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ABSTRACT 

Lentil (Lens culinaris Medik.) is a cool-season food legume cultivated around the globe. 

This pulse crop boasts a rich nutrient profile including high concentrations of prebiotic 

carbohydrates, protein, essential amino acids, and micronutrients, such as folate, iron, zinc, and 

selenium. Prebiotic carbohydrates promote a healthy gut microbiome, which, in turn, is 

associated with reduced risk of numerous pathologies including obesity/overweight, type II 

diabetes, irritable bowel disease, and colon cancer. Known as “poor man’s meat,” lentil also 

provides high quality plant-based protein at a low cost. As the world increasingly looks to crops 

to supplement and replace animal-based protein, lentil protein offers an excellent alternative. To 

fully take advantage of lentil’s unique nutrient profile and promote global food security, breeding 

programs may wish to add prebiotic carbohydrates and protein quality to their breeding target 

traits. Additionally, with the advance of genomics-assisted breeding approaches, genetic markers 

could significantly accelerate breeding efforts through marker-assisted selection and genomic 

selection. However, crucial lentil population data, genetic resources, and high-throughput 

phenotyping methods are lacking. To help address this gap, the present research quantifies seed 

prebiotic carbohydrates (sugar alcohols, raffinose-family oligosaccharides, 

fructooligosaccharides, and resistant starch) and protein quality traits (amino acids and in vitro 

protein digestibility) and calculates trait heritability estimates in a lentil diversity panel. Genome-

wide association studies identify significantly associated SNP markers and candidate genes, 

while admixture analysis elucidates lentil ancestral subpopulations and their global distribution. 

Finally, the development of high-throughput Fourier-Transform infrared spectroscopy (FTIR) 

phenotyping methods promises to significantly reduce breeding operation costs in developed and 

developing countries alike. Thus, this research advances lentil nutritional breeding to aid in the 
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development of new germplasm and varieties targeted for unique growing environments and 

consumer populations. 

  



 iv 

 
 
 
 
 
 
 
 

DEDICATION 
 
 

To Hannah, my wife and my love,  

who has supported me most and sacrificed even more than I know.  

I am forever grateful. 

 

And to Jesus, the Messiah—my Rock and Morning Light—for giving me  

a field of lentils to stand upon (II Samuel 23). 



 v 

ACKNOWLEDGMENTS 

First and foremost, I would like to thank my advisor, Dr. Dil Thavarajah. From the offer 

to join her program to final manuscript edits, her encouragement, patience, and skillful 

mentoring know no bounds. Her passion for science and global food security is contagious. I 

would also like to thank my committee members—Dr. Shiv Kumar for his aid and insight as a 

leading global lentil breeder, Dr. William Bridges for his skilled teaching of statistics and 

acclaimed encouragement of grad students like myself, and Dr. Stephen Kresovich for his 

guiding insights and counsel into my research and academic pursuits. I would like to 

acknowledge and thank Dr. Lucas Boatwright for his extensive investment into my program 

through computational assistance, teaching, and encouragement.  

Funding support for this research was provided by the USDA National Institute of Food 

and Agriculture including: the Plant Health and Production and Plant Products: Plant Breeding 

for Agricultural Production program area (grant no. 2018-67014-27621/project accession no. 

1015284), Hatch project [1022664], and the Organic Agriculture Research and Extension 

Initiative (OREI) (award no. 2018-51300-28431/proposal no. 2018-02799). Funding was also 

provided by the International Center for Agricultural Research in the Dry Areas (ICARDA, 

Morocco), the Good Food Institute, and the Feed the Future Innovation Lab for Crop 

Improvement through the United States Agency for International Development (USAID) under 

Cooperative Agreement No 7200AA19LE00005/Subaward no 89915-11295. 



 vi 

TABLE OF CONTENTS 
 
 

Page 
 

TITLE PAGE ................................................................................................................................ i 
 
ABSTRACT ................................................................................................................................. ii 
 
DEDICATION ............................................................................................................................ iv 
 
ACKNOWLEDGMENTS ............................................................................................................v 
 
LIST OF TABLES .................................................................................................................... viii 
 
LIST OF FIGURES .................................................................................................................... ix 
 
CHAPTER 
 

 I. THE ROLES AND POTENTIAL OF LENTIL PREBIOTIC  
CARBOHYDRATES IN HUMAN AND PLANT HEALTH............................10 

 
   Abstract ...............................................................................................................10 
   Introduction .........................................................................................................11 
   Lentil Prebiotic Carbohydrates ...........................................................................13 
   Prebiotic Carbohydrates ......................................................................................14 
   Lentil Prebiotic Carbohydrates and Gut Health ..................................................17 
   Prebiotic Carbohydrates and Plant Health ..........................................................19 
   Breeding Approaches for Lentil Prebiotic Carbohydrates ..................................22 
   Conclusion ..........................................................................................................23 
   Acknowledgements .............................................................................................24 
   Tables and Figures ..............................................................................................25 
   References ...........................................................................................................31 
 
 
 II. GENOME-WIDE ASSOCIATION MAPPING OF LENTIL (LENS 
   CULINARIS MEDIKUS) PREBIOTIC CARBOHYDRATES TOWARD 
   IMPROVED HUMAN HEALTH AND CROP STRESS TOLERANCE .........41 
 
   Abstract ...............................................................................................................41 
   Introduction .........................................................................................................42 
   Results .................................................................................................................45 
   Discussion ...........................................................................................................47 
   Conclusion ..........................................................................................................51 
   Materials and Methods ........................................................................................52 
   Acknowledgements .............................................................................................56 



 vii 

Table of Contents (Continued) Page 
 
 
   Tables and Figures ..............................................................................................58 
   References ...........................................................................................................66 
 
 
 III. FOURIER-TRANSFORM INFRARED SPECTROSCOPY (FTIR) AS A  
   HIGH-THROUGHPUT PHENOTYPING TOOL FOR QUANTIFYING 
   PROTEIN QUALITY IN PULSE CROPS .........................................................71 
 
   Abstract ...............................................................................................................71 
   Abbreviations ......................................................................................................72 
   Introduction .........................................................................................................73 
   Materials and Methods ........................................................................................75 
   Results and Discussion .......................................................................................81 
   Conclusions .........................................................................................................86 
   Acknowledgements .............................................................................................87 
   Tables and Figures ..............................................................................................88 
   References ...........................................................................................................94 
 
 
 IV. GENOME-WIDE ASSOCIATION MAPPING OF LENTIL (LENS  
   CULINARIS MEDIK.) PROTEIN QUALITY TRAITS ....................................99 
 
   Abstract ...............................................................................................................99 
   Abbreviations ....................................................................................................100 
   Introduction .......................................................................................................101 
   Results ...............................................................................................................103 
   Discussion .........................................................................................................107 
   Conclusion ........................................................................................................112 
   Materials and Methods ......................................................................................113 
   Acknowledgements ...........................................................................................120 
   Tables and Figures ............................................................................................121 
   References .........................................................................................................134 
 
 
APPENDICES ..........................................................................................................................145 
 
 A: Chapter 3 Supplemental Materials ..........................................................................146 
 B: Chapter 4 Supplemental Materials ..........................................................................151 
 



 viii 

LIST OF TABLES 
 
 

Table    Page 
 
 1.1 Nutritional values per 100 g of raw lentil, chickpea, soybean, rice,  
   and wheat ............................................................................................................25 
 
 1.2 Mean carbohydrate concentrations in raw prebiotic-rich foods (lentil,  
   chickpea, onion, and nectarine) ..........................................................................26 
 
 1.3 Prebiotic carbohydrate concentrations vary by growing location .............................27 
 
 2.1 Lens culinaris ssp. culinaris population origin information .....................................58 
 

 2.2 Carbohydrate analysis with the number of accessions (N), range, overall  
   mean with standard error (SE), and heritability estimates (H2) ..........................60 

 
 2.3 Significant SNPs identified using GAPIT and GEMMA software ..........................61 
 
 3.1 HPLC gradient method and conditions .....................................................................88 
 
 3.2 Instrument acquisition and model parameters ..........................................................89 
 
 3.3 Actual vs. model predicted data ................................................................................90 
 
 3.4 Chemometric model statistics ...................................................................................91 
 
 4.1 Mean concentration, concentration range, repeatability estimates, and %RDA  
   for lentil protein quality traits ...........................................................................121 
 
 4.2 Correlations between protein quality traits .............................................................122 
 
 4.3 Protein quality traits with significantly associated SNPs and candidate genes ......123 
 
 4.4 Subset of linkage disequilibrium blocks associated with protein quality traits ......128 
 
 



 ix 

LIST OF FIGURES 
 
 

Figure Page 
 
 1.1 Mean raffinose family oligosaccharide (RFO) concentrations of raw,  
   cooked, cooled, and reheated lentil ..................................................................28 
 
 1.2 Mean sugar alcohol (SA) concentrations of cooked, cooled, and reheated  
   lentil .................................................................................................................29 
 
 1.3 Biosynthetic pathway of raffinose family oligosaccharides and sugar  
   alcohols from leaves to seed ............................................................................30 
 
 2.1 Histograms of accession means with normal curve fits .........................................63 
 
 2.2 Comparison of carbohydrate concentrations by continent of origin ......................64 
 
 2.3 Genome-wide association study Manhattan plots from GAPIT ............................65 
 
 3.1 Chickpea N model..................................................................................................92 
 
 3.2 Lentil SAA model ..................................................................................................93 
 
 4.1 Lentil population origin and population structure analysis ..................................130 
 
 4.2 Boxplots depicting one-way analysis of variance of amino acid  
   concentrations by ADMIXTURE ancestral subpopulation  
   classifications .................................................................................................131 
 
 4.3 Manhattan plots of traits with at least one SNP significantly associated  
   with the trait by multiple models ...................................................................132 
 
 
 
 

 
 



10 
 

CHAPTER ONE 

THE ROLES AND POTENTIAL OF LENTIL PREBIOTIC CARBOHYDRATES IN HUMAN 

AND PLANT HEALTH 

Abstract 

 Diet-related ailments, such as obesity and micronutrient deficiencies, have global adverse 

impacts on society. Lentil is an important staple crop, especially in South Asia and Africa, and 

has been associated with the prevention of chronic illnesses, including type II diabetes, obesity, 

and cancer. Lentil, a cool-season food legume, is rich in protein and micronutrients while also 

containing a range of prebiotic carbohydrates, such as raffinose family oligosaccharides (RFOs), 

fructooligosaccharides, sugar alcohols (SAs), and resistant starch (RS), which contribute to 

lentil's health benefits. Prebiotic carbohydrates are fermented by beneficial microorganisms in 

the colon, which impart health benefits to the consumer. Prebiotic carbohydrates are also vital to 

lentil plant health, being associated with carbon transport/storage and abiotic stress tolerance. 

Important to both human and plant health, prebiotic carbohydrates in lentil are a prominent 

candidate for nutrigenomic breeding efforts. New lentil cultivars could help to combat global 

health problems, while also proving resilient to climate change. The objectives of this review are 

to: (a) discuss the benefits lentil prebiotic carbohydrates confer to human and plant health; (b) 

describe the biosynthesis pathways of two prominent prebiotic carbohydrate families in lentil, 

RFOs and SAs; and (c) consider the potential of prebiotic carbohydrates in terms of future 

nutritional breeding efforts. 
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Introduction 

Lentil (Lens culinaris Medikus) is an ancient crop. Cultivated lentil dates to before 7000 

BCE with likely origin and domestication in southern Turkey and northern Syria (Cubero, Perez 

de la Vega, & Fratini, 2009). The genus Lens contains four species: L. culinaris (ssp. culinaris, 

orientalis, tomentosus, and odemensis), L. ervoides, L. lamottei, and L. nigricans (Wong et al., 

2015). Lentil is a diploid with seven chromosome pairs (2n = 14), with an estimated genome size 

of 4,063 Mb (Rizvi, Aski, Sarker, Dikshit, & Yadav, 2019). Lentil is a staple crop in much of the 

world, consumed particularly in South Asia and Africa. World lentil production, led by Canada, 

India, Turkey, and the United States, exceeded 7.5 million tons in 2017 (FAOSTAT, 2017). 

Lentil is commonly consumed as a soup or “dahl,” a Southeast Asian dish typical in 

India, Nepal, Bangladesh, and Sri Lanka. Lentil has been referred to colloquially as “Poor man's 

meat,” as it is a rich source of nutrients, composed of 60%–67% carbohydrate, 20%–36% 

protein, <4% lipid, and 2%–3% ash on a dry basis (Bhatty, 1988). Its nutritional values compare 

favorably to other significant legumes and cereals, such as chickpea, soybean, rice, and wheat 

(Table 1.1). Lentil is an excellent source of energy; it is high in protein (typical of legumes), low 

in lipids, compared to chickpea and soybean, and rich in minerals and vitamins, compared to rice 

and wheat (Table 1.1). Consequently, a diet rich in lentil and other legumes has many health 

benefits. For example, substituting a half serving of legumes for eggs, bread, rice, or baked 

potato reduces the risk of developing diabetes (Becerra-Tomás et al., 2018). This effect is in part 

attributed to the low glycemic index of lentil and other legumes. Red lentil glycemic index (21%) 

compares favorably to other grain carbohydrate sources, such as multigrain bread (62%), basmati 

rice (69%), and whole-wheat pasta (55%; Henry, Lightowler, Strik, Renton, & Hails, 2005). A 

lentil-based diet reduces total and low-density lipoprotein cholesterol and the risk of 



12 
 

cardiovascular disease (Abeysekara, Chilibeck, Vatanparast, & Zello, 2012), increases satiety 

(McCrory, Hamaker, Lovejoy, & Eichelsdoerfer, 2010), and is considered a potential solution to 

help combat obesity (Siva, Johnson, et al., 2018). Many of lentil's health benefits are likely due 

to the type and concentration of prebiotic carbohydrates present in the seed and how these 

change during cooking, cooling, and reheating (Johnson, Thavarajah, Combs, & Thavarajah, 

2013). 

Prebiotic carbohydrates are specific colonic nutrients that act as biosynthetic precursors 

for human microbiota activity, which in turn leads to possible health benefits related to 

combating type II diabetes and obesity. In addition to human health benefits, prebiotic 

carbohydrates also benefit plant health by increasing leaf raffinose family oligosaccharides 

(RFOs) to enhance drought (Bartels & Sunkar, 2005), chilling (Nishizawa, Yabuta, & Shigeoka, 

2008), and freezing tolerance (Pennycooke, Jones, & Stushnoff, 2003). Sugar alcohols (SAs) 

also increase chilling (Chiang, Stushnoff, McSay, Jones, & Bohnert, 2005), drought (Pujni, 

Chaudhary, & Rajam, 2007), and salinity tolerance in a range of plants (Zhifang & Loescher, 

2003). These RFOs and SAs generally act as signaling compounds for both biotic and abiotic 

stresses (Valluru & Van den Ende, 2011). With climate conditions changing globally, future 

lentil production might be limited due to increased incidence of drought and higher temperatures. 

The significance of prebiotic carbohydrates to human and plant health means the type and 

concentration thereof in lentil are essential traits for nutrigenomic breeding efforts. Nutritionally 

improved lentil cultivars could help to combat global health problems, while simultaneously 

enhancing resilience to the effects of climate change (Muehlbauer et al., 2006). 
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Lentil Prebiotic Carbohydrates 

Lentil contains a range of prebiotic carbohydrates including average concentrations of 

4,071 mg of RFOs, 1,423 mg of SAs, 62 mg of FOSs, and 7,500 mg of RS per 100 g (Johnson et 

al., 2013). A recent study reported the prebiotic carbohydrate profile after removing protein and 

fat from lentil seeds (Table 1.2: Siva, Thavarajah, Kumar, & Thavarajah, 2019). Among simple 

sugars, sucrose was the most abundant (1,174–2,288 mg/100 g) followed by glucose (21–

61 mg/100 g), fructose (0.2–21.9 mg/100 g), mannose (1.2–7.9 mg/100 g), and rhamnose (0.5–

1.0 mg/100 g). For SAs, sorbitol concentrations (606–733 mg/100 g) were the highest followed 

by mannitol (9–31 mg/100 g) and xylitol (14–31 mg/100 g) regardless of the lentil market class. 

Among RFOs, stachyose (2,236–2,348 mg/100 g) was more abundant than raffinose (403–

646 mg/100 g) and verbascose (581–1,769 mg/100 g). Considering lentil FOSs, kestose levels 

were higher than nystose levels. Other prebiotic carbohydrates present were arabinose (2,419–

2,630 mg/100 g), xylose (1,912–1,936 mg/100 g), and cellulose (611–640 mg/100 g). 

Lentil prebiotic carbohydrate concentrations vary by growing location. Johnson, 

Thavarajah, Thavarajah, Fenlason, et al. (2015) analyzed lentil samples from six countries 

(Table 1.3). They observed that total low-molecular weight carbohydrate concentrations were 

generally the highest in regions with less rainfall, higher temperatures, and higher estimated 

stress index. This suggests a mechanism of abiotic stress tolerance correlated with the type and 

level of prebiotic carbohydrates in lentil seeds. Total RFO concentrations ranged from 

5,225 mg/100 g in Syria to 7,149 mg/100 g in Morocco. Total SA concentrations ranged from 

1,385 mg/100 g in Washington State to 2,019 mg/100 g in Morocco. Further to variability due to 

location, they noted variation among the nine genotypes analyzed as well as a 

genotype × location interaction. The significant genotype × growing location interaction supports 
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the hypothesis that increasing the nutritional value of lentil prebiotic carbohydrates can be 

achieved by selecting ideal growing areas and suitable cultivars for developing nutritionally 

superior varieties (Johnson, Thavarajah, Thavarajah, Fenlason, et al., 2015). 

Concentration of prebiotic carbohydrate can also vary by location and genotype, or by 

method of food processing (Johnson, Thavarajah, Thavarajah, Payne, et al., 2015; Siva, 

Thavarajah, & Thavarajah, 2018). Lentils are often cooked, cooled, and reheated before 

consumption; hence these processes are important considerations in terms of their impact on the 

prebiotic carbohydrates undergoing these processes prior to consumption. Johnson, Thavarajah, 

Thavarajah, Payne, et al. (2015) measured prebiotic carbohydrate concentrations in whole and 

dehulled red and green lentil when raw and after cooking, cooling, and reheating. RFO 

concentrations decreased with processing (Figure 1.1), although the differences between raw and 

reheated lentil were only significant in whole lentil products. Differences in RS concentrations 

between raw/cooked and cooled/reheated were significant, indicating RS increases when food 

products are cooled after cooking, likely due to annealing. Siva, Thavarajah, et al. (2018) also 

showed this trend in RS. Additionally, they measured SA concentrations and found that sorbitol 

and mannitol concentrations significantly increase from cooked to cooled lentil in most market 

classes and then decrease again with reheating (Figure 1.2). These studies show that 

cooking/cooling/reheating processes can increase the health benefits of lentil via modulation of 

prebiotic carbohydrate concentrations. 

Prebiotic Carbohydrates 

The definition of a prebiotic has evolved since its coining in 1995. Complementary to the 

probiotic concept, Gibson and Roberfroid (1995) originally defined a prebiotic as a “non-

digestible food ingredient that beneficially affects the host by selectively stimulating the growth 



15 
 

and/or activity of one or a limited number of bacteria already resident in the colon.” This 

definition was revised in 2004 to three criteria that restricted prebiotic foods to ingredients that 

are (a) resistant to mammalian digestion; (b) fermented by intestinal microflora; and (c) 

selectively stimulate the growth and/or activity of intestinal bacteria associated with health and 

well-being (Gibson, Probert, Van, Rastall, & Roberfroid, 2004). The definition was further 

broadened in 2008 by the Food and Agricultural Organization of the United Nations to allow the 

possibility of extraintestinal sites and eliminate the requirement of selective fermentation 

(Pineiro et al., 2008). The definition was critiqued by Gibson et al. (2010) for this latter omission 

and also for not adequately excluding antibiotics. Reaffirming selective fermentation and 

establishing “a niche,” Gibson et al. (2010) defined a dietary prebiotic as “a selectively 

fermented ingredient that results in specific changes in the composition and/or activity of the 

gastrointestinal microbiota, thus conferring benefit(s) upon host health.” Selective fermentation 

was again challenged by Bindels, Delzenne, Cani, and Walter (2015), who eliminated this 

requirement from their definition and again restricted prebiotic to the gastrointestinal tract. In 

2016, the International Scientific Association for Probiotics and Prebiotics (ISAPP) came to the 

current consensus definition: “a substrate that is selectively utilized by host microorganisms 

conferring a health benefit” (Gibson et al., 2017). This current definition has broadened the 

scope of prebiotics beyond carbohydrate substrates in the gastrointestinal tract by acknowledging 

the potential for non-gastrointestinal sites and non-carbohydrate substances. However, the 

definition has retained the selective fermentation component, which the ISAPP sees as vital to 

the concept of prebiotics (Gibson et al., 2017). While the definition has broadened beyond 

dietary carbohydrates, research on prebiotics has primarily focused on dietary prebiotic 

carbohydrates, and, consequently, these are our focus here regarding lentil. 
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Prebiotic carbohydrates can be categorized based on their degree of polymerization, sugar 

subunits, and linkage configuration. Naturally occurring prebiotic carbohydrates are divided into 

two major groups: dietary fiber and SAs (Roberfroid, 2007). Dietary fiber is comprised of starch 

polysaccharides (RS) and non-starch polysaccharides (RFOs, fructooligosaccharide [FOSs], 

galactooligosaccharides, xylooligosaccharides, hemicellulose, cellulose, pectin, and inulin; 

Roberfroid, 2007). These prebiotic carbohydrates are associated with many human health 

benefits, because they promote satiety, lower high cholesterol, and regulate postprandial blood 

glucose levels (Beserra et al., 2015). Most naturally occurring prebiotic carbohydrates are found 

in fresh vegetables, legumes, and fruits at concentrations ranging from trace amounts in wheat, to 

moderate levels in onion and green bananas, to relatively high concentrations (35.7–

47.6 g/100 g) in chicory root (Van Loo et al., 1999). 

As a staple part of many diets, legumes, such as lentil and chickpea, provide an excellent 

source of prebiotic carbohydrates (Table 1.2). Legumes tend to have higher concentrations of 

SA, RFO, fiber, and RS than prebiotic-rich fruits and vegetables, which tend to be higher in 

simple sugars and fructooligosaccharides (Table 1.2). For example, lentil and chickpea contain 

mean sorbitol concentrations of 0.66 and 0.52 g/100 g, respectively, compared to not detected 

and 1.09 g/100 g in onion and nectarine, respectively. With the exception of 0.23 g/100 g of 

raffinose in onion, nectarine and onion are void of detectable concentrations of RFO. Lentil and 

chickpea, however, have total RFO concentrations of 4.14 and 1.09 g/100 g, respectively. 

