It considers contrastive learning as a proxy

task to efficiently learn cluster assignments.

• We apply the equipartition constraint on part of the representation to enforce cluster assignment.

The proposed objective function plays a key role in learning both categorical and instance-wise

information simultaneously. The typical contrastive learning method forms a special case of

our method.

• We provide a theoretical analysis to demonstrate that CLC adjusts different weights for negative

samples through learning cluster assignments. With a gradient analysis, we show that the

larger weights tend to concentrate more on hard negative samples.

• The clustering experiments show that CLC outperforms existing methods in multiple bench-

marks, and in particular, achieves significant improvements on ImageNet. CLC also contributes

to better representation learning results.

3.3 Weighted Instance-wise Contrastive Learning

Given a training set X = {x1, . . . ,xN}, contrastive learning aims to map X to Z =

{z1, . . . , zN} with zi = h(f(xi)), such that zi can represent xi in representation space. f(·) denotes

a feature encoder backbone and the projection head h(·) usually is a multi-layer perceptron. The

objective function of contrastive learning, such as InfoNCE [102, 14, 51], can be formulated as:

LInfoNCE (xi) = − log

[
exp (si,i/τ)∑

k 6=i exp (si,k/τ) + exp (si,i/τ)

]
(3.1)

= − log

[
exp(sni,i/τ)∑

k 6=i(exp((sci,k − sci,i)/τ) · exp(sni,k/τ)) + exp(sni,i/τ)

]
. (3.2)

where τ is a temperature hyper-parameter, the positive similarity si,i is calculated by two augmented

versions of the same image, and the negative similarity si,j(j 6= i) compares different images. In our

settings, zi consists of zci and zni . The similarity si,j can be written as: si,j = zi · zj = zci · zcj + zni · znj .

Let sci,j = zci · zcj , sni,j = zni · znj , then we can re-write the standard contrastive loss (equation 3.1) as

equation 3.2. More details can be found in supplementary materials.
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Note that sni,i can be considered as instance-wise positive similarity, sni,k can be considered as

instance-wise negative similarity, and exp((sci,k − sci,i)/τ) is a learnable coefficient for each negative

sample. Thus, we obtain a more expressive contrastive loss. Considering that τ is a hyperparameter,

the value of this coefficient is mainly determined by sci,k and sci,i, which are further calculated by zci

and zck. This coefficient learns to set different weights for each negative sample, i.e., larger weight

on hard negative (intra-class) samples and smaller weight on inter-class negative samples. In this

way, the part of representation zc plays a role in adjusting different penalties on different negative

samples. In contrast, the typical contrastive loss sets all negative samples to the same coefficient

with a value of 1.

To make the above coefficient work as expected, we need to add some constraints to zc. First,

the constraint should ensure that the value range of coefficients is bounded. This requirement can

be satisfied by performing normalization on zc and zn separately. More importantly, the constraint

should satisfy that zc does not collapse to the same assignment, otherwise our method will degrade to

typical contrastive learning. Here, we introduce the equipartition constraint on zc which encourages

it to encode the semantic structural information, while also avoiding its collapse problem. zc is

expected to represent the probability over clusters C = {1, . . . ,K} after softmax function.

3.4 Equipartition constraint for clustering

Given the logits zc, we can obtain the categorical probabilities via the softmax function:

p (y | xi) = softmax (zci/t), where t is the temperature to rescale the logits score. To avoid degeneracy,

we add the equipartition constraint on cluster assignment to enforce that the clusters are evenly

assigned in a batch. The pseudo-assignment q (y | xi) ∈ {0, 1} is used to describe the even assignment

of zc. We denote B logits in a batch by Zc = [zc1/t, . . . , z
c
B/t], and the pseudo-assignment by

Q = [q1, . . . ,qB ].

The equipartition constraint has been used in previous self-supervised learning studies [4, 10]

for representation learning. Asano et al. [4] propose to solve the matrix Q by restricting the

transportation polytope on the entire training dataset. SwAV [10] improves the above solution

to calculate the online prototypes for contrastive learning, and achieves excellent representation

learning results. Unlike SwAV, which uses the similarity of features and prototypes as input to obtain

pseudo-assignment, whose assignment can be interpreted as the probability of assigning each feature
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to a prototype, we consider the representation zc as logits to directly obtain assignments without

any prototypes. Here, we propose to adopt a similar solution to optimize Q directly from the logits

matrix Zc,

max
Q∈Q

Tr
(
Q>Zc

)
+ εH(Q), (3.3)

where Q =
{
Q ∈ RK×B+ | Q1B = 1

K1K ,Q
>1K = 1

B1B
}

and H denotes the entropy regularization.

1B and 1K denote the vector of ones in dimension B and K. H(Q) = −
∑
ij Qij log Qij . The

parameter ε is used to control the smoothness of Q. These constraints ensure that all samples in each

batch are evenly divided into K clusters. We also set ε to be small to avoid a trivial solution [10].

The solution of equation 3.3 can be written as: Q∗ = Diag(u) exp
(
Zc

ε

)
Diag(v), where u

and v are two scaling vectors such that Q is a probability matrix [4, 26]. The vectors u and v

can be computed using Sinkhorn-Knopp algorithm [26] through several iterations. In practice, by

using GPU, 3 iterations are fast enough and can ensure satisfactory results [10]. Once we obtain

the solution Q∗, we directly apply its soft assignment to constrain zc by minimizing the following

cross-entropy loss:

LCE (zc,q) = −
∑
k

q(k) log p(k). (3.4)

3.5 Gradients Analysis

Here, we perform a gradient analysis to understand the properties of the proposed contrastive

loss. Because the equipartition constraint is not related to negative similarity sni,j(j 6= i), for

convenience, our analysis focuses on the negative gradients. Considering that the magnitude of

positive gradient ∂L(xi)
∂sni,i

is equal to the sum of all negative gradients, we can also indirectly understand

the property of the positive gradient through negative gradients. The gradient with respect to the

negative similarity sni,j(j 6= i) is formulated as:

∂L (xi)

∂sni,j
=
λci,j
τ
·

exp(sni,j/τ)∑
k 6=i(λ

c
i,k · exp(sni,k/τ)) + exp(sni,i/τ)

, (3.5)

where λci,j = exp((sci,j − sci,i)/τ). Without the loss of generality, the hyperparameter τ can be

considered as a constant.

From equation 3.5, we observe that λci,j is proportional to negative gradients. A larger λci,j

leads to the corresponding sample to receive more attention during the optimization. Since λci,j
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depends mainly on zci and zcj , we need to analyze them separately according to whether samples

belong to the same category or not. Due to the equipartition constraint, zc is encouraged to encode

the categorical information. Thus, the similarity sci,j(j 6= i) of the same category is greater than the

similarity of different categories. The intra-class λci,j is also greater than the inter-class λci,j . In other

words, the gradient tends to concentrate more on samples of the same category, which are often

considered as hard negative samples. In this way, the categorical information of zc can contribute to

the optimization of zn so that all samples tend to be uniformly distributed.

Our overall objective, namely CLC, is defined as

L = LInfoNCE + αLCE. (3.6)

In addition to the loss weight α, there are two temperature hyperparameters: τ and t. We observe

that the choice of temperature values has a crucial impact on the clustering performance. In general,

the relationship of temperatures satisfies: 0 < t ≤ τ ≤ 1. We refer to Section 3.7.2 for the concrete

analysis.

Because samples with the highly confident prediction (close to 1) can be considered to obtain

pseudo labels, our method can optionally include the confidence-based cross-entropy loss [104], which

can be gradually added to the overall objective, or be used for fine-tuning on the pretrained model.

SCAN applies this loss to correct for errors introduced by noisy nearest neighbors, while we aim

to encourage the model to produce a smooth feature space, thus helping assign proper clusters

for boundary samples. We only consider well-classified samples, i.e., pmax > threshold (0.99), and

perform strong data augmentation on them. This encourages different augmented samples to output

consistent cluster predictions through the cross-entropy loss, also known as self-labeling [104].

Algorithm 1 provides PyTorch-like pseudo-code to describe how we compute the objective

(equation 3.6).

3.6 Experiments

In this section, we evaluate CLC on multiple benchmarks, including training models from

scratch and using self-supervised pretrained models. We follow the settings in MoCo [51] and choose

the same backbone network as the baseline methods, to ensure that our performance gains are
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Algorithm 1: PyTorch-like Pseudo-code for CLC.

