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Abstract

We investigate algebra structures on resolutions of a special class of Cohen-Macaulay simpli-
cial complexes. Given a simplicial complex A, we define a pure simplicial complex, denoted ﬁ, called
the purification of A. These complexes arise as a generalization of certain independence complexes
and the resultant Stanley-Reisner rings R = k[ﬁ] have numerous desirable properties, e.g., they are
Cohen-Macaulay. By realizing A in the context of work of D’ali, et al., we obtain a multi-graded,
minimal free resolution of I = (Jz)#, the Alexander dual ideal of the Stanley-Reisner ideal. We
augment this in a standard way to obtain a resolution of the quotient ring R/I, which is likewise
minimal and multi-graded. Ultimately, we propose an explicit product on the resolution and prove

that, if associative, this product imparts a differential graded (DG) algebra structure on the minimal

resolution.
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Chapter 1

Introduction

An important strategy for understanding an algebraic object is to understand the objects it
can act on. For example, this is how one proves the Sylow Theorems, by understanding which sets
a group can act on. For studying rings, we focus on modules, rather than sets. A standard way we
gain understanding of a module is to write down its generators and any relations among them. This
very naturally leads to a study of free resolutions. Given a module M, a free resolution of M stores
information about the generators of M, the relations between the generators, the relations between
those relations, and so on. These resolutions vary widely and some are nicer to work with than
others. Some free resolutions are infinite, while others are finite. Some are minimal, while others
are not. Some free resolutions admit a highly specialized structure, called a differential graded (DG)
algebra structure, thereby encoding even more information about the modules they resolve. When
a resolution has this DG structure, we say it is a DG algebra resolution. These resolutions are the
topic of this dissertation.

DG algebra resolutions are powerful tools for answering difficult questions about commu-
tative rings with identity and their modules. For instance, consider the following result about test

modules ascending along a ring homomorphism:

Theorem I.1 (Sather-Wagstaff [11, Theorem 4.8]). Assume that ¢ : R — S is a flat local ring
homomorphism with regular closed fibre, and let M be a finitely generated R-module. Assume the
residue field extension induced by ¢ is algebraic. Then M is a pd-test module over R if and only if

S ®pr M is a pd-test module over S.



Observe that the statement makes no mention of DG algebras. However, DG algebras are
indispensable tools in the proof. This incredibly powerful technique was pioneered by Avramov and
his collaborators. See the survey articles of Avramov [1] and Nasseh and Sather-Wagstaff [7] for
many other applications. Within this dissertation, a review of free resolutions and DG algebras is
the topic of Section II.A, and the specific resolution of interest is given in detail in Section II.D.

Given a module M, it is nontrivial to give an explicit free resolution of M, and it is difficult,
in general, to know whether that free resolution admits a DG algebra structure. It is even more
difficult to give an explicit description of that structure, and it is a well-known fact that minimal
resolutions need not have this additional structure. It is very common for one to have to choose
between a minimal resolution that lacks a DG structure, and a DG algebra resolution that is very
far from minimal. For instance, the Taylor resolution, when it is defined, is a DG algebra resolution,
but is usually not minimal.

In this dissertation we present a class of ideals with a finite free resolution that is known to
be minimal based on work by D’ali, et. al. [3], and we exhibit a candidate for a product that may
impart a DG structure on this resolution, i.e., we present strong evidence that for a resolution of
our class of ideals, we get both minimality and an explicit DG algebra structure. We conclude this

introduction with a brief setup and a highly abbreviated version of the main result.

Definition 1.2. A finite simple graph consists of sets of nodes/vertices and edges between them
with no loops, no multiple edges, and no directed edges. Formally, a finite simple graph G = (V, E)
satisfies V' = {a1,...,a,} and E C {{a;,a;} |i #j} C P(V). We write a;a; := {a;,a;}. A K-
corona of G, also known as a suspension or a whiskering of G, is the simple graph G = (?,E‘)
where V = V U {a1,...,a,} and E=EuU {a;a; |1 =1,...,n}. For example, we present the path

P, and its Ki-corona X P, here.

al as as ajq as as

[e51 (&%) ag

The edge ideal of a graph is the ideal generated by the edges of the graph. Stated formally, let k be

a field and set I = (E) < k[aq,...,ay,]. For instance,

12p2 = <a1a2,a2a37a10£1,0,20£2,a3013> S k[al,a2,a3,o¢1,o¢2,a3].



We focus on edge ideals of Kj-coronas and a generalization of these ideals, because they
exhibit several nice properties, such as being Cohen-Macaulay. In Section II.C we give a brief
introduction to the Cohen-Macaulay property, as well as a more detailed description of the rings
and ideals that interest us. More information on simple graphs can be found in Section II.B.

The free resolution of interest resolves the Alexander dual ideal of such an ideal. Given an
ideal I generated by monomials fi,..., fi, from a polynomial ring S = k[aq, ..., a,], the Alexander
dual ideal of I, denoted I, is generated by monomials a;, a;, - - -a;, € S such that every generator

of I is divisible by one of these a;,’s. For instance, the Alexander dual ideal of Isp, is

A
(Isp,)™ = (amagas, cnasas, a1azas, a1asas, arasas) < klaq, as, az, ai, ag, asl.

A salient feature of duality is that information about the dual often yields useful information about
the original. See Section II.D for more information on Alexander dual ideals.
Our chief goal in this dissertation is to prove Theorem III.C.2 below. For the purpose of

this introduction, we state an abbreviated version here.

Theorem 1.3 (Morra). Let (Isg)? denote the Alevander dual ideal of the edge ideal Isg, and let

L denote a free resolution of (Ing)? which we know to be minimal (see [3]). There exists a product

on L that, if associative, describes a graded commutative, associative, DG algebra structure on L.

We formally define our product in Definition IIT.A.1 and commit the rest of Section II1.A
to examples. In Section III.B we prove numerous lemmas and corollaries used in the proof of the
main result. Section III.C is entirely devoted to proving the full version of the above result. In

Chapter IV we discuss potential future work.



Chapter 11

Background and Notation

II.A Free Resolutions and DG Algebras

The definitions and theorems in this section have been adapted from a work in progress by
Sather-Wagstaff [10]. We also refer to this manuscript for our discussion of the Koszul complex.

Unless otherwise stated, assume that S is a commutative ring with identity.

Definition II.A.1. A chain complex over S, or an S-complez, is a sequence of S-module homomor-

phisms

;% o X ;%
i+2 i+1 i i—1
X = Xi Xi1

Xit1

such that 95X 09X | = 0 for all i € Z. If X is an S-complex, then elements = € X; have homological

degree |x| = 1i.
We give one example of such a complex.

Example II.A.2. Let S be a commutative ring with identity and consider the ideal I < S with

generating sequence fi, fo, f3 € S. Then the Koszul complex Ks(fl, fa, f3) is

O3 02 01

0 S S3 S3 S 0,
€123 e12 e 1
e13 €2
€23 €3

where the ep’s denote the basis vectors of each S-module. We express the differential in terms of

4



its action on the basis vectors:

0(e123) = faeia — faeis + fiess d(e12) = fiez — faer O0(e1) = f1
d(e13) = fies — fzer 0(e2) = fa
O(ea3) = faez — faea d(es) = fs.

Note that if we think of ey, e, e3 as the standard basis vectors, then 0, is matrix multiplication by
[ fi fo f3} where its entries are the minimal generators of I. Similarly, the differential in degree

2 is multiplication by the matrix

~f2 —f3 0
fi 0 —f3]:
0 fi fa

and in degree 3 it is multiplication by the column vector

I3
— /2
fi

Fact I1.A.3. One can always express the differential of a free resolution as a sequence of matrices.

Definition II.A.4. Here we introduce notions of exactness.

(a) A sequence X; e X e X3 of S-module homomorphisms is ezact if Im (; = Ker (s.

(b) A sequence

Cit2 Ci+1 Ci Ci—1
Xit1 X; Xi1

is ezact if Im ;41 = Ker (; for all i € Z.

(c) A short exact sequence is an exact sequence of the form

0 Xl X2 X3 0.

Example II.A.5. We give a few examples of exact sequences.



(a) Given a pair of S-modules X and Y, the sequence

< 3

00— X—X3pY —Y ——=0

is a short exact sequence, where ¢ and £ are the natural injection and surjection, respectively.

(b) If X and Y are S-modules, then the sequence

is exact if and only if ¢ is an isomorphism of S-modules.

(¢) The Koszul complex Ks(fl, f2, f3) from Example I1.A.2 is not exact, since 9; is not surjective.
The following theorem and definition introduce the notion of a free resolution.

Theorem I1.A.6. If S is noetherian and M is a finitely generated S-module, then there exists an

exact sequence

6i+1 87, 62 81

Sho T o M 0.

SBi Sh1

Definition II.A.7. The exact sequence in Theorem II.A.6 is an augmented free resolution of M

over S. The free resolution omits the module M:

Oit+1 0; 02 o1

SBi SB1 SBo 0.

The maps 0; are the differentials in the resolution. The (homological) degree of S% is i, and if
s € 8P then the (homological) degree of s is i and we write |s| = i. It is common to write simply O

when the degree is understood.

Theorem II.A.6 speaks to the existence of free resolutions, but says nothing of the finiteness
(or lack thereof) of these resolutions. The next result says we can do even better in the context of

polynomial rings over a field with finitely many variables.

Theorem II.A.8 (Hilbert’s Syzygy Theorem). Let k be a field and S = k[aq, ..., ay] the polynomial

ring in n variables.



(a) IfI1<S isI={f1,...,[s) where f; is a polynomial in S for i =1,..., B, then there exists

a finite free resolution

02 01

(h o 1)

(b) If fi is homogeneous for i =1,...,n, then this resolution can be built minimally and the B;’s

On 3

0 S SB2 Sh S —T=8/I 0.

are independent of the choice of minimal free resolution.

Definition IT.A.9. In the notation of Theorem IL.A.8 (b), the integer 8; = 35 (S/I) is the j'" Betti

number of S/I over S.

Note II.A.10. This notion is originally from algebraic topology where it was named after Enrico

Betti by Poincaré and modernized by Emmy Noether.
The following fact from lecture notes by Sather-Wagstaff gives us a test for minimality.

Fact II.A.11 ([8, Note A.4.3]). Let S = k[ai,...,as] be a polynomial ring over a field k, let J be
an ideal of S generated by non-constant homogeneous polynomials, and let R = S/J be the quotient
ring. Let C be a finite free R-complex. By Fact 11.A.3 the differential of C can be represented by
matrices, and if the non-zero entries in these matrices are non-constant homogeneous polynomials,
then C is minimal. For instance, if J = 0 is generated by the empty set, then we have a test for

minimality of free resolutions over S.

Example I1.A.12. Here we present three minimal resolutions and one non-resolution. The first
two resolutions are infinite.
(a) Consider the ring R = k[a]/ (a*) and the R-module M = R/ (@). An augmented free resolution

of M is

SRR R M 0,

where the differential is just the multiplication map.
(b) Set R = k[a,b]/ (ab) and consider the R-module M = R/ (a). An augmented free resolution of
M is

Q|
=




(c) If S = k[a1,a2,a3] and T = (a1, as, az), then the Koszul complex given in Example I1.A.2 is a

free resolution of S/I, i.e., we have the augmented free resolution

O3 02 01

0 S S8 S8 S S/T 0.

(d) The Koszul complex is not necessarily a resolution in general. Set S = k[aq, ag, a3] and consider

the ideal I = {(asas,aia3,ajas). The Koszul complex KS(alag, aias, asag) is
(aga;; aias alag)

() } .

0 —aiaz —a1a3
—ai1a2 0 aza3
0 S
03 02 01

aias aza3 0

Then KS(alag, ajas,asas) is not a resolution of S/I, because, e.g., aje; — azes € ker 9y \ Im 05.
Definition I1.A.13. A commutative differential graded S-algebra (DG S-algebra) is an S-complex

03 Gy

X: e Xl XO O

equipped with a binary operation p;; : X; X X; — X;1; (we will write p;;(z, y) = zy) satisfying the

following properties.

e u;j is S-bilinear. Therefore, ;5 is also distributive. In particular, 0-y =0 =y-0for ally € X.

fti; is unital, i.e., there exists 1 € X such that 1-2 =2 =2 -1 for all z € Xj.

® 1i;; is associative.

pij is graded commutative, i.e., for all z,y € X \ {0} one has yz = (—1)I*I'¥lzy and 2% = 0

whenever |z| is odd.

pij satisfies the Leibniz rule, i.e., for all z,y € X \ {0} one has d(zy) = d(z)y + (—1)1*lz0(y).

Remark II.A.14. Informally, the convention for determining signs in the context of the previous
definition is that if we switch the order of two factors, multiply that term by (—1)product of degrees,
Also, note that the second condition of the fourth bullet is automatic if 2 is a unit in S: by the first

condition one has z? = —22, i.e., 222 = 0.



Remark IT.A.15. Note that each basis vector in Example I1.A.2 is denoted by a subset A C {1,2, 3},
where the elements of A are written in strictly ascending order. This makes the sign function in the

following example well-defined.

Example IT.A.16. The Koszul complex admits a DG algebra structure [10]. We will describe this
structure for the complex shown in examples II1.A.2 and II.A.12. For any subsets A, II C {1, 2,3}, if
they are disjoint then we define sgn(A,II) = (—t)X where x is the number of transpositions required

to put the elements of A UII in strictly ascending order. For instance, we compute

sen({1 < 2}, {3}) = (-1)° = 1
sen({l < 3},{2)) = (-1)' = -1

sen({2 < 3}, {1}) = (-1)* =1,
where {i < j} denotes the set {i,j} with ¢ < j. Then for any A,IT C {1, 2,3}, we define the product

0 ANTI#0Q
CAECTT =

sen(A,IMexun ANII=0.

One can verify that this imparts a DG algebra structure on Ks(al, as,as). For instance, one has
e3 = 0 for all A # (). We also see that eja3 is a zero-divisor, since {1,2,3} N A # 0 for any nonempty

A. By our sign computations above, some non-zero products are

€12€3 = €123 €13€2 = —€123 €23€1 = €123
€3€12 = €123 €2€13 = —€123 €1€23 = €123
€1€2 = €12 €1€3 = €13 €2€3 = €23

€2€1 = —€12 €3€1 = —€13 €362 = —€23.



II.B Simple Graphs and Simplicial Complexes

The combinatorial constructions in this section yield algebraic constructions in the next.

Definition I1.B.1. A finite simple graph consists of nodes/vertices and edges between them with
no loops, no multiple edges, and no directed edges. Formally, a finite simple graph G = (V, E)
satisfies V = {a1,...,a,} and E C {{a;,a;} |i # j} C P(V). We write a;a; := {a;, a;}.

Notation II.B.2. For purposes of readability, in our examples we will use notation that avoids
the necessity of subscripts. For instance, in Example II.B.3 (a) we use V = {a,b,c} instead of
V = {a1,a9,a3}. Beginning in Example I1.B.13, we also use suitable replacements for «;’s, e.g.,

{a, 8,7} instead of {aq, s, as}.

Example I1.B.3. We present two classic simple graphs.
(a) Set n =3 and let G be the two-path P, i.e., G = (V, E), where V = {a,b,c} and E = {ab, bc}:

(b) Set n = 4 and let G be the four-cycle Cy, ie., G = (V,E), where V = {a,b,c,d} and E =
{ab, be, cd, da}:

d c.
Notation II.B.4. We will use # to denote cardinality and will let n denote #V throughout this

dissertation. For convenience, we set N = {1,...,n}.

Definition II.B.5. A simplicial complex on a vertex set V = {ai,...,a,} is a nonempty subset
A C P(V) closed under taking subsets, i.e., if F;H CV and F C H and H € A, then F € A. The
n-simplex (plural: simplices) is A,, = P({ao,...,an}). An element of A is a face of A. A face that
is maximal with respect to containment is a facet. For any face F € A, we let F€ denote the set
complement of F' taken inside of V. The dimension of a face F is dim(F) = #F —1. The dimension
of A is

dim(A) = max {dim(F) | F € A} = max {dim(F) | F € A is a facet } .

If every facet of A has the same dimension, then we say A is a pure simplicial complex. The

10



codimension of a face I is

codim(F) = dim(A) — dim(F).

We refer to any face of A which is a singleton set as a vertex (plural: wvertices) and any face with
cardinality two as an edge. This is suggestive of our geometric understanding of these combinatorial

objects, which we frequently sketch as geometric realizations, see, e.g., Example I1.B.7 below.

Remark II.B.6. Since simplicial complexes are closed under taking subsets, we say they are gen-
erated by their facets. If FY, ..., F,, is an enumeration of the facets of a simplicial complex A, then

we write A = (Fy, ..., Fp).

Example I1.B.7. We present a few simplicial complexes as well as a few examples that are not.
(a) Set n = 3. Then the collection A = {(),a, b, c,ac} is a simplicial complex with facets ac and b.

Hence we write A = (ac,b). The geometric realization of A is

(b) Set n = 4. Then the collection A = {0, a,b,c,d, ac,bd} is a simplicial complex with two facets
and we write A = (ac,bd). Note that A is pure, since its facets have equal dimension. It has the

geometric realization

c b——d.

(c) Again set n = 4 and we define the simplicial complex A = (abc, abd, c¢d). This simplicial complex

is not pure and its geometric realization is displayed below.

b

(d) Set n = 3. The collection {0, a,b} is a simplicial complex over V = {a,b,c} per our definition.
This differs from some definitions of simplicial complexes A which require that A contain all singleton
sets from V', e.g., [2, Definition 5.1.1] by Bruns and Herzog. The collection A = {0, a, ¢, ab} fails to

be a simplicial complex, since b C ab and b ¢ A.

11



Definition II.B.8. Let G = (V, E) be a simple graph. The independence complex on G, denoted
Ag, is given by all subsets {a;,,...,a;,} CV satisfying a;;a;, ¢ E for all j,j" € {1,...,¢}. We call

such subsets independent subsets of G.
Fact I1.B.9. The independence complex of a finite simple graph G is a simplicial complex.

Example I1.B.10. The simplicial complexes presented in Parts (a) and (b) of Example II.B.7 are

the independence complexes of P, and C4 presented in Example I1.B.3, respectively.

Example II.B.11. The simplicial complex A = (abc, abd, c¢d) from Example IL.B.7 is not an inde-
pendence complex. Indeed, suppose there exists some graph G = (V, E) such that A = Ag. Since
we have the facet abc € A, we know that these edges are excluded: ab,ac,bc ¢ E. Similarly, the
facet abd € A implies ad,bd ¢ E, and the facet cd € A implies ed ¢ E. Thus E = () and we conclude

abed is an independent subset of G. This contradicts our assumption since abed ¢ A = Ag.

Definition I1.B.12. Let G = (E,V) be a simple graph with vertex set V = {a1,...,a,}. Set
U= {a,...,an}. A Ki-corona of G, denoted X.G, is a simple graph with vertex set V=Vuu
and edge set ' = EU{a;a; |i=1,...,n}. These are also called suspensions or whiskerings. We

call any vertex in V' a Roman and any vertex in U a Greek.

Example I1.B.13. Recall the simple graphs given in Example I1.B.3.
(a) The K;i-corona of P, denoted X.P, is below.

a b c
e B g
(b) The K;-corona of Cy, denoted £Cy, is below.
Q a b I6]
) d c .

The independence complex of a Ki-corona has several distinctive combinatorial properties.
For instance, the whiskering process ensures that every maximal independent subset contains either

a; or «, for every ¢ € N, so the independence complex of a K;j-corona will always be pure. Such
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properties will lead to some nice algebraic properties in Section II.C. We continue with our running

examples to prompt the statement of Fact I1.B.15.

Example I1.B.14. We present the independence complexes of the graphs from Example I1.B.13,
then observe their relationship with the first two independence complexes given in Example I1.B.7.
(a) Let G = P, and let ¥.G be its suspension. Since the Greek vertices of ¥G are pairwise non-
adjacent, we have afy € Ayg. Since the only edge connecting any «; to a Roman is the edge a;q;,
we also have a7y, aby, affc € Asg. The only remaining maximal independent subset of %G is afc,
thus we have Axg = (afy, a7y, aby, afc,afc). Note that if we remove the Greeks from each facet
of Asg, we exactly obtain the faces of Ag (see Example I1.B.7, Part (a)).

(b) Let G = Cy and let ©G be its suspension. As in Part (a), it is straightforward to check that
Asg = (aBv, apyd, abyé, afcs, afyd, aBcs, abyd) .

The facets of Ay are again in bijection with the faces of Ag.

Fact 11.B.15. The facets of Asa all have dimension n — 1 and are in bijection with the faces of
Ag. Specifically, we have a face F' = {a;,,...,a;,} in Ag if and only ifﬁ s a facet of Axq, where

F is the (disjoint) union of F' and every element o;; € {au,...,an} for which we have a;, ¢ F'.

This bijection presented in Fact I1.B.15 is the critical combinatorial characteristic necessary
for the rings in Section II.C to display the desired algebraic properties. Moreover, this gives an
algorithm that we can perform on any simplicial complex A to yield a new simplicial complex, one
which we define as ﬁ’ that will maintain these same combinatorial and algebraic properties. Hence

we have the following generalization, which, to our knowledge, is first introduced here.

Definition II.B.16. Let A be a simplicial complex on the vertex set V = {a1,...,a,}. Define the

vertex sets U = {aq,...,a,} and V=Vu U, and for each face F' € A define
F={oeU|a;¢ FYUFCV.
We let A be the simplicial complex on 1% generated by every such ﬁ, ie.,
3:<F\cf/‘ F€A>.
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We say A is the purification of A, thus named because it is always pure, regardless of A.

Example I1.B.17. Any independence complex of a Kj-corona X.G is a purified simplicial complex.
Moreover, as in Example I1.B.14, it is straightforward to show that Asg is the purification of Ag,

i.e., AEG = Ag.

Example I1.B.18. Recall the simplicial complex A = (abc, abd, cd) from Example I1.B.7, which is

not an independence complex (see Example I1.B.11). The purified simplicial complex A is

A= <aﬂ’y(5, afByd,abyd, apcd, afyd, abyd,aBcd,aByd, abcs, abyd, afed, abcd, ab’yd>,
0 a b c d ab  ac ad be bd cd abe ~ gbd

where we label each facet of A with the corresponding face from A.