Although all legumes have merit as prebiotic-rich foods, our focus here is lentil, which is one of 

the most studied cool-season food legumes. 
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Lentil Prebiotic Carbohydrates and Gut Health 

The human gastrointestinal tract, with a surface area of over 300 m2, hosts more than 

100 trillion microorganisms (Savage, 1977). These microbes, collectively termed “the 

microbiome”, comprise 10 times more cells than human cells and over 100 times more genetic 

information than the human genome (Bäckhed, Ley, Sonnenburg, Peterson, & Gordon, 2005). 

The microbiome is a dynamic ecosystem, with a myriad of interactions between microbes and 

human tissues that change throughout the course of human growth and development. 

Increasingly, the microbiome is recognized as an extra-human organ, capable of protecting the 

host from invading pathogens, stimulating the immune system, increasing the availability of 

nutrients, stimulating bowel motility, and improving lipid levels in the body (Holzapfel & 

Schillinger, 2002). However, gut microbiota are also involved with a host of disease processes, 

including obesity, diabetes, infections, inflammatory bowel disease, cancer, and many others 

(Lynch & Pedersen, 2016). Primary determinants of microbiota composition and function 

include age, environment, genetic factors, diet, health status, and medical interventions, such as 

the use of antimicrobial agents (Lozupone, Stombaugh, Gordon, Jansson, & Knight, 2012). 

The concept of modulating the gut microbiome's composition and function through diet, 

primarily through prebiotics, has gained enormous attention (Bindels et al., 2015). Prebiotics are 

fermented by hindgut microflora into active metabolites—short-chain fatty acids, branched-chain 

fatty acids, vitamins, and bile acid derivatives—that bathe the lumen of the intestinal tract. These 

compounds, in turn, produce a wide range of important physiological benefits, including anti-

inflammatory and immune cell regulation (Arpaia et al., 2013), antineoplastic properties 

(Furusawa et al., 2013), and metabolic regulation (Gao et al., 2009). 
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We are now discovering the importance of the microbiome in early childhood growth and 

development. Moderate acute malnutrition in Bangladeshi children has been related to premature 

microbiota composition (Subramanian et al., 2014). Supplementation with gut microbial flora 

from healthy children and with foods rich in several prebiotic ingredients alleviated acute 

malnutrition with an associated normalization of age-appropriate hindgut microflora (Gehrig et 

al., 2019). Moreover, an altered gut microbiome has also been implicated in autism spectrum 

disorder, although this interaction is not yet thoroughly understood (Li, Hu, Ou, & Xia, 2019). 

Prospective studies with prebiotics in autistic children, when combined with exclusion of a 

dietary component, have revealed modest improvements in behavioral symptoms; however, 

randomized controlled trials have not been able to demonstrate these effects (Ng et al., 2019). 

These discoveries highlight opportunities for further research toward how novel dietary 

approaches can improve early childhood growth and development. As lentils provide significant 

levels of prebiotic carbohydrate, we propose they are an ideal food source for increasing 

prebiotic carbohydrates in people's diets and for imparting the health benefits these may provide. 

Indeed, the results from a recent study in rats further support the notion that a lentil-rich diet may 

have significant health benefits because of the superior nutritional value of its prebiotic 

carbohydrates and the concomitant increase in the activity of hindgut bacteria (Siva, Johnson, et 

al., 2018). Specifically, rats fed on a lentil diet had a significantly lower mean body weight 

(443 ± 47 g/rat) than those fed on control (511 ± 51 g/rat) or corn (502 ± 38 g/rat) diets; in 

addition, mean percent body fat and triglyceride concentration were lower and lean body mass 

was higher in rats fed on the lentil diet. Moreover, the fecal abundance of Actinobacteria and 

Bacteroidetes (beneficial bacteria) was significantly higher and the abundance of Firmicutes 

(pathogenic bacteria) was lower in rats fed the lentil diet versus the control diet. 



19 
 

When considering the impact of diet on the microbiome and chronic disease, we 

recommend a diet with satisfactory levels of prebiotics. Legumes, such as lentil, are a rich and 

affordable source of prebiotic carbohydrates with 100 g of lentil providing 12 g of prebiotic 

carbohydrates (Siva et al., 2019). This recommendation is especially applicable to countries 

where legumes are often neglected in people's diets. Creativity in processing methods and 

marketing approaches, such as the recent advance of plant-based burgers, could help to 

popularize lentil and other legumes in countries where they are not generally widely consumed. 

Prebiotic Carbohydrates and Plant Health 

As would be expected due to their high concentrations in lentil seed, prebiotic 

carbohydrates are vital to lentil plant health. Several functions of these carbohydrates have been 

elucidated. Here we discuss two of the most abundant families of prebiotic carbohydrates in 

lentil, RFOs and SAs, and their roles as (a) primary photosynthetic products and carbon transport 

molecules; (b) carbon stores; and (c) aids of abiotic stress tolerance, namely temperature, 

drought, and salinity stress. 

Raffinose family oligosaccharides and SAs are primary photosynthetic products and 

carbon transport molecules in many higher plants. Labeled 14CO2 studies have revealed that the 

primary soluble carbon products synthesized through photosynthesis in higher plants are sucrose 

(ubiquitous), RFOs, and SAs (Loescher & Everard, 2000). The orders of plants that utilize RFOs 

as a photosynthetic product and storage molecule include Lamiales, Cucurbitales, Cornales, and 

some Celastrales (Sengupta & Majumder, 2015). Ajuga reptans L. is the premier example of this 

type of plant, which uses stachyose as its primary carbon transport molecule. To store carbon, it 

synthesizes RFO of higher degrees of polymerization (DP), which become trapped for storage 

purposes (Bachman, Matile, & Keller, 1994). Lentil is not known to synthesize RFOs in leaves 
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as a primary photosynthetic product and, consequently, also does not transport carbon via RFOs 

(Obendorf & Gorecki, 2012). Instead, sucrose and SAs function as the transport molecules to the 

seed during seed filling. RFOs are formed in maturing lentil seeds at high concentrations 

(Obendorf & Gorecki, 2012). Likewise, for SAs, Grant and ap Rees (1981) showed that 

approximately 70% of fixed carbon in apple leaves was made into sucrose and sorbitol. 

Similarly, Loescher, Tyson, Everard, Redgwell, and Bieleski (1992) found that 80%–90% of the 

fixed carbon was transformed into mannitol and sucrose in celery. Similar patterns of SA 

accumulation have been shown in lilac and apricot (Loescher & Everard, 2000). Although 

sucrose is the primary photosynthetic product and carbon transport molecule in legumes, SAs 

may also function passively in this capacity, being found in both the leaf and seed (Amede, 

Schubert, & Stahr, 2011; Johnson et al., 2013). 

Raffinose family oligosaccharides and SAs also serve as a carbon store. As noted, some 

plants (i.e., A. reptans) store RFOs in their leaves by increasing DP. RFOs are primarily known 

for their accumulation in seeds during late development (Sengupta & Majumder, 2015) and are 

especially prevalent in legumes (Obendorf & Gorecki, 2012). RFOs protect the embryo during 

desiccation. During germination, RFOs are rapidly hydrolyzed by α-galactosidases but do not 

appear to be necessary for germination (Peterbauer & Richter, 2001). The use of SAs as a carbon 

store is largely dependent on tissue type, developmental stage, and environment. For example, 

apple leaves contain 0.9% sorbitol (dry weight) in June but 4.8% in late July (Loescher & 

Everard, 2000). Physiologically mature lentil seeds contain significant concentrations of both 

sorbitol and mannitol (Johnson et al., 2013). 

Lastly, RFOs and SAs aid plants experiencing abiotic stress. During abiotic stress, 

several compounds accumulate, including RFOs and SAs. These compounds aid the plant in 
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survival through these extreme conditions by balancing osmotic pressures and have, therefore, 

been called “osmoprotectants” (Bohnert & Jensen, 1996). RFOs and SAs substitute for water as 

compatible solutes; they may provide a medium for enzyme function and protect enzymes from 

free radicals and consequent denaturing (Smirnoff & Cumbes, 1989). Studies using transgenic 

plants with upregulated RFOs and SAs have shown increased drought, cold/freezing, and salinity 

tolerance (Gangola & Ramadoss, 2018; Loescher & Everard, 2000; Sengupta & Majumder, 

2015). 

Biochemical synthesis pathways have been elucidated for both RFOs and SAs and are 

detailed separately below (Figure 1.3). Understanding these pathways will help to identify and 

exploit molecular and genetic markers that can be used in lentil breeding programs. RFOs 

represent a series of increasing DP formed through the addition of galactose monomers to 

sucrose via 1,6-α glycosidic linkage, building raffinose (DP3), stachyose (DP4), and verbascose 

(DP5). Higher DP (DP15 or greater) exist in some plants, such as lupin seeds (Kannan, Sharma, 

Gangola, Sari, & Chibbar, 2018), but are not detected in lentil. The primary RFO biosynthesis 

pathway uses galactinol as the galactosyl donor. Galactinol is formed via galactinol synthase 

from UDP-galactose and L-myo-inositol (Figure 1.3). Raffinose synthase binds the galactosyl 

from galactinol to a sucrose molecule to form raffinose. Stachyose synthase binds galactosyl to 

raffinose to form stachyose. In addition, verbascose synthase binds galactosyl to stachyose to 

form verbascose. RFO synthesis takes place primarily in the cytosol. A secondary RFO 

biosynthesis pathway exists in A. reptans (Bachmann et al., 1994). This pathway is independent 

of galactinol, using a galactosyltransferase enzyme to transfer a galactosyl unit from one RFO to 

another to create higher DP oligosaccharides (Sengupta & Majumder, 2015). 
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The most abundant and well-studied SAs in higher plants are sorbitol (glucitol) and 

mannitol. Both have reduced forms of hexose sugars (glucose and mannose) and share similar 

pathways (Figure 1.3). Sorbitol biosynthesis has been characterized in the Rosaceae family 

(Williamson, Jennings, Guo, Pharr, & Ehrenshaft, 2002). Glucose-6P is converted into sorbitol-

6-P via sorbitol-6-P dehydrogenase, which is subsequently dephosphorylated by a phosphatase, 

yielding sorbitol. Mannitol biosynthesis has been characterized in celery (Williamson et al., 

2002). Parallel to sorbitol biosynthesis, mannose-6-P is converted into mannitol-1-P via 

mannose-6-P reductase, which is then dephosphorylated by a phosphatase, yielding mannitol 

(Figure 1.3). 

Breeding Approaches for Lentil Prebiotic Carbohydrates 

Due to lentil's excellent overall nutritional makeup, it has already been targeted for 

biofortification (Kumar, Sen, Kumar, Gupta, & Singh, 2016). However, efforts have primarily 

been directed toward combatting micronutrient deficiency or “hidden hunger” (Kumar et al., 

2016). Micronutrient biofortification seeks to increase concentrations of essential micronutrients, 

such as iron, zinc, and selenium, while decreasing levels of antinutrients, such as phytic acid, 

which lowers mineral bioavailability (Thavarajah et al., 2011). Prebiotic carbohydrates, such as 

RFOs and SAs, now show potential for biofortification. Johnson, Thavarajah, Thavarajah, 

Fenlason, et al. (2015) showed that lentil RFO concentration varies by genotype, while SA 

concentration varies both by variety and location. This finding suggests that prebiotic 

carbohydrate biofortification efforts are likely to succeed in producing lentil varieties with 

optimized prebiotic carbohydrate levels for human health, which may be increased or decreased 

based on the target population. Many people suffer from flatulence and bloating upon ingestion 

of high levels of RFOs, such as those in most legumes. This adverse effect prevents susceptible 
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populations from eating legumes, such as lentil, thus depriving them of associated nutritional 

benefits. This potential tradeoff between high RFO content and flatulence may make breeding 

for higher RFO content unacceptable to some consumers. 

Significant genetic variability exists for lentil prebiotic carbohydrates (Frias, Vidal-

Valverde, Bakhsh, Arthur, & Hedley, 1994; Johnson, Thavarajah, Thavarajah, Fenlason, et al., 

2015; Tahir, Vandenberg, & Chibbar, 2011), indicating the possibility for genetic manipulation 

through conventional or molecular breeding approaches. Recent advances in genomic tools and 

techniques have great potential to accelerate current breeding efforts toward lentil varieties with 

moderate to high levels of prebiotic carbohydrates (Kumar, Rajendran, Kumar, Hamwieh, & 

Baum, 2015). Additionally, genome-wide association studies may reveal other genes/QTLs that 

affect the levels of prebiotic carbohydrates in lentil. 

Conclusion 

Lentil is a rich source of prebiotic carbohydrates including SAs, RFOs, FOSs, and other 

polysaccharides such as cellulose, hemicellulose, and amylose. In addition to the human 

nutritional benefits, prebiotic carbohydrates have a significant influence on plant health, a feature 

that will significantly benefit the breeding of pulse crops for climate resilience. Consequently, 

lentil prebiotic carbohydrates are an important breeding target, requiring further characterization 

and evaluation of germplasm. Phenotyping diverse lentil mapping populations could identify 

future genetic markers associated with high levels of prebiotic carbohydrates and thus 

significantly accelerate nutritional breeding for different growing environments and consumer 

preference (Varshney et al., 2013). These genetic markers could then be used to screen locally 

grown varieties as well as to develop new cultivars with special consumer requirements; for 

example, breeder-friendly genetic markers can be used to develop new varieties with moderate 
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RFOs and increased levels of FOSs and RS to reduce flatulence in populations sensitive to 

RFOs. Globally, the development and selection of lentil genotypes with enhanced levels of 

prebiotic carbohydrates could not only provide significant health benefits to society but could 

also provide economic benefits through improved crop sustainability and production. 
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Tables and Figures 

Table 1.1: Nutritional values per 100 g of raw lentil, chickpea, soybean, rice, and wheat  
 
Nutrient Lentil Chickpea Soybean Rice Wheat 

Proximate analysis      
Water (g) 8.3 7.7 8.5 11.6 12.4 
Energy (kcal) 352 378 446 365 332 
Protein (g) 25 20 36 7 10 
Total lipid (g) 1.1 6.0 20 0.7 2.0 
Carbohydrate (by difference, g) 63 63 30 80 74 
Fiber (g) 11 12 9 1 13 
Sugars (g) 2.0 11 7 0.1 1.0 
Minerals (mg)      
Calcium (Ca) 35 57 277 28 33 
Iron (Fe) 6.5 4.3 16 0.8 3.7 
Magnesium (Mg) 47 79 280 25 117 
Phosphorus (P) 281 252 704 115 323 
Potassium (K) 677 718 1797 115 394 
Sodium (Na) 6 24 2 5 3 
Zinc (Zn) 3.3 2.8 4.9 1.1 3.0 
Vitamins      
Vitamin C (mg) 4.5 4.0 6.0 0.0 0.0 
Thiamin (mg) 0.87 0.48 0.87 0.07 0.3 
Riboflavin (mg) 0.21 0.21 0.87 0.05 0.19 
Niacin (mg) 2.61 1.54 1.62 1.60 5.35 
Vitamin B-6 (mg) 0.54 0.54 0.38 0.16 0.19 
Folate, DFE (µg) 479 557 375 8 28 
Vitamin A, RAE (µg) 2 3 1 0 0 
Vitamin E (mg) 0.49 0.82 0.85 0.11 0.53 
Vitamin K (µg) 5.0 9.0 47.0 0.1 1.9 
Source: Original data obtained from the USDA Nutrient Database for Standard Reference 
(2018). 
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Table 1.2: Mean carbohydrate concentrations in raw prebiotic-rich foods (lentil, chickpea, onion, 
and nectarine)  
 

Carbohydrates (g/100g) Lentil Chickpea Onion Nectarine 

Sugar alcohols      
   Sorbitol 0.66±0.056 0.52±0.048 nd 1.08 ±0.079 
   Mannitol 0.02±0.008 0.02±0.006 nd nd 
   Xylitol 0.02±0.006 0.02±0.002 nd 0.28±0.026 
Simple sugars (SAs)     
   Glucose 0.03±0.016 0.03±0.004 0.42±0.01 1.50±0.083 
   Fructose  0.01±0.009 tr 1.21±0.34 1.15±0.052 
   Sucrose 1.71±0.435 2.15±0.433 0.43±0.02 3.50±0.198 
Raffinose family oligosaccharides (RFOs)     
   Raffinose 0.50±0.116 0.44±0.120 0.23±0.011 nd 
   Stachyose 2.29±0.100 0.53±0.112 nd nd 
   Verbascose 1.35±0.437 0.12±0.030 -- -- 
Fructooligosaccharides (FOSs)     
   Kestose 0.33±0.080 0.04±0.018 1.15±0.046 0.18±0.011 
   Nystose tr 0.01±0.006 0.77±0.028 0.65±0.015 
Soluble Fiber 1.44±0.11 tr -- -- 
Insoluble Fiber 19.0±1.27 13.9±0.09 -- -- 
Resistant Starch 3.25±0.42 3.39±0.96 -- -- 

Note: Data are expressed as mean ± SD. Abbreviations: nd, not detected; tr, trace amount. Sugar 
alcohol, simple sugar, and oligosaccharide data were obtained from Siva et al. (2019) and 
Jovanovic-Malinovska, Kuzmanova, and Winkelhausen (2014) for lentil/chickpea and 
onion/nectarine, respectively. Fiber and resistant starch data were obtained from de Almeida 
Costa, Silva, Pissini Machado Reis, and Oliveira (2006). 
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Table 1.3: Prebiotic carbohydrate concentrations vary by growing location 
  

Country 
Sugar Alcohols  
(mg/100 g) 

Raffinose Family Oligosaccharides 
(mg/100 g) 

Sorbitol Mannitol Galactinol Raffinose+Stachyose Verbascose 
Washington, USA† 1259 57 69 3956 2453 
Terbol, Lebanon 1528 117 52 3314 1926 
Morocco‡ 1824 132 63 4802 2347 
Breda, Syria 1419 87 46 3318 1907 
Sanliurfa, Turkey 1328 111 53 3494 2273 
Akaki, Ethiopia 1611 118 89 3774 2272 
Mean 1509 106 63 3847 2266 

a Mean values of three locations in Washington, USA (Garfield, Fairfield, and Pullman) are 
reported. b Mean values of three locations in Morocco (Jemaat, Shaim, and Marchouche) are 
reported. Original data obtained from Johnson, Thavarajah, Thavarajah, Fenlason, et al. (2015).  
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Figure 1.1: Mean raffinose family oligosaccharide (RFO) concentrations of raw, cooked, cooled, 
and reheated lentil. Original data obtained from Johnson, Thavarajah, Thavarajah, Payne, et al. 
(2015) 
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Figure 1.2: Mean sugar alcohol (SA) concentrations of cooked, cooled, and reheated lentil. 
Original data obtained from Siva, Thavarajah, et al. (2018) 
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Figure 1.3: Biosynthetic pathway of raffinose family oligosaccharides and sugar alcohols from 
leaves to seed. Figure created from Gangola and Ramadoss (2018), Loescher and Everard 
(2000), and Dumschott, Richter, Loescher, and Merchant (2017) 
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CHAPTER TWO 

GENOME-WIDE ASSOCIATION MAPPING OF LENTIL (LENS CULINARIS MEDIKUS) 

PREBIOTIC CARBOHYDRATES TOWARD IMPROVED HUMAN HEALTH AND CROP 

STRESS TOLERANCE 

Abstract 

Lentil, a cool-season food legume, is rich in protein and micronutrients with a range of 

prebiotic carbohydrates, such as raffinose-family oligosaccharides (RFOs), 

fructooligosaccharides (FOSs), sugar alcohols (SAs), and resistant starch (RS), which contribute 

to lentil's health benefits. Beneficial microorganisms ferment prebiotic carbohydrates in the 

colon, which impart health benefits to the consumer. In addition, these carbohydrates are vital to 

lentil plant health associated with carbon transport, storage, and abiotic stress tolerance. Thus, 

lentil prebiotic carbohydrates are a potential nutritional breeding target for increasing crop 

resilience to climate change with increased global nutritional security. This study phenotyped a 

total of 143 accessions for prebiotic carbohydrates. A genome-wide association study (GWAS) 

was then performed to identify associated variants and neighboring candidate genes. All 

carbohydrates analyzed had broad-sense heritability estimates (H2) ranging from 0.22 to 0.44, 

comparable to those reported in the literature. Concentration ranges corresponded to percent 

recommended daily allowances of 2–9% SAs, 7–31% RFOs, 51–111% RS, and 57–116% total 

prebiotic carbohydrates. Significant SNPs and associated genes were identified for numerous 

traits, including a galactosyltransferase (Lcu.2RBY.1g019390) known to aid in RFO synthesis. 

Further studies in multiple field locations are necessary. Yet, these findings suggest the potential 

for molecular-assisted breeding for prebiotic carbohydrates in lentil to support human health and 

crop resilience to increase global food security. 
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Introduction 

The World Health Organization estimates that non-communicable diseases (NCDs), such 

as cardiovascular disease and diabetes, cause 71% of global deaths1. The United Nations 

Sustainable Goals by 2030 include the reduction of NCD mortality by one-third as a primary 

health goal1. NCD risk factors are diverse; however, some, such as obesity, overweight, and 

malnutrition, clearly have a dietary link. Consequently, food security and consumer acceptance 

of nutritious foods are vital to lowering NCD risk. Compounding the problem is the threat of 

climate change to global food security2. Anticipated increases in temperature and drought will 

have harmful effects on crop yields and the people dependent upon them. Thus, ensuring the 

production of nutritionally dense staple food crops, such as pulses, is essential to address these 

global food security challenges. Amid the complexity of these issues, we put forward lentil (Lens 

culinaris Medikus), a staple food crop rich in prebiotic carbohydrates, as one piece in the broader 

solution. Lentil prebiotic carbohydrates are an ideal target for genomic-assisted breeding 

approaches to combat NCD and ensure global food security. 

Lentil is a nutritionally dense cool-season pulse crop with notable concentrations of 

protein (20–30%), low-digestible carbohydrates (20%), fat (1%), iron (Fe), zinc (Zn), and a 

range of vitamins3. A study in rats shows a lentil diet can significantly lower mean body weight, 

percent body fat, and blood plasma triglyceride levels and increase lean body mass than control 

or corn diet4. Lentil's health benefits are in part due to its high concentrations of prebiotic or low-

digestible carbohydrates, including raffinose-family oligosaccharides (RFOs; 4071 mg/100 g), 

sugar alcohols (SAs; 1423 mg/100 g), fructooligosaccharides (FOSs; 62 mg/100 g), and resistant 

starch (RS; 7500 mg/100 g)5. A prebiotic is "a substrate that is selectively utilized by host 

microorganisms conferring a health benefit"6. When consumed, prebiotics pass through the 
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upper gastrointestinal tract and are fermented by beneficial microorganisms in the colon, which 

benefits their human host. The human gastrointestinal tract is lined with trillions of 

microorganisms, composing the microbiome7. These microbes are vital to colon health and 

function, aiding in immune system stimulation, nutrient breakdown and absorption, and bowel 

motility8. Adverse microbiome compositions have been associated with various ailments, such as 

obesity, diabetes, infection, and colon cancer9. Modulation of the microbiome, primarily through 

prebiotic consumption, can improve health outcomes. For example, a prebiotic-rich diet restored 

the microbiome composition and plasma biomarkers of malnourished Bangladeshi children to 

levels similar to healthy children10. 