# model: includes base_encoder, momentum_encoder and MLP heads
# sinkhorn-knopp: implementation details can be found in supplementary materials
# T and t: temperatures for contrastive loss and cross entropy loss
# alpha: weight of the loss term
# K: dimension of zc (number of clusters), C: dimension of zn

for x in loader: # load a minibatch x with N samples
x_q = aug(x) # a randomly augmented version
x_k = aug(x) # another randomly augmented version

# no gradient to k
q, k = model.forward(x_q, x_k) # compute features: N x (K + C)

zc_q = normalize(q[:, :K], dim=1) # normalize zc: N x K
zn_q = normalize(q[:, K:], dim=1) # normalize zn: N x C
q = cat([zc_q, zn_q], dim=1)

zc_k = normalize(k[:, :K], dim=1) # normalize zc: N x K
zn_k = normalize(k[:, K:], dim=1) # normalize zn: N x C
k = cat([zc_k, zn_k], dim=1)

# compute assignments with sinkhorn-knopp
with torch.no_grad():

q_q = sinkhorn-knopp(zc_q)
q_k = sinkhorn-knopp(zc_k)

# convert logits to probabilities
p_q = Softmax(zc_q / t)
p_k = Softmax(zc_k / t)

# compute the equipartition constraint
cross_entropy_loss = - 0.5 * mean(q_q * log(p_k) + q_k * log(p_q))

loss = contrastive_loss(q, k, T) + alpha * cross_entropy_loss

# SGD update: network and MLP heads
loss.backward()
update(model.params)

from the proposed objective function. We first compare our results to the state-of-the-art clustering

methods, where we find that our method is overall the best or highly competitive in many benchmarks.

Then, we quantify the representation learned by the proposed contrastive loss, and the results show

that it can also improve the representation quality. All experimental details can be found in the

supplementary material.

3.6.1 Experimental setup

Datasets. We perform the experimental evaluation on CIFAR10 [67], CIFAR100-20 [67],

STL10 [23] and ImageNet [27]. Some prior works [117, 61, 12] use the full dataset for both training

and evaluation. Here, we follow the experimental settings in SCAN [104], which trains and evaluates

the model using train and val split respectively. This helps us to understand the generalizability of

our method on unseen samples. All datasets are processed using the same augmentations in MoCo

v2 [16]. We report the results with the mean and standard deviation from 5 different runs.

Implementation details. We apply the standard ResNet [52] backbones (ResNet-18 and ResNet-
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Table 3.1: State-of-the-art comparison: We report the averaged results (Avg ± Std) for 5 different
runs after the clustering and self-labeling steps. All the baseline results are from [104]. We train and
evaluate the model using the train and val split respectively, which is consistent with the SCAN [104].

Dataset CIFAR10 CIFAR100-20 STL10

Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means [109] 22.9 8.7 4.9 13.0 8.4 2.8 19.2 12.5 6.1
SC [127] 24.7 10.3 8.5 13.6 9.0 2.2 15.9 9.8 4.8
JULE [120] 27.2 19.2 13.8 13.7 10.3 3.3 27.7 18.2 16.4
DAE [106] 29.7 25.1 16.3 15.1 11.1 4.6 30.2 22.4 15.2
AE [7] 31.4 23.4 16.9 16.5 10.0 4.7 30.3 25.0 16.1
GAN [91] 31.5 26.5 17.6 15.1 12.0 4.5 29.8 21.0 13.9
DEC [117] 30.1 25.7 16.1 18.5 13.6 5.0 35.9 27.6 18.6
ADC [49] 32.5 – – 16.0 – – 53.0 – –
DeepCluster [9] 37.4 – – 18.9 – – 33.4 – –
DAC [12] 52.2 40.0 30.1 23.8 18.5 8.8 47.0 36.6 25.6
IIC [61] 61.7 51.1 41.1 25.7 22.5 11.7 59.6 49.6 39.7
Pretext [14] + K-means 65.9± 5.7 59.8± 2.0 50.9± 3.7 39.5± 1.9 40.2± 1.1 23.9± 1.1 65.8± 5.1 60.4± 2.5 50.6± 4.1
SCAN [104] 81.8± 0.3 71.2± 0.4 66.5± 0.4 42.2± 3.0 44.1± 1.0 26.7± 1.3 75.5± 2.0 65.4± 1.2 59.0± 1.6
SCAN [104] + selflabel 87.6± 0.4 78.7± 0.5 75.8± 0.7 45.9± 2.7 46.8± 1.3 30.1± 2.1 76.7 ± 1.9 68.0 ± 1.2 61.6 ± 1.8

Supervised 93.8 86.2 87.0 80.0 68.0 63.2 80.6 65.9 63.1
CLC 83.1± 0.6 73.4± 0.7 68.7± 0.6 44.0± 1.2 46.3± 1.1 28.2± 1.0 71.2 ± 1.5 64.3 ± 1.3 55.3 ± 1.5
CLC + selflabel 89.0 ± 0.3 80.6 ± 0.4 78.4 ± 0.5 49.2 ± 0.8 50.4 ± 0.5 34.6 ± 0.6 75.2 ± 0.8 66.8 ± 0.5 59.4 ± 0.6

50) each with a MLP projection head. The dimensionality of zc is determined by the number of

clusters, and the dimensionality of zn is set to 256 on the ImageNet and 128 on the other datasets.

On the smaller datasets, our implementation is based on the Lightly library [95]. The parameters

are trained through the SGD optimizer with a learning rate of 6e-2, a momentum of 0.9, and a

weight decay of 5e-4. The loss term is set to α = 5.0, and two temperature values are set to τ = 0.15

and t = 0.10. We train the models from scratch for 1200 epochs using batches of size 512. For

ImageNet, we adopt the implementation from MoCo v2. To speed up training, we directly initialize

the backbone with the released pretrained weights like SCAN, and only train the MLP head. The

weights are updated through SGD optimizer with a learning rate of 0.03, a momentum of 0.9, and a

weight decay of 1e-4. The three hyperparameters are set to α = 1.0, τ = 0.40 and t = 0.20. We train

the network weights for 400 epochs using a batch size of 256.

Equipartition constraint. Most of the Sinkhorn-Knopp implementation are directly from SwAV

work [10]. The regularization parameter is set to ε = 0.05 and the number of Sinkhorn iterations is

set to 3 for all experiments.

3.6.2 Comparison with state-of-the-art methods

We first evaluate CLC’s clustering performance on three different benchmarks. We report the

results of clustering accuracy (ACC), normalized mutual information (NMI) and adjusted rand index
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Table 3.2: Clustering results for 100 and 200 selected classes from ImageNet validation data. All the
baseline results are from SCAN. Both our method and SCAN are based on MoCo v2’s pretraining,
and for a fair comparison, we follow the same settings as MoCo v2.

ImageNet 100 Classes 200 Classes

Metric Top-1 Top-5 NMI ARI Top-1 Top-5 NMI ARI

K-means 59.7 - 76.1 50.8 52.5 - 75.5 43.2
SCAN 66.2 88.1 78.7 54.4 56.3 80.3 75.7 44.1
CLC 67.0 83.4 79.0 53.9 61.4 80.6 77.6 47.6

(ARI) in Table 3.1. CLC outperforms other clustering methods in two of the benchmarks and is on

par with state-of-the-art performance in another benchmark. Our method further reduces the gap

between clustering and supervised learning on CIFAR-10. On CIFAR100-20, the reason why there is

still a large gap with supervised learning is due to the ambiguity caused by the superclasses (mapping

100 classes to 20 classes). On the STL10 dataset, we train the model on the train+unlabeled split

from scratch due to the small size of the train split. However, the exact number of clusters in the

train+unlabeled split is unknown. We choose the number of clusters equal to 10 for the evaluation

on the test dataset. Nevertheless, our method still achieves competitive clustering results, which

demonstrates that our method is also applicable to datasets with an unknown number of clusters.

Note that the results of other state-of-the-art methods are based on the pretrained representations

from contrastive learning, while our clustering results are obtained by training the model from

scratch in an end-to-end manner. This also confirms that zc efficiently encodes the categorical

information. In Section 3.6.4, we further verify that the presence of zc enables us to learn better

feature representation.

3.6.3 ImageNet clustering

ImageNet - subset. We first test our method on ImageNet subsets of 100 and 200 classes,

which is consistent with SCAN. All compared methods apply the same pre-trained weights from

MoCo v2 [16]. We fix the ResNet-50 (R50) backbone and train the MLP projection head for 400

epochs with the same settings as MoCo v2. Table 3.2 shows that our method can further improve the

clustering accuracy, where the clustering results of K-means and SCAN are from SCAN. For example,

it has achieved a much higher accuracy of 61.4% than SCAN (56.3%) on the subset of 200 classes.

This also implies that CLC is applicable to large-scale datasets with a large number of clusters.
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Table 3.3: Comparison with other clustering methods on the full ImageNet dataset (1000 classes).
We obtain the clustering results on the MoCo V3 pretrained weights by using the code provided by
SCAN (*). All compared methods are based on the ResNet-50 backbone.

Method Backbone ACC NMI ARI

MoCo V2 + SCAN [104] R50 39.9 72.0 27.5
MoCo V3 + SCAN* R50 43.2 70.9 -
MoCo V3 + CLC R50 53.4 76.3 34.7

Figure 3.2: Clustering results of CLC (t = 0.1)
on full ImageNet dataset (1000 classes) up to 200
epochs.

Figure 3.3: Comparison of clustering accuracy at
different temperatures on full ImageNet dataset.