The following discussion and fact can be gleaned entirely from [3] and from [2]. Of primary
interest is an efficient means of describing the boundary of 3, and thereby enumerating the faces of

A which are excluded from the boundary.

Discussion 11.B.19. Homology spheres are defined in terms of reduced simplicial homology mod-
ules, placing this term a bit outside the scope of this dissertation. It is a fact, however, that any
simplicial complex A which has geometric realization homeomorphic to a sphere is a homology
sphere. For instance, the simplicial complex (ab, ac, a7y, by, ac) is a homology sphere, because its

geometric realization below is homeomorphic to a 1-dimensional sphere, i.e., a circle.

(ILB.19.1)

b/a\c

N/

a ¥

An (n — 1)-dimensional simplicial complex A is a homology ball if it contains an (n — 2)-
dimensional homology sphere ¥ in a particular way (the specific manner of the containment is again
in terms of simplicial homology). As with spheres, if the geometric realization of A is homeomorphic
to a ball, then A is a homology ball. In the case when A is a homology ball, the aforementioned
homology sphere ¥ that it contains is called the boundary of A. Furthermore, this understanding of
the boundary of A is equivalent to our geometric understanding of the boundary. That is, if X is a

ball and is the geometric realization of a simplicial complex A, then the spherical boundary of X is

14



the geometric realization of 3, the boundary of A. As we will see in more detail in Example 11.B.31,

the purified simplicial complex A= (a7, apy, aby, afc,afc) has geometric realization

c

with the geometric realization of its spherical boundary ¥ = {(ab, ac, a7y, by, ac) given in (11.B.19.1).
We can also see that the geometric realization of A is homeomorphic to a 2-dimensional ball, so A

is a homology ball. The following fact is how we will use these notions.

Fact I1.B.20. Let A be a purified simplicial complex over the vertex set V. Recall that #V =n

and therefore the dimension of Adsn—1.

(a) By [3, Theorem 5.1], the purified simplicial complex A is a homology ball if and only if A is

not a simplex, and Aisa homology sphere if and only if A is a simplez.
(b) If A is not a simplez, then each of the following hold:

(i) There is a simplicial complex ¥ C A with dimension n — 2 that is the boundary of 3;
(ii) The simplicial complex ¥ is a sphere;
(iii) The facets of ¥ are exactly the faces of A with dimension n — 2 that are contained in

ezxactly one facet of A.

Example I1.B.21. We have seen in Discussion II1.B.19 that for A = (ac,b), its purification A=
(afy, aBy, aby, afc, afc) is a homology ball. Let us confirm that the facets of ¥ = (ab, ac, a7y, by, ac)
are the codimension-1 faces of A that are contained in exactly one facet of A. The codimension-1

faces of A are

af, oy, By, a8, avy, ab, by, ac, Be, ac. (II.B.21.1)
Five of the above are each contained in two facets of A:
af C afy,afc ay C aBy,aby By C apy,aby

aB C apBy,afc Be C afe, afe.
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Omitting these from the list in (I1.B.21.1), we obtain precisely the facets of ¥.
Consider the simplicial complex Q = (ab,ac,bc) and its purification Q. The geometric

realization of ) is below.

JAvAY

The simplicial complex € is as large as a simplicial complex on three vertices can be while also
maintaining that its purification is a homology ball. What happens if we add to 2 the last face
abe, i.e., what about about the purification of the simplex Ay = (abc)? We see that the geometric

realization of As is a 2-dimensional sphere, given below.

Informally, adding the facet abc to Q to form As adds abe to the purified simplicial complex Q to

form ﬁg by placing the “lid” on the figure above, completing the sphere.

Definition II.B.22. If A is a purified simplicial complex with boundary X, then A \ X is the

interior of A.

Example I1.B.23. Consider again A = (ac,b) with boundary ¥ = (ab, ac, av, by, ac). The non-
empty faces of A are
afy, afy, aby,afc, afe,
af, oy, By, ap, ay, ab, by, ac, Be, ac,
a, B,7,a,b,c
and the non-empty faces of ¥ are
ab, ac, ay, by, ac,

a,7,a, ba ¢,
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so the interior of A is A\ ¥
afy, afy, aby, abe, afe,
af, ay, By, ap, Be
3.

Observe that this is not a simplicial complex, because, e.g., @ is never included.

Remark II.B.24. To avoid degenerate situations, we frequently require that A be a ball, so in
Chapter III we will usually assume that A is not a simplex. In the case of graphs G and G, this
says that G has at least one edge. On the other hand, we also wish to exclude the empty complex
A = {0}. This is automatic in the graph situation since n > 1. If n = 1, then a simplicial complex
A on the vertex set V' = {a;} is either a simplex, or the empty complex, thus in general we will

assume that n > 2.

Fact I1.B.20 prompts our statement of Lemma I1.B.29. First we give some helpful notation,

and we will close this section with some examples.

Definition I1.B.25. For any face F' € A we define the support of F to be
supp(F)={ie N |a; e Fora; € F}.

We also let I'(F') denote the complement of supp (F') inside of N, i.e., I'(F') = N \ supp(F’). For any

subset W C N, we denote ayy = {a; €V |i € W }.

Notation I1.B.26. We define the following:

supp(a) = supp(a) = {1} supp(b) = supp(8) = {2}

supp(c) = supp(y) = {3} supp(d) = supp(d) = {4}.

Example II.B.27. Consider A = {(ac,b) and its purification A. For any facet F € A we have

supp (F) = N. We compute the supports of several other faces:

supp(a3) = supp(aff) = supp(ad) = {1,2}

supp (ay) = supp(ay) = supp(ac) = supp(ac) = {1, 3}.
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For any facet F' € 3, we have I'(F) = (), and therefore, arp) = (). We also compute

[(aB) = {3} [(ay) = {2} ['(B) ={1,3}
ay ==¢ ary) = b ary,3}3 = ac.

Notation I1.B.28. We use LI to denote disjoint unions, e.g., if F, H € 3, then we write F'U H =

FUH if and only if FNH = (.

Lemma I1.B.29. Let A be a simplicial complex on V = {aq,...,a,}. Assume A # A,_1. Let A

be the purification of A and let X2 denote the boundary of A. Assume F € A is not a facet.
(a) The following are equivalent.
(i) Feyx
(ii) The number of facets in A that contain F is less than 2°°4m(F)
(ili) FUap) ¢ A
(b) The following are equivalent.
(i) FEA\T
(ii) The number of facets in A that contain F is equal to 2°04m(F)
(i) FUar(r) € A
Proof. We will prove Part (a) and Part (b) follows.

(i) = (ii): Assume F € X. For all ¢ € N, by definition of purified simplicial complexes we know

{a;,@;} is not contained in any facet of A. Hence any facet containing F has the form
FI_I{ai |i€A}U{OZj |‘]€.B}7 (IIB291)

where we set A, B C T'(F) such that T'(F) = AL B. There are exactly 2¢°4m(F) guch subsets of V, so
it suffices to show that one of them is not in A. By Fact I1.B.20, F' is a subset of some codimension-1
face F/ € A that is contained in exactly one facet of A. Set {i} = I(F'). Since A is a simplicial
complex, we must have F/ C (F’ U{o;}) € A and (F' U {a;}) ¢ A. Since F C (F' U {a;}), this

proves (ii).
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(ii) = (iii): Suppose for the sake of contradiction that F L ar) € A. Since A is a simplicial
complex, this implies that every facet of the form given in (II.B.29.1) is also a facet of 3, i.e., there
are 2¢°4im(F) facets in A containing F'.

(iii) = (i): Assume (iii) holds. By Fact II1.B.20 it suffices to exhibit a codimension-1 face F’ of A
that contains F' and is contained in precisely one facet of A. Let H € A be a facet containing F' with
the maximum number of Romans. By assumption, there must exist some «; € H such that ¢ € I'(F)
(otherwise F'Uappy = H € 3) Define the codimension-1 face F = H \ {a;} and we have F C F”
by construction. If we suppose that F” is contained in two facets of A, then F C (H \ {o;}) U{a;},
contradicting the maximality of the number of Romans in H. Thus we conclude the unique facet of
A containing F’ is H, so F' € ¥. Since ¥ is a simplicial complex and F C F’, this completes the

proof of Part (a). O

Note the unions in Lemma I1.B.29 are disjoint. This result has a number of useful corollaries
in Section ITII.B which are instrumental in our proof that our product is well-defined. Part (b) of
this result is also of particular significance for us, because as we will see in Section II.D, the basis
vectors of the resolution of interest are denoted specifically by the elements of A which are excluded
from 3. We close out this section with an example demonstrating how we compute these elements,

as well as a visual example to justify our use of the term “boundary.”

Example II1.B.30. Recall the simplicial complex A = (abc, abd, cd) and the purified simplicial
complex A. To find the elements of A \ ¥, we note that by Lemma II1.B.29, a face F' € A is omitted
from the boundary if and only if it can be obtained by removing ¢ Romans from a facet of 3, where
i = codim(F'). Since the facets of ¥ are codimension-1 faces of A, of course the facets of A are

excluded from the boundary. The codimension-1 faces of A which are excluded from the boundary,
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i.e., the facets of X, are obtained by removing exactly one Roman from a facet of A:

apyd —— Byo
afcd —— affd
abyd — byd
avyo
afyd — Bvyd
afy
abyd —— avyd
aby
abcd — bcd

acod

abd

abyd — ayd
afyd — afy
afcd — Bcb
afBd

abcd — acé
T
afcd —— afd
afic

abyd — byd

N

aby.

There are fewer facets of A from which we can remove two Romans:

abyd — 6
apyd —— fBy
abyd —— ary
abcd — ad

§b6

co

afcd —— 36
abcd — ad
afecd — af
abyd —— ary

<

vd.

Finally, the smallest elements of A \ X are obtained by removing three Romans from a facet of A:
abcd —= 0 abyd —— 7.
Example II.B.31. Recall the simplicial complex A = (ac, b) and its purification

& = <O[B’}/, aﬁ% Oéb’}/, OZBC, CLBC> .
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We can compute the elements of A \ X using the same algorithm as in Example I1.B.30:

Remove 0 Romans: af~,apy, aby, afc,albc
Remove 1 Roman: af, av, 87, B¢, a8 (I1.B.31.1)

Remove 2 Romans: f.

By identifying the codimension-1 faces of A which are contained in exactly one facet of ﬁ, we can
also write down the boundary ¥. By Lemma II.B.29, the facets of ¥ are the codimension-1 faces of
A which can be obtained by removing a Greek, but not by removing a Roman. Thus we compute
¥ = (ab, ac, avy, by, ac). Note the codimension-1 faces in (I1.B.31.1) are not included in X, because
they can be obtained by removing a Roman. By again interpreting the singletons as vertices, the
dimension-1 faces as edges, and now the dimension-2 face as shaded triangles, we can obtain a
geometric realization of A. We display it below with the boundary in bold. Note that the elements

not in bold are the elements of A \ ¥ computed above.

C
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II.C Stanley-Reisner Rings and Cohen-Macaulayness

We first introduce the rings of interest and the notion of shellability, a combinatorial prop-
erty of the underlying simplicial complexes. Then we introduce the Cohen-Macaulay property and
note that our rings possess this property precisely because of their shellability. Definitions I1.C.1
and II.C.6 are adapted from [2].

Definition II1.C.1. Let A be a simplicial complex on the vertex set V = {ay,...,a,} and let k
be a ring. The Stanley-Reisner ring (or face ring) of the complex A (with respect to k) is the
homogeneous k-algebra

E[A] = Kla1,...,an]/TA

where Ja, called the Stanley-Reisner ideal, is the ideal generated by all monomials a;, a;, - - - a;, such

that {ail,am'n,aiq} ¢ A.

We are exclusively interested in the Stanley-Reisner rings of purified simplicial complexes.
We describe a few such rings using examples from the previous section (see, e.g., Example 11.B.31).

First, however, we state a helpful fact.

Fact I1.C.2. If A is a simplicial complex over V and its purification Aisa simplicial complex over

V, then it is straightforward to show that Jx = Ja +(a;a; | i € N).

Example I1.C.3. Recall the simplicial complex A = (ac, b) and its purification A (see, e.g., Exam-
ple I1.B.31). The non-faces of A are ab, bc, and abc. Therefore Jo = (ab, bc) and by Fact 11.C.2 we
have Jz = (ab, bc,ac,bB,cy). We note that these are the edge ideals of P, and X P, respectively,
which prompts our statement of Fact I1.C.4 (recall that, for instance, bc is a generator of the edge

ideal of Py since bc is an edge of Ps).
The following fact is from a text by Moore et al.

Fact I1.C.4 ([5, Theorem 4.4.9]). If Ag is an independence complez, then the Stanley-Reisner ideal

determined by Ag is the edge ideal of G.

Example II.C.5. Recall the simplicial complex A = (abe, abd, c¢d) and its purification A (see, e.g.,

Example I1.B.18). The minimal non-faces of A are acd and bed, so by Fact I1.C.2 we have

Jx = (acd, bed, ac, bB, ¢y, df) .
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Our goal is to apply Theorem 5.1.13 from [2] to A to conclude that the Stanley-Reisner

rings of purified simplicial complexes are Cohen-Macaulay using the following notion.

Definition II.C.6 ([2, Definition 5.1.11]). A pure simplicial complex A is called shellable if the
facets of A can be given a linear order F1,. .., Fy, in such a way that (F;)N(F1,..., F;_1) is generated
by a non-empty set of maximal proper faces of (F;) for all 7, 2 <i < m. A linear order of the facets

satisfying this condition is called a shelling of A.

Colloquially stated, a shelling gives an order in which one can “glue” the facets together in
such a way that the intersections are as large as possible (in terms of dimension). E.g., triangles

should be glued along edges, and tetrahedra should be glued along triangles.

Example II.C.7. The simplicial complex A = {(ac,b) can be written A = {0, a,b, ¢, ac}, with its

faces in order of increasing dimension. We claim a shelling of the facets of A is

04577 0'5’77 ab’y’ aﬁc’ aﬂc7

listed in order of increasing number of Romans. We begin with a3y and “glue” af37 to it along the

edge [:

Since the intersection of these two triangles (dimension-2) is an edge (dimension-1), the shelling

condition is satisfied. Next we attach aby and afc, once again intersecting along edges:

C

Finally, we attach the facet afc along two edges, so we have a shelling:
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We give the previous example to demonstrate the following result. In short, the fact that A
is a simplicial complex forces the linear order of the facets of A given in Theorem II.C.8 to respect

the condition given in Definition II.C.6.

Theorem I1.C.8 (Morra). Every purification A is shellable. In detail, let A be a simplicial complex
and let A be its purification. Let Fi, Fs, ..., Fy, be any enumeration of the faces of A such that
dim(F;) < dim(F};) whenever i < j (e.g., Fi =0 and F,, is a facet of A). Then the linear order
ﬁh ﬁg, e E, isa shelling of A.

Proof. Set A = {F4,...,F,,} such that ¢ < j implies dim(F;) < dim(F};). Let £ € {2,...,m} be
given. Since A is pure by construction, it suffices to show that <ﬁg> N <ﬁ1, ey E_1> is generated
by codimension-1 faces of A. Set [ = #F; and denote Fy = {a;,,...,a;,} = a;, ---a;;. Since A is a
simplicial complex we have a;, - --a;;_,a;;,, ---a;, € Aforall j=1,..., f. By our choice of ordering,
without loss of generality there exist indices r,r+1,...,r+ f, such that {r,...,r+f} C {1,...,¢—1}
and Fj = a;, -+ aj;_,a;; ., ---a;, for j=r,...,r+ f. Foreach j =r,...,r+ f, we have F; N F; = F}

and thus ﬁgﬂﬁj = ﬁg\aij. Therefore we have
{F\g\aij |j:7“,...7’l“+f}C<ﬁg>ﬂ<ﬁ17...,ﬁg,1>.

so it suffices to show that any face H in the right-hand side of this display is a subset of one of
the codimension-1 faces in the left-hand side. Let H € <F\g> N <ﬁ1, ce ]/54,1> be given and denote
H,=HnNnVeAand H,=HNU. Then H C ﬁg implies that H, C Fy = a;, -+~ a;,. Since H C ﬁj
for some j € {1,...,¢— 1}, we know H, C Fj for that same j. Furthermore, by our choice of linear
ordering we know that Fy, N F; C F, for all j € {1,...,¢ —1}. It follows that H, C F; N F; C F,.
Hence there exists some j' € {r,...,r + f} such that ai, € Fy \ H,. Therefore, since H C F, and

ai, ¢ H, it follows that H C ﬁg \ ai,, as desired. O
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For the rest of the section, assume R is a commutative ring with identity unless other-

wise stated.

Definition II.C.9. Let M be an R-module. An element x € R is a non-zero-divisor on M if
the sequence 0 —= M —"= M is exact (i.e., for all m € M, xm = 0 implies m = 0). We
say x is M-regular if x is a non-zero-divisor on M and oM # M (i.e., M/xM # 0). A sequence
T = x1,...,84 € R is M-regular if x; is M-regular and x; is M/(x1,...,x;—1)M-regular for all
i=2 d.

geeey

Example II.C.10. We present a few examples related to regular sequences without proof.

(a) For any polynomial ring S = k[ay, ..., a,], for any 1 < d < n the sequence ay, ..., aq is S-regular.
(b) Any field k£ has no regular sequences, because any non-zero element x € k \ {0} is a unit and
therefore = - k = k.

(c) Let S = klay,...,an,a1,...,0a,] be the polynomial ring and let R = k‘[ﬁ] = S/Jx be the
Stanley-Reisner ring determined by a purified simplicial complex. Then a3 — a1, as —ag, ...,y —ay

is an R-regular sequence.

Definition II.C.11. Let R be noetherian and a < R an ideal such that aM # M. Let x =
Z1,...,Tq € a be an M-regular sequence in a. The sequence x is a mazimal M-regular sequence in
a if for all y € a, the sequence x1, ..., x4,y is not M-regular. The longest length d of an M-regular

sequence in a is called the depth of a on M, denoted
d = depthp(a; M).

Fact I1.C.12. Let R be noetherian and a < R an ideal such that aM # M. Then there exists a

maximal M -regular sequence in a.

Example II.C.13. In part (c) of Example II.C.10 we exhibited an R-regular sequence of length
n, where R is the Stanley-Reisner ring of a purified simplicial complex. Let m < R be the ideal

generated by the variables. Thus we have depthy(m; R) > n.

Definition I1.C.14. The Krull dimension, or just dimension, of R is defined as
dim(R) =sup{d>0 |Ipo Cp1 S-S pa & R s.t.p; prime,Vi=1,...,d}.
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Example I1.C.15. Using properties of monomial ideals, it can be shown that dim k[A] = n (see,

e.g., [5, Theorem 5.1.2]).

©)
Theorem II.C.16 ([6, Theorem 2.3.3]). One has depthp(m; R) < dim(R).
Definition II.C.17. R is Cohen-Macauley if () is an equality.

Definition I1.C.18 ([2]). A is a Cohen-Macaulay complex over k if k[A] is a Cohen-Macaulay ring.

We say A is a Cohen-Macaulay complex if A is Cohen-Macaulay over every field.
We achieve the goal of this section with the following remark.

Remark II.C.19. From [2, Theorem 5.1.13], we know that every shellable simplicial complex is

Cohen-Macaulay. Therefore a corollary of Theorem II.C.8 is that Ais Cohen-Macaulay.
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II.D The Resolution

In this section we introduce the minimal resolution of interest. Throughout we will let S

denote a polynomial ring in 2n variables, i.e., S = k[a1,...,an,01,...,ay,], and we let R denote
the Stanley-Reisner ring of a purified simplicial complex AonV = {a1,...,an,a1,..., 0}, ie.,
R=S/J3.

Definition II.D.1. Let F' be an element of the power set 73(‘7) We naturally identify F with a

unique monomial in S and denote it mdeg(F'). For instance, if F = {«,b,d} then we have
mdeg(F) = abd € S.

Example I1.D.2. Recall that we use U to denote disjoint unions. Hence if F, H € A \ X such that
FNH=(,then
mdeg(F U H) = mdeg(F') - mdeg(H).

The resolution of interest resolves the Alexander dual ideal of the Stanley-Reisner ideal
JR, denoted (JE)A. There are multiple equivalent characterizations of the dual of an ideal of a
polynomial ring generated by monomials. We use [4, Proposition 2.2] from a text by Eisenbud et al.

to give one such characterization. This requires us to define colon ideals.

Definition I1.D.3 ([5, Definition A.6.1]). Assume A is a commutative ring with identity. Let B C A
be a subset of A and let a < A be an ideal. For each element z € A, we define B = {zb |b € B}.

The colon ideal of a with B is
(a:aB)={rc€A|zBCa} <A

In words, the colon ideal of a < A with B is the collection of elements of the ring A that send B to

a via multiplication from the ring structure. It can be shown this is indeed an ideal of A.

Definition II.D.4. Let I < S be an ideal generated by monomials f1,..., fi, € S. Let
ai\l .o .a:‘l”a;h . .a:]l” 6 S

be the least common multiple of the generating sequence fi,..., fm. The Alezander dual ideal of I,
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denoted T4, is generated by those generators of the colon ideal

A1+1 An+1 +1 nt1\ .
<<a11+,...,an+,0¢7171 ,...,a2+>.{f1,...,fm})

+1

that are divisible by neither a}** nor o™, for i € N.

In Definition I1.D.6 we give a resolution of the Alexander dual of a Stanley-Reisner ideal,

namely (Jz)* due to [3]. First, we compute such an ideal.

Example I1.D.5. Counsider again the simplicial complex A = (abe, abd, c¢d) and its purification A.

In Example II.C.5 we computed the Stanley-Reisner ideal:
Jx = (acd, bed, ac, bB, ¢y, dd) .

Note that lem(acd, bed, ace, bB, ¢y, dd) = abedaBvd, so \; = 1 = n; for all ¢ in Definition I1.D.4. Next,

we therefore consider the following colon ideal:
(<a2, b2, 2, d2, a2,52,72,52> :s {acd, bed, ac, b, ¢y, dé}) .