Lentil prebiotic carbohydrates also serve a vital role in plant health. Lentil accumulates 

RFOs in its seeds at high concentrations. Although few studies have been done on lentil RFOs, 

soybean seedlings have been shown to use this carbon store for energy; however, RFOs do not 

appear necessary for successful germination11. Abiotic stress studies in Arabidopsis thaliana 

show upregulation of RFOs under drought, salinity, cold, and heat stress12,13. Further, a 

transgenic A. thaliana line overexpressing three genes essential in RFO synthesis demonstrated 

increased drought, salinity, and cold tolerance12. Similar results are reported for SAs14. These 

carbohydrates function as osmoregulants, cell signals, free radical scavengers, and compatible 

solutes for enzyme function15. 

As a staple food crop, lentil may be ideal for marker-assisted breeding efforts to alter 

prebiotic carbohydrate concentrations to reduce NCDs and advance global food security, now 

threatened by climate change. However, traditional breeding techniques are particularly 

challenging for quantitative nutritional traits in mature seeds. Analysis by high-performance 

anion-exchange chromatography is time-consuming and expensive; therefore, molecular 
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techniques have been explored as a way to significantly accelerate the breeding process16,17. 

Genome-wide association studies (GWAS) can detect quantitative trait loci (QTL) associated 

with prebiotic carbohydrate concentrations and help identify genetic markers needed for 

molecular breeding techniques. Lentil is a diploid (2n = 14) with a large ~ 4 Gb genome18. This 

allows for the use of numerous tools developed for diploid crops and simplifies some analysis. 

However, the large repetitive genome poses some additional challenges, such as generating a 

reference genome (yet unpublished) and sequencing new lines. One of the advantages of using 

genotyping-by-sequencing (GBS) methods is eliminating some of this complexity by reducing 

repetitive DNA sequencing19. GWAS using genotyping-by-sequencing (GBS) data have 

identified markers for Aphanomyces root rot resistance20 and abiotic stress tolerance21 in lentil. 

However, this is the first comprehensive study to report GWAS findings for prebiotic 

carbohydrates in lentil. Two lentil mapping populations were obtained from the International 

Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat Institute, Rabat, Morocco. 

The heat tolerance population (150 accessions) and the global mapping population (128 

accessions) were grown in a completely randomized design with two replicates at the Clemson 

University Greenhouse Complex, Clemson, SC, USA. The objectives of this study were to (1) 

identify and quantify prebiotic carbohydrates in a lentil association mapping population grown 

under greenhouse conditions, (2) identify SNP markers and candidate genes for lentil prebiotic 

carbohydrates through GWAS, and (3) identify lentil prebiotic carbohydrate breeding targets for 

human nutrition and climate resilience. 
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Results 

Population Composition 

The two lentil mapping populations were combined for statistical analysis, and an 

additional 14 lines were added for which data was available. Due to population overlap and poor 

grain yields, the total number of unique accessions with low-molecular-weight carbohydrate data 

was 143 with 1–5 replicates per accession. The lentil population included 60 from Asia, 40 from 

Europe, 16 from Africa, 13 from North America, eight from ICARDA, and six from South 

America (Table 2.1). 

Prebiotic Carbohydrates 

Low-molecular-weight carbohydrate analysis was conducted on 143 accessions with 1–5 

replicates (Table 2.2). Starch data were only collected from the heat tolerance population and 

included 102 accessions with 1–2 replicates (Table 2.2). Mean carbohydrate concentrations (used 

in the GWAS) were approximately normally distributed, as indicated by the normal red curves 

fitted to the concentration histograms (Fig. 2.1). For SAs, sorbitol (sor) had a mean concentration 

of approximately 4.5 times that of mannitol (man), at 206.8 and 46.8 mg/100 g, respectively. 

Simple sugars glucose (glu), fructose (fru), and sucrose (suc) had mean concentrations of 93, 69, 

and 496 mg/100 g, respectively. RFOs stachyose + raffinose (sta + raf) and verbascose + kestose 

(ver + kes) had mean concentrations of 578 and 318 mg/100 g, respectively (Table 2.2). Sta + raf 

and suc had the highest concentrations of all low-molecular-weight carbohydrates measured. 

Polysaccharides included RS, non-resistant starch (NRS), and total starch (TS) and had mean 

concentrations of 16.4, 39.6, and 56.0 g/100 g, respectively. All carbohydrates analyzed had 

modest broad-sense heritability estimates (H2) ranging from 0.22 (TS) to 0.45 (man). 
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Concentration ranges corresponding to 2–9%, 7–31%, 51–111%, and 57–116% of the 

recommended daily allowance (RDA) for SAs, RFOs, RS, and total prebiotic carbohydrates, 

respectively. 

Significant differences in carbohydrate concentrations by continent of origin were evident 

for sor, suc, ver + kes, NRS, and TS (Fig. 2.2). SA concentrations were highest in accessions 

from South America (sor) and North America (man) and lowest in the ICARDA accessions. 

Simple sugar concentrations were highest in accessions from Europe (glu, fru) and North 

America (suc) and lowest in accessions from Africa (glu, fru) and ICARDA (suc). RFO 

concentrations were highest in accessions from Europe (sta + raf) and North America (ver + kes) 

and lowest in accessions from ICARDA. Finally, starch concentrations were highest in 

accessions from Africa (RS) and ICARDA (NRS, TS) and lowest in accessions from South 

America (RS) and North America (NRS, TS). 

Significant single nucleotide polymorphisms (SNPs) were identified for fru, sta + raf, RS, 

and TS (Fig. 2.3, Table 2.3). Significant SNPs tended not to be in linkage disequilibrium with 

adjacent SNPs, likely due to the low coverage of GBS data and the large genome size. Three 

SNPs were significantly associated with man (chromosomes 2–4), with one (CHR2_558954064) 

identified by both software programs employed (GAPIT and GEMMA) and having a minor 

allele frequency (MAF) of 5.9%. One SNP was significantly associated with glu (chromosome 

6). Ten SNPs were significantly associated with fru (chromosomes 1–5), two of which 

(CHR1_153779147, CHR5_316719059) were identified by both software programs with MAFs 

of 7.3 and 5.2%, respectively. One SNP was significantly associated with suc (chromosome 6) 

and was identified by both software programs with an MAF of 5.2%. Twenty-two SNPs were 

significantly associated with sta + raf (chromosomes 1, 4–7), with one (CHR6_371563912) 
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identified by both software programs with an MAF of 9.8%. Ten SNPs were significantly 

associated with RS (chromosomes 1–3, 6–7), and one was significantly associated with TS 

(chromosome 7). Linkage blocks containing significant SNPs largely exceeded 100 kb and 

contained genes too numerous to include here. Genes within 100 kb flanking regions can be 

accessed in Supplemental Information (https://doi.org/10.1038/s41598-021-93475-3). 

Discussion 

This study estimated the concentrations of 10 different carbohydrates in a lentil mapping 

population to understand underlying genetic mechanisms. To our knowledge, it is the first 

publication to identify associated SNPs and candidate genes for lentil prebiotic carbohydrates via 

GWAS. Furthermore, it stands as one of the few GWAS for lentils irrespective of the trait. The 

findings are essential for developing markers for molecular-assisted breeding approaches for 

nutritional and climate-change resilience breeding objectives in lentils. Prebiotic carbohydrates 

are important traits relevant both to human health and crop climate-change resilience. 

Specifically, a healthy gastrointestinal microbiome is sustained mainly by consuming prebiotic 

carbohydrates in the human diet, which promote the growth of beneficial microorganisms, such 

as Lactobacilli and Bifidobacteria22. A healthy microbiome has been associated with numerous 

health benefits, including increased mineral absorption and reduced risk of colon cancer, 

diabetes, irritable bowel disease, and others9. In addition, these carbohydrates play an essential 

role in increasing the plant's abiotic stress tolerance, being associated with tolerance to salinity, 

heat, cold, and freezing stresses12,13,14,15. 

Low-molecular-weight carbohydrate concentrations were generally consistent with 

values found in the literature for lentils; however, mean concentrations of sor, suc, sta + raf, and 

ver + kes were on the low end of normal5,23,24. Typical lentil SA concentration ranges are 1000–
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2000 mg/100 g (sor) and 50–300 mg/100 g (man); values measured here are notably lower for 

sor (113–328 mg/100 g) and similar for man (2–357 mg/100 g). Typical simple sugar 

concentration ranges are 20–300 mg/100 g glu, 0.2–50 mg/100 g fru, and 1000–2500 mg/100 g 

suc; values measured here are similar for glu (36–315 mg/100 g), higher for fru (7–

325 mg/100 g), and lower for suc (208–1010 mg/100 g). Typical RFO concentrations are 1500–

5000 mg/100 g sta + raf and 500–2500 mg/100 g ver + kes; values measured here are both 

notably lower at 344–1748 mg/100 g sta + raf and 164–647 mg/100 g ver + kes. Total starch 

concentrations were consistent with the literature5,23; however, RS concentrations were higher 

than expected based on literature values, at 10–22 g/100 g compared to 5–10 g/100 g. This also 

corresponded to lower NRS values than expected. Overall, significant variation was evident 

within this population grown under greenhouse conditions. Larger variation in concentrations 

would be expected in field trials in addition to genotype × environment effects. 

Heritability estimates showed cautious potential for breeding for these traits. Sugar 

alcohols' broad-sense heritability estimates are not commonly calculated in grain crops. Sorbitol 

heritability estimate in peach was reported as 0.7–0.825, which is higher than noted for lentil in 

the present study (0.34). Estimates for simple sugar and RFO heritability are consistent with 

other literature on pulse crops. H2 values for glucose and sucrose (0.20 and 0.34) are compatible 

with other pulse crops, ranging from 0.2–0.4 and 0.2–0.5, respectively26,27. The H2 value for 

fructose is high compared to 0.05–0.07 in chickpea26. The H2 value for stachyose + raffinose of 

0.41 is comparable to heritability of 0.2–0.5 in common bean and desi and Kabuli chickpea26,27. 

Resistant starch (H2 = 0.31) is a novel phenotype for which heritability estimates are limited; 

however, total starch heritability of 0.3–0.4 has been reported in barley28, which is slightly higher 

than the value of 0.22 for lentil in the present study. This study indicates low to medium 
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heritability estimates for lentil prebiotic carbohydrates, suggesting that the environment may play 

a more significant role than genotype in determining these concentrations; this may challenge 

breeding for these traits. However, this is the first study to measure heritability in these traits for 

lentils and was performed in a controlled greenhouse environment, so it is too early to make any 

definitive statements for or against breeding prospects. Field trials with multiple locations will be 

vital toward estimating heritability more accurately and determining genotype × environment 

effects. In addition, increasing the lentil population size to encompass broader genetic diversity 

will potentially increase heritability estimates. 

Based on %RDA values, there is significant potential within the Lens culinaris species 

for selecting lentil lines of high or low prebiotic carbohydrate content. Our results also suggest 

the potential for incorporating prebiotic carbohydrates as a nutritional trait in breeding programs. 

From a dietary perspective, specific lentil accessions may be selected based on their prebiotic 

concentration, potentially providing up to 100% of the RDA. Human populations with obesity 

would benefit from varieties with increased prebiotic carbohydrate levels; these varieties may 

also increase climate resilience for global food security. For populations where specific 

prebiotics in lentil may cause undesirable side effects, including bloating, flatulence, indigestion, 

need lentil cultivars with lower total prebiotic concentrations, or particular carbohydrates could 

be targeted, such as RFOs, which are the carbohydrate family primarily implicated in 

indigestion29. Target concentrations may vary depending on the desired outcome and population; 

nevertheless, RS, which makes up most prebiotic content in lentils, may prioritize the most 

significant trait of interest. Whereas non-resistant starch is digested and absorbed in the upper 

digestive tract, RS is not broken down by digestive enzymes and consequently enters the colon, 

fermented by microorganisms30. 
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Prebiotic carbohydrate concentrations vary by growing location24. The present study 

showed that some prebiotic carbohydrate concentrations also vary by continent of origin, 

although this difference is not significant in most cases. This result can be interpreted with 

contrasting ramifications. In the cases where little difference is detected (man, sta + raf, and RS), 

this may suggest that the trait is highly conserved. If so, the lentil plant must tightly regulate 

these concentrations to produce viable seed; manipulating these concentrations through breeding 

would then be challenging and, if successful, may have a detrimental effect on the plant and 

agronomic traits, including yield. 

In contrast, where concentrations differ by continent of origin (sor, ver + kes) may 

suggest that prebiotic carbohydrate concentrations have been under selective pressure in the 

lentil's evolutionary development31. During lentil’s introduction to new regions, differences in 

climate would have been a prominent source of pressure driving variation alongside historical 

agronomic breeding. If prebiotic carbohydrate concentrations played a role in these historical 

adaptations, exploring their potential in developing varieties resilient under various 

environmental conditions is warranted. Namely, the warmer, dryer climates feared to result from 

climate change. More studies, including a larger population and multiple field trials, are needed 

to support these hypotheses with heritability. 

GWAS has been successfully used in other crops to identify significant SNPs and 

candidate genes for simple sugars and RFOs32,33. Few GWAS on lentil have been reported in the 

literature, likely due to the lack of genetic resources. The development of genetic resources for 

lentil and other legumes has lagged behind other crops, such as maize and sorghum. For 

example, the lentil genome remains unpublished, in part due to its size and repetitive nature. In 

addition, the quality of the genome available through the University of Saskatchewan was 
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relatively poor until the recent release of version 2.0, which incorporated multiple sequencing 

platforms as well as long and short reads (presentation and communication with Kirsten Bett of 

University of Saskatchewan at North American Pulse Improvement Association, Fargo, ND, Nov 

6–8, 2019). 

This GWAS on lentil prebiotic carbohydrates uncovered several significantly associated 

SNPs. SNP markers were identified for the prebiotic carbohydrates man, sta + raf, RS, and the 

non-prebiotic carbohydrates glu, fru, suc, and TS. Due to the ubiquity of SNPs in the genome, 

they are convenient markers for GWAS. Though a significant SNP is often not the causative 

mutation, it may be in linkage with the causative mutation. Genes within 100 kb of each 

significant SNP are shown in Supplemental Information (https://doi.org/10.1038/s41598-021-

93475-3). A number of significant SNPs were identified within genes. For example, 

CHR1_143888359 was located within Lcu.2RBY.1g019390, homologous to a 

galacturonosyltransferase in Arabidopsis thaliana. Generally, this gene class is known for the 

synthesis of pectin in cell walls34; however, the transfer of galactose is the primary step in RFO 

synthesis carried out by galactosyltransferases35. Thus, this discovery offers a potential gene 

target for altering RFO concentration in lentil. 

Conclusion 

Lentil prebiotic carbohydrates play a vital role in plant physiology and should be further 

explored as a means of breeding lentil varieties for changing climates. Additionally, prebiotic 

carbohydrates are important for human health, specifically for their role in regulating and 

modulating the gut microbiome. Thus, increased consumption of lentil and other pulse crops 

could have a beneficial effect on many people's health. Future studies should validate identified 

candidate genes to verify their function and uncover causative mutations. Once confirmed, 
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markers can be confidently developed for molecular-assisted breeding for prebiotic 

carbohydrates. Markers, such as microsatellites, could be used in molecular-assisted breeding 

approaches to incorporate the desired alleles and then recover the elite cultivar genotype through 

backcrossing aided by markers scattered across the genome36. 

Materials and Methods 

Materials 

Standards, chemicals, and high-purity solvents used for prebiotic carbohydrate analysis 

were purchased from Sigma Aldrich Co. (St. Louis, MO), Fisher Scientific (Waltham, MA), 

VWR International (Radnor, PA), and Tokyo Chemical Industry (Portland, OR) and used 

without further purification. Water, distilled, and deionized (ddH2O) to the resistance of ≥ 18.2 

MΩ × cm (PURELAB flex 2 system, ELGA LabWater North America, Woodridge, IL) was used 

for sample and reagent preparation. 

Greenhouse 

Two lentil mapping populations were obtained from the International Centre for 

Agricultural Research in the Dry Areas (ICARDA), Rabat-Institute, Rabat, Morocco. The heat 

tolerance population (150 accessions) and the global mapping population (128 accessions) were 

grown in a completely randomized design with two replicates (n = 558) at the Clemson 

University Greenhouse Complex, Clemson, SC, USA (Table 2.1). The soil in each pot was 

saturated with ddH2O and allowed to drain overnight. At seeding, pots were at 80% pot capacity. 

Greenhouse conditions were day and night temperatures of 22/20 °C. Photosynthetically active 

radiation levels were 300 µmol/m2/s using a 16-h photoperiod and 50–60% relative humidity. All 
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pots were watered to approximately 70% of free-draining moisture content every day, and 

250 mL of the nutrient solution were added to all pots every 2 weeks, as per standard procedures 

for lentils at the Clemson University Pulse Quality and Nutrition program. Nutrient 

concentrations of the all-purpose 20-20-20 fertilizer solution (Plant Products Co. Ltd., Brampton, 

ON, Canada) were 20% total N, 20% total P, 20% soluble K, 0.02% B, 0.05% chelated Cu, 0.1% 

chelated Fe, 0.05% Mo, 0.05% Zn, and 1% EDTA. All plants were hand-harvested at 

physiological maturity, air-dried (40 °C), and hand-threshed. The total seed weight per pot was 

recorded, and the seeds were stored at − 40 °C until analysis. 

Low Molecular Weight Carbohydrates Prebiotic Carbohydrate Analysis 

Lentil seeds were ground (Blade Coffee Grinder, KitchenAid, St. Joseph, MI, USA) and 

sieved to 0.5-mm particle size. Carbohydrates were extracted following Muir et al.37 with 

modification. Each flour sample was weighed (150 mg) into a centrifugal polypropylene tube 

(VWR International, Radnor, PA, USA). After adding 10 mL of water, each tube was mixed on a 

vortex mixer and placed in a water bath for 1 h at 80 ℃. Tubes were then centrifuged at 3000g 

for 10 min. The supernatant was filtered through a 13 mm × 0.45 μm nylon syringe filter 

(Thermo Fisher Scientific, MA, USA) into an HPLC vial for analysis. 

Low molecular weight carbohydrate analysis was performed following Feinberg et al.38 

on a Dionex ICS-5000+ system (Thermo Scientific, Waltham, MA, USA) equipped with a pulsed 

amperometric detector (PAD) with a working gold electrode and a silver-silver chloride 

reference electrode. The separation was achieved using a Dionex CarboPac PA1 analytical 

column (250 × 4 mm) in series with a Dionex CarboPac PA1 guard column (50 × 4 mm). Pure 

standards were used to identify peaks, generate calibration curves, and monitor detector 

sensitivity. A lentil lab reference sample was used to monitor extraction consistency. 
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Concentrations were quantified within a linear range of 0.1–500 ppm with a minimum detection 

limit of 0.1 ppm. Concentrations in samples were calculated following X = (C × V)/m, where X is 

the moisture-corrected analyte concentration in the sample, C is the concentration in the filtrate, 

V is the sample volume, and m is the mass of the dry lentil flour. 

Starch Analysis 

Resistant, non-resistant, and total starch were measured using the AOAC approved 

Megazyme resistant starch assay method39. Each sample was weighed (100 mg) into a 

centrifugal polypropylene tube. Enzyme solution was added (2 mL), which contained 

amyloglucosidase (3 U/mL) and αּ-amylase (10 mg/mL) in sodium maleate buffer (100 mM, pH 

6.0). Tubes were incubated with constant circular shaking (200 strokes/min) for 16 h at 37 ℃. 

Ethanol (4 mL; 99%) was added, followed by vortex mixing centrifugation (1500g for 10 min) 

and decanting into 100-mL volumetric flasks. Two additional washings of the sample were 

performed, adding 2 mL of ethanol (50%) and vortex mixing to suspend the pellet, followed by 

an additional 6 mL of ethanol (50%), vortex mixing, centrifugation, and decanting. Pooled non-

resistant starch washings were brought to 100 mL volume with water. Pellets containing resistant 

starch were dissolved in 2 mL of 2 M KOH with a magnetic stir bar for 20 min in an ice water 

bath. Sodium acetate buffer (8 mL, 1.2 M, pH 3.8) was added, followed immediately by 0.1 mL 

of amyloglucosidase (AMG; 3300 U/mL). Samples were incubated at 50 ℃ in a water bath for 

30 min. Tubes were then centrifuged (1500g for 10 min). Resistant starch and non-resistant 

starch fractions were quantified via spectrophotometry as follows. Starch solution (0.1 mL) and 

glucose oxidase/peroxidase (GOPOD) reagent (3 mL) were added to a glass tube and incubated 

for 20 min at 50 ℃. A glucose standard (1 mg/mL in 0.2% benzoic acid) was included in each 

batch. Absorbance was measured at 510 nm against a reagent blank. Non-resistant starch was 
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calculated by the formula NRS (g/100 g sample) = ΔE × F/W × 90, where ΔE is the absorbance 

of the sample, F is the absorbance to microgram conversion factor (100/absorbance of glucose 

standard), W is the sample dry weight, and 90 includes adjustments for volume, unit conversions, 

and free to anhydrous glucose. Resistant starch was calculated by a similar formula: RS (g/100 g 

sample) = ΔE × F/W × 9.27, where 9.27 includes adjustments for volume, unit conversions, and 

free to anhydrous glucose. Total starch was calculated as TS = RS + NRS. 

Statistical Analysis 

Carbohydrate concentration means, standard errors, and ranges were averaged across 

replications for each accession. Carbohydrate distributions were displayed as histograms, and 

normal curves were fit to the histograms to determine how closely the values followed a normal 

distribution. To compare each carbohydrate concentration among a continent of origin, a 

statistical model was developed with the mean concentration of each carbohydrate as the 

response variable and continent as a fixed effect. The model was estimated using standard least 

squares. ANOVA was used to determine if the continent effect was significant. Fisher's Protected 

Least Significant Difference Test was used to compare mean concentrations by continent of 

origin for each carbohydrate. P-value < 0.05 was considered evidence of statistical significance. 

To estimate broad-sense heritability (H2), a statistical model was developed with the mean 

concentration of each carbohydrate as the response variable and genotype as a random effect. 