ImageNet - full. We further consider the clustering evaluation on the full ImageNet dataset. We

apply our method to the latest contrastive learning studies, such as MoCo v3 [18], to uncover its

potential in clustering tasks. We load the pretrained R50 backbone from MoCo v3 and only train

two MLP heads for 200 epochs with the same settings as MoCo V3. Table 3.3 compares our method

against SCAN on three metrics. CLC consistently outperforms the baseline method in all metrics. In

particular, it achieves significant performance improvements in terms of accuracy (53.4%) compared

to SCAN (39.9%). Although previous studies [104] find that there may be multiple reasonable

ways to cluster images in ImageNet based on their semantics, without a priori knowledge, it’s still

challenging to cluster images in ImageNet according to their true labels. But CLC still achieves

promising clustering results, which demonstrates the advantages of the proposed method. Figure 3.2

shows the training efficiency of our method, which can converge in a small number of epochs.
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Table 3.4: Image classification with linear classifiers. We report the top-1 accuracy for ImageNet and
Places205, mAP for VOC dataset. All the baseline results are from [70] and [10]. Our results are
obtained by directly applying the evaluation code [58] on the pretrained R50 backbone.

Method Architecture
#pretrain Dataset
epochs ImageNet VOC07 Places205

Supervised R50 - 76.5 87.5 53.2

SimCLR [14] R50-MLP 200 61.9 – –
MoCo v2 [51] R50-MLP 200 67.5 84.0 50.1
PCL v2 [70] R50-MLP 200 67.6 85.4 50.3
CLC R50-MLP 200 68.0 91.8 52.0

3.6.4 Linear evaluation

We follow the same settings as MoCo v2 to enable a reasonable evaluation of the benefits

due to the introduction of zc. We perform the same data augmentation and training strategy to

train the model on ImageNet training data for 200 epochs from scratch. Then, we fix the R50

backbone and train a linear classifier to evaluate the learned feature encoder on three datasets:

ImageNet, VOC07 [35], and Places205 [133]. Table 3.4 shows that the proposed contrastive objective

achieves competitive results on these linear classification tasks. Especially, for the transfer learning

on VOC07 and Places205, it demonstrates that our method achieves better generalizability to the

downstream tasks than other methods. PCL v2 [70] is another method that utilizes clustering to

improve representation learning. Although our main purpose of introducing zc is for clustering, it

can also improve the quality of feature representation. This demonstrates that the expressiveness of

the model is improved by the negative coefficients due to the introduction of zc.

3.6.5 Transfer to Object Detection

We fine-tune the whole network following the experiment settings in detectron2, which are

consistent with the other methods [51, 70]. Table 3.5 and Table 3.6 show that CLC is overall better

than MoCo v2 on COCO and VOC datasets.

3.7 Analysis

The quantitative evaluation in Section 3.6 demonstrates that CLC not only outperforms

other clustering methods on multiple benchmarks, but also improves the representation quality. Here,
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Table 3.5: Transfer learning results to object detection tasks on COCO dataset. The detection model
is fine-tuned on COCO train2017 dataset and evaluated on COCO val2017 dataset. All the baseline
results are from [70].

Method Architecture
#pretrain bbox segm
epochs AP AP50 AP75 AP AP50 AP75

Supervised R50 - 40.0 59.9 43.1 34.7 56.5 36.9

MoCo v2 [51] R50 200 40.7 60.5 44.1 35.4 57.3 37.6
CLC R50 200 40.8 60.6 44.3 35.5 57.3 38.0

Table 3.6: Transfer learning results to object detection tasks on VOC dataset. The detection model
is fine-tuned on VOC07+12 trainval dataset and evaluated on VOC07 test dataset. The baseline
results are from [51].

Method Architecture
#pretrain VOC
epochs AP50 AP AP75

Supervised R50 - 81.3 53.5 58.8

MoCo v2 [51] R50 200 82.4 57.0 63.6
CLC R50 200 82.6 56.8 63.7

we further analyze the proposed objective to understand how it improves learning semantic and

instance-wise information.

3.7.1 Ablation studies

zc plays a crucial role in our method. We perform ablation studies on zc to understand the

importance of each technique. The evaluation results are reported in Table 3.7, where the training is

performed from scratch for 1200 epochs. First, we find that the lack of the equipartition constraint

leads to a degenerate solution for cluster assignment, but has almost no effect on the training of

representation learning. Second, we avoid the use of normalization on zc and consider it as a regular

logit like in classification. Our experiment shows that the loss becomes nan and the training fails, so

the normalized zc enables the corresponding dot product is bounded. Finally, we set the temperature

t to 1.0 (without t) and find that its value has an important impact on the clustering performance,

which is analyzed in detail in Section 3.7.2. We also train the model only using the equipartition

constraint, and find that the model can not achieve optimal clustering results without the weighted

InfoNCE loss. It also indicates that the weighted InfoNCE loss adjusts different weights of negatives

to encourage zc to capture more categorical information.
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Table 3.7: Ablation studies of zc on CIFAR10 including without the equipartition constraint, the
normalization, temperature t (default 1.0) and the InfoNCE loss. We compare the clustering results
and linear evaluation on the pretrained backbone separately.

Settings Clustering (%) Linear evaluation (%)

Without constraint 27.3 86.0
Without norm - -
Without t 71.1 88.0
Without InfoNCE 67.0 86.0
Full setup 83.0 88.8

Table 3.8: The mean and standard deviation of similarity scores for zc and zn / z from a category
perspective. Augmented: samples from the same instance, Same: samples from the same category,
Different: samples from different categories.

Category
MoCo v2 CLC

z zc zn

Augmented 0.781 ± 0.188 0.872 ± 0.154 0.720 ± 0.199
Same 0.062 ± 0.175 0.504 ± 0.237 0.004 ± 0.183
Different -0.006 ± 0.115 -0.033 ± 0.323 -0.001 ± 0.167

3.7.2 Temperature analysis

Our method involves two temperatures: τ and t. Previous work [108] shows that temperature

τ plays an important role in controlling the penalty strength of negative samples. Here, we consider

τ as a constant and focus on the effect of t on the clustering results, as shown in Figure 3.3. Since

t plays a role in the scaling of logits in the calculation of cross-entropy loss, a small t reduces the

difficulty of matching pseudo-assignment, and achieves better clustering results faster. In contrast, a

larger t value leads to the training of zc becoming difficult. It is the presence of t that balances the

degree of difficulty between the instance-level discrimination and cluster assignment tasks. t also

allows zc to be converted into proper softmax probabilities, as verified in the self-labeling experiments

in Section 3.6.2. The results demonstrate that similar clustering results can be achieved for a range

of t, such as 0.1 or 0.2.

3.7.3 Latent space analysis

Table 3.8 shows the statistics of similarity scores (dot product), where MoCo v2 has only z to

compute the contrastive loss, and our method has zc and zn. Both methods satisfy the requirements

of instance-wise contrastive learning well, where positive samples (Augmented) have high similarity
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(a) (b)

Figure 3.4: The t-SNE visualization of z / zn on CIFAR10 test dataset. (a): MoCo v2, (b): CLC
(ours). Colors indicate different categories.

scores of z / zn and negative samples (Same or Different) have low similarity scores of z / zn. In CLC,

since zc encodes the categorical information, the similarity score of zc is also able to distinguish well

between samples from different categories. As analyzed in Section 3.3, it provides a weight adjustment

mechanism for different negative samples so that it can handle negative samples of different hardness

well. In contrast, MoCo sets the weight of all negative samples to 1, which tends to learn larger dot

products for positive samples. The previous study [110] summarizes two key properties of contrastive

loss: alignment and uniformity. In other words, MoCo is more concerned with alignment for the

optimization purpose.

We further analyze the uniformity properties of z / zn of MoCo and CLC using t-SNE [103]

and the results are shown in Figure 3.4. Compared to z learned by MoCo, our method tends to

uniformly distribute points over the latent space without preserving any category-related information.

Although MoCo achieves instance-level differentiation, we can still observe that points of the same

category are clustered together. The main reason is that the typical contrastive loss cannot deal with

the hard negative problem well and samples of the same category aren’t distributed evenly. And

the proposed method enables us to learn a uniformly distributed space due to the mechanism of

self-adjusting negative weights. This also shows that the MLP projection head in our method works

43



well as the role of transforming in two representation spaces. Therefore, we decompose the original z

into two separate parts: zc related to the categorical information, thus focusing on clustering, and

zn related to instance-wise information, thus focusing on alignment and uniformity. Our method

also demonstrates that the MLP projection head plays a role in the transformation from the linearly

separable feature space to the instance-wise representation space.

3.8 Conclusion

This work aims to learn cluster assignments based on contrastive learning in a more efficient

way. The existing state-of-the-art clustering methods usually require two steps where representation

learning and clustering are decoupled, preventing them from achieving superior results on large-scale

datasets. In our work, we decompose the representation into two separate parts: one focuses on

clustering and the other part focuses on contrastive learning. Experiments on multiple benchmarks

demonstrate that our method not only achieves excellent clustering performance, but also improves

contrastive learning. Note that CLC can be combined with over-clustering, vision transformers,

advanced augmentation and training strategies. Due to the limitations of our computational resources,

we will explore these techniques in future work.
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Chapter 4

Clustering by Directly

Disentangling Latent Space

To overcome the high dimensionality of data, learning latent feature representations for

clustering has been widely studied. Recently, ClusterGAN combined GAN with an encoder to learn

a mixture of one-hot discrete and continuous latent variables, and achieved remarkable clustering

performance. However, the performance of ClusterGAN decreases when it is applied to complex data.

