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Abstract

We investigate algebra structures on resolutions of a special class of Cohen-Macaulay simpli-

cial complexes. Given a simplicial complex ∆, we define a pure simplicial complex, denoted ∆̂, called

the purification of ∆. These complexes arise as a generalization of certain independence complexes

and the resultant Stanley-Reisner rings R = k[∆̂] have numerous desirable properties, e.g., they are

Cohen-Macaulay. By realizing ∆̂ in the context of work of D’al̀ı, et al., we obtain a multi-graded,

minimal free resolution of I = (J∆̂)
A, the Alexander dual ideal of the Stanley-Reisner ideal. We

augment this in a standard way to obtain a resolution of the quotient ring R/I, which is likewise

minimal and multi-graded. Ultimately, we propose an explicit product on the resolution and prove

that, if associative, this product imparts a differential graded (DG) algebra structure on the minimal

resolution.
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Chapter I

Introduction

An important strategy for understanding an algebraic object is to understand the objects it

can act on. For example, this is how one proves the Sylow Theorems, by understanding which sets

a group can act on. For studying rings, we focus on modules, rather than sets. A standard way we

gain understanding of a module is to write down its generators and any relations among them. This

very naturally leads to a study of free resolutions. Given a module M , a free resolution of M stores

information about the generators of M , the relations between the generators, the relations between

those relations, and so on. These resolutions vary widely and some are nicer to work with than

others. Some free resolutions are infinite, while others are finite. Some are minimal, while others

are not. Some free resolutions admit a highly specialized structure, called a differential graded (DG)

algebra structure, thereby encoding even more information about the modules they resolve. When

a resolution has this DG structure, we say it is a DG algebra resolution. These resolutions are the

topic of this dissertation.

DG algebra resolutions are powerful tools for answering difficult questions about commu-

tative rings with identity and their modules. For instance, consider the following result about test

modules ascending along a ring homomorphism:

Theorem I.1 (Sather-Wagstaff [11, Theorem 4.8]). Assume that φ : R → S is a flat local ring

homomorphism with regular closed fibre, and let M be a finitely generated R-module. Assume the

residue field extension induced by φ is algebraic. Then M is a pd-test module over R if and only if

S ⊗R M is a pd-test module over S.
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Observe that the statement makes no mention of DG algebras. However, DG algebras are

indispensable tools in the proof. This incredibly powerful technique was pioneered by Avramov and

his collaborators. See the survey articles of Avramov [1] and Nasseh and Sather-Wagstaff [7] for

many other applications. Within this dissertation, a review of free resolutions and DG algebras is

the topic of Section II.A, and the specific resolution of interest is given in detail in Section II.D.

Given a moduleM , it is nontrivial to give an explicit free resolution ofM , and it is difficult,

in general, to know whether that free resolution admits a DG algebra structure. It is even more

difficult to give an explicit description of that structure, and it is a well-known fact that minimal

resolutions need not have this additional structure. It is very common for one to have to choose

between a minimal resolution that lacks a DG structure, and a DG algebra resolution that is very

far from minimal. For instance, the Taylor resolution, when it is defined, is a DG algebra resolution,

but is usually not minimal.

In this dissertation we present a class of ideals with a finite free resolution that is known to

be minimal based on work by D’al̀ı, et. al. [3], and we exhibit a candidate for a product that may

impart a DG structure on this resolution, i.e., we present strong evidence that for a resolution of

our class of ideals, we get both minimality and an explicit DG algebra structure. We conclude this

introduction with a brief setup and a highly abbreviated version of the main result.

Definition I.2. A finite simple graph consists of sets of nodes/vertices and edges between them

with no loops, no multiple edges, and no directed edges. Formally, a finite simple graph G = (V,E)

satisfies V = {a1, . . . , an} and E ⊆ {{ai, aj} | i ̸= j } ⊆ P(V ). We write aiaj := {ai, aj}. A K1-

corona of G, also known as a suspension or a whiskering of G, is the simple graph ΣG = (V̂ , Ê)

where V̂ = V ∪ {α1, . . . , αn} and Ê = E ∪ {aiαi | i = 1, . . . , n}. For example, we present the path

P2 and its K1-corona ΣP2 here.

a1 a2 a3 a1 a2 a3

α1 α2 α3

The edge ideal of a graph is the ideal generated by the edges of the graph. Stated formally, let k be

a field and set IG = ⟨E⟩ ≤ k[a1, . . . , an]. For instance,

IΣP2
= ⟨a1a2, a2a3, a1α1, a2α2, a3α3⟩ ≤ k[a1, a2, a3, α1, α2, α3].

2



We focus on edge ideals of K1-coronas and a generalization of these ideals, because they

exhibit several nice properties, such as being Cohen-Macaulay. In Section II.C we give a brief

introduction to the Cohen-Macaulay property, as well as a more detailed description of the rings

and ideals that interest us. More information on simple graphs can be found in Section II.B.

The free resolution of interest resolves the Alexander dual ideal of such an ideal. Given an

ideal I generated by monomials f1, . . . , fm from a polynomial ring S = k[a1, . . . , an], the Alexander

dual ideal of I, denoted IA, is generated by monomials ai1ai2 · · · ait ∈ S such that every generator

of I is divisible by one of these aij ’s. For instance, the Alexander dual ideal of IΣP2
is

(IΣP2
)A = ⟨a1a2a3, α1a2a3, a1α2a3, a1a2α3, α1a2α3⟩ ≤ k[a1, a2, a3, α1, α2, α3].

A salient feature of duality is that information about the dual often yields useful information about

the original. See Section II.D for more information on Alexander dual ideals.

Our chief goal in this dissertation is to prove Theorem III.C.2 below. For the purpose of

this introduction, we state an abbreviated version here.

Theorem I.3 (Morra). Let (IΣG)
A denote the Alexander dual ideal of the edge ideal IΣG, and let

L denote a free resolution of (IΣG)
A which we know to be minimal (see [3]). There exists a product

on L that, if associative, describes a graded commutative, associative, DG algebra structure on L.

We formally define our product in Definition III.A.1 and commit the rest of Section III.A

to examples. In Section III.B we prove numerous lemmas and corollaries used in the proof of the

main result. Section III.C is entirely devoted to proving the full version of the above result. In

Chapter IV we discuss potential future work.
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Chapter II

Background and Notation

II.A Free Resolutions and DG Algebras

The definitions and theorems in this section have been adapted from a work in progress by

Sather-Wagstaff [10]. We also refer to this manuscript for our discussion of the Koszul complex.

Unless otherwise stated, assume that S is a commutative ring with identity.

Definition II.A.1. A chain complex over S, or an S-complex, is a sequence of S-module homomor-

phisms

X = · · ·
∂X
i+2 // Xi+1

∂X
i+1 // Xi

∂X
i // Xi−1

∂X
i−1 // · · ·

such that ∂Xi ◦ ∂Xi+1 = 0 for all i ∈ Z. If X is an S-complex, then elements x ∈ Xi have homological

degree |x| = i.

We give one example of such a complex.

Example II.A.2. Let S be a commutative ring with identity and consider the ideal I ≤ S with

generating sequence f1, f2, f3 ∈ S. Then the Koszul complex KS(f1, f2, f3) is

0 // S
∂3 // S3 ∂2 // S3 ∂1 // S // 0,

e123 e12 e1 1

e13 e2
e23 e3

where the eF ’s denote the basis vectors of each S-module. We express the differential in terms of

4



its action on the basis vectors:

∂(e123) = f3e12 − f2e13 + f1e23 ∂(e12) = f1e2 − f2e1 ∂(e1) = f1

∂(e13) = f1e3 − f3e1 ∂(e2) = f2

∂(e23) = f2e3 − f3e2 ∂(e3) = f3.

Note that if we think of e1, e2, e3 as the standard basis vectors, then ∂1 is matrix multiplication by[
f1 f2 f3

]
where its entries are the minimal generators of I. Similarly, the differential in degree

2 is multiplication by the matrix 
−f2 −f3 0

f1 0 −f3

0 f1 f2

 ,
and in degree 3 it is multiplication by the column vector


f3

−f2

f1

 .

Fact II.A.3. One can always express the differential of a free resolution as a sequence of matrices.

Definition II.A.4. Here we introduce notions of exactness.

(a) A sequence X1
ζ1 // X2

ζ2 // X3 of S-module homomorphisms is exact if Im ζ1 = Ker ζ2.

(b) A sequence

· · ·
ζi+2 // Xi+1

ζi+1 // Xi
ζi // Xi−1

ζi−1 // · · ·

is exact if Im ζi+1 = Ker ζi for all i ∈ Z.

(c) A short exact sequence is an exact sequence of the form

0 // X1
// X2

// X3
// 0.

Example II.A.5. We give a few examples of exact sequences.

5



(a) Given a pair of S-modules X and Y , the sequence

0 // X
ζ // X ⊕ Y

ξ // Y // 0

is a short exact sequence, where ζ and ξ are the natural injection and surjection, respectively.

(b) If X and Y are S-modules, then the sequence

0 // X
ζ // Y // 0

is exact if and only if ζ is an isomorphism of S-modules.

(c) The Koszul complex KS(f1, f2, f3) from Example II.A.2 is not exact, since ∂1 is not surjective.

The following theorem and definition introduce the notion of a free resolution.

Theorem II.A.6. If S is noetherian and M is a finitely generated S-module, then there exists an

exact sequence

· · ·
∂i+1 // Sβi

∂i // · · · ∂2 // Sβ1
∂1 // Sβ0

τ // M // 0.

Definition II.A.7. The exact sequence in Theorem II.A.6 is an augmented free resolution of M

over S. The free resolution omits the module M :

· · ·
∂i+1 // Sβi

∂i // · · · ∂2 // Sβ1
∂1 // Sβ0 // 0.

The maps ∂i are the differentials in the resolution. The (homological) degree of Sβi is i, and if

s ∈ Sβi , then the (homological) degree of s is i and we write |s| = i. It is common to write simply ∂

when the degree is understood.

Theorem II.A.6 speaks to the existence of free resolutions, but says nothing of the finiteness

(or lack thereof) of these resolutions. The next result says we can do even better in the context of

polynomial rings over a field with finitely many variables.

Theorem II.A.8 (Hilbert’s Syzygy Theorem). Let k be a field and S = k[a1, . . . , an] the polynomial

ring in n variables.

6



(a) If I ≤ S is I = ⟨f1, . . . , fβ1⟩ where fi is a polynomial in S for i = 1, . . . , β1, then there exists

a finite free resolution

0 // Sβd
∂n // · · · ∂3 // Sβ2

∂2 // Sβ1
∂1(

f1 · · · fβ1

) // S
τ // S/I // 0.

(b) If fi is homogeneous for i = 1, . . . , n, then this resolution can be built minimally and the βj’s

are independent of the choice of minimal free resolution.

Definition II.A.9. In the notation of Theorem II.A.8 (b), the integer βj = βS
j (S/I) is the j

th Betti

number of S/I over S.

Note II.A.10. This notion is originally from algebraic topology where it was named after Enrico

Betti by Poincaré and modernized by Emmy Noether.

The following fact from lecture notes by Sather-Wagstaff gives us a test for minimality.

Fact II.A.11 ([8, Note A.4.3]). Let S = k[a1, . . . , an] be a polynomial ring over a field k, let J be

an ideal of S generated by non-constant homogeneous polynomials, and let R = S/J be the quotient

ring. Let C be a finite free R-complex. By Fact II.A.3 the differential of C can be represented by

matrices, and if the non-zero entries in these matrices are non-constant homogeneous polynomials,

then C is minimal. For instance, if J = 0 is generated by the empty set, then we have a test for

minimality of free resolutions over S.

Example II.A.12. Here we present three minimal resolutions and one non-resolution. The first

two resolutions are infinite.

(a) Consider the ring R = k[a]/
〈
a2
〉
and the R-module M = R/ ⟨a⟩. An augmented free resolution

of M is

· · · a· // R
a· // R

a· // R // M // 0,

where the differential is just the multiplication map.

(b) Set R = k[a, b]/ ⟨ab⟩ and consider the R-module M = R/ ⟨a⟩. An augmented free resolution of

M is

· · · a· // R
b· // R

a· // R
b· // R // M // 0.

7



(c) If S = k[a1, a2, a3] and I = ⟨a1, a2, a3⟩, then the Koszul complex given in Example II.A.2 is a

free resolution of S/I, i.e., we have the augmented free resolution

0 // S
∂3 // S3 ∂2 // S3 ∂1 // S // S/I // 0.

(d) The Koszul complex is not necessarily a resolution in general. Set S = k[a1, a2, a3] and consider

the ideal I = ⟨a2a3, a1a3, a1a2⟩. The Koszul complex KS(a1a2, a1a3, a2a3) is

0 // S
∂3

( a2a3
−a1a3
a1a2

)
// S3

∂2

(
0 −a1a2 −a1a3

−a1a2 0 a2a3
a1a3 a2a3 0

)
// S3

∂1

( a2a3 a1a3 a1a2 ) // S // 0.

Then KS(a1a2, a1a3, a2a3) is not a resolution of S/I, because, e.g., a1e1 − a2e2 ∈ ker ∂1 \ Im ∂2.

Definition II.A.13. A commutative differential graded S-algebra (DG S-algebra) is an S-complex

X = · · ·
∂X
2 // X1

∂X
1 // X0

// 0

equipped with a binary operation µij : Xi ×Xj → Xi+j (we will write µij(x, y) = xy) satisfying the

following properties.

• µij is S-bilinear. Therefore, µij is also distributive. In particular, 0 ·y = 0 = y ·0 for all y ∈ X.

• µij is unital, i.e., there exists 1 ∈ X0 such that 1 · x = x = x · 1 for all x ∈ Xi.

• µij is associative.

• µij is graded commutative, i.e., for all x, y ∈ X \ {0} one has yx = (−1)|x|·|y|xy and x2 = 0

whenever |x| is odd.

• µij satisfies the Leibniz rule, i.e., for all x, y ∈ X \ {0} one has ∂(xy) = ∂(x)y + (−1)|x|x∂(y).

Remark II.A.14. Informally, the convention for determining signs in the context of the previous

definition is that if we switch the order of two factors, multiply that term by (−1)product of degrees.

Also, note that the second condition of the fourth bullet is automatic if 2 is a unit in S: by the first

condition one has x2 = −x2, i.e., 2x2 = 0.

8



Remark II.A.15. Note that each basis vector in Example II.A.2 is denoted by a subset Λ ⊂ {1, 2, 3},

where the elements of Λ are written in strictly ascending order. This makes the sign function in the

following example well-defined.

Example II.A.16. The Koszul complex admits a DG algebra structure [10]. We will describe this

structure for the complex shown in examples II.A.2 and II.A.12. For any subsets Λ,Π ⊂ {1, 2, 3}, if

they are disjoint then we define sgn(Λ,Π) = (−t)χ where χ is the number of transpositions required

to put the elements of Λ ∪Π in strictly ascending order. For instance, we compute

sgn({1 < 2}, {3}) = (−1)0 = 1

sgn({1 < 3}, {2}) = (−1)1 = −1

sgn({2 < 3}, {1}) = (−1)2 = 1,

where {i < j} denotes the set {i, j} with i < j. Then for any Λ,Π ⊂ {1, 2, 3}, we define the product

eΛeΠ =


0 Λ ∩Π ̸= ∅

sgn(Λ,Π)eΛ∪Π Λ ∩Π = ∅.

One can verify that this imparts a DG algebra structure on KS(a1, a2, a3). For instance, one has

e2Λ = 0 for all Λ ̸= ∅. We also see that e123 is a zero-divisor, since {1, 2, 3}∩Λ ̸= ∅ for any nonempty

Λ. By our sign computations above, some non-zero products are

e12e3 = e123 e13e2 = −e123 e23e1 = e123

e3e12 = e123 e2e13 = −e123 e1e23 = e123

e1e2 = e12 e1e3 = e13 e2e3 = e23

e2e1 = −e12 e3e1 = −e13 e3e2 = −e23.

9



II.B Simple Graphs and Simplicial Complexes

The combinatorial constructions in this section yield algebraic constructions in the next.

Definition II.B.1. A finite simple graph consists of nodes/vertices and edges between them with

no loops, no multiple edges, and no directed edges. Formally, a finite simple graph G = (V,E)

satisfies V = {a1, . . . , an} and E ⊆ {{ai, aj} | i ̸= j } ⊆ P(V ). We write aiaj := {ai, aj}.

Notation II.B.2. For purposes of readability, in our examples we will use notation that avoids

the necessity of subscripts. For instance, in Example II.B.3 (a) we use V = {a, b, c} instead of

V = {a1, a2, a3}. Beginning in Example II.B.13, we also use suitable replacements for αi’s, e.g.,

{α, β, γ} instead of {α1, α2, α3}.

Example II.B.3. We present two classic simple graphs.

(a) Set n = 3 and let G be the two-path P2, i.e., G = (V,E), where V = {a, b, c} and E = {ab, bc}:

a b c.

(b) Set n = 4 and let G be the four-cycle C4, i.e., G = (V,E), where V = {a, b, c, d} and E =

{ab, bc, cd, da}:

a b

d c.

Notation II.B.4. We will use # to denote cardinality and will let n denote #V throughout this

dissertation. For convenience, we set N = {1, . . . , n}.

Definition II.B.5. A simplicial complex on a vertex set V = {a1, . . . , an} is a nonempty subset

∆ ⊆ P(V ) closed under taking subsets, i.e., if F,H ⊆ V and F ⊆ H and H ∈ ∆, then F ∈ ∆. The

n-simplex (plural: simplices) is ∆n = P({a0, . . . , an}). An element of ∆ is a face of ∆. A face that

is maximal with respect to containment is a facet. For any face F ∈ ∆, we let FC denote the set

complement of F taken inside of V . The dimension of a face F is dim(F ) = #F −1. The dimension

of ∆ is

dim(∆) = max {dim(F ) | F ∈ ∆} = max {dim(F ) | F ∈ ∆ is a facet} .

If every facet of ∆ has the same dimension, then we say ∆ is a pure simplicial complex. The
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codimension of a face F is

codim(F ) = dim(∆)− dim(F ).

We refer to any face of ∆ which is a singleton set as a vertex (plural: vertices) and any face with

cardinality two as an edge. This is suggestive of our geometric understanding of these combinatorial

objects, which we frequently sketch as geometric realizations, see, e.g., Example II.B.7 below.

Remark II.B.6. Since simplicial complexes are closed under taking subsets, we say they are gen-

erated by their facets. If F1, . . . , Fm is an enumeration of the facets of a simplicial complex ∆, then

we write ∆ = ⟨F1, . . . , Fm⟩.

Example II.B.7. We present a few simplicial complexes as well as a few examples that are not.

(a) Set n = 3. Then the collection ∆ = {∅, a, b, c, ac} is a simplicial complex with facets ac and b.

Hence we write ∆ = ⟨ac, b⟩. The geometric realization of ∆ is

a c b.

(b) Set n = 4. Then the collection ∆ = {∅, a, b, c, d, ac, bd} is a simplicial complex with two facets

and we write ∆ = ⟨ac, bd⟩. Note that ∆ is pure, since its facets have equal dimension. It has the

geometric realization

a c b d.

(c) Again set n = 4 and we define the simplicial complex ∆ = ⟨abc, abd, cd⟩. This simplicial complex

is not pure and its geometric realization is displayed below.

c

a

d

b

(d) Set n = 3. The collection {∅, a, b} is a simplicial complex over V = {a, b, c} per our definition.

This differs from some definitions of simplicial complexes ∆ which require that ∆ contain all singleton

sets from V , e.g., [2, Definition 5.1.1] by Bruns and Herzog. The collection ∆ = {∅, a, c, ab} fails to

be a simplicial complex, since b ⊂ ab and b /∈ ∆.
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Definition II.B.8. Let G = (V,E) be a simple graph. The independence complex on G, denoted

∆G, is given by all subsets {ai1 , . . . , aiℓ} ⊂ V satisfying aijaij′ /∈ E for all j, j′ ∈ {1, . . . , ℓ}. We call

such subsets independent subsets of G.

Fact II.B.9. The independence complex of a finite simple graph G is a simplicial complex.

Example II.B.10. The simplicial complexes presented in Parts (a) and (b) of Example II.B.7 are

the independence complexes of P2 and C4 presented in Example II.B.3, respectively.

Example II.B.11. The simplicial complex ∆ = ⟨abc, abd, cd⟩ from Example II.B.7 is not an inde-

pendence complex. Indeed, suppose there exists some graph G = (V,E) such that ∆ = ∆G. Since

we have the facet abc ∈ ∆, we know that these edges are excluded: ab, ac, bc /∈ E. Similarly, the

facet abd ∈ ∆ implies ad, bd /∈ E, and the facet cd ∈ ∆ implies cd /∈ E. Thus E = ∅ and we conclude

abcd is an independent subset of G. This contradicts our assumption since abcd /∈ ∆ = ∆G.

Definition II.B.12. Let G = (E, V ) be a simple graph with vertex set V = {a1, . . . , an}. Set

U = {α1, . . . , αn}. A K1-corona of G, denoted ΣG, is a simple graph with vertex set V̂ = V ∪ U

and edge set E′ = E ∪ {aiαi | i = 1, . . . , n}. These are also called suspensions or whiskerings. We

call any vertex in V a Roman and any vertex in U a Greek.

Example II.B.13. Recall the simple graphs given in Example II.B.3.

(a) The K1-corona of P2, denoted ΣP2, is below.

a b c

α β γ

(b) The K1-corona of C4, denoted ΣC4, is below.

α a b β

δ d c γ.

The independence complex of a K1-corona has several distinctive combinatorial properties.

For instance, the whiskering process ensures that every maximal independent subset contains either

ai or αi, for every i ∈ N , so the independence complex of a K1-corona will always be pure. Such
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properties will lead to some nice algebraic properties in Section II.C. We continue with our running

examples to prompt the statement of Fact II.B.15.

Example II.B.14. We present the independence complexes of the graphs from Example II.B.13,

then observe their relationship with the first two independence complexes given in Example II.B.7.

(a) Let G = P2 and let ΣG be its suspension. Since the Greek vertices of ΣG are pairwise non-

adjacent, we have αβγ ∈ ∆ΣG. Since the only edge connecting any αi to a Roman is the edge aiαi,

we also have aβγ, αbγ, αβc ∈ ∆ΣG. The only remaining maximal independent subset of ΣG is aβc,

thus we have ∆ΣG = ⟨αβγ, aβγ, αbγ, αβc, aβc⟩. Note that if we remove the Greeks from each facet

of ∆ΣG, we exactly obtain the faces of ∆G (see Example II.B.7, Part (a)).

(b) Let G = C4 and let ΣG be its suspension. As in Part (a), it is straightforward to check that

∆ΣG = ⟨αβγδ, aβγδ, αbγδ, αβcδ, αβγd, aβcδ, αbγd⟩ .

The facets of ∆ΣG are again in bijection with the faces of ∆G.

Fact II.B.15. The facets of ∆ΣG all have dimension n − 1 and are in bijection with the faces of

∆G. Specifically, we have a face F = {ai1 , . . . , aip} in ∆G if and only if F̂ is a facet of ∆ΣG, where

F̂ is the (disjoint) union of F and every element αij ∈ {α1, . . . , αn} for which we have aij /∈ F .

This bijection presented in Fact II.B.15 is the critical combinatorial characteristic necessary

for the rings in Section II.C to display the desired algebraic properties. Moreover, this gives an

algorithm that we can perform on any simplicial complex ∆ to yield a new simplicial complex, one

which we define as ∆̂, that will maintain these same combinatorial and algebraic properties. Hence

we have the following generalization, which, to our knowledge, is first introduced here.

Definition II.B.16. Let ∆ be a simplicial complex on the vertex set V = {a1, . . . , an}. Define the

vertex sets U = {α1, . . . , αn} and V̂ = V ∪ U , and for each face F ∈ ∆ define

F̂ = {αi ∈ U | ai /∈ F } ∪ F ⊂ V̂ .

We let ∆̂ be the simplicial complex on V̂ generated by every such F̂ , i.e.,

∆̂ =
〈
F̂ ⊂ V̂

∣∣∣ F ∈ ∆
〉
.
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We say ∆̂ is the purification of ∆, thus named because it is always pure, regardless of ∆.

Example II.B.17. Any independence complex of a K1-corona ΣG is a purified simplicial complex.

Moreover, as in Example II.B.14, it is straightforward to show that ∆ΣG is the purification of ∆G,

i.e., ∆ΣG = ∆̂G.

Example II.B.18. Recall the simplicial complex ∆ = ⟨abc, abd, cd⟩ from Example II.B.7, which is

not an independence complex (see Example II.B.11). The purified simplicial complex ∆̂ is

∆̂ =

〈
αβγδ

∅
, aβγδ

a
, αbγδ

b
, αβcδ

c
, αβγd

d
, abγδ

ab
, aβcδ

ac
, aβγd

ad
, αbcδ

bc
, αbγd

bd
, αβcd

cd
, abcδ

abc
, abγd

abd

〉
,

where we label each facet of ∆̂ with the corresponding face from ∆.

The following discussion and fact can be gleaned entirely from [3] and from [2]. Of primary

interest is an efficient means of describing the boundary of ∆̂, and thereby enumerating the faces of

∆̂ which are excluded from the boundary.

Discussion II.B.19. Homology spheres are defined in terms of reduced simplicial homology mod-

ules, placing this term a bit outside the scope of this dissertation. It is a fact, however, that any

simplicial complex ∆ which has geometric realization homeomorphic to a sphere is a homology

sphere. For instance, the simplicial complex ⟨αb, αc, aγ, bγ, ac⟩ is a homology sphere, because its

geometric realization below is homeomorphic to a 1-dimensional sphere, i.e., a circle.

α

b c

a γ

(II.B.19.1)

An (n − 1)-dimensional simplicial complex ∆ is a homology ball if it contains an (n − 2)-

dimensional homology sphere Σ in a particular way (the specific manner of the containment is again

in terms of simplicial homology). As with spheres, if the geometric realization of ∆ is homeomorphic

to a ball, then ∆ is a homology ball. In the case when ∆ is a homology ball, the aforementioned

homology sphere Σ that it contains is called the boundary of ∆. Furthermore, this understanding of

the boundary of ∆ is equivalent to our geometric understanding of the boundary. That is, if X is a

ball and is the geometric realization of a simplicial complex ∆, then the spherical boundary of X is
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the geometric realization of Σ, the boundary of ∆. As we will see in more detail in Example II.B.31,

the purified simplicial complex ∆̂ = ⟨αβγ, aβγ, αbγ, αβc, aβc⟩ has geometric realization

b a
γ

c

βα

with the geometric realization of its spherical boundary Σ = ⟨αb, αc, aγ, bγ, ac⟩ given in (II.B.19.1).

We can also see that the geometric realization of ∆̂ is homeomorphic to a 2-dimensional ball, so ∆̂

is a homology ball. The following fact is how we will use these notions.