Hence we seek monomials ¢ € S such that g has no squares and ¢f has a square for every f €
{acd, bed, ac, b3, ¢y, ds}. The generator acr implies that for each generator g of (Jx)#, we must have
cither alg or alg, since this implies either g - ao € (a®) or g-aa € (a?), respectively. Similarly, we
must also have either blg or 8|g, and we must have either ¢|g or v|g, and so on. (This means that
in the general case where V = {a1,...,a,}, the generators g of (Jz)* are monomials of polynomial
degree n with either a;|g or a;|g for each i € N.) For instance, since the monomial abed € S has no
squares and every generator of .J3 is divisible by at least one Roman, abcd is a generator of (JE)A.
Similarly, the monomials abed, afcd, abyd, abcd € S are generators of (JE)A as well. Ultimately we

compute
(Jﬁ)A = {abed, abed, afed, abyd, abed, aBed, abyd, abed, affyd, afcd, abyd, afyd, aBcd) .
Most strikingly, these are precisely the complements of the facets of Al We recall

A= (a0, aBvd, abyd, afcd, abryd, abyd, aBcd, afyd, abed, abyd, afed, abed, abyd) .
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It is a fact that (JB)A is generated by the complements of the facets of A. We will see
therefore in the following definition that £ resolves S/I in a very natural way. Recall that for any face

F e 3, we let F'“ denote the set complement taken inside of the vertex set v (see Definition I1.B.5).

~ ~

Definition I1.D.6. We set S = k[V] and let R = k[A] = S/Jz be the Stanley-Reisner ring. Let

1= (JA)A be the Alexander dual ideal of the Stanley-Reisner ideal. We define £ as follows:

S 1=0
Li=q8B) jeN
0 else,

where S(B9) is the free S-module with basis B; = {[F] ‘ FeA \ X s.t. codim(F) =i —1 } By [3],

L is a minimal resolution of S/I. We place an ordering on the variables:
a1 > Q1 >0y > Qg > - > Ay > Q.
For each i = 2,...,n + 1 we define the differential

o ([F)= Y (Fvw[Fuu, (IL.D.6.1)

UEFE
FLweA\S

where ¢ (F,v) = (—1)#{”,EF [v'<v} and FC =V \ F. In homological degree one we define
Oy ([F)) = o(F) mdeg(F°),

where o(F) = (—1)#F0V),
Notation II.D.7. Let |F| = |[F]| denote the homological degree of [F]] in the resolution.

Notation II.D.8. Throughout the remainder of this document, faces and monomials will frequently
coexist. For instance, in (II.D.6.1) within Definition I1.D.6, we see t(F,v)v[F U v] for some face
F e 3\2 which is not a facet, and some v € F¢. We have the product of a sign function determined
by a face F and a vertex v, a single variable v € S, and a basis vector denoted by the face FLI{v} € A.

For sake of readability, we will frequently suppress curly braces inside of square brackets. We will
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highlight such nuances as they appear.

Remark I1.D.9. The slogan for the sign function (F,—) is “how many elements of F' are less

than the new guy?” By our ordering on the variables, for any i # j we have

w({ai}v aj) = 1/)({0[,’}, aj) = 1/}({0,1‘},0(]‘) = 77[}({0‘2}’ aj)'

For instance,

v({ar},as) = p({aa},a3) = v({ar}, as) = p({aa }, a3) = (-1)°,

because ai, a1 > asz,a3. Many times it will be expeditious at times to think only in terms of
subscripts, e.g., in the proof of the main result, Theorem III.C.2. In fact, the product given
in Definition III.A.1 makes use of this notion. Therefore for any index j € N and any subset

{i1, ... ip} C (N \ {j}) we define

¢({i1a s 7ip})j) = w({aiw e "aip}7a/j)'

For instance, for any F € A\ ¥ and any a; ¢ F we have

w(Fv aj) = w(SHPP(F)aj)~

Furthermore, this generalization holds for any element of the purified simplex 5;
Given aface F € A\X and some index e; € ['(F) = N\supp(F), we know that both FlLi{a,, }
and F'lU{ae,} are elements of A\ T (see Lemma I1.B.29 and one of its corollaries: Corollary ITI.B.4).

Thus we have an equivalent definition of the differential that will often be convenient to use:

OF)= Y ©(F¢) (e, [FUae]+ae[FUa,l).
e; EL(F)

Example I1.D.10. Again consider A = (abc, abd, c¢d) and its purification A. In Example 11.B.30

we already computed the bases B; for i = 1,2, 3,4 for the resolution £ below.

00— §B1) ___ q(Bs) S(B2) S(B1) S
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The bases are as follows with the square brackets suppressed:

By = {aﬂ’yé, apyé, abyd, afcd, afyd, abyd, afcd, afyd, abed, abyd, afcd, abcd, ab’yd}

aBy, afd, ayd, Byd, avd, byd, afBd, Bed, apy, Byd, abd.
acd, aby, ayd, afc, afd, abd, acd, bed, aby, avyd, byd

B

BS = {’767 ﬂ& B"% a57 a”, O‘Ba a55 b65 657 ary, b’% ’Yd}

84 = {’77 6}

Using basis vectors [F] that are in the interior of A ensures that the image A[F] has 2codim(F)
(non-zero) terms. Next, we give some examples to demonstrate the differential.
For facets, the differential sends them to their complements, with the sign determined by

the number of Romans.
dabrd) = (—1)°aBes (o)) = (—1)°abed

In higher homological degrees, the sign is slightly more complicated. For instance, since § and d are

the two smallest variables with respect to the order
a>a>b>pB>c>vy>d>0,
we have positive coeflicients in the following.
I([ap]) = 0[apyd] + dafyd] I([aby]) = 6[abrd] + dlabyd]

Set [F] = [ad] € Bz. Since a is the largest variable and & the smallest, any vertex in F¢ will be

larger than exactly one element of F. Thus every coefficient in the image of [F] is negative:

9([ad]) = —Plapd] — blabd] — y[ayd] — clacd].
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We conclude with a varied selection:

O([abd]) = —v[abyd] — clabed)
O([bd]) = alabd] + alabd] — y[byd] — c[bed]

A([v]) = alav] + alay] + B[BY] + blby] — 6[vd] — d[vd].
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II.E Non-standard Notation

Notation IL.E.1. It will frequently be beneficial to identify an element of the set {a;, a;} by its
index only, leaving its membership to either V or U ambiguous. In such cases we will let ; denote

some element of {a;, ;}, or we will set {z;,y;} = {a;, a;} (see, e.g., Definition IL.E.2).

Definition ILE.2. If F,H € A, then F extended by H
FHl —Fu{z; c H|icT(F)}
and F' restricted to H is
Flg={z; € F |iesupp(H)}U{z; € H |[i € (F)},

where z; € {a;, a;}.

Example II.E.3. Recall A = (abc, abd, cd) and its purification ﬁ, from, e.g., Example I1.B.30. For
any facet F € A we have supp(F) = {1,2,3,4} and I'(F) = @. If we consider F' = a0 € A and

H=abs € A \ %, then we compute the following:

Fly = afBs FHH —

H|p = abvyd HTF = abyé.

From this, one sees that facets introduce some trivialities: for any face H € A and any facet F' € ﬁ,
we have F*# = F and H|p = H*¥. On the other hand, for the non-facets F = a3c and H = bJ,
we have

Flg = pd FHH = B¢

H|r = abe HY = abed.
Remark II.E.4. It is relatively straightforward to check that supp(F|g) = supp(H). Though it
is not defined at this point, we will see in Definition III.A.1 that for any non-zero product [F] - [H],

we also have supp(F*#) = N, i.e., F*H is a facet of A.

Definition II.E.5. Let A be the simplex over V and let F' € A be a face in the purification of A.

Let P(V) denote the power set of V. For every i € N, define the map 7 : 79(‘7) —P(V) as the
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map that replaces a; with «; and fixes all other vertices. Thus, we have 7;(a;) = o; and

(F\{a:})U{ai} a;€F

F al¢F

Also for every i € N, define the map t; : 73(17) — 73(‘7) as the map that replaces «; with a; and

fixes all other vertices. Thus, we have t;(«;) = a; and

(F\{ai}) U{ai} o eF

F a; ¢ F.
Let T(‘A/) denote the collection of all such maps, i.e.,
T(V) = {71, t1, T2, ta, ..., T, b }.
Similarly, we let T(F) denote the collection of maps that do not fix F), i.e.,
T(F) = {Ti eT(V) |a; € F}U{ti eT(V) |a; € F}
Definition II.E.6. We order the maps in T(‘7):
Tn < Tpno1 < <mp <t1 <t <--- <ty

Below, we will use this ordering in the definition of our product (see Definition II1.E.10).

Notation II.E.7. We define the following:

m1(a) =« To(b) = B 73(c) = T4(d) =0

tl(a) =a tg(ﬂ) =b tg(’y) =C t4(5) =d.

It follows, for instance, that we also have the following:
T1(afy) = afy = 1 (afy) ts(ay) = ac 74(bed) = bed.
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Example II.E.8. For the facet F' = abcd in the purification of A = (abe, abd, cd), we have T(F) =

{73, 72,t1,t4}, listing the maps in increasing order. For the face F' = 4, we have simply T(F) = {t4}.

Notation II.E.9. As with the vertices a; and «;, it will frequently be beneficial to refer to an
element of {7;,¢;} by index alone (see Notation IL.LE.1). In such cases we may use either m; or p;

to denote an element of {7;,¢;}. We do not assume that {p;,m;} = {t;, 7} in general. We let =

~

denote the map in T'(V') such that {m;, 7} } = {t;, 7:}. We define p} similarly. When we enumerate the
elements of T'(F) using this notation, we do so with respect to the ordering given in Definition I1.E.6,

ie, if we set T'(F) = {ps,, piy,---,pi; } where f = #F, then we tacitly assume that p;, < p;,,, for

j=1,....f—1

Definition ILE.10. Let F, H € A\ ©. We define T(F, H) C T(V) to be the set
T(F,H) = {wej € T(F) |« € T(H) }

Equivalently, one can define T'(F, H) to be every map from T'(F') indexed by the set (supp(F) N

supp(H)) \ (F N H), i.e., maps with indices belonging to the specified set. If we denote
{7T617' . '17T6m71} = T(F7H)’

then we assume that 7., < 7, , for all j. If supp(F') = supp(H ), then the path from F' to H, which

we denote P(F,H) = {F1, F»,..., Fy,}, is given by

Wei,l(Fifl) 1= 2, ey

Note that in this context F,,, = H. If supp(F') # supp(H), then note that by Remark II.E.4 the
paths P(F, H|r) and P(F|g, H) are well-defined. We typically will denote the elements of this set

with the same letter as the face whose support is respected, i.e., we write
P(F,H|F):{F17F2,...,Fm} and P(F|H,H):{Hl,HQ,...7Hm}.

In this context Fy = F, F,,, = H|p, H; = F|py, and H,, = H.
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Example II.E.11. Consider again A = (abc, abd, cd) and its purification A.
(a) Set F' = abcd and H = af8vyd. Then we have T'(F, H) = {73, 72,t1} and the path from F to H is

P(F,H) = {abcd, abyd, afvd, apyd}.

(b) Set F' = aby and H = 4. Since supp(F') # supp(H), the path P(F, H) is not defined. Since

H|r = af, we have the path

P(F, H|r) = {aby, aBy, apv},
and since F|g = abd, we have the path

P(F|g,H) = {abd, afo, aBd}.

Remark II.E.12. Note that Definition II.E.10 ensures that for any faces F, H € 3, each element of

the path P(F, H) is in A, since we form paths by first reducing the number of Romans (if necessary)

~

and A is a simplicial complex. Furthermore, by ordering the 7;’s in T'(V') with decreasing subscripts
and the ¢;’s with increasing subscripts, we guarantee that P(F, H) equals P(H, F) with its elements

in reverse order.

In Example II.LE.13 we will demonstrate what can go wrong when the ordering in Defini-

tion II.E.6 is not followed.

Example II.E.13. Once again set A = (abc, abd, cd). Let F = abyd and H = afScd be facets in

the purification A. Then T(F,H) = {74, 72,t3} and note that ¢3(F) = abcd is not a face of A.

Definition ILE.14. Let F € A and set T(F) = {pi,...,p;,}. Let p;, € T(F). If F =

{®i,, ..., 2, }, then we define
FZPQ = FZW = {.’Eij cF |Pij > Piy } .

Example ILE.15. Consider the facet F = afcd € A and note that T(F) = {73, 11, ta,t4} with
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T3 < t1 < ta < t4. Then we have

FZ3:FZ7'3 =F F21:F2t1 :OLIBJ FZQZFth :ﬂé F24:F2t4:5.

Next, we define a subset of T'(F') that will be essential in Definition ITI.A.1.

Definition IL.E.16. For any F € A \ X, we define
T(F)={pi € T(F) |p;i <t;,Vj€T(F)}.

Note that T(F) = T(F) when F is a facet.

Example ILE.17. Consider F = 8 € A where A = (ac,b). Then T'(F) = {1,3} and T(F) = {t.}.
Since ty > t; where 1 € I'(F), we have T(F) = (. If we set H = B¢ € A, then we have T(H) =
{73,t2} and T'(H) = {1}. Since 73 < t;, we have 73 € T(H), but since t, > t; we have t, ¢ T(H).
Hence T(H) = {73}.

Definition II.E.18. Let F' be an element of the purified simplex ﬁn (i.e., F' is an element of the
power set P(V) such that {a;,a;} ¢ F for all i € N). Let F’ denote the image of F under the

composition of every map in T'(F). We define

mdeg(F) = mdeg(F")

—_~— —_~—

For instance, this means mdeg(a;) = «; and mdeg(«;) = a;.

Example ILE.19. For any facet F € A we have ga:e/g(F) = mdeg(F®). If F = af6 in the

purification of A = (abe, abd, cd), then T(F) = {1,t2,t4} and we compute
Eae/g(F) = mdeg((t4 0tz 0 71)(aBd)) = abd € S = kla,b,c,d, a, 8,7, 4].

Notation II.E.20. It will be common in Chapter III for us to suppress curly braces within the

arguments of P(—,—), T'(—), and T'(—, —). For instance, if F' € A \ ¥ and j € T'(F'), then we write

T(FUa;) = T(FU{a;}).
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Chapter 111

DG Algebra Structure

We can finally define our product on the resolution £ from Definition I1.D.6 and prove that,
if associative, it imparts a DG algebra structure to £. Throughout this chapter, we assume that
A is a simplicial complex over V' = {ay,...,a,} that contains all the singleton sets in P(V'), and
that A is its purification as in Definition II.B.16. We also let ¥ denote the boundary of ﬁ; see

Discussion 11.B.19.

ITIT.A The Product

In this section we give an explicit definition of our product and give a few examples. The
following construction is used in Definition III.A.10 to characterize all non-zero products. Non-

standard notation used here is described in Section II.E.

Definition III.A.1 (Morra). Let F € A\ X. We define the epsilon set of F as

e(F)= |J P (p(FspUarr)), (wo p)(FspUar))) (IILA.1.1)
peT(F) ¥

where for each p we union over all compositions w of maps from the set

T((FUar)s,) ={p € T(F) | ' > p}U{7; € T(arm)) |7 > p}
such that the smallest map in any non-empty w is either some 7; € T'(ap(py) or some t; € T(F)\T(F).
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In the following discussion we briefly present the meaning of these epsilon sets.

Discussion III.A.2. Set A = {ac,b) and let A denote its purification, i.e.,
The resolution £ of S/T is

0—> §Bs) 5 q(B2) S(B1) S,

where

Bl = {aﬂ% aﬂ% Oéb’Yv O[,BC, aﬁc}
82 = {OZB,CK’Y,B’Y,GB,BC}
B; = {B}.

Suppose we want to determine a product [af7][afB¢] that satisfies the Leibniz rule and is additive

with respect to homological degree. Then we seek coefficients s1,...,s5 € S such that

A([apy))[aBe] —[ap]0([abe]) = 510([af]) +520([e7]) +530([87]) +540([af]) +550([c]). (IILA.2.1)

Applying the differential, the left-hand side of Equation (III.A.2.1) is

abclafc] — aby[aBr].

The right-hand side of Equation (ITI.A.2.1) is the sum of the following:

s1(v[eB7] + claBd])
s2(=BlaBy] — blaby])
s3(alaBy] + alaBy])
sa(v[apy] + claBd])

ss(alafe] + alaBc]).
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Hence we require

$17 — s28 = —aby ssa+ s4y =0 —s9b=10 sic+ssa=0 s4Cc + ssa = abe.

The third equation implies that s = 0, and it in-turn follows from the first equation that s; = —ab.
Therefore by the fourth equation we have s5 = be, and it then follows from the fifth equation
that s, = 0. Finally, this means s3 = 0 by the second equation. In summary, to ensure that

Equation (ITI.A.2.1) holds, we choose the coeflicients

s1 = —ab s =0 s3=0 54 =0 s5 = be,

and we therefore choose

[aB7][aBe] = —ablaf] + be[Bc].

It can often occur that all such s;’s must be zero. For instance, if we consider the product

[a87][af], then we seek a single coefficient s € S such that

I([ap))[aB] — [aB10([af]) = sO([B]). (IIL.A.2.2)

By computing the requisite products of facets, it is straightforward to show that the left-hand side
of Equation (II11.A.2.2) is

abclaf] — [aB7](v[aBy] + claBc]) = abelaB] — bey[By] — e(—by[BY] + ablap])

=0

and the right-hand side is
s(—alaf] — alaf] + v[B7] + ¢[Bc]).

This forces us to choose s = 0, so we have

[aB7][aB] = 0.

The epsilon set e(F') describes all faces H for which the corresponding linear system does not force
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the product [F|[H] to be zero.
We comment on epsilon sets of facets before giving a few examples.

Remark ITI.A.3. A notable feature of facets F € A is that ['(F) = 0, which implies that ap F) 18
empty, so any composition w used in the construction of ¢(F') must likewise be empty, i.e., w is the
identity map. In this setting we also have T(F) = T(F), so the definition of £(F) is significantly
simpler:

sF) = | {o(Fs)).

PET(F)
In the next example we again use A = (ac,b) and A = (abc, abd, cd) and compute several
other epsilon sets that will be referenced in examples of products following Definition III.A.10 (recall

that we computed the relevant bases in Examples I1.B.31 and I1.B.30, respectively).

Example III.A.4. Here we compute several epsilon sets.

(a) Let A = (ac,b) and let A be its purification.

(1) Consider the facet F = afy € A\ X with T(F) = T(F) = {t1,ts,t3}. We compute
t1(F>1) = t1(F) = aBy ta(F>2) = ta2(By) = by t3(F>3) = t3(y) = ¢
and by Remark ITI.A.3 these are precisely the elements of e(F):
e(apy) = {aBy,bv,c}. (IIL.A.4.1)

If we next consider the facet H = afc, then we have T(H) = {73, 71,2} and compute the elements

of e(H) as follows:
m3(H>3) = 13(H) = afBy T (H>1) = 11(aB) = af t2(Hx>2) = t2(8) = b,

thus we have

e(aBc) = {aBy,aB,b}. (IIL.A.4.2)

Note that ¢ € ¢(F) and ¢ C H, and that o € ¢(H) with af C F. We will see in Remark III.A.7

that this always occurs: for all distinct facets F, H € A \ 3, there exists some E € ¢(F') such that
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E C H, and there exists some E’ € e(H) such that E' C F.

(2) Epsilon sets for non-facets are more complicated. Consider the face F = fc € A\ ¥. In
this case we have T(F) = {73,t3} and I'(F) = {1}, so T(F) = {73} and ar(r) = a. Since 73 is the

only map in T(F), every element of e(F) is of the form (w o 73)(F>3 U a). We compute
T3(F>3 U a) = 13(afc) = afy.

The sole element 71 of the set T'(ar(r)) is greater than 73 and so may be used in the composition w.
Similarly, the only map in to € T(F) \ T(F) may likewise be used in the composition w. Moreover,

both may be used independent of the presence of the other in the composition. Hence we have
eF)= |J  PlaBr,w(aBy)).
we{T1,t2,t20m}

Note that

P(aBy,11(aBy)) = {aBy, aBy} C {afy,aBy, aby} = P(aBy, (t2 o 11)(aBy)),

i.e., the path created when w = 7 is properly contained in the path created when w = t5 o 7.

Therefore we conclude

e(Be) = P(apy,t2(apy)) U P(aBy, (t2 o 11)(aBy))
= {aBy,aby} U {aBy, aBy, aby}

= {apv,aby,afy, aby}.

Recall that ¢ € e(af8y) (see Equation (I1I.A.4.1)), and note that ¢ C Bc. We also see that afy €
e(Bc), and of course afy C afy. Recall also that e(afc) = {aB~v,aB,b} (see Equation (II1.A.4.2)),
and note that none of these are contained in Sc¢. Furthermore, there are no elements of e(f¢)
contained in the facet afc. We will see in Lemma III.B.8 that this reciprocity always occurs: for all
faces F,H € A \ X, there exists some F € e(F) such that £ C H if and only if there exists some

E' € e(H) such that E’ C F. This is essential for proving that our product is graded commutative.
(b) Set A = (abc, abd, cd) and consider the facet F = afyd € A with T(F) = {74, 71,12, t3}. Then

42



we compute

T4(F>4) = 14(F) = a6 T1(F>1) = 11(afy) = aBy
ta(F>2) = t2(By) = by ts(F>3) = ts(v) = ¢,
and conclude that e(F) = {afv6, aBy, by, c}.
Set H = abvyo and note that H D by, where by € £(F). To again demonstrate the reciprocity
necessary for graded commutativity, let us compute e(H). Since T'(H) = {72, t1,t3,t4}, we have

To(Hs2) = 7o(H) = afvd t1(H>1) = t1(aB0) = aBo

t3(H>3) = t3(70) = o ta(H>4) = 14(6) = d

and therefore e(H) = {af79, aBd, ¢, d}. Regarding the reciprocity mentioned at the end of Part (a),
we observe that there is indeed an element of €(H) contained in F', namely d.