In this paper, we analyze the reasons for performance degeneracy in ClusterGAN. We show that

minimizing the cycle-consistency loss of continuous latent variables in ClusterGAN trends to generate

trivial latent features. Moreover, the objective of ClusterGAN doesn’t include a real conditional

distribution term, which makes it difficult to be generalized to real data. Therefore, we propose

Disentangling Latent Space Clustering (DLS-Clustering), a new clustering mechanism that directly

learns cluster assignments from disentangled latent spacing without additional clustering methods.

We enforce the inference network (encoder) and the generator of GAN to form an encoder-generator

pair in addition to the generator-encoder pair. We train the encoder-generator pair using real data,

which can estimate the real conditional distribution. Moreover, the encoder-generator pair competes

with the generator-encoder pair during optimization, which can avoid the triviality of continuous

latent variables. Furthermore, we utilize a weight-sharing procedure to disentangle the one-hot

discrete and the continuous latent variables generated from the encoder. This process enforces the

disentangled latent space to match the independence of GAN inputs. Eventually, the one-hot discrete
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latent variables can be directly expressed as clusters and the continuous latent variables represent

remaining unspecified factors. Experiments on benchmark datasets of different types demonstrate

that our method outperforms existing state-of-the-art methods.

In summary, our contributions in this section are as follows:

(1) We propose a new clustering approach called DLS-Clustering, which can directly obtain

cluster assignments through a weight-sharing procedure to disentangle latent space.

(2) We introduce an MMD-based regularization to enforce the inference network and the

generator of standard GAN to form a encoder-generator pair, which enables the encoder to learn the

real data conditional distribution.

(3) We combine the encoder-generator pair with the generator-encoder pair to form two

cycle-consistencies, which help avoid the triviality on continuous latent variable.

(4) We evaluate DLS-Clustering with different types of benchmark datasets, and achieve

superior clustering performance in most cases.

4.1 Related Work

Latent space clustering. A general method to avoid the curse of dimensionality in

clustering is mapping data samples to in a low-dimensional latent space and performing clustering

on latent space. Several pioneering works propose to utilize an encoding architecture [120, 59, 9, 4]

to learn the low-dimensional representations. To obtain clustering assignments, several additional

clustering algorithms, such as K-means, are performed on the latent space. IMSAT [12] and IIC [61]

combine representation learning and clustering together via information maximizing. Most recent

latent space clustering methods are based on Autoencoder [117, 28, 47, 119, 122], which enables

reconstructing data samples from the low-dimensional representation. For example, Deep Embedded

Clustering (DEC) [117] proposes to pre-train an Autoencoder with the reconstruction objective to

learn low-dimensional embedded representations. Then, it discards the decoder and continues to train

the encoder for the clustering objective through a well-designed regularizer. DCN [119] proposes

a joint dimensionality reduction and K-means clustering approach, in which the low-dimensional

representation is obtained via the Autoencoder. Because the learned latent representations are closely

related to the reconstruction objective, these methods still do not achieve the desired clustering

results. Recently, ClusterGAN [81] integrated GAN with an encoder network for clustering by
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creating a non-smooth latent space. However, its discrete and continuous latent variables are not

completely disentangled. Thus, the one-hot encoded discrete variables cannot effectively represent

clusters.

Disentanglement of latent space. Learning disentangled representation can reveal

the factors of variation in the data [6]. Generally, existing disentangling methods can be mainly

categorized into two different types. The first type of disentanglement involves separating the latent

representations into two [79, 48, 132, 90] or three [41] parts. For example, Mathieu et al. [79]

introduce a conditional VAE with adversarial training to disentangle the latent representations into

label relevant and the remaining unspecified factors. Meanwhile, two-step disentanglement methods

based on Autoencoder [48] or VAE [132] are also proposed. In those two-step methods, the first

step is to extract the label relevant representations by training a classifier. Then, label irrelevant

representations are obtained mainly via the reconstruction loss. All of these methods improve the

disentanglement results by leveraging (partial) label information to minimize the cross-entropy loss.

The second type of disentanglement, such as β-VAE [55], FactorVAE [63] and β-TCVAE [13], learns to

separate each dimension in latent space without supervision. Although most of the disentanglement

learning methods [90, 33, 34] have been proposed based on Autoencoder, especially VAEs [65],

VAEs usually can not achieve high-quality generation in real-world scenarios, which is related to

the training objective [38]. In our method, the proposed method integrates the Autoencoder and

GAN, and separates the latent variables into two parts without any supervision. The discrete

latent variables directly represent clusters, and the other continuous latent variables summarize the

remaining unspecified factors of variation.

4.2 Method

Given a collection i.i.d. samples x = {xi}Ni=1 (e.g., images) drawn from an unknown data

distribution Px, where xi is the i-th data sample and N is the size of the dataset, the standard

GAN [42, 46] consists of two components: the generator Gθ and the discriminator Dψ. Gθ defines

a mapping from the latent space Z to the data space X and Dψ can be considered as a mapping

from the data space X to the probability of one sample being real or not. To achieve unsupervised

conditional generation, we need to introduce an inference network Eφ to obtain the latent variables

given the data sample.
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Figure 4.1: The architecture of DLS-Clustering (G: generator, E: encoder, D: discriminator). The
latent representations are separated into one-hot discrete latent variables zc and other factors of
variation zn. The zc and zn are concatenated and fed into the Gθ for generation and the Eφ maps
the samples (xg and xr) back into latent space. The Dψ is adopted for the adversarial training in
the data space. Note that all generators share the same parameters and all encoders share the same
parameters.

In this section, we first conduct a comprehensive analysis of ClusterGAN [81], and observe

that there is a key loss item missing in the objective. To address this issue, we introduce an

MMD-based regularization to enforce the inference network and the generator of standard GAN

to form a deterministic Autoencoder. Meanwhile, the method enables us to disentangle the latent

space z into the one-hot discrete latent variables zc, and the continuous latent variables zn in an

unsupervised manner. zc naturally represents the categorical cluster information; zn is expected to

contain information of other variations. our goal is to learn a general method to project the data to

the latent space, which is divided into the one-hot discrete latent variables directly related to clusters

and the remaining unspecified continuous latent variables.

4.3 Unsupervised Conditional Generation

ClusterGAN [81] provides a new clustering method using GANs, which utilizes a joint

distribution of discrete and continuous latent variables as the prior of GANs. Although it focuses

on projecting the data to the latent space for clustering, it can be generalized to an unsupervised

conditional generation framework. And the optimization is based on the combination of original
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GAN loss, cycle-consistency loss, and cross-entropy loss.

min
G,E

max
D
LClus(G,D,E) =

Ex∼Px
[q(Dψ(x))] + Ezc∼Pc,zn∼Pn

[q(1−Dψ(Gθ(zc, zn)))]︸ ︷︷ ︸
1○

−λn Ezc∼Pc,zn∼Pn [c(Eφ(Gθ(zc, zn))n, zn)]︸ ︷︷ ︸
2○

−λc Ezc∼Pc,zn∼Pn
[c(Eφ(Gθ(zc, zn))c, zc)]︸ ︷︷ ︸

3○

,

(4.1)

where Px is the real data distribution, Pc is the prior distribution of zc, and Pn is the prior

distribution of zn. c(·, ·) is any measurable cost function, λn and λc are hyperparameters balancing

these losses. For the original GAN [42], the function q is chosen as q(t) = log t, and the Wasserstein

GAN [46] applies q(t) = t. This adversarial density-ratio estimation [100] enforces Qx to match Px,

as shown in term 1○, LGAN. The term 2○ and 3○ are two constraints to the generator Gθ and the

encoder Eφ, which correspond to the cycle-consistency of zn and the cross-entropy loss on zc.

To analyze this clearly, the term 2○ can be written as:

Ln(G,E) = −E(x,zn)∼Qxc [c(Eφ(x)n, zn)]

= Ezc∼Pc,zn∼Pn
[||Eφ(Gθ(zc, zn))− zn||].

(4.2)

Thus, this loss term attempts to keep the cycle-consistency of zn during optimization. After adding

the recovery of zn, the information from zn can be utilized for generation to a certain extent. However,

since the dimension of x is much larger than the dimensions of zc and zn, this constraint may become

trivial for the generator-encoder (G-E) pair, and result in the generation of low-diversity samples.