Fact II.B.20. Let ∆̂ be a purified simplicial complex over the vertex set V̂ . Recall that #V = n

and therefore the dimension of ∆̂ is n− 1.

(a) By [3, Theorem 5.1], the purified simplicial complex ∆̂ is a homology ball if and only if ∆ is

not a simplex, and ∆̂ is a homology sphere if and only if ∆ is a simplex.

(b) If ∆ is not a simplex, then each of the following hold:

(i) There is a simplicial complex Σ ⊂ ∆̂ with dimension n− 2 that is the boundary of ∆̂;

(ii) The simplicial complex Σ is a sphere;

(iii) The facets of Σ are exactly the faces of ∆̂ with dimension n − 2 that are contained in

exactly one facet of ∆̂.

Example II.B.21. We have seen in Discussion II.B.19 that for ∆ = ⟨ac, b⟩, its purification ∆̂ =

⟨αβγ, aβγ, αbγ, αβc, aβc⟩ is a homology ball. Let us confirm that the facets of Σ = ⟨αb, αc, aγ, bγ, ac⟩

are the codimension-1 faces of ∆̂ that are contained in exactly one facet of ∆̂. The codimension-1

faces of ∆̂ are

αβ, αγ, βγ, aβ, aγ, αb, bγ, αc, βc, ac. (II.B.21.1)

Five of the above are each contained in two facets of ∆̂:

αβ ⊂ αβγ, αβc αγ ⊂ αβγ, αbγ βγ ⊂ αβγ, aβγ

aβ ⊂ aβγ, aβc βc ⊂ αβc, aβc.
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Omitting these from the list in (II.B.21.1), we obtain precisely the facets of Σ.

Consider the simplicial complex Ω = ⟨ab, ac, bc⟩ and its purification Ω̂. The geometric

realization of Ω̂ is below.

b a

c

βα

γ

The simplicial complex Ω is as large as a simplicial complex on three vertices can be while also

maintaining that its purification is a homology ball. What happens if we add to Ω the last face

abc, i.e., what about about the purification of the simplex ∆2 = ⟨abc⟩? We see that the geometric

realization of ∆̂2 is a 2-dimensional sphere, given below.

c
•

β
•

α•
γ
•

b•a•

Informally, adding the facet abc to Ω to form ∆2 adds abc to the purified simplicial complex Ω̂ to

form ∆̂2 by placing the “lid” on the figure above, completing the sphere.

Definition II.B.22. If ∆̂ is a purified simplicial complex with boundary Σ, then ∆̂ \ Σ is the

interior of ∆̂.

Example II.B.23. Consider again ∆ = ⟨ac, b⟩ with boundary Σ = ⟨αb, αc, aγ, bγ, ac⟩. The non-

empty faces of ∆̂ are

αβγ, aβγ, αbγ, αβc, aβc,

αβ, αγ, βγ, aβ, aγ, αb, bγ, αc, βc, ac,

α, β, γ, a, b, c

and the non-empty faces of Σ are

αb, αc, aγ, bγ, ac,

α, γ, a, b, c,
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so the interior of ∆̂ is ∆̂ \ Σ:

αβγ, aβγ, αbγ, αβc, aβc,

αβ, αγ, βγ, aβ, βc

β.

Observe that this is not a simplicial complex, because, e.g., ∅ is never included.

Remark II.B.24. To avoid degenerate situations, we frequently require that ∆̂ be a ball, so in

Chapter III we will usually assume that ∆ is not a simplex. In the case of graphs G and ΣG, this

says that G has at least one edge. On the other hand, we also wish to exclude the empty complex

∆ = {∅}. This is automatic in the graph situation since n ≥ 1. If n = 1, then a simplicial complex

∆ on the vertex set V = {a1} is either a simplex, or the empty complex, thus in general we will

assume that n ≥ 2.

Fact II.B.20 prompts our statement of Lemma II.B.29. First we give some helpful notation,

and we will close this section with some examples.

Definition II.B.25. For any face F ∈ ∆̂ we define the support of F to be

supp(F ) = {i ∈ N | ai ∈ F or αi ∈ F } .

We also let Γ(F ) denote the complement of supp(F ) inside of N , i.e., Γ(F ) = N \ supp(F ). For any

subset W ⊂ N , we denote aW = {ai ∈ V | i ∈W }.

Notation II.B.26. We define the following:

supp(a) = supp(α) = {1} supp(b) = supp(β) = {2}

supp(c) = supp(γ) = {3} supp(d) = supp(δ) = {4}.

Example II.B.27. Consider ∆ = ⟨ac, b⟩ and its purification ∆̂. For any facet F ∈ ∆̂ we have

supp(F ) = N . We compute the supports of several other faces:

supp(αβ) = supp(aβ) = supp(αb) = {1, 2}

supp(αγ) = supp(aγ) = supp(αc) = supp(ac) = {1, 3}.
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For any facet F ∈ ∆̂, we have Γ(F ) = ∅, and therefore, aΓ(F ) = ∅. We also compute

Γ(αβ) = {3} Γ(aγ) = {2} Γ(β) = {1, 3}

a{3} = c a{2} = b a{1,3} = ac.

Notation II.B.28. We use ⊔ to denote disjoint unions, e.g., if F,H ∈ ∆̂, then we write F ⊔H =

F ∪H if and only if F ∩H = ∅.

Lemma II.B.29. Let ∆ be a simplicial complex on V = {a1, . . . , an}. Assume ∆ ̸= ∆n−1. Let ∆̂

be the purification of ∆ and let Σ denote the boundary of ∆̂. Assume F ∈ ∆̂ is not a facet.

(a) The following are equivalent.

(i) F ∈ Σ

(ii) The number of facets in ∆̂ that contain F is less than 2codim(F ).

(iii) F ⊔ aΓ(F ) /∈ ∆̂

(b) The following are equivalent.

(i) F ∈ ∆̂ \ Σ

(ii) The number of facets in ∆̂ that contain F is equal to 2codim(F ).

(iii) F ⊔ aΓ(F ) ∈ ∆̂

Proof. We will prove Part (a) and Part (b) follows.

(i) =⇒ (ii): Assume F ∈ Σ. For all i ∈ N , by definition of purified simplicial complexes we know

{ai, αi} is not contained in any facet of ∆̂. Hence any facet containing F has the form

F ⊔ {ai | i ∈ A} ⊔ {αj | j ∈ B } , (II.B.29.1)

where we set A,B ⊂ Γ(F ) such that Γ(F ) = A⊔B. There are exactly 2codim(F ) such subsets of V̂ , so

it suffices to show that one of them is not in ∆̂. By Fact II.B.20, F is a subset of some codimension-1

face F ′ ∈ ∆̂ that is contained in exactly one facet of ∆̂. Set {i} = Γ(F ′). Since ∆ is a simplicial

complex, we must have F ′ ⊂ (F ′ ⊔ {αi}) ∈ ∆̂ and (F ′ ⊔ {ai}) /∈ ∆̂. Since F ⊂ (F ′ ⊔ {ai}), this

proves (ii).
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(ii) =⇒ (iii): Suppose for the sake of contradiction that F ⊔ aΓ(F ) ∈ ∆̂. Since ∆ is a simplicial

complex, this implies that every facet of the form given in (II.B.29.1) is also a facet of ∆̂, i.e., there

are 2codim(F ) facets in ∆̂ containing F .

(iii) =⇒ (i): Assume (iii) holds. By Fact II.B.20 it suffices to exhibit a codimension-1 face F ′ of ∆̂

that contains F and is contained in precisely one facet of ∆̂. Let H ∈ ∆̂ be a facet containing F with

the maximum number of Romans. By assumption, there must exist some αi ∈ H such that i ∈ Γ(F )

(otherwise F ⊔ aΓ(F ) = H ∈ ∆̂). Define the codimension-1 face F ′ = H \ {αi} and we have F ⊂ F ′

by construction. If we suppose that F ′ is contained in two facets of ∆̂, then F ⊂ (H \ {αi}) ⊔ {ai},

contradicting the maximality of the number of Romans in H. Thus we conclude the unique facet of

∆̂ containing F ′ is H, so F ′ ∈ Σ. Since Σ is a simplicial complex and F ⊂ F ′, this completes the

proof of Part (a).

Note the unions in Lemma II.B.29 are disjoint. This result has a number of useful corollaries

in Section III.B which are instrumental in our proof that our product is well-defined. Part (b) of

this result is also of particular significance for us, because as we will see in Section II.D, the basis

vectors of the resolution of interest are denoted specifically by the elements of ∆̂ which are excluded

from Σ. We close out this section with an example demonstrating how we compute these elements,

as well as a visual example to justify our use of the term “boundary.”

Example II.B.30. Recall the simplicial complex ∆ = ⟨abc, abd, cd⟩ and the purified simplicial

complex ∆̂. To find the elements of ∆̂ \Σ, we note that by Lemma II.B.29, a face F ∈ ∆̂ is omitted

from the boundary if and only if it can be obtained by removing i Romans from a facet of ∆̂, where

i = codim(F ). Since the facets of Σ are codimension-1 faces of ∆̂, of course the facets of ∆̂ are

excluded from the boundary. The codimension-1 faces of ∆̂ which are excluded from the boundary,
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i.e., the facets of Σ, are obtained by removing exactly one Roman from a facet of ∆̂:

aβγδ // βγδ αbγδ // αγδ

αβcδ // αβδ αβγd // αβγ

abγδ //

((

bγδ aβcδ //

((

βcδ

aγδ aβδ

aβγd //

((
βγd αbcδ //

((

αcδ

aβγ αbδ

αbγd //

((

αγd αβcd //

((

αβd

αbγ αβc

abcδ //

((

""

bcδ abγd //

((

""

bγd

acδ aγd

abδ abγ.

There are fewer facets of ∆̂ from which we can remove two Romans:

abγδ // γδ aβcδ // βδ

aβγd // βγ αbcδ // αδ

αbγd // αγ αβcd // αβ

abcδ //

((

!!

aδ abγd //

((

!!

aγ

bδ bγ

cδ γd.

Finally, the smallest elements of ∆̂ \ Σ are obtained by removing three Romans from a facet of ∆̂:

abcδ // δ abγd // γ.

Example II.B.31. Recall the simplicial complex ∆ = ⟨ac, b⟩ and its purification

∆̂ = ⟨αβγ, aβγ, αbγ, αβc, aβc⟩ .
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We can compute the elements of ∆̂ \ Σ using the same algorithm as in Example II.B.30:

Remove 0 Romans: αβγ, aβγ, αbγ, αβc, aβc

Remove 1 Roman: αβ, αγ, βγ, βc, aβ (II.B.31.1)

Remove 2 Romans: β.

By identifying the codimension-1 faces of ∆̂ which are contained in exactly one facet of ∆̂, we can

also write down the boundary Σ. By Lemma II.B.29, the facets of Σ are the codimension-1 faces of

∆̂ which can be obtained by removing a Greek, but not by removing a Roman. Thus we compute

Σ = ⟨αb, αc, aγ, bγ, ac⟩. Note the codimension-1 faces in (II.B.31.1) are not included in Σ, because

they can be obtained by removing a Roman. By again interpreting the singletons as vertices, the

dimension-1 faces as edges, and now the dimension-2 face as shaded triangles, we can obtain a

geometric realization of ∆̂. We display it below with the boundary in bold. Note that the elements

not in bold are the elements of ∆̂ \ Σ computed above.

b a
γ

c

βα
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II.C Stanley-Reisner Rings and Cohen-Macaulayness

We first introduce the rings of interest and the notion of shellability, a combinatorial prop-

erty of the underlying simplicial complexes. Then we introduce the Cohen-Macaulay property and

note that our rings possess this property precisely because of their shellability. Definitions II.C.1

and II.C.6 are adapted from [2].

Definition II.C.1. Let ∆ be a simplicial complex on the vertex set V = {a1, . . . , an} and let k

be a ring. The Stanley-Reisner ring (or face ring) of the complex ∆ (with respect to k) is the

homogeneous k-algebra

k[∆] = k[a1, . . . , an]/J∆

where J∆, called the Stanley-Reisner ideal, is the ideal generated by all monomials ai1ai2 · · · aiq such

that {ai1 , ai2 , . . . , aiq} /∈ ∆.

We are exclusively interested in the Stanley-Reisner rings of purified simplicial complexes.

We describe a few such rings using examples from the previous section (see, e.g., Example II.B.31).

First, however, we state a helpful fact.

Fact II.C.2. If ∆ is a simplicial complex over V and its purification ∆̂ is a simplicial complex over

V̂ , then it is straightforward to show that J∆̂ = J∆ + ⟨aiαi | i ∈ N⟩.

Example II.C.3. Recall the simplicial complex ∆ = ⟨ac, b⟩ and its purification ∆̂ (see, e.g., Exam-

ple II.B.31). The non-faces of ∆ are ab, bc, and abc. Therefore J∆ = ⟨ab, bc⟩ and by Fact II.C.2 we

have J∆̂ = ⟨ab, bc, aα, bβ, cγ⟩. We note that these are the edge ideals of P2 and ΣP2, respectively,

which prompts our statement of Fact II.C.4 (recall that, for instance, bc is a generator of the edge

ideal of P2 since bc is an edge of P2).

The following fact is from a text by Moore et al.

Fact II.C.4 ([5, Theorem 4.4.9]). If ∆G is an independence complex, then the Stanley-Reisner ideal

determined by ∆G is the edge ideal of G.

Example II.C.5. Recall the simplicial complex ∆ = ⟨abc, abd, cd⟩ and its purification ∆̂ (see, e.g.,

Example II.B.18). The minimal non-faces of ∆ are acd and bcd, so by Fact II.C.2 we have

J∆̂ = ⟨acd, bcd, aα, bβ, cγ, dδ⟩ .
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Our goal is to apply Theorem 5.1.13 from [2] to ∆̂ to conclude that the Stanley-Reisner

rings of purified simplicial complexes are Cohen-Macaulay using the following notion.

Definition II.C.6 ([2, Definition 5.1.11]). A pure simplicial complex ∆ is called shellable if the

facets of ∆ can be given a linear order F1, . . . , Fm in such a way that ⟨Fi⟩∩⟨F1, . . . , Fi−1⟩ is generated

by a non-empty set of maximal proper faces of ⟨Fi⟩ for all i, 2 ≤ i ≤ m. A linear order of the facets

satisfying this condition is called a shelling of ∆.

Colloquially stated, a shelling gives an order in which one can “glue” the facets together in

such a way that the intersections are as large as possible (in terms of dimension). E.g., triangles

should be glued along edges, and tetrahedra should be glued along triangles.

Example II.C.7. The simplicial complex ∆ = ⟨ac, b⟩ can be written ∆ = {∅, a, b, c, ac}, with its

faces in order of increasing dimension. We claim a shelling of the facets of ∆̂ is

αβγ, aβγ, αbγ, αβc, aβc,

listed in order of increasing number of Romans. We begin with αβγ and “glue” aβγ to it along the

edge βγ:

a
γ

βα

.

Since the intersection of these two triangles (dimension-2) is an edge (dimension-1), the shelling

condition is satisfied. Next we attach αbγ and αβc, once again intersecting along edges:

b a
γ

c

βα

.

Finally, we attach the facet aβc along two edges, so we have a shelling:

23



b a
γ

c

βα

.

We give the previous example to demonstrate the following result. In short, the fact that ∆

is a simplicial complex forces the linear order of the facets of ∆̂ given in Theorem II.C.8 to respect

the condition given in Definition II.C.6.

Theorem II.C.8 (Morra). Every purification ∆̂ is shellable. In detail, let ∆ be a simplicial complex

and let ∆̂ be its purification. Let F1, F2, . . . , Fm be any enumeration of the faces of ∆ such that

dim(Fi) ≤ dim(Fj) whenever i < j (e.g., F1 = ∅ and Fm is a facet of ∆). Then the linear order

F̂1, F̂2, . . . , F̂m is a shelling of ∆̂.

Proof. Set ∆ = {F1, . . . , Fm} such that i < j implies dim(Fi) ≤ dim(Fj). Let ℓ ∈ {2, . . . ,m} be

given. Since ∆̂ is pure by construction, it suffices to show that
〈
F̂ℓ

〉
∩
〈
F̂1, . . . , F̂ℓ−1

〉
is generated

by codimension-1 faces of ∆̂. Set f = #Fℓ and denote Fℓ = {ai1 , . . . , aif } = ai1 · · · aif . Since ∆ is a

simplicial complex we have ai1 · · · aij−1
aij+1

· · · aif ∈ ∆ for all j = 1, . . . , f . By our choice of ordering,

without loss of generality there exist indices r, r+1, . . . , r+f , such that {r, . . . , r+f} ⊂ {1, . . . , ℓ−1}

and Fj = ai1 · · · aij−1aij+1 · · · aif for j = r, . . . , r+f . For each j = r, . . . , r+f , we have Fℓ∩Fj = Fj

and thus F̂ℓ ∩ F̂j = F̂ℓ \ aij . Therefore we have

{
F̂ℓ \ aij | j = r, . . . , r + f

}
⊂
〈
F̂ℓ

〉
∩
〈
F̂1, . . . , F̂ℓ−1

〉
.

so it suffices to show that any face H in the right-hand side of this display is a subset of one of

the codimension-1 faces in the left-hand side. Let H ∈
〈
F̂ℓ

〉
∩
〈
F̂1, . . . , F̂ℓ−1

〉
be given and denote

Ha = H ∩ V ∈ ∆ and Hα = H ∩U . Then H ⊂ F̂ℓ implies that Ha ⊂ Fℓ = ai1 · · · aif . Since H ⊂ F̂j

for some j ∈ {1, . . . , ℓ− 1}, we know Ha ⊂ Fj for that same j. Furthermore, by our choice of linear

ordering we know that Fℓ ∩ Fj ⊊ Fℓ for all j ∈ {1, . . . , ℓ − 1}. It follows that Ha ⊆ Fℓ ∩ Fj ⊊ Fℓ.

Hence there exists some j′ ∈ {r, . . . , r + f} such that aij′ ∈ Fℓ \Ha. Therefore, since H ⊂ F̂ℓ and

aij′ /∈ H, it follows that H ⊂ F̂ℓ \ aij′ , as desired.
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For the rest of the section, assume R is a commutative ring with identity unless other-

wise stated.

Definition II.C.9. Let M be an R-module. An element x ∈ R is a non-zero-divisor on M if

the sequence 0 // M
x· // M is exact (i.e., for all m ∈ M , xm = 0 implies m = 0). We

say x is M-regular if x is a non-zero-divisor on M and xM ̸= M (i.e., M/xM ̸= 0). A sequence

x = x1, . . . , xd ∈ R is M-regular if x1 is M -regular and xi is M/(x1, . . . , xi−1)M -regular for all

i = 2, . . . , d.

Example II.C.10. We present a few examples related to regular sequences without proof.

(a) For any polynomial ring S = k[a1, . . . , an], for any 1 ≤ d ≤ n the sequence a1, . . . , ad is S-regular.

(b) Any field k has no regular sequences, because any non-zero element x ∈ k \ {0} is a unit and

therefore x · k = k.

(c) Let S = k[a1, . . . , an, α1, . . . , αn] be the polynomial ring and let R = k[∆̂] = S/J∆̂ be the

Stanley-Reisner ring determined by a purified simplicial complex. Then α1−a1, α2−a2, . . . , αn−an

is an R-regular sequence.

Definition II.C.11. Let R be noetherian and a ≤ R an ideal such that aM ̸= M . Let x =

x1, . . . , xd ∈ a be an M -regular sequence in a. The sequence x is a maximal M -regular sequence in

a if for all y ∈ a, the sequence x1, . . . , xd, y is not M -regular. The longest length d of an M -regular

sequence in a is called the depth of a on M , denoted

d = depthR(a;M).

Fact II.C.12. Let R be noetherian and a ≤ R an ideal such that aM ̸= M . Then there exists a

maximal M -regular sequence in a.

Example II.C.13. In part (c) of Example II.C.10 we exhibited an R-regular sequence of length

n, where R is the Stanley-Reisner ring of a purified simplicial complex. Let m ⪇ R be the ideal

generated by the variables. Thus we have depthR(m;R) ≥ n.

Definition II.C.14. The Krull dimension, or just dimension, of R is defined as

dim(R) = sup {d ≥ 0 | ∃ p0 ⊊ p1 ⊊ · · · ⊊ pd ⊊ R s.t. pi prime,∀ i = 1, . . . , d} .
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Example II.C.15. Using properties of monomial ideals, it can be shown that dim k[∆̂] = n (see,

e.g., [5, Theorem 5.1.2]).

Theorem II.C.16 ([6, Theorem 2.3.3]). One has depthR(m;R)
(∗)
≤ dim(R).

Definition II.C.17. R is Cohen-Macauley if (∗) is an equality.

Definition II.C.18 ([2]). ∆ is a Cohen-Macaulay complex over k if k[∆] is a Cohen-Macaulay ring.

We say ∆ is a Cohen-Macaulay complex if ∆ is Cohen-Macaulay over every field.

We achieve the goal of this section with the following remark.

Remark II.C.19. From [2, Theorem 5.1.13], we know that every shellable simplicial complex is

Cohen-Macaulay. Therefore a corollary of Theorem II.C.8 is that ∆̂ is Cohen-Macaulay.
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II.D The Resolution

In this section we introduce the minimal resolution of interest. Throughout we will let S

denote a polynomial ring in 2n variables, i.e., S = k[a1, . . . , an, α1, . . . , αn], and we let R denote

the Stanley-Reisner ring of a purified simplicial complex ∆̂ on V̂ = {a1, . . . , an, α1, . . . , αn}, i.e.,

R = S/J∆̂.

Definition II.D.1. Let F be an element of the power set P(V̂ ). We naturally identify F with a

unique monomial in S and denote it mdeg(F ). For instance, if F = {α, b, δ} then we have

mdeg(F ) = αbδ ∈ S.

Example II.D.2. Recall that we use ⊔ to denote disjoint unions. Hence if F,H ∈ ∆̂ \Σ such that

F ∩H = ∅, then

mdeg(F ⊔H) = mdeg(F ) ·mdeg(H).

The resolution of interest resolves the Alexander dual ideal of the Stanley-Reisner ideal

J∆̂, denoted (J∆̂)
A. There are multiple equivalent characterizations of the dual of an ideal of a

polynomial ring generated by monomials. We use [4, Proposition 2.2] from a text by Eisenbud et al.

to give one such characterization. This requires us to define colon ideals.

Definition II.D.3 ([5, Definition A.6.1]). Assume A is a commutative ring with identity. Let B ⊂ A

be a subset of A and let a ≤ A be an ideal. For each element x ∈ A, we define xB = {xb | b ∈ B }.

The colon ideal of a with B is

(a :A B) = {x ∈ A | xB ⊂ a} ≤ A.

In words, the colon ideal of a ≤ A with B is the collection of elements of the ring A that send B to

a via multiplication from the ring structure. It can be shown this is indeed an ideal of A.

Definition II.D.4. Let I ≤ S be an ideal generated by monomials f1, . . . , fm ∈ S. Let

aλ1
1 · · · aλn

n αη1

1 · · ·αηn
n ∈ S

be the least common multiple of the generating sequence f1, . . . , fm. The Alexander dual ideal of I,
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denoted IA, is generated by those generators of the colon ideal

(〈
aλ1+1
1 , . . . , aλn+1

n , αη1+1
1 , . . . , αηn+1

n

〉
: {f1, . . . , fm}

)

that are divisible by neither aλi+1
i nor αηi+1

i , for i ∈ N .

In Definition II.D.6 we give a resolution of the Alexander dual of a Stanley-Reisner ideal,

namely (J∆̂)
A due to [3]. First, we compute such an ideal.

Example II.D.5. Consider again the simplicial complex ∆ = ⟨abc, abd, cd⟩ and its purification ∆̂.

In Example II.C.5 we computed the Stanley-Reisner ideal:

J∆̂ = ⟨acd, bcd, aα, bβ, cγ, dδ⟩ .

Note that lcm(acd, bcd, aα, bβ, cγ, dδ) = abcdαβγδ, so λi = 1 = ηi for all i in Definition II.D.4. Next,

we therefore consider the following colon ideal:

(〈
a2, b2, c2, d2, α2, β2, γ2, δ2

〉
:S {acd, bcd, aα, bβ, cγ, dδ}

)
.

Hence we seek monomials g ∈ S such that g has no squares and gf has a square for every f ∈

{acd, bcd, aα, bβ, cγ, dδ}. The generator aα implies that for each generator g of (J∆̂)
A, we must have

either a|g or α|g, since this implies either g · aα ∈
〈
a2
〉
or g · aα ∈

〈
α2
〉
, respectively. Similarly, we

must also have either b|g or β|g, and we must have either c|g or γ|g, and so on. (This means that

in the general case where V = {a1, . . . , an}, the generators g of (J∆̂)
A are monomials of polynomial

degree n with either αi|g or ai|g for each i ∈ N .) For instance, since the monomial abcd ∈ S has no

squares and every generator of J∆̂ is divisible by at least one Roman, abcd is a generator of (J∆̂)
A.

Similarly, the monomials αbcd, aβcd, abγd, abcδ ∈ S are generators of (J∆̂)
A as well. Ultimately we

compute

(J∆̂)
A = ⟨abcd, αbcd, aβcd, abγd, abcδ, αβcd, αbγd, αbcδ, aβγd, aβcδ, abγδ, αβγd, αβcδ⟩ .

Most strikingly, these are precisely the complements of the facets of ∆̂! We recall

∆̂ = ⟨αβγδ, aβγδ, αbγδ, αβcδ, αβγd, abγδ, aβcδ, aβγd, αbcδ, αbγd, αβcd, abcδ, abγd⟩ .
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It is a fact that (J∆̂)
A is generated by the complements of the facets of ∆̂. We will see

therefore in the following definition that L resolves S/I in a very natural way. Recall that for any face

F ∈ ∆̂, we let FC denote the set complement taken inside of the vertex set V̂ (see Definition II.B.5).

Definition II.D.6. We set S = k[V̂ ] and let R = k[∆̂] = S/J∆̂ be the Stanley-Reisner ring. Let

I = (J∆̂)
A be the Alexander dual ideal of the Stanley-Reisner ideal. We define L as follows:

Li =


S i = 0

S(Bi) i ∈ N

0 else,

where S(Bi) is the free S-module with basis Bi =
{
[F ]

∣∣∣ F ∈ ∆̂ \ Σ s.t. codim(F ) = i− 1
}
. By [3],

L is a minimal resolution of S/I. We place an ordering on the variables:

a1 > α1 > a2 > α2 > · · · > an > αn.

For each i = 2, . . . , n+ 1 we define the differential

∂i ([F ]) =
∑

v∈FC

F⊔v∈∆̂\Σ

ψ(F, v)v[F ⊔ v], (II.D.6.1)

where ψ(F, v) = (−1)#{v
′∈F | v′<v} and FC = V̂ \ F . In homological degree one we define

∂1 ([F ]) = σ(F )mdeg(FC),

where σ(F ) = (−1)#(F∩V ).