Consider the face I’ = byd with I'(F) = {1} (i.e., ap(p) = a) and T(F) = {74, 72,13}, and
we want to compute £(F). Since t3 > t;, we have T(F) = {74} and therefore need only consider
elements of the form (wo 74)(F>4 U a) and (w o 72)(F>3 Ua). The inclusion t3 € T(F) \ T(F) also
implies that we may use t3 as part of any composition w. Similarly, since 7 > 74,72, the map
71 € T(ap(ry) can likewise be part of any w. Hence in both the 74 and the 72 cases, the three valid

compositions w are t3, 71, T1t3. Note that it suffices to consider w = t3 and w = 7yt3, so we compute

UPru(FoaUa), (woma)(Foq U a))

= P(r4(abyd), (t374)(abyd)) U P(74(abyd), (ts174)(abyd))
= P(abyé, abcd) U P(abyd, abed)

= {abyd, abed } U {abvd, abvd, abed'}

43



and

UP(TQ(Fzz Ua), (wom)(F>2Ua))

= P(mz(aby), (t3m2)(aby)) U P(m2(aby), (t31i72)(aby))
= P(apy,afc) U P(afy, afc)

= {apv,afc} U{aBy,apfy, afc}.

Thus we have

e(byd) = {abyd, abcd, abyd, abed, afy, afe, afy, afct.

Example ITI.A.5. Computing epsilon sets is tedious in general. In Remark IT1.A.3 we see that it is
much simpler to compute these for facets, but we have found visual depictions of T'(F') for a non-facet
F to make computing £(F') much more tractable. Consider the face F' = a7yd in the purification A

of A = (abc,abd, cd). Then I'(F) = {2} and ap(p) = b. The arrangement of T(F) = {74, 71,13} is

Ty e TL e | t3 e (ITL.A.5.1)

T2

where T'(ap(ry) = {72}. Note that the maps in this display are arranged from least to greatest (the
ordering is given in Definition IL.LE.6). In general we will draw these without boxes, arrows, and

labels, but for the purposes of this example we can use these things to delineate T'(F") and T'(ar(r)):

We highlight several things below.

-~

e The “o” symbols are placeholders. E.g., 73 is not in T'(F'), but we mark its place in T'(V') with

the first o. The maps t1,t4 are likewise absent from T'(F') and have their places marked “e”.

e The line | marks the location of the smallest map ¢; such that ¢ € I'(F). In this way, we
separate T(F) from T(F) \ T(F). E.g., we see that both elements of T(F) = {74, 71} are on
the left side of | and the sole map in T'(F) \ T(F) = {t3} is on the right side of |.
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e Maps to the left of | are precisely the suitable choices for p in the context of Equation (ITI.A.1.1).
Maps to the right of | are always permitted in the composition w, again in the context of

Equation (ITI.A.1.1).

e The map 73 is the unique map in T'(ar(p)). Furthermore, since 74 < 7 < 71, in the context
of Equation (III.A.1.1), we can use 75 in the composition w when p = 74, but we cannot use
it when p = 71. In Diagram (III.A.5.1), we indicate that 7 ¢ T'(F') by placing it below the

maps in T'(F).

e In general, maps between a given choice of p and the line | can only be used in w provided

that they follow some element in T'(ap(g)).

We circle circle 74 as one choice for p (in the context of Equation (III.A.1.1)) and mark any map to

the right that can be used in some composition w:

e T oe |t e (IILA.5.2)

So every map can be used, but 7; may only be used provided that 75 is also used, indicated by an
edge between the two maps. This is to satisfy the requirements on the smallest element of w. Hence
with this marked arrangement of T(F') we indicate that for the choice p = 74, we have the following
possible compositions w:

w € {ts, t3T, TiT2, t3T1 T2}

These four choices for w yield four paths whose elements are therefore elements of e(F'). Each path

begins with 74 (F>4 Ub) = 7(F Ub) = abyd:

P(abyd, ts(abyd)) = {abyd, abcd}
P(abvé, (t312)(abyd)) = {abvyd, afvd,aBcd}
P(abyd, (1172)(abn0)) = {aby6, a0, apyd}

P(abvd, (t3m172)(abyd)) = {abyd, afvyd, afvyd, afcd}.

Note that disregarding t3 in the choice w = 775 leads to a redundancy, as the third path above is a
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proper subset of the fourth. Thus from the marked arrangement in Diagram (III.A.5.2) we conclude
abyd, abcd, afyd, afcd, afyo, apcd € e(F).

Our only other choice for p is 71, for which we have the following marked arrangement:

Moo @ |t
yz4

Since 19,74 < 71, these cannot be used in w, which we indicate by crossing them out. Hence the
only choice for w is the map t3. Furthermore, 74 < 7 implies that F>; = a7, so we have that

71(F>1) = avy. Thus we compute the path
P(aby, ts(aby)) = {aby, abc} C e(F)
and conclude that
e(F) = {abvd, abcd, aBvd, afcs, afyd, afcd, aby, abcet.

We use these marked arrangements to recompute the epsilon sets of the non-facets from

Example T11.A 4.
Example IIT.A.6. In Part (a) we again set A = (ac,b) and in Part (b) we set A = (abe, abd, cd).

(a) Recall the face F' = fc has epsilon set e(F) = {afy,aby,afv,aby}. Then I'(F) = {1}, so
ap(py = a and T(apr)) = {m1}. We also have T(F) = {73,t2} and T(F) = {r3}. Thus the

arrangement of T'(F') is

T1

So we can see that 73 is the sole map in the top row to the left of |, so 73 is the unique choice for p

(in the context of Equation (III.A.1.1)), so we have only one marked arrangement, given below.

We also see that 7, is to the right of 73 and may therefore be used in any composition w. Furthermore,
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we see that t9 is to the right of |, so it may likewise be used in any composition w. Therefore we
recover the following choices for w:

w € {tQ,Tl,tQTl}.

Recall that the choice w = t57; makes the choice w = 7 redundant, and we therefore recover the

result from Example II1.A 4:

e(F') = P(apv,t2(afBy)) U P(aBy, (t2 o 71)(aBy))
= {apv,aby} U{apBy, apy, aby}

= {aBy, aby, afy, aby}.

(b) Recall the face F' = byd has epsilon set (F) = {abyd, abcd, abyd, abcd, afpy, afe, afy, afc}.
Then once again I'(F') = {1}, so ap(py = a and T'(ap(p)) = {71}. We have T'(F) = {14, 79,3} with

its arrangement displayed below.

T4 ® Ty | t3 e

T1

The two maps 74 and 75 are both to the left of | and therefore are viable choices for p. The map 71
may be used in any composition w, because it is greater than both choices for p. The map t3 may
likewise be used in any w, since it is to the right of |. Thus we have two marked arrangements that

are very similar, the first of which is given below.

T * 2 |tz e

T1

Note that 75 is crossed off, since it cannot be connected by an edge to any element in the bottom row
on its left side. Since 74 = minT'(F), we have F’>4 = F' and we therefore compute 74 (F Lla) = abyd.

Since w = t3 o 71 makes the choice w = 71 redundant, we compute

P(abyé, t3(abyd)) = {abyd, abed}

P(abvd, (t3 o 1) (abyd)) = {abyd, abyd, abed}.
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The other marked arrangement is below.

Since 74 < T2, we compute F>o = F'\ d = by. Therefore mo(F>3 U a) = afy and we have two more

paths to compute, thereby recovering our calculation from Example ITI.A.4:

P((Lﬂ’y,tg((lﬁ’}/)) = {aﬂ% aﬁc}
P(ap, (tz o m)(aBy)) = {aBy, apy, abc}.

Remark III.A.7. We will see in the proof of the main result that for any pair of distinct facets
F,H € A we have E C H for some E € £(F) (sce the proof of Theorem IIL.C.2). We summarize

the argument here. For any facet F, we may write e(F) = {E1,..., E,} where
Ej = pi; (F>i;)

for j = 1,...,n, where p;; € T(F). Set {z;;,y;;} = {a;;,;,} such that F' = z; ---x;, and
pi,(zi,) = yi,. Let H € A\ S be a facet. If E, =y, ¢ H,thenz;, € H. If B,y =i, a5, ¢ H,
then x;, _, € H as well. If none of the E; are in H, it follows that H = F'.

To demonstrate, recall from Example III.A.4 (b) that F' = af3yd has the epsilon set e(F) =
{aB~d, afy,by,c}. We enumerate the other facets below, each arranged alongside the element of

e(F) it contains.
E Facets
aByd  aBvyé

apy  apyé,apyd

by abyé, abyd, abyd, abyd

c afcd, afcd, abed, afed, abed

We give one final definition and remark before defining the product.
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Definition ITI.A.8. Let A, B C N be disjoint subsets. We define

JjEB

Remark IIT.A.9. For any distinct 4, j € N we have ¥ (i, j) = —(j,4). Therefore in the context of

Definition III.A.8 we have

(A, B) = [T v =] [TvG)=1]1]-+Gd=]11]-¢Gd=0* ] e,

JjEB jEBicA JjEBiIEA i€AjEB i€A

and hence

V(A B) = (-)*F#y(B, A).
Now we define the product that we propose will impart a DG algebra structure to L.

Definition III.A.10 (Morra). Let F, H € A\  be elements of the interior of a purified simplicial
complex A. Recall that we denote P(F,H|p) = {F|, F,,...,Fy} and P(F|y,H) = {H\,H, ...,

H,,} (see Definition I1.E.10). Set d = |F| + |H|. If we have
(1) L4 # 0 and
(2) there exists some E € ¢(F') such that £ C H,

then we define the product [F][H] as follows:

I. if m = 2, then the product [F][H] is simple and it is given by
[F][H] = W(F, H) mdeg(F° N HY)[F N H],
where we let 7., denote the unique map in T'(F, H) and define
V(F,H) = (=1)#Fo (FH) o (F N0 H,e)p(T(H), T(F));

II. if m > 2, then the product [F][H] is complez and is given by

m—1
F)) = (-1 S 2des(B 0B ) \EOH))
i=1 mdeg ((Fz N HZ‘+1) \ (F n H))

=
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In all other cases, we set [F|[H] = 0.

We again comment on the uniqueness of some calculations in the context of a facet before

giving a few examples.

Remark III.A.11. If I, H € A are facets, then F, H ¢ ¥ and we have F|g = F and H|p = H. It
therefore follows that

P(F,H|p) = P(F|y,H) = P(F,H).

If we suppose also that [F|[H] is simple, then the sign function W(F, H) can also be reduced. Set

{me,} = T(F,H) and since F™H = F_ in this setting we have
U(F,H)=0(F)Y(FnNH,eyp).

Example ITI.A.12. In this example we restrict our focus to the products of facets.
(a) Recall the epsilon sets of the facets F' = a8y and H = afc from Example 111.A.4 and consider
the non-zero product [F|[H]. Since T(F, H) = {t1,t3}, the product is complex. Let Fy, F5, F5 denote

the path P(F, H) as follows:

P(F,H) = {apy,aBv,apc, }
R F Fy

and by Remark IIT.A.3 we need to compute the products [Fy][F»] and [F»][F3]. Note that these
product are both simple by Example III.A .4, with T'(Fy, Fy) = {t1} and T(Fs, F3) = {t3}. By the

same remark we compute

[F1][F2] = o(F1)(Fy N Fy, 1) mdeg(FE N FS)[Fy N Fy)
= o(aBy)P(Bv,1) mdeg(abe N abe)[B7]
= (=1)°(=1)? mdeg(bc)[57]

= be[fr]
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and

[Fo][F3] = o(Fa)y(Fy N Fs, 3) mdeg(Fy' N Fy)[Fy N Fj
= o(aBv)¥(aB, 3) mdeg(abe N aby)las]
= (=1)'(=1)" mdeg(ab)[as]

= —ablaf].

We will commonly set A = F'N H when computing complex products. We do so here, computing
A = . We also compute (F; N F) \ A =~ and (F» N F3)\ A = a. Since #T(F, H) = 2, the complex
product [F|[H] is

a
(FI1H) = (1> (L{R][F] + SFR)[F]) = ~b1(87] + ablad].

(b) Set F' = afyd and H = abyd and we consider the product [F][H]. By Example I11.B.30, we know

By # 0, i.e., Lo # 0. By Example II1.A.4 the product is non-zero, and since T(F, H) = {74, 71,t2},

the product is complex. Let F7, ..., F; denote the path P(F, H) as follows:

P(F,H) = {aB~d,afvd, aB~d, abyd}.
F Fy Py

1 Fy

We need to compute the simple products [Fi|[Fz], [F2][F3], and [F3][F4] (see Remark III.A.3). In
part by our work in Example III.A .4, it can be shown that all three of these products are indeed

non-zero. We compute the first of these below:

[FA][F2] = o(Fy)y(Fy N Fp, 4) mdeg(FY N Fy)[Fy N Fy
= o(apyd)y(afy,4) mdeg(abcd N abed)]aBY]
= (=1)*(~1)° mdeg(abe)[as]

= abclaf7].
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The other two are computed similarly:

[F5][Fs] = o(F2)i(Fo N F3, 1) mdeg(Fy ' N Fy )[Fy N F]
— (aB8)(B6, 1) mdeg(abed N abed) [56]
= (=1)}(=1)° mdeg(bed) [373]
= bed|Bv0]

[F5][Fy] = o(F3)(F3 N Fy, 2) mdeg(Fy' N Fy)[F3 N Fy]
— o(aBy8)ib(avs, 2) mdeg(abed N afed)[ays)
= (~1)°(~1)* mdeg(acd)[ad]

= acd[ayd)].
Now we can compute [F][H]. Set A = FN H =+ and we have
(FiNF)\A=ap (FaNF3)\ A= [0 (F5NFy)\ A= ad.
Thus since #T(F, H) = 3 we finally compute

Pl = (-1 (G IRIE + S RIF + SRR

= aficlaBy] + Bcd[Byd] + acd[ayd].

Example ITI.A.13. Here we consider several products that involve non-facets.

(a) We again consider the purification of A = (ac, b) and its respective free resolution:

0 0 S(Bs) S(B2) SB) o &

Since £; = 0 for all ¢ > 4 and the product is additive with respect to (homological) degrees, we
consider a product of the form [deg —1][deg —2]. Set F' = afy and H = fc. Since ¢ € £(F) and

¢ C H, we know the product is non-zero. Furthermore, since T'(F, H) = {t3}, we know the product
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is simple. Since F is a facet, I'(F) = (), so we compute

[F|[H] = o(F)¢(F N H,3)mdeg(F¢ N HE)[F N H|
= o(afy)y (8, 3) mdeg(abe, aady) (5]
= (~1)°(~1)" mdeg(ab)[5]

— abl].

(b) Set F' = byd and H = afc. Since |F|+ |H| = 4 and L4 # 0, by our work in Example ITI.A .4
the product [F]|[H] is non-zero. Moreover, since T(F, H) = {7, t3}, the product is complex. Hence
we need the paths

P(F, H|) = P(byd, fed) = {byd, frd, fed}

L F Py
and

P(F|u, H) = P(aby, ac) = {aby, apy, afc}.
H; Ho Hs

Again by our work in Example II.A.4, we know E ¢ Hj for every E € (Fy), so [Fi|[Hz] = 0.
However, it can be shown that Hj is an element of €(F3), so [F»][H3] is simple with T'(F», Hs) = {t3}.

Since I'(Fy) = {1} and I'(H3) = {4}, we compute
Z/J(F(H3)7F(F2)) = 1/)(47 1) = (_1)11
and therefore

[Fo][Hs) = (—1)#T ) (B ) (Fy 0 Hs, 3)0(T(Hs), T (Fy)) mdeg(Fs N HS )[Fy N H)
= (=1)'o(apyd)y(8,3)(—1)" mdeg(aabes N abydd)|[f]
= (=1)'(=1)° mdeg(abd) 5]

= —abd[A].
Since #T(F,H) =2 and A = F N H = (), we conclude that

Pl = (17 (0+ JIFlH:] ) = a1
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III.B Parade of Lemmas and Corollaries

In this section we state and prove several results necessary for the proof of Theorem ITI.C.2.

First, we restate Lemma I1.B.29 from Chapter II for convenience.

Lemma III.B.1. Let A be a simplicial complex on V = {ay,...,a,}. Assume A # A,,. Let A be

the purification of A and let 3 denote the boundary of A. Assume F € A is not a facet.

(a) The following are equivalent.
(i) FeX
(ii) The number of facets in A that contain F is less than 2c°dm(F)
(iii) FUapg ¢ A
(b) The following are equivalent.
(i) Féx
(ii) The number of facets in A that contain F is equal to 2¢0dim(F)
(ili) FUap) € A
Corollary III.B.2. Let G, H € A such that H C V. IfHUG ¢ X, then G ¢ 3. Collogquially-

speaking, if F' € A is not in the boundary, then any subset of F' obtained by omitting only Romans

is likewise not in the boundary.

Proof. Let G, H be given as above and set F' = G LI H. Since F' ¢ ¥ by assumption, F' Ll ap(p) is
a facet in A by Lemma III.B.1. Since G C F and G differs from F' by a set of Romans, we know
G Uarg) = FlUapp) € A and therefore G ¢ 3. O

Corollary ITI.B.3. If £; # 0 and L;+1 = 0, then for every face F € A \ X such that F € B;, we

have FNV =0, i.e., F is composed entirely of Greeks.

Proof. Suppose there exists some F' € B; such that FNV # () and let a; € F. Since F € A \ X, this

implies F'\ a; € A \ X, by Corollary III.B.2. Hence F'\ a; € L;1, a contradiction. O

The next two results give an important property of the interior of A. Corollary II1.B.4

partially justifies Remark II1.B.5.
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Corollary ITI.B.4. Let I € A \ X. If there exists H € Anq satisfying supp(H) C T'(F), then
FUHeA\X.

Proof. We need not consider the case when F' is a facet, so assume I'(F) # (. By Lemma II1.B.1
Part (b) (i), for every H € A,_; satisfying supp(H) = I'(F), we know F U H € A is a facet.

Therefore the desired conclusion follows from the fact that A is a simplicial complex. O

Remark ITI.B.5. Since the boundary of A is closed under taking subsets, the interior of A is closed
under taking supersets. Formally, if F' € A \ ¥, then for every F’ € Anq satisfying F/ D F, we
have F' ¢ 3. If we suppose that there exist faces F, F’ € A such that F ¢>, F'eX and F C F',

then this contradicts the fact that ¥ is a simplicial complex.
The following lemma is used to show that our product is well-defined.
Lemma II1.B.6. Let F,H € A. Setm = #T(F,H)+ 1 and denote A\=F N H.

(a) In general we have
#X— #(C(F)NT(H)) = #F + #H — (m — 1) — n.
(b) If supp(F) Usupp(H) = N, then we have
YN =H#F +#H — (m—1)—n

and thus #X < #F + #H —n.

(¢) Assume also that F,H ¢ ¥. If m = 2 and there exists some E € e(F) such that E C H, then
A Y.

Proof. Let A be the collection of elements of F' with indices not contained in the support of H,
ie., let Ap C F satisfy

supp (Ap) = {i € supp(F) [ i ¢ supp(H)}.

Similarly, set Ay C H such that supp(Apg) = {i € supp(H) | ¢ supp(F)}. Thus we have a parti-

tion of N:

N = supp(A) Usupp(Ap) Usupp(Ap) U{i € N | p; € T(F,H)} U(I'(F) NT(H)).
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We observe that

#Ap = #F —#X = #T(F, H) = #F — #X — (m — 1)
#Ay = #H —#X — #T(F, H) = #H — #X — (m — 1)

and Part (a) follows. If supp(F) Usupp(H) = N, then I'(F) NT(H) = § and therefore Part (b)
holds by Part (a).

Now we prove Part (c). Assume that m = 2 and set i; € N such that T'(F, H) = {p;, } (recall
that we assume p;; € {7;,,t;,} as in Notation ILE.9). Set {z;,,y:,} = {a;,,qs,} such that z;, € F
and p;, (z;,) = y;, € H. By definition of £(F) we have that E = (wo p;,) (F>;, Uar(r)) C H, where
w is a composition of maps greater than p;,. Furthermore, since p;; is the unique map in T'(F, H),
the maps that make up w are all indexed by I'(F'), i.e., w is a composition of maps 7;, € T (ap(p)).

Set f = #F. We denote T(F) = {pi,,..-,pi;s---,pi;} and F' = {x4,,...,2;;,...,2;,} such
that p;, < pi,, forall£=1,..., f—1. If 2;; = a;;, then p;; = 7, and the ordering on the elements
of T(F) implies

F:{ail,ah,...,aij,xijﬂ,...,zif}.

Therefore A C F' is the disjoint union of {z;, ,,..., s, } and a subset of {a;,,...,a;_,},ie, Aisa
subset of F € A \ X that can be obtained by omitting only Romans, so A ¢ X by Corollary I111.B.2.

On the other hand, if x;; = «;,, then p;; = t;, and a;; € H. Moreover, the definition of
£(F) implies the composition w in the construction of E is empty (T'(F, H) contains only p;, and
there are no elements of T'(ar(r)) which are greater than ¢;,). Therefore arry C £ C H and we
have

H = )\I_I{ai],}l_lap(p) € 3\27
so A ¢ ¥ again by Corollary II1.B.2. O

Remark IIL.B.7. If F,H € A \ ¥ such that there exists some E € e(F') satisfying E C H, then
since I'(F') C supp(E), it follows that supp(F) Usupp(H) = N.

The following lemma is critical for proving graded commutativity. The main conclusion of
this lemma is that [F][H] # 0 if and only if [H][F] # 0. Additionally, it explicitly describes which

products in the expansion of a complex product will be non-zero.
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Lemma IILB.8 (Morra). Let F,H € A\ S. Set {F\,...,Fy,} = P(F,H|p) and {Hy,...,Hy} =
P(F|u,H). Also set {me,,..., 7, _,} = T(F,H), where we assume that 7., € {7c,,tc;}. The

following are equivalent.
(1) There exists some E € e(F) such that E C H.
(2) There exists some E € ¢(H) such that E C F.

(3) There is a subset {€',0' +1,..., £} C {1,...,m — 1} such that for each ¢’ < j < { there exists

some E; € e(F}) satisfying E; C Hj 1, where

Tey = max{ﬂ-er € T(F,H) |7T€r € T(F), Te, < Te,y VTe, € T(aF(F)vH)}

and

Te,, = min{m., € T(F,H) | me, > pi,, Vpi, € T(F) satisfying is € T'(H)} .

(4) We have supp(F)Usupp(H) = N and there is a subset {¢',¢'+1,...,0} C{1,...,m—1} such
that for each ¢’ < j < £ all facets containing F; N H;i1 are included in the union
U pE.H),

F'DF, HDH
facets

where ¢’ and £ are defined as in (3).
Proof. We will prove this in parts.