The model was estimated using the restricted maximum likelihood (REML) method. H2 was 

identified as the proportion of variance due to genotype. Percent recommended daily allowances 

(%RDA) were calculated for total SA, total RFO, and RS, and total prebiotic carbohydrate 

concentrations based on 7 g/day for sugar alcohols, 7 g/day for RFOs, 20 g/day for RS, and 

20 g/day for total prebiotic content40,41,42. All calculations were performed using JMP 14.0.0. 
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Genome-Wide Association Studies 

Previously sequenced genotyping-by-sequencing (GBS) data were used for genome-wide 

association analysis21. The TASSEL-GBS pipeline43 with default parameters was used for 

aligning reads to the reference genome (Lens culinaris v2.0) and for single nucleotide 

polymorphism (SNP) calling. Beagle 5.0 with default settings was used for imputation44. 

VCFtools was used for filtering the VCF file to include only the 143 lentil lines included in the 

study (102 for starch) and to exclude sites with less than 5% minor allele frequency (MAF) and 

more than 20% missing data, leaving 22,222 high-quality SNPs for analysis45. Association 

analyses were conducted with two software programs and models: the Genome Association and 

Prediction Integrated Tool (GAPIT) in R using the FarmCPU model46 and the Genome-wide 

Efficient Mixed Model Association Algorithm (GEMMA) using a linear mixed model for 

univariate analyses47. Least square means from the JMP analysis were used. The population 

structure was estimated with the VanRaden kinship matrix algorithm in GAPIT. PLINK48 was 

used to calculate linkage disequilibrium decay around significant SNPs to determine linkage 

blocks and identify candidate genes from a GFF3 file. 
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Tables and Figures 

Table 2.1: Lens culinaris ssp. culinaris population origin information. 
 
Continent Country Accessions 
Africa (16) Algeria (2) ILL858, ILL4781 
  Egypt (2) ILL702, ILL1046 
  Ethiopia (4) ILL1706, ILL1959, ILL5639, ILL5956 
  Libya (1) ILL4804 
  Morocco (2) ILL6493, ILL7727 
  Sudan (2) ILL1861, ILL5505 
  Tunisia (3) ILL918, ILL1890, ILL6272 
Asia (60) Afghanistan (2) ILL213, ILL2217 
  Armenia (2) ILL86, ILL619 
  Azerbaijan (1) ILL1671 
  Bangladesh (3) ILL7774, ILL7789, ILL8007 
  India (6) ILL931, ILL3517, ILL4152, ILL4164, 

ILL4900, ILL5151 
  Iran (8) ILL223, ILL257, ILL769, ILL1013, 

ILL1097, ILL2406, ILL4791, ILL4886 
  Iraq (1) ILL4899 
  Jordan (4) ILL2150, ILL5261, ILL5384, ILL6925 
  Lebanon (3) ILL191, ILL840, ILL5626 
  Nepal (4) ILL3485, ILL3487, ILL7437, ILL8010 
  Pakistan (3) ILL2297, ILL7650, ILL8114 
  Palestine (1) ILL4606 
  Russia (3) ILL597, ILL4819, ILL4830 
  Saudi Arabia (1) ILL7745 
  Syria (6) ILL158, ILL490, ILL4471, ILL5509, 

ILL5595, ILL6644 
  Tajikistan (2) ILL598, ILL6126 
  Turkey (7) ILL71, ILL129, ILL550, ILL556, ILL635, 

ILL2181, ILL6149 
  Uzbekistan (1) ILL4875 
  Yemen (2) ILL950, ILL6281 
Europe (40) Albania (1) ILL4841 
  Belgium (1) ILL224, ILL6185, ILL7495 
  Croatia (1) ILL4915 
  Cyprus (2) ILL890, ILL5968 
  Czech Republic (1) ILL4409 
  France (1) ILL6528 
  Germany (2) ILL4831, ILL4881 
  Greece (4) ILL304, ILL4857, ILL5519, ILL5533 
  Hungary (1) ILL719 
  Italy (4) ILL343, ILL5416, ILL5418, ILL7084 
  North Macedonia (2) ILL623, ILL624 
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  Norway (1) ILL4782 
  Poland (2) ILL705, ILL5424 
  Portugal (1) ILL4956 
  Romania (1) ILL4774 
  Serbia and Montenegro (1) ILL1949 
  Spain (4) ILL4926, ILL5028, ILL5653, Pardina 
  Ukraine (3) ILL82, ILL595, ILL7090 
  United Kingdom (3) ILL348, ILL4345, ILL6415 
  Yugoslavia (2) ILL2230, ILL2231 
ICARDA (8) ICARDA (8) ILL6994, ILL7012, ILL7978, ILL7979, 

ILL7981, ILL9888, ILL10053, ILL10281 
North America (13) Canada (4) ILL4738, Eston, Richlea, Viceroy 
  Guatemala (1) ILL494 
  Mexico (3) ILL502, ILL5553, ILL5645 
  United States (5) ILL4671, Brewer, Crimson, Merrit, 

Redchief 
South America (6) Argentina (2) ILL268, ILL4605 
  Chile (2) ILL956, ILL1005 
  Columbia (1) ILL1649 
  Uruguay (1) ILL4778 

Note: Numbers in parentheses are accession counts per location.  
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Table 2.2: Carbohydrate analysis with the number of accessions (N), range, overall mean with 
standard error (SE), and heritability estimates (H2) 
 

Carbohydrate type N Range Mean ± (SE) Genotype H2 %RDAa 

Sugar alcohols (mg/100 g) 
Sorbitol 143 113d–328 207 ± 3 *** 0.34  
Mannitol 143 2–357 46 ± 3 *** 0.45  
Total sugar alcohols 143 126–609 253 ± 5   2–9 

Simple sugars (mg/100 g) 
Glucose 143 36–315 93 ± 3 *** 0.20  
Fructose 143 7–325 69 ± 4 *** 0.23  
Sucrose 143 208–1010 496 ± 9 *** 0.34  
Total simple sugars  143 275–1326 658 ± 12    

Raffinose-family oligosaccharides (mg/100 g) 
Stachyose + Raffinose 143 344–1748 578 ± 12 *** 0.41  
Verbascose + Kestose 143 164–647 318 ± 7 *** 0.29  
Total RFOs  143 508–2167 896 ± 16   7–31 

Starch polysaccharides (g/100 g) 
Resistant starch 102 10.1–22.1 16.4 ± 0.2 *** 0.31 51–111 
Non-resistant starch 102 27.1–48.3 39.6 ± 0.4 *** 0.37  
Total starch polysaccharides  102 44.7–68.2 56.0 ± 0.4 ** 0.22  

Total prebiotic carbohydrates 102 11.4–23.2 17.5 ± 0.2   57–116 
a %RDA is based on a recommended daily allowance of 7 g/day for sugar alcohol41, 7 g/day for 
raffinose-family oligosaccharides42, and 20 g/day for resistant starch and total prebiotic 
carbohydrates43.  A genotype is noted as significant at ** P<0.05 and *** P<0.01. H2 broad-
sense heritability estimate. Total prebiotic carbohydrates include resistant starch, raffinose-
family oligosaccharides, and sugar alcohols. N: number of samples.  
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Table 2.3: Significant SNPs identified using GAPIT and GEMMA software. 
 
Carbohydrate Significant SNP p-value 

(GAPIT) 
p-walda 
(GEMMA) 

MAF 
(%) 

Mannitol CHR2_558954064 1.6E-06 7.4E-07 5.9 
CHR3_346516487 NS 1.3E-06 6.6 
CHR4_179223602* NS 6.0E-08 8.0 

Glucose CHR6_290592280 NS 2.2E-06 14.7 
Fructose CHR1_153779145 NS 7.2E-07 7.3 

CHR1_153779147 1.3E-12 7.2E-07 7.3 
CHR1_537293922* NS 7.4E-08 7.0 
CHR1_537449765 NS 7.4E-08 7.0 
CHR2_352993379 1.1E-06 NS 8.4 
CHR3_167167171 1.8E-06 NS 19.2 
CHR3_39693339 2.5E-07 NS 7.7 
CHR4_268011619* 8.1E-09 NS 16.8 
CHR4_316841184 1.6E-07 NS 5.2 
CHR5_316719059* 1.0E-18 4.3E-07 5.2 

Sucrose CHR6_116880302 1.8E-06 9.0E-07 5.2 
Stachyose+Raffinose CHR1_35234757* 1.7E-07 NS 9.8 

CHR1_46070961* 6.0E-08 NS 7.0 
CHR1_143888359* NS 4.1E-08 5.6 
CHR4_32265499 2.5E-07 NS 8.4 
CHR4_87430341 4.2E-07 NS 6.6 
CHR5_235283678 1.5E-07 NS 12.6 
CHR6_116870957 NS 4.2E-08 5.2 
CHR6_116880302 NS 1.6E-07 5.2 
CHR6_117946950 NS 3.8E-07 5.6 
CHR6_121916516 NS 7.0E-07 6.3 
CHR6_126221589 NS 2.0E-06 6.3 
CHR6_126869085 NS 2.0E-06 6.3 
CHR6_128918912 NS 7.0E-07 6.3 
CHR6_128918961 NS 7.0E-07 6.3 
CHR6_130768080 NS 7.0E-07 6.3 
CHR6_137205602 NS 1.1E-06 5.9 
CHR6_137205644 NS 1.1E-06 5.9 
CHR6_137214200 NS 1.9E-06 5.9 
CHR6_137214204 NS 1.9E-06 5.9 
CHR6_371563912 8.5E-12 2.6E-08 9.8 
CHR7_371621305 NS 3.6E-07 5.9 
CHR7_371621330 NS 3.6E-07 5.9 

Resistant Starch CHR1_181806369* 3.8E-07 NS 6.9 
CHR1_505079023 9.0E-11 NS 8.8 
CHR2_137384845* NS 1.0E-06 22.1 
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CHR2_137480326 NS 1.1E-07 22.1 
CHR2_137480370 NS 1.1E-07 22.1 
CHR2_239215652 1.8E-07 NS 8.3 
CHR2_451413537 3.1E-11 NS 13.7 
CHR3_45534258* 6.0E-07 NS 27.0 
CHR6_116906535 2.3E-07 NS 5.2 
CHR6_387488515 2.2E-07 NS 6.9 

Total Starch CHR7_84111711 1.4E-11 3.2E-07 4.9 
* Located within a gene. Italicized SNP (CHR6_116880302) is associated with both suc and 
sta+raf. NS = not identified as significant by the software. aGEMMA p-wald values were from 
the Wald test. 
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Figure 2.1: Histograms of accession means with normal curve fits. 1. Sugar alcohols (mg/100 g); 
2. Simple sugars (mg/100 g); 3. Raffinose-family oligosaccharides (mg/100 g); 4. Starch 
polysaccharides (g/100 g). The first box plot (Tukey outlier) shows possible outliers as points, 
while the second box plot (normal quantile) includes all data in estimates. Red normal curves 
were fitted to the data based on the mean, standard deviation, and sample size. 
  

https://www.nature.com/articles/s41598-021-93475-3/figures/1
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Figure 2.2: Comparison of carbohydrate concentrations by continent of origin. Bars separated by 
different letters have significantly different means (p < 0.05). Bars labeled as ICARDA 
originated as part of the ICARDA breeding program.  

https://www.nature.com/articles/s41598-021-93475-3/figures/2
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Figure 2.3: Genome-wide association study Manhattan plots from GAPIT. The green line 
represents the Bonferroni significance threshold (p < 0.01/22,222). 
  

https://www.nature.com/articles/s41598-021-93475-3/figures/3
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CHAPTER THREE 

FOURIER-TRANSFORM INFRARED SPECTROSCOPY (FTIR) AS A HIGH-

THROUGHPUT PHENOTYPING TOOL FOR QUANTIFYING PROTEIN QUALITY IN 

PULSE CROPS 

Abstract 

Fourier-transform mid-infrared (FT-MIR) spectroscopy is a high-throughput, cost-

effective method to quantify nutritional traits, such as total protein and sulfur-containing amino 

acid (SAA) concentrations, in plant matter. This study used the spectroscopic technique FT-MIR 

coupled with attenuated total internal reflectance sampling interface to develop multivariate 

models for total protein concentration in chickpea (Cicer arietinum L.), dry pea (Pisum sativum 

L.), and lentil (Lens culinaris Medik.), in addition to SAA concentration in lentil. Total nitrogen 

data from combustion analysis and SAA data from high-performance liquid chromatography 

analysis following acid hydrolysis were used for model calibration and validation. Models for the 

total protein concentration of chickpea (calibration root mean square error [RMSE] = 0.093, 

R2 = 0.948, prediction RMSE = 0.10), dry pea (calibration RMSE = 0.096, R2 = 0.845, prediction 

RMSE = 0.093), and lentil (calibration RMSE = 0.13, R2 = 0.845, prediction RMSE = 0.11) 

utilized infrared regions associated with protein structures, namely amide bands A, I, and II. In 

sulfur-related models for lentil total SAA (calibration RMSE = 0.014, R2 = 0.827, prediction 

RMSE = 0.022) and methionine (calibration RMSE = 0.0075, R2 = 0.815, prediction 

RMSE = 0.014) models utilized the C-S and S-CH3 stretching and bending bands. Study findings 

support the conclusion that FT-MIR spectroscopy is a promising high-throughput and cost-

effective phenotyping technique that will allow quantifying protein traits quickly and easily in 

pulse crops. 
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Abbreviations 

AA amino acids 

ATR attenuated total reflectance 

FIR far-infrared 

FTIR Fourier-transform infrared spectroscopy 

FT-MIR Fourier-transform mid-infrared 

HPLC high-performance liquid chromatography 

IR infrared 

MIR mid-infrared 

NIR near-infrared 

PLS partial least squares 

QTL quantitative trait loci  

RMSE  root means square error 

SAA sulfur-containing amino acids 

ZFF zero-fill factor 
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Introduction 

Pulse crops, such as chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil 

(Lens culinaris Medik.), are an essential part of the global food system to provide plant-based 

protein, low digestible carbohydrates, and a range of micronutrients (Foyer et al., 2016; Johnson 

et al., 2020). These staple crops are increasing in popularity as plant-based protein sources—a 

trend expected to continue based on many factors such as health benefits and climate change 

(Graça et al., 2019; Kim et al., 2019; Pimentel & Pimentel, 2003). Pulses tend to be low in 

sulfur-containing amino acids (SAA) (Boye et al., 2012), so varieties high in methionine and 

cystine are a vital breeding objective to increase the protein quality in plant-based diets. 

However, measuring the concentration of amino acids (AA), particularly SAA, is challenging, as 

they are susceptible to acid degradation and thus require an additional protective oxidation step. 

A typical method takes two to three days for sample digestion before AA quantification. 

Instruments to measure AA concentrations, such as high-performance liquid chromatography 

(HPLC), are generally low-throughput, expensive, time-consuming, and require highly skilled 

operators. Quantitative Fourier-transform mid-infrared (FT-MIR) spectroscopy methods offer a 

promising alternative to conventional methods for analyzing protein and SAA. Samples can be 

analyzed in seconds without the chemicals and consumables required by traditional techniques. 

Infrared (IR) is a low-energy region in the electromagnetic spectrum extending from 

12,800 to 10 cm–1 (Skoog et al., 2016) and consists of the near-infrared (NIR; 12,800–4,000 cm–

1), mid-infrared (MIR; 4,000–200 cm–1), and far-infrared (FIR; 200–10 cm–1) spectrums (Skoog 

et al., 2016). Infrared spectroscopy using interferometers coupled with Fourier-transform (FT) 

algorithms are termed Fourier-transform infrared spectroscopy (FTIR) instruments and have 

several advantages over previous dispersive spectroscopy instruments, including (a) greater 
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energy intensity due to the lack of slits and fewer optics to attenuate the source radiation 

(mechanically simpler), known as Jacquinot’s (throughput) advantage; (b) simultaneous 

collection of multiple wavelengths (without the need for scanning), resulting in a shorter 

collection time and consequent increases in the signal-to-noise ratio, known as Fellgett’s 

(multiplex) advantage; and (c) increased wavenumber accuracy inherent to the internal laser 

calibration and interferometer, enabling multiple scans to be collected and averaged, known as 

Connes’ advantage (Perkins, 1987; Skoog et al., 2016). Fourier-transform instruments in the 

near, mid, and far regions probe high-frequency oscillations (vibrational overtones), fundamental 

vibrational modes, and low energy vibrations (Berthomieu & Hienerwadel, 2009; Capuano & 

van Ruth, 2015; El Khoury & Hellwig, 2017). However, the fundamental oscillations in MIR 

spectroscopy provide quantitative data from unique functional group oscillations (Leong et al., 

2018). The overtones arising in the NIR range lack a robust quantitative background due to the 

complexity of unresolved bands (Capuano & van Ruth, 2015). Thus, chemometric models 

underlying NIR spectroscopy may not produce consistent quantitative results across diverse 

samples, such as grain flours from different regions or years, despite success in training sets. NIR 

spectroscopy was first reported for the evaluation of protein in pulses in Williams et al. (1978), 

yet the method has been little reported since, with even less work reported using MIR 

spectroscopy. The stronger absorption bands of MIR spectra provide a superior platform for 

consistent chemometrics with greater selectivity and sensitivity, which will not change with crop 

genotype, growing location, or year. Therefore, FT-MIR can be used to simultaneously identify 

and quantify molecules (i.e., proteins, carbohydrates, etc.) based on their distinct functional 

groups without further sample preparation. 
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The functional groups of proteins (N-H and C = O) and SAA (C-S and C-H of S-CH3) 

have permanent dipole moments, and such groups can be readily probed with FT-MIR 

spectroscopy (Barth, 2007; Berthomieu & Hienerwadel, 2009). Total protein and SAA offer a 

helpful picture of protein quality in pulses since pulses are high in protein but limited by SAA 

(Bhatty, 1988; Sarwar & Peace, 1986). Standard laboratory approaches for measuring protein 

and SAA include the Dumas method (nitrogen analysis through combustion), Kjeldahl method, 

UV-visible spectroscopy (Chang & Yan, 2019), and various chromatography techniques, such as 

HPLC with diode array detection. Most of the above approaches are destructive to the sample, 

require extensive analysis time, chemicals, and skills and are thus expensive. Amino acid 

analysis, for example, costs over $100 per sample. Total protein analysis is less expensive at ~$6 

but remains a constraint when analyzing thousands of samples. Consequently, these methods do 

not qualify as high-throughput workflows desired in nutritional breeding programs. In contrast, 

FT-MIR spectroscopy is a nondestructive, high-throughput approach requiring little operating 

costs or training. Therefore, the objectives of this paper are two-fold: (a) demonstrate FT-MIR as 

a potential high-throughput, nondestructive, and cost-effective phenotyping technique for pulse 

nutritional traits, and (b) present multivariate models for the quantification of protein and SAA in 

pulse crops based on FT-MIR spectra. 

Materials and Methods 

FTIR Instrumentation and Data Analysis Software 

A Cary 630 FTIR spectrometer with a diamond attenuated total reflectance (ATR) 

module (Agilent Technologies) was used to acquire all MIR spectroscopic data. The data 

acquisition was performed within a spectral range of 650–4,000 cm–1 under Happ-Genzel 

apodization. The instrument acquisition parameters were optimized for each trait to enable the 
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collection of spectral data with sufficient selectivity and sensitivity for quantitative analysis 

(Table 3.2). The data were analyzed with MicroLab Expert software (version 1.1) developed by 

Agilent Technologies for multivariate statistical modeling (chemometric modeling). Scatter plots 

were generated, and pooled t-tests were performed in JMP Pro (14.0.0). 

Chickpea, Dry Pea, and Lentil Seed Samples 

All pulse seed samples were collected from U.S. breeding programs, specifically the 

USDA-ARS chickpea breeding program at Washington State University and the organic pulse 

nutritional breeding program at Clemson University. For chickpea and dry pea, a total of 100–

150 dry seeds were selected from each breeding line and ground to a maximum particle size of 

0.5 mm, using a cyclone sample grinder (UDY Corporation). Likewise, 10–50 seeds were 

selected from each lentil line and ground using a blade coffee grinder (KitchenAid) and sieved to 

a maximum particle size of 0.5 mm. The powdered subsamples were stored before analysis in a 

cold room maintained at 10 °C with a humidity level of ~50%. 

Total Nitrogen Analysis 

The total nitrogen content of all pulse flours was analyzed on a combustion nitrogen 

analyzer at the Clemson Agricultural Service Laboratory (Clemson, SC). The final protein 

concentration was determined by multiplying total nitrogen by a factor of 6.25 (Salo-väänänen & 

Koivistoinen, 1996). 

Sulfur-Containing Amino Acid Analysis 

Lentil SAA concentrations were determined using an acid hydrolysis method with a pre-

oxidation step, followed by HPLC analysis. The hydrolysis method was adapted from Gehrke et 

al. (1985) and Manneberg et al. (1995). In brief, 40 mg of lentil flour was weighed into glass 

culture tubes (16 × 125 mm, polytetrafluoroethylene [PTFE] lined cap). A lentil lab reference 
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standard was included in each batch to monitor batch-to-batch variation. Five mL of chilled 

performic acid (9:1 ratio of formic acid and hydrogen peroxide) was added to each tube to 

convert the SAA to stable derivatives, methionine sulfone, and cysteic acid. The tubes were 

gently swirled on a vortex mixer and refrigerated in an ice bath overnight (16 h). Caps were 

removed, and PTFE boiling rods (1/8 in. × tube length) were added. Samples were evaporated to 

dryness in an oil bath under vacuum (~70–80 °C, ~610 mmHg; 3 gal. resin trap; BACOENG). 

The tube rack was elevated with a stir bar underneath to improve consistent evaporation across 

the batch. The pressure was slowly lowered to prevent bumping. Tubes were removed, and 

residual oil was wiped off. Caps were removed, and 4.9 mL of 6 M HCl (hydrochloric acid) was 

added, along with 0.1 mL internal standard mix (25 mM norvaline and sarcosine each). Tubes 

were tightly capped and gently swirled. Proteins were hydrolyzed in an oven at 110 °C for 24 hr. 

Tubes were then allowed to cool to room temperature and vortex mixed. Samples were filtered 

(0.22 µm polypropylene syringe filter), and 1 mL was added to a clean glass tube to be 

evaporated to dryness as before. Samples were reconstituted with 1 mL mobile phase A and 

loaded into HPLC vials for analysis. 