Notation II.D.7. Let |F | = |[F ]| denote the homological degree of [F ] in the resolution.

Notation II.D.8. Throughout the remainder of this document, faces and monomials will frequently

coexist. For instance, in (II.D.6.1) within Definition II.D.6, we see ψ(F, v)v[F ⊔ v] for some face

F ∈ ∆̂\Σ which is not a facet, and some v ∈ FC . We have the product of a sign function determined

by a face F and a vertex v, a single variable v ∈ S, and a basis vector denoted by the face F⊔{v} ∈ ∆̂.

For sake of readability, we will frequently suppress curly braces inside of square brackets. We will

29



highlight such nuances as they appear.

Remark II.D.9. The slogan for the sign function ψ(F,−) is “how many elements of F are less

than the new guy?” By our ordering on the variables, for any i ̸= j we have

ψ({ai}, aj) = ψ({αi}, aj) = ψ({ai}, αj) = ψ({αi}, αj).

For instance,

ψ({a1}, a3) = ψ({α1}, a3) = ψ({a1}, α3) = ψ({α1}, α3) = (−1)0,

because a1, α1 > a3, α3. Many times it will be expeditious at times to think only in terms of

subscripts, e.g., in the proof of the main result, Theorem III.C.2. In fact, the product given

in Definition III.A.1 makes use of this notion. Therefore for any index j ∈ N and any subset

{i1, . . . , ip} ⊂ (N \ {j}) we define

ψ({i1, . . . , ip}, j) = ψ({ai1 , . . . , aip}, aj).

For instance, for any F ∈ ∆̂ \ Σ and any aj /∈ F we have

ψ(F, aj) = ψ(supp(F ), j).

Furthermore, this generalization holds for any element of the purified simplex ∆̂n.

Given a face F ∈ ∆̂\Σ and some index ej ∈ Γ(F ) = N\supp(F ), we know that both F⊔{aej}

and F ⊔{αej} are elements of ∆̂\Σ (see Lemma II.B.29 and one of its corollaries: Corollary III.B.4).

Thus we have an equivalent definition of the differential that will often be convenient to use:

∂(F ) =
∑

ej∈Γ(F )

ψ(F, ej)
(
αej [F ⊔ αej ] + aej [F ⊔ aej ]

)
.

Example II.D.10. Again consider ∆ = ⟨abc, abd, cd⟩ and its purification ∆̂. In Example II.B.30

we already computed the bases Bi for i = 1, 2, 3, 4 for the resolution L below.

0 // S(B4) // S(B3) // S(B2) // S(B1) // S
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The bases are as follows with the square brackets suppressed:

B1 =

{
αβγδ, aβγδ, αbγδ, αβcδ, αβγd, abγδ, aβcδ, aβγd, αbcδ, αbγd, αβcd, abcδ, abγd

}

B2 =

αβγ, αβδ, αγδ, βγδ, aγδ, bγδ, aβδ, βcδ, aβγ, βγd, αbδ,αcδ, αbγ, αγd, αβc, αβd, abδ, acδ, bcδ, abγ, aγd, bγd


B3 = {γδ, βδ, βγ, αδ, αγ, αβ, aδ, bδ, cδ, aγ, bγ, γd}

B4 = {γ, δ}.

Using basis vectors [F ] that are in the interior of ∆̂ ensures that the image ∂[F ] has 2codim(F )

(non-zero) terms. Next, we give some examples to demonstrate the differential.

For facets, the differential sends them to their complements, with the sign determined by

the number of Romans.

∂([abγd]) = (−1)3αβcδ ∂([αβγδ]) = (−1)0abcd

In higher homological degrees, the sign is slightly more complicated. For instance, since δ and d are

the two smallest variables with respect to the order

a > α > b > β > c > γ > d > δ,

we have positive coefficients in the following.

∂([αβγ]) = δ[αβγδ] + d[αβγd] ∂([abγ]) = δ[abγδ] + d[abγd]

Set [F ] = [aδ] ∈ B3. Since a is the largest variable and δ the smallest, any vertex in FC will be

larger than exactly one element of F . Thus every coefficient in the image of [F ] is negative:

∂([aδ]) = −β[aβδ]− b[abδ]− γ[aγδ]− c[acδ].
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We conclude with a varied selection:

∂([αbδ]) = −γ[αbγδ]− c[αbcδ]

∂([bδ]) = α[αbδ] + a[abδ]− γ[bγδ]− c[bcδ]

∂([γ]) = α[αγ] + a[aγ] + β[βγ] + b[bγ]− δ[γδ]− d[γd].
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II.E Non-standard Notation

Notation II.E.1. It will frequently be beneficial to identify an element of the set {ai, αi} by its

index only, leaving its membership to either V or U ambiguous. In such cases we will let xi denote

some element of {ai, αi}, or we will set {xi, yi} = {ai, αi} (see, e.g., Definition II.E.2).

Definition II.E.2. If F,H ∈ ∆̂, then F extended by H

F+H = F ∪ {xi ∈ H | i ∈ Γ(F )}

and F restricted to H is

F |H = {xi ∈ F | i ∈ supp(H)} ∪ {xi ∈ H | i ∈ Γ(F )} ,

where xi ∈ {ai, αi}.

Example II.E.3. Recall ∆ = ⟨abc, abd, cd⟩ and its purification ∆̂, from, e.g., Example II.B.30. For

any facet F ∈ ∆̂ we have supp(F ) = {1, 2, 3, 4} and Γ(F ) = ∅. If we consider F = αβγδ ∈ ∆̂ and

H = abδ ∈ ∆̂ \ Σ, then we compute the following:

F |H = αβδ F+H = F

H|F = abγδ H+F = abγδ.

From this, one sees that facets introduce some trivialities: for any face H ∈ ∆̂ and any facet F ∈ ∆̂,

we have F+H = F and H|F = H+F . On the other hand, for the non-facets F = αβc and H = bδ,

we have

F |H = βδ F+H = αβcδ

H|F = αbc H+F = αbcδ.

Remark II.E.4. It is relatively straightforward to check that supp(F |H) = supp(H). Though it

is not defined at this point, we will see in Definition III.A.1 that for any non-zero product [F ] · [H],

we also have supp(F+H) = N , i.e., F+H is a facet of ∆̂.

Definition II.E.5. Let ∆ be the simplex over V and let F ∈ ∆̂ be a face in the purification of ∆.

Let P(V̂ ) denote the power set of V̂ . For every i ∈ N , define the map τi : P(V̂ )
� // P(V̂ ) as the
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map that replaces ai with αi and fixes all other vertices. Thus, we have τi(ai) = αi and

τi(F ) =


(F \ {ai}) ⊔ {αi} ai ∈ F

F ai /∈ F.

Also for every i ∈ N , define the map ti : P(V̂ ) � // P(V̂ ) as the map that replaces αi with ai and

fixes all other vertices. Thus, we have ti(αi) = ai and

ti(F ) =


(F \ {αi}) ⊔ {ai} αi ∈ F

F αi /∈ F.

Let T (V̂ ) denote the collection of all such maps, i.e.,

T (V̂ ) = {τ1, t1, τ2, t2, . . . , τn, tn}.

Similarly, we let T (F ) denote the collection of maps that do not fix F , i.e.,

T (F ) =
{
τi ∈ T (V̂ ) | ai ∈ F

}
∪
{
ti ∈ T (V̂ ) | αi ∈ F

}
.

Definition II.E.6. We order the maps in T (V̂ ):

τn < τn−1 < · · · < τ1 < t1 < t2 < · · · < tn.

Below, we will use this ordering in the definition of our product (see Definition II.E.10).

Notation II.E.7. We define the following:

τ1(a) = α τ2(b) = β τ3(c) = γ τ4(d) = δ

t1(α) = a t2(β) = b t3(γ) = c t4(δ) = d.

It follows, for instance, that we also have the following:

τ1(aβγ) = αβγ = τ1(αβγ) t3(αγ) = αc τ4(bcd) = bcδ.
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Example II.E.8. For the facet F = αbcδ in the purification of ∆ = ⟨abc, abd, cd⟩, we have T (F ) =

{τ3, τ2, t1, t4}, listing the maps in increasing order. For the face F = δ, we have simply T (F ) = {t4}.

Notation II.E.9. As with the vertices ai and αi, it will frequently be beneficial to refer to an

element of {τi, ti} by index alone (see Notation II.E.1). In such cases we may use either πi or ρi

to denote an element of {τi, ti}. We do not assume that {ρi, πi} = {ti, τi} in general. We let π∗
i

denote the map in T (V̂ ) such that {πi, π∗
i } = {ti, τi}. We define ρ∗i similarly. When we enumerate the

elements of T (F ) using this notation, we do so with respect to the ordering given in Definition II.E.6,

i.e, if we set T (F ) = {ρi1 , ρi2 , . . . , ρif } where f = #F , then we tacitly assume that ρij < ρij+1
for

j = 1, . . . , f − 1.

Definition II.E.10. Let F,H ∈ ∆̂ \ Σ. We define T (F,H) ⊂ T (V̂ ) to be the set

T (F,H) =
{
πej ∈ T (F )

∣∣∣ π∗
ej ∈ T (H)

}
.

Equivalently, one can define T (F,H) to be every map from T (F ) indexed by the set (supp(F ) ∩

supp(H)) \ (F ∩H), i.e., maps with indices belonging to the specified set. If we denote

{πe1 , . . . , πem−1
} = T (F,H),

then we assume that πej < πej+1
for all j. If supp(F ) = supp(H), then the path from F to H, which

we denote P (F,H) = {F1, F2, . . . , Fm}, is given by

Fi =


F i = 1

πei−1
(Fi−1) i = 2, . . . ,m.

Note that in this context Fm = H. If supp(F ) ̸= supp(H), then note that by Remark II.E.4 the

paths P (F,H|F ) and P (F |H , H) are well-defined. We typically will denote the elements of this set

with the same letter as the face whose support is respected, i.e., we write

P (F,H|F ) = {F1, F2, . . . , Fm} and P (F |H , H) = {H1, H2, . . . ,Hm}.

In this context F1 = F , Fm = H|F , H1 = F |H , and Hm = H.
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Example II.E.11. Consider again ∆ = ⟨abc, abd, cd⟩ and its purification ∆̂.

(a) Set F = αbcδ and H = aβγδ. Then we have T (F,H) = {τ3, τ2, t1} and the path from F to H is

P (F,H) = {αbcδ, αbγδ, αβγδ, aβγδ}.

(b) Set F = abγ and H = αβδ. Since supp(F ) ̸= supp(H), the path P (F,H) is not defined. Since

H|F = αβγ, we have the path

P (F,H|F ) = {abγ, aβγ, αβγ},

and since F |H = abδ, we have the path

P (F |H , H) = {abδ, aβδ, αβδ}.

Remark II.E.12. Note that Definition II.E.10 ensures that for any faces F,H ∈ ∆̂, each element of

the path P (F,H) is in ∆̂, since we form paths by first reducing the number of Romans (if necessary)

and ∆ is a simplicial complex. Furthermore, by ordering the τi’s in T (V̂ ) with decreasing subscripts

and the ti’s with increasing subscripts, we guarantee that P (F,H) equals P (H,F ) with its elements

in reverse order.

In Example II.E.13 we will demonstrate what can go wrong when the ordering in Defini-

tion II.E.6 is not followed.

Example II.E.13. Once again set ∆ = ⟨abc, abd, cd⟩. Let F = αbγd and H = αβcδ be facets in

the purification ∆̂. Then T (F,H) = {τ4, τ2, t3} and note that t3(F ) = αbcd is not a face of ∆̂.

Definition II.E.14. Let F ∈ ∆̂ and set T (F ) = {ρi1 , . . . , ρif }. Let ρiℓ ∈ T (F ). If F =

{xi1 , . . . , xif }, then we define

F≥ρiℓ
= F≥iℓ =

{
xij ∈ F

∣∣ ρij ≥ ρiℓ
}
.

Example II.E.15. Consider the facet F = αβcδ ∈ ∆̂ and note that T (F ) = {τ3, t1, t2, t4} with
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τ3 < t1 < t2 < t4. Then we have

F≥3 = F≥τ3 = F F≥1 = F≥t1 = αβδ F≥2 = F≥t2 = βδ F≥4 = F≥t4 = δ.

Next, we define a subset of T (F ) that will be essential in Definition III.A.1.

Definition II.E.16. For any F ∈ ∆̂ \ Σ, we define

T (F ) = {ρi ∈ T (F ) | ρi < tj , ∀j ∈ Γ(F )} .

Note that T (F ) = T (F ) when F is a facet.

Example II.E.17. Consider F = β ∈ ∆̂ where ∆ = ⟨ac, b⟩. Then Γ(F ) = {1, 3} and T (F ) = {t2}.

Since t2 > t1 where 1 ∈ Γ(F ), we have T (F ) = ∅. If we set H = βc ∈ ∆̂, then we have T (H) =

{τ3, t2} and Γ(H) = {1}. Since τ3 < t1, we have τ3 ∈ T (H), but since t2 > t1 we have t2 /∈ T (H).

Hence T (H) = {τ3}.

Definition II.E.18. Let F be an element of the purified simplex ∆̂n (i.e., F is an element of the

power set P(V̂ ) such that {ai, αi} ̸⊂ F for all i ∈ N). Let F ′ denote the image of F under the

composition of every map in T (F ). We define

m̃deg(F ) = mdeg(F ′)

For instance, this means m̃deg(ai) = αi and m̃deg(αi) = ai.

Example II.E.19. For any facet F ∈ ∆̂ we have m̃deg(F ) = mdeg(FC). If F = aβδ in the

purification of ∆ = ⟨abc, abd, cd⟩, then T (F ) = {τ1, t2, t4} and we compute

m̃deg(F ) = mdeg((t4 ◦ t2 ◦ τ1)(aβδ)) = αbd ∈ S = k[a, b, c, d, α, β, γ, δ].

Notation II.E.20. It will be common in Chapter III for us to suppress curly braces within the

arguments of P (−,−), T (−), and T (−,−). For instance, if F ∈ ∆̂ \ Σ and j ∈ Γ(F ), then we write

T (F ⊔ αj) = T (F ⊔ {αj}).
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Chapter III

DG Algebra Structure

We can finally define our product on the resolution L from Definition II.D.6 and prove that,

if associative, it imparts a DG algebra structure to L. Throughout this chapter, we assume that

∆ is a simplicial complex over V = {a1, . . . , an} that contains all the singleton sets in P(V ), and

that ∆̂ is its purification as in Definition II.B.16. We also let Σ denote the boundary of ∆̂; see

Discussion II.B.19.

III.A The Product

In this section we give an explicit definition of our product and give a few examples. The

following construction is used in Definition III.A.10 to characterize all non-zero products. Non-

standard notation used here is described in Section II.E.

Definition III.A.1 (Morra). Let F ∈ ∆̂ \ Σ. We define the epsilon set of F as

ε(F ) =
⋃

ρ∈T (F )

⋃
ω

P
(
ρ(F≥ρ ⊔ aΓ(F )), (ω ◦ ρ)(F≥ρ ⊔ aΓ(F ))

)
(III.A.1.1)

where for each ρ we union over all compositions ω of maps from the set

T ((F ⊔ aΓ(F ))>ρ) = {ρ′ ∈ T (F ) | ρ′ > ρ} ∪
{
τj ∈ T (aΓ(F )) | τj > ρ

}
such that the smallest map in any non-empty ω is either some τj ∈ T (aΓ(F )) or some tj ∈ T (F )\T (F ).
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In the following discussion we briefly present the meaning of these epsilon sets.

Discussion III.A.2. Set ∆ = ⟨ac, b⟩ and let ∆̂ denote its purification, i.e.,

∆̂ = ⟨αβγ, aβγ, αbγ, αβc, aβc⟩ .

The resolution L of S/I is

0 // S(B3) // S(B2) // S(B1) // S,

where

B1 = {αβγ, aβγ, αbγ, αβc, aβc}

B2 = {αβ, αγ, βγ, aβ, βc}

B3 = {β}.

Suppose we want to determine a product [αβγ][aβc] that satisfies the Leibniz rule and is additive

with respect to homological degree. Then we seek coefficients s1, . . . , s5 ∈ S such that

∂([αβγ])[aβc]−[αβγ]∂([aβc]) = s1∂([αβ])+s2∂([αγ])+s3∂([βγ])+s4∂([aβ])+s5∂([βc]). (III.A.2.1)

Applying the differential, the left-hand side of Equation (III.A.2.1) is

abc[aβc]− αbγ[αβγ].

The right-hand side of Equation (III.A.2.1) is the sum of the following:

s1(γ[αβγ] + c[αβc])

s2(−β[αβγ]− b[αbγ])

s3(α[αβγ] + a[aβγ])

s4(γ[aβγ] + c[aβc])

s5(α[αβc] + a[aβc]).
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Hence we require

s1γ − s2β = −αbγ s3a+ s4γ = 0 −s2b = 0 s1c+ s5α = 0 s4c+ s5a = abc.

The third equation implies that s2 = 0, and it in-turn follows from the first equation that s1 = −αb.

Therefore by the fourth equation we have s5 = bc, and it then follows from the fifth equation

that s4 = 0. Finally, this means s3 = 0 by the second equation. In summary, to ensure that

Equation (III.A.2.1) holds, we choose the coefficients

s1 = −αb s2 = 0 s3 = 0 s4 = 0 s5 = bc,

and we therefore choose

[αβγ][aβc] = −αb[αβ] + bc[βc].

It can often occur that all such si’s must be zero. For instance, if we consider the product

[αβγ][aβ], then we seek a single coefficient s ∈ S such that

∂([αβγ])[aβ]− [αβγ]∂([aβ]) = s∂([β]). (III.A.2.2)

By computing the requisite products of facets, it is straightforward to show that the left-hand side

of Equation (III.A.2.2) is

abc[aβ]− [αβγ](γ[aβγ] + c[aβc]) = abc[aβ]− bcγ[βγ]− c(−bγ[βγ] + ab[aβ])

= 0

and the right-hand side is

s(−α[αβ]− a[aβ] + γ[βγ] + c[βc]).

This forces us to choose s = 0, so we have

[αβγ][aβ] = 0.

The epsilon set ε(F ) describes all faces H for which the corresponding linear system does not force
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the product [F ][H] to be zero.

We comment on epsilon sets of facets before giving a few examples.

Remark III.A.3. A notable feature of facets F ∈ ∆̂ is that Γ(F ) = ∅, which implies that aΓ(F ) is

empty, so any composition ω used in the construction of ε(F ) must likewise be empty, i.e., ω is the

identity map. In this setting we also have T (F ) = T (F ), so the definition of ε(F ) is significantly

simpler:

ε(F ) =
⋃

ρ∈T (F )

{ρ(F≥ρ)}.

In the next example we again use ∆ = ⟨ac, b⟩ and ∆ = ⟨abc, abd, cd⟩ and compute several

other epsilon sets that will be referenced in examples of products following Definition III.A.10 (recall

that we computed the relevant bases in Examples II.B.31 and II.B.30, respectively).

Example III.A.4. Here we compute several epsilon sets.

(a) Let ∆ = ⟨ac, b⟩ and let ∆̂ be its purification.

(1) Consider the facet F = αβγ ∈ ∆̂ \ Σ with T (F ) = T (F ) = {t1, t2, t3}. We compute

t1(F≥1) = t1(F ) = aβγ t2(F≥2) = t2(βγ) = bγ t3(F≥3) = t3(γ) = c

and by Remark III.A.3 these are precisely the elements of ε(F ):

ε(αβγ) = {aβγ, bγ, c}. (III.A.4.1)

If we next consider the facet H = aβc, then we have T (H) = {τ3, τ1, t2} and compute the elements

of ε(H) as follows:

τ3(H≥3) = τ3(H) = aβγ τ1(H≥1) = τ1(aβ) = αβ t2(H≥2) = t2(β) = b,

thus we have

ε(aβc) = {aβγ, αβ, b}. (III.A.4.2)

Note that c ∈ ε(F ) and c ⊂ H, and that αβ ∈ ε(H) with αβ ⊂ F . We will see in Remark III.A.7

that this always occurs: for all distinct facets F,H ∈ ∆̂ \ Σ, there exists some E ∈ ε(F ) such that
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E ⊂ H, and there exists some E′ ∈ ε(H) such that E′ ⊂ F .

(2) Epsilon sets for non-facets are more complicated. Consider the face F = βc ∈ ∆̂ \Σ. In

this case we have T (F ) = {τ3, t2} and Γ(F ) = {1}, so T (F ) = {τ3} and aΓ(F ) = a. Since τ3 is the

only map in T (F ), every element of ε(F ) is of the form (ω ◦ τ3)(F≥3 ⊔ a). We compute

τ3(F≥3 ⊔ a) = τ3(aβc) = aβγ.

The sole element τ1 of the set T (aΓ(F )) is greater than τ3 and so may be used in the composition ω.

Similarly, the only map in t2 ∈ T (F ) \ T (F ) may likewise be used in the composition ω. Moreover,

both may be used independent of the presence of the other in the composition. Hence we have

ε(F ) =
⋃

ω∈{τ1,t2,t2◦τ1}

P (aβγ, ω(aβγ)).

Note that

P (aβγ, τ1(aβγ)) = {aβγ, αβγ} ⊂ {aβγ, αβγ, αbγ} = P (aβγ, (t2 ◦ τ1)(aβγ)),

i.e., the path created when ω = τ1 is properly contained in the path created when ω = t2 ◦ τ1.

Therefore we conclude

ε(βc) = P (aβγ, t2(aβγ)) ∪ P (aβγ, (t2 ◦ τ1)(aβγ))

= {aβγ, abγ} ∪ {aβγ, αβγ, αbγ}

= {aβγ, abγ, αβγ, αbγ}.

Recall that c ∈ ε(αβγ) (see Equation (III.A.4.1)), and note that c ⊂ βc. We also see that αβγ ∈

ε(βc), and of course αβγ ⊂ αβγ. Recall also that ε(aβc) = {aβγ, αβ, b} (see Equation (III.A.4.2)),

and note that none of these are contained in βc. Furthermore, there are no elements of ε(βc)

contained in the facet aβc. We will see in Lemma III.B.8 that this reciprocity always occurs: for all

faces F,H ∈ ∆̂ \ Σ, there exists some E ∈ ε(F ) such that E ⊂ H if and only if there exists some

E′ ∈ ε(H) such that E′ ⊂ F . This is essential for proving that our product is graded commutative.

(b) Set ∆ = ⟨abc, abd, cd⟩ and consider the facet F = aβγd ∈ ∆̂ with T (F ) = {τ4, τ1, t2, t3}. Then
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we compute

τ4(F≥4) = τ4(F ) = aβγδ τ1(F≥1) = τ1(aβγ) = αβγ

t2(F≥2) = t2(βγ) = bγ t3(F≥3) = t3(γ) = c,

and conclude that ε(F ) = {aβγδ, αβγ, bγ, c}.

SetH = αbγδ and note thatH ⊃ bγ, where bγ ∈ ε(F ). To again demonstrate the reciprocity

necessary for graded commutativity, let us compute ε(H). Since T (H) = {τ2, t1, t3, t4}, we have

τ2(H≥2) = τ2(H) = αβγδ t1(H≥1) = t1(αβδ) = aβδ

t3(H≥3) = t3(γδ) = cδ t4(H≥4) = t4(δ) = d

and therefore ε(H) = {αβγδ, aβδ, cδ, d}. Regarding the reciprocity mentioned at the end of Part (a),

we observe that there is indeed an element of ε(H) contained in F , namely d.

Consider the face F = bγd with Γ(F ) = {1} (i.e., aΓ(F ) = a) and T (F ) = {τ4, τ2, t3}, and

we want to compute ε(F ). Since t3 > t1, we have T (F ) = {τ4} and therefore need only consider

elements of the form (ω ◦ τ4)(F≥4 ⊔ a) and (ω ◦ τ2)(F≥2 ⊔ a). The inclusion t3 ∈ T (F ) \ T (F ) also

implies that we may use t3 as part of any composition ω. Similarly, since τ1 > τ4, τ2, the map

τ1 ∈ T (aΓ(F )) can likewise be part of any ω. Hence in both the τ4 and the τ2 cases, the three valid

compositions ω are t3, τ1, τ1t3. Note that it suffices to consider ω = t3 and ω = τ1t3, so we compute

⋃
ω

P (τ4(F≥4 ⊔ a), (ω ◦ τ4)(F≥4 ⊔ a))

= P (τ4(abγd), (t3τ4)(abγd)) ∪ P (τ4(abγd), (t3τ1τ4)(abγd))

= P (abγδ, abcδ) ∪ P (abγδ, αbcδ)

= {abγδ, abcδ} ∪ {abγδ, αbγδ, αbcδ}
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and

⋃
ω

P (τ2(F≥2 ⊔ a), (ω ◦ τ2)(F≥2 ⊔ a))

= P (τ2(abγ), (t3τ2)(abγ)) ∪ P (τ2(abγ), (t3τ1τ2)(abγ))

= P (aβγ, aβc) ∪ P (aβγ, αβc)

= {aβγ, aβc} ∪ {aβγ, αβγ, αβc}.

Thus we have

ε(bγd) = {abγδ, abcδ, αbγδ, αbcδ, aβγ, aβc, αβγ, αβc}.

Example III.A.5. Computing epsilon sets is tedious in general. In Remark III.A.3 we see that it is

much simpler to compute these for facets, but we have found visual depictions of T (F ) for a non-facet

F to make computing ε(F ) much more tractable. Consider the face F = aγd in the purification ∆̂

of ∆ = ⟨abc, abd, cd⟩. Then Γ(F ) = {2} and aΓ(F ) = b. The arrangement of T (F ) = {τ4, τ1, t3} is

τ4 • τ1 • | t3 •

τ2

(III.A.5.1)

where T (aΓ(F )) = {τ2}. Note that the maps in this display are arranged from least to greatest (the

ordering is given in Definition II.E.6). In general we will draw these without boxes, arrows, and

labels, but for the purposes of this example we can use these things to delineate T (F ) and T (aΓ(F )):

T (F ) τ4 • τ1 • | t3 •.

T (aΓ(F )) // τ2

//

We highlight several things below.

• The “•” symbols are placeholders. E.g., τ3 is not in T (F ), but we mark its place in T (V̂ ) with

the first •. The maps t1, t4 are likewise absent from T (F ) and have their places marked “•”.

• The line | marks the location of the smallest map ti such that i ∈ Γ(F ). In this way, we

separate T (F ) from T (F ) \ T (F ). E.g., we see that both elements of T (F ) = {τ4, τ1} are on

the left side of | and the sole map in T (F ) \ T (F ) = {t3} is on the right side of |.
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• Maps to the left of | are precisely the suitable choices for ρ in the context of Equation (III.A.1.1).

Maps to the right of | are always permitted in the composition ω, again in the context of

Equation (III.A.1.1).