(1) < (2): We will prove that Part (1) implies Part (2) and the converse will follow by symmetry.
Assume there exists some E € £(F) such that E C H. Denote T'(F') = {p;,,...,pi, } where f = #F,
and we assume p;; < p;,,, for all relevant j. Let p;, € T(F) and let w be a composition of maps

from T'((F' U ar(r))>p,,) such that
EcP (pie (ing U ar(F)) s (wopi,) (FZiz U aF(F))) :

We claim that p;;,p;, € T(F) and p;, < p;, for all i; € T'(H). The inclusion p;, € T(F) is
by construction, so it suffices to prove that p;; < p;,. If H is a facet, then T'(H) = () and the

inequality holds vacuously. On the other hand, suppose I'(H) # (. By Remark III1.B.7 we know
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supp(F) Usupp(H) = N, so for every i; € I'(H) we have either 7;, € T(F') or t;, € T(F), i.e., there

exists some p;; € T'(F). If we suppose that p;, < p;;, then we have
ij € supp(F>,) C supp(E) C supp(H),

a contradiction, proving our claim.

Define the map

pi, = min {pij e T(F) ) pi € T(H); pi, < piy < piys Vig € F(H)}
(IT1.B.8.1)

= min {p;, € T(F,H) | pi, < pi; < pi,, Vig € T(H)},

where we note that the set in Equation (III.B.8.1) is non-empty, because it contains p;,. We have

four claims which we will prove in-turn:

(a) p, € T(H),

(b) g1, € T(H),

(c) supp(H>;, Uargy) C supp(F), and

(d) there exists some E’ € e(H) with supp(E’) = supp(H>;,, Uar(gy) such that E' C F.
Proof of (a) Since p;, € T'(F, H), we have pj, € T(H) by construction. Let i; € I'(H) be given.
Since p;; < pi,,, we have 7;, < p;; < p;,, and therefore p;-;/ < pfj < Ti’; =ti,.
Proof of (b) This is by construction.

Proof of (¢) By assumption we have I'(F') C supp(E) C supp(H) and it follows that
D(H) = supp(H)“ € T(F)< = supp(F),

where we take complements inside of N. Therefore it suffices to show that supp(H>;, ) C supp(F),
or equivalently, we want to show that for every i; € I'(F'), the map in T(H) supported by that index
is less than p; . Let i; € I'(F). If a;; € H, then ¢;; € T(H) and

i, € T(pi,(F>i, Uarr)), (wo pi, ) (F>i, Uapr))),
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which implies that

Piy < Pip < Ty

and therefore

% *
tij _T’ij <pig/)

because * is inequality-reversing. On the other hand, if a;, € H, then 7;; € T'(H) and we consider

two cases. If p;,, = 7;,,, then we have
. *
Ti; <ti, = pi,-

If pi, = t;,, then the inequality p;,, < p;, implies p;, = t;, and we note that by definition of e(F)
we have

tik/ S tig < tija (IIIBSQ)
since ¢; € I'(F). Taking the inverse maps of those in Equation (II1.B.8.2) yields the desired result.

Proof of (d) Let w’ be the (possibly empty) composition of maps from T (H L ap(H),F) which are

greater than pj  and define the set
B — (w/ o p?@/) (HZiz’ (W ap(H)) .

We claim
(i) E' € ¢(H) and

(ii) E' C F.

Proof of (i) By construction every map in the composition of w’ is from the set T ((H U ap(H)) >iz/)’
so by Claims (a) and (b) above it therefore suffices to show that either w’ is the empty composition,
or its smallest map is indexed by I'(H), or its smallest map is an element of T(H) \ T(H).

If o’ is the empty composition, then we are done, so assume w’ is made up of at least one
map. For the sake of contradiction, suppose the smallest map is in the composition w’ is some

p;, € T(H,F) C T(H) such that
i, < pi, € T(H). (IIL.B.8.3)
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Note the inequality in Display (II1.B.8.3) is by construction, since p;kj is in the composition w’. Since
pi; € T(F), by the minimality of p;, we let i, € I'(H) such that p;; < p; , € T(F). We know that
Pi, # Pi,» Pi;, because ij,ip € supp(H) and iy € I'(H), so we have the strict inequality p;; < Pi,-
Since £ C H and iy € I'(H), we also know that p; , < p;,. Then by Display (IILB.8.3) we have

Pi; < Piy < Piy < Pig (II1.B.8.4)

or

pij < piq/ < piz/ < pi[7 (IIIB85)

where we note that p;, € T(H) implies that p;, is greater than every tau map with index in I'(H). If
Inequality (III.B.8.4) holds, then we contradict the definition of p;,,, so Inequality (II1.B.8.5) must
hold. We know p;;,p;,, € T(F,H), i.e., i, P, € T(H,F). Also, the inequality p;; < pi,, implies
pi, = ti,, because iy € I'(H) and p;; is greater than every tau map with index in I'(H). Therefore
pfq, = Ti, € T (ap(H)), ie., @i, € F. Therefore Tiy € T (HI_IaF(H),F) and Tiy > Pigs SO Ti,
is included in the composition w’. However, Tiy < pfj, contradicting our minimality assumption
on pj . Hence neither Inequality (I11.B.8.4) nor Inequality (III.B.8.5) can hold, and we obtain a

contradiction to our original assumption about the smallest element of w’, as desired.

Proof of (ii) We have already shown that supp(E’) C supp(F). By our choice of ’, it suffices to
show that for every a;; € F satisfying i; € I'(H ), the map 7;; € T'(ap(g)) is larger than pi,,- Suppose
there is some i; € I'(H ) such that o, € F. Then p;; =t;; € T(F, H) and p;,, > p;; by construction.
Therefore pj, < p; = 7, as desired. Thus we have proved that Part (1) implies Part (2), and the

converse follows by symmetry.

(1) = (3): Let FE € e(F) such that E C H and recall that T(F, H) = {m¢,,...,Te,,_,} is the set
of maps used to create the paths P(F, H|p) and P(F|g,H). Let m., € T(F, H) such that

EeP (ﬂ-ee (FZW I_Iap(F)) s (QJO?TEZ) (sz uap(p))) C €(F)

Partition w to write w = w™ o w® such that E = (w¥ o m,) (Fse, Uap(r)), where w? could be the
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identity map, i.e., we could have E' = 7., (F Uar(p)). We claim that 7., also satisfies
Te, = Max {’/Ter € T(F,H) | e, € T(F); T, < Te,, Ve, € T(ap(py, H) } , (I11.B.8.6)

for which it suffices to show that 7., is the largest map in T(F, H) that is less than every map in
T'(ar(r), H). Since E C H, we know that 7, is indeed less than every element of T'(ap(g), H). If we
suppose that there is some map 7., € T'(F, H) such that 7., < 7., < 7, for all 7., € T(apy, H),
then 7., = 7.,, implying that a., € F>¢, and a., € H. Furthermore, this implies that 7., must be
in the composition w?. Since Te, < Te, for all 7., € T'(ap(py, H) and 7., € T(F), it follows that 7,

E

is the smallest map in w”, a contradiction since E € ¢(F'). This proves Equation (II1.B.8.6).

If m = 2, then we are done. We therefore assume m > 3 and define
Te,, =min{me, € T(F, H) | me, > p;, € T(F), Vis € T(H) },

which is well-defined since 7., is an element of the set in this display. Hence 7., < m.,. By definition

of paths (see Definition II.E.10) we have F} = F,
H =Flg={x; € F|iesupp(H)}U{z; € H |i € T'(F)},

(where z; € {a;,a;}), and for j = 1,...,m — 1, we have F; 1 = 7, (F;) and Hj;1 = 7, (H;).

Let j € {¢',...,£} be given. By our definition of paths, 7., is the unique map in the set
T(F;,Hjt1). Note that T'(F;) = I(F), and m, € T(F), and m., < 7,. It follows that m., € T'(F}).
We define the subset

Ej = (WEJ oﬂ_ey‘) (<Fj)26j l—laF(F))

E,T

where w7 is the composition of maps in w? that are indexed by I'(F) (again, w®7™ could be the

identity map, e.g., when I'(F') = )). Since 7., is greater than every map in T'(F)) indexed by I'(H) =

I'(Hj41) and 7, > 7, , it follows that supp(E;) C supp(H;11). Every map in the composition w®

E,T

is greater than m.,, so the maximality of 7., implies that every map in the composition w™'™ must

be greater than m.,. It suffices therefore to show that every map in the set T'(ap(g,), H) is in the
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composition w¥7. We observe that

T(F] L aF(Fj),Hj+1) = T(Fj,Hj+1) I_IT(ap(Fj),HjJrl)
= {me,} UT(ar(r), Hj+1)

= {7‘(6_7.} LJ T(ap(F)7H),

where the last equality holds because j < £ and 7., < 7, for all 7., € T'(ap(r), H), by construction.

E

Every map in T'(ar(r), H) is in the composition w”, since E C H, and therefore every map in

T(ar(p,), H) is in the composition w®7. It follows that E; € e(F}) and E; C Hj 1.

(3) = (4): First we prove a special case. Assume m = 2. Then ¢/ = £ = 1, i.e., there exists some
E € e(Fy = F) such that £ C Hy = H. So there is a unique map 7., € T'(F') such that «}, € T'(H),
ie., T(F,H) = {n.,}. Let G € A be a facet containing F N H, and let F’ = F+C and H' = H+C
be facets containing F and H, respectively. We claim that G € P(F’, H'), and it suffices to show

that T(F',H') =T(F',G)UT(G,H"). We write N as the following disjoint union:
N ={e/} Usupp(FNH)UT(F)UT(H).

This implies that supp(F'\ G) C {e/}UT'(H) and supp(F'\H') C {e,}UT(H)UL(F),so T(F',G) C
T(F',H'). It also implies that supp(G\ H') C {e,} UT'(F), so we similarly conclude that T(G, H') C
T(F',H'). Hence it suffices to show that every element of T'(F’, H') indexed by I'(H) is less than

7, and every element of T'(F’, H') indexed by I'(F) is greater than 7, .

¢

For every i; € I'(H), we know p;;, € T(F) C T(F') and p;; < 7, because £ C H and
supp(E) D supp (F>¢,). Thus every map in T(F’,G) is less than or equal to m,,. Let ¢; € T'(F). If
t;, € T(F',H’), then we have t;, € T(F)\ T(F), so me, < t;,, because 7, € T(F) by assumption.
If 7;, € T(F',H'), then I'(F) C supp(E) and E C H, implying that 7, € T (F>., Uar(r), E) and
hence 7;; > m,. Thus every map in T(G, H') is greater than or equal to 7.,, as claimed. This
completes our proof of the simple case.

For the general case, assume m > 3and let {¢/,..., ¢} C {1,...,m—1} be as in the statement

of the lemma. By definition of P (F,H|r) and P (F|g, H), for j = ¢',...,¢, by the simple case we
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know that the union

’ /

U P (Fj, Hj,1)
FJ{,H;+1 facets

FiDFj,Hj DHj1

includes every facet containing F; N H;4;. We need to show that the union

/ !/

U rw@E.H)
F' H' facets
F'DF,H DH

likewise includes every facet containing F; N H ;1.

Recall that T (F,H) = {me,,...,7e, _,} and let j € {¢,...,0} be given. Let G € A
be a facet containing F; N Hj41, and define F = F+¢ and H' = H*Y. As in the base case
we know that G € P (FJ*G,HJT:G;). By definition of P (F,H|r) and P (F|g, H), we know that

T (Fj,Hjy1) = {m¢,; } and we can partition N as follows:

N=T(F)UT'(H)U{e;} Usupp(F; N Hj41)

=INF)UT'(H)U{e;} Usupp(FNH)U{e1,...,ej_1tU{ejr1,. .., em—1}.
Observe that

F/:(ﬂ* o---oT; o.-~o7r*)(Fj+G) and H/:(775an1O-~-o7r€£o---o7rej+1)(F;—G),

€j—1 €yt €1

soT(F',G) =T (F'% G)u{me,,....m, ,} and T(G, H') = T (G, H})U{me,,,, ..., 7e, _, }. From
the proof of the simpler case, we also know that any map in T (F;G, G) is less than 7, and any

map in T' (G, H;fl) is greater than m,. Thus every map in T'(F’, G) is less than or equal to Te,; and

every map in T'(G, H') is greater than or equal to ;. Since 7., € T(F', H'), we have showed that
T(F' H') =T(F,G)UT(G,H),
ie.,, Ge€ P(F',H'), as desired.

(4) = (1) First, observe that since supp(F) U supp(H) = N, we know that I'(F) C H and

I'(H) C F. Since ¢ < ¢, we know that 7., < 7.,. Moreover, the existence of these two maps implies
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that for every index e; € I'(H ) there is a map p., € T'(F) with p.; < 7¢,, 50 supp(F>,) C supp(H).

We need to establish the existence of a suitable w®. For the sake of contradiction, suppose
there exists some 7., € T(ap(p), H) such that 7., < m,. Note that e; € I'(H) implies e; ¢
supp(Fp N Hyy1). Denote {z¢,,ye,} = {ae,, ¢, } such that m,(x.,) = ye, € H. Let G be a facet
containing Fy N Hy 1 such that a.; € G and y., € G. We claim that for any pair of facets F' H € A

we have that G ¢ P(F',H’). Let F’ and H' be two such facets. Since 7, € T (ap(p, H

aF(F))v we

know that o, € H'. If a., € F’, then a, is in every element of P(F', H'), so a., € G implies
that G ¢ P(F',H’). Suppose a., € F'. We know that 7., € T(F',H’), because a., € F’ and

ae, € H C H'. We also know that m., € T(F’, H'): the fact that m., € T(F, H|r) implies that

re, € F C F' and y., € H C H'. Since 7., < 7,,, we conclude that every element of P(F", H')
contains either a, or z., (or both), so G ¢ P(F', H'). We conclude that any map in T (ar(r), H)
must be greater than m,.

Consider the set

T (Fse, Uar(r), H) (ITLB.8.7)

which contains the map 7.,. Let w®? be the composition of all the maps in this set except for m,.
Define the subset

E= (wE °© 71—61.) (FZEz U aF(F)) .

E is a composition of maps that

We have shown that supp(F,,) C supp(H), and by construction, w
are greater than m,,, so it suffices to show that if w” is not the empty composition (i.e., the identity

or some 7., € T(F, H)\T(F).

map), then its smallest map is either an element of T' (ap(F), Har<p>)

£ is not the empty composition. If the smallest map

If wP = id, then we are done, so we assume w
in w? is some 7w, € T(F,H) N T(F), then this contradicts the minimality of m,, because, by the
argument in the preceding paragraph, every map in the set given in Display (III.B.8.7) is greater
than or equal to m.,. We conclude that w? satisfies the criteria given in the definition of ¢(F) and

hence E € ¢(F'). Moreover, E C H by construction, which completes the proof of this part, thus

completing the proof of the lemma. O

The next result tells us that smaller faces with respect to cardinality are pickier when

forming non-zero products. Corollary II1.B.10 is the contrapositive of Corollary III.B.9.

Corollary IILB.9. If F,F',H € A\ S such that F C F' and [F]-[H] # 0, then [F'] - [H] # 0.
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Proof. Let F,F’, H be given as above. By Lemma III.B.8 there exists some E € (H) such that
ECFCF, solF[H] #0. O

Corollary IILB.10. If F,F',H € A\ S such that F C F' and [F']- [H] = 0, then [F] - [H] = 0.

Lemma III1.B.11 is a special case of Lemma II1.B.12; the former serves as the base case of

the proof of the latter by induction.

Lemma ITILB.11. Let F, H € A\X be such that [F|[H] is complex. Set T(F,H) = {me,,...,Te. .},
where P(F,H|p) = {F1,...,Fn} and P(F|g,H) = {Hy, ..., Hy}, and we assume 7e; € {Te;, e, }-

For each j, assume also that {xc,,ye,} = {ae,;, e, } such that w.;(xc,) = ye,. Then we have

mmdeg((F'N Hz) \ (FHH))[FMHQ} ~ ey [H).

[FIlH] = (-1)"==
mdeg((F N Hy) \ (FNH)) Tey

Proof. This follows from the facts that
P(Fy,H|p,) = P(Fy,H|p) = {Fs, F3,...,F}

and

P(Fylg,H) ={H>2,Hs,...,H,}

and for i = 2,...,m — 1 we have
(Fs N Hip1) \ (Fo N H) = ((F;NHipa) \ (FNH)) UA{ye, }- O
Lemma II1.B.12. In the context of Lemma II1.B.11, for any j € {2,...,m — 1} we have

[F[H] = C\[F][H;] + Co[F3)[H]

where
Cy = (71)mfjﬂ?§((Fj_1 NH;)\ (F;-1NH))
mdeg((Fj—1 N Hj) \ (Fj-1N H))
and

Cy = (_1)9‘71%((5 NH)\(FnN H)).
mdeg((F; N H)\ (FNH))
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Proof. We induct on j and let Lemma III.B.11 serve as our base case. Assume m > 4 and j €

{3,...,m —1}, and set A = F N H. By the induction hypothesis we have

FI[H] = (—1ym-G-nRdee(F 2 0 H;-1) \ (F52 0 H))
mdeg((Fj—2 N Hj1) \ (Fj—2 N H))
_1yi2 mdeg((Fj—1 N H)\ \)

mdeg((Fj—1 N H)\ ))

(F[H ;1]
(IIL.B.12.1)
[Fj1][H].

+(

By the base case we have

ymit? mdeg((Fj—1 N Hj) \ (F;—1 N H)) [F;_4][H/] — h[Fj][H], (I11.B.12.2)

[Fja][H] = (-1 —
mdeg((Fj—1 N Hj) \ (Fj—1 N H)) Tey

since #1'(Fj_1,H) = #{m¢; 5. Te,,_,} = m —j+ 1 implies #P(F;_1,H) = m — j + 2. Using

the notation in the statement of Lemma II1.B.11, we compute the following:

(Fj*2 N Hj*l) \ (Fj*Q n H) = ({y61? R 7y5173} U {xejfﬂ ce 7',1:671171} U )\) \ ({yel’ Tt yej*3} U )\)
= {xej_l,xej,. cy T, 4}
(Eyy ) A= {0y

(Fjma NHj) \ (Fjoa N H) = {ze;, ..., Te,,_, }-

Substituting these and Equation (II1.B.12.2) into Equation (III1.B.12.1) and simplifying, we need to
show that
m—(j—1) Fej—1 : mYer " Yejo 1 1 m—j ,
(=1 [FI[Hj—1] + (=1) [Fj—i[H;] = (=1)"7[F][H;]  (IILB.12.3)

J
Ye; 1 Tey =+ Tej_o

and

(71)j72 Yey " Ye; o . 73/63-,1 [FJHH] _ (71)j71 %((FJ n H) \ )‘) [FJ][H] (IIIB124)

Tey " Tej o Lej_1 mdeg((F; N H) \ A

Indeed, since (F;NH)\A = {¥e,, - -, ¥Ye,_, }, we have Equation (II1.B.12.4) immediately. Multiplying
both sides of Equation (II1.B.12.3) by (—1)™7 we have

FI[H;) = (—1) 2 Yerz (p(hy) - 29 (R (H, ),

Tey ~"Te;_y Ye;_1
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which holds by graded commutativity and the base case applied to the complex product [H,|[F],

where T'(H;, F') = {n; _ 72 ,,....7 }.

O

The following lemma introduces a few symmetries that exist in our product and will be

particularly helpful when proving that our product satisfies the Leibniz rule.

Lemma II1.B.13. Let F, H € A\ S such that [F)[H] is simple. Then there is an element

E=(w oﬂ—ee)(FZw ualﬂ(F)> €e(F)

such that E C H, where T(F,H) = {m.,} and w is composed only of maps from T(ap(g)).

e;j € I'(H) is given, then each of the following hold:

(a) If ae; € F such that t., <, then

[F\ ag;][H Uae;] =0=[F\ ag,][H Ua,]

and

(b) If ac; € F' such that t.; < m,, then

[F\ ac,][HUae,] =0=[F\ a,][H Uac,]

and

[7e, (F)I[H

o
!
=
S

(c) If ac, € F' such that 7, < e, < l.;, then
[re, (F)][H] = 0 = [F'\ a¢,][H U a,]

and

[F\ ae,][H Uae,] = (=1) Tl (D(H) \ {e}, ¢, (T(F), ¢) [F][H].

If

Proof. We prove this one part at a time. Note that £ C H implies that m., > 7., when a.; € F,
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and 7, > t., when ae, € F'.

Proof of (a) In this case minT'(F \ {ae,}) < ej, so me, ¢ T(F \ a,). Since {me,} = T(F, H), the
uniqueness of this map implies every element of e(F'\ {ac,}) is a subset of neither H LI {ac,} nor
H U {ae,}. Hence

[F\ ag;][HUae;] =0=[F\ ag,][H Ua,],

as claimed. On the other hand, we claim that £ € e(tc,(F')). Since I'(t.,(F)) = I'(F), we know
that m., € T(te,(F)). Since T(te,(F)) = (T(F)\ {re,}) U {te,} and 7, > t.,,7¢,, we know that
Te, € T(te,(F)), and F¢, = (te; (F))>e,, and t.; is not an element in w. Note that I'(F") = I'(t., (F))
and we have that

E = (e, ow) ((te, (F))ze, Uar(r)) € elte, (F)),

as claimed. (A key point here is that the sets T'(F') and T'(t., (¥')) differ only in the index e;, neither
te; nor 7., can be in w, and I'(F) = T'(t, (F)), so w must satisfy the definition of e(t,(F)).) Hence
[te,(F)][H] # 0 and in fact must be simple, since T'(t.,(F), H) = T(F, H). Since e; € I'(H) we have

that

(tej(F))C NHY = ((FC NH)\ {aej}) U {ae, },
ie.,

mdeg((t., (F)) N HE) = mdeg(FC n HE) - ZL

J

Next, since e; € I'(H) we have that
te,(F)NH = FnH.
Since I'(t,; (F)) = I'(F) we compute

W(te, (F), H) = (=110 Do (b, (F))ite, (F) 0 H, e ) (D(H), Dte, (1))
= (~)#T - —o(F)(F 0 H, e ) (T(H),T(F))

= —U(F,H).