Amino acid concentrations were measured using an HPLC method adapted from Agilent 

application notes (Agilent Application Note, 2010; Long, 2015). An Agilent 1100 series system 

(Agilent Technologies) was used for analysis. A diode array detector (DAD) collected spectra at 

338 nm, 10 nm bandwidth (reference 390 nm, 20 nm bandwidth) and 262 nm, 10 nm bandwidth 

(reference 390 nm, 20 nm bandwidth). Mobile phase A consisted of 10 mM Na2HPO4 (sodium 

phosphate), 10 mM Na2B4O7•10H2O (sodium tetraborate decahydrate), and 5 mM NaN3 (sodium 

azide) and was adjusted to pH 8.2 with concentrated HCl and subsequently filtered through 

0.2 µm regenerated cellulose membrane. Solution B consisted of acetonitrile/methanol/water 
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(45:45:10, v/v/v). Separation was achieved on an Agilent Poroshell HPH-C18 3 × 100 mm 

analytical column (Part Number 695975-502; Agilent Technologies) with the corresponding 

Poroshell HPH-C18 3 × 5 mm guard column (Part Number 823750–928). The G1329A 

autosampler derivatized AAs with OPA (o-phthalaldehyde) and FMOC (9-fluorenylmethyl 

chloroformate). Vials of borate buffer (Part Number 5061-3339), H2O (water) needle wash, and 

injection diluent (100 mL solution A, 0.4 mL H3PO4 conc.) were also required. The injection 

method was as follows (default speed and offset were used except where noted): (a) draw 2.5 µL 

from borate buffer, (b) draw 0.5 µL from a sample, (c) mix 3 µL from the air for five times, (d) 

wait 0.2 min, (e) draw 0 µL from needle wash, (f) draw 0.5 µL from OPA (vial insert) using 

2 mm offset, (g) mix 3.5 µL from the air for six times, (h) draw 0 µL from needle wash, (i) draw 

0.4 µL from FMOC (vial insert) using 2 mm offset, (j) mix 3.9 µL from the air for 10 times, (k) 

draw 32 µL from injection diluent, (l) mix 20 µL from the air for eight times, and (m) inject. See 

Table 3.1 for instrument method and conditions. Dilution series were made for calibration 

standard curves from 9 to 900 pmol/µL with norvaline (primary AA) and sarcosine (secondary 

AA) as internal standards at 500 pmol/µl. Calibration curves were generated for each AA from 

the ratio of AA/internal standards. Standards included cysteic acid, aspartic acid, glutamic acid, 

asparagine, serine, glutamine, histidine, glycine, threonine, methionine sulfone, arginine, alanine, 

tyrosine, cystine, valine, methionine, tryptophan, phenylalanine, isoleucine, leucine, lysine, 

hydroxyproline, and proline. 

Chickpea Total Nitrogen Model 

The diamond ATR surface was cleaned with HPLC grade methanol (Fisher Scientific) 

before spectra of the ground chickpea samples (fully homogenized by mixing) were collected. 

Instrument and model parameters are available in Table 3.2. The instrument acquisition 
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parameters were set to absorbance mode with 64 scans (~30 s) per spectrum (Table S3.1 

[Appendix A]), 4 cm–1 resolution, and no zero-fill factor (ZFF). Each breeding line was analyzed 

seven times. The most stable spectra with constant intensity were selected without averaging for 

calibration. Background corrections (36 scans) were performed between each spectral collection. 

Protein is a macronutrient with easily resolved IR bands, requiring less stringent acquisition 

parameters than SAA, as discussed below. The calibration set included 55 breeding lines (154 

spectra) from the 2018 chickpea population, and the validation set included 22 breeding lines (84 

spectra) from the 2020 chickpea population for the partial least squares (PLS-1) model (Tobias, 

1995). The Savitzky-Golay first-order derivative and smoothing algorithm (smoothing window 

of 21) was applied to all spectra. The model was calibrated with nitrogen values obtained from a 

nitrogen analyzer. The PLS-1 model was developed based on the regions sensitive to the total 

protein concentration (3,682.61–3,006.98 cm–1, N-H stretch; 1,718.30–1,487.21 cm–1, amide 

bands I and II), and eight PLS model factors were included in the model. The model was run 

with full cross-validation. 

Dry Pea Total Nitrogen Model 

The same background correction and data acquisition steps as for chickpea were followed 

(Table 3.2). However, the calibration set included 40 breeding lines (135 spectra) from the 2019 

dry pea population, and the validation set included 22 breeding lines (59 spectra) from the 2020 

dry pea population. The spectra were initially normalized to a scale of 0 to 1, and the Savitzky-

Golay first-order derivative and smoothing algorithm (smoothing window of 21) was applied. 

The model was calibrated with total nitrogen values, as done for the chickpea model. The PLS-1 

model was developed based on the same spectral ranges as the total nitrogen model above; 
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however, 11 PLS model factors were included in the model. The model was run with full cross-

validation. 

Lentil Total Nitrogen and SAA Models 

The diamond ATR window was cleaned with HPLC grade methanol and allowed to dry 

before each spectrum was collected. The background was collected every 30 min or less for 

convenience. Fourier-transform mid-infrared spectra were collected for 50 lentil breeding lines, 

and six spectra were collected per breeding line. Acquisition parameters included 200 scans per 

background and 100 scans (~75 s) per spectrum at a resolution of 2 cm–1 and a ZFF of 2 

(Table 3.2). All spectra were normalized to a scale of 0 to 1. Unlike the previous models, the 

spectra were not derivatized by the Savitzky-Golay algorithm because the spectra were highly 

structured and informative at a resolution of 2 cm–1 and with a ZFF of 2. The increased scan 

number and resolution generated detailed spectra and allowed for the quantification of SAA, 

which are at low concentrations in lentil. For ease, the same spectra were used for the protein 

model. Additionally, this allows for the models to be combined into a single method for 

generating protein and SAA data simultaneously. 

A PLS-1 model for total nitrogen in lentil flour was developed using Agilent MicroLab 

Expert software. The most stable spectra were applied in calibration without averaging. The 

calibration set included 32 breeding lines (57 spectra), and the validation set included 18 

breeding lines (25 spectra). The model utilized the same spectral regions as in chickpea and dry 

pea and included five PLS model factors. PLS-1 models for total SAA and methionine were 

similarly attempted. In the model for total SAA, the calibration set included 37 breeding lines 

(53 spectra), and the validation set included 24 breeding lines (34 spectra). The model utilized 

721.24–867.07, 1,231.88–1,469.96, 1,904.20–2,241.99 and 2,825.78–2,994.91 cm–1 spectral 
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regions and included eight PLS model factors. Furthermore, the methionine model included 26 

breeding lines (39 spectra) and 22 breeding lines (31 spectra) for calibration and validation, 

respectively. The model utilized 674.65–808.37, 1,182.03–1,484.41, 1,975.49–2,158.59, and 

2,658.52–2,991.19 cm–1 spectral regions with eight PLS model factors. All lentil models were 

run with full cross-validation. 

Results and Discussion 

This study successfully demonstrated that FT-MIR is a robust, nondestructive tool for 

measuring protein and SAA in pulse crops. Proteins and SAA have polar functional groups 

sensitive to MIR energy. The functional groups of proteins (N-H and C = O) in chickpea, dry 

pea, and lentil flour were analyzed through FT-MIR spectroscopy. Associated IR bands were 

identified at ~1,550 cm–1 (amide II bands), ~1,650 cm–1 (amide I band), and between 3,310 and 

3,270 cm–1 (amide A band) (Tiwari & Singh, 2012). Multivariate models (PLS-1) were 

developed associating these regions with total nitrogen content. In chickpea, predicted protein 

concentrations of the validation set ranged from 18.3 to 23.9%, with a mean of 20.9% 

(Table 3.3). The chickpea total nitrogen model achieved an R2 of 0.948, a calibration root means 

square error (RMSE) of 0.093, and a prediction RMSE of 0.10 (Figure 3.1b and Table 3.4). For 

dry pea, the predicted total protein concentration of the validation set ranged from 18.1 to 23.1%, 

with a mean of 21.2%. The dry pea total nitrogen model achieved a calibration RMSE of 0.096, 

an R2 of 0.845, and a prediction RMSE of 0.093 (Figure S3.1b [Appendix A]). For lentil, 

predicted protein concentrations ranged from 25.4 to 33.3%, with a mean of 28.3%. The lentil 

total nitrogen model achieved an R2 of 0.845, a calibration RMSE of 0.13, and a prediction 

RMSE of 0.11 (Figure S3.2b [Appendix A]). These models predicted mean protein 

concentrations in chickpea, dry pea, and lentil within the cited ranges in the literature (chickpea: 
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15.6–22.4%, dry pea: 20–25%, and lentil: 20.6–31.4%), demonstrating the applicability of the 

method in the field (Jarpa-Parra, 2018; Khan et al., 2016; Upadhyaya et al., 2016). Furthermore, 

pooled two-tailed t-tests performed on each crop (chickpea: P > |t| = 0.93; dry pea: P > |t| = 0.97; 

lentil: P > |t| = 0.82) targeting the means of actual and predicted protein concentrations of 

validation data showed no significant difference. 

The functional groups of SAA (C-S and C-H of S-CH3) in lentil flour were similarly 

analyzed. SAA is a valuable nutritional breeding trait because lentil (and other pulse crops) is 

nutritionally limited by SAA, methionine, and cysteine, despite being high in total protein. These 

low concentrations present a challenge for IR band resolution and consequent quantification. 

However, this study successfully identified bands in the lentil MIR spectrum (~751–685,~2,493–

2,157, and ~2,977–2,861 cm–1) associated with C-H stretching of methyl mercaptan (S-CH3) and 

C-S stretching in pure methionine were recognized (Figures 3.2a & S3.3a–S3.4 [Appendix A]). 

The bands apparent at ~2,991–2,659 cm–1 and 1,470–1,232 cm–1 represent the total C-H, C-CH2, 

and C-CH3 oscillations in lentil flour. The region between ~2,159–1,975 cm–1 (the phonon band 

arising due to the oscillations of the carbon lattice of ATR- diamond) strengthened the prediction 

of the multivariate regression models for total SAA and methionine. The lentil SAA model 

achieved an R2 of 0.827, and the predicted validation data ranged from 0.207 to 0.326%, with a 

mean of 0.258%. In this model, the calibration RMSE was 0.014, and the prediction RMSE was 

0.022 (Figure 3.2b). Further, the methionine model achieved an R2 of 0.815 and predicted the 

validation results between 0.194–0.294%, with a mean of 0.222%. The methionine model had 

the calibration and prediction RMSEs at 0.0075 and 0.014, respectively (Figure S3.3b [Appendix 

A]). The lines of best fit for the validation data (Figures 3.1b–3.2b & S3.1b–S3.3b [Appendix 

A]; blue lines) have deviated slightly from that of the calibration data (Figures 3.1b–3.2b & 
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S3.1b–S3.3 [Appendix A]; black lines). The t-tests performed for total SAA and methionine 

(P > |t| = 0.35 and P > |t| = 0.76, respectively) returned no significant differences between actual 

and predicted means. The predicted lentil methionine mean, 0.22%, agrees well with the 

literature (0.22%, USDA ARS, 2019). Total SAA makes up ~2% of the total protein content of 

lentils, whereas SAA comprise ~4% of beef and chicken protein and ~8% of chicken egg protein 

(USDA ARS, 2019). Lentil and other pulse crops are not a good source of SAA; however, 

genetic selection and breeding may help increase their SAA concentrations. Developing lentil 

varieties with high SAA concentrations could help improve the dietary intake of better-quality 

protein and develop food products, such as protein powder, that contain high-quality protein 

without adding another high-SAA source. 

Chemometric models with well-recognized and consistent underlying bands will aid in 

the development of analytical methods and accurate, consistent modeling regardless of differing 

sample origins. While the prediction RMSEs indicate these models have high predictive ability 

for each sample, the t-tests indicate they also accurately predict the population means. The 

calibration data were not used in model validation, and the purpose of calibration data was to 

build the model, whereas validation data was to test the model. Thus, these total protein, total 

SAA, and methionine chemometric models have consistent applicability over these pulse crops 

regardless of sample origin. Accordingly, FT-MIR spectroscopy provides added advantages for 

stable and straightforward chemometric modeling compared with methods associated with the 

NIR range, which lacks a strong quantitative foundation (Guo et al., 2016). 

Traditional univariate statistical regression modeling based on Beer-Lambert was 

unsuitable for complex sample systems like lentil and chickpea. Partial least squares regression 

(a multivariate statistical regression algorithm) was applied with chemometric modeling 
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throughout this study, where the best predictive use of spectral variables can be enhanced. The 

use of PLS regression reduced the dimensionality of the multivariate space in a supervised 

manner, maintaining a good correlation between dependents (absorbance values) and 

independent (analyte concentrations) variables (Saikat et al., 2008). Therefore, PLS-1 proved to 

be an excellent choice for correlating nutrient data with the spectral regions associated with 

protein functional groups. Fourier-transform mid-infrared spectroscopic data were utilized with 

minimal mathematical pre-processing (averaging, normalization, and the Savitzky-Golay 

derivative and smoothing algorithm). In FT-MIR spectroscopy, the spectra are always associated 

with functional groups and molecular skeletal structures (Yadav, 2005). Fully resolved 

functional group bands act as fingerprints for traits (analytes). In proteins, the A, I, and II amide 

bands (Figures 3.1a & S3.1a–S3.2a [Appendix A]) were significantly associated with protein 

content in our models. The C-H stretching bands of methyl mercaptans and C-S stretching bands 

in methionine are mainly associated with our total SAA and methionine models. Other spectral 

regions common to both lentil flour and the standard compounds (Figure S3.4) were also 

selected to enhance the regression in the chemometric models. Notably, different spectral 

acquisition parameters were followed in the lentil models than the chickpea and dry pea models 

during spectral sampling. This was to ensure sufficiently high resolution and scan number in the 

lentil spectra to observe the minor bands associated with methionine at low concentrations in the 

sample matrix. Once highly resolved spectra were employed, the number of spectra required for 

a consistent model in the lentil models was lower than for the chickpea and dry pea models, 

which employed lower resolution parameters and had fewer spectral details (data points) in each 

spectrum. However, high resolution is not required for a bulk trait such as total protein because 

the associated amide bands are distinct and quickly resolved. The use of first derivatives in the 
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chickpea and dry pea spectra further strengthened the predictive ability of the two respective 

chemometric models related to total proteins. 

Breeding programs require the generation of large amounts of phenotypic data. 

Nutritional traits are no exception, yet higher costs are associated with collecting these data than 

traditional agronomic traits such as yield. With the great promise of molecular-based breeding 

approaches, such as marker-assisted backcrossing and genomic selection along with genome-

wide association studies, large datasets are needed to discover quantitative trait loci (QTL) and 

elucidate underlying gene pathways associated with traits (Liu et al., 2020; Roorkiwal et al., 

2016; Sab et al., 2020; Upadhyaya et al., 2016). The application of conventional protocols in 

quantifying nutrients (nutritional phenotyping) is not suitable for the large volume of samples 

from the field. Significant challenges with traditional quantitative analysis techniques include 

long analysis times, highly trained workers, chemical costs, chemical disposal, and instrument 

maintenance. Fourier-transform infrared spectroscopy analysis time is short (i.e., less than a 

minute), and the method does not require a skilled operator (Capuano & van Ruth, 2015). It also 

requires minimal sample preparation, minimizing the risks of hazardous chemical usage and 

chemical cost. Compared with the complex compartmentalization typical of liquid and gas 

chromatography systems, the compact instrumentation occupies little space and is relatively 

simple in construction. Maintenance costs are also considerably lower than other analytical 

instruments (Minali & Rein, 2015). Therefore, FT-MIR spectroscopy can support a high-

throughput and efficient workflow for the quantitative analysis of nutritional traits. 

Accordingly, the chemometric regression (PLS-1) models for total protein and 

methionine could be an essential part of this high-throughput phenotyping workflow. This 

analytical technique could lower costs in breeding programs globally and open possibilities for 
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developing and under-resourced countries to adopt the technique in their breeding programs. The 

methods and models presented in this study can accelerate nutritional breeding programs by 

reducing the time and cost of analysis and by being incorporated into QTL discovery pipelines. 

Rapid, low-cost data generation is advantageous for efficiently increasing sample size and power 

in genome-wide association studies. Once QTLs are detected, flanking markers can be used in 

marker-assisted selection (MAS) to verify the presence or absence of favorable alleles in 

progeny. MAS could be an effective technique for nutritional traits because the phenotype can be 

predicted without processing and analyzing the seed. Seedlings could be genetically tested and 

selected or discarded before flowering, allowing for same-generation hybridization, essentially 

cutting generation time in half. 

Conclusions 

Fourier-transform mid-infrared spectroscopy is conveniently applicable with simple 

chemometric modeling to predict the concentrations of total proteins and SAA in chickpea, dry 

pea, and lentil. Well-recognized functional groups (bands) associated with total protein content 

and SAA content in the MIR range make multivariate modeling relatively simple. Therefore, the 

present work on FT-MIR spectroscopy creates a platform for high-throughput and nondestructive 

phenotyping with minimal costs and chemical hazards. Further, these techniques can reduce 

breeding program expenses globally and allow under-resourced countries to expand into 

nutritional phenotypes, such as those with improved protein content. Future studies may benefit 

from exploration of different modeling techniques and larger sample sizes for calibration and 

validation. 
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Tables and Figures 

Table 3.1: HPLC gradient method and conditions (max pressure: 400 bar; column temp: 40 °C) 
 

Time A B Flow rate 
min —% MP— mL/min 
0.00 100.0 0.0 0.25 
3.00 100.0 0.0 0.25 
10.40 81.5 18.5 0.62 
23.00 43.0 57.0 0.62 
23.10 0.0 100.0 0.62 
27.00 0.0 100.0 0.62 
27.10 100.0 0.0 0.62 

27.90 100.0 0.0 0.62 
28.00 100.0 0.0 0.25 
33.00 100.0 0.0 0.25 

Note. MP, mobile phase. 
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Table 3.2: Instrument acquisition and model parameters 
 

Model name Instrument scans # 
(background/sample) 

Resolution 
cm–1 

Zero-
fill 
factor 

Preprocessing Calibration 
breeding 
lines # 

Validation 
breeding 
lines # 

Calibration 
spectra # 

Validation 
spectra # 

Chickpea 
total protein 

36/64a 4 None D+S 55 22 154 84 

Dry pea 
Total Protein 

36/64a 4 None N, D+S 40 22 135 59 

Lentil total 
protein 

200/100b 2 2 N 32 18 57 25 

Lentil SAA 200/100b 2 2 N 37 24 53 34 
Lentil 
methionine 

200/100b 2 2 N 26 22 39 31 

Note. D+S = Savitzky-Golay first-order derivative and smoothing algorithm (smoothing window of 21), N = Normalization (0 to 1). 
a64 scans ≈ 30 s at 4 cm–1 resolution. b100 scans ≈ 75 s at 2 cm–1 resolution.  
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Table 3.3: Actual vs. model predicted data 
 

Model name Actual 

calibration 

set range) 

Actual 

calibration set 

true mean  

Actual 

validation set 

range  

Actual 

validation set 

true mean 

Predicted 

validation set 

range 

Predicted 

validation set 

true mean 

t-test 

 —% protein—  

Chickpea total protein 15.4–24.6 20.0 18.1–24.6 20.3 18.3–23.9 20.9 NS 

Dry pea total protein 18.3–23.9 21.1 18.4–23.6 21.0 18.1–23.1 21.2 NS 

Lentil total protein 25.7–33.7 29.7 24.7–31.1 29.6 25.4–33.3 28.3 NS 

Lentil SAA 0.211–0.348 0.279 0.197–0.321 0.265 0.207–0.326 0.258 NS 

Lentil methionine 0.185–0.264 0.224 0.200–0.251 0.221 0.194–0.294 0.222 NS 

Note. NS = actual and predicted means of validation data were not significant at P < .05; SAA,  sulfur-containing amino acid. 
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Table 3.4: Chemometric model statistics 
 

Model name R2 RMSEC RMSECV RMSEP SEP Bias 

Chickpea total protein 0.948 0.093 0.093 0.10 0.10 −0.0057 

Dry pea total protein 0.845 0.096 0.096 0.093 0.091 0.0039 

Lentil total protein 0.845 0.13 0.13 0.11 0.11 0.016 

Lentil SAA 0.827 0.014 0.014 0.022 0.021 −0.0066 

Lentil methionine 0.815 0.0075 0.0075 0.014 0.014 0.0011 

Note. RMSEC, root mean square error of calibration; RMSECV, root mean square error of cross validation; RMSEP,  
root mean square error of prediction; SEP, standard error of prediction. 
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Figure 3.1: Chickpea N model. (a) Average chickpea mid-infrared first-derivative absorbance 
spectrum. Regions in green were selected for the total nitrogen model in chickpea. (b) Scatter 
plot of actual vs. predicted total nitrogen (%) of calibration and validation data with lines of best 
fit 
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Figure 3.2: Lentil SAA model. (a) Average lentil MIR absorbance spectrum. Regions in green 
were selected for the total sulfur-containing amino acid (SAA) model in lentil. (b) Scatter plot of 
actual vs. predicted total SAA (%) of calibration and validation data with lines of best fit. 
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CHAPTER FOUR 

 
GENOME-WIDE ASSOCIATION MAPPING OF LENTIL (LENS CULINARIS MEDIK.) 

PROTEIN QUALITY TRAITS 

Abstract 

 Lentil (Lens culinaris Medik.) contains ~25% high-quality plant-based protein in addition 

to high concentrations of prebiotic carbohydrates and micronutrients, such as folate, iron, zinc, 

and selenium. As the economic and environmental costs of animal-based protein rise, plant-

based proteins, such as lentil, will become increasingly important to global food systems. 

Consequently, evaluating and targeting protein quality traits for genomic-assisted breeding is a 

valuable objective for lentil breeding programs. To this end, this study measured protein quality 

traits (amino acids and protein digestibility) in a lentil diversity panel grown under greenhouse 

conditions. Repeatability estimates were calculated, indicating low to moderate heritability in 

protein quality traits. Twelve traits were strongly correlated with each other (r > 0.70; Ala, Arg, 

Asp, Glu, Gly, Ile, Leu, Met, Ser, Thr, Val and total amino acid concentration [TA]). Admixture 

analysis was performed and subpopulations were evaluated based on their global distributions 

and effect on protein quality traits. Finally, genome-wide association studies were performed to 

identify SNP markers significantly association with protein quality traits. Candidate genes in 

local linkage disequilibrium with significant SNPs were identified and evaluated for 

physiological importance. 
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Abbreviations 

AA amino acid 

Arg arginine 

Asp  aspartate 

Ala alanine 

Cys cystine 

Glu glutamate 

Gly glycine 

His histidine 

H-Pro hydroxyproline 

Ile isoleucine 

Leu leucine 

Lys lysine 

Met methionine 

PDg  protein digestibility 

Phe phenylalanine 

Pro proline 

S-AA  sulfur-containing amino acid 

Ser serine 

TA  total amino acid 

Thr threonine 

Val valine  
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Introduction 

Protein quality, in addition to protein content, is an important consideration when 

evaluating plant-based protein sources, such as lentil (Lens culinaris Medik.). Lentil and other 

legumes are a staple part of many traditional diets around the world and feature prominently in 

the Mediterranean diet, which has been shown to lower the risk of all-cause, cardiovascular, and 

cancer mortality (Papandreou et al., 2019). A 100 g serving of lentil provides 25 g of protein or 

50% of the recommended dietary allowance (National Research Council Subcommittee on the 

Tenth Edition of the Recommended Dietary Allowances, 1989; U.S. Department of Agriculture, 

2019) and is also a rich source of prebiotic carbohydrates, vitamins, and minerals (Johnson et al., 

2020). As many people begin to transition away from animal-based protein sources, lentil is an 

excellent alternative nutritionally, economically, and environmentally. Lentil is less expensive to 

purchase than meat, has a reduced emissions impact on the environment, and lowers nitrogen 

fertilizer requirements by fixing atmospheric nitrogen in root nodules (Foyer et al., 2016; Semba 

et al., 2021). However, a challenge that lentil protein, along with other plant-based proteins, 

faces is a lower protein quality than animal protein.  