• The map τ2 is the unique map in T (aΓ(F )). Furthermore, since τ4 < τ2 < τ1, in the context

of Equation (III.A.1.1), we can use τ2 in the composition ω when ρ = τ4, but we cannot use

it when ρ = τ1. In Diagram (III.A.5.1), we indicate that τ2 /∈ T (F ) by placing it below the

maps in T (F ).

• In general, maps between a given choice of ρ and the line | can only be used in ω provided

that they follow some element in T (aΓ(F )).

We circle circle τ4 as one choice for ρ (in the context of Equation (III.A.1.1)) and mark any map to

the right that can be used in some composition ω:

τ4 • τ1 • | t3 •.

τ2

(III.A.5.2)

So every map can be used, but τ1 may only be used provided that τ2 is also used, indicated by an

edge between the two maps. This is to satisfy the requirements on the smallest element of ω. Hence

with this marked arrangement of T (F ) we indicate that for the choice ρ = τ4, we have the following

possible compositions ω:

ω ∈ {t3, t3τ2, τ1τ2, t3τ1τ2}.

These four choices for ω yield four paths whose elements are therefore elements of ε(F ). Each path

begins with τ4(F≥4 ⊔ b) = τ4(F ⊔ b) = abγδ:

P (abγδ, t3(abγδ)) = {abγδ, abcδ}

P (abγδ, (t3τ2)(abγδ)) = {abγδ, aβγδ, aβcδ}

P (abγδ, (τ1τ2)(abγδ)) = {abγδ, aβγδ, αβγδ}

P (abγδ, (t3τ1τ2)(abγδ)) = {abγδ, aβγδ, αβγδ, αβcδ}.

Note that disregarding t3 in the choice ω = τ1τ2 leads to a redundancy, as the third path above is a
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proper subset of the fourth. Thus from the marked arrangement in Diagram (III.A.5.2) we conclude

abγδ, abcδ, aβγδ, aβcδ, αβγδ, αβcδ ∈ ε(F ).

Our only other choice for ρ is τ1, for which we have the following marked arrangement:

��τ4 • τ1 • | t3 •.

��τ2

Since τ2, τ4 < τ1, these cannot be used in ω, which we indicate by crossing them out. Hence the

only choice for ω is the map t3. Furthermore, τ4 < τ1 implies that F≥1 = aγ, so we have that

τ1(F≥1) = αγ. Thus we compute the path

P (αbγ, t3(αbγ)) = {αbγ, αbc} ⊂ ε(F )

and conclude that

ε(F ) = {abγδ, abcδ, aβγδ, aβcδ, αβγδ, αβcδ, αbγ, αbc}.

We use these marked arrangements to recompute the epsilon sets of the non-facets from

Example III.A.4.

Example III.A.6. In Part (a) we again set ∆ = ⟨ac, b⟩ and in Part (b) we set ∆ = ⟨abc, abd, cd⟩.

(a) Recall the face F = βc has epsilon set ε(F ) = {aβγ, abγ, αβγ, αbγ}. Then Γ(F ) = {1}, so

aΓ(F ) = a and T (aΓ(F )) = {τ1}. We also have T (F ) = {τ3, t2} and T (F ) = {τ3}. Thus the

arrangement of T (F ) is

τ3 • | t2 •

τ1

So we can see that τ3 is the sole map in the top row to the left of |, so τ3 is the unique choice for ρ

(in the context of Equation (III.A.1.1)), so we have only one marked arrangement, given below.

τ3 • | t2 •

τ1

We also see that τ1 is to the right of τ3 and may therefore be used in any composition ω. Furthermore,
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we see that t2 is to the right of |, so it may likewise be used in any composition ω. Therefore we

recover the following choices for ω:

ω ∈ {t2, τ1, t2τ1}.

Recall that the choice ω = t2τ1 makes the choice ω = τ1 redundant, and we therefore recover the

result from Example III.A.4:

ε(F ) = P (aβγ, t2(aβγ)) ∪ P (aβγ, (t2 ◦ τ1)(aβγ))

= {aβγ, abγ} ∪ {aβγ, αβγ, αbγ}

= {aβγ, abγ, αβγ, αbγ}.

(b) Recall the face F = bγd has epsilon set ε(F ) = {abγδ, abcδ, αbγδ, αbcδ, aβγ, aβc, αβγ, αβc}.

Then once again Γ(F ) = {1}, so aΓ(F ) = a and T (aΓ(F )) = {τ1}. We have T (F ) = {τ4, τ2, t3} with

its arrangement displayed below.

τ4 • τ2 | t3 •

τ1

The two maps τ4 and τ2 are both to the left of | and therefore are viable choices for ρ. The map τ1

may be used in any composition ω, because it is greater than both choices for ρ. The map t3 may

likewise be used in any ω, since it is to the right of |. Thus we have two marked arrangements that

are very similar, the first of which is given below.

τ4 • ��τ2 | t3 •

τ1

Note that τ2 is crossed off, since it cannot be connected by an edge to any element in the bottom row

on its left side. Since τ4 = minT (F ), we have F≥4 = F and we therefore compute τ4(F ⊔ a) = abγδ.

Since ω = t3 ◦ τ1 makes the choice ω = τ1 redundant, we compute

P (abγδ, t3(abγδ)) = {abγδ, abcδ}

P (abγδ, (t3 ◦ τ1)(abγδ)) = {abγδ, αbγδ, αbcδ}.
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The other marked arrangement is below.

��τ4 • τ2 | t3 •

τ1

Since τ4 < τ2, we compute F≥2 = F \ d = bγ. Therefore τ2(F≥2 ⊔ a) = aβγ and we have two more

paths to compute, thereby recovering our calculation from Example III.A.4:

P (aβγ, t3(aβγ)) = {aβγ, aβc}

P (aβγ, (t3 ◦ τ1)(aβγ)) = {aβγ, αβγ, αβc}.

Remark III.A.7. We will see in the proof of the main result that for any pair of distinct facets

F,H ∈ ∆̂ we have E ⊂ H for some E ∈ ε(F ) (see the proof of Theorem III.C.2). We summarize

the argument here. For any facet F , we may write ε(F ) = {E1, . . . , En} where

Ej = ρij (F≥ij )

for j = 1, . . . , n, where ρij ∈ T (F ). Set {xij , yij} = {aij , αij} such that F = xi1 · · ·xin and

ρij (xij ) = yij . Let H ∈ ∆̂ \ Σ be a facet. If En = yin ̸⊂ H, then xin ∈ H. If En−1 = yin−1
xin ̸⊂ H,

then xin−1 ∈ H as well. If none of the Ej are in H, it follows that H = F .

To demonstrate, recall from Example III.A.4 (b) that F = aβγd has the epsilon set ε(F ) =

{aβγδ, αβγ, bγ, c}. We enumerate the other facets below, each arranged alongside the element of

ε(F ) it contains.

E Facets

aβγδ aβγδ

αβγ αβγδ, αβγd

bγ αbγδ, abγδ, αbγd, abγd

c αβcδ, aβcδ, αbcδ, αβcd, abcδ

We give one final definition and remark before defining the product.
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Definition III.A.8. Let A,B ⊂ N be disjoint subsets. We define

ψ(A,B) =
∏
j∈B

ψ(A, j).

Remark III.A.9. For any distinct i, j ∈ N we have ψ(i, j) = −ψ(j, i). Therefore in the context of

Definition III.A.8 we have

ψ(A,B) =
∏
j∈B

ψ(A, j) =
∏
j∈B

∏
i∈A

ψ(i, j) =
∏
j∈B

∏
i∈A

−ψ(j, i) =
∏
i∈A

∏
j∈B

−ψ(j, i) = (−1)#B
∏
i∈A

ψ(B, i),

and hence

ψ(A,B) = (−1)#B·#Aψ(B,A).

Now we define the product that we propose will impart a DG algebra structure to L.

Definition III.A.10 (Morra). Let F,H ∈ ∆̂ \Σ be elements of the interior of a purified simplicial

complex ∆̂. Recall that we denote P (F,H|F ) = {F1, F2, . . . , Fm} and P (F |H , H) = {H1, H2, . . . ,

Hm} (see Definition II.E.10). Set d = |F |+ |H|. If we have

(1) Ld ̸= 0 and

(2) there exists some E ∈ ε(F ) such that E ⊂ H,

then we define the product [F ][H] as follows:

I. if m = 2, then the product [F ][H] is simple and it is given by

[F ][H] = Ψ(F,H)mdeg(FC ∩HC)[F ∩H],

where we let πeℓ denote the unique map in T (F,H) and define

Ψ(F,H) = (−1)#Γ(F )σ
(
F+H

)
ψ(F ∩H, eℓ)ψ(Γ(H),Γ(F ));

II. if m > 2, then the product [F ][H] is complex and is given by

[F ][H] = (−1)m
m−1∑
i=1

mdeg((Fi ∩Hi+1) \ (F ∩H))

m̃deg ((Fi ∩Hi+1) \ (F ∩H))
[Fi][Hi+1].
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In all other cases, we set [F ][H] = 0.

We again comment on the uniqueness of some calculations in the context of a facet before

giving a few examples.

Remark III.A.11. If F,H ∈ ∆̂ are facets, then F,H /∈ Σ and we have F |H = F and H|F = H. It

therefore follows that

P (F,H|F ) = P (F |H , H) = P (F,H).

If we suppose also that [F ][H] is simple, then the sign function Ψ(F,H) can also be reduced. Set

{πeℓ} = T (F,H) and since F+H = F , in this setting we have

Ψ(F,H) = σ(F )ψ(F ∩H, eℓ).

Example III.A.12. In this example we restrict our focus to the products of facets.

(a) Recall the epsilon sets of the facets F = αβγ and H = aβc from Example III.A.4 and consider

the non-zero product [F ][H]. Since T (F,H) = {t1, t3}, the product is complex. Let F1, F2, F3 denote

the path P (F,H) as follows:

P (F,H) = {αβγ
F1

, aβγ
F2

, aβc
F3

, }

and by Remark III.A.3 we need to compute the products [F1][F2] and [F2][F3]. Note that these

product are both simple by Example III.A.4, with T (F1, F2) = {t1} and T (F2, F3) = {t3}. By the

same remark we compute

[F1][F2] = σ(F1)ψ(F1 ∩ F2, 1)mdeg(FC
1 ∩ FC

2 )[F1 ∩ F2]

= σ(αβγ)ψ(βγ, 1)mdeg(abc ∩ αbc)[βγ]

= (−1)0(−1)2 mdeg(bc)[βγ]

= bc[βγ]
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and

[F2][F3] = σ(F2)ψ(F2 ∩ F3, 3)mdeg(FC
2 ∩ FC

3 )[F2 ∩ F3]

= σ(aβγ)ψ(aβ, 3)mdeg(αbc ∩ αbγ)[aβ]

= (−1)1(−1)0 mdeg(αb)[aβ]

= −αb[aβ].

We will commonly set λ = F ∩ H when computing complex products. We do so here, computing

λ = β. We also compute (F1 ∩F2) \ λ = γ and (F2 ∩F3) \ λ = a. Since #T (F,H) = 2, the complex

product [F ][H] is

[F ][H] = (−1)2+1
(γ
c
[F1][F2] +

a

α
[F2][F3]

)
= −bγ[βγ] + ab[aβ].

(b) Set F = aβγd and H = αbγδ and we consider the product [F ][H]. By Example II.B.30, we know

B2 ̸= ∅, i.e., L2 ̸= 0. By Example III.A.4 the product is non-zero, and since T (F,H) = {τ4, τ1, t2},

the product is complex. Let F1, . . . , F4 denote the path P (F,H) as follows:

P (F,H) = {aβγd
F1

, aβγδ
F2

, αβγδ
F3

, αbγδ
F4

}.

We need to compute the simple products [F1][F2], [F2][F3], and [F3][F4] (see Remark III.A.3). In

part by our work in Example III.A.4, it can be shown that all three of these products are indeed

non-zero. We compute the first of these below:

[F1][F2] = σ(F1)ψ(F1 ∩ F2, 4)mdeg(FC
1 ∩ FC

2 )[F1 ∩ F2]

= σ(aβγd)ψ(aβγ, 4)mdeg(αbcδ ∩ αbcd)[aβγ]

= (−1)2(−1)0 mdeg(αbc)[aβγ]

= αbc[aβγ].
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The other two are computed similarly:

[F2][F3] = σ(F2)ψ(F2 ∩ F3, 1)mdeg(FC
2 ∩ FC

3 )[F2 ∩ F3]

= σ(aβγδ)ψ(βγδ, 1)mdeg(αbcd ∩ abcd)[βγδ]

= (−1)1(−1)3 mdeg(bcd)[βγδ]

= bcd[βγδ]

[F3][F4] = σ(F3)ψ(F3 ∩ F4, 2)mdeg(FC
3 ∩ FC

4 )[F3 ∩ F4]

= σ(αβγδ)ψ(αγδ, 2)mdeg(abcd ∩ aβcd)[αγδ]

= (−1)0(−1)2 mdeg(acd)[αγδ]

= acd[αγδ].

Now we can compute [F ][H]. Set λ = F ∩H = γ and we have

(F1 ∩ F2) \ λ = aβ (F2 ∩ F3) \ λ = βδ (F3 ∩ F4) \ λ = αδ.

Thus since #T (F,H) = 3 we finally compute

[F ][H] = (−1)3+1

(
aβ

αb
[F1][F2] +

βδ

bd
[F2][F3] +

αδ

ad
[F3][F4]

)
= aβc[aβγ] + βcδ[βγδ] + αcδ[αγδ].

Example III.A.13. Here we consider several products that involve non-facets.

(a) We again consider the purification of ∆ = ⟨ac, b⟩ and its respective free resolution:

. . . // 0 // 0 // S(B3) // S(B2) // S(B1) // S

Since Li = 0 for all i ≥ 4 and the product is additive with respect to (homological) degrees, we

consider a product of the form [deg−1][deg−2]. Set F = αβγ and H = βc. Since c ∈ ε(F ) and

c ⊂ H, we know the product is non-zero. Furthermore, since T (F,H) = {t3}, we know the product
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is simple. Since F is a facet, Γ(F ) = ∅, so we compute

[F ][H] = σ(F )ψ(F ∩H, 3)mdeg(FC ∩HC)[F ∩H]

= σ(αβγ)ψ(β, 3)mdeg(abc, aαbγ)[β]

= (−1)0(−1)0 mdeg(ab)[β]

= ab[β].

(b) Set F = bγd and H = αβc. Since |F | + |H| = 4 and L4 ̸= 0, by our work in Example III.A.4

the product [F ][H] is non-zero. Moreover, since T (F,H) = {τ2, t3}, the product is complex. Hence

we need the paths

P (F,H|F ) = P (bγd, βcd) = {bγd
F1

, βγd
F2

, βcd
F3

}

and

P (F |H , H) = P (αbγ, αβc) = {αbγ
H1

, αβγ
H2

, αβc
H3

}.

Again by our work in Example III.A.4, we know E ̸⊂ H2 for every E ∈ ε(F1), so [F1][H2] = 0.

However, it can be shown that H3 is an element of ε(F2), so [F2][H3] is simple with T (F2, H3) = {t3}.

Since Γ(F2) = {1} and Γ(H3) = {4}, we compute

ψ(Γ(H3),Γ(F2)) = ψ(4, 1) = (−1)1,

and therefore

[F2][H3] = (−1)#Γ(F2)σ(F+H3
2 )ψ(F2 ∩H3, 3)ψ(Γ(H3),Γ(F2))mdeg(FC

2 ∩HC
3 )[F2 ∩H3]

= (−1)1σ(αβγd)ψ(β, 3)(−1)1 mdeg(aαbcδ ∩ abγdδ)[β]

= (−1)1(−1)0 mdeg(abδ)[β]

= −abδ[β].

Since #T (F,H) = 2 and λ = F ∩H = ∅, we conclude that

[F ][H] = (−1)2+1

(
0 +

β

b
[F2][H3]

)
= aβδ[β].
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III.B Parade of Lemmas and Corollaries

In this section we state and prove several results necessary for the proof of Theorem III.C.2.

First, we restate Lemma II.B.29 from Chapter II for convenience.

Lemma III.B.1. Let ∆ be a simplicial complex on V = {a1, . . . , an}. Assume ∆ ̸= ∆n. Let ∆̂ be

the purification of ∆ and let Σ denote the boundary of ∆̂. Assume F ∈ ∆̂ is not a facet.

(a) The following are equivalent.

(i) F ∈ Σ

(ii) The number of facets in ∆̂ that contain F is less than 2codim(F ).

(iii) F ⊔ aΓ(F ) /∈ ∆̂

(b) The following are equivalent.

(i) F /∈ Σ

(ii) The number of facets in ∆̂ that contain F is equal to 2codim(F ).

(iii) F ⊔ aΓ(F ) ∈ ∆̂

Corollary III.B.2. Let G,H ∈ ∆̂ such that H ⊂ V . If H ⊔ G /∈ Σ, then G /∈ Σ. Colloquially-

speaking, if F ∈ ∆̂ is not in the boundary, then any subset of F obtained by omitting only Romans

is likewise not in the boundary.

Proof. Let G,H be given as above and set F = G ⊔H. Since F /∈ Σ by assumption, F ⊔ aΓ(F ) is

a facet in ∆̂ by Lemma III.B.1. Since G ⊂ F and G differs from F by a set of Romans, we know

G ⊔ aΓ(G) = F ⊔ aΓ(F ) ∈ ∆̂ and therefore G /∈ Σ.

Corollary III.B.3. If Li ̸= 0 and Li+1 = 0, then for every face F ∈ ∆̂ \ Σ such that F ∈ Bi, we

have F ∩ V = ∅, i.e., F is composed entirely of Greeks.

Proof. Suppose there exists some F ∈ Bi such that F ∩V ̸= ∅ and let aj ∈ F . Since F ∈ ∆̂ \Σ, this

implies F \ aj ∈ ∆̂ \ Σ, by Corollary III.B.2. Hence F \ aj ∈ Li+1, a contradiction.

The next two results give an important property of the interior of ∆̂. Corollary III.B.4

partially justifies Remark III.B.5.
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Corollary III.B.4. Let F ∈ ∆̂ \ Σ. If there exists H ∈ ∆̂n−1 satisfying supp(H) ⊂ Γ(F ), then

F ⊔H ∈ ∆̂ \ Σ.

Proof. We need not consider the case when F is a facet, so assume Γ(F ) ̸= ∅. By Lemma III.B.1

Part (b) (ii), for every H ∈ ∆̂n−1 satisfying supp(H) = Γ(F ), we know F ⊔ H ∈ ∆̂ is a facet.

Therefore the desired conclusion follows from the fact that ∆̂ is a simplicial complex.

Remark III.B.5. Since the boundary of ∆̂ is closed under taking subsets, the interior of ∆̂ is closed

under taking supersets. Formally, if F ∈ ∆̂ \ Σ, then for every F ′ ∈ ∆̂n−1 satisfying F ′ ⊃ F , we

have F ′ /∈ Σ. If we suppose that there exist faces F, F ′ ∈ ∆̂ such that F /∈ Σ, F ′ ∈ Σ, and F ⊂ F ′,

then this contradicts the fact that Σ is a simplicial complex.

The following lemma is used to show that our product is well-defined.

Lemma III.B.6. Let F,H ∈ ∆̂. Set m = #T (F,H) + 1 and denote λ = F ∩H.

(a) In general we have

#λ−#(Γ(F ) ∩ Γ(H)) = #F +#H − (m− 1)− n.

(b) If supp(F ) ∪ supp(H) = N , then we have

#λ = #F +#H − (m− 1)− n

and thus #λ ≤ #F +#H − n.

(c) Assume also that F,H /∈ Σ. If m = 2 and there exists some E ∈ ε(F ) such that E ⊂ H, then

λ /∈ Σ.

Proof. Let ΛF be the collection of elements of F with indices not contained in the support of H,

i.e., let ΛF ⊂ F satisfy

supp(ΛF ) = {i ∈ supp(F ) | i /∈ supp(H)} .

Similarly, set ΛH ⊂ H such that supp(ΛH) = {i ∈ supp(H) | i /∈ supp(F )}. Thus we have a parti-

tion of N :

N = supp(λ) ⊔ supp(ΛF ) ⊔ supp(ΛH) ⊔ {i ∈ N | ρi ∈ T (F,H)} ⊔ (Γ(F ) ∩ Γ(H)).
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We observe that

#ΛF = #F −#λ−#T (F,H) = #F −#λ− (m− 1)

#ΛH = #H −#λ−#T (F,H) = #H −#λ− (m− 1)

and Part (a) follows. If supp(F ) ∪ supp(H) = N , then Γ(F ) ∩ Γ(H) = ∅ and therefore Part (b)

holds by Part (a).

Now we prove Part (c). Assume thatm = 2 and set ij ∈ N such that T (F,H) = {ρij} (recall

that we assume ρij ∈ {τij , tij} as in Notation II.E.9). Set {xij , yij} = {aij , αij} such that xij ∈ F

and ρij (xij ) = yij ∈ H. By definition of ε(F ) we have that E = (ω ◦ ρij )
(
F≥ij ⊔ aΓ(F )

)
⊂ H, where

ω is a composition of maps greater than ρij . Furthermore, since ρij is the unique map in T (F,H),

the maps that make up ω are all indexed by Γ(F ), i.e., ω is a composition of maps τis ∈ T
(
aΓ(F )

)
.

Set f = #F . We denote T (F ) = {ρi1 , . . . , ρij , . . . , ρif } and F = {xi1 , . . . , xij , . . . , xif } such

that ρiℓ < ρiℓ+1
for all ℓ = 1, . . . , f − 1. If xij = aij , then ρij = τij and the ordering on the elements

of T (F ) implies

F = {ai1 , ai2 , . . . , aij , xij+1 , . . . , xif }.

Therefore λ ⊂ F is the disjoint union of {xij+1 , . . . , xif } and a subset of {ai1 , . . . , aij−1}, i.e., λ is a

subset of F ∈ ∆̂ \ Σ that can be obtained by omitting only Romans, so λ /∈ Σ by Corollary III.B.2.

On the other hand, if xij = αij , then ρij = tij and aij ∈ H. Moreover, the definition of

ε(F ) implies the composition ω in the construction of E is empty (T (F,H) contains only ρij and

there are no elements of T (aΓ(F )) which are greater than tij ). Therefore aΓ(F ) ⊂ E ⊂ H and we

have

H = λ ⊔ {aij} ⊔ aΓ(F ) ∈ ∆̂ \ Σ,

so λ /∈ Σ again by Corollary III.B.2.

Remark III.B.7. If F,H ∈ ∆̂ \ Σ such that there exists some E ∈ ε(F ) satisfying E ⊂ H, then

since Γ(F ) ⊂ supp(E), it follows that supp(F ) ∪ supp(H) = N .

The following lemma is critical for proving graded commutativity. The main conclusion of

this lemma is that [F ][H] ̸= 0 if and only if [H][F ] ̸= 0. Additionally, it explicitly describes which

products in the expansion of a complex product will be non-zero.
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Lemma III.B.8 (Morra). Let F,H ∈ ∆̂ \ Σ. Set {F1, . . . , Fm} = P (F,H|F ) and {H1, . . . ,Hm} =

P (F |H , H). Also set {πe1 , . . . , πem−1
} = T (F,H), where we assume that πej ∈ {τej , tej}. The

following are equivalent.

(1) There exists some E ∈ ε(F ) such that E ⊂ H.

(2) There exists some E ∈ ε(H) such that E ⊂ F .

(3) There is a subset {ℓ′, ℓ′ + 1, . . . , ℓ} ⊂ {1, . . . ,m− 1} such that for each ℓ′ ≤ j ≤ ℓ there exists

some Ej ∈ ε(Fj) satisfying Ej ⊂ Hj+1, where

πeℓ = max
{
πer ∈ T (F,H)

∣∣ πer ∈ T (F ); πer < τes , ∀τes ∈ T (aΓ(F ), H)
}

and

πeℓ′ = min {πer ∈ T (F,H) | πer > ρis , ∀ρis ∈ T (F ) satisfying is ∈ Γ(H)} .

(4) We have supp(F )∪ supp(H) = N and there is a subset {ℓ′, ℓ′+1, . . . , ℓ} ⊂ {1, . . . ,m−1} such

that for each ℓ′ ≤ j ≤ ℓ all facets containing Fj ∩Hj+1 are included in the union

⋃
F ′⊃F, H′⊃H

facets

P (F ′, H ′),

where ℓ′ and ℓ are defined as in (3).

Proof. We will prove this in parts.

(1) ⇐⇒ (2): We will prove that Part (1) implies Part (2) and the converse will follow by symmetry.

Assume there exists some E ∈ ε(F ) such that E ⊂ H. Denote T (F ) = {ρi1 , . . . , ρif } where f = #F ,

and we assume ρij < ρij+1 for all relevant j. Let ρiℓ ∈ T (F ) and let ω be a composition of maps

from T ((F ⊔ aΓ(F ))>ρiℓ
) such that

E ∈ P
(
ρiℓ
(
F≥iℓ ⊔ aΓ(F )

)
, (ω ◦ ρiℓ)

(
F≥iℓ ⊔ aΓ(F )

))
.

We claim that ρij , ρiℓ ∈ T (F ) and ρij < ρiℓ for all ij ∈ Γ(H). The inclusion ρiℓ ∈ T (F ) is

by construction, so it suffices to prove that ρij < ρiℓ . If H is a facet, then Γ(H) = ∅ and the

inequality holds vacuously. On the other hand, suppose Γ(H) ̸= ∅. By Remark III.B.7 we know
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supp(F )∪ supp(H) = N , so for every ij ∈ Γ(H) we have either τij ∈ T (F ) or tij ∈ T (F ), i.e., there

exists some ρij ∈ T (F ). If we suppose that ρiℓ ≤ ρij , then we have

ij ∈ supp(F≥iℓ) ⊂ supp(E) ⊂ supp(H),

a contradiction, proving our claim.

Define the map

ρiℓ′ = min
{
ρij ∈ T (F )

∣∣∣ ρ∗ij ∈ T (H); ρiq < ρij ≤ ρiℓ , ∀iq ∈ Γ(H)
}

= min
{
ρij ∈ T (F,H)

∣∣ ρiq < ρij ≤ ρiℓ , ∀iq ∈ Γ(H)
}
,

(III.B.8.1)

where we note that the set in Equation (III.B.8.1) is non-empty, because it contains ρiℓ . We have

four claims which we will prove in-turn:

(a) ρ∗iℓ′ ∈ T (H),

(b) ρ∗iℓ′ ∈ T (H),

(c) supp(H≥iℓ′ ⊔ aΓ(H)) ⊂ supp(F ), and

(d) there exists some E′ ∈ ε(H) with supp(E′) = supp(H≥iℓ′ ⊔ aΓ(H)) such that E′ ⊂ F .