Hence by the definition of simple products we conclude as desired.
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Proof of (b) The argument here is identical to that given in the proof of Part (a).

Proof of (c) First, note that e; € supp((7e, (F))>e,), because t.; > m,. Since T(F, H) = {m,,} has
only one map and e; € I'(H), it follows that [r., (F)][H] = 0.

Second, we consider the product of [F'\ a.,] and [H U ag,]. Obviously e; € I'(F'\ {ac, }),
so to find some E’ € e(F'\ {ac,}) such that E' C H U {a.,}, we would need to apply the map 7,
to (F'\ {ac, })>e, U ar(r\{a, }) (here, we are again using the fact that T(F, H) contains only the
map 7.,). However, since Te; < Te,, Using 7, in the construction of E’ violates the definition of
e(F'\ {ae, }), so there is no such element and we conclude that [F'\ ac,][H U ae,] = 0.

Finally, consider the product of [F'\ a.,;] and [H U ac,]. Most notably, we no longer need
access to the map 7, since a.; € ar(r\{a.,}) N (H U{ac,}). We claim that £’ € e(F'\ {ac,}) and
E' C H U{ae,}, where

B = o) (F\ {ae, e Uarimga,,p)

Since 7, < te, and m., € T(F), we know that 7., € T(F \ {ac,}). To show that E’ € £(F \ {ac, }),
it suffices to show that w satisfies the conditions given in the definition of epsilon sets. Note first

that

T(F\{ac;}) = T(F)\ {7, }-

Since e; € I'(H), we know that there is no map in w with the index e;, so every map in w is an
element of T'(F'\ {a,}). Since E € £(F), we also know that every element of w is greater than m,.
Furthermore, since 7., € T'(F) and 7,; < m,,, we know that every map in w is indexed by an element
of I'(F) \ {e;}, so the smallest map in w must be indexed by an element of I'(F'\ {a,}). Therefore

E' € e(F\{ae,}). Since 7., < m, € T(F'), we know that a., ¢ F>., and we have that
E = (w Oﬂ'ez) (FZW I—IaF(F) U {0’59‘}) =EU {aej}7
so B/ C H U{a,,}. Hence [I'\ ac,][H Uac,] # 0 and since

T(F\A{ae;}, HU{ae; }) = T(F, H) = {me, },
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we know that [F'\ ac,|[H U ac,] is simple. The remainder of the proof is bookkeeping. We compare

(F\{ae, NN (HU{ae, ) = (F U{ae,}) N (H\ {ac,})

=F°NH,
so the relevant coefficients are the same. It remains only to show that

\I/(F \ aej7H u aej) = (_1)|F‘¢(F(H) \ {ej}’ ej)w<F(F)7 ej)\IJ(Fa H) (HI'B'13'1)

For the sake of more succinct notation, set I/ = F'\{ac, } and H' = HLi{ac, }. Since |F'| = #I'(F)+1,
the left-hand side of Equation (II1.B.13.1) is

U(F' H') = (~1) TG (FYVH Y (F 0 H Jeg)y (D(H'), T (F"))
— (—)#FT O (P ) (F 0 H, ey (T(H) \ {e;}, T(F) U {e;})
= (V) Flo(FHHy(F N H, e)(D(H) \ {e;}, D(F) U {e;})

= (~D)Flo(F ) (F 0 Hyeo)p(D(H) \ {e;}, T(F)$(D(H) \ {e;},¢))

and the right-hand side is

(=D H) \ {e;}, e;)$(T(F), e5) ¥ (F, H)

= (=D)IFl(DE)\ {ej}, e (D(F), ) - (~)#T Do (FH ) (F 0 H, eg)y (T(H),T(F)),
so Equation (III1.B.13.1) holds if and only if
(=D H) \ {e;}, T(F)) = (T (F), ¢;)(L(H), D(F)).

Indeed we compute

—(U(F), e;)P(T(H), D(F)) = = (I(F), e;)(D(H) \ {e;}, T(F)p({e;}, T'(F))
= —0(D(F), e;)¢(D(H) \ {e;}, T(F)) - (=) # (D (F), ¢))

= —(~1)#TEY(CH) \ {e;}, T(F)). O
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The following lemma sets us up for an induction argument on homological degree when we

prove our product satisfies the Leibniz rule.

Lemma IILB.14. Let H € A\ Y be a non-facet. Set e; = minD(H) and define the subsets

F,H' CV as follows:

F = HUaF(H)

H' = HU{ae,}

Then F is a facet in A and H' € A\ 'S, and the product [F|[H'] is simple.

Proof. Since H is in the interior of A, we know that F, H' € K\E by Remark II1.B.5. By construction
we also have T'(F, H') = {7, }. Additionally, the minimality of e; implies that 7., = max T (ap(s)),
so every map in T'(F) indexed by I'(H') is some 7, satisfying 7., < 7¢,, so we have I'(H') C I'(F'>, ),

Le., Te,(F>e;) C H'. Since 7o, (F>e,) € €(F), this completes the proof. O
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III.C Proof of DG Algebra Structure

Before the main result, we give a fact from lecture notes by Sather-Wagstaff that will make

the proof profoundly simpler.

Fact III.C.1 ([9, Note III.A.2]). Let S be a polynomial ring and A be a complex of free S-modules,

with A; = 8% for alli >0 and A; = 0 for alli < 0. Let B; be a basis of A; over S.

(a) Any function f;; : B; x B — A;4; extends uniquely to an S-bilinear function p;; : A; x A; —

Aiyj so that fij = pij|B,xB, -

b) The operation p;; is unital on A; x A; if and only if it is unital on the basis vectors, and
J J

similarly for associativity, graded commutativity, and the Leibniz rule.

Theorem III.C.2 (Morra). If associative, the product in Definition III.A.1 imparts an associative

differential graded algebra structure to the resolution L given in Definition II.D.6.

Proof. We need to prove the product from Definition IT1.A.1, when applied to £, satisfies the criteria
given in Definition II.A.13. Throughout the proof we assume that F, H are faces in the interior of

A, we denote A\ = F N H, and we set m = #T(F,H) + 1.
I. The product is a well-defined binary operator with additive degrees.
We need to verify a number of things.
A. In the case when [F|[H] is simple, we need to show that

Al FNHeA\Y,
A2 FtH ig a facet,

A3 |[FIH]] = [[F]] + |[H]];
B. In the case when [F|[H] is complex, we need to show that

B.1 the elements of P(F, H|r) and P(F|g, H) are in A \ %,

B.2 for i = 1,...,m — 1 we have |[F}][Hi+1]| = |[Fi]] + |[Hi+1]| (we define 0 to have every

homological degree), and

B.3 the coefficient of [F;|[H;+1] isin S fori=1,...,m —1;
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Proof of A. Assume [F|[H] is a simple product. Then A.1 is proved by Lemma IIL.B.6 Part (c). Since
I'(F) C supp(E) C supp(H) for some E € ¢(F) by assumption, we know that I'(F)) C supp (F*#)
and therefore

supp (F) = supp(F) UT(F) = N.

Since the interior of A is closed under taking supersets (see Remark II1.B.5), we conclude that F*#
is a facet in A, which proves A.2.

To prove A.3, note that by the definition of £, we have |F| = codim(F)+1=n—#F +1
and |H| = codim(H)+1=mn— #H + 1. This yields

|F|+ |H| =2n—#F — #H + 2.
By A.1 we write |[A] =n — #A + 1 and since m = 2, by Lemma III1.B.6 we have

Al=n—#A+1

—n— (#F+#H—1—n)+1,

completing the proof of Part A.

Proof of B. Now assume [F][H] is complex and denote P(F,H|p) = {F1,...,F,}. Since I'(F;) =
I'(F) for all j, by Part (a) of Lemma IIL.B.1 it suffices to show that every F} is a face in A (every
facet of A is in the interior of 3, because its dimension exceeds that of 3; any non-facet will be in
the interior by Lemma II1.B.1). Since F € Aand Aisa simplicial complex, any composition of 7;,’s
applied to F yields a face in A. Every F; € P(F,H|r) can be obtained by applying some 7;,’s to
cither F or H|p, so it now suffices to show that H|r € A. By Lemma IILB.8 the product [H][F] is
also complex. Thus by the same argument as in the proof of A.2 (in which we did not use the fact
that m = 2), we know that HF is a facet of A. Since H| C H™¥ | we conclude that H|r € A and
this completes the proof of B.1.

To prove B.2, denote {p;,,...,pi, ,} = T(F,H) and let j € {1,...,m — 1} be given. By

the definition of paths, p;; is the unique map in T'(F};, H;y1). If [F;][H;11] = 0, then we are done,
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since 0 has every homological degree. If [F}][H; 1] # 0, then we are done by A.3, since
supp (F;) U supp(Hj11) = supp(F) Usupp(H) = N.

For B.3, we need only consider cases when [F}][H ;1] # 0, for which we have the coefficient

if(}_eg((Fj NHj)\ (FNH)) mdeg (FC N HE,,)

mdeg((Fy N Hy1) \ (F 1 H)

appearing in the expression of the complex product [F|[H]. It now suffices to show that
mdeg((Fy N Hjy1) \ (F N H)) | mdeg(F N Hf,,),

or equivalently,

mdeg((F; N Hy1) \ (F 1 H)) | mdeg((Fj U Hj11)%).

Set {xg,ye} = {ay,ar} such that x, divides Hc\iég((Fj NHjy1)\ (FNH)). It suffices to show that

x also divides mdeg((F; U Hj11)¢). By Definition I1.E.18 we have
z¢ | mdeg((F; N Hjqa) \ (F'NH)) <=y, | mdeg((F; N Hj41) \ (FNH)),
so we have

Ty | mdeg((F] OHJ+1)\(FOH)) = Yy € Fj ﬂHj+1
= a0 ¢ Fj, Hj

= x| mdeg((F; U H;j41)9),

as desired. This proves B.3.
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I1. The product is S-bilinear.

By Fact IT1.C.1, the product as defined on the basis vectors extends to an S-bilinear product

on the elements of L.
IT1. The product is unital.

By Fact II1.C.1, we need only remark that there is a multiplicative identity 1 € £y = .S such

that 1-[F] = [F] =[F]-1forall F€ A\ X.
IV. The product is graded commutative.
We need to show that for any F, H € A \ 2 we have

A. [H)[F) = (=1) P [F] (] and

B. [F]? = 0 whenever |F| is odd.
Proof of A. By Lemma III1.B.8, we know that [F] - [H] # 0 if and only if [H] - [F] # 0. Moreover,
by Definition III.A.1 we know that [F] - [H] is simple if and only if [H] - [F] is simple, and likewise
[F] - [H] is complex if and only if [H] - [F] is complex. Suppose the products are complex, and

we denote {Fy,...,F,} = P(F,H|r) and {Hy,...,Hy} = P(F|g, H). Then by the symmetry of
paths we have P (H, F|g) = {Hpm,...,H1} and P (H|p, F) = {Fum, ..., F1}. Thus Definition IT1.A.1

yields
m—1
F.H= (_1>m I/n_(\i_e/g((FzmHi+1)\( H)) [Fz} [Hi+1]
i=1 mdeg ((Fl N HZ'+1) \ (F n H))
and

H.F— (1) N~ mdeg((F N Hivn) \ (F 0 H)) el [F.
i=1 mdeg ((F; N Hiy1) \ (FNH))

=

Hence it suffices to show that all the simple products are graded commutative.
Assume [F] - [H] is simple and denote T'(F, H) = {m.,}. Recall we set A = F N H. To show
[F] - [H] = (=1)FHHI[H] - [F], by Definition ITI.A.1 it suffices to show that

(—1)#' g (FH) (N, e0)(T(H),T(F))

= (-~1)/FMHI()# o (HTE) 4 (A, e0) $(D(F), L(H)).
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We claim that o (FT#) o (HF) = —1. By the proof of Lemma II1.B.8, we have a partition of N:
N =T(F)UT(H)Usupp(A) U{es}.
By the definition of FtH and H*¥ we have

FHHNHEYY = (Fu{y, €eH |i; eT(F)}) N (HU{z; € F |i; eT(H)})

:)\u{yZ]€H|ZJ€F(F)}|_|{(E2]€F|Z]€F(H)}

It follows that supp (F*# N H*F) = N\ {e;}. Since we must have either a., € F or a., € H, it

also follows that

o (F+H) o (H) =o(\)?0 ({wi, € H |i; € T(F) })20 ({zi;, € F |ij e T(H) })20({%4,0@2})

= -1
Hence it suffices now to show that
G(T(H),T(F)) = —(=1)FIH (=) #ED () #T Dy (D(F), T (H)). (IILC.2.1)

Indeed, since
|F||[H| = (#L'(F) + 1)(#I'(H) + 1),

Equation (III.C.2.1) follows from Remark III.A.9.

Proof of B. Let F € ¢(F). For every E € ¢(F), by construction we know ENF¢ # (), ie., E ¢ F.

Therefore by Definition ITI.A.1 we have that

regardless of the homological degree of F'.
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V. The product satisfies Leibniz rule.

The majority of the work is here. Let F, H € A \ 2 be given and we need to show that
O([F)[H)) = O([F))[H) + (—)FI[Fla(H]). (IILC.2.2)

Throughout the proof we set d = |F| + |H|. We will prove this in four cases:
A. supp(F) Usupp(H) # N;
B. F and H are both facets;
C. Fis a facet and H is not;
D. F and H have arbitrary homological degree.
Case A. First we deal with a special case. Suppose that supp(F') Usupp(H) € N. Then since
I'(F) C supp(F) for all E € £(F), we know that [F]|[H] =0 and we need to show that
A([F)[H] = —(-1)FI[F|a([H]). (I11.C.2.3)
If #(I'(F) N T(H)) = 2, then note that
[FUag,][H] = [FUac,|[H] = [F][H Uae,] = [F][HUac,] =0
since
supp(F) Usupp(H) U {e;} & N
for any e; € N. Thus Equation (III.C.2.3) holds in this case. Assume instead that there is a unique

index e; € N such that I'(F) NT'(H) = {e;}. By our reasoning above, it suffices to show that

P(F,ej) (aej [F Uag,][H] + ac, [F U aej][H])
(IIL.C.2.4)

= —(=)Flp(H, e5) (ae [FI[H U e, + ac,[F][H Uac,]) -

If every product in this display is zero, then we are done, so suppose at least one of them is non-zero.
We induct on m = #P(F,H|r) = #P(F|ug, H) and so first assume that m = 2. Then there is a

unique map 7., € T'(F) such that {m.,} = T(F, H).
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If [F'U ae,][H] # 0, then there is some element E € ¢(F U ;) such that £ C H. The
uniqueness of 7., implies that supp(E) = supp(F>.,) UT'(F). Therefore e; € I'(H) implies that

Te y

< te, < T, (otherwise e; € supp(F>.,) C supp(H), a contradiction). By Lemma II1.B.13 we
have that [F|[H Uca.,] =0 = [F][H Ua,,] and

[FUag,|[H] = — =2 [F U a,,)[H].

Qe

Thus both sides of Equation (ITI.C.2.4) are zero and the equation holds.

If [FUae][H] # 0, then there is some element £ € e(f" U ac,) such that £ C H, and
it follows from the uniqueness of ., that 7., < m¢,. If t.;, < m,, then by the same argument as
in the preceding paragraph, Equation (ITI.C.2.4) holds by Lemma II1.B.13. Suppose instead that

Te; < e, < te,;. Note that

supp (F) = supp(A) U {e,} U (T'(H) \ {e;})

supp(H) = supp(A) U {ec} U (T(F) \ {e;}).

(IT1.C.2.5)

By the same lemma we have [FUa,|[H] = 0 = [F][HUa,,]| and by Equation (III.C.2.5) we compute

[FI[H Uac,] = (1) ly(D(H), e;)) (D(F), ¢;)[F U ac, [ H]
= (=1)\FPesly(D(H), e;)p (N, e (eq, e (D(F), €)1 (N, e;)v(eq, ;) [F U ac,|[H]
= (—=1)FHslp(F )9 (H, e)[F U ae,][H]

= —(=1)Flp(F, ;) (H, e;)[F U ac,|[H].

Thus Equation (III1.C.2.4) follows.
Lastly, assume that [F' U a.,|[H] = 0 = [F'Uae,][H]. If [F][H Ua.,] =0 = [F][H Ua,],

then we are done, so suppose not. Equation (III.C.2.4) holds if and only if

(—1)IFI=DHIG(F ;) (o, [H][F U ag,] + ac, [H][F Ua,))

= (= )P )Fl(H, e) (ae, [H U o [F) + ac, [H Uag, J[F])
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by graded commutativity. We simplify and multiply both sides by —¢(F,e;)¢(H,e;) to obtain

—(~1)H1(H, e;) (ae, [HI[F U o] + ag, [H][F Ua,,))

=(F,e;) (aej [H U o, ][F] + ae, [H LI aej][F]) ,

so Equation (II1.C.2.4) follows by symmetry.

For the induction step, assume m > 3, so any non-zero product in Equation (III.C.2.4) is
complex. We denote T'(F, H) = {7¢,,...,Te,,_, }, Where 7, € {tc,,7,} and we assume 7., < Tc,, .
Then if we set {F1,...,F,} = P(F,H|r) and {H4,...,H,} = P(F|u,H), we know that F; = F,

H, = F|y, and for i = 2,...,m we have F; = m., ,(F;_1) and H; = 7, ,(H;_1). Then since e; is

the unique index in both I'(F') and T'(H), we have the following:

P(Fuozej,H|Fuaej) ={FiUae, FoUac,,...,FryUae,}
P((FUae,)|u,H) ={H,Hy,...,Hp}
f)(F’7 (Hl—laej)IF) = {Fl,FQ,...,Fm}

P(F|H|_|aej,Huaej) ={HiUae,, HyUa,,...,Hy, Uae,}

and
P(FI_Iaej,H|F|_|aej):{F1|_Iaej,F2I_Iaej,...,le_Iaej}
P((FUae,)|u,H)={Hy,Hs,...,Hy}
P(F, (HI_Iaej)|F) = {Fl,F27...,F»,,L}
P(F|Huacj7HI_Iaej):{H1I_Iaej,Hgl_Iaej,...,HmUaej}.
By the base case we know that for every ¢ = 1,...,m — 1 we have

(Fy,e5) (e, [Fy U e, ] [Hig1] + ae,[Fi U ac,][Hit])

= (=)l (Hig, e5) (e, [Fi][Hiva U ae;] + ae, [Fi][Higr Uae)))
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and it follows that
P(F,ej) (cve; [ U e, [[Hia] + ae; [F; Uae,[Hiya])
= —(=)Fly(H, ;) (e, [Fil[Hip1 U ae,] + ac, [Fi][Hit1 Uae,])

since by Remark I1.D.9 we have ¢(F;, e;) = ¢(F, e;). Observe that
(FUu{ae,})NH = (FU{ae,})NH=FnN(HU{ac,})=FN(HU{ag})=A
and similarly for every ¢ we have
(FiU{ae, }) NHiy1 = (FsU{ae, }) NHiyr = FiN (Hip1 Ufae, }) = FsN (Hip1 U{ae, }) = F;sN Higg.

Therefore Equation (III.C.2.4) follows by the definition of complex products, so the Leibniz rule
holds when supp(F') U supp(H) # N. Throughout the rest of the proof we assume that supp(F) U
supp(H) = N.

Case B. We induct on the (homological) degree of F, so assume |F| = 1, i.e., F is a facet. To
prove this base case, we induct on the degree of H as well, so assume H is a facet. Hence Equa-

tion (I11.C.2.2) is true if and only if

i.e., we need to show that
O([F][H]) = o(F) mdeg(F°)[H] — o(H) mdeg(H)[F]. (I11.C.2.6)

Recall that in Definition III.A.1 we assume that n > 2. Since we also assume that A contains
all the singleton sets, there is a facet ajas -y € A. Then by Lemma I1.B.29 we know that
Qg - Qy € A \ ¥ with codimension equal to 1. Hence |as---a,| = 2 and we may assume Lo # 0.

Then there are two sub-cases:
B.1 [F][H] =0 and
B.2 [F|[H] # 0.

80



Case B.1 Suppose that for every E € (F'), we have E ¢ H. We claim that F = H. Let {i1,...,i,}
be an enumeration of N such that T'(F) = {p;,,..., pi, }. For each i; set {x;,,y;,} = {as;,,} such
that F' = {x;,,...,2;, } and therefore p;, (x;,) = y;,. Since F is a facet we know that I'(F') = (), and

therefore

E(F) - {pi1 (FZil)vpb(FZiz)v s 7pin(FZin)}

={Yis Tiy  Tiys YisTis Tipy -y Yip f -

Since y;, ¢ H and H is a facet, we know that x; € H. Since y;, ,x;, ¢ H, we also know that
x;,_, € H. The same reasoning implies that x;, € H for j = 1,...,n, i.e., H = F. Since H does
not contain any element of (F), we have that 9([F|[H]) = 9(0) = 0. Since F = H, the right-hand

side of Equation (III.C.2.6) is likewise 0, so the equation holds.

Case B.2 Suppose on the other hand that there exists some E = p;,, (F>;,, ) € €(F) such that £ C H,

so we have m > 2. Since F' and H are facets we have that
{Hy,...,H,}=P(F|g,H)=P(F,H)=P(F,H|p) ={F1,..., Fn},

and we induct on m.

For the base case m = 2, the product [F|[H] is simple and by the definition of F, we have
that T'(F, H) = {p;,, }. Since F, H are facets, it follows that H = p;, (F'). Furthermore, we also have
I'(A\) = {ir} and

FCNHY =F°\ {yi, } = H\ {2, }.

Thus rewriting the left-hand side of Equation (IT1.C.2.6) we have

O([F|[H]) = & (¥ (F, H) mdeg(F“ N H)[X])
= U(F, H)mdeg(F® N HE) - 9([\])
= U(F, H)mdeg(FC N HE) (Y(\, 24, )i, [F] + ¥\ yi, )i, [H]) (I11.C.2.7)
= U(F, H)Y(\,ir) (mdeg(FC N H)z;, [F] + mdeg(F° N H)y;,, [H])

= W(F, H)$(X, iy) (mdeg(H)[F] + mdeg(F°)[H]),
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where the fourth equality follows from Remark I1.D.9. Since F and H are facets, we have FtH7 = F

and therefore W(F, H) = o(F){()\, i ). Thus by Equation (II1.C.2.7) we have
O([F|[H]) = o(F)(mdeg(H)[F] + mdeg(F°)[H]).
Since H = p;,, (F), it follows that o(F) = —o(H). Hence we conclude

O([F[H]) = o(F)(mdeg(H)[F] + mdeg(F®)[H])

= —o(H) mdeg(HC)[F] + o(F) mdeg(F°)[H].