The term 3○ is the cross-entropy loss on zc:

LCE(G,E) = −E(x,zc)∼Qxc [log(QE(zc|x))], (4.3)

where QE(zc|x) is used to denote the conditional distribution induced by Eφ. Qzc|x is the conditional

distribution specified by the generator G. Therefore, minimizing loss term LCE(G,E) is equivalent

to minimizing the KL divergence between Qzc|x and QEzc|x. However, ClusterGAN ignores the real

data conditional distributions Pzc|x in the objective, which usually requires real category information
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to estimate. Even when the marginal distributions Px and Qx match perfectly through the term

1○, ClusterGAN still can not guarantee that two conditional distributions Pzc|x and QEzc|x are

well matched. Only minimizing LCE(G,E) makes G tend to generate data that are far from the

decision boundaries of Eφ. In other words, the generated images for each category may be easily

distinguishable by Eφ, but have low intra-class diversity. It is thus essential to incorporate Pzc|x in

the objective function.

4.4 The Encoder-Generator Pair

Our above analysis of ClusterGAN reveals that simply adding an encoder cannot effectively

achieve conditional generation, which has two main problems: trivial continuous latent variables

recovery and missing real conditional distribution term, Pzc|x. Therefore, we present to enforce E

and G to form an Autoencoder (E-G pair) by introducing a distance-based regularizer. The real

conditional distribution Pzc|x can also be estimated properly in an unsupervised manner. We define

the following objective:

min
G,E
LE-G(G,E) =

EQφ(zn,zc|x) [logPθ(x|zn, zc)] + λ · Dz (Qz, Pz) ,

(4.4)

where λ > 0 is a hyperparameter, Dz is an arbitrary divergence between Qz and Pz, which encourages

the encoded distribution Qz to match the prior Pz. Because the latent variables z = (zc, zn), and the

prior distribution Pz(zc, zn) = Pc(zc)Pn(zn), these constraints can be added by simply penalizing

the discrete variables part and the continuous variables part separately.

The constraint of continuous variables zn can be considered to apply similar regularizations

in the generative Autoencoder model like AAE [77] and WAE [98]. The former uses the GAN-based

density-ratio trick to estimate the KL-divergence of distributions [100], and the latter minimizes the

distance between distributions based on Maximum Mean Discrepancy (MMD) [43, 71]. We choose

adversarial density-ratio estimation for modeling the data space because it can handle complex

distributions. MMD-based regularizer is stable for optimization and works well with multivariate

normal distributions [100]. Therefore, we choose MMD to quantify the distance between the prior

distribution Pn(zn) and the posterior distribution Qn(zn|x). Compared with WAE, we only penalize
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the continuous latent variables zn, not the whole latent variable. The regularizer Dz based on MMD

is expressed as:

LMMD(E) =
1

N(N − 1)

∑
` 6=j

k
(
z`n, z

j
n

)
+

1

N(N − 1)

∑
` 6=j

k
(
ẑ`n, ẑ

j
n

)
− 2

N2

∑
`,j

k
(
z`n, ẑ

j
n

)
,

(4.5)

where k(·, ·) can be any positive definite kernel, {z1n, . . . , zNn } are sampled from the prior

distribution Pn(zn), ẑin is sampled from the posterior distribution Qn(zn|x) and xi is sampled from

the real data samples for i = 1, 2, . . . , N .

The constraint of zc can’t be applied explicitly without labels. Instead, we use a mean

absolute error (MAE) criterion to estimate the encoding distribution Qφ(z|x) and the decoding

distribution Pθ(x|z), which are taken to be deterministic and can be replaced by Eφ and Gθ,

respectively.

LAE(E,G) = Ex∼Px
[|x−Gθ(Eφ(x))|]. (4.6)

4.5 Disentangling Latent Space for Clustering

In addition to the encoder-generator pair, it also necessary to emphasize the generator-

encoder pair for the disentanglement between discrete and continuous latent variables, as shown in

Figure 4.1. Most of the existing methods [48, 132, 90] leverage labels to achieve the disentanglement

of various factors. This work attempts to encourage independence between Qn(zn|x) and Qc(zc|x)

as much as possible without labels.

We sample the latent variables z = (zc, zn) from the discrete-continuous prior, through the

generator-encoder pair, it should output the identical discrete and continuous latent variables (ẑc, ẑn).

It enforces the generator to take advantage of extra information from zc. Besides, the recovery of

latent variables ensure that outputs of the encoder Eφ are conditionally independent. When Eφ maps

the real data sample x to latent representations zrc and zrn, which are expected to be conditionally

independent. The cross-entropy loss (Eq. 4.3) between zc and ẑc can ensure that the latent variables

ẑc only contain class-related information. Besides, to ensure that the latent variables ẑc or ẑrc don’t

contain any class-related information, it is necessary to apply additional regularizers to penalize ẑn

and ẑrn, which are related to the loss Ln and LMMD.
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The objective function of our approach is integrated into the following form:

L = LGAN + LAE + β1LMMD + β2Ln + β3LCE. (4.7)

where the regularization coefficients β1 to β3 ≥ 0, balancing the weights of different loss

terms. Each term of Eq. 4.7 plays a different role for three components: generator Gθ, discriminator

Dψ, and encoder Eφ. Both LGAN and LAE are related to Gθ and Eφ, which constrain the whole

latent variables. The LGAN term is also related to Dψ, which focuses on distinguishing the true

data samples from the fake samples generated by Gθ. LMMD and Ln are related to continuous

latent variables, and LCE and Lc are related to discrete latent variables. All these loss terms are

used to ensure that our algorithm disentangles the latent space generated from encoder into cluster

information and remaining unspecified factors. The training procedure of DLS-Clustering applies

jointly updating the parameters of Gθ, Dψ and Eφ, as described in 2. We empirically set β1 = β2 to

enable a reasonable adjustment of the relative importance of continuous and discrete parts.

Algorithm 2: The training procedure of DLS-Clustering.

Input: θ, ψ, φ initial parameters of Gθ, Dψ and Eφ, the dimension of latent code dn,
the number of clusters K, the batch size B, the number of critic iterations per
end-to-end iteration M, the regularization parameters β1 - β4

Output: The parameters of Gθ, Dψ and Eφ
Data: Training data set x

1 while not converged do
2 for i=1, . . . , M do
3 Sample zn ∼ P (zn) a batch of random noise
4 Sample zc a batch of random one-hot vectors
5 z← (zc, zn)
6 xg ← Gθ(z)
7 Sample xr ∼ Px a batch of the training dataset
8 ψ ← ∇ψ(Dψ(xr)−Dψ(xg))

9 Sample zn ∼ P (zn) a batch of random noise
10 Sample zc a batch of random one-hot vectors
11 z← (zc, zn)
12 xg ← Gθ(z)
13 (ẑc, ẑn)← Eφ(xg), (zrc , z

r
n)← Eφ(xr)

14 z′ ← (zc, z
r
n) , zr ← (zrc , z

r
n)

15 x′g ← Gθ(z
′) , x̂r ← Gθ(z

r)

16 (ẑ′c, ẑ
r
n)← Eφ(x′g)

17 θ ← ∇θ(−Dψ(Gθ(z)) + ||xr − x̂r||22 + β1 MMD(zrn, zn) + β2||zrn − ẑrn||22 +
β3H(zc, ẑc)) + β4H(zc, ẑ

′
c))

18 φ← ∇φ(||xr− x̂r||22 +β1 MMD(zrn, zn) +β2||zrn− ẑrn||22 +β3H(zc, ẑc)) +β4H(zc, ẑ
′
c))
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Table 4.1: The dimensions of zc and zn in DLS-Clustering for different datasets. Note that the
dimension of one-hot discrete latent variables zc is equal to the number of clusters.

Dataset MNIST Fashion-10 YTF Pendigits 10x 73k COIL-100

zc 10 10 41 10 8 100
zn 25 40 60 5 30 100

4.6 Experiments

In this section, we perform a variety of experiments to evaluate the effectiveness of our

proposed method, including clusters assignment via zc and visualization studies of zn. We also

conduct ablation experiments to understand the contribution of various loss terms.

4.6.1 Data sets

The clustering experiments are carried out on six datasets: MNIST [68], Fashion-MNIST [116],

YouTube-Face (YTF) [114], Pendigits [2], 10x 73k [131], and COIL-100 [83]. Both of the first two

datasets contain 70k images with 10 categories, and each sample is a 28× 28 grayscale image. YTF

contains 10k face images of size 55× 55, belonging to 41 categories. The Pendigits dataset contains

a time series of (x, y) coordinates of hand-written digits. It has 10 categories and contains 10992

samples, and each sample is represented as a 16-dimensional vector. The 10x 73k dataset contains

73233 data samples of single-cell RNA-seq counts of 8 cell types, and the dimension of each sample is

720. The multi-view object image dataset COIL-100 has 100 clusters and contains 7200 images of

size 128× 128.