Proof of (a) Since ρiℓ′ ∈ T (F,H), we have ρ∗iℓ′ ∈ T (H) by construction. Let ij ∈ Γ(H) be given.

Since ρij < ρiℓ′ , we have τij ≤ ρij < ρiℓ′ and therefore ρ∗iℓ′ < ρ∗ij ≤ τ∗ij = tij .

Proof of (b) This is by construction.

Proof of (c) By assumption we have Γ(F ) ⊂ supp(E) ⊂ supp(H) and it follows that

Γ(H) = supp(H)C ⊂ Γ(F )C = supp(F ),

where we take complements inside of N . Therefore it suffices to show that supp(H≥iℓ′ ) ⊂ supp(F ),

or equivalently, we want to show that for every ij ∈ Γ(F ), the map in T (H) supported by that index

is less than ρ∗iℓ′ . Let ij ∈ Γ(F ). If αij ∈ H, then tij ∈ T (H) and

τij ∈ T (ρiℓ(F≥iℓ ⊔ aΓ(F )), (ω ◦ ρiℓ)(F≥iℓ ⊔ aΓ(F ))),
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which implies that

ρiℓ′ ≤ ρiℓ < τij

and therefore

tij = τ∗ij < ρ∗iℓ′ ,

because ∗ is inequality-reversing. On the other hand, if aij ∈ H, then τij ∈ T (H) and we consider

two cases. If ρiℓ′ = τiℓ′ , then we have

τij < tiℓ′ = ρ∗iℓ′ .

If ρiℓ′ = tiℓ′ , then the inequality ρiℓ′ ≤ ρiℓ implies ρiℓ = tiℓ and we note that by definition of ε(F )

we have

tiℓ′ ≤ tiℓ < tij , (III.B.8.2)

since ij ∈ Γ(F ). Taking the inverse maps of those in Equation (III.B.8.2) yields the desired result.

Proof of (d) Let ω′ be the (possibly empty) composition of maps from T
(
H ⊔ aΓ(H), F

)
which are

greater than ρ∗iℓ′ and define the set

E′ =
(
ω′ ◦ ρ∗iℓ′

) (
H≥iℓ′ ⊔ aΓ(H)

)
.

We claim

(i) E′ ∈ ε(H) and

(ii) E′ ⊂ F .

Proof of (i) By construction every map in the composition of ω′ is from the set T
((
H ⊔ aΓ(H)

)
>iℓ′

)
,

so by Claims (a) and (b) above it therefore suffices to show that either ω′ is the empty composition,

or its smallest map is indexed by Γ(H), or its smallest map is an element of T (H) \ T (H).

If ω′ is the empty composition, then we are done, so assume ω′ is made up of at least one

map. For the sake of contradiction, suppose the smallest map is in the composition ω′ is some

ρ∗ij ∈ T (H,F ) ⊂ T (H) such that

ρ∗iℓ′ < ρ∗ij ∈ T (H). (III.B.8.3)
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Note the inequality in Display (III.B.8.3) is by construction, since ρ∗ij is in the composition ω′. Since

ρij ∈ T (F ), by the minimality of ρiℓ′ we let iq′ ∈ Γ(H) such that ρij ≤ ρiq′ ∈ T (F ). We know that

ρiq′ ̸= ρiℓ′ , ρij , because ij , iℓ′ ∈ supp(H) and iq′ ∈ Γ(H), so we have the strict inequality ρij < ρiq′ .

Since E ⊂ H and iq′ ∈ Γ(H), we also know that ρiq′ < ρiℓ . Then by Display (III.B.8.3) we have

ρij < ρiℓ′ < ρiq′ < ρiℓ (III.B.8.4)

or

ρij < ρiq′ < ρiℓ′ < ρiℓ , (III.B.8.5)

where we note that ρ∗ij ∈ T (H) implies that ρij is greater than every tau map with index in Γ(H). If

Inequality (III.B.8.4) holds, then we contradict the definition of ρiℓ′ , so Inequality (III.B.8.5) must

hold. We know ρij , ρiℓ′ ∈ T (F,H), i.e., ρ∗ij , ρ
∗
iℓ′

∈ T (H,F ). Also, the inequality ρij < ρiq′ implies

ρiq′ = tiq′ , because iq′ ∈ Γ(H) and ρij is greater than every tau map with index in Γ(H). Therefore

ρ∗iq′ = τiq′ ∈ T
(
aΓ(H)

)
, i.e., αiq′ ∈ F . Therefore τiq′ ∈ T

(
H ⊔ aΓ(H), F

)
and τiq′ > ρiℓ′ , so τiq′

is included in the composition ω′. However, τiq′ < ρ∗ij , contradicting our minimality assumption

on ρ∗ij . Hence neither Inequality (III.B.8.4) nor Inequality (III.B.8.5) can hold, and we obtain a

contradiction to our original assumption about the smallest element of ω′, as desired.

Proof of (ii) We have already shown that supp(E′) ⊂ supp(F ). By our choice of ω′, it suffices to

show that for every αij ∈ F satisfying ij ∈ Γ(H), the map τij ∈ T (aΓ(H)) is larger than ρ
∗
iℓ′
. Suppose

there is some ij ∈ Γ(H) such that αij ∈ F . Then ρij = tij ∈ T (F,H) and ρiℓ′ > ρij by construction.

Therefore ρ∗iℓ′ < ρ∗ij = τij as desired. Thus we have proved that Part (1) implies Part (2), and the

converse follows by symmetry.

(1) =⇒ (3): Let E ∈ ε(F ) such that E ⊂ H and recall that T (F,H) = {πe1 , . . . , πem−1} is the set

of maps used to create the paths P (F,H|F ) and P (F |H , H). Let πeℓ ∈ T (F,H) such that

E ∈ P
(
πeℓ
(
F≥eℓ ⊔ aΓ(F )

)
, (ω ◦ πeℓ)

(
F≥eℓ ⊔ aΓ(F )

))
⊂ ε(F ).

Partition ω to write ω = ωX ◦ ωE such that E =
(
ωE ◦ πeℓ

) (
F≥eℓ ⊔ aΓ(F )

)
, where ωE could be the
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identity map, i.e., we could have E = πeℓ(F ⊔ aΓ(F )). We claim that πeℓ also satisfies

πeℓ = max
{
πer ∈ T (F,H)

∣∣ πer ∈ T (F ); πer < τes , ∀τes ∈ T (aΓ(F ), H)
}
, (III.B.8.6)

for which it suffices to show that πeℓ is the largest map in T (F,H) that is less than every map in

T (aΓ(F ), H). Since E ⊂ H, we know that πeℓ is indeed less than every element of T (aΓ(F ), H). If we

suppose that there is some map πep ∈ T (F,H) such that πeℓ < πep < τes for all τes ∈ T (aΓ(F ), H),

then πep = τep , implying that aep ∈ F≥eℓ and αep ∈ H. Furthermore, this implies that τep must be

in the composition ωE . Since τep < τes for all τes ∈ T (aΓ(F ), H) and τep ∈ T (F ), it follows that τes

is the smallest map in ωE , a contradiction since E ∈ ε(F ). This proves Equation (III.B.8.6).

If m = 2, then we are done. We therefore assume m ≥ 3 and define

πeℓ′ = min
{
πej ∈ T (F,H)

∣∣ πej > ρis ∈ T (F ), ∀is ∈ Γ(H)
}
,

which is well-defined since πeℓ is an element of the set in this display. Hence πeℓ′ ≤ πeℓ . By definition

of paths (see Definition II.E.10) we have F1 = F ,

H1 = F |H = {xi ∈ F | i ∈ supp(H)} ⊔ {xi ∈ H | i ∈ Γ(F )} ,

(where xi ∈ {ai, αi}), and for j = 1, . . . ,m− 1, we have Fj+1 = πej (Fj) and Hj+1 = πej (Hj).

Let j ∈ {ℓ′, . . . , ℓ} be given. By our definition of paths, πej is the unique map in the set

T (Fj , Hj+1). Note that Γ(Fj) = Γ(F ), and πeℓ ∈ T (F ), and πej ≤ πeℓ . It follows that πej ∈ T (Fj).

We define the subset

Ej =
(
ωE,τ ◦ πej

) (
(Fj)≥ej ⊔ aΓ(F )

)
where ωE,τ is the composition of maps in ωE that are indexed by Γ(F ) (again, ωE,τ could be the

identity map, e.g., when Γ(F ) = ∅). Since πeℓ′ is greater than every map in T (F ) indexed by Γ(H) =

Γ(Hj+1) and πej ≥ πeℓ′ , it follows that supp(Ej) ⊂ supp(Hj+1). Every map in the composition ωE

is greater than πeℓ , so the maximality of πeℓ implies that every map in the composition ωE,τ must

be greater than πej . It suffices therefore to show that every map in the set T (aΓ(Fj), H) is in the
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composition ωE,τ . We observe that

T (Fj ⊔ aΓ(Fj), Hj+1) = T (Fj , Hj+1) ⊔ T (aΓ(Fj), Hj+1)

= {πej} ⊔ T (aΓ(F ), Hj+1)

= {πej} ⊔ T (aΓ(F ), H),

where the last equality holds because j ≤ ℓ and πeℓ < τes for all τes ∈ T (aΓ(F ), H), by construction.

Every map in T (aΓ(F ), H) is in the composition ωE , since E ⊂ H, and therefore every map in

T (aΓ(Fj), H) is in the composition ωE,τ . It follows that Ej ∈ ε(Fj) and Ej ⊂ Hj+1.

(3) =⇒ (4): First we prove a special case. Assume m = 2. Then ℓ′ = ℓ = 1, i.e., there exists some

E ∈ ε(F1 = F ) such that E ⊂ H2 = H. So there is a unique map πeℓ ∈ T (F ) such that π∗
eℓ

∈ T (H),

i.e., T (F,H) = {πeℓ}. Let G ∈ ∆̂ be a facet containing F ∩H, and let F ′ = F+G and H ′ = H+G

be facets containing F and H, respectively. We claim that G ∈ P (F ′, H ′), and it suffices to show

that T (F ′, H ′) = T (F ′, G) ⊔ T (G,H ′). We write N as the following disjoint union:

N = {eℓ} ⊔ supp(F ∩H) ⊔ Γ(F ) ⊔ Γ(H).

This implies that supp(F ′\G) ⊂ {eℓ}⊔Γ(H) and supp(F ′\H ′) ⊂ {eℓ}⊔Γ(H)⊔Γ(F ), so T (F ′, G) ⊂

T (F ′, H ′). It also implies that supp(G\H ′) ⊂ {eℓ}⊔Γ(F ), so we similarly conclude that T (G,H ′) ⊂

T (F ′, H ′). Hence it suffices to show that every element of T (F ′, H ′) indexed by Γ(H) is less than

πeℓ and every element of T (F ′, H ′) indexed by Γ(F ) is greater than πeℓ .

For every ij ∈ Γ(H), we know ρij ∈ T (F ) ⊂ T (F ′) and ρij < πeℓ , because E ⊂ H and

supp(E) ⊃ supp (F≥eℓ). Thus every map in T (F ′, G) is less than or equal to πeℓ . Let ij ∈ Γ(F ). If

tij ∈ T (F ′, H ′), then we have tij ∈ T (F ) \ T (F ), so πeℓ < tij , because πeℓ ∈ T (F ) by assumption.

If τij ∈ T (F ′, H ′), then Γ(F ) ⊂ supp(E) and E ⊂ H, implying that τij ∈ T
(
F≥eℓ ⊔ aΓ(F ), E

)
and

hence τij > πeℓ . Thus every map in T (G,H ′) is greater than or equal to πeℓ , as claimed. This

completes our proof of the simple case.

For the general case, assumem ≥ 3 and let {ℓ′, . . . , ℓ} ⊂ {1, . . . ,m−1} be as in the statement

of the lemma. By definition of P (F,H|F ) and P (F |H , H), for j = ℓ′, . . . , ℓ, by the simple case we
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know that the union ⋃
F ′

j ,H
′
j+1 facets

F ′
j⊃Fj ,H

′
j+1⊃Hj+1

P
(
F ′
j , H

′
j+1

)

includes every facet containing Fj ∩Hj+1. We need to show that the union

⋃
F ′,H′ facets
F ′⊃F,H′⊃H

P (F ′, H ′)

likewise includes every facet containing Fj ∩Hj+1.

Recall that T (F,H) = {πe1 , . . . , πem−1
} and let j ∈ {ℓ′, . . . , ℓ} be given. Let G ∈ ∆̂

be a facet containing Fj ∩ Hj+1, and define F ′ = F+G and H ′ = H+G. As in the base case

we know that G ∈ P
(
F+G
j , H+G

j+1

)
. By definition of P (F,H|F ) and P (F |H , H), we know that

T (Fj , Hj+1) = {πej} and we can partition N as follows:

N = Γ(F ) ⊔ Γ(H) ⊔ {ej} ⊔ supp(Fj ∩Hj+1)

= Γ(F ) ⊔ Γ(H) ⊔ {ej} ⊔ supp(F ∩H) ⊔ {e1, . . . , ej−1} ⊔ {ej+1, . . . , em−1}.

Observe that

F ′ =
(
π∗
ej−1

◦ · · · ◦ π∗
eℓ′

◦ · · · ◦ π∗
e1

) (
F+G
j

)
and H ′ =

(
πem−1

◦ · · · ◦ πeℓ ◦ · · · ◦ πej+1

) (
F+G
j

)
,

so T (F ′, G) = T
(
F+G
j , G

)
⊔{πe1 , . . . , πej−1

} and T (G,H ′) = T
(
G,H+G

j+1

)
⊔{πej+1

, . . . , πem−1
}. From

the proof of the simpler case, we also know that any map in T
(
F+G
j , G

)
is less than πeℓ′ and any

map in T
(
G,H+G

j+1

)
is greater than πeℓ . Thus every map in T (F ′, G) is less than or equal to πej and

every map in T (G,H ′) is greater than or equal to πej . Since πej ∈ T (F ′, H ′), we have showed that

T (F ′, H ′) = T (F ′, G) ⊔ T (G,H ′),

i.e., G ∈ P (F ′, H ′), as desired.

(4) =⇒ (1) First, observe that since supp(F ) ∪ supp(H) = N , we know that Γ(F ) ⊂ H and

Γ(H) ⊂ F . Since ℓ′ ≤ ℓ, we know that πeℓ′ ≤ πeℓ . Moreover, the existence of these two maps implies
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that for every index ej ∈ Γ(H) there is a map ρej ∈ T (F ) with ρej < πeℓ , so supp(F≥eℓ) ⊂ supp(H).

We need to establish the existence of a suitable ωE . For the sake of contradiction, suppose

there exists some τej ∈ T (aΓ(F ), H) such that τej < πeℓ . Note that ej ∈ Γ(H) implies ej /∈

supp(Fℓ ∩ Hℓ+1). Denote {xeℓ , yeℓ} = {aeℓ , αeℓ} such that πeℓ(xeℓ) = yeℓ ∈ H. Let G be a facet

containing Fℓ∩Hℓ+1 such that aej ∈ G and yeℓ ∈ G. We claim that for any pair of facets F ′, H ′ ∈ ∆̂

we have that G /∈ P (F ′, H ′). Let F ′ and H ′ be two such facets. Since τej ∈ T
(
aΓ(F ), HaΓ(F )

)
, we

know that αej ∈ H ′. If αej ∈ F ′, then αej is in every element of P (F ′, H ′), so aej ∈ G implies

that G /∈ P (F ′, H ′). Suppose aej ∈ F ′. We know that τej ∈ T (F ′, H ′), because aej ∈ F ′ and

αej ∈ H ⊂ H ′. We also know that πeℓ ∈ T (F ′, H ′): the fact that πeℓ ∈ T (F,H|F ) implies that

xeℓ ∈ F ⊂ F ′ and yeℓ ∈ H ⊂ H ′. Since τej < πeℓ , we conclude that every element of P (F ′, H ′)

contains either αej or xeℓ (or both), so G /∈ P (F ′, H ′). We conclude that any map in T
(
aΓ(F ), H

)
must be greater than πeℓ .

Consider the set

T
(
F≥eℓ ⊔ aΓ(F ), H

)
(III.B.8.7)

which contains the map πeℓ . Let ωE be the composition of all the maps in this set except for πeℓ .

Define the subset

E =
(
ωE ◦ πeℓ

) (
F≥eℓ ⊔ aΓ(F )

)
.

We have shown that supp(Feℓ) ⊂ supp(H), and by construction, ωE is a composition of maps that

are greater than πeℓ , so it suffices to show that if ωE is not the empty composition (i.e., the identity

map), then its smallest map is either an element of T
(
aΓ(F ), HaΓ(F )

)
or some πej ∈ T (F,H) \T (F ).

If ωE = id, then we are done, so we assume ωE is not the empty composition. If the smallest map

in ωE is some πej ∈ T (F,H) ∩ T (F ), then this contradicts the minimality of πeℓ , because, by the

argument in the preceding paragraph, every map in the set given in Display (III.B.8.7) is greater

than or equal to πeℓ . We conclude that ωE satisfies the criteria given in the definition of ε(F ) and

hence E ∈ ε(F ). Moreover, E ⊂ H by construction, which completes the proof of this part, thus

completing the proof of the lemma.

The next result tells us that smaller faces with respect to cardinality are pickier when

forming non-zero products. Corollary III.B.10 is the contrapositive of Corollary III.B.9.

Corollary III.B.9. If F, F ′, H ∈ ∆̂ \ Σ such that F ⊂ F ′ and [F ] · [H] ̸= 0, then [F ′] · [H] ̸= 0.
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Proof. Let F, F ′, H be given as above. By Lemma III.B.8 there exists some E ∈ ε(H) such that

E ⊂ F ⊂ F ′, so [F ′][H] ̸= 0.

Corollary III.B.10. If F, F ′, H ∈ ∆̂ \ Σ such that F ⊂ F ′ and [F ′] · [H] = 0, then [F ] · [H] = 0.

Lemma III.B.11 is a special case of Lemma III.B.12; the former serves as the base case of

the proof of the latter by induction.

Lemma III.B.11. Let F,H ∈ ∆̂\Σ be such that [F ][H] is complex. Set T (F,H) = {πe1 , . . . , πem−1},

where P (F,H|F ) = {F1, . . . , Fm} and P (F |H , H) = {H1, . . . ,Hm}, and we assume πej ∈ {τej , tej}.

For each j, assume also that {xej , yej} = {aej , αej} such that πej (xej ) = yej . Then we have

[F ][H] = (−1)m
mdeg((F ∩H2) \ (F ∩H))

m̃deg((F ∩H2) \ (F ∩H))
[F ][H2]−

ye1
xe1

[F2][H].

Proof. This follows from the facts that

P (F2, H|F2
) = P (F2, H|F ) = {F2, F3, . . . , Fm}

and

P (F2|H , H) = {H2, H3, . . . ,Hm}

and for i = 2, . . . ,m− 1 we have

(Fi ∩Hi+1) \ (F2 ∩H) = ((Fi ∩Hi+1) \ (F ∩H)) ⊔ {ye1}.

Lemma III.B.12. In the context of Lemma III.B.11, for any j ∈ {2, . . . ,m− 1} we have

[F ][H] = C1[F ][Hj ] + C2[Fj ][H]

where

C1 = (−1)m−jmdeg((Fj−1 ∩Hj) \ (Fj−1 ∩H))

m̃deg((Fj−1 ∩Hj) \ (Fj−1 ∩H))

and

C2 = (−1)j−1mdeg((Fj ∩H) \ (F ∩H))

m̃deg((Fj ∩H) \ (F ∩H))
.
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Proof. We induct on j and let Lemma III.B.11 serve as our base case. Assume m ≥ 4 and j ∈

{3, . . . ,m− 1}, and set λ = F ∩H. By the induction hypothesis we have

[F ][H] = (−1)m−(j−1)mdeg((Fj−2 ∩Hj−1) \ (Fj−2 ∩H))

m̃deg((Fj−2 ∩Hj−1) \ (Fj−2 ∩H))
[F ][Hj−1]

+ (−1)j−2mdeg((Fj−1 ∩H) \ λ)
m̃deg((Fj−1 ∩H) \ λ)

[Fj−1][H].

(III.B.12.1)

By the base case we have

[Fj−1][H] = (−1)m−j+2mdeg((Fj−1 ∩Hj) \ (Fj−1 ∩H))

m̃deg((Fj−1 ∩Hj) \ (Fj−1 ∩H))
[Fj−1][Hj ]−

yej−1

xej−1

[Fj ][H], (III.B.12.2)

since #T (Fj−1, H) = #{πej−1
, . . . , πem−1

} = m − j + 1 implies #P (Fj−1, H) = m − j + 2. Using

the notation in the statement of Lemma III.B.11, we compute the following:

(Fj−2 ∩Hj−1) \ (Fj−2 ∩H) =
(
{ye1 , . . . , yej−3} ⊔ {xej−1 , . . . , xem−1} ⊔ λ

)
\
(
{ye1 , . . . , yej−3} ⊔ λ

)
= {xej−1 , xej , . . . , xem−1}

(Fj−1 ∩H) \ λ = {ye1 , . . . , yej−2
}

(Fj−1 ∩Hj) \ (Fj−1 ∩H) = {xej , . . . , xem−1
}.

Substituting these and Equation (III.B.12.2) into Equation (III.B.12.1) and simplifying, we need to

show that

(−1)m−(j−1)xej−1

yej−1

[F ][Hj−1] + (−1)m
ye1 · · · yej−2

xe1 · · ·xej−2

[Fj−1][Hj ] = (−1)m−j [F ][Hj ] (III.B.12.3)

and

(−1)j−2 ye1 · · · yej−2

xe1 · · ·xej−2

· −
yej−1

xej−1

[Fj ][H] = (−1)j−1mdeg((Fj ∩H) \ λ)
m̃deg((Fj ∩H) \ λ)

[Fj ][H]. (III.B.12.4)

Indeed, since (Fj∩H)\λ = {ye1 , . . . , yej−1}, we have Equation (III.B.12.4) immediately. Multiplying

both sides of Equation (III.B.12.3) by (−1)m−j we have

[F ][Hj ] = (−1)j
ye1 · · · yej−2

xe1 · · ·xej−2

[Fj−1][Hj ]−
xej−1

yej−1

[F ][Hj−1],
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which holds by graded commutativity and the base case applied to the complex product [Hj ][F ],

where T (Hj , F ) = {π∗
ej−1

, π∗
ej−2

, . . . , π∗
e1}.

The following lemma introduces a few symmetries that exist in our product and will be

particularly helpful when proving that our product satisfies the Leibniz rule.

Lemma III.B.13. Let F,H ∈ ∆̂ \ Σ such that [F ][H] is simple. Then there is an element

E = (ω ◦ πeℓ)(F≥eℓ ⊔ aΓ(F )) ∈ ε(F )

such that E ⊂ H, where T (F,H) = {πeℓ} and ω is composed only of maps from T (aΓ(F )). If

ej ∈ Γ(H) is given, then each of the following hold:

(a) If αej ∈ F such that tej < πeℓ , then

[F \ αej ][H ⊔ αej ] = 0 = [F \ αej ][H ⊔ aej ]

and

[tej (F )][H] = −
αej

aej
[F ][H];

(b) If aej ∈ F such that tej < πeℓ , then

[F \ aej ][H ⊔ αej ] = 0 = [F \ aej ][H ⊔ aej ]

and

[τej (F )][H] = −
aej
αej

[F ][H];

(c) If aej ∈ F such that τej < πeℓ < tej , then

[τej (F )][H] = 0 = [F \ aej ][H ⊔ αej ]

and

[F \ aej ][H ⊔ aej ] = (−1)|F |ψ(Γ(H) \ {ej}, ej)ψ(Γ(F ), ej)[F ][H].

Proof. We prove this one part at a time. Note that E ⊂ H implies that πeℓ > τej when aej ∈ F ,
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and πeℓ > tej when αej ∈ F .

Proof of (a) In this case minΓ(F \ {αej}) ≤ ej , so πeℓ /∈ T (F \ αej ). Since {πeℓ} = T (F,H), the

uniqueness of this map implies every element of ε(F \ {αej}) is a subset of neither H ⊔ {aej} nor

H ⊔ {αej}. Hence

[F \ αej ][H ⊔ αej ] = 0 = [F \ αej ][H ⊔ aej ],

as claimed. On the other hand, we claim that E ∈ ε(tej (F )). Since Γ(tej (F )) = Γ(F ), we know

that πeℓ ∈ T (tej (F )). Since T (tej (F )) =
(
T (F ) \ {τej}

)
⊔ {tej} and πeℓ > tej , τej , we know that

πeℓ ∈ T (tej (F )), and F≥eℓ = (tej (F ))≥eℓ , and tej is not an element in ω. Note that Γ(F ) = Γ(tej (F ))

and we have that

E = (πeℓ ◦ ω)
(
(tej (F ))≥eℓ ⊔ aΓ(F )

)
∈ ε(tej (F )),

as claimed. (A key point here is that the sets T (F ) and T (tej (F )) differ only in the index ej , neither

tej nor τej can be in ω, and Γ(F ) = Γ(tej (F )), so ω must satisfy the definition of ε(tej (F )).) Hence

[tej (F )][H] ̸= 0 and in fact must be simple, since T (tej (F ), H) = T (F,H). Since ej ∈ Γ(H) we have

that

(tej (F ))
C ∩HC =

(
(FC ∩HC) \ {aej}

)
⊔ {αej},

i.e.,

mdeg((tej (F ))
C ∩HC) = mdeg(FC ∩HC) ·

αej

aej
.

Next, since ej ∈ Γ(H) we have that

tej (F ) ∩H = F ∩H.

Since Γ(tej (F )) = Γ(F ) we compute

Ψ(tej (F ), H) = (−1)#Γ(tej (F ))σ(tej (F ))ψ(tej (F ) ∩H, eℓ)ψ(Γ(H),Γ(tej (F )))

= (−1)#Γ(F ) · −σ(F )ψ(F ∩H, eℓ)ψ(Γ(H),Γ(F ))

= −Ψ(F,H).

Hence by the definition of simple products we conclude as desired.
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Proof of (b) The argument here is identical to that given in the proof of Part (a).

Proof of (c) First, note that ej ∈ supp((τej (F ))≥eℓ), because tej > πeℓ . Since T (F,H) = {πeℓ} has

only one map and ej ∈ Γ(H), it follows that [τej (F )][H] = 0.

Second, we consider the product of [F \ aej ] and [H ⊔ αej ]. Obviously ej ∈ Γ(F \ {aej}),

so to find some E′ ∈ ε(F \ {aej}) such that E′ ⊂ H ⊔ {αej}, we would need to apply the map τej

to (F \ {aej})≥eℓ ⊔ aΓ(F\{aej
}) (here, we are again using the fact that T (F,H) contains only the

map πeℓ). However, since τej < πeℓ , using τej in the construction of E′ violates the definition of

ε(F \ {aej}), so there is no such element and we conclude that [F \ aej ][H ⊔ αej ] = 0.