For the inductive step, we assume that m > 3, so the product [F][H] is complex. To
avoid another level of subscripts under each p;;, let {ei,...,e,—1} C N such that T(F,H) =
{Ters ooy Tep 1} Where me, € {7¢,,tc;}. Then we have that F' = AU {z,,...,2,,_,} and H =
AUA{Yers- > Yep_, y such that mc,(ve;) = ye,. By Lemma IIL.B.12, the left-hand side of Equa-

tion (II1.C.2.6) becomes

m Wdeg(FOF) N o1y — Yeu 1)),

((FI[H]) = (—1)m 2
mdeg((F N F3) \ \) ze,

By our base case and by the inductive hypothesis, we have that

e 2B LINY () ) — [Fl0((]) — L (@D IH) - [Felo((H))

0 = —
(PN = (-1 =2 T -

(II1.C.2.8)

We observe that (F'NFy) \ A=z, - x,,,_, and that
mdeg(FC) = mdeg()‘) : mdeg(yeu cee 7y€m71)7

S0 we compute

E@((F n FQ) \ )\) . a([F]) _ M J(F)m(A) Yoy Yer s
mdeg((F N Fg) \)\) Yes " Yerm 1

—_—~—

= mdeg(A)yel er e xenl—l

= Yu -mdeg(H®).

Tey
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We similarly have

; CO([Fy]) = mdeg(HC).

By construction we know that o(F;) = —o(F;_1) for all relevant i, so we also have that

mdeg((F N Fy) \ A
mdeg((F N Fy) \ A

(=D)™o(F) = —o(H)

and

L o([Fa)) = o(Fo) ¥ mdeg(FY) = —o(F) mdeg(FC).

Te,y Te,y

Hence we rewrite Equation (III.C.2.8) and continue:

A(FI[H]) = (=1)"o(F) 2> mdeg(HO)[Fy] + (—1)" 0 (F) mdeg(HE)[F]|

€1

+ o(F) mdeg(FC)[H] + o(H) 2 mdeg(HC)[Fy)]

er

= —o(H) Y mdeg(HO)[Fy] — o(H) mdeg(H)[F)

Te,y

+ o(F) mdeg(FC)[H] + a(H)iﬁ mdeg(HC)[F]

= —o(H) mdeg(HC)[F] + o(F) mdeg(F)[H]

= —o([H])[F] + o([F))[H],

concluding as desired. Thus we have proved that the Leibniz rule holds for products of facets.

Case C. For the nested inductive step, assume |H| > 2, i.e., that H € A \ X is not a facet, and
assume that the Leibniz rule holds for products of facets and faces of homological degree |H| — 1.
In this case d = |F| + |H| = |H| + 1 and we first suppose that L4 = 0. Then [F][H] =0 by

definition, and we need to show that
A([F])[H] = [Flo([H]) = 0.

Since d > 3, we know that £ is exact in degree d and L5 = 0 implies that ker(9y-1) = Im(9;) = 0,

S0 04_1 is injective. It therefore suffices to show that

8 (3([F)[H] — [FId([H])) = 0. (IIL.C.2.9)
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Since 9([F]) € S we have that

= 9([F))o([H]) — & ( > W(H, i) (ai[F[H U a;] +0zi[F][HI_IOu‘]))

i€l (H)

= O([FDA(H]) — Y o(H,1) (@d([FI[H Uai]) + ;d([FI[H Ua])).

i€l (H)

By the inductive hypothesis we have that

a;0([F][H U a;]) + a;0([F][H U a;])
= ai O([FDH Uai] = [FIO([H U ai])) + a; (O([F])[H U au] = [FIO([H U i)

— O(F)) (@[H Ua;) + s [H U cu]) — [F] (@d([H Uai]) + a,d([H Uay)

and summing over every index ¢ € I'(H), the linearity of the differential yields

because L is a complex, so Equation (II1.C.2.9) holds.

Now we assume that L4 # 0 and we again have two sub-cases:
C.1 [F][H] =0 and
C.2 [F][H] # 0.

Case C.1 If we suppose that E ¢ H for every element E € £(F), then [F][H] = 0 and since |F| =1

we again need to show that

o(F)mdeg(FO)[H] = Y 4(H,e;) (o, [FI[H Uae,] + ac, [FI[H Ua,]) . (I11.C.2.10)
e;€T(H)

We prove this with three sub-sub-cases:
Clam=1,
C.l.b m =2, and
C.l.c m>3.
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Case C.l.a Suppose m = 1, i.e., suppose that T'(F, H) = () (since F is a facet, it follows that H C F).
For every e; € N = supp(F), set {zc,,ye, } = {a,,ac, } such that z., € F' and 7, (z¢;) = ye,. Then
for every e; € I'(H), the product [F|[H U x,] is zero, since H U {x,,} C F. Let e; € I'(H) be
given, and we consider the product [F][H Uyec,]. Since T(F,H Uy,,) = {n¢,} and F is a facet, we
have that [F][H Uy,,] # 0 if and only if supp(F>.,) C (supp(H) U {e;}) if and only if every map in

T(F)\ {me,} is less than 7. Hence we set e, € I'(H) such that

Te, = max {m., € T(F) |e; e '(H) }

and observe that Equation (I11.C.2.10) holds if and only if

U(F) mdeg(Fc)[H] = ’(/}(Ha el)yez [F] [H U yez]a

where [F|[H U ye,] is simple, since E = 7, (F>¢,) € e(F) and E C H Uy, by construction. Since
H C F, we compute

FO(HU{ye}) = H

and

FON(H U{ye, ) = (FUHU{ye, ) = FU{ye, ) = FO\ {ye,},

so it follows from the definition of simple products that

¢(H’ ef)yez [F] [H U yee] = w(Hv eé)yeg ' U(F)w(Ha yee) mdeg(FC \ {yetz})[H]

= o(F)mdeg(F)[H].

Case C.1.b Suppose instead that m = 2 and denote T'(F, H) = {m, }. Then since [F][H] =0 and F

is a facet, we know supp(F>.,) NT'(H) is non-empty and we again choose e¢; € I'(H) such that

e, =max {me, € T(F) |e; eT(H)}.

(if we suppose supp (F>., )NI'(H) = 0, then we have E C H for E = 7., (F>,) € €(F), contradicting

our assumption that [F|[H] = 0). Note that for any e; € T'(H)\{e,} we have that e, € I'(HU{a,, }) =
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I'(H U{ae,}) and 7, > 7, SO

Supp(FZtil) ¢ supp(H U {aej}) = Supp(H U {aej})a

i.e.

[FI[H Ua,,] =0 = [F][HUa,,].
Therefore, it suffices to show that

o(F) mdeg(FO)[H] = (H, eg) (e, [F][H U o, ] + ac,[F][H Uac,)),
or equivalently,

o(F) mdeg(FO)[H] = ¢ (H, eq) (we, [FI[H Uwe,] + ye, [F1[H Uye,]) .

We once again have E = 7., (F>,) € e(F) and E C (HU{y.,}) by construction, so T(F, HU{y., }) =

{Te,, me, } and therefore [F|[H Uye,] is complex. Since 7., < 7,, we construct the paths

P(F, (HUye,)|r) = {F,me, (F), (e, 0 7e, ) (F)}

P<F|HuyegaH|—|yee) = {FlHUye,zvﬂel(F|Huyez)vHUyee}-

Most notably we have that

ey (F|Huyee) =HU {xezf.}v

and since H = AU {y., }, we compute

FN(HU{ye}) =2
FN(HU{z.,}) =AU {z,}

ey (F) N (H U{ye, }) = AU{ye, } = H.
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Therefore we have that

Te, [F][H U xe,|+ye, [F][H U ye,]

= [FUIE U]+ (0P, (ZEFI a + 22 e (P U )
= — % e, (F))[H U]

Since

(e, (F)) N (H U {ye, 1) = (me, (F) U (H U {ye, )
= ((FUHU{ye})\ {mel})c
= (FUH)\ {ye,}) U{we, }

= ((FCNH)\ {ye,}) U {ze, },

we have that

Fee . mdeg ((me, (F)) 0 (H U {ye, )€) = 225 - mdeg ((FC N HO)\ {ye, ) U {ae,})

€1 €1

= mndeg ((F N HE) U {a, })

Tey

— e, mdeg(FC N HC)

= mdeg(F°).
Using the fact that F' is a facet we compute

—G(H. er) - U(me, (F), H U {ye,}) = —0(H,e0) - (~1)°0 (e, ()t (me, (F) N (H Uy, ), )
= —Y(H,e) - —o(F)yY(H,e)

=o(F),
so it suffices to show that [m., (F)][H U ye,] is simple. Indeed, since [F|[H U y,,] is complex with

E =, (Fse,) C HU{ye,}
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and 7., is greater than every map in T(F') indexed by I'(H U {y., }), the product [, (F)][H U ye,]

is non-zero by Lemma II1.B.8.

Case C.1.c Assume now that m > 3 and denote T(F, H) = {7¢;,...,Te,,_, }. Since we assume that

[F][H] = 0, we need to show that the following equation holds:

o(F)mdeg(FO)[H] = > (H,e;) (o, [FI[HUae,] + ac, [FI[H Ua,]) .
e; €EN(H)

Set {ze,, e, } = {;,ae, } such that m, (2.,) = ye,. Since supp (F)Usupp(H) = N and I'(F) = 0, we
have that AU{ze,,...,%c,, .} C Fand H=AU{Yey,---,Ye,,_,}- Since me_, (F>e,,_,) ¢ H, there
exists some index e; € I'(H) C supp(F') such that ., > 7., _,, and we once again set e, € I'(H)
such that

Te, = max {m., € T(F) |e; €T(H) } .

As in the m = 2 case, every product of the form [F|[H U a,] and of the form [F|[H U a.,], where

ej # eg, must be zero. Thus we need to show that
o(F)mdeg(F)[H] = ¢(H, er) (@e, [F][H Uze,] + e, [FI[H Uye,]) - (IIL.C.2.11)

As in the m = 2 case, we have that 7, (F>.,) € e(F), where m,(F>¢,) C H U{ye,}, so [F][H Uye,]

is complex. If we denote {Fy,...,F,,} = P(F,H|r) and {Hy,...,Hy} = P(F|g, H), then we have

P(F,(HUuye,)) ={F1,Fa,...,Fp,me,(Fn)}

P(F\Huycz,HUye[) ={HiUxe, HoUxe,y. .., Hp Ue,, Hp Uye, }

because 7., is greater than every element of T'(F, H). Since H,, = H, by Lemma III.B.12 we write

[FI[H Uye,] = () 0-mZe (py[ g, ] — (—1)m 2o Yemai1p 1 Gy,

Yey, Tey """ Ley_y
.':Cee m Yeqy = yem,fl
= — Fl[HU — (-1 —""—"1F |[HU
P U] - (D" 2 g Y L)
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so after cancellation the right-hand side of Equation (III.C.2.11) becomes

W(H, eg)(—1)™Hy,, 2o Yemt (p H Uy, ).

xel e x€m71

By Lemma ITI.B.8 and our choice of 7,, the product [Fy,][H U ye,] is simple. We also have that
Fo 0 (H U{ye,}) = H,
because Ye,, .- Ye,, , € Fm and y., ¢ F,,. We therefore compute
U(Fmy HUA{ye,}) = (=1)°0(F)v(H, e0) = (=1)" " o (F)y(H, eq),

so we have that

Y(H, e0)(=1)" 1 W(Fo, H U {ye, }) = o(F).

Finally, since H C F,,, we have that

Frg N(HU {yee})c = (FnU(HU {yee}))c = (Fm U {yee})c = Fnc; \ {Ye, }

and therefore we compute

e,y mdeg(F 0 (H U {ye, })7) = 290t

-mdeg(FS) = mdeg(F°).
‘rel...‘rem_l :L’el.-.l'

€m—1

Thus, the right-hand side of Equation (II1.C.2.11) is equal to o(F) mdeg(F°)[H] and therefore the

equation holds.

Case C.2 If we instead suppose that there exists some E € ¢(F) such that E C H, then we once
again induct on m = #T(F, H) + 1. Note that E C H implies that #T(F, H) > 1, so m > 2 and

we again have sub-sub-cases:
C.2.a m=2and
C.2b m > 3.

Case C.2.a Assume m = 2. We denote T(F) = {pi,,...,pi,}, and since F' is a facet, we have

e(F) = {Ey,...,E,} where E; = p; (F;;). Suppose there exists some FE, € ¢(F') such that
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E; C H, in which case the product [F][H] is simple with T(F, H) = {i}:
[F][H] = U(F, H) mdeg(FC N HY)[F N H] = o(F){(\,ig) mdeg(FC N HY)[A].
Set {yi,,2i,} = {ai,,,} so that p;,(zs,) = yi,. Thus we need to show that
a(F)i (A, i¢) mdeg(F N H)A([N)) = o(F) mdeg(F)[H] — [F]o([H]),

or equivalently, we need to show that

o(F)p(A,ig) mdeg(FC NV HY) Y (A d5) (o, AU ] + aiy [A U as)])

i;el(x
e (IIL.C.2.12)

— o(F)mdeg(FO)[H] ~ [F] Y $(H,iy) (o%_, [HUa,] +a;,[HU aij,])
i €D (H)

Since I'(A) = T'(H) U {i,}, the sum on the left-hand side of Equation (III.C.2.12) can be written as

w()\, i() 5, [/\ LJ xie] + Yi, [)\ [ yiz] + Z w()\, ij) (Oéij [)\ [ Oéij] + aj; [)\ [ aij]) .
———

—H i;€N(H)

Observe that the following therefore appears in the left-hand side of Equation (III.C.2.12):
o (F)$(\ie) mdeg(FC 1 HE) - Y\, ie)yi, [H] = o (F) mdeg(F)[H],

where FYNHY = F\ {y;,}, because m = 2 and F is a facet, implying that p;, (H) C F. Therefore

Equation (III.C.2.12) holds if and only if

o(F)p(\,ig) mdeg(FC N HE) | (N, i)z, [N U x,] + Z V(N i5) (2, AU zi,] + s, [N U wi,))
i;€T(H)

=—[F] > W(H,i;) (wi, [H U]+ oy, [HUy)) (I11.C.2.13)
i;EL(H)

where we assume {z;;,%;,} = {ai;,a;;} such that x;; € F. For every i; € I'(H), we note that

T(F,HUw;;) =T(F,H) = {pi, }, and since £, C H C H Ux;;, the product [F][H Ux;,] appearing
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in the right-hand side of Equation (III.C.2.13) is simple. Therefore x;, € F'\ H implies
Fen(HUz;,)¢ =F°NH"
and we have that

—U(H, j)z;, [F][H U ;)]
= —(H,ij)z;, - U(F,H Uz,;,) mdeg(F° N (H Uz;,)9)[F N (HUa,,)|
= =AUy, i)z, - o(F)p(A Uy, i) mdeg(FC N HE) AU z;,]
= — (N ij)9(ie,ij)wi, - o (F)O(N,ie)i(ij,ie) mdeg(FC N H)A U]

= (N, )2, - o(F)Y(\, ig) mdeg(FC N HY) AU z;,].

Observe that the term in this display appears in both sides of Equation (III1.C.2.13), and thus

Equation (IIT.C.2.13) holds if and only if the following equation holds:

a(F)p(\ ig) mdeg(FC N H) [ v\ iws, ANUa, ]+ > (N i) (v, AU wi,])
iy €T () (I11.C.2.14)

== > WO(H.i)y [FIIH Uy,].
i; EL(H)

Since £, C H C H Uy;,;, we know that [F][H Uy;,] # 0 for each i;. Since y;, ¢ F we also
have that T'(F, H Uy;,) = {pi,,pi, },» so [F|[H Uys;,] is complex. Let i; € I'(H) be given and we
denote {Fy, Fy, F3} = P(F,H'|p) and {H}, Hy, Hy} = P(F|ys, H'), where we set H' = H Uy;, Then
we note that N H' = )\, and we consider the product

mdeg((F N H)\ ) mdeg((F, n H')\ A)

FIH = ——= FHé_N F|[H'.
FILH] mdeg((FﬁHé)\)\)[ I mdeg((FgﬁH’)\)\)[ I

If we suppose that pi; > pig, then z;, € F>;, and therefore z;; € By C H, a contradiction since
i; € I'(H), so we must have that p;, < p;,. Hence we have that Fy = p;,(F), F3 = p;,(F2),
Hj = pi;(H}), and H' = p;,(Hj). Since E; = p;,(F>;,) C H C H and T(Fy, H') = {p;, }, we know
that [F][H'] is simple by Lemma II1.B.8. Moreover, except in the case when p;; is the largest map in

T(F) indexed by I'(H), there must be a map p;, € T'(F) indexed by I'(H') satisfying p;, < pi, < ps,.
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Therefore by the same lemma, the product [F]|[Hj] is simple if and only if p;; = p;,, where we define

pi, = max {p; € T(F) |ig € '(H)}.

We deal with [F5][H'] first. To that end, we compute the following:

_Edfé“FQ QDAY [FL][H] = —y— o(Fy)(Fy M H' ig) mdeg(Fs N (H'))[Fy N H|
mdeg((Fo N H')\ A) Li;
= o(F) L2 p(A Uy, ip) mdeg((Fy U H) )ALy, ]

= o (F) (A ie)b(ij, i) = mdeg((Fy U i) ) A Uy, |

vy

This implies that for each i; € I'()), we have

—U(H i)y, - o (FYO(N )iy i) 2 meeg((Fa Ui, ))A Uy

Ti;

appearing on the right-hand side of Equation (III.C.2.14). We claim this is equal to the term
o(F)$(A ie) mdeg(FC 0 HT) - (X, 5)ys, [\ Uy,
appearing in the left-hand side of Equation (III.C.2.14). First, since H = A U {y;, } we have that

—(H,i5) - p(N,ie)(ij, ie) = =AUy, 45)0 (A, i) (i, i)
= =P\, i3)Y(Yi,, 1)V (N i)Y (yi;, i0)
= (N i) (N i) (Yip 15)0 (Yi» 15)
= PN i5)P(A, i),

so the two terms in question have the same sign. Second, we observe that since z;, € Fy and

yi; € Fo = p;; (F) we have that

Yi, Yi;
— mdeg((F> U vi,)¢) = x—’ -mdeg(F{ \ yi,) = mdeg(FC \ y;,) = mdeg(F° N H).

vj 2j
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This justifies our claim and therefore Equation (IT1.C.2.14) holds if and only if

o (F)b (A i) mdeg(FC N HO) - (A, ig)es, WU s,] = —b(H, io)ysy - (—Tie%“F NH)AN [H§]> ,
mdeg(F 1 ) \ )

where H' = H U {y;, }, so Hj = p;, (F|u). Since (1(X,i¢))* = 1, it suffices to show that

o(F)mdeg(FC N H) - x;,[ANUw;,] = (H, io)ys, - Tii_eﬁ((F NH)\A) [F][H}).  (IILC.2.15)
mdeg((F' N Hj) \ A)

Since H' = H U{y;,} = AU {vi,, s, } we have that
FNHy=FnAU{yi,xi,}) = AU{zy,} = Flu,
so (FNH))\ A= x;,. We also observe that
FON (Hy)® = (FUH) = (FU{yi ) = F\ {yio }-

Thus the right-hand side of Equation (III.C.2.15) becomes

W(H, io)yio %[FJ [Hj) = (H, >% o (F)(A Ui, io) mdeg(FC N (H5)C )AL 21,]
= YA Ui, i0) P2 o (FYp(, i) (i, , i) mdeg(FO\ i) A U, ]

e

= (N i) Wiy o) 24 - g (FY(N, o)t (s, io) mdeg(FE)A Uz, )

e
= U(F) mdeg(Fc \ yiz>xiz [)‘ U xie]

= o(F) mdeg(FC N H)z;, [\ U ;)

so the equality holds. Thus we have proved that the Leibniz rule holds in the case when F' is a facet,
H is not a facet, and [F|[H] is simple (i.e., when m = 2).

Case C.2.b We still assume F' is a facet and H is not, but now we assume that m > 3 and we set

P(F,H|p) = {F\,...,Fp} P(F|g,H) = {Hy,... Hy}.
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For every e; € N, set {x¢;,Ye; } = {ae,, e, } such that z.,, € F. Weset T(F,H) = {me,,...,Te,,_,}
where we assume 7., € {7¢,,tc,} and 7, (ze;) = ye;- Then H = AU {ye,,.. ., ¥Ye,,_,}. Let ¢ =
(m — 1) + #I'(H). Since F is a facet, this yields F' = AU {2e,,...,Te,_1sTep,y---sTe, ). BY

Lemma II1.B.11 we have that

A((F)iH)) = (—1ym RIS HI NN o)y Yer oy ).
mdeg((F N Ha) \ A) Teq

We have two more nested cases:
C.2.b.i [F|[Hz2] =0 and

C.2.b.ii [F][H2] # 0.
Case C.2.b.i In this case, by the induction hypothesis we need to show that

— Yo O([F)) [H] ~ [Fl0([H])) = O([F))[H] — [F)O([H]), (IIT.C.2.16)

Te,y

Since F' and Fy are facets, we have that

O([F]) = o(Fy) mdeg(FS) = —o(F)~% mdeg(FC) = - ~29([F]),

yel yel

so to prove Equation (IT11.C.2.16) it suffices to show that

L[ mlo((H]) = ~[F1o((H). (IL.C.2.17)

Te,y

Since I'(H) C supp(F), for every e; € I'(H) there is some 7., € T'(F')\T'(F, H). Thus we have that

o([H])
= Z ¢(Ha€j) (xej[Huxej}—’—yej[Huyej])_F Z w(Hvej) ('rej[Hl—Ixej]_Fyej[Huyej])
ejEF(H) EjEF(H)
Te <Teq Te; >Tey

We claim that for each e; € I'(H) we have that

[F] (we,[H Uze,] 4 ye, [H Uye,]) = _Yer ) (ze; [H Ue,] + ye, [H Uye,]) - (I11.C.2.18)

€1
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Let e; € I'(H) be given and suppose that 7., < m,. Then we have that
P(F,(HUzx,,)|r) = P(F,H|p) = {F1,F>,...,Fn}

and

P(F|Huxej,H|—|$ej) ={H1Ux;, HoUmc,,...,HyUxe,},

because T'(F, H Ux.;) = T(F, H). Therefore by Lemma III.B.11 we have that

[F][HLIer] _ (_1) mdeg((Fﬂ (H2 ume]‘)) \ (Fﬁ (Hl_lxej))) [FHHQ Llafej} _ ye1 [FQ][H'-lafe]]
mdeg g((FN(HyUxe,)) \ (FN(HUx,))) Ley
= (—m 28 mdeg((F10 Ha) \ \) Fl[Hy Uz,,] — LL[R)[H Uz,,).
mdeg((F N Hy)\ ) Ley

Since [F|[H2] = 0 and 7., < m, by assumption, and T'(F, Hy) = {7, }, by Lemma IIL.B.8 there
exists some e, € I'(H) \ {e;} such that 7., > m.,. Since e; € I'(H U x,), it follows from the same

lemma that [F][H; U z,,] = 0. Hence we have that

[FI[H Uz,,] = — 22 [R)[H Uz, (I11.C.2.19)

Tey

Since y., ¢ F we have T(F, H Uyc,) = {7, Te,s Teys - - - Te,,_, } and it follows that
P(Fv (H U ye_;’)|F) = {Fv Te; (F)vﬂej(FZ)v sy Te; (Fm)}

and

P(F\Huyej,HLlyej) ={H1Uxe;, HyUye;, HoUye;,. .., Hp Uye, }.