4.6.2 Implementation

We implement different neural network structures for Gθ, Dψ, and Eφ to handle different

types of data. For the image datasets (MNIST, Fashion-MNIST, and YTF), we employ the similar

Gθ and Dψ of DCGAN [91] with conv-deconv layers, batch normalization and leaky ReLU activations

with a slope of 0.2. The Eφ uses the same architecture as Dψ except for the last layer. For the

Pendigits and 10x 73k datasets, the Gθ, Dψ, and Eφ are the MLP with 2 hidden layers of 256 hidden

units each. Table 4.2 summarizes the network structures of different datasets. The model parameters

have been initialized following the random normal distribution. For the prior distribution of our

method, we randomly generate the discrete latent code zc, which is equal to one of the elementary
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one-hot encoded vectors in RK , then we sample the continuous latent code from zn ∼ N (0, σ2Idn),

here σ = 0.10. The sampled latent code z = (zc, zn) is used as the input of Gθ to generate samples.

The dimensions of zc and zn are shown in Table 4.1. We implement the MMD loss with RBF

kernel [98] to penalize the posterior distribution Qφ(zn|x). The improved GAN variant with a

gradient penalty [46] is used in all experiments. To obtain the cluster assignment, we directly use the

argmax over all softmax probabilities for different clusters. The following regularization parameters

work well during all experiments: λ = 10, β1 = β2 = 1, β3 = β4 = 10. We implement the models in

Python using the TensorFlow library and train them on one NVIDIA DGX-1 station.

Table 4.2: The structure summary of the generator (G), discriminator (D), and encoder (E) in
DLS-Clustering for different datasets.

Dataset Layer Type G-1/D-4/E-4 G-2/D-3/E-3 G-3/D-2/E-2 G-4/D-1/E-1
MNIST Conv-Deconv 4× 4× 64 4× 4× 128 - -
Fashion-10 Conv-Deconv 4× 4× 64 4× 4× 128 - -
YTF Conv-Deconv 5× 5× 32 5× 5× 64 5× 5× 128 5× 5× 256
Pendigits MLP 256 256 - -
10x 73k MLP 256 256 - -

4.6.3 Evaluation of Disentanglement

We further explore the disentanglement capability of DLS-Clustering on dSprites dataset. We

follow the same experimental settings and hyperparameters tuning as FactorVAE [63], InfoGAN [15]

and InfoGAN-CR [72] for fair comparisons. We provide the experimental details in Appendix, and

focus on explaining the results in this section. As shown in Table 4.3, our method also achieves excellent

disentanglement performance. Compared with InfoGAN-CR, we implement the proposed double-cycle

consistency to replace the contrastive regularizer (CR) based on the InfoGAN architecture, which

has two latent variables. These consistencies force the generator to generate different samples while

fixing one latent variable and changing another latent variable. This is beneficial for disentanglement,

as it simulates the latent traversal experiments and encourages distinct changes in generated samples.

In addition, ModelCentrality is proposed by [72] for unsupervised model selection to evaluate the

trained models on an unlabelled dataset. It’s naturally suitable for our unsupervised conditional

generation settings.
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Table 4.3: Comparison results based on different disentanglement metrics on the dSprites dataset.The
score 1.0 denotes a perfect disentanglement. All the baseline results are from [72]. The proposed
DLS-Clustering achieves desirable scores in most cases. The implementation of DLS-Clustering is
based on the source code of InfoGAN-CR, and MC (ModelCentrality) denotes an unsupervised model
selection scheme [72].

Model FactorVAE DCI Modularity MIG BetaVAE
VAE 0.63 ± 0.06 0.30 ± 0.10 - 0.10 -
β-TCVAE 0.62 ± 0.07 0.29 ± 0.10 - 0.45 -
HFVAE 0.63 ± 0.08 0.39 ± 0.16 - - -
β-VAE 0.63 ± 0.10 0.41 ± 0.11 - 0.21 -
FactorVAE 0.82 - - 0.15 -
FactorVAE (1.0) 0.79 ± 0.01 0.67 ± 0.03 0.79 ± 0.01 0.27 ± 0.03 0.79 ± 0.02
FactorVAE (10.0) 0.83 ± 0.01 0.70 ± 0.02 0.79 ± 0.0 0.40 ± 0.01 0.83 ± 0.0
FactorVAE (40.0) 0.82 ± 0.01 0.74 ± 0.01 0.77 ± 0.01 0.43 ± 0.01 0.84 ± 0.01
FactorVAE + MC 0.84 ± 0.0 0.73 ± 0.01 0.82 ± 0.0 0.37 ± 0.0 0.86 ± 0.0
IB-GAN 0.80 ± 0.07 0.67 ± 0.07 - - -
InfoGAN 0.82 ± 0.01 0.60 ± 0.02 0.94 ± 0.01 0.22 ± 0.01 0.87 ± 0.01
InfoGAN-CR + MC 0.92 ± 0.0 0.77 ± 0.0 0.99 ± 0.0 0.45 ± 0.0 0.99 ± 0.0
Ours + MC 0.936 ± 0.0 0.790 ± 0.0 0.985 ± 0.0 0.378 ± 0.0 0.998 ± 0.0

4.6.4 Evaluation of DLS-Clustering algorithm

To evaluate clustering results, we report two standard evaluation metrics: Clustering Purity

(ACC) and Normalized Mutual Information (NMI). We compare DLS-Clustering with four clustering

baselines: K-means [76], Non-negative Matrix Factorization (NMF) [69]. We also compare our method

with the state-of-the-art clustering approaches based on GAN and Autoencoder, respectively. For

GAN-based approaches, ClusterGAN [81] is chosen as it achieves the superior clustering performance

compared to other GAN models (e.g., InfoGAN). For Autoencoder-based methods such as DEC [117],

DCN [119] and DEPICT [37], Dual Autoencoder Network (DualAE) [122] are used for comparison. In

addition, the deep spectral clustering (SpectralNet) [93] and joint unsupervised learning (JULE) [120]

are also included in the comparison.

Table 4.4 reports the best clustering metrics of different models from 5 runs. Our method

achieves significant performance improvement on Fashion-10, YTF, Pendigits, and 10x 73k datasets

than other methods. Particularly, while all other methods perform worse than K-means on the

16-dimensional Pendigit dataset, our method significantly outperforms K-means in both ACC (0.847

vs. 0.793) and NMI (0.803 vs. 0.730). DLS-Clustering achieves the best ACC result on YTF dataset

while maintaining comparable NMI value. For MNIST dataset, DLS-Clustering achieves close to

the best performance on both ACC and NMI metrics. To further evaluate the performance of

DLS-Clustering on large numbers of clusters, we compare our clustering method with K-means on

55



Table 4.4: Comparison of clustering algorithms on five benchmark datasets. The results marked by
(*) are from existing sklearn.cluster.KMeans package. The dash marks (-) mean that the source code
is not available or that running released code is not practical, all other results are from [81] and [122].
SpecNet and ClusGAN mean SpectralNet and ClusterGAN.

Method
MNIST Fashion-10 YTF Pendigits 10x 73k

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

K-means 0.532 0.500 0.474 0.512 0.601 0.776 0.793∗ 0.730∗ 0.623∗ 0.577∗

NMF 0.560 0.450 0.500 0.510 - - 0.670 0.580 0.710 0.690
DEC 0.863 0.834 0.518 0.546 0.371 0.446 - - - -
DCN 0.830 0.810 - - - - 0.720 0.690 - -
JULE 0.964 0.913 0.563 0.608 0.684 0.848 - - - -
DEPICT 0.965 0.917 0.392 0.392 0.621 0.802 - - - -
SpecNet 0.800 0.814 - - 0.685 0.798 - - - -
InfoGAN 0.890 0.860 0.610 0.590 - - 0.720 0.730 0.620 0.580
ClusGAN 0.950 0.890 0.630 0.640 - - 0.770 0.730 0.810 0.730
DualAE 0.978 0.941 0.662 0.645 0.691 0.857 - - - -
Ours 0.975 0.936 0.693 0.669 0.721 0.790 0.847 0.803 0.905 0.820

Coil-100 dataset using three standard evaluation metrics: ACC, NMI, and Adjusted Rand Index

(ARI). As shown in Table 4.7, DLS-Clustering achieves better performance on all three metrics.

4.6.5 Evaluation of Generation Quality

Table 4.5: Comparison of FID score to reveal the quality of generated samples from GAN methods
(Lower is better).

Method Ours ClusterGAN WGAN InfoGAN
MNIST 0.15 0.81 0.88 1.88
Fashion 0.67 0.91 0.95 11.04

Table 4.6: Comparison of mean SSIM scores of 200 pairs to reveal the diversity of generated samples
from GAN methods (Lower is better).

Class 0 1 2 3 4 5 6 7 8 9
ClusterGAN 0.362 0.599 0.263 0.314 0.315 0.282 0.351 0.388 0.340 0.427

Ours 0.343 0.576 0.231 0.316 0.312 0.259 0.322 0.392 0.336 0.377

To demonstrate the quality and diversity of generated samples from DLS-Clustering, we

first calculate the Frechet Inception Distance (FID) [54] score of generated samples, as shown in

Table 4.5. The FID scores on MINST and Fashion are significantly lower than those of ClusterGAN.