Finally, consider the product of [F \ aej ] and [H ⊔ aej ]. Most notably, we no longer need

access to the map τej , since aej ∈ aΓ(F\{aej
}) ∩ (H ⊔ {aej}). We claim that E′ ∈ ε(F \ {aej}) and

E′ ⊂ H ⊔ {aej}, where

E′ = (ω ◦ πeℓ)
(
(F \ {aej})≥eℓ ⊔ aΓ(F\{aej

})

)
.

Since πeℓ < tej and πeℓ ∈ T (F ), we know that πeℓ ∈ T (F \ {aej}). To show that E′ ∈ ε(F \ {aej}),

it suffices to show that ω satisfies the conditions given in the definition of epsilon sets. Note first

that

T (F \ {aej}) = T (F ) \ {τej}.

Since ej ∈ Γ(H), we know that there is no map in ω with the index ej , so every map in ω is an

element of T (F \ {aej}). Since E ∈ ε(F ), we also know that every element of ω is greater than πeℓ .

Furthermore, since τej ∈ T (F ) and τej < πeℓ , we know that every map in ω is indexed by an element

of Γ(F ) \ {ej}, so the smallest map in ω must be indexed by an element of Γ(F \ {aej}). Therefore

E′ ∈ ε(F \ {aej}). Since τej < πeℓ ∈ T (F ), we know that aej /∈ F≥eℓ and we have that

E′ = (ω ◦ πeℓ)
(
F≥eℓ ⊔ aΓ(F ) ⊔ {aej}

)
= E ⊔ {aej},

so E′ ⊂ H ⊔ {aej}. Hence [F \ aej ][H ⊔ aej ] ̸= 0 and since

T (F \ {aej}, H ⊔ {aej}) = T (F,H) = {πeℓ},
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we know that [F \ aej ][H ⊔ aej ] is simple. The remainder of the proof is bookkeeping. We compare

(F \ {aej})C ∩ (H ⊔ {aej})C = (FC ⊔ {aej}) ∩ (HC \ {aej})

= FC ∩HC ,

so the relevant coefficients are the same. It remains only to show that

Ψ(F \ aej , H ⊔ aej ) = (−1)|F |ψ(Γ(H) \ {ej}, ej)ψ(Γ(F ), ej)Ψ(F,H). (III.B.13.1)

For the sake of more succinct notation, set F ′ = F \{aej} andH ′ = H⊔{aej}. Since |F | = #Γ(F )+1,

the left-hand side of Equation (III.B.13.1) is

Ψ(F ′, H ′) = (−1)#Γ(F ′)σ((F ′)+H′
)ψ(F ′ ∩H ′, eℓ)ψ(Γ(H

′),Γ(F ′))

= (−1)#Γ(F )+1σ(F+H)ψ(F ∩H, eℓ)ψ(Γ(H) \ {ej},Γ(F ) ⊔ {ej})

= (−1)|F |σ(F+H)ψ(F ∩H, eℓ)ψ(Γ(H) \ {ej},Γ(F ) ⊔ {ej})

= (−1)|F |σ(F+H)ψ(F ∩H, eℓ)ψ(Γ(H) \ {ej},Γ(F ))ψ(Γ(H) \ {ej}, ej)

and the right-hand side is

(−1)|F |ψ(Γ(H) \ {ej}, ej)ψ(Γ(F ), ej)Ψ(F,H)

= (−1)|F |ψ(Γ(H) \ {ej}, ej)ψ(Γ(F ), ej) · (−1)#Γ(F )σ(F+H)ψ(F ∩H, eℓ)ψ(Γ(H),Γ(F )),

so Equation (III.B.13.1) holds if and only if

(−1)#Γ(F )ψ(Γ(H) \ {ej},Γ(F )) = −ψ(Γ(F ), ej)ψ(Γ(H),Γ(F )).

Indeed we compute

−ψ(Γ(F ), ej)ψ(Γ(H),Γ(F )) = −ψ(Γ(F ), ej)ψ(Γ(H) \ {ej},Γ(F ))ψ({ej},Γ(F ))

= −ψ(Γ(F ), ej)ψ(Γ(H) \ {ej},Γ(F )) · (−1)#Γ(F )ψ(Γ(F ), ej)

= −(−1)#Γ(F )ψ(Γ(H) \ {ej},Γ(F )).
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The following lemma sets us up for an induction argument on homological degree when we

prove our product satisfies the Leibniz rule.

Lemma III.B.14. Let H ∈ ∆̂ \ Σ be a non-facet. Set ei = minΓ(H) and define the subsets

F,H ′ ⊂ V̂ as follows:

F = H ⊔ aΓ(H)

H ′ = H ⊔ {αei}.

Then F is a facet in ∆̂ and H ′ ∈ ∆̂ \ Σ, and the product [F ][H ′] is simple.

Proof. SinceH is in the interior of ∆̂, we know that F,H ′ ∈ ∆̂\Σ by Remark III.B.5. By construction

we also have T (F,H ′) = {τei}. Additionally, the minimality of ei implies that τei = maxT (aΓ(H)),

so every map in T (F ) indexed by Γ(H ′) is some τej satisfying τej < τei , so we have Γ(H ′) ⊂ Γ(F≥ei),

i.e., τei(F≥ei) ⊂ H ′. Since τei(F≥ei) ∈ ε(F ), this completes the proof.
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III.C Proof of DG Algebra Structure

Before the main result, we give a fact from lecture notes by Sather-Wagstaff that will make

the proof profoundly simpler.

Fact III.C.1 ([9, Note III.A.2]). Let S be a polynomial ring and A be a complex of free S-modules,

with Ai = Sβi for all i ≥ 0 and Ai = 0 for all i < 0. Let Bi be a basis of Ai over S.

(a) Any function fij : Bi ×Bj → Ai+j extends uniquely to an S-bilinear function µij : Ai ×Aj →

Ai+j so that fij = µij |Bi×Bj .

(b) The operation µij is unital on Ai × Aj if and only if it is unital on the basis vectors, and

similarly for associativity, graded commutativity, and the Leibniz rule.

Theorem III.C.2 (Morra). If associative, the product in Definition III.A.1 imparts an associative

differential graded algebra structure to the resolution L given in Definition II.D.6.

Proof. We need to prove the product from Definition III.A.1, when applied to L, satisfies the criteria

given in Definition II.A.13. Throughout the proof we assume that F,H are faces in the interior of

∆̂, we denote λ = F ∩H, and we set m = #T (F,H) + 1.

I. The product is a well-defined binary operator with additive degrees.

We need to verify a number of things.

A. In the case when [F ][H] is simple, we need to show that

A.1 F ∩H ∈ ∆̂ \ Σ,

A.2 F+H is a facet,

A.3 |[F ][H]| = |[F ]|+ |[H]|;

B. In the case when [F ][H] is complex, we need to show that

B.1 the elements of P (F,H|F ) and P (F |H , H) are in ∆̂ \ Σ,

B.2 for i = 1, . . . ,m − 1 we have |[Fi][Hi+1]| = |[Fi]| + |[Hi+1]| (we define 0 to have every

homological degree), and

B.3 the coefficient of [Fi][Hi+1] is in S for i = 1, . . . ,m− 1;
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Proof of A. Assume [F ][H] is a simple product. Then A.1 is proved by Lemma III.B.6 Part (c). Since

Γ(F ) ⊂ supp(E) ⊂ supp(H) for some E ∈ ε(F ) by assumption, we know that Γ(F ) ⊂ supp
(
F+H

)
and therefore

supp
(
F+H

)
= supp(F ) ⊔ Γ(F ) = N.

Since the interior of ∆̂ is closed under taking supersets (see Remark III.B.5), we conclude that F+H

is a facet in ∆̂, which proves A.2.

To prove A.3, note that by the definition of L, we have |F | = codim(F ) + 1 = n−#F + 1

and |H| = codim(H) + 1 = n−#H + 1. This yields

|F |+ |H| = 2n−#F −#H + 2.

By A.1 we write |λ| = n−#λ+ 1 and since m = 2, by Lemma III.B.6 we have

|λ| = n−#λ+ 1

= n− (#F +#H − 1− n) + 1,

completing the proof of Part A.

Proof of B. Now assume [F ][H] is complex and denote P (F,H|F ) = {F1, . . . , Fm}. Since Γ(Fj) =

Γ(F ) for all j, by Part (a) of Lemma III.B.1 it suffices to show that every Fj is a face in ∆̂ (every

facet of ∆̂ is in the interior of ∆̂, because its dimension exceeds that of Σ; any non-facet will be in

the interior by Lemma III.B.1). Since F ∈ ∆̂ and ∆ is a simplicial complex, any composition of τij ’s

applied to F yields a face in ∆̂. Every Fj ∈ P (F,H|F ) can be obtained by applying some τij ’s to

either F or H|F , so it now suffices to show that H|F ∈ ∆̂. By Lemma III.B.8 the product [H][F ] is

also complex. Thus by the same argument as in the proof of A.2 (in which we did not use the fact

that m = 2), we know that H+F is a facet of ∆̂. Since H|F ⊂ H+F , we conclude that H|F ∈ ∆̂ and

this completes the proof of B.1.

To prove B.2, denote {ρi1 , . . . , ρim−1
} = T (F,H) and let j ∈ {1, . . . ,m − 1} be given. By

the definition of paths, ρij is the unique map in T (Fj , Hj+1). If [Fj ][Hj+1] = 0, then we are done,
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since 0 has every homological degree. If [Fj ][Hj+1] ̸= 0, then we are done by A.3, since

supp(Fj) ∪ supp(Hj+1) = supp(F ) ∪ supp(H) = N.

For B.3, we need only consider cases when [Fj ][Hj+1] ̸= 0, for which we have the coefficient

±mdeg((Fj ∩Hj+1) \ (F ∩H))

m̃deg((Fj ∩Hj+1) \ (F ∩H))
mdeg

(
FC
j ∩HC

j+1

)
appearing in the expression of the complex product [F ][H]. It now suffices to show that

m̃deg((Fj ∩Hj+1) \ (F ∩H)) | mdeg(FC
j ∩HC

j+1),

or equivalently,

m̃deg((Fj ∩Hj+1) \ (F ∩H)) | mdeg((Fj ∪Hj+1)
C).

Set {xℓ, yℓ} = {αℓ, aℓ} such that xℓ divides m̃deg((Fj ∩Hj+1) \ (F ∩H)). It suffices to show that

xℓ also divides mdeg((Fj ∪Hj+1)
C). By Definition II.E.18 we have

xℓ | m̃deg((Fj ∩Hj+1) \ (F ∩H)) ⇐⇒ yℓ | mdeg((Fj ∩Hj+1) \ (F ∩H)),

so we have

xℓ | m̃deg((Fj ∩Hj+1) \ (F ∩H)) =⇒ yℓ ∈ Fj ∩Hj+1

=⇒ xℓ /∈ Fj , Hj+1

=⇒ xℓ | mdeg((Fj ∪Hj+1)
C),

as desired. This proves B.3.
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II. The product is S-bilinear.

By Fact III.C.1, the product as defined on the basis vectors extends to an S-bilinear product

on the elements of L.

III. The product is unital.

By Fact III.C.1, we need only remark that there is a multiplicative identity 1 ∈ L0 = S such

that 1 · [F ] = [F ] = [F ] · 1 for all F ∈ ∆̂ \ Σ.

IV. The product is graded commutative.

We need to show that for any F,H ∈ ∆̂ \ Σ we have

A. [H][F ] = (−1)|F ||H|[F ][H] and

B. [F ]2 = 0 whenever |F | is odd.

Proof of A. By Lemma III.B.8, we know that [F ] · [H] ̸= 0 if and only if [H] · [F ] ̸= 0. Moreover,

by Definition III.A.1 we know that [F ] · [H] is simple if and only if [H] · [F ] is simple, and likewise

[F ] · [H] is complex if and only if [H] · [F ] is complex. Suppose the products are complex, and

we denote {F1, . . . , Fm} = P (F,H|F ) and {H1, . . . ,Hm} = P (F |H , H). Then by the symmetry of

paths we have P (H,F |H) = {Hm, . . . ,H1} and P (H|F , F ) = {Fm, . . . , F1}. Thus Definition III.A.1

yields

F ·H = (−1)m
m−1∑
i=1

mdeg((Fi ∩Hi+1) \ (F ∩H))

m̃deg ((Fi ∩Hi+1) \ (F ∩H))
[Fi] · [Hi+1]

and

H · F = (−1)m
m−1∑
i=1

mdeg((Fi ∩Hi+1) \ (F ∩H))

m̃deg ((Fi ∩Hi+1) \ (F ∩H))
[Hi+1] · [Fi].

Hence it suffices to show that all the simple products are graded commutative.

Assume [F ] · [H] is simple and denote T (F,H) = {πeℓ}. Recall we set λ = F ∩H. To show

[F ] · [H] = (−1)|F |·|H|[H] · [F ], by Definition III.A.1 it suffices to show that

(−1)#Γ(F )σ
(
F+H

)
ψ(λ, eℓ)ψ(Γ(H),Γ(F ))

= (−1)|F ||H|(−1)#Γ(H)σ
(
H+F

)
ψ (λ, eℓ)ψ(Γ(F ),Γ(H)).
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We claim that σ
(
F+H

)
σ
(
H+F

)
= −1. By the proof of Lemma III.B.8, we have a partition of N :

N = Γ(F ) ⊔ Γ(H) ⊔ supp(λ) ⊔ {eℓ}.

By the definition of F+H and H+F we have

F+H ∩H+F =
(
F ⊔

{
yij ∈ H | ij ∈ Γ(F )

})
∩
(
H ⊔

{
xij ∈ F | ij ∈ Γ(H)

})
= λ ⊔

{
yij ∈ H | ij ∈ Γ(F )

}
⊔
{
xij ∈ F | ij ∈ Γ(H)

}
.

It follows that supp
(
F+H ∩H+F

)
= N \ {eℓ}. Since we must have either aeℓ ∈ F or aeℓ ∈ H, it

also follows that

σ
(
F+H

)
σ
(
H+F

)
= σ(λ)2σ

({
yij ∈ H | ij ∈ Γ(F )

})2
σ
({
xij ∈ F | ij ∈ Γ(H)

})2
σ({aeℓ , αeℓ})

= −1.

Hence it suffices now to show that

ψ(Γ(H),Γ(F )) = −(−1)|F ||H|(−1)#Γ(H)(−1)#Γ(F )ψ(Γ(F ),Γ(H)). (III.C.2.1)

Indeed, since

|F ||H| = (#Γ(F ) + 1)(#Γ(H) + 1),

Equation (III.C.2.1) follows from Remark III.A.9.

Proof of B. Let F ∈ ε(F ). For every E ∈ ε(F ), by construction we know E ∩ FC ̸= ∅, i.e., E ̸⊂ F .

Therefore by Definition III.A.1 we have that

[F ]2 = [F ] · [F ] = 0,

regardless of the homological degree of F .
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V. The product satisfies Leibniz rule.

The majority of the work is here. Let F,H ∈ ∆̂ \ Σ be given and we need to show that

∂([F ][H]) = ∂([F ])[H] + (−1)|F |[F ]∂([H]). (III.C.2.2)

Throughout the proof we set d = |F |+ |H|. We will prove this in four cases:

A. supp(F ) ∪ supp(H) ̸= N ;

B. F and H are both facets;

C. F is a facet and H is not;

D. F and H have arbitrary homological degree.

Case A. First we deal with a special case. Suppose that supp(F ) ∪ supp(H) ⊊ N . Then since

Γ(F ) ⊂ supp(E) for all E ∈ ε(F ), we know that [F ][H] = 0 and we need to show that

∂([F ])[H] = −(−1)|F |[F ]∂([H]). (III.C.2.3)

If #(Γ(F ) ∩ Γ(H)) ≥ 2, then note that

[F ⊔ αej ][H] = [F ⊔ aej ][H] = [F ][H ⊔ αej ] = [F ][H ⊔ aej ] = 0

since

supp(F ) ∪ supp(H) ∪ {ej} ⊊ N

for any ej ∈ N . Thus Equation (III.C.2.3) holds in this case. Assume instead that there is a unique

index ej ∈ N such that Γ(F ) ∩ Γ(H) = {ej}. By our reasoning above, it suffices to show that

ψ(F, ej)
(
αej [F ⊔ αej ][H] + aej [F ⊔ aej ][H]

)
= −(−1)|F |ψ(H, ej)

(
αej [F ][H ⊔ αej ] + aej [F ][H ⊔ aej ]

)
.

(III.C.2.4)

If every product in this display is zero, then we are done, so suppose at least one of them is non-zero.

We induct on m = #P (F,H|F ) = #P (F |H , H) and so first assume that m = 2. Then there is a

unique map πeℓ ∈ T (F ) such that {πeℓ} = T (F,H).
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If [F ⊔ αej ][H] ̸= 0, then there is some element E ∈ ε(F ⊔ αej ) such that E ⊂ H. The

uniqueness of πeℓ implies that supp(E) = supp(F≥eℓ) ⊔ Γ(F ). Therefore ej ∈ Γ(H) implies that

τej < tej < πeℓ (otherwise ej ∈ supp(F≥eℓ) ⊂ supp(H), a contradiction). By Lemma III.B.13 we

have that [F ][H ⊔ αej ] = 0 = [F ][H ⊔ aej ] and

[F ⊔ aej ][H] = −
αej

aej
[F ⊔ αej ][H].

Thus both sides of Equation (III.C.2.4) are zero and the equation holds.

If [F ⊔ aej ][H] ̸= 0, then there is some element E ∈ ε(F ⊔ aej ) such that E ⊂ H, and

it follows from the uniqueness of πeℓ that τej < πeℓ . If tej < πeℓ , then by the same argument as

in the preceding paragraph, Equation (III.C.2.4) holds by Lemma III.B.13. Suppose instead that

τej < πeℓ < tej . Note that

supp(F ) = supp(λ) ⊔ {eℓ} ⊔ (Γ(H) \ {ej})

supp(H) = supp(λ) ⊔ {eℓ} ⊔ (Γ(F ) \ {ej}).
(III.C.2.5)

By the same lemma we have [F ⊔αej ][H] = 0 = [F ][H⊔αej ] and by Equation (III.C.2.5) we compute

[F ][H ⊔ aej ] = (−1)|F⊔aej
|ψ(Γ(H), ej)ψ(Γ(F ), ej)[F ⊔ aej ][H]

= (−1)|F⊔aej
|ψ(Γ(H), ej)ψ(λ, ej)ψ(eℓ, ej)ψ(Γ(F ), ej)ψ(λ, ej)ψ(eℓ, ej)[F ⊔ aej ][H]

= (−1)|F⊔aej
|ψ(F, ej)ψ(H, ej)[F ⊔ aej ][H]

= −(−1)|F |ψ(F, ej)ψ(H, ej)[F ⊔ aej ][H].

Thus Equation (III.C.2.4) follows.

Lastly, assume that [F ⊔ αej ][H] = 0 = [F ⊔ aej ][H]. If [F ][H ⊔ αej ] = 0 = [F ][H ⊔ aej ],

then we are done, so suppose not. Equation (III.C.2.4) holds if and only if

(−1)(|F |−1)|H|ψ(F, ej)
(
αej [H][F ⊔ αej ] + aej [H][F ⊔ aej ]

)
= (−1)|F |(|H|−1) · −(−1)|F |ψ(H, ej)

(
αej [H ⊔ αej ][F ] + aej [H ⊔ aej ][F ]

)
,
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by graded commutativity. We simplify and multiply both sides by −ψ(F, ej)ψ(H, ej) to obtain

−(−1)|H|ψ(H, ej)
(
αej [H][F ⊔ αej ] + aej [H][F ⊔ aej ]

)
= ψ(F, ej)

(
αej [H ⊔ αej ][F ] + aej [H ⊔ aej ][F ]

)
,

so Equation (III.C.2.4) follows by symmetry.

For the induction step, assume m ≥ 3, so any non-zero product in Equation (III.C.2.4) is

complex. We denote T (F,H) = {πe1 , . . . , πem−1
}, where πei ∈ {tei , τei} and we assume πei < πei+1

.

Then if we set {F1, . . . , Fm} = P (F,H|F ) and {H1, . . . ,Hm} = P (F |H , H), we know that F1 = F ,

H1 = F |H , and for i = 2, . . . ,m we have Fi = πei−1
(Fi−1) and Hi = πei−1

(Hi−1). Then since ej is

the unique index in both Γ(F ) and Γ(H), we have the following:

P (F ⊔ αej , H|F⊔αej
) = {F1 ⊔ αej , F2 ⊔ αej , . . . , Fm ⊔ αej}

P ((F ⊔ αej )|H , H) = {H1, H2, . . . ,Hm}

P (F, (H ⊔ αej )|F ) = {F1, F2, . . . , Fm}

P (F |H⊔αej
, H ⊔ αej ) = {H1 ⊔ αej , H2 ⊔ αej , . . . ,Hm ⊔ αej}

and

P (F ⊔ aej , H|F⊔aej
) = {F1 ⊔ aej , F2 ⊔ aej , . . . , Fm ⊔ aej}

P ((F ⊔ aej )|H , H) = {H1, H2, . . . ,Hm}

P (F, (H ⊔ aej )|F ) = {F1, F2, . . . , Fm}

P (F |H⊔aej
, H ⊔ aej ) = {H1 ⊔ aej , H2 ⊔ aej , . . . ,Hm ⊔ aej}.

By the base case we know that for every i = 1, . . . ,m− 1 we have

ψ(Fi, ej)
(
αej [Fi ⊔ αej ][Hi+1] + aej [Fi ⊔ aej ][Hi+1]

)
= −(−1)|Fi|ψ(Hi+1, ej)

(
αej [Fi][Hi+1 ⊔ αej ] + aej [Fi][Hi+1 ⊔ aej ]

)
,
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and it follows that

ψ(F, ej)
(
αej [Fi ⊔ αej ][Hi+1] + aej [Fi ⊔ aej ][Hi+1]

)
= −(−1)|F |ψ(H, ej)

(
αej [Fi][Hi+1 ⊔ αej ] + aej [Fi][Hi+1 ⊔ aej ]

)
,

since by Remark II.D.9 we have ψ(Fi, ej) = ψ(F, ej). Observe that

(F ⊔ {aej}) ∩H = (F ⊔ {αej}) ∩H = F ∩ (H ⊔ {aej}) = F ∩ (H ⊔ {αej}) = λ

and similarly for every i we have

(Fi ⊔ {aej})∩Hi+1 = (Fi ⊔ {αej})∩Hi+1 = Fi ∩ (Hi+1 ⊔ {aej}) = Fi ∩ (Hi+1 ⊔ {αej}) = Fi ∩Hi+1.

Therefore Equation (III.C.2.4) follows by the definition of complex products, so the Leibniz rule

holds when supp(F ) ∪ supp(H) ̸= N . Throughout the rest of the proof we assume that supp(F ) ∪

supp(H) = N .

Case B. We induct on the (homological) degree of F , so assume |F | = 1, i.e., F is a facet. To

prove this base case, we induct on the degree of H as well, so assume H is a facet. Hence Equa-

tion (III.C.2.2) is true if and only if

∂([F ][H]) = ∂([F ])[H]− [F ]∂([H]),

i.e., we need to show that

∂([F ][H]) = σ(F )mdeg(FC)[H]− σ(H)mdeg(HC)[F ]. (III.C.2.6)

Recall that in Definition III.A.1 we assume that n ≥ 2. Since we also assume that ∆ contains

all the singleton sets, there is a facet a1α2 · · ·αn ∈ ∆̂. Then by Lemma II.B.29 we know that

α2 · · ·αn ∈ ∆̂ \ Σ with codimension equal to 1. Hence |α2 · · ·αn| = 2 and we may assume L2 ̸= 0.

Then there are two sub-cases:

B.1 [F ][H] = 0 and

B.2 [F ][H] ̸= 0.
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Case B.1 Suppose that for every E ∈ ε(F ), we have E ̸⊂ H. We claim that F = H. Let {i1, . . . , in}

be an enumeration of N such that T (F ) = {ρi1 , . . . , ρin}. For each ij set {xij , yij} = {aij , αij} such

that F = {xi1 , . . . , xin} and therefore ρij (xij ) = yij . Since F is a facet we know that Γ(F ) = ∅, and

therefore

ε(F ) = {ρi1(F≥i1), ρi2(F≥i2), . . . , ρin(F≥in)}

= {yi1xi2 · · ·xin , yi2xi3 · · ·xin , . . . , yin} .

Since yin /∈ H and H is a facet, we know that xin ∈ H. Since yin−1
xin ̸⊂ H, we also know that

xin−1 ∈ H. The same reasoning implies that xij ∈ H for j = 1, . . . , n, i.e., H = F . Since H does

not contain any element of ε(F ), we have that ∂([F ][H]) = ∂(0) = 0. Since F = H, the right-hand

side of Equation (III.C.2.6) is likewise 0, so the equation holds.

Case B.2 Suppose on the other hand that there exists some E = ρiℓ′ (F≥iℓ′ ) ∈ ε(F ) such that E ⊂ H,

so we have m ≥ 2. Since F and H are facets we have that

{H1, . . . ,Hm} = P (F |H , H) = P (F,H) = P (F,H|F ) = {F1, . . . , Fm},

and we induct on m.

For the base case m = 2, the product [F ][H] is simple and by the definition of E, we have

that T (F,H) = {ρiℓ′}. Since F,H are facets, it follows that H = ρiℓ′ (F ). Furthermore, we also have

Γ(λ) = {iℓ′} and

FC ∩HC = FC \ {yiℓ′} = HC \ {xiℓ′}.

Thus rewriting the left-hand side of Equation (III.C.2.6) we have

∂([F ][H]) = ∂
(
Ψ(F,H)mdeg(FC ∩HC)[λ]

)
= Ψ(F,H)mdeg(FC ∩HC) · ∂([λ])

= Ψ(F,H)mdeg(FC ∩HC)
(
ψ(λ, xiℓ′ )xiℓ′ [F ] + ψ(λ, yiℓ′ )yiℓ′ [H]

)
= Ψ(F,H)ψ(λ, iℓ′)

(
mdeg(FC ∩HC)xiℓ′ [F ] + mdeg(FC ∩HC)yiℓ′ [H]

)
= Ψ(F,H)ψ(λ, iℓ′)

(
mdeg(HC)[F ] + mdeg(FC)[H]

)
,

(III.C.2.7)
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where the fourth equality follows from Remark II.D.9. Since F and H are facets, we have F+H = F

and therefore Ψ(F,H) = σ(F )ψ(λ, iℓ′). Thus by Equation (III.C.2.7) we have

∂([F ][H]) = σ(F )(mdeg(HC)[F ] + mdeg(FC)[H]).

Since H = ρiℓ′ (F ), it follows that σ(F ) = −σ(H). Hence we conclude

∂([F ][H]) = σ(F )(mdeg(HC)[F ] + mdeg(FC)[H])

= −σ(H)mdeg(HC)[F ] + σ(F )mdeg(FC)[H].