As before, there must be some e, € I'(H U yej) such that e, < 7, < 7e,, so by Lemma IIL.B.8
the products [F][Hy U y,,] and [re, (F)][Hz U ye,| must both be zero. Hence two applications of

Lemma II1.B.11 yield
yej yel [
Te; Te,

[FI[H Uye,] =

e, (F2)][H Uye,]- (I11.C.2.20)

Hence by Equations (IT1.C.2.19) and (IT1.C.2.20), we know Equation (III.C.2.18) holds for every case
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when 7., < 7, if and only if

[B)[H Uy, ] = — i (e, (F2)][H Uy, ). (IIL.C.2.21)

€j

We note that T'(Fo, H Uye,) = {7e,;, Tegs - -, e, }, and therefore
P(Fy,(HUvye,)|r,) ={ Fo, e, (F2), e, (F3), ..., 7e; (Fm)}

and

P((F2)|Huy5j7H|—|yej) = {H2|_|.’L‘e].,H2 |—|yej>H3|—|y6ja'--7Hm Uye]-}-

Since 7, < 7, for some e, € I'(H U y,,), we know that [F5][Hs Uye,] = 0 and therefore Equa-
tion (III.C.2.21) holds by Lemma III.B.11. Thus Equation (III.C.2.18) holds for all e; € I'(H)
satisfying e, < 7, .

Now let e; € I'(H ) such that 7., > m.,. Again we have T'(F, H Ux.,) = T(F, H) and
F(HU{z,}) =AU {ze,},

so by Lemma III.B.11 we compute

[F][H L f,l}e].] — (71) mdeg((F N (H2 U xej)) \ ()\ U xej)) [F][HQ L Iej] _ yﬁl [FQ][H I_lxej]
mndeg ((Fﬂ(HQI_Ixej))\()\I_Ixej)) Tex
mdeg((F N Hy)\ ) Ley
— (—pymZe T Temoy z. ] - ViR, ...
— ()P gy U, | - SR U,

Now we analyze [F][H Uy,;]. We have that F'N (H U {y.,}) = A, and since 7., = minT'(F, H Uye,)
where T'(F, H Uy,,;) = T(F, H) U {m, }, we have that

1)m+1 mdeg((F N (H U xej)) \ /\) [F} [Hz L l'ej] _Ya [FZ][H (] ye].]
mdeg((F N(H Uxe,)) \ A) Fe

Teyg " " Tepy_1 Ley

[FI[H Uye,] = (=

— (—1)m™t! [F)[Hy U] — L2 (R [H Uy,

yE’z T yem,l yeJ' xel

96



Therefore we compute

[F) (e, [H Uze; ]+ ye, [H Uye,])

x52 e xenzfl

" Yeu
:—1 evFHu E'_ie-F HLI .
(-1 ym,..y%_lw,[ [[Hy U )] xeli[Q][ ze)]
L Te, ye

4+ (—p)mtt=E_—tmel Sy [FI[Ha Une,) — 22y, [Fo][H U ye,]

Yes " " Yem—1  Ye; / Te, J j

Ye
= —m; [F2] (e, [H Uwe,] + ye, [H Uye,])

and Equation (II1.C.2.18) holds in this case as well. Summing over all e; € T'(H) we find that

Equation (III.C.2.17) holds and we conclude that the Leibniz rule holds in this case.

Case C.2.b.ii For the other nested case, assume that [F|[Hz] # 0. Define

d FNH A Tey Te,
Cy = (*1)m2\?§(( 2)\N = (-1t
mdeg((F' N Hz) \ \) Yes " " Yerm_1

By Lemma II1.B.11 we have that

[F|[H] = Ci[F[Ha) — L

€1

[F2][H],

and therefore by both the m = 2 case and our induction hypothesis, we have the following:

O(F|[H]) = Cy (O([F))[Ha] — [FIO([Ha])) — 2 (2([F)) [H] - [F2]0([H]))

€1

— Oy (0([F))[Ha) — [FIO([Ha)) — L2 o(Fy) mdeg(FS)[H] + 222 [F3)0([H])

eq Ley

= C1 (O([F))[Hz] — [F]([Hz])) + o(F) mdeg(F)[H] + %[Fz]a([H])

€1

= C1 (O([F))[Ha] — [FIO([Ha))) + O([F)) [H] + 2 [Fy)0([H]).

€1

It therefore suffices to show that

[FI0([H]) = C1[F0(|Ha]) — L2 [F)0([H]) — o(F)Cy mdeg(FC)[Ha). (IIL.C.2.22)

€1

A salient feature of this setting: the assumption that [F][Hz] # 0 implies that every map in T'(F)
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indexed by I'(H) is less than 7, by Lemma IIL.B.8. Let e; € I'(H) be given and recall that
P(F,(HUx,)|r) = P(F,H|p) ={F1,Fs,...,Fy,}

and

P(F|Huxej,H|—|$ej) ={H1Ux;,HoUmc,...,Hy, Uz, }.

Since

(F'0 (Ha Ufze, 1))\ (F N0 (H U {ze; }) = (F N Hz) \ A

we have that
Ye,y

[F][H Uz,,] = C1[F][Ha U x| — [F][H Uz,],
by Lemma III.B.11. Therefore we compute
[F] Z w(Ha ej)er- [H (i l‘ej]
ejEF(H)

= 3 Wl [FIH U,
EjEF(H)

= Y e, e, (cl [F][Hy U] — i{ [F3)[H U mej]>
e;€T(H) el

=OF] | Y w(He)r[HoUae] | = 22B] |7 b(H e, [H U]

e;€T(H)

Note that this display includes terms appearing in both C1[F]0([H2]) and —(ye,/wc;)[F2]0([H]),

which are on the left-hand side of Equation (I11.C.2.22). Moreover, this display also accounts for half

of the terms in the expansion of [F]0([H]) appearing on the left-hand side of Equation (II11.C.2.22).
Thus it suffices now to show that

> w(H,e;)ye, [FI[H Uye,] + o(F)Cr mdeg(F)[H)
e; €I'(H)

=0y Z ¢(H7 ej)yej [F][HQI_lyej] - iﬁ Z w(Ha ej)yej [FQ][HI—lyej]
e;€l(H) L \ejer(H)

(IT1.C.2.23)
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Let e; € I'(H) be given. Since 7, is less than every element of T'(F, H) we have that
P(F7 (H U yej)‘F) = {F177T€j (F1)77T€j (F2)7 s 77T€_7’(Fm)}

and

P(F\Huyej,HLIyej) :{Hl UxeijlI—IyejaHQI—lyeja---aHmuyej}~

We compute the following:

(F'0 (Hy U{ye, D)\ (F 0 (HU{Ye, ) = (FOH)\A=Hi\ A=, -z,

(ﬂ-ej (F) n (HQ U {yej})) \ (F N (H U {yej})) = ((F N H?) U {yej}) \ A= Ye; " Tey " " Tepy_1s

and thus by Lemma III.B.11, we write

z 1 Y m—1
[F][H Uye,] =(=1)" " ==——""=2[F|[H, Uy,]
Yer " Yem—_1
Ye;Tey " Te,, Ye;Ye
—ymALZEiTe ool (F)][Ha U ye, 17 (e (FY)|[H Uy, ].
() R e ()] [Hy U )+ S e, ()] U
We also compute
Tey Ye;
[F][H2 Uye,] = S [F]H1 Uye,] = == [me, (F)][Hz Uye,]
el ej
and
mTez " Tepy 1 Ye;
[F][H Uye,] = (—1)" ————[Fb][H> Uye,| — —[me, (F2)][H U ye,]
Yes " " Yerm_1 Le;
Ye.:
= C1[F][Hz Uye,;] — f[ﬂej(Fz)HHl—'yej]
e
Hence for every e; we have that
(FIH Uy.,) = CFIH; Uy.,) - P2 B Uy,) + 22 ClR)H Uy, )
el €1
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Substituting into Equation (III1.C.2.23), it therefore suffices to show that

o(F)mdeg(F)[Hy) = Ve Z Y(H, ej)ye, [F2][Ha Uye,]. (II1.C.2.24)
€l e;eT(H)

Since T'(Fy, Hy U ye,) = {7, }, the product [F>][Hs U y,,] is non-zero if and only if
7TEJ' ((F2)26j> C H2 u {yej }

Set e, € I'(H) such that m,, is the largest map in T'(F) indexed by I'(H). Since [F|[Hz] # 0 is
simple with T(F, Hy) = {w,, } and F' a facet, we know that ., (F>¢,) C Ha, i.e., every map in T'(F)
indexed by I'(Hz) is less than m.,. It follows that ., is greater than all maps in T'(F3) indexed
by I'(Hz U ¥ye,), so supp((F2)>e,) C supp(Hz Uye,). Since T'(Fy, Hy Uy,) = {me,}, we have that
E; C HyUye, and therefore [F5][Ha Uye,] is simple. On other other hand, for any e; € I'(H) \ {e¢},
we have that e, € supp((F2)>e,) and e, ¢ supp(H U ye,). Thus Equation (III.C.2.24) holds if and

only if
~ Yeu

€1

o(F) mdeg(F®)[H] =

w(Ha ef)yez [FQ][HQ U yee]‘

Since Hy = 7e, (F|g) C 7oy (F) = F3 and y., ¢ F, we have that F» N (Hy Uy,,) = Ha. Therefore

(F2) 1 (Ha U{ye, D = (Fo U (Hz U{ye, 1) = (FaU{ye, D = F5'\ {ye,}

and we compute

e ¢(H7 eé)yee [FQHHQ U yee} = _iel w(H’ eé)yez . O(F2)¢(H27 6@) mdeg(FQC \ ye;g)[H2]

€1 €1

= Y _5(F)mdeg(FS)[Hs)

Tey

= —o(F) mdeg(FC)[Hﬂ'

Thus we have proved that the Leibniz rule holds for products [F|[H] where F is a facet.

Case D. Let both |F| and |H| be arbitrary. If H is a facet, then note that |H| = 1 and the Leibniz
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rule holds by graded commutativity:

O((FI[H)) = (—1)"o((H][F))
= (=D @([H)[F] - [H]([F]))
\F|( 1)/ FIH D] H])—(—1)‘H|(|F|+1)8([F])[H]>
~)F! (o 1) Flo((F])[H])
= (=DIFIFIO(H]) + O F])[H].

Assume therefore that |F|, |[H| > 2. Since I'(F) # 0, we let e, = minI'(F') and define F” = FUarp)
and F' = F L {a.,}. Thus by Lemma II1.B.14 we have that ', " € A \ ¥ and

[F"][F") = o(F") mdeg((F") N (F') ) (F, ep)[F].
Set Co = o(F")mdeg((F") N (F))Y(F,ep). It suffices to show that
O(C:[F][H]) = Co0([FD[H] + (=1)FI[Flo([H]).

By the induction hypothesis, bases cases, and the linearity of the differential, and by our associativity

assumption, then we have the following:

O(Co[FI[H]) = 0 ([F")[F'])[H])
= O([F")([F'|[H])) (IIL.C.2.25)
= O([F") - [F'][H] + (=1) "1 [F"]o((F][H])
= (F")) - [F')[H] + (=) E] - (o DIH) + (1) 7o H)) )
= o([F")) - [P)[H] + (-1 1E"o(F ) H] + (—1) P [P [Fo((H)
= (0P DIF] + (1P IFO(F) ) - [H] + (~1)F1Co [ Flo(H))
= A([F")[F)[H] + (~1)FICo[Flo((H))

= O(CalF))[H] + ()" o[ Fo((H)). O
Remark III.C.3. The second equality in Equation (III.C.2.25) in the preceding proof is the only
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place where we use our associativity assumption. If one can prove the Leibniz rule holds in this
most general case without assuming associativity, then we can conclude that the product given in
Definition III.A.1 imparts a (possibly) non-associative DG algebra structure to £. If one can prove
that the product is associative, then we can conclude that the product imparts an associative DG

algebra structure to L.
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Chapter IV

Future Work

IV.A Associativity

We provide a partial proof sketch that associativity holds for a special case, but a complete
proof that associativity holds in general is of great interest. First, we make a remark that may be

useful in a proof that associativity holds in the most general case.

Remark IV.A.1. Let F, H,G € 3\2 By graded commutativity, and Remark II1.C.3, and the fact
that the product is additive with respect to homological degree, we have ([H|[F])[G] = [H]([F][G])

if and only if
([FIHN[G] = (=)!"HER G H],

i.e., we have
([HIIFNIG) = [H](IFG]) <= ()R H])G) = (-1 D ([(F][6) [H]

= (-)HIFFHDIG) = () HIFHEIC (Fe)) ]

= (FIH)IG) = (-)HIY(FG)H).

Conjecture IV.A.2. Let F,H,G € A\ . If the products [F|[H] and [F)[G)] are each simple, then

we have that

([FIH])IG]) = (~)"HE(FI[G)[H]. (IV.A.2.1)
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Proof Sketch. By the definition of simple products, (IV.A.2.1) is equivalent to

U(F, H)mdeg(F® N HO)[F n H|[G] = (-1)HIIC10(F, @) mdeg(FC N GO)[F N G][H]. (IV.A.2.2)

Let e, ,me, € T(F) such that T(F,H) = {n., } and T(F,G) = {7, }. One can first argue that
DNFNH)NT(G) # 0 if and only if T(FNG)NT(H) # 0, so (IV.A.2.2) holds in this case, since
both sides must therefore be zero due to incomplete supports. One can thereafter assume that

en, € supp(G) and ey € supp(H), and it follows that

en, eq € supp(F) Nsupp(H) Nsupp(G).

A brief argument shows that (IV.A.2.2) holds in the special case when 7., = 7, S0 one can assume
that 7., # me,, i.e., en # €.
It is then straightforward to show that T'(F N H,G) = {m,,} and similarly T(F NG, H) =

{7e, }. It is similarly straightforward to argue that each of the following hold:

T(FNH)=T(F)UT(H) U {ey}
(IV.A.2.3)
[(FNG)=T(F)UT(G)U{e,}.

If one supposes that [F' N H][G] is simple, then one must also argue that [F'N G|[H] is simple, and
verify that (IV.A.2.2) holds. To prove that [F' N G][H] is simple, it suffices to show the following:

(a) T, € T(FNG);

(b) For every e; € I'(FNG), if ae; € H, then 7., > 7, ;
(c) I(F'NG) C supp(H);

(d) supp((F N G)se,) C supp(H).

After doing all that, one must then verify that all relevant signs and coefficients match, i.e., one
must show that

U(F, H)U(FNH,G) = (-)HICY(F )¥(FNG, H)
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and

mdeg(F¢ N H) mdeg((F N H)° NGY) = mdeg(F® N G°) mdeg((FNG)° N HY). (IV.A.2.4)

This is a tedious proof by bookkeeping. For instance, we have F¢ = (F¢ N G) U (FC N GY) and

(FNH)Y =F°UH® = (FCnHY)U(F N H)U(FNH).

We also have F¢ = (FC N H)U (F€ N H®) and

(FNG)° = (FCNG)YU(FCNG)U(FNGY).

It is then straightforward to prove that (IV.A.2.4). Keeping track of the signs is far more intensive.
O
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IV.B Kg-coronas

In this document we consider only Ki-coronas, but one can define a K -corona for any

positive integer ¢q. Informally, we affix a distinct complete graph on ¢ vertices to each vertex of G.

Definition IV.B.1. Set V = {a1,...,a,} and let G = (V,E) be a simple graph. For each
i = 1,...,n, let K} be a complete graph on ¢ vertices, ie., set V; = {ai,...,al} and E; =
{afaj | j # £}, and let K} = (Vi, E;) be a simple graph. The K,-corona of G is the simple graph
2,G=(V',E'), where V' =V U (U, V;) and

E'Eu(O&)u(O{aia; |j1,...,q}>.

Discussion IV.B.2. Let ¥,G denote the K -corona of the simple graph G. There are a number
of natural questions to ask. What can be said about the Stanley-Reisner ring S = k[Ax ¢]? Can
we realize simplicial complexes Ay, g in the context of [3] as we have for Axg? Is this ring Cohen-

Macaulay in general? We will give a few motivating examples and state a few conjectures.

In our usual fashion, we will use a,b,c,d in the following example to remove a layer of

notation.

Example IV.B.3. Let G = C; be the four-cycle:

IS

Then the Ks-corona is

/-
\

/
N
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and the K3-corona is
a3z — Q2

/\

aq

A

.

A\

70\
01 / \ o1
I S
03 — do Y2 — 73

We can compute the independence complex Ay, a:

AE2G = <O‘i118i27i36i4 | ij € {172}7 V]> + <aﬂi27i35734 ‘ ij € {1a2}7 VJ>
+ <ai1b’yi36i4 | ij € {1’2}’ Vj> + <ai15i206i4 | ij € {172}7 V.7> + <ai16i27i3d ‘ ij € {172}’ VJ>
+ <a’ﬂi265i4 | ij € {172}7 V]> + <O[71b"y13d | ij € {132}3 v.]>

Note that Ay, is a pure simplicial complex.

Conjecture IV.B.4. The independence complex of a K,-corona is a pure simplicial complex.

Example IV.B.5. It is relatively straightforward to show that if we list the facets of Ay, in order

of increasing number of Romans, then that list will be a shelling of Ay, .

Conjecture IV.B.6. The independence complex of a K-corona is shellable and therefore Cohen-

Macaulay.

Example IV.B.7. If G = (4, then Stanley-Reisner ideal Ja,, . is given by
Jas,e = Iag + (aar, aas, bB1,bB2, ey, ¢y2, ddy1, ddz) -

Remark IV.B.8. One should be able to generalize the A construction to include these new coronas

and thereby describe an even larger class of Cohen-Macaulay simplicial complexes.
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IV.C Additional Questions

Question IV.C.1. Once we have this DG structure, we want to use it. What results can we now

apply to the resolution £7 What consequences do they have for the rings being resolved?

Question IV.C.2. We have described a possible DG algebra structure for one specific class of
simplicial complex that arises in [3]. Can our result be generalized to include more such simplicial

complexes?

108



Bibliography

[1] Luchezar L. Avramov, Infinite free resolutions [mr1648664], Six lectures on commutative alge-
bra, Mod. Birkh&user Class., Birkhauser Verlag, Basel, 2010, pp. 1-118. MR 2641236

[2] Winfried Bruns and Jirgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced
Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956

[3] Alessio D’Ali, Gunnar Flgystad, and Amin Nematbakhsh, Resolutions of co-letterplace ideals
and generalizations of Bier spheres, Trans. Amer. Math. Soc. 371 (2019), no. 12, 8733-8753.
MR 3955562

[4] David Eisenbud, Daniel R. Grayson, Michael Stillman, and Bernd Sturmfels (eds.), Compu-
tations in algebraic geometry with Macaulay 2, Algorithms and Computation in Mathematics,
vol. 8, Springer-Verlag, Berlin, 2002. MR, 1949544

. Fran oore, Mark Rogers, an eri Sather-Wagstaft, Monomzial ideals and their decom-
5] W. Frank M Mark Rog d Keri Sather-Wagstaff, M [ ideal d their d
positions, Universitext, Springer, Cham, 2018. MR, 3839602

[6] Todd A. Morra, An introduction to homological algebra and its applications, M.s. thesis, Clemson
University, Clemson, SC, USA, 2019.

[7] Saeed Nasseh and Keri Sather-Wagstaff, Applications of differential graded algebra techniques
in commutative algebra, Commutative algebra, Springer, Cham, [2021] (©)2021, pp. 589-616.
MR 4394422

8] K. Sather-Wagstaff, Combinatorial free resolutions, course notes,
https://ssather.people.clemson.edu/notes.html.

[9] , Free resolutions, course notes, https://ssather.people.clemson.edu/notes.html.

[10] , Homological algebra, in-progress.

[11] Keri Sather-Wagstaff, Ascent properties for test modules, Commutative algebra—150 years with
Roger and Sylvia Wiegand, Contemp. Math., vol. 773, Amer. Math. Soc., [Providence], RI,
[2021] ©2021, pp. 153-167. MR 4321397

109



	Minimal Differential Graded Algebra Resolutions Related to Certain Stanley-Reisner Rings
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Background and Notation
	Free Resolutions and DG Algebras
	Simple Graphs and Simplicial Complexes
	Stanley-Reisner Rings and Cohen-Macaulayness
	The Resolution
	Non-standard Notation

	DG Algebra Structure
	The Product
	Parade of Lemmas and Corollaries
	Proof of DG Algebra Structure

	Future Work
	Associativity
	Kq-coronas
	Additional Questions

	Bibliography