Our method shows that the estimation of real conditional distribution can improve the quality of
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generated samples. Then we randomly sample 200 pairs of generated images from one category

to calculate structural similarity (SSIM) [113, 112] for diversity evaluation on MNIST data. This

evaluation method for diversity has also been used in AC-GAN [87]. The SSIM scores range between

0.0 and 1.0, and lower mean scores indicate that samples from the same class are less similar. As

shown in Table 4.6, our method achieves lower SSIM scores on most classes, which demonstrates

that it can enhance the diversity of generation. The diversity of generated images indicates that

there exist different latent variables for generative factors, except the cluster information. To further

understand these generative factors, we change the value of one single dimension from [−0.5, 0.5] in

zn while fixing other dimensions and the discrete latent variables zc. As shown in Figure 4.2, the

value changing leads to semantic changes in generated samples. The changed dimensions represent

the tilt, style, and width factors of digits, which shows the potential to disentangle the latent space.

4.6.6 Evaluation on More Images

We also use the t-SNE [75] algorithm to visualize zn of MNIST datasets and compare them

to ClusterGAN and the original data. As shown in Figure 4.3, we can observe different categories in

the original data. In ClusterGAN, there are still several distinguishable clusters. In contrast, our

method can make these points more cluttered in latent space, which doesn’t contain obvious category

information in the zn. Therefore, our method demonstrates another excellent capability: all these

informative continuous factors are independent of cluster information.

Table 4.7: The clustering results on the Coil-100 dataset, which has a large number of clusters
(K=100).

Method ACC NMI ARI
K-means 0.668 0.836 0.574
ClusterGAN 0.615 0.797 0.487
Our method 0.822 0.911 0.764

We first evaluate the scalability of DLS-Clustering to large numbers of clusters on the

COIL-100 dataset(100 clusters). Here, we compare our clustering method with K-means on three

standard evaluation metrics: ACC, NMI and Adjusted Rand Index (ARI). As shown in Table 4.7,

DLS-Clustering achieves better performance on all three metrics. DLS-Clustering even gains an

increase of 0.154 on ACC metric. We also perform image generation task on Coil-100 dataset, to

further verify the generative performance, which involves mapping latent variables to the data space.
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Figure 4.2: Samples generated on fixed discrete latent codes from the models trained on MNIST.
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a(1) a(2) a(3)

b(1) b(2) b(3)

Figure 4.3: The t-SNE visualization of raw data (a), zn of ClusterGAN (b) and DLS-Clustering (c)
on MNIST dataset. The bulk of samples in the right part of a(3) is a small group of “1” images.
The reason that they are not well mixed may be due to their low complexity.

Figure 4.4 shows the generated samples by fixing one-hot discrete latent variables, which are diverse

and realistic. The continuous latent variables represent meaningful factors such as the pose, location

and orientation information of objects. Therefore, the disentanglement of latent space not only

provides the superior clustering performance, but also retains the remarkable ability of diverse and

high-quality image generation.

Besides, we further evaluate the proposed method on more complex dataset: CIFAR-10.

The implementation is based on Google compare-gan framework 1. The spectral normalization is

used on both generator and discriminator. We use the same class-conditional BatchNorm in the

generator as Lucic et al. [74], to incorporate the category information from zn. For the encoder, we

use the pre-trained SimCLR [14] model to improving training efficiency, and apply 2-layer MLP as

project head to map the learned representations to zn and zc. The self-supervised SimCLR model is

pre-trained by following the official implementation 2. Table 4.8 shows that DLS-Clustering achieves

close to the best clustering performance on ACC. Because our method learns cluster memberships

from conditional generation without labels, it’s also necessary to evaluate the generation results of

1https://github.com/google/compare_gan
2https://github.com/google-research/simclr
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Figure 4.4: The samples generated on fixed discrete latent variables from the models trained on
Coil-100 dataset. Each column corresponds to a specific cluster.

images. As shown in Table 4.9, our method also maintains the quality of image generation, which

enables to achieve the superior clustering results.

4.6.7 Ablative Analysis

We perform the ablative analysis of our losses (Table 4.10). The LAE and LMMD are critical

in our model. The inference network and the generator form a deterministic encoder-decoder pair.

To minimize the reconstruction loss LAE, the generator Gθ needs to learn to generate realistic and

diverse data samples. It also indirectly forces the zrc to contain only the category information.

LMMD enforces the posterior distribution Qφ(zn|x) to be close to the prior distribution P (zn). The

clustering performance gain is also from the loss terms LCE and Ln.
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Table 4.8: CIFAR-10 images clustering results. All baseline results are from [61]. The value marked
by (*) is the best (mean) results in [61], and they also report that avg. ± STD is 0.576 ± 0.050.

Method ACC NMI
K-means 0.229 0.087
DCGAN (2015) [91] 0.315 0.265
JULE (2016) [120] 0.272 0.192
DEC (2016) [117] 0.301 0.257
DAC (2017) [12] 0.522 0.396
DeepCluster (2018) [9] 0.374 -
ADC (2018) [49] 0.325 -
IIC (2019) [61] 0.617 (0.576)∗ 0.513
GATCluster(2020) [84] 0.610 0.475
Ours 0.605 0.484

Table 4.9: FID results on the CIFAR-10 dataset (smaller is better). The results marked by (*) are
from [78].

Method FID Score
DCGANs [91] 29.7∗

WGAN-GP (2017) [46] 29.3
SN-SMMDGAN (2018) [3] 25.0
MSGAN (2019) [78] 28.7∗

Ours 28.5 ± 0.02

4.7 Conclusion

In this work, we present DLS-Clustering, a new clustering method that directly obtains the

cluster assignments by disentangling the latent space. Unlike most existing latent space clustering

algorithms, our method does not build ‘clustering-friendly’ latent space explicitly and does not need

extra clustering operation. Therefore, our method avoids the difficulty of integrating latent feature

construction and clustering. Furthermore, our method does not disentangle class relevant features

from class non-relevant features. The disentanglement in our method is targeted to extract “cluster

information” from data. Although our method does not depend on any explicit distance calculation

in the latent space, the distance between data may be implicitly defined by the neural networks.

Table 4.10: Ablations on MNIST dataset. Each row shows the removal of a loss term. The full
setting includes all loss terms.

Ablative analysis ACC NMI
No LCE 0.899 0.863
No Ln 0.868 0.851
No LMMD 0.812 0.829
No LAE 0.672 0.488
Full setting 0.976 0.941
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The two cycle-consistencies (x→ (zc, zn)→ x, (zc, zn) → x→ (zc, zn) ) in DLS-Clustering

can help avoid the triviality of zn, and then avoid the generation of low diversity images in some

degree. We have used the real images to train the encoder-generation pair (x→ (zc, zn)→ x), which

can help the encoder to estimate the real conditional distribution. However, due to the unsupervised

fashion of clustering, the conditional distribution Q(zc|x) specified by the generator of GAN may

not match well with the true conditional distribution P (zc|x) in real data, which is the case in both

ClusterGAN and our DLS-Clustering. This may be another reason for the low diversity conditional

generation [40]. Improving GAN to create more diverse images is an important task for future work.
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Chapter 5

Future Work and Conclusion

5.1 Future Work

Despite the great success of unsupervised contrastive learning in representation learning, it

still suffers from some limitations due to the unsupervised setting. We identify two possible future

improvements to obtain better feature representation via (1) mitigating sampling bias problems, and

(2) more powerful learning frameworks.

5.1.1 Mitigating sampling bias problems

Most typical contrastive learning methods have a common weakness: negative samples

are drawn randomly from the training data, which leads to the sampling bias problem [21]. In

other words, many negative samples from the same category are undesirably pushed apart in the

representation space. Recent works [62, 60] extend the contrastive loss to a fully-supervised setting

to utilize the label information. The supervised contrastive loss considers all samples from the

same class as positives against the negatives from different classes of the batch. However, high-

quality labels are expensive. Instead, Cl-InfoNCE [99] proposes the weakly-supervised contrastive

representation by using additional auxiliary information for data, such as hashtags in Instagram

images. The auxiliary information can be used to extract noisy labels for supervised contrastive

learning. Although supervised contrastive learning addresses the sampling bias problem and can

obtain better feature representation, the definition of positive samples becomes different, as the
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supervised contrastive loss distinguishes positive and negative samples according to whether they

belong to the same class. Thus it ignores instance-wise discrimination, which is helpful to learn

semantic or structural information. It is necessary to propose new instance-wise discrimination

methods under the fully-supervised setting.

Even without labels or additional information, it’s still promising to use the pretrained

contrastive representation to obtain clusters and iteratively learn better representations. For example,

PCL [70] utilizes the centroids of clusters in the momentum training framework for contrastive

learning. The usage of cluster information is not efficient in PCL due to the following two reasons.

First, PCL requires clustering the samples with different numbers of clusters multiple times, thus

leading to different clusters being noisy and variable. Second, PCL performs clustering on the

features from the momentum encoder, the centroids are fixed during minibatch updates, and can

not contribute to the gradients as well as the other samples. In addition to using the momentum

encoder, it’s also possible to use the existing contrastive model as the teacher network to guide the

student network learning from scratch. Unlike typical KD, the teacher’s knowledge is extracted as

the cluster information to help the student to pull samples closer to their centroids while pushing

them away from the centroids of other classes.