 Proteins are macromolecules composed of amino acids bound together by peptide bonds. 

A healthy diet not only requires a sufficient quantity of protein but also sufficient quantities of 

the essential amino acids Phe, Val, Trp, Thr, Ile, Met, His, Leu, and Lys. These are amino acids 

that humans cannot synthesize and, therefore, must consume in their diets or suffer malnutrition. 

Lentil is a good source of Asn, Ala, Asp, and Glu; however, lentil’s first limiting amino acids are 

the sulfur-containing amino acids, Met and Cys (Salaria et al., 2022). The body can synthesize 

Cys from Met and, consequently, they are combined for intake requirements. Cys is vital for its 

role in protein folding due to its ability to form disulfide bonds, while Met is significant for its 
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role as the amino acid that begins translation as well for its derivatives, glutathione and S-

adenosyl methionine (SAM), which are important in oxidative protection and DNA methylation, 

respectively, and have been examined in such diverse pathologies as obesity and Parkinson’s 

disease (Barbosa et al., 2021; Jalgaonkar et al., 2022). In addition to amino acid composition, 

protein quality also depends on protein digestibility (PDg), which determines how well the 

protein can be catabolized during digestion and utilized by the body. Lentil PDg is ~84% which 

is excellent relative to other crops (cf. oat 72%, wheat 77%, soybean 78%); however, plant 

proteins tend to have lower digestibility than animal proteins (cf. meat/poultry/fish 94%, milk 

95%, egg 97%) (Gilbert et al., 2011).  

 In order to ensure nutritional food security, lentil biofortification is being pursued for 

protein quality and other nutritional traits (Kumar et al., 2016). Significant genetic variation has 

been observed for protein traits in lentil, including protein content, storage protein structure and 

weight, and amino acid concentrations (Alghamdi et al., 2014; Ghumman et al., 2019; Hang et 

al., 2022). Accelerating the rate of genetic gain by reducing breeding cycle time is a primary 

objective in breeding programs, and the rise of genomics has allowed for significant gains 

through the use of genetic markers and molecular breeding approaches (Cobb et al., 2019; 

Kumar et al., 2021). Genome-wide association studies (GWAS) have been used extensively in 

plant science to identify genetic markers and candidate genes associated with a range of traits 

(Tibbs Cortes et al., 2021). In lentil, GWAS has been used to identify markers associated with 

days to flower, seeds per pod, and 100 seed weight (Rajendran et al., 2021); salinity tolerance 

(Dissanayake et al., 2021); Aphanomyces root rot resistance (Ma et al., 2020); Fe and Zn 

concentrations (Kumar et al., 2019); prebiotic carbohydrate concentrations (Johnson et al., 

2021); as well as amino acid concentrations quantified by near-infrared spectroscopy (Hang, 
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2021; Hang et al., 2022). Protein quality traits have also been explored via GWAS in cereal 

crops (Chen et al., 2016) and legumes such as chickpea (Karaca et al., 2019) and common bean 

(Katuuramu et al., 2018). Genomic markers can be used to accelerate breeding efforts. One 

prominent method is marker-assisted selection which leverages genetic markers associated with 

a causal allele or gene to select for a trait, such as through introgression and backcrossing. This 

strategy has been used with much success in developing maize with high beta-carotene content 

(Muthusamy et al., 2014) and rice with increased flood resistance (Bailey-Serres et al., 2010).  

 Biofortification of lentil protein quality is a desirable breeding objective; however, 

genetic markers and genes associated with these traits are limited. Therefore, the objectives of 

this study were to (1) quantify protein quality traits (amino acids and PDg) in a lentil association 

mapping population grown under greenhouse conditions, (2) evaluate ancestral subpopulation 

global distribution and subpopulation effects on protein quality traits, and (3) identify SNP 

markers and candidate genes associated with these traits. 

Results 

Summary Statistics and Correlations 

 AA concentration means ranged from 0.21 to 4.45 % (Table 4.1). S-AAs, Met and Cys, 

had mean concentrations of 0.21 and 0.22%, respectively. The highest four mean AA 

concentrations were Arg (2.72%), H-Pro (3.16%), Asp (3.87%), and Glu (4.45%). The mean total 

AA concentration was 29.0%. Mean protein digestibility was 88% (Table 4.1). Figure S4.1 

(Appendix B) displays histograms representing protein quality trait distributions as they compare 

to normal density curves of the same mean and standard deviation. However, Cys and, to a lesser 

degree, Ile and Lys appear bimodal. A 100 g serving of lentil, as estimated from trait means, would 

provide 100% of the recommended dietary allowance (RDA) of Ile, Leu, Lys, Phe, and Thr (Table 
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4.1). The same serving would provide 25 and 43 % of the RDA of Val and total AA, respectively. 

The lowest %RDA values were for lentil’s limiting AAs, Met and Cys, at 19 and 20%, respectively. 

These are the S-AAs. Repeatability estimates for protein quality traits ranged from 3.8 to 34.9% 

(Table 4.1). The seven highest estimates were PDg (34.9%), Met (26.4%), Total AA (23.5%), Thr 

(22.4%), Asp (22.2%), Ile (21.5%), and Leu (21.4%). Repeatability estimates for ratios of 

individual AAs to total AA ranged from 0 to 27% (Table S4.1 [Appendix B]). These estimates 

were 4.8% lower on average from their respective non-ratio AAs. Met:TA was the exception with 

a slightly higher estimate (27%) than Met (26.4%). 

 The following traits were strongly correlated with one another (r > 0.7): Gly, Ser, Ala, Leu, 

Val, Asp, Ile, Met, Thr, Arg, Glu, and TA (Table 4.2). Lys had a moderate correlation (r = 0.56–

0.67) with most of the strongly correlated traits, except a low correlation with Met (r = 0.44). Leu 

and Ile had the strongest correlation of 0.99. The sulfur-containing amino acids, cystine and 

methionine, had a moderate correlation of 0.68. Pro and H-Pro also had a moderate correlation of 

0.66. PDg had only three correlations with r > 0.23; these were Asp (r = 0.40), Arg (r = 0.39), and 

TA (r = 0.28). Most trait correlations were significant at p < 0.05; however, H-Pro, His, and PDg 

were noteworthy for having seven, four, and four insignificant correlations, respectively. 

Population Structure and Subpopulation Trait Differences 

 The lentil diversity panel was determined to have six ancestral subpopulations by 

ADMIXTURE analysis (Figure 4.1b). Subpopulations 1 through 6 were composed of 32, 13, 25, 

46, 15, and 27 accessions, respectively. Mostly subtle visual associations were seen between 

subpopulations and regions of origin (Figure 4.1a). Subpopulation six was mostly absent from 

countries in North and South America. Accessions from the United States and Canada were 

composed mostly of clusters four and five, while Syrian accessions saw substantial representation 
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of all six subpopulation clusters. Subpopulation two showed little admixture with the other 

subpopulations (Figure 4.1b) and was seen almost exclusively represented by the accessions 

originating from Syria (Figure 4.1a), which was the center for the ICARDA lentil breeding 

program. The first three principal components (PCs) of the principal component analysis (PCA) 

accounted for 13.9, 10.1, and 5.1% of the total variance. Clear separation of ADMIXTURE 

clusters was seen in the PCA scatter plots (Figure 4.1c & Figure 4.1d). Accessions within 

subpopulation two were tightly clustered on the PCA scatterplots and were clearly delineated from 

the other clusters by PC3 (Figure 4.1d). 

 When analysis of variance was performed between ADMIXTURE clusters for each protein 

quality trait, significantly different (p < 0.05) means were identified for Ala, Arg, Cys, and His 

(Figure 4.2). Pair-wise comparision showed that cluster two had a mean in the highest letter 

category across all four traits, while cluster four had a mean in the lowest letter category across all 

four traits. Thus, across these four traits, clusters two and four always had significantly different 

means. Ala clusters two and six had significantly higher means than clusters three and four. Arg 

clusters one, two, and six had significantly higher means than cluster four, while clusters three and 

four had significantly lower means than cluster two. Cys clusters two and six had significantly 

higher means than clusters one and four. His clusters two and three had significantly higher means 

than cluster six, while clusters four and six had significantly lower means than cluster two. 

Genome-Wide Association Studies 

 Fifty significantly associated SNPs were identified across 17 protein quality traits (Table 

4.3; Figures 4.3 & S4.2 [Appendix B]). These SNPs were distributed across 46 linkage 

disequilibrium (LD) blocks, which contained a total of 157 genes (Tables 4.3 & 4.4; Supplemental 

Data: GWAS Exhaustive [https://github.com/njohns4/LentilProteinQualityGWAS]). Minor allele 
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frequencies of these SNPs in the final variant call file ranged from 0.3 to 47%. QQ plots showed 

that some models controlled for false positives better than others for certain traits (Figures S4.3, 

S4.4, & S4.5 [Appendix B]). For instance, the model SUPER showed pronounced deviation from 

the null hypothesis (red dotted line) for the traits Ala, Leu, Met, Asp, Arg, Cys, Phe, and Glu:TA. 

This indicates that the model poorly fit the trait data (Figures S4.3, S4.4, & S4.5 [Appendix B]). 

This inflation of p-values was noticeable on the Met Manhattan plot as well (Figure 4.3, yellow 

points). The model FarmCPU also had several traits where p-values deviated from the line early 

at approximately –log(3) (Figures S4.3, S4.4, & S4.5 [Appendix B]). Consequently, LD blocks 

associated with traits solely by one of these two models were excluded from Table 4.4. Thirteen 

traits were associated with SNPs identified by multiple GWAS models and include: Ala, Val, Leu, 

Ile, Thr, Met, Lys, Asp, Asp:TA, Met:TA, Gly:TA, His:TA, and PDg (Figure 4.3). Two LD blocks 

were associated with multiple traits (Figure 4.3, grey dashed boxes). The first of these blocks 

(Chr3_115394955–116212912) was associated with PDg and two aspartate family traits (Asp and 

Asp:TA). The block was 818 kb and contained 15 genes including four glutathione S-transferase 

genes and three protease family protein genes (Table 4.4). The second LD block 

(Chr3_424696277–424813245) was associated with three pyruvate family amino acids (Ala, Val, 

and Leu) and three aspartate family amino acids (Ile, Thr, and Met). The block was 117 kb and 

contained four genes: Lcu.2RBY.3g073770 (gibberellin-2-beta-dioxygenase), 

Lcu.2RBY.3g073780 (gibberellin-2-beta-dioxygenase), Lcu.2RBY.3g073790 (stem 28 kDa 

glycoprotein), and Lcu.2RBY.3g073800 (plant receptor-like kinase). SNP densities were 

visualized by the green to red scaled plots above chromosome numbers in Figures 4.3 and S4.2 

(Appendix B). Densities were relatively low (0–21 SNPs per Mb) across most of the genome with 

regions near the end of chromosomes showing higher SNP densities (>30 SNPs per Mb).  
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Discussion 

 Amino acid concentrations agreed well with the U.S. Department of Agriculture’s 

reference values (2019). The reference mean fell within the ranges reported here, with the 

exceptions of Cys (0.32% reference vs. 0.15–0.29%) and Val (1.22% vs. 0.14–0.26%), where the 

reference was higher, and Pro (1.03% vs. 1.44–3.96%), where the reference was lower (Table 

4.1). Cys is a sulfur-containing amino acid known to degrade during acid hydrolysis. The method 

used included a pre-oxidative step using performic acid. This was intended to convert all Cys to 

cysteic acid, which is a more stable derivative. Nonetheless, some Cys is expected to be 

degraded, which may be the case here. Val has long been noted as being resistant to digestion 

when bonded to Val or Ile, so this may help explain the low Val concentration (Nair et al., 1976). 

Although Pro is high compared to the reference, this concentration agrees with the literature 

(Salaria et al., 2022). Notably, many of the standard reference values are low compared to the 

literature. Means and ranges also agreed well with values estimated by near-infrared 

spectroscopy, with the exceptions of high Arg and Pro and low Lys and Val (Hang, 2021). The 

mean total amino acid concentration (29%; Table 4.1) agreed well with ranges found in the 

literature for protein content (U.S. Department of Agriculture, 2019). The protein digestibility 

estimate (88%, Table 4.1) accords well with the range of 50–95% found in the literature (Shekib 

et al., 1986; Monsoor & Yusuf, 2002; Martín-Cabrejas et al., 2009). Percent recommended 

dietary allowance values reinforce that lentil is a good source of protein and essential amino 

acids, except for the limiting amino acids Met and Cys.  

Repeatability is considered the upper bound of broad-sense heritability (Kruijer et al., 

2014). Protein content in food legumes is significantly affected by environment and genotype–

environment effects (Pratap & Kumar, 2011). Heritability estimates (broad-sense) of amino acid 
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and protein concentrations vary across legume species and studies. The total amino acid 

repeatability estimate presented here (23.5%, Table 4.1) are low within this range. Heritability 

estimates of individual amino acids are not widely reported in legumes. However, in soybean, 

heritability estimates of individual amino acids ranged from 40.9% (Trp) to 81.8% (Asp) (Jiang 

& Katuuramu, 2021), while Met was high (99.7%) in chickpea (Desai et al., 2015). Repeatability 

estimates (Table 4.1) ranged from 3.8% (Phe) to 26.4% (Met). The heritability of protein content 

in food legumes is moderate to high, ranging from 20 to 85% (Baudoin & Maquet, 1999; Pratap 

& Kumar, 2011; Patil et al., 2020). Estimates in lentil fall within this range (Gautam et al., 

2018). The PDg repeatability estimate was 34.9% (Table 4.1), which was the highest of the 

protein quality traits. Protein digestibility heritability estimates are not widely reported for 

legumes. However, heritability estimates in sorghum range from 91 to 96% (Pfeiffer, 2017; 

Abdelhalim et al., 2019). Repeatability estimates for lentil protein quality traits were low to 

moderate and comparable to literature values. This indicates that some of these traits, such as 

Met and PDg, are good breeding target traits for increased protein quality.  

 Strong correlations were seen between several protein quality traits, which is consistent 

with the literature (Wang & Daun, 2006; Hang, 2021). The present study found strong 

correlations (r > 0.7) between Gly, Ser, Ala, Leu, Val, Asp, Ile, Met, Thr, Arg, Glu, and total 

amino acid concentration (Table 4.2). Cys is also seen to have low to moderate correlations (r = 

0.2–0.7) with other amino acids here and by Hang (2021). Interestingly, the trait that correlated 

strongest with Cys was Met, the other sulfur-containing amino acid. PDg was only weakly 

correlated (r < 0.39) with other protein quality traits. However, its strongest correlation was with 

Arg (r = 0.39), which is one of the amino acids incorporated into the in vitro PDg calculation. As 
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will be discussed below, several strongly correlated amino acids share significantly associated 

SNPs (Table 4.4). 

 ADMIXTURE analysis determined the optimal number of ancestral subpopulations to be 

k = 6 (Figure 4.1b). This is comparable but higher than other admixture analyses using the 

software STRUCTURE, which found between 3 and 5 ancestral subpopulations for Lens 

culinaris Medik. (Khazaei et al., 2016; Kumar et al., 2019; Pavan et al., 2019; Liber et al., 2021; 

Rajendran et al., 2021). The absence of subpopulation six from most of the accessions in North 

and South America suggests either that germplasm from this subpopulation was not widely 

incorporated into these regions or that North and South American accessions from subpopulation 

six were simply not included in the present study. North and South American accessions were 

primarily from subpopulations four and five. In contrast, Syria, which includes the largest 

number of accessions (n = 35), contains substantial representation of all six subpopulations. This 

is not surprising since ICARDA, the source of the populations used in this study, was located in 

Syria. Subpopulation two is distinct because it shows relatively little admixture compared to the 

other subpopulations (Figure 4.1b), which suggests a highly related (inbred) group of accessions 

that is relatively distant genetically from the other subpopulations. This is further confirmed by 

the PCA (Figures 4.1c & 4.1d), which shows that accessions classified as subpopulation two are 

tightly clustered and clearly delineated from the other clusters by PC 3 (Figure 4.1d). 

Interestingly, subpopulation two is also primarily represented in the accessions originating from 

Syria. 

 Analysis of variance showed significant differences between the means of subpopulations 

across accessions for Ala, Arg, Cys, and His (Figure 4.2). Subpopulations two and four had the 

highest and lowest respective means for each trait. This suggests that genetically and 
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phenotypically divergent accessions could be selected from these subpopulations for 

recombinant population development. Additionally, high Ala and Arg accessions could be 

selected from subpopulations one, two, five, or six. High Cys accessions could be selected from 

subpopulations two, three, five, or six. And high His accessions could be selected from 

subpopulations one, two, three, or five.  

 Genome-wide association studies resulted in identification of fifty significantly 

associated SNPs and 157 genes across 46 linkage disequilibrium (LD) blocks and 17 protein 

quality traits (Table 4.3, Table 4.4, Supplemental Data: GWAS Exhaustive 

[https://github.com/njohns4/LentilProteinQualityGWAS]). Most of the significant SNPs had 

minor allele frequencies below 0.10 (Table 4.3). The number of false positives in GWAS does 

increase at lower minor allele frequencies (Tabangin et al., 2009); however, many causative 

mutations are expected to occur at low frequencies in a population due to purifying selection 

(Tibbs Cortes et al., 2021). Consequently, these SNPs and the genes in local LD with them 

should be investigated for their effect on protein quality traits but with informed caution. All 

significant SNPs with minor allele frequencies above 0.32 were detected exclusively by either 

the model SUPER or FarmCPU. These models deviated significantly from the null hypothesis 

for many traits as can be seen by the elevated SNP p-values in QQ plots (Figures S4.3, S4.4, & 

S4.5 [Appendix B]) and even some Manhattan plots (Met, Figure 4.3). SNPs associated with 

traits exclusively by one of these two models were excluded from Table 4.4 because they have a 

higher chance of being false positives. These SNPs and the genes in local LD with them should 

be pursued only with great caution. LD blocks contained only one or two SNPs per block. This is 

not surprising due to the low SNP density observed here (22,280 SNPs / 3.69 Gb reference 

genome = ~ 6 SNPs / Mb; Figure 4.3). However, this could also be indicative of false positives. 
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 Two LD blocks are noteworthy because they were associated with multiple traits by 

multiple models (Table 4.4, Figure 4.3). Chr3_115394955–116212912 was associated with Asp, 

Asp:TA, and PDg. Interestingly, Asp was only weakly correlated with PDg (r = 0.40, Table 4.2). 

Although amino acids and their corresponding ratio with TA (such as Asp and Asp:TA) might be 

expected to share significant associations, this was the only pair that was identified. (It might 

also be expected that ratios of TA may share associations with TA; however, since TA was not 

significantly associated with any marker, this was not the case.) This LD block was 818 kb and 

contained 15 genes. Four genes were identified as glutathione S-transferase genes by homology. 

Glutathione S-transferase genes are a supergene family whose products aid in neutralizing toxins 

by helping facilitate the anti-oxidative activity of glutathione (Gullner et al., 2018). These genes 

are upregulated during stress, as has been shown in lentil under arsenic stress (Talukdar, 2016). 

A glutathione S-transferase gene has also been proposed as a candidate gene for Verticillium wilt 

disease resistance in Arabidopsis (Gong et al., 2018). The role of glutathione S-transferase in 

protein quality is unclear. Chr3_115394955–116212912 also contained three protease family 

genes. Proteases degrade unwanted proteins and maintain protein quality in plant cells (García-

Lorenzo et al., 2006). Protease inhibitors in grain reduce the activity of protease enzymes during 

animal digestion; consequently, seed with higher concentrations of protease inhibitors lower 

protein digestibility (Singh & Jambunathan, 1981). It is hypothesized that regulation of protease 

genes and protease inhibitor genes are synchronized within the plant leading to this association 

with protein digestibility. 

 The second LD block associated with multiple traits was Chr3_424696277–424813245, 

which was associated with Ala, Ile, Leu, Met, Thr, and Val (Figure 4.3). These traits were highly 

correlated (Table 4.2). The block contained four genes, two of which were gibberellin 2-beta-
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dioxygenase genes. This gene family is involved in numerous developmental processes in plants, 

such as seed germination, leaf expansion, shoot/stem lengthening, and reproductive structures 

and processes (Wang et al., 2014). It is likely, therefore, that these genes would affect protein 

quality traits; however, altering expression may affect numerous traits besides protein quality 

traits. The other two genes were a stem 28 kDa glycoprotein gene and a plant receptor-like 

kinase, both of which are broad descriptors, requiring functional analysis for further 

investigation. 

Conclusion 

 Lentil’s high concentration of high-quality plant-based protein makes it a prime candidate 

for protein biofortification. To that end, this study measured protein quality traits in a lentil 

diversity panel. These traits included 17 amino acids, total amino acid content, and protein 

digestibility. The ratios of individual amino acids to total amino acid content were also 

evaluated. Correlations between traits were measured. Admixture analysis revealed six lentil 

ancestral subpopulations represented in the population, and global distribution of these 

subpopulations revealed subpopulations to differ by mean concentrations of Ala, Arg, Cys, and 

His. Subpopulation two was found to be unique to accessions originating from Syria. Genome-

wide association studies associated 50 SNPs with 17 protein quality traits, 42 LD blocks, and 

157 genes. Future studies are needed to evaluate candidate genes, especially glutathione S-

transferase, protease family, and gibberellin 2-beta-dioxygenase genes. 
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Materials and Methods 

Diversity Panel Composition 

 Two mapping populations obtained from the International Center for Agricultural Research 

in the Dry Areas (ICARDA) were grown with two replicate pots per accession in the Clemson 

greenhouse complex in 2018 (Johnson et al., 2021). Samples from the two populations were 

combined for analysis. After accounting for population overlap and low yields from some 

accessions and replicates, 183 unique accessions with 1–4 replicates each were analyzed for 

protein quality traits. 