For the inductive step, we assume that m ≥ 3, so the product [F ][H] is complex. To

avoid another level of subscripts under each ρij , let {e1, . . . , em−1} ⊂ N such that T (F,H) =

{πe1 , . . . , πem−1
}, where πej ∈ {τej , tej}. Then we have that F = λ ⊔ {xe1 , . . . , xem−1

} and H =

λ ⊔ {ye1 , . . . , yem−1} such that πej (xej ) = yej . By Lemma III.B.12, the left-hand side of Equa-

tion (III.C.2.6) becomes

∂([F ][H]) = (−1)m
mdeg((F ∩ F2) \ λ)
m̃deg((F ∩ F2) \ λ)

∂([F ][F2])−
ye1
xe1

∂([F2][H]).

By our base case and by the inductive hypothesis, we have that

∂([F ][H]) = (−1)m
mdeg((F ∩ F2) \ λ)
m̃deg((F ∩ F2) \ λ)

(∂([F ])[F2]− [F ]∂([F2]))−
ye1
xe1

(∂([F2])[H]− [F2]∂([H])) .

(III.C.2.8)

We observe that (F ∩ F2) \ λ = xe2 · · ·xem−1
and that

mdeg(FC) = m̃deg(λ) ·mdeg(ye1 , . . . , yem−1),

so we compute

mdeg((F ∩ F2) \ λ)
m̃deg((F ∩ F2) \ λ)

· ∂([F ]) =
xe2 · · ·xem−1

ye2 · · · yem−1

· σ(F )m̃deg(λ) · ye1 · · · yem−1

= m̃deg(λ)ye1xe2 · · ·xem−1

=
ye1
xe1

·mdeg(HC).
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We similarly have

mdeg((F ∩ F2) \ λ)
m̃deg((F ∩ F2) \ λ)

· ∂([F2]) = mdeg(HC).

By construction we know that σ(Fi) = −σ(Fi−1) for all relevant i, so we also have that

(−1)mσ(F ) = −σ(H)

and

ye1
xe1

· ∂([F2]) = σ(F2)
ye1
xe1

mdeg(FC
2 ) = −σ(F )mdeg(FC).

Hence we rewrite Equation (III.C.2.8) and continue:

∂([F ][H]) = (−1)mσ(F )
ye1
xe1

mdeg(HC)[F2] + (−1)mσ(F )mdeg(HC)[F ]

+ σ(F )mdeg(FC)[H] + σ(H)
ye1
xe1

mdeg(HC)[F2]

= −σ(H)
ye1
xe1

mdeg(HC)[F2]− σ(H)mdeg(HC)[F ]

+ σ(F )mdeg(FC)[H] + σ(H)
ye1
xe1

mdeg(HC)[F2]

= −σ(H)mdeg(HC)[F ] + σ(F )mdeg(FC)[H]

= −∂([H])[F ] + ∂([F ])[H],

concluding as desired. Thus we have proved that the Leibniz rule holds for products of facets.

Case C. For the nested inductive step, assume |H| ≥ 2, i.e., that H ∈ ∆̂ \ Σ is not a facet, and

assume that the Leibniz rule holds for products of facets and faces of homological degree |H| − 1.

In this case d = |F |+ |H| = |H|+ 1 and we first suppose that Ld = 0. Then [F ][H] = 0 by

definition, and we need to show that

∂([F ])[H]− [F ]∂([H]) = 0.

Since d ≥ 3, we know that L is exact in degree d and Ld = 0 implies that ker(∂d−1) = Im(∂d) = 0,

so ∂d−1 is injective. It therefore suffices to show that

∂ (∂([F ])[H]− [F ]∂([H])) = 0. (III.C.2.9)
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Since ∂([F ]) ∈ S we have that

∂ (∂([F ])[H]− [F ]∂([H])) = ∂([F ])∂([H])− ∂([F ]∂([H]))

= ∂([F ])∂([H])− ∂

 ∑
i∈Γ(H)

ψ(H, i)(ai[F ][H ⊔ ai] + αi[F ][H ⊔ αi])


= ∂([F ])∂([H])−

∑
i∈Γ(H)

ψ(H, i) (ai∂([F ][H ⊔ ai]) + αi∂([F ][H ⊔ αi])) .

By the inductive hypothesis we have that

ai∂([F ][H ⊔ ai]) + αi∂([F ][H ⊔ αi])

= ai (∂([F ])[H ⊔ ai]− [F ]∂([H ⊔ ai])) + αi (∂([F ])[H ⊔ αi]− [F ]∂([H ⊔ αi]))

= ∂([F ]) (ai[H ⊔ ai] + αi[H ⊔ αi])− [F ] (ai∂([H ⊔ ai]) + αi∂([H ⊔ αi]))

and summing over every index i ∈ Γ(H), the linearity of the differential yields

∂ (∂([F ])[H]− [F ]∂([H])) = ∂([F ])∂([H])− ∂([F ])∂([H]) + [F ]∂(∂([H])) = 0,

because L is a complex, so Equation (III.C.2.9) holds.

Now we assume that Ld ̸= 0 and we again have two sub-cases:

C.1 [F ][H] = 0 and

C.2 [F ][H] ̸= 0.

Case C.1 If we suppose that E ̸⊂ H for every element E ∈ ε(F ), then [F ][H] = 0 and since |F | = 1

we again need to show that

σ(F )mdeg(FC)[H] =
∑

ej∈Γ(H)

ψ(H, ej)
(
αej [F ][H ⊔ αej ] + aej [F ][H ⊔ aej ]

)
. (III.C.2.10)

We prove this with three sub-sub-cases:

C.1.a m = 1,

C.1.b m = 2, and

C.1.c m ≥ 3.
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Case C.1.a Supposem = 1, i.e., suppose that T (F,H) = ∅ (since F is a facet, it follows that H ⊂ F ).

For every ej ∈ N = supp(F ), set {xej , yej} = {αej , aej} such that xej ∈ F and πej (xej ) = yej . Then

for every ej ∈ Γ(H), the product [F ][H ⊔ xej ] is zero, since H ⊔ {xej} ⊂ F . Let ej ∈ Γ(H) be

given, and we consider the product [F ][H ⊔ yej ]. Since T (F,H ⊔ yej ) = {πej} and F is a facet, we

have that [F ][H ⊔ yej ] ̸= 0 if and only if supp(F≥ej ) ⊂ (supp(H)⊔ {ej}) if and only if every map in

T (F ) \ {πej} is less than πej . Hence we set eℓ ∈ Γ(H) such that

πeℓ = max {πei ∈ T (F ) | ei ∈ Γ(H)}

and observe that Equation (III.C.2.10) holds if and only if

σ(F )mdeg(FC)[H] = ψ(H, eℓ)yeℓ [F ][H ⊔ yeℓ ],

where [F ][H ⊔ yeℓ ] is simple, since E = πeℓ(F≥eℓ) ∈ ε(F ) and E ⊂ H ⊔ yeℓ by construction. Since

H ⊂ F , we compute

F ∩ (H ⊔ {yeℓ}) = H

and

FC ∩ (H ⊔ {yeℓ})C = (F ∪ (H ⊔ {yeℓ}))C = (F ⊔ {yeℓ})C = FC \ {yeℓ},

so it follows from the definition of simple products that

ψ(H, eℓ)yeℓ [F ][H ⊔ yeℓ ] = ψ(H, eℓ)yeℓ · σ(F )ψ(H, yeℓ)mdeg(FC \ {yeℓ})[H]

= σ(F )mdeg(FC)[H].

Case C.1.b Suppose instead that m = 2 and denote T (F,H) = {πe1}. Then since [F ][H] = 0 and F

is a facet, we know supp(F≥e1) ∩ Γ(H) is non-empty and we again choose eℓ ∈ Γ(H) such that

πeℓ = max {πei ∈ T (F ) | ei ∈ Γ(H)} .

(if we suppose supp(F≥e1)∩Γ(H) = ∅, then we have E ⊂ H for E = πe1(F≥e1) ∈ ε(F ), contradicting

our assumption that [F ][H] = 0). Note that for any ej ∈ Γ(H)\{eℓ} we have that eℓ ∈ Γ(H⊔{aej}) =
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Γ(H ⊔ {αej}) and πeℓ > πej , so

supp(F≥e1) ̸⊂ supp(H ⊔ {aej}) = supp(H ⊔ {αej}),

i.e.,

[F ][H ⊔ aej ] = 0 = [F ][H ⊔ αej ].

Therefore, it suffices to show that

σ(F )mdeg(FC)[H] = ψ(H, eℓ) (αeℓ [F ][H ⊔ αeℓ ] + aeℓ [F ][H ⊔ aeℓ ]) ,

or equivalently,

σ(F )mdeg(FC)[H] = ψ(H, eℓ) (xeℓ [F ][H ⊔ xeℓ ] + yeℓ [F ][H ⊔ yeℓ ]) .

We once again have E = πeℓ(F≥eℓ) ∈ ε(F ) and E ⊂ (H⊔{yeℓ}) by construction, so T (F,H⊔{yeℓ}) =

{πe1 , πeℓ} and therefore [F ][H ⊔ yeℓ ] is complex. Since πe1 < πeℓ , we construct the paths

P (F, (H ⊔ yeℓ)|F ) = {F, πe1(F ), (πeℓ ◦ πe1)(F )}

P (F |H⊔yeℓ
, H ⊔ yeℓ) = {F |H⊔yeℓ

, πe1(F |H⊔yeℓ
), H ⊔ yeℓ}.

Most notably we have that

πe1(F |H⊔yeℓ
) = H ⊔ {xeℓ},

and since H = λ ⊔ {ye1}, we compute

F ∩ (H ⊔ {yeℓ}) = λ

F ∩ (H ⊔ {xeℓ}) = λ ⊔ {xeℓ}

πe1(F ) ∩ (H ⊔ {yeℓ}) = λ ⊔ {ye1} = H.
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Therefore we have that

xeℓ [F ][H ⊔ xeℓ ]+yeℓ [F ][H ⊔ yeℓ ]

= xeℓ [F ][H ⊔ xeℓ ] + (−1)3yeℓ

(
xeℓ
yeℓ

[F ][H ⊔ xeℓ ] +
ye1
xe1

[πe1(F )][H ⊔ yeℓ ]
)

= −ye1yeℓ
xe1

[πe1(F )][H ⊔ yeℓ ].

Since

(πe1(F ))
C ∩ (H ⊔ {yeℓ})C = (πe1(F ) ∪ (H ⊔ {yeℓ}))C

= ((F ∪H ⊔ {yeℓ}) \ {xe1})C

= ((F ∪H)C \ {yeℓ}) ⊔ {xe1}

= ((FC ∩HC) \ {yeℓ}) ⊔ {xe1},

we have that

ye1yeℓ
xe1

·mdeg
(
(πe1(F ))

C ∩ (H ⊔ {yeℓ})C
)
=
ye1yeℓ
xe1

·mdeg
(
((FC ∩HC) \ {yeℓ}) ⊔ {xe1}

)
=
ye1
xe1

·mdeg
(
(FC ∩HC) ⊔ {xe1}

)
= ye1 mdeg(FC ∩HC)

= mdeg(FC).

Using the fact that F is a facet we compute

−ψ(H, eℓ) ·Ψ(πe1(F ), H ⊔ {yeℓ}) = −ψ(H, eℓ) · (−1)0σ(πe1(F ))ψ(πe1(F ) ∩ (H ⊔ yeℓ), eℓ)

= −ψ(H, eℓ) · −σ(F )ψ(H, eℓ)

= σ(F ),

so it suffices to show that [πe1(F )][H ⊔ yeℓ ] is simple. Indeed, since [F ][H ⊔ yeℓ ] is complex with

E = πe1(F≥e1) ⊂ H ⊔ {yeℓ}
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and πeℓ is greater than every map in T (F ) indexed by Γ(H ⊔ {yeℓ}), the product [πe1(F )][H ⊔ yeℓ ]

is non-zero by Lemma III.B.8.

Case C.1.c Assume now that m ≥ 3 and denote T (F,H) = {πe1 , . . . , πem−1
}. Since we assume that

[F ][H] = 0, we need to show that the following equation holds:

σ(F )mdeg(FC)[H] =
∑

ej∈Γ(H)

ψ(H, ej)
(
αej [F ][H ⊔ αej ] + aej [F ][H ⊔ aej ]

)
.

Set {xej , yej} = {αej , aej} such that πej (xej ) = yej . Since supp(F )∪supp(H) = N and Γ(F ) = ∅, we

have that λ⊔ {xe1 , . . . , xem−1} ⊂ F and H = λ⊔ {ye1 , . . . , yem−1}. Since πem−1(F≥em−1) ̸⊂ H, there

exists some index ej ∈ Γ(H) ⊂ supp(F ) such that πej > πem−1
, and we once again set eℓ ∈ Γ(H)

such that

πeℓ = max
{
πej ∈ T (F ) | ej ∈ Γ(H)

}
.

As in the m = 2 case, every product of the form [F ][H ⊔ αej ] and of the form [F ][H ⊔ aej ], where

ej ̸= eℓ, must be zero. Thus we need to show that

σ(F )mdeg(FC)[H] = ψ(H, eℓ) (xeℓ [F ][H ⊔ xeℓ ] + yeℓ [F ][H ⊔ yeℓ ]) . (III.C.2.11)

As in the m = 2 case, we have that πeℓ(F≥eℓ) ∈ ε(F ), where πeℓ(F≥eℓ) ⊂ H ⊔ {yeℓ}, so [F ][H ⊔ yeℓ ]

is complex. If we denote {F1, . . . , Fm} = P (F,H|F ) and {H1, . . . ,Hm} = P (F |H , H), then we have

P (F, (H ⊔ yeℓ)) = {F1, F2, . . . , Fm, πeℓ(Fm)}

P (F |H⊔yeℓ
, H ⊔ yeℓ) = {H1 ⊔ xeℓ , H2 ⊔ xeℓ , . . . ,Hm ⊔ xeℓ , Hm ⊔ yeℓ}

because πeℓ is greater than every element of T (F,H). Since Hm = H, by Lemma III.B.12 we write

[F ][H ⊔ yeℓ ] = (−1)(m+1)−mxeℓ
yeℓ

[F ][H ⊔ xeℓ ]− (−1)m
ye1 · · · yem−1

xe1 · · ·xem−1

[Fm][H ⊔ yeℓ ]

= −xeℓ
yeℓ

[F ][H ⊔ xeℓ ]− (−1)m
ye1 · · · yem−1

xe1 · · ·xem−1

[Fm][H ⊔ yeℓ ],
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so after cancellation the right-hand side of Equation (III.C.2.11) becomes

ψ(H, eℓ)(−1)m+1yeℓ
ye1 · · · yem−1

xe1 · · ·xem−1

[Fm][H ⊔ yeℓ ].

By Lemma III.B.8 and our choice of πeℓ , the product [Fm][H ⊔ yeℓ ] is simple. We also have that

Fm ∩ (H ⊔ {yeℓ}) = H,

because ye1 , . . . , yem−1
∈ Fm and yeℓ /∈ Fm. We therefore compute

Ψ(Fm, H ⊔ {yeℓ}) = (−1)0σ(Fm)ψ(H, eℓ) = (−1)m−1σ(F )ψ(H, eℓ),

so we have that

ψ(H, eℓ)(−1)m+1 ·Ψ(Fm, H ⊔ {yeℓ}) = σ(F ).

Finally, since H ⊂ Fm we have that

FC
m ∩ (H ⊔ {yeℓ})C = (Fm ∪ (H ⊔ {yeℓ}))C = (Fm ⊔ {yeℓ})C = FC

m \ {yeℓ}

and therefore we compute

yeℓ
ye1 · · · yem−1

xe1 · · ·xem−1

·mdeg(FC
m ∩ (H ⊔ {yeℓ})C) =

ye1 · · · yem−1

xe1 · · ·xem−1

·mdeg(FC
m) = mdeg(FC).

Thus, the right-hand side of Equation (III.C.2.11) is equal to σ(F )mdeg(FC)[H] and therefore the

equation holds.

Case C.2 If we instead suppose that there exists some E ∈ ε(F ) such that E ⊂ H, then we once

again induct on m = #T (F,H) + 1. Note that E ⊂ H implies that #T (F,H) ≥ 1, so m ≥ 2 and

we again have sub-sub-cases:

C.2.a m = 2 and

C.2.b m ≥ 3.

Case C.2.a Assume m = 2. We denote T (F ) = {ρi1 , . . . , ρin}, and since F is a facet, we have

ε(F ) = {E1, . . . , En} where Ej = ρij (F≥ij ). Suppose there exists some Eℓ ∈ ε(F ) such that
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Eℓ ⊂ H, in which case the product [F ][H] is simple with T (F,H) = {iℓ}:

[F ][H] = Ψ(F,H)mdeg(FC ∩HC)[F ∩H] = σ(F )ψ(λ, iℓ)mdeg(FC ∩HC)[λ].

Set {yiℓ , xiℓ} = {aiℓ , αiℓ} so that ρiℓ(xiℓ) = yiℓ . Thus we need to show that

σ(F )ψ(λ, iℓ)mdeg(FC ∩HC)∂([λ]) = σ(F )mdeg(FC)[H]− [F ]∂([H]),

or equivalently, we need to show that

σ(F )ψ(λ, iℓ)mdeg(FC ∩HC)
∑

ij∈Γ(λ)

ψ(λ, ij)
(
αij [λ ⊔ αij ] + aij [λ ⊔ aij ]

)
= σ(F )mdeg(FC)[H]− [F ]

∑
ij′∈Γ(H)

ψ(H, ij′)
(
αij′ [H ⊔ αij′ ] + aij′ [H ⊔ aij′ ]

) (III.C.2.12)

Since Γ(λ) = Γ(H) ⊔ {iℓ}, the sum on the left-hand side of Equation (III.C.2.12) can be written as

ψ(λ, iℓ)

xiℓ [λ ⊔ xiℓ ] + yiℓ [λ ⊔ yiℓ︸ ︷︷ ︸
=H

]

+
∑

ij∈Γ(H)

ψ(λ, ij)
(
αij [λ ⊔ αij ] + aij [λ ⊔ aij ]

)
.

Observe that the following therefore appears in the left-hand side of Equation (III.C.2.12):

σ(F )ψ(λ, iℓ)mdeg(FC ∩HC) · ψ(λ, iℓ)yiℓ [H] = σ(F )mdeg(FC)[H],

where FC ∩HC = FC \{yiℓ}, because m = 2 and F is a facet, implying that ρ∗iℓ(H) ⊂ F . Therefore

Equation (III.C.2.12) holds if and only if

σ(F )ψ(λ, iℓ)mdeg(FC ∩HC)

ψ(λ, iℓ)xiℓ [λ ⊔ xiℓ ] +
∑

ij∈Γ(H)

ψ(λ, ij)
(
xij [λ ⊔ xij ] + yij [λ ⊔ yij ]

)
= −[F ]

∑
ij∈Γ(H)

ψ(H, ij)
(
xij [H ⊔ xij ] + yij [H ⊔ yij ]

)
, (III.C.2.13)

where we assume {xij , yij} = {αij , aij} such that xij ∈ F . For every ij ∈ Γ(H), we note that

T (F,H ⊔ xij ) = T (F,H) = {ρiℓ}, and since Eℓ ⊂ H ⊂ H ⊔ xij , the product [F ][H ⊔ xij ] appearing
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in the right-hand side of Equation (III.C.2.13) is simple. Therefore xij ∈ F \H implies

FC ∩ (H ⊔ xij )C = FC ∩HC

and we have that

−ψ(H, j)xij [F ][H ⊔ xij ]

= −ψ(H, ij)xij ·Ψ(F,H ⊔ xij )mdeg(FC ∩ (H ⊔ xij )C)[F ∩ (H ⊔ xij )]

= −ψ(λ ⊔ yiℓ , ij)xij · σ(F )ψ(λ ⊔ xij , iℓ)mdeg(FC ∩HC)[λ ⊔ xij ]

= −ψ(λ, ij)ψ(iℓ, ij)xij · σ(F )ψ(λ, iℓ)ψ(ij , iℓ)mdeg(FC ∩HC)[λ ⊔ xij ]

= ψ(λ, ij)xij · σ(F )ψ(λ, iℓ)mdeg(FC ∩HC)[λ ⊔ xij ].

Observe that the term in this display appears in both sides of Equation (III.C.2.13), and thus

Equation (III.C.2.13) holds if and only if the following equation holds:

σ(F )ψ(λ, iℓ)mdeg(FC ∩HC)

ψ(λ, iℓ)xiℓ [λ ⊔ xiℓ ] +
∑

ij∈Γ(H)

ψ(λ, ij)
(
yij [λ ⊔ yij ]

)
= −

∑
ij∈Γ(H)

ψ(H, ij)yij [F ][H ⊔ yij ].
(III.C.2.14)

Since Eℓ ⊂ H ⊂ H ⊔ yij , we know that [F ][H ⊔ yij ] ̸= 0 for each ij . Since yij /∈ F we also

have that T (F,H ⊔ yij ) = {ρij , ρiℓ}, so [F ][H ⊔ yij ] is complex. Let ij ∈ Γ(H) be given and we

denote {F1, F2, F3} = P (F,H ′|F ) and {H ′
1, H

′
2, H

′
3} = P (F |H′ , H ′), where we set H ′ = H⊔yij Then

we note that F ∩H ′ = λ, and we consider the product

[F ][H ′] = −mdeg((F ∩H ′
2) \ λ)

m̃deg((F ∩H ′
2) \ λ)

[F ][H ′
2]−

mdeg((F2 ∩H ′) \ λ)
m̃deg((F2 ∩H ′) \ λ)

[F2][H
′].

If we suppose that ρij > ρiℓ , then xij ∈ F≥iℓ and therefore xij ∈ Eℓ ⊂ H, a contradiction since

ij ∈ Γ(H), so we must have that ρij < ρiℓ . Hence we have that F2 = ρij (F ), F3 = ρiℓ(F2),

H ′
2 = ρij (H

′
1), and H

′ = ρiℓ(H
′
2). Since Eℓ = ρiℓ(F≥iℓ) ⊂ H ⊂ H ′ and T (F2, H

′) = {ρiℓ}, we know

that [F2][H
′] is simple by Lemma III.B.8. Moreover, except in the case when ρij is the largest map in

T (F ) indexed by Γ(H), there must be a map ρiq ∈ T (F ) indexed by Γ(H ′) satisfying ρij < ρiq < ρiℓ .
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Therefore by the same lemma, the product [F ][H ′
2] is simple if and only if ρij = ρi0 , where we define

ρi0 = max
{
ρiq ∈ T (F ) | iq ∈ Γ(H)

}
.

We deal with [F2][H
′] first. To that end, we compute the following:

−mdeg((F2 ∩H ′) \ λ)
m̃deg((F2 ∩H ′) \ λ)

[F2][H
′] = −

yij
xij

· σ(F2)ψ(F2 ∩H ′, iℓ)mdeg(FC
2 ∩ (H ′)C)[F2 ∩H ′]

= σ(F )
yij
xij

· ψ(λ ⊔ yij , iℓ)mdeg((F2 ∪H ′)C)[λ ⊔ yij ]

= σ(F )ψ(λ, iℓ)ψ(ij , iℓ)
yij
xij

mdeg((F2 ⊔ yiℓ)C)[λ ⊔ yij ].

This implies that for each ij ∈ Γ(λ), we have

−ψ(H, ij)yij · σ(F )ψ(λ, iℓ)ψ(ij , iℓ)
yij
xij

mdeg((F2 ⊔ yiℓ)C)[λ ⊔ yij ]

appearing on the right-hand side of Equation (III.C.2.14). We claim this is equal to the term

σ(F )ψ(λ, iℓ)mdeg(FC ∩HC) · ψ(λ, ij)yij [λ ⊔ yij ]

appearing in the left-hand side of Equation (III.C.2.14). First, since H = λ ⊔ {yiℓ} we have that

−ψ(H, ij) · ψ(λ, iℓ)ψ(ij , iℓ) = −ψ(λ ⊔ yiℓ , ij)ψ(λ, iℓ)ψ(ij , iℓ)

= −ψ(λ, ij)ψ(yiℓ , ij)ψ(λ, iℓ)ψ(yij , iℓ)

= ψ(λ, ij)ψ(λ, iℓ)ψ(yiℓ , ij)ψ(yiℓ , ij)

= ψ(λ, ij)ψ(λ, iℓ),

so the two terms in question have the same sign. Second, we observe that since xiℓ ∈ F2 and

yij ∈ F2 = ρij (F ) we have that

yij
xij

mdeg((F2 ⊔ yiℓ)C) =
yij
xij

·mdeg(FC
2 \ yiℓ) = mdeg(FC \ yiℓ) = mdeg(FC ∩HC).
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This justifies our claim and therefore Equation (III.C.2.14) holds if and only if

σ(F )ψ(λ, iℓ)mdeg(FC ∩HC) ·ψ(λ, iℓ)xiℓ [λ⊔xiℓ ] = −ψ(H, i0)yi0 ·

(
−mdeg((F ∩H ′

2) \ λ)
m̃deg((F ∩H ′

2) \ λ)
[F ][H ′

2]

)
,

where H ′ = H ⊔ {yi0}, so H ′
2 = ρi0(F |H′). Since (ψ(λ, iℓ))

2 = 1, it suffices to show that

σ(F )mdeg(FC ∩HC) · xiℓ [λ ⊔ xiℓ ] = ψ(H, i0)yi0 ·
mdeg((F ∩H ′

2) \ λ)
m̃deg((F ∩H ′

2) \ λ)
[F ][H ′

2]. (III.C.2.15)

Since H ′ = H ⊔ {yi0} = λ ⊔ {yi0 , yiℓ} we have that

F ∩H ′
2 = F ∩ (λ ⊔ {yi0 , xiℓ}) = λ ⊔ {xiℓ} = F |H ,

so (F ∩H ′
2) \ λ = xiℓ . We also observe that

FC ∩ (H ′
2)

C = (F ∪H ′
2)

C = (F ⊔ {yi0})C = FC \ {yi0}.

Thus the right-hand side of Equation (III.C.2.15) becomes

ψ(H, i0)yi0 ·
xiℓ
yiℓ

[F ][H ′
2] = ψ(H, i0)

yi0xiℓ
yiℓ

· σ(F )ψ(λ ⊔ xiℓ , i0)mdeg(FC ∩ (H ′
2)

C)[λ ⊔ xiℓ ]

= ψ(λ ⊔ yiℓ , i0)
yi0xiℓ
yiℓ

· σ(F )ψ(λ, i0)ψ(xiℓ , i0)mdeg(FC \ yi0)[λ ⊔ xiℓ ]

= ψ(λ, i0)ψ(yiℓ , i0)
xiℓ
yiℓ

· σ(F )ψ(λ, i0)ψ(xiℓ , i0)mdeg(FC)[λ ⊔ xiℓ ]

= σ(F )mdeg(FC \ yiℓ)xiℓ [λ ⊔ xiℓ ]

= σ(F )mdeg(FC ∩HC)xiℓ [λ ⊔ xiℓ ],

so the equality holds. Thus we have proved that the Leibniz rule holds in the case when F is a facet,

H is not a facet, and [F ][H] is simple (i.e., when m = 2).