5.1.2 Better Learning Framework

The current progress of representation learning relies heavily on advances in contrastive

learning, and its key component is to generate different representations from the same input via

data augmentation. Recently, MAE [50] proposes to use masked autoencoders instead of contrastive

learning to learn representation and demonstrate excellent performance. This work also suggests that

masked autoencoding can work well for vision and language. The usage of autoencoding is to ensure

an approximate one-to-one mapping between the input and feature representations. This prevents

the learned representation from collapsing to a single point, while similar functionality is achieved

in the contrastive learning by negative samples. Although we also consider autoencoding in this

dissertation, our main purpose is to introduce a new type of clustering algorithm that directly obtains

the cluster information during the disentanglement of latent space. It’s possible to add clustering

tasks in the MAE-like learning framework to improve both representation learning and clustering

results. In addition, MAE unifies the representation learning of vision and language, making it

possible to learn the presentation of images and text simultaneously. We note that MAE achieves

64



similar linear classification results as contrastive learning on ImageNet, but outperforms all existing

methods when finetuned on ImageNet. This indicates that the class information is helpful to improve

the quality of representation, given a sufficient number of labels. Therefore, another future research

direction is to propose a framework for simultaneous clustering and representation learning.

5.2 Conclusion

Unsupervised contrastive learning has emerged as an important representation learning

method by pulling positive samples closer and pushing negative samples apart. Once the low-

dimensional representations are learned, K-means clustering or an additional component training are

usually performed to obtain cluster assignment, which forms the widely used two-stage framework.

In this dissertation, we have shown that several solutions can be explored to improve

clustering and representation learning. First, to improve feature representations on small models, we

employ knowledge distillation which provides a promising solution by transferring knowledge from

high-capacity teachers. We introduce the Dual-level Knowledge Distillation (DLKD) by explicitly

combining knowledge alignment and correlation together instead of using one single contrastive

objective. The proposed DLKD is task-agnostic and model-agnostic, and enables effective knowledge

transfer from supervised or self-supervised pretrained teachers to students. Second, to improve

the clustering performance, we propose Contrastive Learning based Clustering (CLC), which uses

contrastive learning to directly learn cluster assignment. We decompose the representation into two

parts: one encodes the categorical information under an equipartition constraint, and the other

captures the instance-wise factors. We theoretically analyze the proposed contrastive loss and

reveal that CLC sets different weights for the negative samples while learning cluster assignments.

Experimental evaluation shows that CLC achieves overall state-of-the-art or highly competitive

clustering performance on multiple benchmark datasets. In particular, we achieve 53.4% accuracy on

the full ImageNet dataset and outperform existing methods by large margins (+ 10.2%). Furthermore,

we also propose to achieve clustering via unsupervised conditional generation, which directly learns

cluster assignments from disentangled latent space without additional clustering methods. The

proposed method enforces the encoder and the generator of GAN to form an encoder-generator pair

in addition to the generator-encoder pair. Experiments show that our method outperforms existing

generative model-based clustering methods on multiple datasets.
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Appendix A CLC and Instance-wise Contrastive Learning

Given the similarity si,j , it can be written as: si,j = zi ·zj = zci ·zcj +zni ·znj . Let sci,j = zci ·zcj ,

sni,j = zni · znj , then si,j = sci,j + sni,j and exp(si,j/τ) = exp(sci,j/τ) · exp(sni,j/τ). We can re-write the

standard contrastive loss as follows:

LInfoNCE (xi) = − log

[
exp (si,i/τ)∑

k 6=i exp (si,k/τ) + exp (si,i/τ)

]
(1)

= − log

[
exp(sci,i/τ) · exp(sni,i/τ)∑

k 6=i(exp(sci,k/τ) · exp(sni,k/τ)) + exp(sci,i/τ) · exp(sni,i/τ)

]
(2)

= − log

[
exp(sni,i/τ)∑

k 6=i(exp(sci,k/τ) · exp(sni,k/τ)) · exp(−sci,i/τ) + exp(sni,i/τ)

]
(3)

= − log

[
exp(sni,i/τ)∑

k 6=i(exp((sci,k − sci,i)/τ) · exp(sni,k/τ)) + exp(sni,i/τ)

]
. (4)

Since sci,j and sni,j are symmetric in equation 2, the standard contrastive loss can also be

written as:

LInfoNCE (xi) = − log

[
exp (si,i/τ)∑

k 6=i exp (si,k/τ) + exp (si,i/τ)

]
(5)

= − log

[
exp(sci,i/τ)∑

k 6=i(exp((sni,k − sni,i)/τ) · exp(sci,k/τ)) + exp(sci,i/τ)

]
. (6)

Then we observe that the coefficient exp((sni,k − sni,i)/τ) can be considered as a constant

because zn satisfies the properties of alignment and uniformity, as analyzed in Section 3.7.3. Thus,

equation 6 can be considered as a standard contrastive loss on zc. As shown in Figure 3.4 (a), zc

can retain well the categorical information, which is beneficial for learning cluster assignment via

contrastive learning.

A.1 Sinkhorn-Knopp algorithm

We provide the PyTorch-like pseudo-code for Sinkhorn-Knopp algorithm, which is used in

our all experiments.
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Algorithm 3: PyTorch-like Pseudo-code for Sinkhorn-Knopp.

# eps: weight for the entropy regularization term. Defaults to 0.05.
# niters: number of times to perform row and column normalization. Defaults to 3.
# K: dimension of zc (number of clusters)
# B: batch size

def sinkhorn-knopp(logits, eps=0.05, niters=3):
Q = exp(logits / eps).T
K, B = Q.shape
# make the matrix sums to 1
Q /= sum(Q)

for _ in range(niters):
# normalize each row: total weight per prototype must be 1/K
sum_of_rows = sum(Q, dim=1, keepdim=True)
Q /= sum_of_rows
Q /= K
# normalize each column: total weight per sample must be 1/B
Q /= sum(Q, dim=0, keepdim=True)
Q /= B

Q *= B # the colomns must sum to 1 so that Q is an assignment
return Q.T

A.2 Implementation details on smaller datasets

Most of the implementation on smaller datasets (CIFAR10, CIFAR100-20 and STL10) is

directly taken from the tutorial of MoCo on CIFAR101. We apply the ResNet-18 as the backbone

and a two-layer MLP as the projection head (512-D hidden layer and ReLU) to obtain a 128-D

feature vector for contrastive learning. We adopt the same data augmentation in SimCLR [14] but

disable the blur like MoCo v2 [16]. For the contrastive learning experiments, we apply the SGD

optimizer with a learning rate of 6e-2, a weight decay of 5e-4 and a momentum of 0.9. The cosine

scheduler is used to schedule the learning rate. We train the parameters from scratch for 1200 epochs

using the batch size of 512. For the linear classification in the ablation studies, we train the linear

classifier via the SGD optimizer with a learning rate of 30 and the cosine scheduler for 100 epochs.

A.3 Implementation details on ImageNet subsets

Most of the implementation on ImageNet subsets (100 classes and 200 classes) is directly

taken from MoCo v2 repo2. We apply the ResNet-50 as the backbone and a two-layer MLP as the

projection head (2048-D hidden layer and ReLU) to obtain a 256-D feature vector for contrastive

learning. We follow the same data augmentation settings in MoCo v2. To speed up training, we

directly initialize the backbone with the released weights (800 epochs pretrained), and only train the

MLP projection head for 400 epochs using the batch size of 256. The weights are updated through

an SGD optimizer with a learning rate of 0.03, a momentum of 0.9, and a weight decay of 1e-4.

1https://github.com/lightly-ai/lightly
2https://github.com/facebookresearch/moco
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Although there are advanced data augmentation and training strategies, we adopt the same settings

in MoCo v2 for a fair comparison.

A.4 Implementation details on full ImageNet

Most of the implementation on full ImageNet is directly taken from MoCo v3 repo3. We

choose the ResNet-50 as the backbone and two 2-layer MLPs (4096-D hidden layer and ReLU) for

the projection head and the prediction head following BYOL [44]. We obtain a 256-D feature vector

for contrastive learning. The proposed contrastive loss is scaled by a constant 2τ , to make the

training less sensitive to the choice of τ . The data augmentation is the same as BYOL. We freeze the

backbone and initialize it using the released weights (1000 epochs). We only train two MLP heads

for 200 epochs using a batch size of 2048. We use the LARS optimizer with a learning rate of 0.3, a

weight decay of 1e-6 and a momentum of 0.9.

A.5 Implementation details of linear classification

We apply the same settings as MoCo v2 and train the model from scratch for 200 epochs on

full ImageNet using the proposed contrastive loss. We apply the pretrained ResNet-50 backbone as a

feature encoder and evaluate it for linear classification on ImageNet, VOC and Places205 datasets.

The implementation code is directly taken from 4. We continue to evaluate the pretrained ResNet-50

backbone on object detection tasks in the following Section.

3https://github.com/facebookresearch/moco-v3
4https://github.com/maple-research-lab/AdCo
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