Amino Acid Analysis 

 Reagents, solvents, and high-purity standards for amino acid analysis were purchased from 

Sigma Aldrich Co. (St. Louis, MO), Fisher Scientific (Waltham, MA), and VWR International 

(Radnor, PA). Ultrapure water was used in all analyses (PURELAB flex 2 system, ELGA 

LabWater North America, Woodridge, IL). The amino acid analysis is reported elsewhere 

(Madurapperumage et al., 2022) as an adaptation from the literature (Gehrke et al., 1985; 

Manneberg et al., 1995). In brief, 40 mg of lentil flour (particle size ≤ 0.5 mm) was weighed into 

glass culture tubes (16 x 125 mm, PTFE lined cap). Performic acid was synthesized from formic 

acid and hydrogen peroxide (9:1 ratio). Once chilled in an ice bath, 5 mL of performic acid was 

added to each tube and gently swirled on a vortex mixer before being capped and refrigerated for 

16 hr to convert Cys and Met to derivatives, methionine sulfone and cysteic acid, which are more 

stable under acid hydrolysis. A 1/8 in. x tube length PTFE boiling rod was inserted into each tube 

before being evaporated to dryness in a vacuum oil bath (3 gal. resin trap, BACOENG, Suzhou, 

China) at ~70–80 ˚C and ~610 mmHg. Once cooled, tubes were removed and 4.9 mL of 6 M HCl  

and 0.1 mL of internal standard mix (25 mM norvaline, 25 mM sarcosine) was added to each tube 
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before being capped and gently swirled. Tubes were then placed in a gravity convection oven at 

110 ˚C for 24 hr to hydrolyze peptide bonds. Samples were cooled to room temperature, vortex 

mixed, and filtered through a 0.22 µm polypropylene syringe filter. One mL of sample was added 

to a clean culture tube and evaporated to dryness as before. Samples were rehydrated with 1 mL 

of HPLC mobile phase A and pipetted into HPLC vials for analysis.  

 Amino acid analysis was performed via high-performance reverse phase chromatography 

on a 1100 series Agilent system (Agilent Technologies, Santa Clara, CA, USA) according to a 

method adapted from Agilent application notes (Agilent Application Note, 2010; Long, 2015). 

Amino acids were detected on a diode array detector at two wavelengths (338 nm, 10 nm 

bandwidth, reference 390 nm, 20 nm bandwidth and 262 nm, 10 nm bandwidth, reference 390 nm, 

20 nm bandwidth). An aqueous and an organic solvent were used for mobile phase A and B, 

respectively. Mobile phase A contained 10mM sodium phosphate, 10 mM sodium tetraborate 

decahydrate, and 5 mM sodium azide with a pH adjusted to 8.2 with 12 M HCl. The solution was 

then filtered through 0.2 µm regenerated cellulose. Mobile phase B consisted of 45% methanol, 

45% acetonitrile, and 10% water (v/v/v). Injection diluent was prepared by adding 0.4 mL 

concentrated phosphoric acid to 100 mL mobile phase A. An Agilent Poroshell HPH-C18 

analytical column (3 x 100 mm) in series with the corresponding guard column (3 x 5 mm) were 

used for separation of amino acids. A gradient method was employed with linear adjustment 

between the following times (concentration mobile phase A, flow rate): 0.0 min (100%, 0.25 

mL/min), 3.0 min (100%, 0.25 mL/min), 10.4 min (81.5%, 0.62 mL/min), 23.0 min (43%, 0.62 

mL/min), 23.1 min (0%, 0.62 mL/min), 27 min (0%, 0.62 mL/min), 27.1 min (100%, 0.62 

mL/min), 27.9 min (100%, 0.63 mL/min), 28 min (100%, 0.25 mL/min,), and 33 min (100%, 0.25 

mL/min). Column temperature was maintained at 40 ˚C. Online sample derivatization with o-
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phthalaldehyde (OPA) and 9-fluorenylmethyl chloroformate (FMOC) was performed by the 

G1329A autosampler in 13 steps: draw 2.5 µL Agilent borate buffer, draw 0.5 µL sample, mix 3 

µL air five times, wait 0.2 min, draw 0 µL water, draw 0.5 µL Agilent OPA (vial insert) using 2 

mm offset, mix 3.5 µL air six times, draw 0 µL water, draw 0.4 µL Agilent FMOC (vial insert) 

using 2 mm offset, mix 3.9 µL air ten times, draw 32 µL injection diluent, mix 20 µL air eight 

times, and inject. A lab reference lentil sample was included in every digestion batch to monitor 

batch-to-batch variation and an amino acid standard mix was run on HPLC before analyzing each 

batch of samples. Calibration standards (9–900 pmol/µL) with internal standards norvaline and 

sarcosine (500 pmol/µL) were run, and linear calibration models were generated based on peak 

areas for calculating sample amino acid concentrations, which were converted into percent of lentil 

flour. Total amino acid concentration was calculated by summing all amino acid concentrations 

for each sample. The percent of total AA concentration was calculated for each amino acid. 

Consequently, the 17 amino acid concentrations resulted in 35 amino acid traits—17 amino acids, 

17 amino acid percent of total AA (AA:TA), and total AA concentration. 

In Vitro Protein Digestibility Analysis 

 Protein digestibility (PDg) was measured using the Megazyme Protein Digestibility Amino 

Acid Score assay kit with modified protocol for a 100 mg sample size (Megazyme 2019). The 

protocol was followed precisely except all masses and volumes were divided by 5. Due to expected 

underestimation of some amino acids caused by acid hydrolysis, reference amino acid values from 

the U.S. Department of Agriculture FoodData Central (2019) were used for the PDg calculations; 

these included: Pro (1.03%), Lys (1.72%), His (0.69%), and Arg (1.90%). The Megazyme Excel 

calculator was modified to change the approximate sample mass from 0.5 g to 0.1 g. In addition 
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to the controls included in the assay kit, a lab reference lentil sample was included in every batch 

to monitor batch-to-batch variation. 

Summary Statistics and Correlations 

 Protein quality trait means, standard deviations, and ranges were calculated for each 

accession in JMP 14.0.0 (Tables 4.1 & S4.1 [Appendix B]). Histograms of trait distributions were 

fit with density curves for the normal distribution using estimates of the mean and standard 

deviation (Figure S4.1 [Appendix B]). Percent recommended dietary allowance estimates were 

calculated for the essential amino acids Cys, His, Iso, Leu, Lys, Met, Phe, Thr, and Val as well as 

for total AA concentration. Estimates were for a 72 kg adult consuming 100 mg of lentil (15% 

moisture content) per day given the following dietary requirements: 8–12 mg/kg His, 10 mg/kg 

Iso, 14 mg/kg Leu, 12 mg/kg Lys, 13 mg/kg Met + Cys, 14 mg/kg Phe + Tyr, 10 mg/kg Val, and 

0.8 g/kg protein (National Research Council Subcommittee on the Tenth Edition of the 

Recommended Dietary Allowances, 1989). To estimate repeatability, a model was developed with 

trait concentration as the response variable and genotype as a random effect. Repeatability is the 

proportion of phenotypic variance attributable to genetic variance and provides an upper bound to 

broad-sense heritability (H2). Repeatability equals H2) when all differences between genotypes are 

assumed to be genetic (Kruijer et al., 2014). Pearson’s correlation coefficients (r) were calculated 

in JMP for protein quality traits using accession means across replicates (Table 4.2). 

Genome-Wide Association Studies 

 A previously generated VCF file was used for genetic analyses (Johnson et al., 2021). In 

brief, the TASSEL-GBS pipeline (Glaubitz et al., 2014) was used to process raw genotyping-by-

sequencing data (Amin, 2018) into SNP genotypes. The Lens culinaris CDC Redberry Genome 

Assembly v2.0 (Ramsay et al., 2021) was used as a reference genome. SNPs identified in contigs 
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not incorporated into assembled chromosomes were removed from the analysis. Variants were 

filtered using VCFtools (Danecek et al., 2011) to include only biallelic SNPs (--min-alleles 2 –

max-alleles 2) with a 5% minimum minor allele frequency (--maf 0.05) and a maximum of 20% 

missing genotypes (--max-missing 0.2). Missing genotypes were then imputed using Beagle 5.4 

(Browning et al., 2018). Default parameters were used except for effective population size, which 

was set to ne = 100,000. Genotypes without AA data were removed, and chromosomes were 

renamed to integers (1–7) using BCFtools. The final VCF file contained 158 genotypes and 22,280 

SNPs. 

 To mitigate batch effects from the amino acid and PDg analyses, Bayesian random effects 

(cf. BLUPs) were used instead of means in the genome-wide association study. Parameter 

estimates for the effect of genotype were calculated using the stanarm version 2.21.3 package in 

R (Goodrich et al., 2022) by fitting the following model: 

 y = (1|Genotype) + (1|Batch) 

where y is the observed mean and Genotype and Batch are random effects. 

 Genome-wide associations were performed using the Genome Association and Prediction 

Integrated Tool (GAPIT) version 3 package in R (Wang & Zhang, 2021) using default settings. 

GAPIT’s model selection with Bayesian Information Criterion feature determined that the kinship 

matrix sufficiently accounted for population structure and so principal components were not 

included in the analyses. However, a separate GAPIT analysis was performed to calculate principal 

component eigen values for later visualization with the admixture analysis (Figures 4.1c & 4.1d). 

The following models were employed for association analyses: Generalized Linear Model (GLM), 

Mixed Linear Model (MLM), Multiple Loci Mixed Model (MLMM), Compressed MLM 

(CMLM), Settlement of MLM Under Progressively Exclusive Relationship (SUPER), Fixed and 
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random model Circulating Probability Unification (FarmCPU), and Bayesian-information and 

Linkage-disequilibrium Iteratively Nested Keyway (BLINK). A Bonferroni threshold (0.05 / 

22,280 = 2.24 x 10–6) was used to determine significance. Manhattan plots (Figures 4.3 & S4.2 

[Appendix B]) and QQ plots were drawn using the CMplot version 4.1.0 package in R 

(https://github.com/YinLiLin/CMplot).  

 LD blocks were determined using PLINK v1.07 (Purcell et al., 2007) by calculating pair-

wise correlations (r2) of significant SNPs with adjacent SNPs within a 1 Mb window. LD blocks 

were determined to decay either at the first SNP with  r2 < 0.4 or at 100 kb past the final linked 

SNP, whichever was less. The 100 kb provision was to help account for the low SNP density of 

many regions of the genome which otherwise resulted in highly inflated LD block sizes. Genes 

within local LD with significant SNPs were identified using a custom python script 

(https://github.com/jlboat/features_from_snps) and were considered candidate genes. 

Population Structure and Origin Analysis 

 Population structure was estimated using ADMIXTURE (Alexander & Lange, 2011). The 

optimal number of ancestral populations (K = 6) was determined by selecting the model with the 

lowest cross-validation error using five-fold cross-validation. The model generated a Q matrix 

containing ancestral coefficients for each genotype. Accessions were categorized into 

subpopulations based on their highest ancestry coefficient (> 0.5). An admixture plot (Figure 4.1b) 

was drawn using the R package gglot2 version 3.3.6 (Wickham, 2016).  

The global distribution of accessions by ancestral subpopulation was then visualized 

(Figure 4.1a). ISO3 country codes were first assigned to accessions resulting in 52 unique countries 

of origin. Origin information was missing from two accessions resulting in the inclusion of 156 

accessions in the figure. The ddply function in the R package plyr version 1.8.7 (Wickham, 2011) 

https://github.com/YinLiLin/CMplot
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was used to calculate the mean ancestral coefficients for each country of origin. These values were 

then multiplied by the number of accessions per country before being translated into a 

SpatialPolygonsDataFrame using the function joinCountryData2Map in rworldmap version 1.3-4 

(South, 2011). The mapPies function in rworldmap was then used to draw a figure displaying 

ancestral population pie charts for each country of origin (Figure 4.1a). Pie charts depict average 

admixture composition of accessions from the same country of origin. Pie chart circumferences 

are proportional to the number of accessions sharing a country of origin. PCA scatter plots with 

accessions classified by ADMIXTURE subpopulation were drawn in ggplot2 using PCA variance 

components calculated in GAPIT (Figures 4.1c & 4.1d). 

 Analysis of variance was performed to determine if ancestral group had a significant effect 

on protein quality traits. Trait means across accession replicates, previously calculated in JMP, 

were combined with ADMIXTURE subpopulations and a model was developed in JMP with trait 

concentration as the response variable and subpopulation as a fixed effect. For models with a 

significant effect (Ala, Arg, Cys, and His), Fisher’s protected LSD procedure was used to 

determine differences between subpopulations. Boxplots were drawn in JMP. All figures received 

final formatting using Adobe Illustrator 2019.  

Code, Data, and Software Availability 

Code and data can be found at https://github.com/njohns4/LentilProteinQualityGWAS. Linux 

shell and R loop scripts were used extensively to perform the multiplicative analyses and 

visualizations (36 traits x 7 models). Custom python scripts were used to generate an sqlite3 

database from a GFF file (https://github.com/daler/gffutils ) and to subsequently extract candidate 

genes from the database (https://github.com/jlboat/features_from_snps). The Lens culinaris CDC 

Redberry Genome Assembly v2.0 is available at https://knowpulse.usask.ca/genome-

https://knowpulse.usask.ca/genome-assembly/Lcu.2RBY
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assembly/Lcu.2RBY. The following software was used: BCFtools (Danecek et al., 2021), Beagle 

5.4 (Browning et al., 2018), Megazyme Protein Digestibility Calculator 

(https://www.megazyme.com/documents/Data_Calculator/K-PDCAAS_CALC.xlsx), CMplot 

(https://github.com/YinLiLin/CMplot), GAPIT3 (Wang & Zhang, 2021), PLINK (Purcell et al., 

2007), TASSEL5 (Glaubitz et al., 2014), and VCFtools (Danecek et al., 2011). 
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Tables and Figures 

Table 4.1: Mean concentration, concentration range, repeatability estimates , and %RDA for 
lentil protein quality traits 
 
Trait Mean (%) ± SD Range (%) %RDAa Repeatability %b 
Ala 1.24 ± 0.11 0.77–1.55 N/A 20.0 
Arg 2.72 ± 0.33 1.53–3.62 N/A 19.5 
Asp 3.87 ± 0.48 2.29–6.04 N/A 22.2 
Cys 0.22 ± 0.03 0.15–0.29 20 18.8 
Glu 4.45 ± 0.40 2.74–5.63 N/A 19.7 
Gly 1.25 ± 0.11 0.81–1.56 N/A 19.3 
His 0.61 ± 0.10 0.18–1.00 60–90 14.2 
H-Pro 3.16 ± 0.95 1.5–6.01 N/A 11.6 
Ile 1.24 ± 0.11 0.77–1.52 100 21.5 
Leu 2.25 ± 0.20 1.37–2.8 100 21.4 
Lys 1.33 ± 0.23 0.56–1.89 100 19.5 
Met 0.21 ± 0.02 0.11–0.27 19 26.4 
Phe 1.29 ± 0.23 0.39–1.72 100 3.8 
Pro 2.49 ± 0.49 1.44–3.96 N/A 18.1 
Ser 1.40 ± 0.13 0.85–1.76 N/A 20.7 
Thr 1.05 ± 0.10 0.6–1.3 100 22.4 
Val 0.21 ± 0.02 0.14–0.26 25 18.2 
Total AA 28.99 ± 2.90 18.27–36.05 43 23.5 
PDg 88 ± 1 0.86–0.91 N/A 34.9 

a Percent recommended dietary allowance (%RDA) estimates were calculated for a 72 kg adult 
consuming a 100 g serving of lentil (15% moisture content) per day. b Repeatability is the 
proportion of phenotypic variance attributable to genetic variance and provides an upper bound to 
broad-sense heritability (H2) (Kruijer et al., 2014).
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Table 4.2: Correlations between protein quality traits 
 

 Serine Family Pyruvate Family Aspartate Family Glutamate Family Other 
Trait Cys Gly Ser Ala Leu Val Asp Ile Lys Met Thr Arg Glu Pro H-Pro His Phe TA PDg 
Cys 1.00* 0.36* 0.48* 0.49* 0.51* 0.41* 0.38* 0.49* 0.26* 0.68* 0.56* 0.44* 0.44* 0.54* 0.07 -0.03 0.20* 0.47* 0.12 
Gly 0.36* 1.00* 0.94* 0.95* 0.93* 0.94* 0.87* 0.93* 0.62* 0.77* 0.93* 0.86* 0.94* 0.42* 0.16* 0.22* 0.46* 0.85* 0.20* 
Ser 0.48* 0.94* 1.00* 0.93* 0.94* 0.89* 0.84* 0.93* 0.58* 0.82* 0.95* 0.82* 0.95* 0.47* 0.17* 0.14 0.43* 0.85* 0.15* 
Ala 0.49* 0.95* 0.93* 1.00* 0.97* 0.96* 0.89* 0.97* 0.64* 0.82* 0.96* 0.89* 0.94* 0.50* 0.15* 0.21* 0.51* 0.88* 0.20* 
Leu 0.51* 0.93* 0.94* 0.97* 1.00* 0.95* 0.87* 0.99* 0.64* 0.81* 0.96* 0.88* 0.94* 0.52* 0.12 0.19* 0.55* 0.87* 0.16* 
Val 0.41* 0.94* 0.89* 0.96* 0.95* 1.00* 0.89* 0.96* 0.64* 0.74* 0.91* 0.88* 0.94* 0.46* 0.16* 0.25* 0.48* 0.86* 0.22* 
Asp 0.38* 0.87* 0.84* 0.89* 0.87* 0.89* 1.00* 0.86* 0.60* 0.74* 0.84* 0.87* 0.84* 0.44* 0.2* 0.21* 0.46* 0.85* 0.40* 
Ile 0.49* 0.93* 0.93* 0.97* 0.99* 0.96* 0.86* 1.00* 0.67* 0.78* 0.96* 0.87* 0.93* 0.49* 0.11 0.20* 0.53* 0.86* 0.15* 
Lys 0.26* 0.62* 0.58* 0.64* 0.64* 0.64* 0.60* 0.67* 1.00* 0.44* 0.64* 0.65* 0.57* 0.20* -0.09 0.37* 0.49* 0.56* 0.07 
Met 0.68* 0.77* 0.82* 0.82* 0.81* 0.74* 0.74* 0.78* 0.44* 1.00* 0.86* 0.71* 0.77* 0.49* 0.15* 0.05 0.33* 0.73* 0.19* 
Thr 0.56* 0.93* 0.95* 0.96* 0.96* 0.91* 0.84* 0.96* 0.64* 0.86* 1.00* 0.85* 0.92* 0.52* 0.15* 0.02* 0.49* 0.86* 0.15* 
Arg 0.44* 0.86* 0.82* 0.89* 0.88* 0.88* 0.87* 0.87* 0.65* 0.71* 0.85* 1.00* 0.85* 0.50* 0.12 0.30* 0.50* 0.84* 0.39* 
Glu 0.44* 0.94* 0.95* 0.94* 0.94* 0.94* 0.84* 0.93* 0.57* 0.77* 0.92* 0.85* 1.00* 0.43* 0.11 0.16* 0.42* 0.83* 0.20* 
Pro 0.54* 0.42* 0.47* 0.50* 0.52* 0.46* 0.44* 0.49* 0.2* 0.49* 0.52* 0.50* 0.43* 1.00* 0.66* 0.33* 0.38* 0.77* 0.19* 
H-Pro 0.07 0.16* 0.17* 0.15* 0.12 0.16* 0.20* 0.11 -0.09 0.15* 0.15* 0.12 0.11 0.66* 1.00* 0.32* 0.00 0.55* 0.16* 
His -0.03 0.22* 0.14 0.21* 0.19* 0.25* 0.21* 0.20* 0.37* 0.05 0.20* 0.30* 0.16* 0.33* 0.32* 1.00* 0.40* 0.40* 0.06 
Phe 0.20* 0.46* 0.43* 0.51* 0.55* 0.48* 0.46* 0.53* 0.49* 0.33* 0.49* 0.50* 0.42* 0.38* 0.00 0.40* 1.00* 0.52* 0.00 
TA 0.47* 0.85* 0.85* 0.88* 0.87* 0.86 0.85* 0.86* 0.56* 0.73* 0.86* 0.84* 0.83* 0.77* 0.55* 0.40* 0.52* 1.00* 0.28* 
PDg 0.12 0.20* 0.15* 0.20* 0.16* 0.22 0.40* 0.15* 0.07 0.19* 0.15* 0.39* 0.20* 0.19* 0.16* 0.06 0.00 0.28* 1.00* 

Correlation coefficients greater than 0.70 were considered strongly correlated and are in shaded boxes. * Significant at p < 0.05. TA = 
total amino acid concentration. PDg = in vitro protein digestibility
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Table 4.3: Protein quality traits with significantly associated SNPs and candidate genes. 
 