Case C.2.b We still assume F is a facet and H is not, but now we assume that m ≥ 3 and we set

P (F,H|F ) = {F1, . . . , Fm} P (F |H , H) = {H1, . . . ,Hm}.
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For every ej ∈ N , set {xej , yej} = {aej , αej} such that xej ∈ F . We set T (F,H) = {πe1 , . . . , πem−1},

where we assume πej ∈ {τej , tej} and πej (xej ) = yej . Then H = λ ⊔ {ye1 , . . . , yem−1
}. Let q =

(m − 1) + #Γ(H). Since F is a facet, this yields F = λ ⊔ {xe1 , . . . , xem−1
, xem , . . . , xeq}. By

Lemma III.B.11 we have that

∂([F ][H]) = (−1)m
mdeg((F ∩H2) \ λ)
m̃deg((F ∩H2) \ λ)

∂([F ][H2])−
ye1
xe1

∂([F2][H]).

We have two more nested cases:

C.2.b.i [F ][H2] = 0 and

C.2.b.ii [F ][H2] ̸= 0.

Case C.2.b.i In this case, by the induction hypothesis we need to show that

− ye1
xe1

(∂([F2])[H]− [F2]∂([H])) = ∂([F ])[H]− [F ]∂([H]). (III.C.2.16)

Since F and F2 are facets, we have that

∂([F2]) = σ(F2)mdeg(FC
2 ) = −σ(F )xe1

ye1
mdeg(FC) = −xe1

ye1
∂([F ]),

so to prove Equation (III.C.2.16) it suffices to show that

ye1
xe1

[F2]∂([H]) = −[F ]∂([H]). (III.C.2.17)

Since Γ(H) ⊂ supp(F ), for every ej ∈ Γ(H) there is some πej ∈ T (F ) \T (F,H). Thus we have that

∂([H])

=
∑

ej∈Γ(H)
πej

<πe1

ψ(H, ej)
(
xej [H ⊔ xej ] + yej [H ⊔ yej ]

)
+

∑
ej∈Γ(H)
πej

>πe1

ψ(H, ej)
(
xej [H ⊔ xej ] + yej [H ⊔ yej ]

)

We claim that for each ej ∈ Γ(H) we have that

[F ]
(
xej [H ⊔ xej ] + yej [H ⊔ yej ]

)
= − ye1

xe1
[F2]

(
xej [H ⊔ xej ] + yej [H ⊔ yej ]

)
. (III.C.2.18)
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Let ej ∈ Γ(H) be given and suppose that πej < πe1 . Then we have that

P (F, (H ⊔ xej )|F ) = P (F,H|F ) = {F1, F2, . . . , Fm}

and

P (F |H⊔xej
, H ⊔ xej ) = {H1 ⊔ xej , H2 ⊔ xej , . . . ,Hm ⊔ xej},

because T (F,H ⊔ xej ) = T (F,H). Therefore by Lemma III.B.11 we have that

[F ][H ⊔ xej ] = (−1)m
mdeg((F ∩ (H2 ⊔ xej )) \ (F ∩ (H ⊔ xej )))

m̃deg((F ∩ (H2 ⊔ xej )) \ (F ∩ (H ⊔ xej )))
[F ][H2 ⊔ xej ]−

ye1
xe1

[F2][H ⊔ xej ]

= (−1)m
mdeg((F ∩H2) \ λ)
m̃deg((F ∩H2) \ λ)

[F ][H2 ⊔ xej ]−
ye1
xe1

[F2][H ⊔ xej ].

Since [F ][H2] = 0 and πej < πe1 by assumption, and T (F,H2) = {πe1}, by Lemma III.B.8 there

exists some ez ∈ Γ(H) \ {ej} such that πez > πe1 . Since ej ∈ Γ(H ⊔ xej ), it follows from the same

lemma that [F ][H2 ⊔ xej ] = 0. Hence we have that

[F ][H ⊔ xej ] = − ye1
xe1

[F2][H ⊔ xej ]. (III.C.2.19)

Since yej /∈ F we have T (F,H ⊔ yej ) = {πej , πe1 , πe2 , . . . , πem−1
} and it follows that

P (F, (H ⊔ yej )|F ) = {F, πej (F ), πej (F2), . . . , πej (Fm)}

and

P (F |H⊔yej
, H ⊔ yej ) = {H1 ⊔ xej , H1 ⊔ yej , H2 ⊔ yej , . . . ,Hm ⊔ yej}.

As before, there must be some ez ∈ Γ(H ⊔ yej ) such that πej < πe1 < πez , so by Lemma III.B.8

the products [F ][H1 ⊔ yej ] and [πej (F )][H2 ⊔ yej ] must both be zero. Hence two applications of

Lemma III.B.11 yield

[F ][H ⊔ yej ] =
yejye1
xejxe1

[πej (F2)][H ⊔ yej ]. (III.C.2.20)

Hence by Equations (III.C.2.19) and (III.C.2.20), we know Equation (III.C.2.18) holds for every case
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when πej < πe1 if and only if

[F2][H ⊔ yej ] = −
yej
xej

[πej (F2)][H ⊔ yej ]. (III.C.2.21)

We note that T (F2, H ⊔ yej ) = {πej , πe2 , . . . , πem−1
}, and therefore

P (F2, (H ⊔ yej )|F2
) = { F2, πej (F2), πej (F3), . . . , πej (Fm)}

and

P ((F2)|H⊔yej
, H ⊔ yej ) = {H2 ⊔ xej , H2 ⊔ yej , H3 ⊔ yej , . . . ,Hm ⊔ yej}.

Since πej < πez for some ez ∈ Γ(H ⊔ yej ), we know that [F2][H2 ⊔ yej ] = 0 and therefore Equa-

tion (III.C.2.21) holds by Lemma III.B.11. Thus Equation (III.C.2.18) holds for all ej ∈ Γ(H)

satisfying πej < πe1 .

Now let ej ∈ Γ(H) such that πej > πe1 . Again we have T (F,H ⊔ xej ) = T (F,H) and

F ∩ (H ⊔ {xej}) = λ ⊔ {xej},

so by Lemma III.B.11 we compute

[F ][H ⊔ xej ] = (−1)m
mdeg((F ∩ (H2 ⊔ xej )) \ (λ ⊔ xej ))

m̃deg((F ∩ (H2 ⊔ xej )) \ (λ ⊔ xej ))
[F ][H2 ⊔ xej ]−

ye1
xe1

[F2][H ⊔ xej ]

= (−1)m
mdeg((F ∩H2) \ λ)
m̃deg((F ∩H2) \ λ)

[F ][H2 ⊔ xej ]−
ye1
xe1

[F2][H ⊔ xej ]

= (−1)m
xe2 · · ·xem−1

ye2 · · · yem−1

[F ][H2 ⊔ xej ]−
ye1
xe1

[F2][H ⊔ xej ].

Now we analyze [F ][H ⊔ yej ]. We have that F ∩ (H ⊔ {yej}) = λ, and since πe1 = minT (F,H ⊔ yej )

where T (F,H ⊔ yej ) = T (F,H) ⊔ {πej}, we have that

[F ][H ⊔ yej ] = (−1)m+1mdeg((F ∩ (H ⊔ xej )) \ λ)

m̃deg((F ∩ (H ⊔ xej )) \ λ)
[F ][H2 ⊔ xej ]−

ye1
xe1

[F2][H ⊔ yej ]

= (−1)m+1xe2 · · ·xem−1

ye2 · · · yem−1

·
xej
yej

[F ][H2 ⊔ xej ]−
ye1
xe1

[F2][H ⊔ yej ].
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Therefore we compute

[F ]
(
xej [H ⊔ xej ]+ yej [H ⊔ yej ]

)
= (−1)m

xe2 · · ·xem−1

ye2 · · · yem−1

xej [F ][H2 ⊔ xej ]−
ye1
xe1

xej [F2][H ⊔ xej ]

+ (−1)m+1xe2 · · ·xem−1

ye2 · · · yem−1

·
xej
yej

yej [F ][H2 ⊔ xej ]−
ye1
xe1

yej [F2][H ⊔ yej ]

= − ye1
xe1

[F2]
(
xej [H ⊔ xej ] + yej [H ⊔ yej ]

)
and Equation (III.C.2.18) holds in this case as well. Summing over all ej ∈ Γ(H) we find that

Equation (III.C.2.17) holds and we conclude that the Leibniz rule holds in this case.

Case C.2.b.ii For the other nested case, assume that [F ][H2] ̸= 0. Define

C1 = (−1)m
mdeg((F ∩H2) \ λ)
m̃deg((F ∩H2) \ λ)

= (−1)m
xe2 · · ·xem−1

ye2 · · · yem−1

.

By Lemma III.B.11 we have that

[F ][H] = C1[F ][H2]−
ye1
xe1

[F2][H],

and therefore by both the m = 2 case and our induction hypothesis, we have the following:

∂([F ][H]) = C1 (∂([F ])[H2]− [F ]∂([H2]))−
ye1
xe1

(∂([F2])[H]− [F2]∂([H]))

= C1 (∂([F ])[H2]− [F ]∂([H2]))−
ye1
xe1

σ(F2)mdeg(FC
2 )[H] +

ye1
xe1

[F2]∂([H])

= C1 (∂([F ])[H2]− [F ]∂([H2])) + σ(F )mdeg(FC)[H] +
ye1
xe1

[F2]∂([H])

= C1 (∂([F ])[H2]− [F ]∂([H2])) + ∂([F ])[H] +
ye1
xe1

[F2]∂([H]).

It therefore suffices to show that

[F ]∂([H]) = C1[F ]∂([H2])−
ye1
xe1

[F2]∂([H])− σ(F )C1 mdeg(FC)[H2]. (III.C.2.22)

A salient feature of this setting: the assumption that [F ][H2] ̸= 0 implies that every map in T (F )
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indexed by Γ(H) is less than πe1 , by Lemma III.B.8. Let ej ∈ Γ(H) be given and recall that

P (F, (H ⊔ xej )|F ) = P (F,H|F ) = {F1, F2, . . . , Fm}

and

P (F |H⊔xej
, H ⊔ xej ) = {H1 ⊔ xej , H2 ⊔ xej , . . . ,Hm ⊔ xej}.

Since

(F ∩ (H2 ⊔ {xej})) \ (F ∩ (H ⊔ {xej})) = (F ∩H2) \ λ

we have that

[F ][H ⊔ xej ] = C1[F ][H2 ⊔ xej ]−
ye1
xe1

[F2][H ⊔ xej ],

by Lemma III.B.11. Therefore we compute

[F ]
∑

ej∈Γ(H)

ψ(H, ej)xej [H ⊔ xej ]

=
∑

ej∈Γ(H)

ψ(H, ej)xej [F ][H ⊔ xej ]

=
∑

ej∈Γ(H)

ψ(H, ej)xej

(
C1[F ][H2 ⊔ xej ]−

ye1
xe1

[F2][H ⊔ xej ]
)

= C1[F ]

 ∑
ej∈Γ(H)

ψ(H, ej)xej [H2 ⊔ xej ]

− ye1
xe1

[F2]

 ∑
ej∈Γ(H)

ψ(H, ej)xej [H ⊔ xej ]

 .

Note that this display includes terms appearing in both C1[F ]∂([H2]) and −(yej/xej )[F2]∂([H]),

which are on the left-hand side of Equation (III.C.2.22). Moreover, this display also accounts for half

of the terms in the expansion of [F ]∂([H]) appearing on the left-hand side of Equation (III.C.2.22).

Thus it suffices now to show that

∑
ej∈Γ(H)

ψ(H, ej)yej [F ][H ⊔ yej ] + σ(F )C1 mdeg(FC)[H2]

= C1

 ∑
ej∈Γ(H)

ψ(H, ej)yej [F ][H2 ⊔ yej ]

− ye1
xe1

 ∑
ej∈Γ(H)

ψ(H, ej)yej [F2][H ⊔ yej ]

 .

(III.C.2.23)
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Let ej ∈ Γ(H) be given. Since πej is less than every element of T (F,H) we have that

P (F, (H ⊔ yej )|F ) = {F1, πej (F1), πej (F2), . . . , πej (Fm)}

and

P (F |H⊔yej
, H ⊔ yej ) = {H1 ⊔ xej , H1 ⊔ yej , H2 ⊔ yej , . . . ,Hm ⊔ yej}.

We compute the following:

(F ∩ (H1 ⊔ {yej})) \ (F ∩ (H ⊔ {yej})) = (F ∩H1) \ λ = H1 \ λ = xe1 · · ·xem−1

(πej (F ) ∩ (H2 ⊔ {yej})) \ (F ∩ (H ⊔ {yej})) = ((F ∩H2) ⊔ {yej}) \ λ = yej · xe2 · · ·xem−1 ,

and thus by Lemma III.B.11, we write

[F ][H ⊔ yej ] =(−1)m+1xe1 · · ·xem−1

ye1 · · · yem−1

[F ][H1 ⊔ yej ]

+ (−1)m+1 yejxe2 · · ·xem−1

xejye2 · · · yem−1

[πej (F )][H2 ⊔ yej ] +
yejye1
xejxe1

[πej (F2)][H ⊔ yej ].

We also compute

[F ][H2 ⊔ yej ] = −xe1
ye1

[F ][H1 ⊔ yej ]−
yej
xej

[πej (F )][H2 ⊔ yej ]

and

[F2][H ⊔ yej ] = (−1)m
xe2 · · ·xem−1

ye2 · · · yem−1

[F2][H2 ⊔ yej ]−
yej
xej

[πej (F2)][H ⊔ yej ]

= C1[F2][H2 ⊔ yej ]−
yej
xej

[πej (F2)][H ⊔ yej ].

Hence for every ej we have that

[F ][H ⊔ yej ] = C1[F ][H2 ⊔ yej ]−
ye1
xe1

[F2][H ⊔ yej ] +
ye1
xe1

C1[F2][H2 ⊔ yej ].
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Substituting into Equation (III.C.2.23), it therefore suffices to show that

σ(F )mdeg(FC)[H2] = − ye1
xe1

∑
ej∈Γ(H)

ψ(H, ej)yej [F2][H2 ⊔ yej ]. (III.C.2.24)

Since T (F2, H2 ⊔ yej ) = {πej}, the product [F2][H2 ⊔ yej ] is non-zero if and only if

πej ((F2)≥ej ) ⊂ H2 ⊔ {yej}.

Set eℓ ∈ Γ(H) such that πeℓ is the largest map in T (F ) indexed by Γ(H). Since [F ][H2] ̸= 0 is

simple with T (F,H2) = {πe1} and F a facet, we know that πe1(F≥e1) ⊂ H2, i.e., every map in T (F )

indexed by Γ(H2) is less than πe1 . It follows that πeℓ is greater than all maps in T (F2) indexed

by Γ(H2 ⊔ yeℓ), so supp((F2)≥eℓ) ⊂ supp(H2 ⊔ yeℓ). Since T (F2, H2 ⊔ yℓ) = {πeℓ}, we have that

Eℓ ⊂ H2 ⊔ yeℓ and therefore [F2][H2 ⊔ yeℓ ] is simple. On other other hand, for any ej ∈ Γ(H) \ {eℓ},

we have that eℓ ∈ supp((F2)≥ej ) and eℓ /∈ supp(H ⊔ yej ). Thus Equation (III.C.2.24) holds if and

only if

σ(F )mdeg(FC)[H2] = − ye1
xe1

ψ(H, eℓ)yeℓ [F2][H2 ⊔ yeℓ ].

Since H2 = πe1(F |H) ⊂ πe1(F ) = F2 and yeℓ /∈ F , we have that F2 ∩ (H2 ⊔ yeℓ) = H2. Therefore

(F2)
C ∩ (H2 ⊔ {yeℓ})C = (F2 ∪ (H2 ⊔ {yeℓ}))

C
= (F2 ⊔ {yeℓ})C = FC

2 \ {yeℓ}

and we compute

− ye1
xe1

ψ(H, eℓ)yeℓ [F2][H2 ⊔ yeℓ ] = − ye1
xe1

ψ(H, eℓ)yeℓ · σ(F2)ψ(H2, eℓ)mdeg(FC
2 \ yeℓ)[H2]

= − ye1
xe1

· −σ(F )mdeg(FC
2 )[H2]

= −σ(F )mdeg(FC)[H2].

Thus we have proved that the Leibniz rule holds for products [F ][H] where F is a facet.

Case D. Let both |F | and |H| be arbitrary. If H is a facet, then note that |H| = 1 and the Leibniz
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rule holds by graded commutativity:

∂([F ][H]) = (−1)|F |∂([H][F ])

= (−1)|F | (∂([H])[F ]− [H]∂([F ]))

= (−1)|F |
(
(−1)|F |(|H|+1)[F ]∂([H])− (−1)|H|(|F |+1)∂([F ])[H]

)
= (−1)|F |

(
[F ]∂([H]) + (−1)|F |∂([F ])[H]

)
= (−1)|F |[F ]∂([H]) + ∂([F ])[H].

Assume therefore that |F |, |H| ≥ 2. Since Γ(F ) ̸= ∅, we let ep = minΓ(F ) and define F ′′ = F ⊔aΓ(F )

and F ′ = F ⊔ {αep}. Thus by Lemma III.B.14 we have that F ′, F ′′ ∈ ∆̂ \ Σ and

[F ′′][F ′] = σ(F ′′)mdeg((F ′′)C ∩ (F ′)C)ψ(F, ep)[F ].

Set C2 = σ(F ′′)mdeg((F ′′)C ∩ (F ′)C)ψ(F, ep). It suffices to show that

∂(C2[F ][H]) = C2∂([F ])[H] + (−1)|F |[F ]∂([H]).

By the induction hypothesis, bases cases, and the linearity of the differential, and by our associativity

assumption, then we have the following:

∂(C2[F ][H]) = ∂ (([F ′′][F ′])[H])

= ∂([F ′′]([F ′][H])) (III.C.2.25)

= ∂([F ′′]) · [F ′][H] + (−1)|F
′′|[F ′′]∂([F ′][H])

= ∂([F ′′]) · [F ′][H] + (−1)|F
′′|[F ′′] ·

(
∂([F ′])[H] + (−1)|F

′|[F ′]∂([H])
)

= ∂([F ′′]) · [F ′][H] + (−1)|F
′′|[F ′′]∂([F ′])[H] + (−1)|F

′′|+|F ′|[F ′′][F ′]∂([H])

=
(
∂([F ′′])[F ′] + (−1)|F

′′|[F ′′]∂([F ′])
)
· [H] + (−1)|F |C2[F ]∂([H])

= ∂([F ′′][F ′])[H] + (−1)|F |C2[F ]∂([H])

= ∂(C2[F ])[H] + (−1)|F |C2[F ]∂([H]).

Remark III.C.3. The second equality in Equation (III.C.2.25) in the preceding proof is the only
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place where we use our associativity assumption. If one can prove the Leibniz rule holds in this

most general case without assuming associativity, then we can conclude that the product given in

Definition III.A.1 imparts a (possibly) non-associative DG algebra structure to L. If one can prove

that the product is associative, then we can conclude that the product imparts an associative DG

algebra structure to L.
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Chapter IV

Future Work

IV.A Associativity

We provide a partial proof sketch that associativity holds for a special case, but a complete

proof that associativity holds in general is of great interest. First, we make a remark that may be

useful in a proof that associativity holds in the most general case.

Remark IV.A.1. Let F,H,G ∈ ∆̂\Σ. By graded commutativity, and Remark III.C.3, and the fact

that the product is additive with respect to homological degree, we have ([H][F ])[G] = [H]([F ][G])

if and only if

([F ][H])[G] = (−1)|H|·|G|([F ][G])[H],

i.e., we have

([H][F ])[G] = [H]([F ][G]) ⇐⇒ (−1)|H||F |([F ][H])[G] = (−1)|H|(|F |+|G|)([F ][G])[H]

⇐⇒ (−1)|H||F |([F ][H])[G] = (−1)|H||F |+|H||G|([F ][G])[H]

⇐⇒ ([F ][H])[G] = (−1)|H||G|([F ][G])[H].

Conjecture IV.A.2. Let F,H,G ∈ ∆̂ \Σ. If the products [F ][H] and [F ][G] are each simple, then

we have that

([F ][H])[G] = (−1)|H|·|G|([F ][G])[H]. (IV.A.2.1)

103



Proof Sketch. By the definition of simple products, (IV.A.2.1) is equivalent to

Ψ(F,H)mdeg(FC ∩HC)[F ∩H][G] = (−1)|H||G|Ψ(F,G)mdeg(FC ∩GC)[F ∩G][H]. (IV.A.2.2)

Let πeh , πeg ∈ T (F ) such that T (F,H) = {πeh} and T (F,G) = {πeg}. One can first argue that

Γ(F ∩ H) ∩ Γ(G) ̸= ∅ if and only if Γ(F ∩ G) ∩ Γ(H) ̸= ∅, so (IV.A.2.2) holds in this case, since

both sides must therefore be zero due to incomplete supports. One can thereafter assume that

eh ∈ supp(G) and eg ∈ supp(H), and it follows that

eh, eg ∈ supp(F ) ∩ supp(H) ∩ supp(G).

A brief argument shows that (IV.A.2.2) holds in the special case when πeh = πeg , so one can assume

that πeh ̸= πeg , i.e., eh ̸= eg.

It is then straightforward to show that T (F ∩H,G) = {πeg} and similarly T (F ∩G,H) =

{πeh}. It is similarly straightforward to argue that each of the following hold:

Γ(F ∩H) = Γ(F ) ⊔ Γ(H) ⊔ {eh}

Γ(F ∩G) = Γ(F ) ⊔ Γ(G) ⊔ {eg}.
(IV.A.2.3)

If one supposes that [F ∩H][G] is simple, then one must also argue that [F ∩G][H] is simple, and

verify that (IV.A.2.2) holds. To prove that [F ∩G][H] is simple, it suffices to show the following:

(a) πeh ∈ T (F ∩G);

(b) For every ej ∈ Γ(F ∩G), if αej ∈ H, then τej > πeh ;

(c) Γ(F ∩G) ⊂ supp(H);

(d) supp((F ∩G)≥eh) ⊂ supp(H).

After doing all that, one must then verify that all relevant signs and coefficients match, i.e., one

must show that

Ψ(F,H)Ψ(F ∩H,G) = (−1)|H||G|Ψ(F,G)Ψ(F ∩G,H)
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and

mdeg(FC ∩HC)mdeg((F ∩H)C ∩GC) = mdeg(FC ∩GC)mdeg((F ∩G)C ∩HC). (IV.A.2.4)

This is a tedious proof by bookkeeping. For instance, we have FC = (FC ∩G) ⊔ (FC ∩GC) and

(F ∩H)C = FC ∪HC = (FC ∩HC) ⊔ (FC ∩H) ⊔ (F ∩HC).

We also have FC = (FC ∩H) ⊔ (FC ∩HC) and

(F ∩G)C = (FC ∩GC) ⊔ (FC ∩G) ⊔ (F ∩GC).

It is then straightforward to prove that (IV.A.2.4). Keeping track of the signs is far more intensive.
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IV.B Kq-coronas

In this document we consider only K1-coronas, but one can define a Kq-corona for any

positive integer q. Informally, we affix a distinct complete graph on q vertices to each vertex of G.

Definition IV.B.1. Set V = {a1, . . . , an} and let G = (V,E) be a simple graph. For each

i = 1, . . . , n, let Ki
q be a complete graph on q vertices, i.e., set Vi = {αi

1, . . . , α
i
q} and Ei ={

αi
jα

i
ℓ | j ̸= ℓ

}
, and let Ki

q = (Vi, Ei) be a simple graph. The Kq-corona of G is the simple graph

ΣqG = (V ′, E′), where V ′ = V ∪ (∪n
i=1Vi) and

E′ = E ∪

(
n⋃

i=1

Ei

)
∪

(
n⋃

i=1

{
aiα

i
j | j = 1, . . . , q

})
.

Discussion IV.B.2. Let ΣqG denote the Kq-corona of the simple graph G. There are a number

of natural questions to ask. What can be said about the Stanley-Reisner ring S = k[∆ΣqG]? Can

we realize simplicial complexes ∆ΣqG in the context of [3] as we have for ∆ΣG? Is this ring Cohen-

Macaulay in general? We will give a few motivating examples and state a few conjectures.

In our usual fashion, we will use a, b, c, d in the following example to remove a layer of

notation.

Example IV.B.3. Let G = C4 be the four-cycle:

a b

d c.

Then the K2-corona is

α2 β2

α1 β1

a b

d c

δ1 γ1

δ2 γ2
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and the K3-corona is

α3 α2 β2 β3

α1 β1

a b

d c

δ1 γ1

δ3 δ2 γ2 γ3

We can compute the independence complex ∆Σ2G:

∆Σ2G = ⟨αi1βi2γi3δi4 | ij ∈ {1, 2}, ∀j⟩+ ⟨aβi2γi3δi4 | ij ∈ {1, 2}, ∀j⟩

+ ⟨αi1bγi3δi4 | ij ∈ {1, 2}, ∀j⟩+ ⟨αi1βi2cδi4 | ij ∈ {1, 2}, ∀j⟩+ ⟨αi1βi2γi3d | ij ∈ {1, 2}, ∀j⟩

+ ⟨aβi2cδi4 | ij ∈ {1, 2}, ∀j⟩+ ⟨αi1bγi3d | ij ∈ {1, 2}, ∀j⟩

Note that ∆Σ2G is a pure simplicial complex.

Conjecture IV.B.4. The independence complex of a Kq-corona is a pure simplicial complex.

Example IV.B.5. It is relatively straightforward to show that if we list the facets of ∆Σ2G in order

of increasing number of Romans, then that list will be a shelling of ∆Σ2G.

Conjecture IV.B.6. The independence complex of a Kq-corona is shellable and therefore Cohen-

Macaulay.

Example IV.B.7. If G = C4, then Stanley-Reisner ideal J∆Σ2G
is given by

J∆Σ2G
= J∆G

+ ⟨aα1, aα2, bβ1, bβ2, cγ1, cγ2, dδ1, dδ2⟩ .

Remark IV.B.8. One should be able to generalize the ∆̂ construction to include these new coronas

and thereby describe an even larger class of Cohen-Macaulay simplicial complexes.
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IV.C Additional Questions

Question IV.C.1. Once we have this DG structure, we want to use it. What results can we now

apply to the resolution L? What consequences do they have for the rings being resolved?

Question IV.C.2. We have described a possible DG algebra structure for one specific class of

simplicial complex that arises in [3]. Can our result be generalized to include more such simplicial

complexes?
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