Traits SNPsa Models p-valueb mafc Genesd 

Alanine CHR1_111531458 FarmCPU 3E-07 0.06 Lcu.2RBY.1g016210, Lcu.2RBY.1g016220, 
Lcu.2RBY.1g016230, Lcu.2RBY.1g016240 

 
CHR2_55767900 FarmCPU 1E-06 0.06 

 
 

CHR3_424796277 BLINK, GLM, MLM, MLMM 3E-09 0.04 Lcu.2RBY.3g073770, Lcu.2RBY.3g073780, 
Lcu.2RBY.3g073790, Lcu.2RBY.3g073800 

Arginine CHR6_293947596 SUPER 2E-06 0.39 Lcu.2RBY.6g041200, Lcu.2RBY.6g041210, 
Lcu.2RBY.6g041220, Lcu.2RBY.6g041230, 
Lcu.2RBY.6g041240, Lcu.2RBY.6g041250, 
Lcu.2RBY.6g041260, Lcu.2RBY.6g041270, 
Lcu.2RBY.6g041280, Lcu.2RBY.6g041290, 
Lcu.2RBY.6g041300, Lcu.2RBY.6g041310, 
Lcu.2RBY.6g041320, Lcu.2RBY.6g041330, 
Lcu.2RBY.6g041340, Lcu.2RBY.6g041350, 
Lcu.2RBY.6g041360, Lcu.2RBY.6g041370  

CHR6_293947618 SUPER 2E-06 0.39 Lcu.2RBY.6g041200, Lcu.2RBY.6g041210, 
Lcu.2RBY.6g041220, Lcu.2RBY.6g041230, 
Lcu.2RBY.6g041240, Lcu.2RBY.6g041250, 
Lcu.2RBY.6g041260, Lcu.2RBY.6g041270, 
Lcu.2RBY.6g041280, Lcu.2RBY.6g041290, 
Lcu.2RBY.6g041300, Lcu.2RBY.6g041310, 
Lcu.2RBY.6g041320, Lcu.2RBY.6g041330, 
Lcu.2RBY.6g041340, Lcu.2RBY.6g041350, 
Lcu.2RBY.6g041360, Lcu.2RBY.6g041370 

Aspartate CHR3_115494955 MLMM 2E-06 0.02 Lcu.2RBY.3g018060, Lcu.2RBY.3g018070, 
Lcu.2RBY.3g018080, Lcu.2RBY.3g018090, 
Lcu.2RBY.3g018100, Lcu.2RBY.3g018110, 
Lcu.2RBY.3g018120, Lcu.2RBY.3g018130, 
Lcu.2RBY.3g018140, Lcu.2RBY.3g018150, 
Lcu.2RBY.3g018160, Lcu.2RBY.3g018170, 
Lcu.2RBY.3g018180, Lcu.2RBY.3g018190, 
Lcu.2RBY.3g018200 
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CHR3_115582822 MLMM 2E-06 0.02 Lcu.2RBY.3g018060, Lcu.2RBY.3g018070, 

Lcu.2RBY.3g018080, Lcu.2RBY.3g018090, 
Lcu.2RBY.3g018100, Lcu.2RBY.3g018110, 
Lcu.2RBY.3g018120, Lcu.2RBY.3g018130, 
Lcu.2RBY.3g018140, Lcu.2RBY.3g018150, 
Lcu.2RBY.3g018160, Lcu.2RBY.3g018170, 
Lcu.2RBY.3g018180, Lcu.2RBY.3g018190, 
Lcu.2RBY.3g018200 

Aspartate:TotalAA CHR3_115494955 CMLM, GLM, MLM, MLMM 6E-08 0.02 Lcu.2RBY.3g018060, Lcu.2RBY.3g018070, 
Lcu.2RBY.3g018080, Lcu.2RBY.3g018090, 
Lcu.2RBY.3g018100, Lcu.2RBY.3g018110, 
Lcu.2RBY.3g018120, Lcu.2RBY.3g018130, 
Lcu.2RBY.3g018140, Lcu.2RBY.3g018150, 
Lcu.2RBY.3g018160, Lcu.2RBY.3g018170, 
Lcu.2RBY.3g018180, Lcu.2RBY.3g018190, 
Lcu.2RBY.3g018200  

CHR3_115582822 CMLM, GLM, MLM 7E-07 0.02 Lcu.2RBY.3g018060, Lcu.2RBY.3g018070, 
Lcu.2RBY.3g018080, Lcu.2RBY.3g018090, 
Lcu.2RBY.3g018100, Lcu.2RBY.3g018110, 
Lcu.2RBY.3g018120, Lcu.2RBY.3g018130, 
Lcu.2RBY.3g018140, Lcu.2RBY.3g018150, 
Lcu.2RBY.3g018160, Lcu.2RBY.3g018170, 
Lcu.2RBY.3g018180, Lcu.2RBY.3g018190, 
Lcu.2RBY.3g018200  

CHR5_271369658 FarmCPU 1E-07 0.04 
 

 
CHR5_445247913 FarmCPU 2E-08 0.19 Lcu.2RBY.5g065860, Lcu.2RBY.5g065870, 

Lcu.2RBY.5g065880, Lcu.2RBY.5g065890, 
Lcu.2RBY.5g065900, Lcu.2RBY.5g065910  

CHR6_335566577 FarmCPU 7E-08 0.19 Lcu.2RBY.6g049180, Lcu.2RBY.6g049190  
CHR7_185325635 FarmCPU 2E-06 0.05 

 
 

CHR7_185744579 FarmCPU 6E-07 0.16 Lcu.2RBY.7g029130, Lcu.2RBY.7g029140, 
Lcu.2RBY.7g029150, Lcu.2RBY.7g029160, 
Lcu.2RBY.7g029170, Lcu.2RBY.7g029180, 
Lcu.2RBY.7g029190, Lcu.2RBY.7g029200 

Cystine CHR4_306390322 SUPER 1E-06 0.31 Lcu.2RBY.4g043680  
CHR4_317014401 SUPER 1E-06 0.25 Lcu.2RBY.4g045850, Lcu.2RBY.4g045860  
CHR4_317014408 SUPER 1E-06 0.25 Lcu.2RBY.4g045850, Lcu.2RBY.4g045860 

Digestibility CHR1_142769633 BLINK 5E-11 0.01 
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CHR1_330575676 CMLM, GLM, MLM 6E-07 0.02 Lcu.2RBY.1g040750, Lcu.2RBY.1g040760, 

Lcu.2RBY.1g040770, Lcu.2RBY.1g040780, 
Lcu.2RBY.1g040790  

CHR2_14447425 CMLM, GLM, MLM 2E-08 0.05 Lcu.2RBY.2g006630, Lcu.2RBY.2g006640  
CHR2_484921441 CMLM, GLM, MLM 9E-07 0.04 Lcu.2RBY.2g074730, Lcu.2RBY.2g074740, 

Lcu.2RBY.2g074750  
CHR3_115494955 BLINK, FarmCPU, MLMM 2E-12 0.02 Lcu.2RBY.3g018060, Lcu.2RBY.3g018070, 

Lcu.2RBY.3g018080, Lcu.2RBY.3g018090, 
Lcu.2RBY.3g018100, Lcu.2RBY.3g018110, 
Lcu.2RBY.3g018120, Lcu.2RBY.3g018130, 
Lcu.2RBY.3g018140, Lcu.2RBY.3g018150, 
Lcu.2RBY.3g018160, Lcu.2RBY.3g018170, 
Lcu.2RBY.3g018180, Lcu.2RBY.3g018190, 
Lcu.2RBY.3g018200  

CHR3_288258714 FarmCPU 1E-07 0.03 Lcu.2RBY.3g044660, Lcu.2RBY.3g044670  
CHR5_155570229 BLINK, MLMM 3E-13 0.01 Lcu.2RBY.5g028750, Lcu.2RBY.5g028760  
CHR6_289995023 FarmCPU 1E-08 0.24 Lcu.2RBY.6g040510, Lcu.2RBY.6g040520  
CHR7_244870870 CMLM, GLM, MLM 6E-10 0.00 

 
 

CHR7_497443978 MLMM 3E-10 0.00 Lcu.2RBY.7g065930, Lcu.2RBY.7g065940, 
Lcu.2RBY.7g065950, Lcu.2RBY.7g065960 

Glutamate:TotalAA CHR1_137107598 SUPER 9E-07 0.47 Lcu.2RBY.1g018720, Lcu.2RBY.1g018730, 
Lcu.2RBY.1g018740 

Glycine:TotalAA CHR2_319072281 SUPER 1E-06 0.06 Lcu.2RBY.2g050080, Lcu.2RBY.2g050090  
CHR5_107992651 BLINK, FarmCPU, SUPER 3E-07 0.09 Lcu.2RBY.5g022850, Lcu.2RBY.5g022860, 

Lcu.2RBY.5g022870, Lcu.2RBY.5g022880 

Histidine:TotalAA CHR1_519949144 FarmCPU 1E-08 0.39 Lcu.2RBY.1g072230, Lcu.2RBY.1g072240  
CHR2_16164950 FarmCPU 5E-07 0.04 Lcu.2RBY.2g007300, Lcu.2RBY.2g007310  
CHR6_301590681 BLINK, GLM, MLMM 8E-09 0.04 Lcu.2RBY.6g042780, Lcu.2RBY.6g042790 

Isoleucine CHR3_424796277 BLINK, FarmCPU, MLMM 2E-08 0.04 Lcu.2RBY.3g073770, Lcu.2RBY.3g073780, 
Lcu.2RBY.3g073790, Lcu.2RBY.3g073800 

Leucine CHR2_601711657 FarmCPU 2E-08 0.23 Lcu.2RBY.2g093390, Lcu.2RBY.2g093400, 
Lcu.2RBY.2g093410, Lcu.2RBY.2g093420, 
Lcu.2RBY.2g093430, Lcu.2RBY.2g093440, 
Lcu.2RBY.2g093450 
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CHR3_424796277 BLINK, CMLM, GLM, MLM, MLMM 3E-09 0.04 Lcu.2RBY.3g073770, Lcu.2RBY.3g073780, 

Lcu.2RBY.3g073790, Lcu.2RBY.3g073800 
 

CHR5_202476372 FarmCPU 8E-07 0.07 Lcu.2RBY.5g033320 
Lysine CHR2_292740642 BLINK 1E-06 0.14 Lcu.2RBY.2g046140  

CHR3_152229376 BLINK 9E-08 0.24 Lcu.2RBY.3g022880, Lcu.2RBY.3g022890, 
Lcu.2RBY.3g022900, Lcu.2RBY.3g022910, 
Lcu.2RBY.3g022920, Lcu.2RBY.3g022930, 
Lcu.2RBY.3g022940, Lcu.2RBY.3g022950  

CHR7_7686751 BLINK 9E-07 0.32 
 

Methionine CHR1_141754068 SUPER 2E-07 0.34 Lcu.2RBY.1g019160  
CHR3_424796277 BLINK, MLMM 1E-07 0.04 Lcu.2RBY.3g073770, Lcu.2RBY.3g073780, 

Lcu.2RBY.3g073790, Lcu.2RBY.3g073800 
 

CHR4_209096920 SUPER 1E-06 0.22 Lcu.2RBY.4g029800, Lcu.2RBY.4g029810, 
Lcu.2RBY.4g029820, Lcu.2RBY.4g029830, 
Lcu.2RBY.4g029840, Lcu.2RBY.4g029850  

CHR4_209096949 SUPER 2E-06 0.27 Lcu.2RBY.4g029800, Lcu.2RBY.4g029810, 
Lcu.2RBY.4g029820, Lcu.2RBY.4g029830, 
Lcu.2RBY.4g029840, Lcu.2RBY.4g029850  

CHR5_11042934 SUPER 1E-06 0.21 Lcu.2RBY.5g006620, Lcu.2RBY.5g006630, 
Lcu.2RBY.5g006640, Lcu.2RBY.5g006650 

 
CHR5_167207846 SUPER 2E-06 0.23 Lcu.2RBY.5g030100, Lcu.2RBY.5g030110  
CHR6_326624017 SUPER 1E-06 0.41 Lcu.2RBY.6g047800 

Methionine:TotalAA CHR1_518846076 FarmCPU 2E-11 0.09 Lcu.2RBY.1g071860, Lcu.2RBY.1g071870, 
Lcu.2RBY.1g071880, Lcu.2RBY.1g071890, 
Lcu.2RBY.1g071900, Lcu.2RBY.1g071910  

CHR1_96093588 FarmCPU 6E-08 0.06 Lcu.2RBY.1g014500  
CHR2_6756842 FarmCPU 9E-09 0.03 

 
 

CHR5_214999927 BLINK, GLM 9E-10 0.20 
 

 
CHR6_42597339 FarmCPU 2E-06 0.06 Lcu.2RBY.6g006710  
CHR7_431083997 FarmCPU 7E-07 0.07 

 

Phenylalanine CHR4_413695971 SUPER 2E-06 0.38 Lcu.2RBY.4g065210, Lcu.2RBY.4g065220, 
Lcu.2RBY.4g065230, Lcu.2RBY.4g065240, 
Lcu.2RBY.4g065250, Lcu.2RBY.4g065260, 
Lcu.2RBY.4g065270, Lcu.2RBY.4g065280, 
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Lcu.2RBY.4g065290, Lcu.2RBY.4g065300, 
Lcu.2RBY.4g065310 

 
CHR4_99139105 SUPER 8E-07 0.25 Lcu.2RBY.4g017470, Lcu.2RBY.4g017480, 

Lcu.2RBY.4g017490 
Threonine CHR3_424796277 BLINK, FarmCPU, MLMM 2E-08 0.04 Lcu.2RBY.3g073770, Lcu.2RBY.3g073780, 

Lcu.2RBY.3g073790, Lcu.2RBY.3g073800 

Valine CHR3_424796277 BLINK, MLMM 4E-10 0.04 Lcu.2RBY.3g073770, Lcu.2RBY.3g073780, 
Lcu.2RBY.3g073790, Lcu.2RBY.3g073800 

 
CHR4_385425795 BLINK 8E-08 0.30 Lcu.2RBY.4g059370, Lcu.2RBY.4g059380, 

Lcu.2RBY.4g059390, Lcu.2RBY.4g059400, 
Lcu.2RBY.4g059410, Lcu.2RBY.4g059420, 
Lcu.2RBY.4g059430, Lcu.2RBY.4g059440, 
Lcu.2RBY.4g059450 

a SNPs exceeding a significance threshold of 0.05/22,280 (Bonferroni correction) in association with a trait. b The smallest p-value 
associating the trait by any model. c maf = minor allele frequency d Genes within the linkage disequilibrium block of the associated 
SNP 
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Table 4.4: Subset of linkage disequilibrium blocks associated with protein quality traitsa 

 

LD Block ID Size (kb) Associated Traits Genes Gene Descriptionb 

Chr2_14447415–14547425 100 Digestibility Lcu.2RBY.2g006630 Integrin-linked kinase family protein    
Lcu.2RBY.2g006640 Uncharacterized protein 

Chr2_292740630–292740648 < 1 Lysine Lcu.2RBY.2g046140 Replication factor-A carboxy-terminal domain protein 
Chr3_115394955–116212912 818 Aspartate, 

Aspartate:TotalAA, 
Digestibility 

Lcu.2RBY.3g018060 Uncharacterized protein 

   
Lcu.2RBY.3g018070 Glutathione S-transferase    
Lcu.2RBY.3g018080 Glutathione S-transferase    
Lcu.2RBY.3g018090 Glutathione S-transferase    
Lcu.2RBY.3g018100 Glutathione S-transferase; amino-terminal domain protein    
Lcu.2RBY.3g018110 Uncharacterized protein    
Lcu.2RBY.3g018120 Uncharacterized protein    
Lcu.2RBY.3g018130 Eukaryotic aspartyl protease family protein    
Lcu.2RBY.3g018140 60S ribosomal protein L18a    
Lcu.2RBY.3g018150 3-hydroxyisobutyryl-CoA hydrolase-like protein    
Lcu.2RBY.3g018160 Polyprotein    
Lcu.2RBY.3g018170 Subtilisin-like serine protease    
Lcu.2RBY.3g018180 Ulp1 protease family, carboxy-terminal domain protein    
Lcu.2RBY.3g018190 Uncharacterized protein    
Lcu.2RBY.3g018200 Lipid transfer protein 

Chr3_151509045–152255260 746 Lysine Lcu.2RBY.3g022880 Uncharacterized protein    
Lcu.2RBY.3g022890 DUF295 family protein    
Lcu.2RBY.3g022900 NB-ARC domain disease resistance protein    
Lcu.2RBY.3g022910 IPP transferase    
Lcu.2RBY.3g022920 Ankyrin repeat plant-like protein    
Lcu.2RBY.3g022930 Uncharacterized protein    
Lcu.2RBY.3g022940 Beta-(1,2)-xylosyltransferase    
Lcu.2RBY.3g022950 Ulp1 protease family, carboxy-terminal domain protein 
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Chr3_424696277–424813245 117 Alanine, Isoleucine, 
Leucine, Methionine, 
Threonine, Valine 

Lcu.2RBY.3g073770 Gibberellin 2-beta-dioxygenase 

   
Lcu.2RBY.3g073780 Gibberellin 2-beta-dioxygenase    
Lcu.2RBY.3g073790 Stem 28 kDa glycoprotein    
Lcu.2RBY.3g073800 Plant receptor-like kinase 

Chr4_385392509–385525795 133 Valine Lcu.2RBY.4g059370 Global transcription factor group protein    
Lcu.2RBY.4g059380 ORF1    
Lcu.2RBY.4g059390 Uncharacterized protein    
Lcu.2RBY.4g059400 Uncharacterized protein    
Lcu.2RBY.4g059410 Uncharacterized protein    
Lcu.2RBY.4g059420 Ulp1 protease family, carboxy-terminal domain protein    
Lcu.2RBY.4g059430 Putative AC transposase    
Lcu.2RBY.4g059440 Heat shock 70 kDa protein, mitochondrial (Precursor)    
Lcu.2RBY.4g059450 Polynucleotidyl transferase, Ribonuclease H fold 

Chr5_107892651–107992664 100 Glycine:TotalAA Lcu.2RBY.5g022850 Clustered mitochondria protein homolog    
Lcu.2RBY.5g022860 Clustered mitochondria protein homolog    
Lcu.2RBY.5g022870 Uncharacterized protein    
Lcu.2RBY.5g022880 RNA-directed DNA polymerase (Reverse transcriptase) 

Chromo Zinc finger, CCHC-type Peptidase aspartic, active 
site Polynucleotidyl transferase, Ribonuclease H fold 

Chr6_301590674–301590682 < 1 Histidine:TotalAA Lcu.2RBY.6g042780 Alpha-mannosidase    
Lcu.2RBY.6g042790 RNA-directed DNA polymerase (Reverse transcriptase) 

Chromo Zinc finger, CCHC-type Peptidase aspartic, active 
site Polynucleotidyl transferase, Ribonuclease H fold 

a Subset contains LD blocks associated with multiple traits and/or with SNP minor allele frequencies exceeding 0.05. Blocks solely 
identified by the models SUPER and FarmCPU were excluded. b Descriptions were taken from a GFF file. See Supplemental Data: 
GWAS_Exhaustive (https://github.com/njohns4/LentilProteinQualityGWAS) for source information. 
 
  

https://github.com/njohns4/LentilProteinQualityGWAS
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Figure 4.1: Lentil population origin and population structure analysis. A) Pie charts depict 
average admixture composition of accessions from the same country of origin. Pie chart 
circumferences are proportional to the number of accessions sharing each country of origin. The 
colors depict the average ancestral subpopulation composition of each location as determined by 
ADMIXTURE analysis where k = 6 (B). C and D depict the first three principal components 
with points representing accessions that have been colored corresponding to their ADMIXTURE 
ancestral subpopulation classification.  
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Figure 4.2: Boxplots depicting one-way analysis of variance of amino acid concentrations by 
ADMIXTURE ancestral subpopulation classifications. Boxplots connected by different letters 
have significantly different means (p < 0.05) as determined by Fisher’s protected LSD. Green 
diamonds indicate the 95% confidence interval of the mean. The diamond width is proportional 
to the number of samples belonging to the subpopulation classification (n1 = 32, n2 = 13, n3 = 25, 
n4 = 46, n5 = 15, n6 = 27).  
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Figure 4.3: Manhattan plots of traits with at least one SNP significantly associated with the trait 
by multiple models. Different color points represent different GWAS models. Significance 
thresholds are indicated by dotted and solid grey horizontal lines and correspond to –
log(0.05/22,280) and –log(0.01/22,280), respectively (Bonferroni correction). Colored outlines 
represent pyruvate family amino acids, aspartate family amino acids, and other protein quality 
traits (Gly, His:TA, PDg). SNP density plots are located above chromosome numbers on a red to 
green scale of 1 to 50 SNPs per 1 Mb. Grey dashed line boxes indicate significant loci shared 
across multiple traits.  
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Appendix A 

Chapter 3 Supplemental Materials 

Table S3.1: The spectral ranges associated with the chemometric models. 
 

Model Name Spectral range cm–1 

Chickpea Total Protein 1718.30–1487.21 | 3682.61–3006.98 

Dry Pea Total Protein 1718.30–1487.21 | 3682.61–3006.98 

Lentil Total Protein 1718.30–1487.21 | 3682.61–3006.98 

Total Lentil SAA 721.24–867.07 | 1231.88–1469.96 | 1904.20–2241.99 | 2825.78–2994.91 

Lentil Methionine 674.65–808.37 | 1182.03–1484.41| 1975.49–2158.59 | 2658.52–2991.19 
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Figure S3.1: (a) Average dry pea MIR 1st-derivative absorbance spectrum. Regions in green were 
selected for the total nitrogen model in dry pea. (b) Scatter plot of actual vs. predicted total nitrogen 
(%) of calibration and validation data with lines of best fit.  
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Figure S3.2: (a) Average lentil MIR absorbance spectrum. Regions in green were selected for the 
total nitrogen model in lentil. (b) Scatter plot of actual vs. predicted total nitrogen (%) of calibration 
and validation data with lines of best fit.  
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Figure S3.3: (a) Average lentil MIR absorbance spectrum. Regions in green were selected for the 
total methionine (Met) model in lentil. (b) Scatter plot of actual vs. predicted Met (%) values of 
calibration and validation data with lines of best fit.   
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Figure S3.4: Identification of associated regions in lentil flour with powdered L-Cystine, L-
Cysteine, and L-Methionine standards. All spectra normalized from 0 to 1. 
 

 



151 
 

Appendix B 

Chapter 4 Supplemental Materials 

Table S4.1: Mean, range, and repeatability of percent ratios of amino acids to total amino acid 
concentration 
 
Trait Mean (%) ± SD Range (%) Repeatability % 
Ala:TA 4.31 ± 0.2 3.71d–4.9 13.1 
Asp:TA 13.34 ± 0.77 10.91–16.9 13.1 
Arg:TA 9.38 ± 0.61 7.38–12.02 15.6 
Cys:TA 0.76 ± 0.10 0.55–1.03 15.5 
Glu:TA 15.42 ± 0.85 13.01–17.85 17.5 
Gly:TA 4.32 ± 0.22 3.7–4.92 14.2 
His:TA 2.12 ± 0.33 0.64–3.2 6.5 
H-Pro:TA 10.78 ± 2.78 5.33–19.91 9.6 
Ile:TA 4.29 ± 0.22 3.68–4.82 18.3 
Leu:TA 7.81 ± 0.37 6.69–8.77 19.7 
Lys:TA 4.59 ± 0.66 2.72–6.14 9.9 
Met:TA 0.71 ± 0.06 0.58–0.94 27.0 
Phe:TA 4.45 ± 0.68 1.8–5.47 0.0 
Pro:TA 8.50 ± 1.12 6.08–11.73 10.2 
Ser:TA 4.86 ± 0.26 4.18–5.64 17.6 
Thr:TA 3.64 ± 0.18 3.17–4.25 15.2 
Val:TA 0.74 ± 0.04 0.65–0.83 12.4 
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Figure S4.1: Histograms of trait distributions fit with density curves for the normal distribution using estimates of the mean and 
standard deviation. 
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Figure S4.2: Manhattan plots of traits with at least one SNP significantly associated with the trait 
by any model and TA which does not have significantly associated SNPs but was included for 
comparison with ratio traits. Different color points represent different GWAS models. 
Significance thresholds are indicated by dotted and solid grey horizontal lines and correspond to 
–log(0.05/22,280) and –log(0.01/22,280), respectively (Bonferroni correction). SNP density plots 
are located above chromosome numbers on a red to green scale of 1 to 50 SNPs per 1 Mb.  
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Figure S4.3 QQ plots of alanine, valine, leucine, isoleucine, threonine, methionine, lysine, and 
aspartate fitting the following genome-wide association models from GAPIT: GLM, MLM, 
MLMM, CMLM, SUPER, FarmCPU, and Blink. 
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Figure S4.4: QQ plots of the ratio of glycine, histidine, aspartate, and methionine to total amino 
acid concentration and digestibility fitting the following genome-wide association models from 
GAPIT: GLM, MLM, MLMM, CMLM, SUPER, FarmCPU, and Blink 
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Figure S4.5: QQ plots of arginine, cystine, phenylalanine, the ratio of glutamate to total amino 
acid concentration, and total amino acid concentration fitting the following genome-wide 
association models from GAPIT: GLM, MLM, MLMM, CMLM, SUPER, FarmCPU, and Blink 
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